WO2013051668A1 - 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム - Google Patents

含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム Download PDF

Info

Publication number
WO2013051668A1
WO2013051668A1 PCT/JP2012/075852 JP2012075852W WO2013051668A1 WO 2013051668 A1 WO2013051668 A1 WO 2013051668A1 JP 2012075852 W JP2012075852 W JP 2012075852W WO 2013051668 A1 WO2013051668 A1 WO 2013051668A1
Authority
WO
WIPO (PCT)
Prior art keywords
copolymer
vinyl ether
fluorine
vinyl alcohol
olefin
Prior art date
Application number
PCT/JP2012/075852
Other languages
English (en)
French (fr)
Inventor
弘賢 山本
山本 達也
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201280048187.1A priority Critical patent/CN103842389B/zh
Priority to JP2013537555A priority patent/JP6127976B2/ja
Priority to EP12838199.3A priority patent/EP2765143B1/en
Publication of WO2013051668A1 publication Critical patent/WO2013051668A1/ja
Priority to US14/196,444 priority patent/US9388262B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • C08F214/267Tetrafluoroethene with non-fluorinated comonomers with non-fluorinated vinyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • C08F2/24Emulsion polymerisation with the aid of emulsifying agents
    • C08F2/26Emulsion polymerisation with the aid of emulsifying agents anionic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/182Monomers containing fluorine not covered by the groups C08F214/20 - C08F214/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/04Reduction, e.g. hydrogenation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F216/04Acyclic compounds
    • C08F216/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids

Definitions

  • the present invention relates to a method for producing a fluorine-containing olefin / vinyl alcohol copolymer and a film formed from a composition containing the copolymer.
  • Fluorinated olefin / vinyl alcohol copolymer which is a copolymer of fluorinated olefin and vinyl alcohol, is a raw material for coating resins, gas / liquid separation membrane materials, gas barrier materials, solar cell sealing materials, and various surface protection sheets. It is used for materials and hydrophilic porous materials (Patent Documents 1 and 2).
  • a method for producing the fluorinated olefin / vinyl alcohol copolymer a method is known in which a fluorinated olefin and vinyl acetate are copolymerized and then hydrolyzed under acidic or basic conditions (Patent Documents 1 and 2). And Non-Patent Document 3).
  • the fluorine-containing olefin / vinyl alcohol copolymer obtained by the methods described in Patent Documents 1 and 2 and Non-Patent Document 1 has a low thermal decomposition starting temperature and poor thermal stability. It is enough. Moreover, when hydrolyzing the copolymer of a fluorine-containing olefin and vinyl acetate on acidic conditions, reaction rate is slow and productivity falls. When a copolymer of a fluorine-containing olefin and vinyl acetate is hydrolyzed under basic conditions, the hydrolysis reaction is fast, but the main chain is decomposed by the base, and the resulting copolymer becomes brittle.
  • An object of the present invention is to provide a method capable of producing a high molecular weight fluorinated olefin / vinyl alcohol copolymer with high productivity, which has good thermal stability and can form a tough film. .
  • the present invention provides a method for producing a fluorinated olefin / vinyl alcohol copolymer having the following constitutions [1] to [10] and a film formed from the composition containing the copolymer.
  • a method for producing a fluorinated olefin / vinyl alcohol copolymer comprising the following steps (1) and (2). Step (1): In the presence of an aqueous medium and an emulsifier, the fluorine-containing olefin represented by the following formula (1) and the vinyl ether represented by the following formula (2) are emulsion-polymerized to obtain a copolymer containing fluorine-containing olefin / vinyl ether.
  • CF 2 CFX 1 (1)
  • CH 2 CHOR 1 (2)
  • X 1 is a fluorine atom, a chlorine atom, a trifluoromethyl group, or —OC a F 2a + 1 (a is an integer of 1 to 3).
  • R 1 represents a tertiary alkyl group or alkoxyalkyl group having 4 to 12 carbon atoms, an alicyclic hydrocarbon group containing an etheric oxygen atom having 4 to 6 carbon atoms, or 6 to 6 carbon atoms.
  • Step (2) R 1 in the repeating unit based on the vinyl ether represented by the formula (2) in the fluorine-containing olefin / vinyl ether copolymer is substituted with a hydrogen atom to obtain a fluorine-containing olefin / vinyl alcohol copolymer.
  • Process. [2] The process for producing a fluorinated olefin / vinyl alcohol copolymer according to [1], wherein R 1 is a t-butyl group.
  • a group selected from the group consisting of ] [6] The method for producing a fluorinated olefin / vinyl alcohol copolymer according to any one of [1] to [5], wherein the emulsifier is a compound represented by the following formula (4).
  • R 7 — (CH 2 ) n —COOX 2 (4) [In the formula (4), R 7 is a C 1-9 perfluoroalkyl group optionally containing an ether oxygen atom, n is an integer of 0-2, X 2 is a hydrogen atom, NH 4 or an alkali metal. Is an atom.
  • a high molecular weight fluorine-containing olefin / vinyl alcohol copolymer having a high alternating copolymerization property between a repeating unit based on a fluorine-containing olefin and a repeating unit based on a vinyl alcohol is produced with high productivity. can do.
  • the resulting fluorinated olefin / vinyl alcohol copolymer has good thermal stability and can form a tough film.
  • the “monomer” is a compound used at the time of polymerization and forms a repeating unit after the polymerization.
  • the method for producing a fluorinated olefin / vinyl alcohol copolymer includes the following steps (1) and (2).
  • the vinyl ether (2) may be emulsion-polymerized to obtain a fluorine-containing olefin / vinyl ether copolymer, and the mass ratio of the vinyl ether (2) to the aqueous medium is 5 / 95 to 70/30.
  • Step (2) A step of substituting R 1 in the repeating unit based on vinyl ether (2) in the fluorine-containing olefin / vinyl ether copolymer with a hydrogen atom to obtain a fluorine-containing olefin / vinyl alcohol copolymer.
  • a fluorinated olefin / vinyl alcohol copolymer having a high alternating copolymerization ratio and a weight average molecular weight of 50,000 to 1,000,000 can be obtained. This is considered to be due to the fact that vinyl ether is used and the decrease in molecular weight due to chain transfer reaction is small due to emulsion polymerization.
  • each process is explained in full detail.
  • the compound represented by the above formula (1) is used as the fluorine-containing olefin (1).
  • the fluorine-containing olefin (1) include tetrafluoroethylene, chlorotrifluoroethylene, hexafluoropropylene, perfluoropropyl vinyl ether and the like. Especially, since it is excellent in heat resistance, tetrafluoroethylene or chlorotrifluoroethylene is preferable and tetrafluoroethylene is especially preferable.
  • Fluorine-containing olefin (1) may be used individually by 1 type, and may use 2 or more types together.
  • R 1 is a tertiary alkyl group or alkoxyalkyl group having 4 to 12 carbon atoms, an alicyclic hydrocarbon group containing an ether oxygen atom having 4 to 6 carbon atoms, or 6 to 10 carbon atoms.
  • tertiary alkyl groups especially —CR 2 R 3 R 4 (R 2 , R 3 , R 4 are each independently an alkyl group having 1 to 3 carbon atoms). )), A methyl group substituted with an alkoxy group having 1 to 6 carbon atoms, a tetrahydrofuryl group, a tetrahydropyranyl group, or an alkyl group or aryl having R 5 of 1 to 6 carbon atoms
  • a trialkylsilyl group as a group is preferable, and a tertiary alkyl group represented by —CR 2 R 3 R 4 is particularly preferable.
  • vinyl ether (2) t-butyl vinyl ether, 1,1-dimethylpropyl vinyl ether, methoxymethyl vinyl ether, tetrahydrofuryl vinyl ether, tetrahydropyranyl vinyl ether, vinyloxytrimethylsilane or vinyloxydimethylphenylsilane is preferable and easily available. From the viewpoint, t-butyl vinyl ether is particularly preferable. Vinyl ether (2) may be used individually by 1 type, and may use 2 or more types together.
  • the mass ratio of vinyl ether (2) to the aqueous medium is 5/95 to 70/30, preferably 10/90 to 50/50, particularly preferably 10/90 to 35/65.
  • the amount of vinyl ether (2) is not less than the lower limit, the polymerization reaction can proceed, and when it is not more than the upper limit, the emulsified state can be stably maintained.
  • the alternating copolymerization properties of the fluorine-containing olefin (1) and the vinyl ether (2) are high, and the alternating copolymerization rate of the resulting fluorine-containing olefin / vinyl ether copolymer (hereinafter also referred to as “copolymer (B)”).
  • copolymer (B) the alternating copolymerization rate of the resulting fluorine-containing olefin / vinyl ether copolymer.
  • the alternating copolymerization rate is the ratio of the number of combinations in which repeating units based on different monomers are adjacent to the total number of combinations of two adjacent repeating units.
  • the copolymer (B) is a copolymer represented by 12122121212 (where 1 is a repeating unit based on the fluorinated olefin (1) and 2 is a repeating unit based on the vinyl ether (2)).
  • 1 is a repeating unit based on the fluorinated olefin (1)
  • 2 is a repeating unit based on the vinyl ether (2).
  • the number of combinations of two adjacent repeating units is 10
  • the number of combinations of adjacent repeating units based on different monomers is 9, so the alternating copolymerization rate is 90%.
  • the alternating copolymerization rate of the copolymer (B) is 95% or more
  • the alternating copolymerization rate of the repeating unit based on the fluorinated olefin (1) and the repeating unit based on the vinyl alcohol (2) is 95% or more.
  • the copolymer (A) is obtained.
  • the repeating unit based on the fluorinated olefin (1) and the repeating unit based on the vinyl alcohol (2) are uniformly arranged, so that the heat resistance and weather resistance are high. Excellent water resistance.
  • a cured product is formed by reacting a hydroxyl group of the copolymer (A) with a curing agent, the hydroxyl group is uniformly distributed, and thus the hydroxyl group reactivity is more stable.
  • a vinyl ether represented by the following formula (3) (hereinafter also referred to as “vinyl ether (3)”) is further copolymerized. Also good.
  • CH 2 CHOR 6 (3)
  • R 6 is a primary or secondary alkyl group having 1 to 6 carbon atoms and a cycloalkyl group having 6 to 12 carbon atoms, which may be substituted with a hydroxyl group or a fluorine atom.
  • Vinyl ether (3) is a vinyl ether in which R 6 is inert in the subsequent step (2). If R 6 is inactive in step (2), it means that R 6 is not changed under the reaction conditions for replacing R 1 of vinyl ether (2) with a hydrogen atom. However, R 6 may be an active group under conditions other than the reaction conditions for substituting R 1 with a hydrogen atom. If vinyl ether (3) is used, in step (2), R 6 of the repeating unit based on vinyl ether (3) in copolymer (B) is not changed, and vinyl ether (3 in copolymer (A) obtained is not changed. ) Based repeating units are maintained as they are.
  • R 6 in the vinyl ether (3) is preferably a primary or secondary alkyl group having 1 to 6 carbon atoms, or a group in which one or more hydrogen atoms of the alkyl group are substituted with a substituent.
  • the substituent is preferably a hydroxyl group or a fluorine atom.
  • vinyl ether (3) examples include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-butyl vinyl ether, isobutyl vinyl ether, cyclohexyl vinyl ether; functional group-containing vinyl ethers such as hydroxyethyl vinyl ether and hydroxybutyl vinyl ether; heptafluoropentyl vinyl ether and the like And fluorine-containing vinyl ethers.
  • the ratio of the repeating units based on vinyl alcohol in the copolymer (A) after the step (2) can be adjusted by adjusting the ratio of the vinyl ether (2) and the vinyl ether (3).
  • the hydrophilicity of a copolymer (A) can be adjusted by adjusting the quantity of the hydroxyl group in a copolymer (A).
  • the molar ratio ((1) / (2)) of fluorine-containing olefin (1) and vinyl ether (2) used for copolymerization is preferably 40/60 to 60/40, / 50 is particularly preferred.
  • the molar ratio ((1) / (2)) is within the above range, an alternating copolymer in which the fluorinated olefin (1) and the vinyl ether (2) are alternately copolymerized is easily obtained.
  • the molar ratio of the fluorinated olefin (1) used for copolymerization to vinyl ether (2) and vinyl ether (3) Is preferably 40/60 to 60/40, particularly preferably 50/50.
  • the fluorinated olefin (1) and the vinyl ether (2) or the vinyl ether (3) are alternately copolymerized. A copolymer is easily obtained.
  • the molar ratio ((2) / (3)) between the vinyl ether (2) and the vinyl ether (3) is preferably 45/5 to 10/40, particularly preferably 40/10 to 25/25.
  • aqueous medium only water is preferable from the viewpoint of easy availability.
  • various surfactants such as a cationic surfactant, an anionic surfactant, and a nonionic surfactant can be used.
  • Surfactant surfactants such as sulfonic acid type surfactants, carboxylic acid type surfactants, and phosphate ester type surfactants are preferred.
  • the sulfonic acid type surfactant include sodium lauryl sulfate and sodium dodecylbenzene sulfonate.
  • carboxylic acid type surfactant a fluorinated carboxylic acid type surfactant is more preferable from the viewpoint of affinity with the fluorinated olefin (1).
  • R 7 — (CH 2 ) n —COOX 2 (4) (Wherein R 7 is a C 1-9 perfluoroalkyl group which may contain an oxygen atom, n is an integer of 0-2, and X 2 is a hydrogen atom, NH 4 or an alkali metal atom.) From the viewpoint of forming a good micelle structure, the carbon number of R 7 is preferably 5 to 9. Further, n is preferably 0 in that the effect of preventing a chain transfer reaction during polymerization is high.
  • X 2 is preferably a hydrogen atom or NH 4 , particularly preferably NH 4 .
  • ammonium perfluorooctanoate F (CF 2 ) 2 OCF 2 CF 2 OCF 2 COONH 4 , F (CF 2 ) 3 OCF 2 CF 2 OCF 2 COONH 4 or F (CF 2 ) 4 OCF 2 CF 2 OCF 2 COONH 4 is preferred.
  • the amount of emulsifier used can be appropriately changed according to the type, reaction conditions, and the like.
  • the amount is preferably 0.005 to 5% by mass, particularly preferably 0.1 to 5% by mass, based on the total mass of the fluorinated olefin (1) and vinyl ether (2).
  • vinyl ether (3) is used, it is preferably 0.005 to 5% by mass, preferably 0.1 to 5% by mass with respect to the total mass of fluorine-containing olefin (1), vinyl ether (2) and vinyl ether (3). Particularly preferred.
  • the amount is not less than the lower limit value, a stable emulsified state can be formed, and when it is not more than the upper limit value, polymerization can proceed stably without vigorous foaming.
  • step (1) is performed by adding a radical polymerization initiation source and, if necessary, a basic compound to the reaction system.
  • the radical polymerization initiation source include a radical polymerization initiator or ionizing radiation.
  • the radical polymerization initiator a water-soluble initiator suitable for emulsion polymerization is preferable.
  • An inorganic peroxide such as potassium persulfate is used alone or in combination.
  • a redox initiator comprising a combination of the above peroxide and a reducing agent such as sodium bisulfite and sodium thiosulfate, and a small amount of iron, ferrous salt, silver nitrate, etc. coexisted in the redox initiator.
  • An inorganic initiator is mentioned.
  • the radical polymerization initiators an inorganic peroxide is preferable and ammonium persulfate is particularly preferable from the viewpoint of easy handling.
  • a radical polymerization initiator may be used individually by 1 type, and may use 2 or more types together. Further, the entire amount may be added at the beginning of the reaction, or may be added intermittently or continuously during the reaction.
  • the amount of radical polymerization initiator used can be appropriately changed according to the type, reaction conditions, and the like.
  • vinyl ether (3) is not used, it is preferably 0.005 to 5% by mass, particularly preferably 0.05 to 0.5% by mass, based on the total mass of fluorine-containing olefin (1) and vinyl ether (2).
  • vinyl ether (3) is used, it is preferably 0.005 to 5% by mass, preferably 0.05 to 0.5% by mass with respect to the total mass of fluorine-containing olefin (1), vinyl ether (2) and vinyl ether (3). % Is particularly preferred.
  • the copolymerization reaction can be performed under basic conditions or acidic conditions. However, there is a higher possibility of causing isomerization, decomposition or homocation polymerization under acidic conditions than under basic conditions. Therefore, it is preferable to carry out the polymerization under basic conditions from the viewpoint of allowing the polymerization to proceed stably, and adding a basic compound to the reaction system to adjust the basicity, for example, the pH of the aqueous phase to 8-9. Particularly preferred.
  • the basic compound is preferably a water-soluble inorganic compound suitable for emulsion polymerization. For example, the alkali metal salt or ammonium salt of carbonic acid or phosphoric acid is mentioned.
  • sodium carbonate, disodium hydrogen carbonate, potassium carbonate, dipotassium hydrogen carbonate, ammonium carbonate, sodium phosphate, disodium hydrogen phosphate, sodium dihydrogen phosphate, potassium phosphate, hydrogen phosphate 2 Potassium, potassium dihydrogen phosphate, ammonium phosphate and the like are preferable.
  • a basic compound may be used individually by 1 type, and may use 2 or more types together.
  • the amount of basic compound used can be appropriately changed according to the type, reaction conditions, and the like.
  • the amount is preferably 0.005 to 5% by mass, particularly preferably 0.1 to 5% by mass, based on the total mass of the fluorinated olefin (1) and vinyl ether (2).
  • vinyl ether (3) is used, it is preferably 0.005 to 5% by mass, preferably 0.1 to 5% by mass with respect to the total mass of fluorine-containing olefin (1), vinyl ether (2) and vinyl ether (3). Particularly preferred.
  • Copolymerization may be carried out in any of batch, continuous and semi-continuous formats.
  • the reaction temperature for the copolymerization reaction can be appropriately selected according to the polymerization initiation source, and is preferably 5 to 95 ° C.
  • the reaction pressure of the copolymerization reaction can be appropriately selected depending on the polymerization initiation source, and is preferably from 0.1 to 10 MPa, particularly preferably from 0.2 to 3 MPa.
  • the reaction time for the copolymerization reaction is preferably 1 to 24 hours, particularly preferably 2 to 12 hours.
  • a chain transfer agent may be further added.
  • a high molecular weight copolymer (B) can be obtained.
  • the weight average molecular weight (Mw) of the copolymer (B) is preferably 50,000 to 1,000,000, more preferably 85,000 to 1,000,000, still more preferably 85,000 to 700,000, 85,000 to 500,000 are particularly preferred. If Mw of a copolymer (B) is more than the said lower limit, the entanglement between molecular chains is fully ensured, and shaping
  • the Mw of the copolymer (B) is not more than the above upper limit value, fluidity is ensured at the time of molding, and it becomes easy to mold a homogeneous film or sheet.
  • the weight average molecular weight (Mw) can be measured by GPC using a polystyrene standard.
  • the molecular weight distribution (Mw / Mn) of the copolymer (B) is preferably 1 to 5.
  • Mw / Mn of not more than the above upper limit value, it can form a film with less gel material and higher strength.
  • the molar ratio of the repeating units is as follows.
  • the molar ratio of the repeating unit based on fluorine-containing olefin (1) to the repeating unit based on vinyl ether (2) ((repeating unit based on fluorine-containing olefin (1)) / (vinyl ether (2 )) Is preferably 40/60 to 60/40, particularly preferably 50/50.
  • the molar ratio of the repeating unit based on fluorine-containing olefin (1), the repeating unit based on vinyl ether (2) and the repeating unit based on vinyl ether (3) ((fluorinated olefin ( The repeating unit based on 1) / ((the repeating unit based on vinyl ether (2)) + (the repeating unit based on vinyl ether (3)))) is preferably 40/60 to 60/40, particularly preferably 50/50. .
  • the molar ratio of the repeating unit based on vinyl ether (2) and the repeating unit based on vinyl ether (3) is 45/5 to 10/40 is preferable, and 40/10 to 25/25 is particularly preferable.
  • Step (2) In the step (2), R 1 in the repeating unit based on the vinyl ether (2) in the copolymer (B) obtained in the step (1) is replaced with a hydrogen atom, and a fluorinated olefin / vinyl alcohol copolymer is obtained. It is the process of obtaining. Thereby, the repeating unit based on vinyl ether (2) is converted into a repeating unit based on vinyl alcohol, and a copolymer (A) having a repeating unit based on fluorine-containing olefin (1) and a repeating unit based on vinyl alcohol is obtained. .
  • the repeating unit R 6 based on the vinyl ether (3) is maintained as it is without being changed.
  • a copolymer (A) having a repeating unit based on (1), a repeating unit based on vinyl alcohol, and a repeating unit based on vinyl ether (3) is obtained.
  • R 1 As a method for substituting R 1 with a hydrogen atom, a reaction using acid, heat or light can be employed. Especially, it is preferable to substitute R ⁇ 1 > with a hydrogen atom by an acid from the point that there is almost no coloring in the copolymer (A) obtained.
  • the acid include inorganic acids such as sulfuric acid, hydrochloric acid and nitric acid, and organic acids such as acetic acid, butyric acid and trifluoroacetic acid.
  • the reaction with an acid may be carried out in an aqueous system or non-aqueous system.
  • reaction in a mixed solution of sulfuric acid / ethanol / water (2) reaction in a mixed solution of hydrochloric acid / dioxane.
  • reaction in a mixed solution of trifluoroacetic acid / methylene chloride is preferred.
  • photoacid generator which generate
  • the photoacid generator include onium salts, halogen-containing compounds, diazoketone compounds, sulfone compounds, and sulfonic acid compounds.
  • diphenyliodonium triflate triphenylsulfonium triflate
  • phenyl-bis (trichloromethyl) -s-triazine methoxyphenyl-bis (trichloromethyl) -s-triazine
  • 4-trisphenacylsulfone 1, And 8-naphthalenedicarboxylic acid imide triflate.
  • step (2) depending on the use required for the copolymer, the reaction is terminated before all R 1 of the copolymer (B) is replaced, thereby repeating based on the vinyl ether (2). It is good also as a copolymer (A) containing a unit. By controlling the ratio of the repeating unit based on vinyl ether (2) and the repeating unit based on vinyl alcohol by terminating the substitution reaction in the middle, the hydrophilicity, crystallinity, etc. of the resulting copolymer (A) are adjusted. it can.
  • the copolymer (A) obtained by the production method of the present invention contains a repeating unit based on the fluorinated olefin (1) and a repeating unit based on vinyl alcohol, and optionally, a repeating unit based on the vinyl ether (2), Also includes repeat units based on vinyl ether (3).
  • the copolymer (A) has a high molecular weight, preferably a weight average molecular weight (Mw) of 50,000 to 1,000,000, more preferably 85,000 to 1,000,000, and 85,000. ⁇ 700,000 are more preferred, and 85,000 to 500,000 are particularly preferred.
  • the alternating copolymerization rate of the repeating unit based on fluorine-containing olefin (1) and the repeating unit based on vinyl alcohol is 95% or more by probability calculation from both copolymerization reactivity ratio.
  • the copolymer (A) Unlike the copolymer obtained by hydrolyzing the copolymer (A) after copolymerizing a conventional fluorine-containing olefin and vinyl acetate, the copolymer (A) has almost no coloring.
  • the reaction in which R 1 in step (2) is replaced with a hydrogen atom proceeds rapidly, particularly when carried out in the presence of an acid, so that productivity is high. It is presumed that this is because the etheric oxygen atom of vinyl ether (2) is easier to protonate than the ester group of vinyl acetate.
  • the fluorinated olefin / vinyl alcohol copolymer obtained by the conventional production method using vinyl acetate is a random copolymer, a portion having a high proportion of repeating units based on the fluorinated olefin and a vinyl alcohol There are variations in performance depending on the portion where the ratio of repeating units is high, and the water resistance and heat resistance are low.
  • the fluorine-containing olefin (1) and the vinyl ether (2) or the vinyl ether (3) are polymerized alternately and the hydroxyl group is not concentrated at a specific location. It can suppress that the hydrophilic property of this part becomes extremely high, and it is easy to obtain the outstanding water resistance.
  • the copolymer (A) since the repeating units based on vinyl alcohol are not concentrated at a specific location, excellent heat resistance is easily obtained.
  • the copolymer (A) when used as a paint, a coating film in which hydroxyl groups are uniformly arranged can be formed. Furthermore, by using a composition that is used together with a curing agent such as melamine or isocyanate that reacts with a hydroxyl group, it is possible to form a coating film or film made of a cured product having a uniformly crosslinked structure. In this case, since the hydroxyl groups are uniformly distributed, there is also an effect that the reactivity of the hydroxyl groups can be obtained stably. Moreover, when using a hardening
  • the timing which performs a process (2) is not specifically limited,
  • components, such as a copolymer (B) and an acid used for a process (2), and hardening A film or sheet made of a cured product having a cross-linked structure can be formed by mixing an agent and the like, forming a film or sheet, and then applying light or heat to generate hydroxyl groups. That is, in this case, a vinyl ether site in the copolymer (B) may be used as a potential curing site.
  • the copolymer (A) Since the copolymer (A) has a high molecular weight, the entanglement between the molecular chains is sufficiently secured, and a tough film can be formed. In addition, a molded article having good mechanical properties and excellent chemical resistance can be obtained, and for example, a tube or a sheet can be obtained. Moreover, the copolymer (A) can be applied to another material to provide a surface-modified material. Since the copolymer (A) is an alternating copolymer, it is possible to obtain a good coating solution with little composition distribution and little undissolved residue. Moreover, since the obtained coating film has a high molecular weight, the surface of another material used as a base material can be sufficiently covered and the surface can be satisfactorily modified.
  • the copolymer (A) can be used for various applications, but a film is particularly useful in that it is thin and can exhibit an excellent function.
  • the thickness of the film is preferably 10 ⁇ m to 5 mm, more preferably 20 ⁇ m to 1 mm, and particularly preferably 20 to 500 ⁇ m.
  • the film can be formed from a composition comprising copolymerization (A).
  • the compound which does not impair the performance of copolymerization (A) other than copolymerization (A) can be included. Examples thereof include inorganic fine particles and antioxidants.
  • Examples of the method for forming a film from the composition include known methods such as a spin coating method, a casting method, a pressing method, and a melt extrusion method. Of these, the casting method is preferable in that a film having high film thickness uniformity, excellent optical transparency, and few foreign matters can be obtained.
  • the solvent used in the casting method is preferably a compound that dissolves the copolymer (A). Alcohol-based, ether-based, ketone-based, ester-based, and amide-based solvents can be used. From the viewpoint of the transparency of the resulting free-standing film, alcohol-based solvents are preferable, and methanol or ethanol is particularly preferable. Moreover, a solvent may be used individually by 1 type and may use 2 or more types together.
  • a compound that does not dissolve the fluorine-containing olefin / vinyl alcohol copolymer may be used as long as the fluorine-containing olefin / vinyl alcohol copolymer can be dissolved as a mixed solvent.
  • the solvent is preferably used in an amount of 60 to 99% by mass based on the copolymer (A).
  • Each measuring method used in the examples is as follows. (Weight average molecular weight (Mw), number average molecular weight (Mn), molecular weight distribution (Mw / Mn)) The weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mw / Mn) of the copolymer obtained in each example were measured by using a high-speed GPC device “HLC-8220GPC” manufactured by Tosoh Corporation. It measured by the gel filtration chromatography (GPC) of gel conversion. Tetrahydrofuran was used as the eluent.
  • GPC gel filtration chromatography
  • Thermal properties of the copolymer The glass transition point (Tg) of the copolymer obtained in each example was measured using a differential scanning calorimeter “Q100” manufactured by TA Instruments Inc., and the weight loss temperature (Td 10 ) was 10%.
  • Tg glass transition point
  • Td 10 weight loss temperature
  • Example 1 Production of copolymer (A1) and film] (Process (1)) In an autoclave (withstand pressure of 3.4 MPaG) with a stainless steel stirrer having an internal volume of 1 L, 500.0 g of ion-exchanged water, 125.0 g of t-butyl vinyl ether (hereinafter referred to as “TBVE”) which is vinyl ether (2), an emulsifier And 2.5 g of ammonium perfluorooctanoate (hereinafter referred to as “APFO”), 9.1 g of disodium hydrogen phosphate, and 5.0 g of ammonium persulfate (hereinafter referred to as “APS”) were charged with liquid nitrogen.
  • TBVE t-butyl vinyl ether
  • APFO ammonium perfluorooctanoate
  • APS ammonium persulfate
  • TFE tetrafluoroethylene
  • the pressure at this time was 2.43 MPaG.
  • the reaction was continued for 7.5 hours.
  • the pressure dropped to 1.09 MPaG the autoclave was cooled with water and purged with unreacted gas to stop the reaction.
  • the obtained polymerization solution was put into methanol, and the produced copolymer (B1) was precipitated, followed by vacuum drying.
  • the yield of copolymer (B1) was 69.0 g, and the monomer reaction rate was 28%.
  • a copolymer (A2) was obtained using chlorotrifluoroethylene (hereinafter referred to as “CTFE”) which is a fluorine-containing olefin (1).
  • CTFE chlorotrifluoroethylene
  • a film having a thickness of 45 ⁇ m and 72 ⁇ m was obtained in the same manner as in Example 1 except that the copolymer (A1) was changed to the copolymer (A2).
  • the oxygen gas permeability of the 72 ⁇ m-thick film and the water vapor permeability of the 45 ⁇ m-thick film were measured in the same manner as in Example 1, 4.73 ⁇ 10 ⁇ 12 cc (STP) cm / cm 2 ⁇ sec ⁇ cmHg, 1.41 g ⁇ mm / m 2 ⁇ day.
  • Example 3 Production of copolymer (A5)] (Process (1)) In an autoclave (withstand pressure of 3.4 MPaG) with a stainless steel stirrer with an internal volume of 1 L, 500.0 g of ion-exchanged water, 125.0 g of TBVE, 3.8 g of APFO, 28.3 g of disodium hydrogen phosphate and 10 of APS 0.0 g was charged. The operation of increasing the pressure in the autoclave to 0.5 MPaG with nitrogen and then purging to 0.05 MPaG was repeated 10 times to remove oxygen in the system.
  • the total amount of input was 164.0 g for TFE and 65 mL for an aqueous sodium hydrogen sulfite solution (concentration 0.11 g / mL). After cooling to room temperature (20-25 ° C.), unreacted gas was purged to stop the reaction. The obtained polymerization solution was put into methanol, and the produced copolymer (B5) was precipitated, followed by vacuum drying. The yield of the copolymer (B5) was 136.0 g, and the monomer reaction rate was 56%. Mw of the obtained copolymer (B5) was 324,000, Mn was 178,000, and Mw / Mn was 1.8.
  • Example 4 Production of copolymer (A6)] (Process (1)) In an autoclave with a stainless steel stirrer (withstand pressure of 3.4 MPaG) having an internal volume of 1 L, 500.0 g of ion-exchanged water, 125.0 g of TBVE, 2.5 g of APFO, 28.3 g of disodium hydrogen phosphate, and 10 of APS 0.0 g was charged. The operation of increasing the pressure in the autoclave to 0.5 MPaG with nitrogen and then purging to 0.05 MPaG was repeated 10 times to remove oxygen in the system.
  • TFE as the fluorine-containing olefin (1) was added until the inside of the autoclave became 1.7 MPaG, and then heated to 30 ° C. After the internal temperature reached 30 ° C., 2.5 mL of a sodium hydrogen sulfite aqueous solution (concentration: 0.11 g / mL) as a reducing agent was added to initiate the reaction. After the start of the reaction, TFE was continuously supplied into the autoclave, and an aqueous solution of sodium bisulfite (concentration 0.11 g / mL) was intermittently charged into the autoclave every 2.5 minutes. After 6.5 hours from the start of the reaction, the autoclave was cooled with water.
  • a sodium hydrogen sulfite aqueous solution concentration 0.11 g / mL
  • the total amount of input was 154.0 g for TFE and 65 mL for an aqueous sodium hydrogen sulfite solution (concentration 0.11 g / mL). After cooling to room temperature, the reaction was stopped by purging unreacted gas. The obtained polymerization liquid was put into methanol, and the produced copolymer (B6) was deposited, followed by vacuum drying. The yield of the copolymer (B6) was 85.0 g, and the monomer reaction rate was 34%. Mw of the obtained copolymer (B6) was 258,000, Mn was 114,000, and Mw / Mn was 2.3.
  • the obtained polymerization solution was poured into methanol, and the produced copolymer was precipitated, followed by vacuum drying to obtain a copolymer (B4) as a solid.
  • the yield of copolymer (B4) was 110 g, and the monomer reaction rate was 45%.
  • the alternating copolymerization rate of the copolymer (B4) was 80 to 85% as calculated from the copolymerization reactivity ratio of both monomers.
  • a fluorinated olefin / vinyl alcohol copolymer having a high molecular weight and a high alternating copolymerization rate can be obtained by carrying out copolymerization in an emulsified state. Since the copolymer has a high molecular weight, it can form a tough molded product, particularly a film.
  • the film can be suitably applied to membranes such as filters, gas barrier membranes, hydrophilic porous membranes and battery separators, and surface protection sheet materials such as solar cell backsheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Polymerisation Methods In General (AREA)

Abstract

 熱安定性が良好で、強靭なフィルムを形成することができる、高分子量の含フッ素オレフィン/ビニルアルコール共重合体を、高い生産性で製造することができる方法を提供する。 水性媒体および乳化剤の存在下に、含フッ素オレフィンとビニルエーテルとを乳化重合させた後に、該ビニルエーテルに基づく繰り返し単位をビニルアルコールに変換して、含フッ素オレフィン/ビニルアルコール共重合体を得ることを特徴とする含フッ素オレフィン/ビニルアルコール共重合体の製造方法。

Description

含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム
 本発明は、含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムに関する。
 含フッ素オレフィンおよびビニルアルコールの共重合体である含フッ素オレフィン/ビニルアルコール共重合体は、塗料用樹脂の原料、気体/液体分離膜材料、ガスバリア材料、太陽電池用封止材料、各種表面保護シート材料および親水性多孔質材料等に用いられている(特許文献1、2)。該含フッ素オレフィン/ビニルアルコール共重合体の製造方法としては、含フッ素オレフィンと酢酸ビニルとを共重合した後、酸性あるいは塩基性条件で加水分解する方法が知られている(特許文献1、2および非特許文献3)。
特開平5-261256号公報 特開平6-1876号公報
M. Ragazzini et. al., Eur. Polym. J., 3, 5 (1967)
 本発明者の知見によれば、特許文献1、2および非特許文献1に記載の方法で得られる該含フッ素オレフィン/ビニルアルコール共重合体は、熱分解開始温度が低く、熱安定性が不充分である。また、含フッ素オレフィンと酢酸ビニルとの共重合体を酸性条件で加水分解する場合には、反応速度が遅く、生産性が低下する。含フッ素オレフィンと酢酸ビニルとの共重合体を塩基性条件で加水分解する場合には、加水分解反応は速いものの、塩基による主鎖の分解が進行し、得られる共重合体は脆くなる。
 本発明は、熱安定性が良好で、強靭なフィルムを形成することができる、高分子量の含フッ素オレフィン/ビニルアルコール共重合体を高い生産性で製造することができる方法の提供を目的とする。
 本発明は、以下[1]~[10]の構成を有する含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムを提供する。
[1] 下記工程(1)および工程(2)を含むことを特徴とする含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
工程(1):水性媒体および乳化剤の存在下に、下式(1)で表される含フッ素オレフィンと下式(2)で表されるビニルエーテルとを乳化重合させて、含フッ素オレフィン/ビニルエーテル共重合体を得る工程であって、該式(2)で表されるビニルエーテルの水性媒体に対する質量比が5/95~70/30である、工程。
 CF=CFX   (1)
 CH=CHOR  (2)
[ただし、式(1)中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数)である。また、式(2)中、Rは炭素数4~12の第三級アルキル基またはアルコキシアルキル基、炭素数4~6のエーテル性酸素原子を含む脂環式炭化水素基、炭素数6~10のアリール基、および-Si(R(Rは炭素数1~10のアルキル基またはアリール基である)からなる群より選ばれる基である。]
工程(2):前記含フッ素オレフィン/ビニルエーテル共重合体における式(2)で表されるビニルエーテルに基づく繰り返し単位中のRを水素原子に置換し、含フッ素オレフィン/ビニルアルコール共重合体を得る工程。
[2] 前記Rが、t-ブチル基である、前記[1]に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[3] 前記工程(2)を、酸の存在下で行う、前記[1]または[2]に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[4] 前記工程(1)で得られる含フッ素オレフィン/ビニルエーテル共重合体において、前記式(1)で表される含フッ素オレフィンに基づく繰り返し単位と前記式(2)で表されるビニルエーテルに基づく繰り返し単位とのモル比が40/60~60/40である、前記[1]~[3]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[5] 前記工程(1)において、下式(3)で表されるビニルエーテルをさらに共重合させる、前記[1]~[4]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
 CH=CHOR   (3)
[ただし、式(3)中、Rは、水酸基もしくはフッ素原子で置換されていてもよい、炭素数1~6の第一級または第二級アルキル基および炭素数6~12のシクロアルキル基からなる群より選ばれる基である。]
[6] 前記乳化剤が下式(4)で表される化合物である、前記[1]~[5]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
 R-(CH-COOX   (4)
[ただし、式(4)中、Rはエーテル酸素原子を含んでいてもよい炭素数1~9のペルフルオロアルキル基、nは0~2の整数、Xは水素原子、NHまたはアルカリ金属原子である。]
[7] 前記工程(1)を、塩基性化合物の存在下で行う、前記[1]~[6]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[8] 前記含フッ素オレフィン/ビニルアルコール共重合体の重量平均分子量が50,000~1,000,000である、前記[1]~[7]のいずれかに記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
[9] 前記[1]~[8]のいずれかに記載の製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体を含む組成物から成形してなるフィルム。
[10] 前記成形がキャスト法である、前記[9]に記載のフィルム。
 本発明の製造方法によれば、含フッ素オレフィンに基づく繰り返し単位とビニルアルコールに基づく繰り返し単位との交互共重合性が高い、高分子量の含フッ素オレフィン/ビニルアルコール共重合体を高い生産性で製造することができる。得られる含フッ素オレフィン/ビニルアルコール共重合体は、熱安定性が良好で、強靭なフィルムを形成することができる。
 本明細書において、「単量体」とは、重合時に用いる化合物であって、重合後に繰り返し単位を形成する化合物である。
[含フッ素オレフィン/ビニルアルコール共重合体の製造方法]
 本発明の含フッ素オレフィン/ビニルアルコール共重合体(以下、「共重合体(A)」ともいう。)の製造方法は、下記工程(1)および(2)を含む。
 工程(1):水性媒体および乳化剤の存在下に、上式(1)で表される含フッ素オレフィン(以下、「含フッ素オレフィン(1)」ともいう。)と上式(2)で表されるビニルエーテル(以下、「ビニルエーテル(2)」ともいう。)とを乳化重合させて、含フッ素オレフィン/ビニルエーテル共重合体を得る工程であって、該ビニルエーテル(2)の水性媒体に対する質量比が5/95~70/30である、工程。
 工程(2):前記含フッ素オレフィン/ビニルエーテル共重合体におけるビニルエーテル(2)に基づく繰り返し単位中のRを水素原子に置換し、含フッ素オレフィン/ビニルアルコール共重合体を得る工程。
 本発明の方法によれば、交互共重合率が高く、重量平均分子量が50,000~1,000,000の含フッ素オレフィン/ビニルアルコール共重合体を得ることができる。これは、ビニルエーテルを用いる点、および乳化重合を行うことにより、連鎖移動反応による分子量の低下が少ないためであると考えられる。以下、各工程について詳述する。
(工程(1))
 本発明の製造方法において、含フッ素オレフィン(1)としては、上式(1)で表される化合物を用いる。
 含フッ素オレフィン(1)の具体例としては、テトラフルオロエチレン、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、ペルフルオロプロピルビニルエーテル等が挙げられる。なかでも、耐熱性に優れることから、テトラフルオロエチレンまたはクロロトリフルオロエチレンが好ましく、テトラフルオロエチレンが特に好ましい。含フッ素オレフィン(1)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 本発明の製造方法において、ビニルエーテル(2)としては、上式(2)で表される化合物を用いる。
 上式(2)において、Rは炭素数4~12の第三級アルキル基またはアルコキシアルキル基、炭素数4~6のエーテル酸素原子を含む脂環式炭化水素基、炭素数6~10のアリール基、および-Si(R(Rは炭素数1~10のアルキル基またはアリール基である)からなる群より選ばれる基である。これらのうち、入手容易性の点から、第三級アルキル基、なかでも-CR(R、R、Rは、それぞれ独立に炭素数1~3のアルキル基である。)で表される第三級アルキル基、炭素数1~6のアルコキシ基で置換されたメチル基、テトラヒドロフリル基、テトラヒドロピラニル基、またはRが炭素数1~6のアルキル基もしくはアリール基であるトリアルキルシリル基が好ましく、-CRで表される第三級アルキル基が特に好ましい。
 ビニルエーテル(2)としては、t-ブチルビニルエーテル、1,1-ジメチルプロピルビニルエーテル、メトキシメチルビニルエーテル、テトラヒドロフリルビニルエーテル、テトラヒドロピラニルビニルエーテル、ビニロキシトリメチルシランまたはビニロキシジメチルフェニルシランが好ましく、入手容易性の点から、t-ブチルビニルエーテルが特に好ましい。ビニルエーテル(2)は、1種を単独で使用してもよく、2種以上を併用してもよい。
 ビニルエーテル(2)の水性媒体に対する質量比は、5/95~70/30であり、10/90~50/50が好ましく、10/90~35/65が特に好ましい。ビニルエーテル(2)の量が前記下限値以上であると、重合反応を進行でき、一方、前記上限値以下であると、安定に乳化状態を維持できる。
 含フッ素オレフィン(1)とビニルエーテル(2)との交互共重合性は高く、得られる含フッ素オレフィン/ビニルエーテル共重合体(以下、「共重合体(B)」ともいう。)の交互共重合率が、両者の共重合反応性比から確率計算して95%以上となる。前記交互共重合率とは、隣り合う2つの繰り返し単位の組み合わせ数の合計に対する、異なる単量体に基づく繰り返し単位が隣り合っている組み合わせ数の比率である。例えば、共重合体(B)が12122121212で表される共重合体(ただし、1は含フッ素オレフィン(1)に基づく繰り返し単位を示し、2はビニルエーテル(2)に基づく繰り返し単位を示す。)である場合、隣り合う2つの繰り返し単位の組み合わせ数は10であり、異なる単量体に基づく繰り返し単位が隣り合っている組み合わせ数が9であるので、交互共重合率は90%である。
 共重合体(B)の交互共重合率が95%以上であることで、含フッ素オレフィン(1)に基づく繰り返し単位とビニルアルコール(2)に基づく繰り返し単位との交互共重合率が95%以上の共重合体(A)が得られる。該交互共重合率の高い共重合体(A)は、含フッ素オレフィン(1)に基づく繰り返し単位と、ビニルアルコール(2)に基づく繰り返し単位が均一に配置されているため、耐熱性、耐候性および耐水性に優れる。また、例えば、共重合体(A)が有する水酸基に硬化剤を反応させて硬化物を形成する場合には、水酸基が均一に分布しているために、水酸基の反応性がより安定する。
 工程(1)において、含フッ素オレフィン(1)およびビニルエーテル(2)に加えて、下式(3)で表されるビニルエーテル(以下、「ビニルエーテル(3)」ともいう。)をさらに共重合させてもよい。
 CH=CHOR   (3)
(ただし、式(3)中、Rは水酸基もしくはフッ素原子で置換されていてもよい、炭素数1~6の第一級または第二級アルキル基および炭素数6~12のシクロアルキル基からなる群より選ばれる基である。)
 ビニルエーテル(3)は、後続の工程(2)においてRが不活性であるビニルエーテルである。工程(2)においてRが不活性であると、ビニルエーテル(2)のRを水素原子に置換する反応条件においてRが変化を受けないことを意味する。ただし、Rは、Rを水素原子に置換する反応条件以外の条件下では、活性な基であってもよい。ビニルエーテル(3)を用いれば、工程(2)において、共重合体(B)におけるビニルエーテル(3)に基づく繰り返し単位のRは変化を受けず、得られる共重合体(A)においてビニルエーテル(3)に基づく繰り返し単位がそのまま維持される。
 ビニルエーテル(3)におけるRは、炭素数1~6の第1級もしくは第2級アルキル基、または該アルキル基の水素原子の1個以上が置換基で置換された基が好ましい。該置換基としては、水酸基またはフッ素原子が好ましい。
 ビニルエーテル(3)の具体例としては、メチルビニルエーテル、エチルビニルエーテル、n-ブチルビニルエーテル、イソブチルビニルエーテル、シクロヘキシルビニルエーテル等のアルキルビニルエーテル;ヒドロキシエチルビニルエーテル、ヒドロキシブチルビニルエーテル等の官能基含有ビニルエーテル;ヘプタフルオロペンチルビニルエーテル等の含フッ素ビニルエーテル等が挙げられる。
 ビニルエーテル(3)を用いる場合、ビニルエーテル(2)またはビニルエーテル(3)のいずれかのビニルエーテルと、含フッ素オレフィン(1)が交互に重合した共重合体(B)が得られる。ビニルエーテル(2)とビニルエーテル(3)の重合反応性はほぼ等しいため、共重合体(B)における含フッ素オレフィン(1)に基づく繰り返し単位の両側が、ビニルエーテル(2)に基づく繰り返し単位とビニルエーテル(3)に基づく繰り返し単位のいずれになるかは確率の問題となる。ビニルエーテル(3)を用いる場合、共重合体(B)におけるビニルエーテル(3)に基づく繰り返し単位では置換反応が起きない。そのため、ビニルエーテル(2)とビニルエーテル(3)の比率を調節することにより、工程(2)後の共重合体(A)におけるビニルアルコールに基づく繰り返し単位の比率を調節できる。これにより、共重合体(A)における水酸基の量を調節することで、共重合体(A)の親水性を調節できる。
 ビニルエーテル(3)を用いない場合、共重合に用いる含フッ素オレフィン(1)とビニルエーテル(2)とのモル比((1)/(2))は、40/60~60/40が好ましく、50/50が特に好ましい。モル比((1)/(2))が前記範囲内であれば、含フッ素オレフィン(1)とビニルエーテル(2)とが交互に共重合した交互共重合体が得られやすい。
 また、ビニルエーテル(3)を用いる場合、共重合に用いる含フッ素オレフィン(1)と、ビニルエーテル(2)およびビニルエーテル(3)の合計のモル比((1)/((2)+(3)))は、40/60~60/40が好ましく、50/50が特に好ましい。モル比((1)/((2)+(3)))が前記範囲内であれば、含フッ素オレフィン(1)と、ビニルエーテル(2)またはビニルエーテル(3)とが交互に共重合した交互共重合体が得られやすい。また、この場合、ビニルエーテル(2)とビニルエーテル(3)とのモル比((2)/(3))は、45/5~10/40が好ましく、40/10~25/25が特に好ましい。
 本発明の製造方法において、水性媒体としては、入手容易な点から水のみが好ましい。
 本発明の製造方法において、乳化剤は、種々の界面活性剤、例えば陽イオン性界面活性剤、陰イオン性界面活性剤、およびノニオン性界面活性剤等を使用することができるが、なかでも陰イオン性界面活性剤、例えばスルホン酸型界面活性剤、カルボン酸型界面活性剤、およびリン酸エステル型界面活性剤等が好ましい。
 スルホン酸型界面活性剤としては、ラウリル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム等が挙げられる。
 カルボン酸型界面活性剤としては、含フッ素オレフィン(1)との親和性から含フッ素系カルボン酸型界面活性剤がより好ましく、入手容易性の点から、下式(4)で表される化合物が特に好ましい。
 R-(CH-COOX   (4)
 (ただし、Rは酸素原子を含んでもよい炭素数1~9のペルフルオロアルキル基、nは0~2の整数、Xは水素原子、NHまたはアルカリ金属原子を表す。)
 良好なミセル構造を形成する点から、Rの炭素数は5~9が好ましい。また、重合中の連鎖移動反応を防ぐ効果が高い点で、nは0が好ましい。Xは水素原子またはNHが好ましく、NHが特に好ましい。
 乳化剤としては、ペルフルオロオクタン酸アンモニウム、F(CFOCFCFOCFCOONH、F(CFOCFCFOCFCOONHまたはF(CFOCFCFOCFCOONHが好ましい。
 乳化剤の使用量は、その種類、反応条件等に応じて適宜変更できる。ビニルエーテル(3)を用いない場合は、含フッ素オレフィン(1)とビニルエーテル(2)の合計質量に対して、0.005~5質量%が好ましく、0.1~5質量%が特に好ましい。ビニルエーテル(3)を用いる場合は、含フッ素オレフィン(1)、ビニルエーテル(2)およびビニルエーテル(3)の合計質量に対して、0.005~5質量%が好ましく、0.1~5質量%が特に好ましい。該量が前記下限値以上であると、安定な乳化状態を形成でき、前記上限値以下であると、激しく泡立つことがなく、安定に重合を進行できる。
 本発明の製造方法において、工程(1)は、ラジカル重合開始源、必要に応じて塩基性化合物を反応系に付与して行う。ラジカル重合開始源としては、ラジカル重合開始剤あるいは電離性放射線が挙げられる。
 ラジカル重合開始剤としては、乳化重合に好適な、水溶性開始剤が好ましい。水溶性開始剤としては、(3-カルボキシプロピオニル)ペルオキシド(HOC(=O)CHCHC(=O)OOC(=O)CHCHC(=O)OH)、ビス(4-カルボキシブチリル)ペルオキシド(HOC(=O)CHCHCHC(=O)OOC(=O)CHCHCHC(=O)OH)等の有機過酸化物または過硫酸アンモニウム、過硫酸カリウムなどの無機過酸化物が単独でまたは併用して用いられる。また、上記の過酸化物と、亜硫酸水素ナトリウム、チオ硫酸ナトリウム等の還元剤との組み合わせからなるレドックス開始剤や、該レドックス開始剤に少量の鉄、第一鉄塩、硝酸銀等を共存させた無機系開始剤が挙げられる。上記ラジカル重合開始剤のなかでも、取り扱いの容易性等の点から、無機過酸化物が好ましく、過硫酸アンモニウムが特に好ましい。ラジカル重合開始剤は、1種を単独で使用してもよく、2種以上を併用してもよい。また、反応の初期に全量添加しても良く、反応途中で間欠的、または連続的に添加してもよい。
 ラジカル重合開始剤の使用量は、その種類、反応条件等に応じて適宜変更できる。ビニルエーテル(3)を用いない場合は、含フッ素オレフィン(1)とビニルエーテル(2)の合計質量に対して、0.005~5質量%が好ましく、0.05~0.5質量%が特に好ましい。ビニルエーテル(3)を用いる場合は、含フッ素オレフィン(1)、ビニルエーテル(2)およびビニルエーテル(3)の合計質量に対して、0.005~5質量%が好ましく、0.05~0.5質量%が特に好ましい。
 共重合反応は、塩基性条件下でも酸性条件下でも行うことができる。しかし、酸性条件下では塩基性条件下に比べて、異性化、分解あるいは単独カチオン重合を起こす可能性が高い。そこで、重合を安定に進行させる点から、塩基性条件下で重合を行うことが好ましく、反応系に塩基性化合物を添加して、塩基性、例えば水相のpHを8~9とすることが特に好ましい。
 該塩基性化合物としては、乳化重合に好適な、水溶性の無機化合物が好ましい。例えば、炭酸またはリン酸の、アルカリ金属塩またはアンモニウム塩が挙げられる。入手容易性の観点から、炭酸ナトリウム、炭酸水素2ナトリウム、炭酸カリウム、炭酸水素2カリウム、炭酸アンモニウム、リン酸ナトリウム、リン酸水素2ナトリウム、リン酸2水素ナトリウム、リン酸カリウム、リン酸水素2カリウム、リン酸2水素カリウム、リン酸アンモニウム等が好ましい。塩基性化合物は、1種を単独で使用してもよく、2種以上を併用してもよい。
 塩基性化合物の使用量は、その種類、反応条件等に応じて適宜変更できる。ビニルエーテル(3)を用いない場合は、含フッ素オレフィン(1)とビニルエーテル(2)の合計質量に対して、0.005~5質量%が好ましく、0.1~5質量%が特に好ましい。ビニルエーテル(3)を用いる場合は、含フッ素オレフィン(1)、ビニルエーテル(2)およびビニルエーテル(3)の合計質量に対して、0.005~5質量%が好ましく、0.1~5質量%が特に好ましい。
 共重合は、回分式、連続式、半連続式のいずれの形式で行ってもよい。また、共重合反応の反応温度は、重合開始源に応じて適宜最適値が選択でき、5~95℃が好ましい。共重合反応の反応圧力も同様に、重合開始源に応じて適宜選択でき、0.1~10MPaが好ましく、0.2~3MPaが特に好ましい。共重合反応の反応時間は、1~24時間が好ましく、2~12時間が特に好ましい。
 共重合体(B)の分子量を調節する為、さらに、連鎖移動剤を添加してもよい。
 本発明の方法によれば、高い分子量の共重合体(B)を得ることができる。共重合体(B)の重量平均分子量(Mw)は50,000~1,000,000が好ましく、85,000~1,000,000がより好ましく、85,000~700,000がさらに好ましく、85,000~500,000が特に好ましい。共重合体(B)のMwが前記下限値以上であれば、分子鎖間の絡み合いが充分に確保され、強靭なフィルムやシートの成形が容易になる。一方、共重合体(B)のMwが前記上限値以下であれば、成形時に流動性が確保され、均質なフィルムやシートの成形が容易となる。重量平均分子量(Mw)は、ポリスチレン標準を用いたGPCにより測定することができる。
 共重合体(B)の分子量分布(Mw/Mn)は、1~5が好ましい。共重合体(B)のMw/Mnが前記上限値以下のものは、ゲル物質も少なく、強度がより高いフィルムを形成することができる。
 共重合(B)において、繰り返し単位のモル比は以下の通りである。
 ビニルエーテル(3)を用いない場合、含フッ素オレフィン(1)に基づく繰り返し単位とビニルエーテル(2)に基づく繰り返し単位とのモル比((含フッ素オレフィン(1)に基づく繰り返し単位)/(ビニルエーテル(2)に基づく繰り返し単位))は、40/60~60/40が好ましく、50/50が特に好ましい。
 また、ビニルエーテル(3)を用いる場合、含フッ素オレフィン(1)に基づく繰り返し単位と、ビニルエーテル(2)に基づく繰り返し単位およびビニルエーテル(3)に基づく繰り返し単位の合計のモル比((含フッ素オレフィン(1)に基づく繰り返し単位)/((ビニルエーテル(2)に基づく繰り返し単位)+(ビニルエーテル(3)に基づく繰り返し単位)))は、40/60~60/40が好ましく、50/50が特に好ましい。また、この場合、ビニルエーテル(2)に基づく繰り返し単位とビニルエーテル(3)に基づく繰り返し単位とのモル比((ビニルエーテル(2)に基づく繰り返し単位)/(ビニルエーテル(3)に基づく繰り返し単位))は、45/5~10/40が好ましく、40/10~25/25が特に好ましい。
(工程(2))
 工程(2)は、前記工程(1)で得られた共重合体(B)におけるビニルエーテル(2)に基づく繰り返し単位中のRを水素原子に置換し、含フッ素オレフィン/ビニルアルコール共重合体を得る工程である。これにより、ビニルエーテル(2)に基づく繰り返し単位がビニルアルコールに基づく繰り返し単位に変換され、含フッ素オレフィン(1)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位を有する共重合体(A)が得られる。共重合体(B)にビニルエーテル(3)に基づく繰り返し単位が含まれている場合は、該ビニルエーテル(3)に基づく繰り返し単位のRは変化を受けることなくそのまま維持されるので、含フッ素オレフィン(1)に基づく繰り返し単位、ビニルアルコールに基づく繰り返し単位、およびビニルエーテル(3)に基づく繰り返し単位を有する共重合体(A)が得られる。
 Rを水素原子に置換する方法としては、酸、熱あるいは光を用いた反応を採用できる。なかでも、得られる共重合体(A)に着色がほとんど無い点から、酸によってRを水素原子に置換することが好ましい。該酸としては、硫酸、塩酸、硝酸等の無機酸、酢酸、酪酸、トリフルオロ酢酸等の有機酸等が挙げられる。
 酸による反応は、水系で行っても、非水系で行ってもよく、例えば、(1)硫酸/エタノール/水の混合溶液中での反応、(2)塩酸/ジオキサンの混合溶液中での反応、または(3)トリフルオロ酢酸/塩化メチレンの混合溶液中での反応が好ましい。
 また、光の照射により酸を発生する光酸発生剤を用いて行ってもよい。光酸発生剤としては、例えば、オニウム塩、ハロゲン含有化合物、ジアゾケトン化合物、スルホン化合物、スルホン酸化合物等が挙げられる。具体例としては、ジフェニルヨードニウムトリフレート、トリフェニルスルホニウムトリフレート、フェニル-ビス(トリクロロメチル)-s-トリアジン、メトキシフェニル-ビス(トリクロロメチル)-s-トリアジン、4-トリスフェナシルスルホン、1,8-ナフタレンジカルボン酸イミドトリフレート等が挙げられる。
 工程(2)においては、共重合体に求められる用途に応じて、共重合体(B)が有する全てのRが置換される前に反応を終了することにより、ビニルエーテル(2)に基づく繰り返し単位も含む共重合体(A)としてもよい。置換反応を途中で終了させて、ビニルエーテル(2)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位との比率を調節することにより、得られる共重合体(A)の親水性、結晶性等を調節できる。
[含フッ素オレフィン/ビニルアルコール共重合体]
 本発明の製造方法で得られる共重合体(A)は含フッ素オレフィン(1)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位とを含み、所望により、ビニルエーテル(2)に基づく繰り返し単位、さらにはビニルエーテル(3)に基づく繰り返し単位も含む。該共重合体(A)は分子量が高く、重量平均分子量(Mw)が50,000~1,000,000であることが好ましく、85,000~1,000,000がより好ましく、85,000~700,000がさらに好ましく、85,000~500,000が特に好ましい。また、含フッ素オレフィン(1)に基づく繰り返し単位とビニルアルコールに基づく繰り返し単位との交互共重合率は両者の共重合反応性比から確率計算して95%以上である。
 共重合体(A)は、従来の含フッ素オレフィンと酢酸ビニルを共重合させた後に加水分解して得られる共重合体とは異なり、着色がほとんど無い。また、工程(2)のRを水素原子に置換する反応が、特に酸存在下で行う場合に速やかに進行するので生産性が高い。この要因としては、ビニルエーテル(2)のエーテル性酸素原子の方が、酢酸ビニルのエステル基よりもプロトネーションしやすいためであると推定される。
 また、従来の酢酸ビニルを用いる製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体は、ランダム共重合体であるため、含フッ素オレフィンに基づく繰り返し単位の割合が高い部分と、ビニルアルコールに基づく繰り返し単位の割合が高い部分によって性能のばらつきがあり、耐水性、耐熱性が低い。これに対し、本発明の製造方法によれば、含フッ素オレフィン(1)と、ビニルエーテル(2)またはビニルエーテル(3)が実質的に交互に重合して水酸基が特定の場所に集中しないので、特定の部分の親水性が極端に高くなることを抑制でき、優れた耐水性が得られやすい。また、共重合体(A)は、ビニルアルコールに基づく繰り返し単位が特定の場所に集中しないので、優れた耐熱性が得られやすい。
 例えば、共重合体(A)を塗料用途とする場合は、水酸基を均一に配列させた塗膜を形成できる。さらに、水酸基と反応するメラミン、イソシアネート等の硬化剤等と共に用いた組成物とすることで、均一に架橋構造を有する硬化物からなる塗膜やフィルム等を形成することもできる。この場合には、水酸基が均一に分布することで、水酸基の反応性が安定して得られるという効果も得られる。また、前記のように硬化剤を用いる場合等においては、工程(2)を行うタイミングは特に限定されず、例えば、共重合体(B)、工程(2)に用いる酸等の成分、および硬化剤等を混合し、フィルム状あるいはシート状に成形してから、光あるいは熱を加えることにより水酸基を生じさせて架橋構造を有する硬化物からなるフィルムあるいはシートとすることもできる。すなわち、この場合には、共重合体(B)におけるビニルエーテル部位を潜在的硬化部位として使用してもよい。
 共重合体(A)は、分子量が高いことから、分子鎖間の絡み合いが充分に確保され、強靭なフィルムを形成することができる。また、機械的特性が良好で、耐薬品性に優れた成形体を得ることができ、例えばチューブ、シートにすることができる。また、共重合体(A)を他の素材に塗布し、表面改質された素材を提供する事もできる。共重合体(A)は、交互共重合体である為、組成の分布が少なく、溶け残りの少ない、良好な塗布溶液を得ることができる。また、得られる塗膜は分子量が高いことから、基材となる他の素材の表面を充分に被覆し、良好に表面を改質することができる。
[フィルムの製造方法]
 上記のとおり、共重合体(A)は種々の用途に使用することができるが、薄くて優れた機能が発揮できる点で、フィルムが特に有用である。フィルムの厚さは、10μm~5mmが好ましく、20μm~1mmがより好ましく、20~500μmが特に好ましい。フィルムは、共重合(A)を含む組成物から成形できる。該組成物としては、共重合(A)以外に、共重合(A)の性能を損なわない化合物を含むことができる。例えば無機微粒子、酸化防止剤等が挙げられる。
 該組成物からフィルムを成形する方法としては、スピンコーティング法、キャスト法、プレス法、溶融押し出し法等の公知の方法が挙げられる。なかでも、膜厚均一性が高く、光学的透明性に優れ、異物も少ないフィルムを得ることができる点で、キャスト法が好ましい。該キャスト法で用いる溶媒は、共重合体(A)を溶解する化合物が好ましい。アルコール系、エーテル系、ケトン系、エステル系、アミド系等の溶媒が挙げられ、得られる自立膜の透明性の点から、アルコール系が好ましく、メタノールまたはエタノールが特に好ましい。また、溶媒は、1種を単独で使用してもよく、2種以上を併用してもよい。2種以上を併用する場合は、混合溶媒として含フッ素オレフィン/ビニルアルコール共重合体を溶解できれば、含フッ素オレフィン/ビニルアルコール共重合体を溶解しない化合物を使用してもよい。該溶媒は、共重合体(A)に対して60~99質量%で使用することが好ましい。
 以下、実施例および比較例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
[測定方法]
 実施例で使用した各測定方法は以下のとおりである。
(重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mw/Mn))
 各例で得られた共重合体の重量平均分子量(Mw)、数平均分子量(Mn)および分子量分布(Mw/Mn)は、東ソー社製の高速GPC装置「HLC-8220GPC」を使用し、ポリスチレンゲル換算のゲル濾過クロマトグラフィー(GPC)で測定した。溶離液はテトラヒドロフランを用いた。
(共重合体の構造および組成)
 各例で得られた共重合体の構造および組成については、H NMRおよび19F NMRスペクトルの測定から同定しおよび算出した。
(共重合体の熱特性)
 各例で得られた共重合体のガラス転移点(Tg)は、ティー・エイ・インスツルメント社製の示差走査熱量計「Q100」を用いて測定し、10%重量減量温度(Td10)は、ブルカー・エイエックスエス社製の示差熱・熱重量同時測定装置「TG-DTA2000SA」を用いて測定した。
[実施例1:共重合体(A1)およびフィルムの製造]
(工程(1))
 内容積1Lのステンレス製攪拌機付きオートクレーブ(耐圧3.4MPaG)に、イオン交換水の500.0g、ビニルエーテル(2)であるt-ブチルビニルエーテル(以下、「TBVE」という。)の125.0g、乳化剤であるペルフルオロオクタン酸アンモニウム(以下、「APFO」という。)の2.5g、リン酸水素2ナトリウムの9.1gおよび過硫酸アンモニウム(以下、「APS」という。)の5.0gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。
 次に、含フッ素オレフィン(1)であるテトラフルオロエチレン(以下、「TFE」という。)の126.5gをオートクレーブ中に導入し、50℃まで加熱した。この時点での圧力は2.43MPaGであった。その後、7.5時間反応を続行し、圧力が1.09MPaGまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体(B1)を析出させた後、真空乾燥を行った。共重合体(B1)の収量は69.0g、単量体の反応率は28%であった。
 得られた共重合体(B1)のMwは136,000、Mnは65,000、Mw/Mnは2.1であった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はTFE/TBVE=49/51(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合率95%以上)を有していることが分かった。
(工程(2))
 100mLフラスコに、前記共重合体(B1)の4.0g、36重量%濃塩酸の4.0g、エタノールの52gを入れ、内温78℃で加熱攪拌し、置換反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、2.5gの共重合体(A1)を得た。本工程において着色は見られなかった。
 前記共重合体(B1)および得られた共重合体(A1)について、H NMRスペクトルおよび19F NMRを測定した結果から、共重合体(A1)においては、加水分解により99%以上のR(t-ブチル基)が水素に置換されて水酸基が生成したことが確認され(Rが水素で置換された繰り返し単位を以下、「VAl」ともいう。)、共重合組成比はTFE/VAl=46/54(モル%)、Mwは110,000、Mnは39,000、Mw/Mn=2.8であった。また、Tgは90℃、Td10は394℃であった。
(フィルムの製造およびその評価)
 前記共重合体(A1)の1.0gを9.0gのエタノールが入った容器に投入し、溶解させて、溶液を得た。該溶液をポリテトラフルオロエチレン製メンブレンフィルタにより濾過をした後、キャスト法により厚さが113μmおよび130μmのフィルムを得た。得られたフィルムについて、引張試験、酸素ガス透過度、水蒸気透過度の測定を行った。
(a)引張試験
 得られた厚さ130μmのフィルムから、長さ5cmの引張試験用サンプルを作成し、島津製作所製小型卓上試験機(EZ Test)を使用して、温度25℃、10mm/minの速度で、引張試験を行った。弾性率は1,589GPa、破断伸びは18%を示した。
(b)酸素ガス透過度
 得られた厚さ130μmのフィルムについて、ツクバリカセイキ社製ガス透過度測定装置(K-315N)を使用して、温度40℃で測定した。測定値は1.65×10-12cc(STP)cm/cm・sec・cmHgを示した。
(c)水蒸気透過度
 得られた厚さ113μmのフィルムについて、MOCON社製ガス透過度測定装置(PERMATRAN W3/33)を使用して、測定規格であるJIS K7129Bに従い、温度40℃および湿度90%RHでの水蒸気透過係数を測定した。測定値は4.29g・mm/m・dayを示した。
[実施例2:共重合体(A2)およびフィルムの製造]
 含フッ素オレフィン(1)であるクロロトリフルオロエチレン(以下、「CTFE」という。)を用いて、共重合体(A2)を得た。
(工程(1))
 内容積0.2Lのステンレス製攪拌機付きオートクレーブ(耐圧5.0MPaG)に、イオン交換水の100.0g、ビニルエーテル(2)であるTBVEの23.0g、APFOの0.5g、リン酸水素2ナトリウムの1.8gおよびAPSの1.0gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。
 次に、含フッ素オレフィン(1)であるCTFEの30.6gをオートクレーブ中に導入し、50℃まで加熱した。この時点での圧力は0.40MPaGであった。その後、7.5時間反応を続行し、圧力が0.31MPaGまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体(B2)を析出させた後、真空乾燥を行った。共重合体(B2)の収量は37.0g、単量体の反応率は73%であった。
 得られた共重合体(B2)のMwは105,000、Mnは30,000、Mw/Mnは3.50であった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はCTFE/TBVE=49/51(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合率95%以上)を有していることが分かった。
(工程(2))
 100mLフラスコに、前記共重合体(B2)の4.0g、36重量%濃塩酸の4.0g、エタノールの52gを入れ、内温78℃で加熱攪拌し、脱保護反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、3.0gの共重合体(A2)を得た。本工程において着色は見られなかった。
 前記共重合体(B2)および得られた共重合体(A2)について、H NMRスペクトルおよび19F NMRの結果から、加水分解により99%以上のR(t-ブチル基)が水素に置換されて水酸基が生成したことが確認され、共重合体(A2)においては、共重合組成比はCTFE/VAl=49/51(モル%)、Mwは87,000、Mnは29,000、Mw/Mn=3.0であった。
(フィルムの製造およびその評価)
 共重合体(A1)を共重合体(A2)変更した以外は、実施例1と同様にして、厚さが45μmおよび72μmのフィルムを得た。厚さ72μmのフィルムの酸素ガス透過度、厚さ45μmのフィルムの水蒸気透過度を例1と同様に測定したところ、それぞれ、4.73×10-12cc(STP)cm/cm・sec・cmHg、1.41g・mm/m・dayであった。
[実施例3:共重合体(A5)の製造]
(工程(1))
 内容積1Lのステンレス製攪拌機付きオートクレーブ(耐圧3.4MPaG)に、イオン交換水の500.0g、TBVEの125.0g、APFOの3.8g、リン酸水素2ナトリウムの28.3gおよびAPSの10.0gを仕込んだ。オートクレーブ内を窒素で0.5MPaGまで昇圧後、0.05MPaGまでパージする操作を10回繰返し、系内の酸素を除去した。
 次に、含フッ素オレフィン(1)であるTFEをオートクレーブ内が1.7MPaGになるまで、95g投入し、その後、30℃まで加熱した。内温が30℃に到達した後に、還元剤である亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)を、2.5mL投入し、反応を開始した。反応開始後、TFEをオートクレーブ内に連続的に供給し、亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)を15分ごとに2.5mLずつ、オートクレーブ内に間欠的に投入した。反応開始から6.5時間後、オートクレーブを水冷した。投入量の合計は、TFEは164.0g、亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)は65mLであった。室温(20~25℃)まで冷却後、未反応ガスをパージして反応を停止させた。得られた重合液をメタノール中に投入し、生成した共重合体(B5)を析出させた後、真空乾燥を行った。共重合体(B5)の収量は136.0g、単量体の反応率は56%であった。
 得られた共重合体(B5)のMwは324,000、Mnは178,000、Mw/Mnは1.8であった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はTFE/TBVE=49/51(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合率95%以上)を有していることが分かった。
(工程(2))
 100mLフラスコに、前記共重合体(B5)の126g、36重量%濃塩酸の125g、エタノールの810gを入れ、内温78℃で加熱攪拌し、置換反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、89gの共重合体(A5)を得た。本工程において着色は見られなかった。
 前記共重合体(B5)および得られた共重合体(A5)について、H NMRスペクトルおよび19F NMRを測定した結果から、共重合体(A5)においては、加水分解により99%以上のR(t-ブチル基)が水素に置換されて水酸基が生成したことが確認され、共重合組成比はTFE/VAl=47/53(モル%)、Mwは341,000、Mnは147,000、Mw/Mn=2.3であった。また、Tgは90℃、Td10は412℃であった。
[実施例4:共重合体(A6)の製造]
(工程(1))
 内容積1Lのステンレス製攪拌機付きオートクレーブ(耐圧3.4MPaG)に、イオン交換水の500.0g、TBVEの125.0g、APFOの2.5g、リン酸水素2ナトリウムの28.3gおよびAPSの10.0gを仕込んだ。オートクレーブ内を窒素で0.5MPaGまで昇圧後、0.05MPaGまでパージする操作を10回繰返し、系内の酸素を除去した。
 次に、含フッ素オレフィン(1)であるTFEをオートクレーブ内が1.7MPaGになるまで、102g投入し、その後、30℃まで加熱した。内温が30℃に到達した後に、還元剤である亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)を、2.5mL投入し、反応を開始した。反応開始後、TFEをオートクレーブ内に連続的に供給し、亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)を15分ごとに2.5mLずつ、オートクレーブ内に間欠的に投入した。反応開始から6.5時間後、オートクレーブを水冷した。投入量の合計は、TFEは154.0g、亜硫酸水素ナトリウム水溶液(濃度0.11g/mL)は65mLであった。常温まで冷却後、未反応ガスをパージして反応を停止させた。得られた重合液をメタノール中に投入し、生成した共重合体(B6)を析出させた後、真空乾燥を行った。共重合体(B6)の収量は85.0g、単量体の反応率は34%であった。
 得られた共重合体(B6)のMwは258,000、Mnは114,000、Mw/Mnは2.3であった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はTFE/TBVE=48/52(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合率95%以上)を有していることが分かった。
(工程(2))
 100mLフラスコに、前記共重合体(B6)の82g、36重量%濃塩酸の82g、エタノールの780gを入れ、内温78℃で加熱攪拌し、置換反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、57gの共重合体(A6)を得た。本工程において着色は見られなかった。
 前記共重合体(B6)および得られた共重合体(A6)について、H NMRスペクトルおよび19F NMRを測定した結果から、共重合体(A6)においては、加水分解により99%以上のR(t-ブチル基)が水素に置換されて水酸基が生成したことが確認され、共重合組成比はTFE/VAl=48/52(モル%)、Mwは271,000、Mnは117,000、Mw/Mn=2.3であった。また、Tgは90℃、Td10は397℃であった。
(フィルムの製造およびその評価)
 前記共重合体(A6)の3.0gを27.0gのエタノールが入った容器に投入し、溶解させて、溶液を得た。該溶液をポリテトラフルオロエチレン製メンブレンフィルタにより濾過をした後、キャスト法により厚さが52μmのフィルムを得た。
 得られたフィルムについて、引張試験の測定を行った。
(a)引張試験
 得られた厚さ52μmのフィルムから、長さ6.3cmの引張試験用サンプルを作成し、テンシロン万能試験機(エー・アンド・デイ社製、型番:RTC-1210)を用いて、温度25℃、湿度50%の条件下、10mm/minの速度で引張試験を行った。弾性率は1.8GPa、最大点応力は94MPa、破断伸びは202%であり、タフな膜が得られた。
[参考例1:共重合体(A3)およびフィルムの製造]
 内容積1Lのステンレス製攪拌機付きオートクレーブ(耐圧3.4MPaG)に、t-ブチルアルコールの317.0g、ビニルエーテル(2)であるTBVEの109.0g、炭酸カリウムの1.0g、およびt-ブチルパーオキシピバレート(以下、「PBPV」という。)の50%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の2.7gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、オートクレーブ中に含フッ素オレフィン(1)であるTFEの112.7g導入し、55℃まで加熱した。この時点での圧力は1.62MPaGを示した。その後、8.0時間反応を続行し、圧力が0.86MPaGまで低下したところでオートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体(B3)を析出させた後、真空乾燥を行った。共重合体(B3)の収量は121.4g、単量体の反応率は55%であった。
 得られた共重合体(B3)のMwは36,000、Mnは24,000、Mw/Mnは1.7であった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はTFE/TBVE=51/49(モル%)であった。また両単量体の共重合反応性比からの計算で実質的に交互構造(交互共重合率95%以上)を有していることが分かった。
 次に、100mLフラスコに前記共重合体(B3)の4.0g、36重量%濃塩酸の4.0g、エタノールの52g入れ、内温78℃で加熱攪拌し、脱保護反応を行った。反応を8時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、2.5gの共重合体(A3)を得た。
 前記共重合体(B3)および得られた共重合体(A3)について、H NMRスペクトルおよび19F NMRの結果から、加水分解により99%以上のt-ブチル基が水素に置換されて水酸基が生成したことが確認され、共重合体(A3)においては、共重合組成比はTFE/VAl=48/52(モル%)、Mwは37,000、Mnは21,000、Mw/Mn=1.8であった。
(フィルムの製造およびその評価)
 共重合体(A1)を共重合体(A3)変更した以外は、実施例1と同様にして、製膜を試みたが、得られた膜は非常に脆く、フィルムにはならなかった。フィルムが得られなかったので、酸素ガス透過度および水蒸気透過度を測定できなかった。
[比較例1:共重合体(A4)の製造]
 内容積1Lのステンレス製攪拌機付きオートクレーブに、酢酸メチルの354g、酢酸ビニル(以下、「VAc」という。)の63g、およびPBPVの50%1,1,1,2,2,3,3,4,4,5,5,6,6-トリデカフルオロヘキサン溶液の2.3gを仕込み、液体窒素で凍結脱気を行い、系内の酸素を除去した。次いで、TFEの179gをオートクレーブ中に導入し、55℃まで加熱した。その後、10分間反応を続行した後、オートクレーブを水冷し、未反応ガスをパージして反応を停止させた。得られた重合溶液をメタノール中に投入し、生成した共重合体を析出させた後、真空乾燥を行い、共重合体(B4)を固体として得た。共重合体(B4)の収量は110g、単量体の反応率は45%であった。
 得られた共重合体(B4)のMwは278,000、Mnは84,000、Mw/Mnは3.3だった。H NMRスペクトルおよび19F NMRスペクトルから、共重合組成比はTFE/VAc=50/50(モル%)であった。また、両単量体の共重合反応性比からの計算で、共重合体(B4)の交互共重合率は80~85%であった。
 次に、100mLフラスコに前記共重合体(B4)の4.1g、36重量%濃塩酸の4.0g、エタノールの52gを入れ、内温78℃で加熱攪拌し、脱保護反応を行った。反応を32時間続行した後、反応液を水中に滴下し、共重合体を析出させ、水で洗浄した後、90℃で真空乾燥を行い、2.7gの共重合体(A4)を得た。
 前記共重合体(B4)および得られた共重合体(A4)について、H NMRスペクトルおよび19F NMRスペクトルから、加水分解により99%以上のアセチル基が水素に置換されて水酸基が生成したことが確認できた。共重合体(A4)においては、共重合組成比はTFE/VAl=50/50(モル%)、Mwは275,000、Mnは74,000、Mw/Mn=3.7であった。また、Tgは85℃、Td10は379℃であり、共重合体(A1)に比べ約20℃低い分解温度を示した。
 実施例1~4は、本発明の製造方法により、高い分子量と高い交互共重合率の含フッ素オレフィン/ビニルアルコール共重合体を得ることができたため、耐熱性が高く、また、強靭でガスバリア性が良好なフィルムを得ることができた。特に、実施例4で得た共重合体は分子量が高いため、フィルムの弾性率が実施例1のフィルムよりも高く、また、破断伸びが実施例1のフィルムよりも高かった。
 参考例1は溶液重合にて共重合体を得たため、分子量が実施例1および2に比べて分子量が低く、フィルムを得ることができなかった。
 比較例1は単量体として酢酸ビニルを用いたため、交互共重合率が実施例1および2と比較して低く、耐熱性が不充分であった。共重合体の主鎖が分解したためと考えられる。
 本発明の製造方法は、共重合を乳化状態で行うことによって、高い分子量と高い交互共重合率の含フッ素オレフィン/ビニルアルコール共重合体を得ることができる。該共重合体は分子量が高い為、強靭な成形物、特にフィルムを形成することができる。該フィルムは、フィルタ、ガスバリア膜、親水性多孔質膜、電池セパレータ等の膜や、太陽電池用バックシート等の表面保護シート材料等に好適に応用できる。
 なお、2011年10月5日に出願された日本特許出願2011-220920号の明細書、特許請求の範囲、および要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。

Claims (10)

  1.  下記工程(1)および工程(2)を含むことを特徴とする含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
    工程(1):水性媒体および乳化剤の存在下に、下式(1)で表される含フッ素オレフィンと下式(2)で表されるビニルエーテルとを乳化重合させて、含フッ素オレフィン/ビニルエーテル共重合体を得る工程であって、該式(2)で表されるビニルエーテルの水性媒体に対する質量比が5/95~70/30である、工程。
     CF=CFX   (1)
     CH=CHOR  (2)
    [ただし、式(1)中、Xはフッ素原子、塩素原子、トリフルオロメチル基、または-OC2a+1(aは1~3の整数)である。また、式(2)中、Rは炭素数4~12の第三級アルキル基またはアルコキシアルキル基、炭素数4~6のエーテル性酸素原子を含む脂環式炭化水素基、炭素数6~10のアリール基、および-Si(R(Rは炭素数1~10のアルキル基またはアリール基である)からなる群より選ばれる基である。]
    工程(2):前記含フッ素オレフィン/ビニルエーテル共重合体における式(2)で表されるビニルエーテルに基づく繰り返し単位中のRを水素原子に置換し、含フッ素オレフィン/ビニルアルコール共重合体を得る工程。
  2.  前記Rが、t-ブチル基である、請求項1に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  3.  前記工程(2)を、酸の存在下で行う、請求項1または2に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  4.  前記工程(1)で得られる含フッ素オレフィン/ビニルエーテル共重合体において、前記式(1)で表される含フッ素オレフィンに基づく繰り返し単位と前記式(2)で表されるビニルエーテルに基づく繰り返し単位とのモル比が40/60~60/40である、請求項1~3のいずれか一項に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  5.  前記工程(1)において、下式(3)で表されるビニルエーテルをさらに共重合させる、請求項1~4のいずれか一項に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
     CH=CHOR   (3)
    [ただし、式(3)中、Rは、水酸基もしくはフッ素原子で置換されていてもよい、炭素数1~6の第一級または第二級アルキル基および炭素数6~12のシクロアルキル基からなる群より選ばれる基である。]
  6.  前記乳化剤が下式(4)で表される化合物である、請求項1~5のいずれか一項に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
     R-(CH-COOX   (4)
    [ただし、式(4)中、Rはエーテル酸素原子を含んでいてもよい炭素数1~9のペルフルオロアルキル基、nは0~2の整数、Xは水素原子、NHまたはアルカリ金属原子である。]
  7.  前記工程(1)を、塩基性化合物の存在下で行う、請求項1~6のいずれか一項に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  8.  前記含フッ素オレフィン/ビニルアルコール共重合体の重量平均分子量が50,000~1,000,000である、請求項1~7のいずれか一項に記載の含フッ素オレフィン/ビニルアルコール共重合体の製造方法。
  9.  請求項1~8のいずれか一項に記載の製造方法により得られる含フッ素オレフィン/ビニルアルコール共重合体を含む組成物から成形してなるフィルム。
  10.  前記成形がキャスト法である、請求項9に記載のフィルム。
PCT/JP2012/075852 2011-10-05 2012-10-04 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム WO2013051668A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280048187.1A CN103842389B (zh) 2011-10-05 2012-10-04 含氟烯烃/乙烯基醇共聚物的制造方法及由包含该共聚物的组合物成形而成的膜
JP2013537555A JP6127976B2 (ja) 2011-10-05 2012-10-04 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムの製造方法
EP12838199.3A EP2765143B1 (en) 2011-10-05 2012-10-04 Process for producing fluorinated olefin/vinyl alcohol copolymer
US14/196,444 US9388262B2 (en) 2011-10-05 2014-03-04 Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-220920 2011-10-05
JP2011220920 2011-10-05

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/196,444 Continuation US9388262B2 (en) 2011-10-05 2014-03-04 Process for producing fluorinated olefin/vinyl alcohol copolymer and film made by forming a composition containing the copolymer

Publications (1)

Publication Number Publication Date
WO2013051668A1 true WO2013051668A1 (ja) 2013-04-11

Family

ID=48043821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075852 WO2013051668A1 (ja) 2011-10-05 2012-10-04 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルム

Country Status (5)

Country Link
US (1) US9388262B2 (ja)
EP (1) EP2765143B1 (ja)
JP (1) JP6127976B2 (ja)
CN (1) CN103842389B (ja)
WO (1) WO2013051668A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784108A4 (en) * 2011-12-28 2015-08-12 Daikin Ind Ltd POROUS POLYMERMEMBRANE
JP2016113535A (ja) * 2014-12-15 2016-06-23 旭硝子株式会社 塗料用組成物および塗装物品
WO2016104602A1 (ja) * 2014-12-26 2016-06-30 ダイキン工業株式会社 水生生物付着防止材料、水生生物付着防止塗料、水生生物付着防止パネル、水中構造物及び水中構造物に水生生物が付着することを防止するための方法
US10246603B2 (en) 2014-03-10 2019-04-02 AGC Inc. Coating material composition, solvent-based coating material, aqueous coating material, powder coating material and coated article
WO2019124490A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
WO2019172382A1 (ja) * 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021118919A1 (en) 2019-12-12 2021-06-17 Agc Chemicals Americas, Inc. Fluorinated composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
JPH061876A (ja) 1992-06-22 1994-01-11 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料の製造方法
WO2000022002A1 (fr) * 1998-10-13 2000-04-20 Daikin Industries, Ltd. Procede de production de fluoropolymeres
JP2009280687A (ja) * 2008-05-21 2009-12-03 Asahi Glass Co Ltd 含フッ素弾性共重合体
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5151477A (en) * 1987-11-20 1992-09-29 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5137999A (en) * 1987-11-20 1992-08-11 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5070162A (en) * 1987-11-20 1991-12-03 Allied-Signal Inc. Copolymerization of vinyl acetate and a fluoromonomer in an aqueous medium
US5173556A (en) * 1987-11-23 1992-12-22 Allied-Signal Inc. Fluorinated copolymer and barrier films
US5032656A (en) * 1987-11-23 1991-07-16 Allied-Signal Inc. Fluorinated copolymer and barrier films
US5641608A (en) * 1995-10-23 1997-06-24 Macdermid, Incorporated Direct imaging process for forming resist pattern on a surface and use thereof in fabricating printing plates
DE602004022008D1 (de) * 2003-12-18 2009-08-27 Agfa Graphics Nv Wärmeempfindlicher lithographischer Druckplattevorläufer
US7205084B2 (en) * 2003-12-18 2007-04-17 Agfa-Gevaert Heat-sensitive lithographic printing plate precursor
JP2009290687A (ja) 2008-05-30 2009-12-10 Toshiba Corp アンテナ装置および無線通信装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02502832A (ja) * 1987-11-20 1990-09-06 アライド‐シグナル・インコーポレーテッド フッ素化共重合体、そのフィルム及び該共重合体の製造法
JPH05261256A (ja) 1992-03-19 1993-10-12 Japan Gore Tex Inc 含フッ素共重合体膜及び分離膜
JPH061876A (ja) 1992-06-22 1994-01-11 Japan Gore Tex Inc 親水性多孔質フッ素樹脂材料の製造方法
WO2000022002A1 (fr) * 1998-10-13 2000-04-20 Daikin Industries, Ltd. Procede de production de fluoropolymeres
JP2009280687A (ja) * 2008-05-21 2009-12-03 Asahi Glass Co Ltd 含フッ素弾性共重合体
WO2011126056A1 (ja) * 2010-04-08 2011-10-13 旭硝子株式会社 含フッ素オレフィン/ビニルアルコール共重合体、およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. RAGAZZINI, EUR. POLYM. J., vol. 3, 1967, pages 5

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784108A4 (en) * 2011-12-28 2015-08-12 Daikin Ind Ltd POROUS POLYMERMEMBRANE
US10246603B2 (en) 2014-03-10 2019-04-02 AGC Inc. Coating material composition, solvent-based coating material, aqueous coating material, powder coating material and coated article
JP2016113535A (ja) * 2014-12-15 2016-06-23 旭硝子株式会社 塗料用組成物および塗装物品
WO2016104602A1 (ja) * 2014-12-26 2016-06-30 ダイキン工業株式会社 水生生物付着防止材料、水生生物付着防止塗料、水生生物付着防止パネル、水中構造物及び水中構造物に水生生物が付着することを防止するための方法
CN111556809A (zh) * 2017-12-20 2020-08-18 Agc株式会社 装饰薄膜及带装饰薄膜的三维成形品的制造方法
WO2019124490A1 (ja) * 2017-12-20 2019-06-27 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
JPWO2019124490A1 (ja) * 2017-12-20 2021-01-14 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
JP7167940B2 (ja) 2017-12-20 2022-11-09 Agc株式会社 加飾フィルムおよび加飾フィルム付き3次元成形品の製造方法
CN111556809B (zh) * 2017-12-20 2023-02-17 Agc株式会社 装饰薄膜及带装饰薄膜的三维成形品的制造方法
WO2019172382A1 (ja) * 2018-03-07 2019-09-12 ダイキン工業株式会社 フルオロポリマーの製造方法
JPWO2019172382A1 (ja) * 2018-03-07 2021-03-11 ダイキン工業株式会社 フルオロポリマーの製造方法
JP7193747B2 (ja) 2018-03-07 2022-12-21 ダイキン工業株式会社 フルオロポリマーの製造方法
JP7492153B2 (ja) 2018-03-07 2024-05-29 ダイキン工業株式会社 フルオロポリマーの製造方法

Also Published As

Publication number Publication date
US20140187728A1 (en) 2014-07-03
CN103842389A (zh) 2014-06-04
CN103842389B (zh) 2016-05-18
EP2765143B1 (en) 2017-02-22
EP2765143A1 (en) 2014-08-13
JPWO2013051668A1 (ja) 2015-03-30
JP6127976B2 (ja) 2017-05-17
EP2765143A4 (en) 2015-08-19
US9388262B2 (en) 2016-07-12

Similar Documents

Publication Publication Date Title
JP6127976B2 (ja) 含フッ素オレフィン/ビニルアルコール共重合体の製造方法および該共重合体を含む組成物から成形してなるフィルムの製造方法
JP5796571B2 (ja) 含フッ素オレフィン/ビニルアルコール共重合体の製造方法
US10081691B2 (en) Crosslinkable compositions based on vinylidene fluoride-trifluoroethylene polymers
EP2791191B1 (en) Crosslinkable vinylidene fluoride and trifluoroethylene polymers
US20070244262A1 (en) Graft copolymers and related methods of preparation
JP2006036986A (ja) 含フッ素ポリマーラテックス、その製造方法および含フッ素ポリマー
JP7360058B2 (ja) フルオロポリマーの製造方法
US20150284519A1 (en) Process for manufacturing fluoropolymer hybrid composites
JP7522375B2 (ja) フルオロポリマーの製造方法、ポリテトラフルオロエチレンの製造方法、パーフルオロエラストマーの製造方法および組成物
US20210403623A1 (en) Method for producing fluorine-containing polymer, aqueous dispersion liquid, and fluorine-containing polymer composition
CN103582672A (zh) 亲水化处理剂组合物、亲水化方法、亲水化树脂多孔体及其制造方法
WO2004065436A1 (ja) 加硫可能な含フッ素エラストマーの製造方法
JPH02191613A (ja) 新規非結晶性含フッ素共重合体
US20140187699A1 (en) Composition comprising fluorinated olefin/vinyl alcohol copolymer and alkoxysilane, compound, cured product formed from said composition, and film comprising said cured product
RU2814921C2 (ru) Способ получения фторсодержащего полимера, водная дисперсионная жидкость и композиция фторсодержащего полимера
WO2007123123A1 (ja) フッ素ゴムの製造方法
JPH11292935A (ja) アリルアルコール系重合体の合成法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12838199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013537555

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2012838199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012838199

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE