WO2013047253A1 - Thermoelectric conversion element and method for manufacturing same - Google Patents

Thermoelectric conversion element and method for manufacturing same Download PDF

Info

Publication number
WO2013047253A1
WO2013047253A1 PCT/JP2012/073752 JP2012073752W WO2013047253A1 WO 2013047253 A1 WO2013047253 A1 WO 2013047253A1 JP 2012073752 W JP2012073752 W JP 2012073752W WO 2013047253 A1 WO2013047253 A1 WO 2013047253A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
layer
phonon
spacer layer
Prior art date
Application number
PCT/JP2012/073752
Other languages
French (fr)
Japanese (ja)
Inventor
石田 真彦
明宏 桐原
滋 河本
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013047253A1 publication Critical patent/WO2013047253A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N15/00Thermoelectric devices without a junction of dissimilar materials; Thermomagnetic devices, e.g. using the Nernst-Ettingshausen effect

Definitions

  • the present invention relates to a thermoelectric conversion element using a spin Seebeck effect and an inverse spin Hall effect.
  • thermoelectric conversion elements are expected to become more important in the future in applications such as increasing the efficiency of energy use in a low-carbon society and supplying power to ubiquitous terminals and sensors.
  • spintronics an electronic technology called “spintronics” has recently been highlighted.
  • Conventional electronics have used only “charge”, which is one property of electrons, while spintronics also actively uses “spin”, which is another property of electrons.
  • spin current which is a flow of spin angular momentum of electrons, is an important concept. Since the energy dissipation of the spin current is small, there is a possibility that highly efficient information transfer can be realized by using the spin current. Therefore, generation, detection and control of spin current are important themes.
  • spin-hall effect a phenomenon in which a spin current is generated when a current flows.
  • inverse spin-Hall effect an opposite phenomenon that an electromotive force is generated when a spin current flows.
  • the spin current can be detected.
  • both the spin Hall effect and the reverse spin Hall effect are particularly significantly expressed in a substance (eg, Pt, Au) having a large “spin orbit coupling”.
  • the spin Seebeck effect is a phenomenon in which, when a temperature gradient is applied to a magnetized magnetic material, a spin current is induced in a direction parallel to the temperature gradient. That is, heat is converted into a spin current by the spin Seebeck effect (thermal spin current conversion).
  • the spin current induced by the temperature gradient can be converted into an electric field (current, voltage) using the above-described inverse spin Hall effect. That is, by using the spin Seebeck effect and the inverse spin Hall effect in combination, “thermoelectric conversion” that converts a temperature gradient into electricity becomes possible.
  • Patent Document 1 Japanese Patent Laid-Open No. 2009-130070
  • Non-Patent Document 1 Non-Patent Document 1
  • Non-Patent Document 2 Applied Physics Letters, vol. 97, p 172505 (2010)
  • spin current an angular momentum flow generated by the spin Seebeck effect
  • FIG. 1A and 1B are perspective views showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1.
  • FIG. A heat spin current conversion unit 163 is formed on a laminate of the heat resistant fiber film 161 and the SiO 2 film 162.
  • the thermal spin current converter 163 has a laminated structure of a Ta film 164, a PdPtMn film 165, and a NiFe film 166.
  • the Ta film 164 is a buffer layer having a bonding effect between the substrate and the magnetic layer and an antioxidant effect of the magnetic layer
  • the PdPtMn film 165 is an antiferromagnetic pinned layer that fixes the magnetization direction of the NiFe film 166.
  • the NiFe film 166 has in-plane magnetization in the longitudinal direction.
  • thermoelectric conversion element is reduced in size by being wound into a roll cake so that the heat-resistant fiber film 161 is inside.
  • the NiFe film 166 plays a role of generating a spin current from the temperature gradient by the spin Seebeck effect, and the Pt electrode 167 generates an electromotive force from the spin current by the inverse spin Hall effect. Play a role. Specifically, when a temperature gradient is applied in the in-plane direction by bringing the side of the NiFe film 166 not provided with the Pt electrode 167 closer to the heat source, a spin current is generated in a direction parallel to the temperature gradient due to the spin Seebeck effect. appear. Then, a spin current flows from the NiFe film 166 to the Pt electrode 167 or a spin current flows from the Pt electrode 167 to the NiFe film 166.
  • an electromotive force is generated in a direction orthogonal to the spin current direction and the NiFe magnetization direction by the inverse spin Hall effect.
  • the electromotive force can be taken out from the terminals 168 1 and 168 2 provided at both ends of the Pt electrode 167.
  • thermoelectric conversion element is composed of a magnetic insulator (yttrium iron garnet (YIG, Y 3 Fe 5 O 12 )) having a film thickness of 3.9 ⁇ m and a metal electrode (Pt electrode) having a film thickness of 15 nm. It is configured.
  • a magnetic insulator yttrium iron garnet (YIG, Y 3 Fe 5 O 12 )
  • Pt electrode metal electrode
  • thermoelectric conversion has been demonstrated by giving the thermoelectric conversion element a temperature gradient (in-plane temperature gradient) in a direction parallel to the magnetic insulator film surface.
  • An element having this configuration is generally called a horizontal spin-flow thermoelectric conversion element.
  • thermoelectric conversion element is composed of a magnetic insulator plate (yttrium iron garnet (YIG, Y 3 Fe 5 O 12 )) having a thickness of 1 mm and a metal electrode (Pt electrode) having a thickness of 15 nm.
  • YIG yttrium iron garnet
  • Pt electrode metal electrode
  • thermoelectric conversion has been demonstrated by giving the thermoelectric conversion element a temperature gradient in a direction perpendicular to the surface of the magnetic insulator plate (surface temperature gradient).
  • the element having this configuration is generally called a vertical spin current thermoelectric conversion element.
  • Patent Document 2 Japanese Patent Laid-Open No. 2009-295824 discloses a spintronic device in which two metal electrodes are provided on a magnetic dielectric layer. This spin and ronix device generates a spin wave spin current by exchanging the spin current induced by the signal current in one electrode and the spin in the magnetic dielectric layer, and the spin wave spin current is generated by the magnetic dielectric. Propagating into the layer and exchanging the spin wave spin current-pure spin wave at the interface between the other electrode and the magnetic dielectric layer, the signal power is generated in the other electrode and the signal is transferred between the two electrodes. Transport current. That is, the spin wave spin current-pure spin current is converted at the interface between the magnetic dielectric layer and the metal electrode.
  • Patent Document 3 Japanese Patent Laid-Open No. 2010-245419 discloses a microwave oscillation element. This microwave oscillation element excites microwave oscillation by injecting a pure spin current from a metal layer into a ferromagnetic layer.
  • K. Uchida et al. “Spin Seebeck Insulator”, Nature Materials, vol. 9, p. 894 (2010).
  • K. Uchida et al. “Observation of longitudinal spin-Seebeck effect in magnetic insulators”, Applied Physics Letters, vol. 97, p172505 (2010).
  • J. et al. Xiao, et al. “Theory of magnon-drive spin Seebeck effect”, Physical Review B 81, 214418 (2010).
  • H. Adachi, et al. "Gigantic enhancement of spin Seebeck effect by phonon drag", Applied Physics Letters, vol. 97, p252506 (2010).
  • thermoelectric conversion element using the spin Seebeck effect and the spin Hall effect when one layer of the magnetic material layer and the metal electrode is used, even if power is generated by the thermoelectric conversion element, the side that is not in contact with the heat source It is thought that heat escapes from. In particular, when the film thickness of the laminate is reduced, the effect becomes significant. Therefore, it is necessary to perform efficient thermoelectric conversion by effectively using such heat that escapes.
  • thermoelectric conversion element in order to effectively use heat, it is advantageous to increase the thermal resistance of the entire element and to give the element a temperature difference as large as possible. For that purpose, it is necessary to lower the thermal conductivity of the entire device.
  • a method of increasing the thickness of the element in the temperature gradient direction is conceivable.
  • the characteristics of the magnetic material layer for generating the spin current and the electrode having the spin orbit interaction include the generation efficiency of the spin current and the reverse spin, respectively. Priority is given to enhancing the Hall effect. For these reasons, the thickness in the temperature gradient direction tends to be limited.
  • thermoelectric conversion element using the spin current the thickness in the temperature gradient direction cannot be freely set. As a result, it is difficult to achieve a low thermal conductivity at the same time as improving the generation efficiency of the spin current and the inverse spin Hall effect in terms of material design. A technique capable of obtaining a larger output according to the generated heat is desired.
  • an object of the present invention is to provide a thermoelectric conversion device and a thermoelectric conversion method capable of performing efficient thermoelectric conversion in accordance with generated heat.
  • thermoelectric conversion element includes a thermoelectric conversion element body and a spacer layer provided on the surface of the thermoelectric conversion element body.
  • the thermoelectric conversion element body includes at least one magnetic layer having in-plane magnetization, and an electromotive layer provided on the magnetic layer and including a material having spin-orbit interaction.
  • the spacer layer includes a low thermal conductive layer provided with a material having a relatively low thermal conductivity, and a plurality of high thermal conductors that are dispersed in the low thermal conductive layer and are materials having a relatively high thermal conductivity. Yes. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors.
  • the method for manufacturing a thermoelectric conversion element according to the second aspect of the present invention includes a step of forming a thermoelectric conversion element body on a substrate and a step of forming a spacer layer on the thermoelectric conversion element body.
  • the step of forming the thermoelectric conversion element includes forming a first layer, which is one of a magnetic layer having magnetization in at least one in-plane direction and an electromotive layer including a material having spin-orbit interaction, on a substrate.
  • the step of forming the spacer layer is performed on the thermoelectric conversion element body by providing a low thermal conductive layer in which a plurality of high thermal conductors, which are provided with a material having a relatively low thermal conductivity, are dispersed.
  • the process to form in is provided. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors.
  • the plurality of high thermal conductors are dispersed without being oriented in the low thermal conductive layer.
  • the method for manufacturing a thermoelectric conversion element according to the second aspect of the present invention includes a step of forming a thermoelectric conversion element body on a substrate and a step of forming a spacer layer on the thermoelectric conversion element body.
  • the step of forming the thermoelectric conversion element includes forming a first layer, which is one of a magnetic layer having magnetization in at least one in-plane direction and an electromotive layer including a material having spin-orbit interaction, on a substrate.
  • the step of forming the spacer layer is performed on the thermoelectric conversion element body by providing a low thermal conductive layer in which a plurality of high thermal conductors, which are provided with a material having a relatively low thermal conductivity, are dispersed.
  • the process to form in is provided. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors.
  • the plurality of high thermal conductors are oriented and dispersed in the entire direction perpendicular to the surface of the thermoelectric conversion element body in the low thermal conductive layer.
  • thermoelectric conversion device and a thermoelectric conversion method capable of performing efficient thermoelectric conversion according to generated heat.
  • FIG. 1A is a perspective view showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1.
  • FIG. 1B is a perspective view showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1.
  • FIG. 2A is a schematic diagram showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect.
  • FIG. 2B is a schematic diagram showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect.
  • FIG. 3 is a schematic diagram showing the situation of the basic structure in the phonon drag effect.
  • FIG. 4 is a perspective view showing the configuration of the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 5 is a schematic diagram showing the mean free path of the spacer layer of the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 6 is a schematic diagram for explaining the effect of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 7A is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 7B is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 7C is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 7A is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 7B is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element
  • FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion element according to the second embodiment of the present invention.
  • FIG. 9 is a cross-sectional view schematically showing the interface between the high-phonon conductive material and the reflective layer.
  • FIG. 10A is a cross-sectional view showing another configuration of the thermoelectric conversion element according to the second embodiment of the present invention.
  • FIG. 10B is a cross-sectional view schematically showing a problem when the thermoelectric conversion elements are stacked.
  • FIG. 11 is a cross-sectional view showing a configuration of a thermoelectric conversion element according to the third embodiment of the present invention.
  • FIG. 12 is a cross-sectional view schematically showing an interface between the high phonon conductive material and the transmission layer.
  • FIG. 13 is sectional drawing which shows the other structure of the thermoelectric conversion element which concerns on the 3rd Embodiment of this invention.
  • FIG. 14 is a perspective view showing the configuration of the first embodiment of the present invention.
  • FIG. 15A is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15B is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15C is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15D is a perspective view showing a modification of the method for manufacturing a thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15A is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15B is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15E is a perspective view illustrating a modification of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 15F is a perspective view illustrating a modification of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • FIG. 16 is a perspective view showing the configuration of the second embodiment of the present invention.
  • FIG. 17A is a perspective view showing the configuration of the third embodiment of the present invention.
  • FIG. 17B is a perspective view showing the configuration of the fourth embodiment of the present invention.
  • FIG. 18 is a perspective view showing the configuration of the fifth embodiment of the present invention.
  • thermoelectric conversion element and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the accompanying drawings.
  • 2A to 2B are schematic diagrams showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect.
  • the basic structure includes a magnetic layer having a magnetization M formed on a support and a metal film disposed on the magnetic layer.
  • a temperature gradient in the perpendicular direction (z direction) is applied to such a basic element, a spin current is induced at the interface between the metal film and the magnetic layer.
  • thermoelectric conversion that generates a thermoelectromotive force from a temperature gradient” becomes possible.
  • the lattice temperature T p is a parameter (“temperature” in a normal sense) representing the magnitude of lattice vibration (phonon) due to heat.
  • the magnon temperature T m corresponding to the parameter representing the intensity of spin thermal motion.
  • the lattice temperature (ordinary “temperature”) shows a temperature gradient determined by the thermal conductivity or the like.
  • magnon temperature (representing the thermal motion of a spin) is (a) many spins interact and cooperate in a ferromagnet or ferrimagnet, and (b) magnon motion is the environment (heat bath).
  • the magnon temperature may be considered to have a constant value obtained by averaging the temperature distribution of the entire magnetic layer.
  • the lattice temperature T p is greatly increased with the heating of the lower (metal film) side.
  • the above is the microscopic driving mechanism of the spin Seebeck effect described above.
  • the heat driven spin current J s is, by being converted into electric signals E Ishe by spin Hall effect in the metal film, electromotive force signal V occurs between the ends of the metal film.
  • E ISHE ( ⁇ SH ⁇ ) J s ⁇ M /
  • ⁇ SH represents the spin Hall angle (corresponding to the conversion efficiency between current and spin current)
  • represents the sheet resistance of the metal film.
  • E ISHE , J s and M are vectors.
  • the thermally induced electric field E ISHE occurs in a direction perpendicular to both the spin current Js and the magnetization M. Accordingly, the thermoelectromotive force V generated on the metal film surface also has a large value in the direction (y direction) perpendicular to the direction of the spin current and temperature gradient (z direction) and the magnetization direction (x direction).
  • FIG. 3 is a schematic diagram showing the situation of the basic structure in the phonon drag effect.
  • the contribution of the “phonon drag effect” in which the thermoelectric effect is enhanced through the interaction between the magnetic layer and the phonon in the substrate is strongly suggested.
  • the phonon drag here refers to a phenomenon in which the spin current in the electrode film / magnetic film structure interacts non-locally with the phonons of the entire device including the support.
  • Non-Patent Document 4 (Applied Physics Letters, vol. 97, p252506 (2010)) discloses a phonon drag effect when a temperature gradient (in-plane temperature gradient) in a direction parallel to the magnetic film surface is given. Yes. Considering this phonon drag process, as shown on the right side of FIG. 3, the spin current in an extremely thin magnetic layer can sense a temperature distribution in a much thicker substrate through non-local interaction with phonons. Therefore, the effective thermoelectric effect is greatly increased.
  • thermoelectromotive force is generated in the metal electrode. It is thought that it is generated.
  • thermoelectric conversion element As for the phonon drag effect like this, basic proof of principle has been reported as described above. However, there has been no specific proposal for a thermoelectric conversion device that efficiently performs thermoelectric conversion using this effect. In each embodiment of the present invention, an efficient thermoelectric conversion element and a method for manufacturing the thermoelectric conversion element in which the phonon drag effect is further applied in addition to the spin Seebeck effect and the reverse spin Hall effect will be described in detail below.
  • FIG. 4 is a perspective view showing the configuration of the thermoelectric conversion element according to the first embodiment of the present invention.
  • the thermoelectric conversion element 1 includes a spacer layer 5 and a thermoelectric conversion element main body 10 provided in contact with the spacer layer 5.
  • the thermoelectric conversion element body 10 is a thermoelectric conversion element using a spin Seebeck effect and a spin Hall effect.
  • the thermoelectric conversion element 1 may be in contact with a substrate (not shown).
  • the spacer layer 5 causes the thermoelectric conversion element body 10 to effectively exhibit the above-described phonon drag effect.
  • the spacer layer 5 is formed of a material that effectively exhibits such a phonon drag effect.
  • the spacer layer 5 is preferably made of a material that conducts phonons well while maintaining a temperature difference in a direction perpendicular to the film surface (perpendicular direction).
  • the spacer layer 5 is preferably made of a material having low material conductivity and high phonon conductivity. Maintaining the temperature difference indicates that the energy dispersion of the phonons to be conducted is kept large.
  • the spacer layer 5 having the above characteristics is provided in contact with the thermoelectric conversion element body 10 in view of the difficulty in increasing the thermal resistance of the thermoelectric conversion element body 10.
  • the spacer layer 5 can maintain a large temperature difference in the direction perpendicular to the surface of the thermoelectric conversion element 1.
  • phonons that contribute to thermoelectric conversion can be supplied from the spacer layer 5.
  • a phonon drag effect can be exerted on the thermoelectric conversion element body 10, and the same effect as that of increasing the thermal resistance of the thermoelectric conversion element body 10 can be obtained. That is, efficient thermoelectric conversion can be performed using heat effectively.
  • the spacer layer 5 will be described in detail.
  • the spacer layer 5 includes a low phonon conductive material 11 and a high phonon conductive material 12, and has a structure in which both are combined.
  • the high phonon conductive material 12 and the low phonon conductive material 11 are materials characterized by an average distance at which excited phonons can travel elastically in the material. That is, the mean free path of the phonons in the material of a high phonon conductivity material 12 and the low phonon conductive material 11 when the lambda ph2 and lambda ph1 respectively, of two types having a relative relationship lambda ph2 >> lambda ph1 Refers to material.
  • the low phonon conductive material 11 and the high phonon conductive material 12 do not form a compound.
  • the high phonon conductive material 12 is dispersed in the low phonon conductive material 11.
  • the spacer layer 5 is composed of a high phonon conductive material 12 and a low phonon conductive material 11 as a base material (matrix) that supports it.
  • the average heat is generated so that a large temperature difference is generated between both surfaces of the spacer layer 5 under the condition that there is a constant heat flow in a direction perpendicular to the spacer layer 5 (perpendicular direction; z direction).
  • the conductivity needs to be lowered.
  • the low phonon conductive material 11 occupies most of the spacer layer 5 based on the fact that there is a proportional relationship between the mean free path of phonons and the thermal conductivity.
  • the high phonon conductive material 12 is used for a part thereof. In the example of FIG.
  • thermoelectric conversion element body 10 perpendicular direction; z direction
  • low phonon conductive material 11. 12 are distributed.
  • FIG. 5 is a schematic diagram showing the mean free path of the spacer layer of the thermoelectric conversion element according to the first embodiment of the present invention.
  • the upper part (+ z side) of the spacer layer 5 is a low temperature (Cold), and the lower part ( ⁇ z side) is a high temperature (Hot).
  • the upper part is the thermoelectric conversion element body 10, and the lower part is a heat source.
  • the spacer layer 5 may be formed using only the low phonon conductive material 11.
  • the phonons reaching the interface between the spacer layer 5 and the magnetic layer 2 from the spacer layer 5 are limited to a range of about ⁇ ph1 from the interface.
  • the range in which such phonons exist is much thinner than the thickness of the spacer layer 5. Therefore, in this case, the phonon drag effect due to the temperature difference generated in the entire spacer layer 5 cannot be expected.
  • the high phonon conductive material 12 capable of elastically propagating phonons is used for a part of the spacer layer 5, the phonons reaching the interface between the spacer layer 5 and the magnetic layer 2 from the spacer layer 5 are high phonons. Although it is only in the vicinity of the conductive material 12, it spreads in the range of about ⁇ ph2 from the interface. Therefore, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained.
  • the spacer layer 5 further preferably has the following characteristics in order to efficiently conduct phonons to the thermoelectric conversion element body 10. Some of the high phonon conductive materials 12 are partially within the range of the phonon mean free path ⁇ ph1 of the low phonon conductive material 11 from the thermoelectric conversion element main body 10 on the thermoelectric conversion element main body 10 side (+ z side). Is preferably reached. Further, it is preferable that at least a part of the distance between the high phonon conductive materials 12 exists in the range of the distance of the phonon mean free path ⁇ ph1 of the low phonon conductive material 11.
  • some of the high phonon conductive material 12 is a distance of the phonon mean free path ⁇ ph1 of the low phonon conductive material 11 from the lower end surface of the spacer layer 5 at the lower part (the portion on the ⁇ z side) of the spacer layer 5. It is preferable that this range is partially reached.
  • the high phonon conductive material 12 is partially in contact with the thermoelectric conversion element body 10 on the thermoelectric conversion element body 10 side (+ z side). Further, it is preferable that at least a part of the high phonon conductive materials 12 are in contact with each other. Further, it is preferable that some of the high phonon conductive materials 12 are partially in contact with the lower end surface of the spacer layer 5 at the lower portion (the portion on the ⁇ z side) of the spacer layer 5. More preferably, the high phonon conductive material 12 is partially in contact with the thermoelectric conversion element main body 10 on the thermoelectric conversion element main body 10 side (+ z side), and below the spacer layer 5 (the portion on the ⁇ z side).
  • the high phonon conductive material 12 is in contact with the thermoelectric conversion element body 10 on the thermoelectric conversion element body 10 side (+ z side), and the spacer layer 5 below the spacer layer 5 ( ⁇ z side portion).
  • a rod-like or film-like material in contact with the lower end surface is shown.
  • the high phonon conductive material 12 that is, a material having high phonon conductive properties
  • high phonon conductive nanowires and high thermal conductivity materials such as nanotubes.
  • examples include carbon nanotubes, boron nitride nanotubes, various semiconductor nanowires and metal nanowires.
  • carbon nanotubes and boron nitride nanotubes those having a single-layer structure or those having a multilayer structure can be used.
  • it is desirable that the material of the spacer layer 5 has few heat transport mechanisms other than phonons.
  • a semiconductor or insulator-like material rather than a good conductor in which many free electrons that carry heat exist as in the case of phonons.
  • a semiconductor-like single-walled carbon nanotube or a boron nitride nanotube isolated is more suitable as a high-phonon conductive material for obtaining better performance.
  • metal nanowires and semiconductor nanowires are suitable as high-phonon conductive materials for obtaining good characteristics including manufacturing costs because they are easily synthesized and inexpensive.
  • the low phonon conductive material 11, that is, a material having low phonon conductive characteristics includes a low thermal conductivity material such as a porous material (matrix + air, porous silica, zirconia, etc.), an aggregate of nanocrystals, and a polymer. Examples are various carbon polymer materials and silicone polymer materials.
  • a method can be used in which these materials are used as a base material, and a void is provided in the spacer layer 5 by forming a foam to further reduce the thermal conductivity.
  • a ceramic material manufactured using a sol-gel method or the like can be used. Also for ceramic materials, it is possible to reduce the thermal conductivity by forming a porous structure, or to improve the functionality such as strength and plasticity by using a hybrid material of an organic substance and a ceramic.
  • the high phonon conductive material 12 capable of elastically propagating phonons is dispersedly mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity. Thereby, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained efficiently.
  • the substrate may be in contact with either the surface opposite to the surface in contact with the spacer layer 5 in the thermoelectric conversion element body 10 or the surface opposite to the surface in contact with the thermoelectric conversion element body 10 in the spacer layer 5.
  • the substrate is provided to support the thermoelectric conversion element 1, for example.
  • the material and the structure are not limited.
  • substrates of metals including painted ones
  • Si silicon
  • aluminum and iron ceramics
  • ceramics such as glass, alumina, sapphire and gadolinium gallium garnet (GGG)
  • resins such as polyimide and polyethylene.
  • the shape does not necessarily have to be a plate shape, and may be a structure having a curve or unevenness or a deformable structure.
  • the substrate may be another spacer layer 5 when provided on the surface opposite to the surface in contact with the spacer layer 5 in the thermoelectric conversion element body 10. Further, when the spacer layer 5 is provided on the surface opposite to the surface in contact with the thermoelectric conversion element body 10, the other thermoelectric conversion element body 10 may be used.
  • thermoelectric conversion element body 10 includes a magnetic layer 2 and an electrode 3.
  • a terminal for extracting an electromotive force may be provided on the electrode 3.
  • the magnetic layer 2 of the thermoelectric conversion element body 10 is directly provided on the spacer layer 5 and is held by the spacer layer 5.
  • “directly” means that the film is formed directly on the spacer layer 5. Accordingly, the spacer layer 5 and the magnetic layer 2 are firmly adhered (at the atomic level), so that phonons can be transferred between the spacer layer 5 and the magnetic layer 2. That is, the above-described phonon drag effect can be obtained. Even if any film or substrate is inserted between the magnetic layer 2 and the spacer layer 5, the inserted film or substrate, the spacer layer 5, and the magnetic layer 2 may be directly formed and in direct contact with each other. For example, it is clear that the effect of phonon drag can be obtained similarly. Therefore, the term “direct” here includes the case where the insertion film or the substrate is inserted.
  • the magnetic layer 2 generates a spin current due to a temperature gradient ⁇ T (temperature difference ⁇ T).
  • the magnetic layer 2 has a magnetic body having at least one magnetization M.
  • the magnetization direction has at least a component parallel to the film surface (xy plane). In the present embodiment, it is assumed that magnetization is present in one direction ( ⁇ y direction) parallel to the film surface. This magnetization may be expressed independently, or may be fixed by another magnetization fixed layer (not shown) that fixes the magnetization M of the magnetic layer 2.
  • the magnetic layer 2 is a magnetic material.
  • the magnetic layer 2 is preferably a magnetic insulator because a material having a smaller thermal conductivity exhibits a more efficient thermoelectric effect.
  • an oxide magnetic material such as garnet ferrite (yttrium iron ferrite) or spinel ferrite can be applied.
  • the magnetic layer 2 may include a material obtained by partially replacing yttrium sites of garnet ferrite with impurities such as bismuth.
  • impurities such as bismuth.
  • sputtering method organometallic decomposition method (MOD method), sol-gel method, aerosol deposition method (AD method), dipping method, spray method, spin coating method, plating method and A method of forming a film using any method such as a printing method may be mentioned.
  • MOD method organometallic decomposition method
  • AD method aerosol deposition method
  • dipping method spray method
  • spin coating method plating method
  • plating method plating method
  • a method of forming a film using any method such as a printing method may be mentioned.
  • the film formation using the AD method is particularly preferable. This is because, in the AD method, a polycrystalline film is formed and densified by the collision energy of fine particles, so that it is possible to form a film on a metal film without selecting a substrate as compared with other film forming methods. It is.
  • the film thickness that can be formed by a film forming method such as sputtering or MOD is usually about 1 ⁇ m at maximum, but if the AD method is used, a film having a thickness of 10 ⁇ m or more can be formed at high speed. . Therefore, it is possible to form the magnetic layer 2 having a thickness of about later-described characteristics thickness t c in a short time.
  • two-dimensional scanning of nozzles enables high-speed and large-area film formation. Thereby, a low-cost, large-area thermoelectric conversion element can be realized.
  • the characteristic film thickness t c is a film thickness at which the magnitude of the thermoelectromotive force is saturated in the magnetic layer 2. For example, when the magnetic layer 2 is thin, the magnitude of the thermoelectromotive force increases in proportion to the film thickness. However, when the film thickness exceeds a certain film thickness, the magnitude of the thermoelectromotive force is almost saturated and does not increase even if the film thickness is increased.
  • the certain film thickness is referred to as a characteristic film thickness t c .
  • the characteristic film thickness t c may reach several mm.
  • the characteristic film thickness t c is considered to be about several ⁇ m to several tens of ⁇ m, for example. Accordingly, the thickness of the magnetic layer 2 is preferably at least 80% of the characteristic thickness t c from the viewpoint of efficient generation of thermoelectromotive force.
  • the upper limit is not particularly limited, but is preferably about 150% of the characteristic film thickness t c in consideration of material waste.
  • the electrode 3 (also referred to as an electromotive layer) of the thermoelectric conversion element body 10 is provided on the magnetic layer 2.
  • the electrode 3 is preferably provided directly on the magnetic layer 2 in order to extract the thermoelectromotive force from the spin current that extracts the thermoelectromotive force from the spin current using the reverse spin Hall effect.
  • the electrode 3 includes a material having a spin orbit interaction in order to extract a thermoelectromotive force using the inverse spin Hall effect. Examples of such a material include metals such as Au, Pt, and Pd that have a relatively large spin-orbit interaction, and alloys containing these metals.
  • a material obtained by adding at least one impurity such as Fe, Cu, or Ir to the above metal or alloy may be used as the material of the electrode 3.
  • the same effect can be obtained even when a general metal film material such as Cu is doped with at least one material such as Au, Pt, Pd and Ir by about 0.5 to 10%.
  • Examples of the method of forming the electrode 3 include a method of forming a film on the magnetic layer 2 by any method such as sputtering, vapor deposition, plating, screen printing, ink jet, spray, and spin coating. .
  • the film thickness of the electrode 3 is preferably set to at least the spin diffusion length of the electrode material (depth at which the spin current of the magnetic layer 2 penetrates into the electrode 3). Specifically, for example, it is preferable to set 50 nm or more for Au and 10 nm or more for Pt.
  • the film thickness of the electrode 3 is not particularly limited. If waste (cost) of the material is taken into consideration, it is not necessary to increase the thickness unnecessarily, for example, 100 nm.
  • the terminals (not shown) of the thermoelectric conversion element 1 are provided at two points on the electrode 3 so as to be separated from each other.
  • the terminal is not particularly limited in structure, shape, and position as long as the potential difference between the terminals can be taken out as a thermoelectromotive force.
  • FIG. 6 is a schematic diagram for explaining the effect of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention.
  • the simple laminated thermoelectric conversion element 51 simply has a plurality of thermoelectric conversion element bodies 10 laminated thereon.
  • the laminated thermoelectric conversion element 51 includes a lower heat bath 22, a plurality of thermoelectric conversion element bodies 10 stacked continuously on the heat bath 22, and heat mounted on the upper portions of the plurality of thermoelectric conversion element bodies 10. Bath 21.
  • the right side (b) of FIG. 6 is the spacer-type laminated thermoelectric conversion element 52.
  • the laminated thermoelectric conversion element 52 a plurality of thermoelectric conversion element bodies 10 are laminated via the spacer layer 5. That is, it can be said that the laminated thermoelectric conversion element 52 is formed by laminating the plurality of thermoelectric conversion elements 1 described above.
  • the laminated thermoelectric conversion element 52 includes a lower heat bath 24, a plurality of thermoelectric conversion elements 1 continuously stacked on the heat bath 24, and a heat bath 23 placed on top of the plurality of thermoelectric conversion elements 1. I have.
  • the temperature difference ⁇ T1 is calculated as follows.
  • thermoelectromotive force V1 is calculated as follows using ⁇ T1.
  • there is no spacer layer 5 there is no phonon drag effect.
  • the temperature difference ⁇ T2 is calculated as follows.
  • the upper heat bath 21 is 130.4 ° C.
  • thermoelectromotive force V2 is calculated as follows using ⁇ T2 ( ⁇ T21, ⁇ T22).
  • thermoelectric conversion element main body 10 (N2) is as few as 20 layers as the spacer layer 5 is inserted. Therefore, it is considered that the thermoelectromotive force is lowered as it is.
  • the spacer layer 5 exhibits a phonon drag effect. That is, the spin of the magnetic layer and the electrode of the thermoelectric conversion element body 10 feels a temperature gradient applied to the spacer layer 5 through the phonons, and the temperature gradient is reflected in the reverse spin Hall voltage. Therefore, not only the original thermoelectromotive force (V21) of the thermoelectric conversion element body 10 but also the thermoelectromotive force (V22) due to the effect of phonon drag is added. In addition, since the thermal conductivity of the spacer layer 5 is low, the temperature gradient ( ⁇ T22) of the spacer layer 5 is larger (80 ° C.) than that of the thermoelectric conversion element body 10. As a result, the total thermoelectromotive force (V2) becomes very large (80.4 ⁇ V).
  • thermoelectromotive force of the thermoelectric conversion element 1 can be increased due to the effect of phonon drag (reflected in the SSPD coefficient). Furthermore, a larger thermoelectromotive force can be obtained by laminating a plurality of thermoelectric conversion elements 1.
  • a high phonon conductive material 12 capable of elastically propagating phonons is mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity. Thereby, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained efficiently.
  • FIGS. 7A to 7C are schematic views showing a configuration example of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. These figures are examples of the spacer layer, and may have other configurations as long as the above characteristics are satisfied.
  • the fibrous high phonon conductive material 12 is dispersed almost randomly in the base material of the low phonon conductive material 11.
  • the low phonon conductive material 11 is preferably dispersed without being oriented. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density. Further, as long as the phonon flow can be promoted in the vertical direction (z direction), it is not always necessary to extend only in the vertical direction, and it may be extended in the horizontal direction (x direction or y direction). In this case, for example, each fibrous high phonon conductive material 12 only needs to have a larger vertical component than a horizontal component.
  • one or a plurality of high phonon transmission materials 12 are continuously formed from the lower part (the ⁇ z side part) to the upper part (the + z side part) within a distance of the phonon mean free path ⁇ . If it is connected to.
  • Other characteristics of the spacer layer 5 are as described above.
  • a film-like high phonon conductive material 12 is disposed on the base material of the low phonon conductive material 11 substantially perpendicularly to the xy plane (orientated in the vertical direction). At this time, it is preferable that the low phonon conductive material 11 is dispersed throughout. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density.
  • the high phonon conductive material 12 may not be a flat film, but may be a curved film or a film in which a curved surface and a flat surface are mixed.
  • the high phonon conductive material 12 may not be a film having a constant thickness, and the thickness may be different depending on the position. Furthermore, it does not need to be arranged parallel to the yz plane, and is not limited to this arrangement as long as it is substantially perpendicular to the xy plane. They do not have to be parallel to each other, may cross each other, and may not be equally spaced. Furthermore, as long as the phonon flow can be promoted in the vertical direction (z direction), some of the high phonon conductive materials 12 may not be substantially perpendicular to the xy plane, or a part of one high phonon conductive material 12 may be the xy plane. It does not have to be generally perpendicular. Other characteristics of the spacer layer 5 are as described above.
  • the rod-shaped high phonon conductive material 12 is arranged substantially perpendicular to the xy plane (oriented in the vertical direction) on the base material of the low phonon conductive material 11.
  • the low phonon conductive material 11 is dispersed throughout. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density.
  • the high phonon conductive material 12 may not be a straight rod, and a bent rod or a bent rod and a straight rod may be mixed. Further, the high phonon conductive material 12 may not be a rod having a constant cross section, and the cross section may be different depending on the position.
  • the high phonon conductive materials 12 may not be substantially perpendicular to the xy plane, or a part of one high phonon conductive material 12 may be the xy plane. It does not have to be generally perpendicular.
  • Other characteristics of the spacer layer 5 are as described above.
  • thermoelectric conversion element 1 Operation of Thermoelectric Conversion Element
  • thermoelectric conversion element 1 an external magnetic field H is applied to the magnetic layer 2 to magnetize the magnetic layer 2 in a predetermined direction (magnetization M).
  • the magnetic layer 2 is magnetized in the ⁇ y direction.
  • a temperature gradient is applied in the direction (z direction) perpendicular to the film surface (xy plane) of the magnetic layer 2.
  • a temperature gradient ⁇ T (temperature difference ⁇ T where the spacer layer 5 side is high temperature) is applied in the ⁇ z direction.
  • spin Seebeck effect in the magnetic layer 2 induces an angular momentum flow (spin flow) in the low temperature direction (+ z direction) along the temperature gradient ⁇ T.
  • the adjacent electrode 3 Flow into.
  • the flowing spin current is converted into a current Js perpendicular to the direction of the magnetization M of the magnetic layer 2 by the reverse spin Hall effect in the electrode 3.
  • This current Js causes a potential difference V between two terminals (not shown) provided at both ends of the electrode 3 in the x direction. Therefore, the potential difference V can be taken out as the thermoelectromotive force E from the two ends. That is, the thermoelectric conversion element 1 generates the thermoelectromotive force E from the temperature difference (temperature gradient ⁇ T) applied to the magnetic layer 2.
  • thermoelectric conversion element 1 As described above, the thermoelectric conversion element 1 according to the present embodiment operates.
  • thermoelectric conversion element In the structure of the thermoelectric conversion element according to the present embodiment, the spacer layer 5 is provided, and the phonon drag effect is used to form a thin electrode / magnetic layer structure of, for example, 100 nm or less on the spacer layer 5.
  • a high electromotive force thermoelectric conversion device can be realized. Thereby, compared with the case where a bulk magnetic body etc. are used, raw material cost and manufacturing cost can be reduced significantly.
  • thermoelectric conversion element 1 (FIG. 4) will be described. This manufacturing method is the same for the laminated thermoelectric conversion element 52 (FIG. 6).
  • a platinum (Pt) film electrode 3 is formed on the substrate by sputtering.
  • the substrate with the electrode 3 is fixed to a folder in the chamber of the aerosol film forming apparatus.
  • a magnetic layer 2 of an yttrium iron garnet (YIG) film is formed on the electrode 3 by an aerosol deposition method.
  • the substrate with the magnetic layer 2 and the electrode 3 is fixed to a folder in the chamber of the coating apparatus.
  • thermoelectric conversion element 1 is manufactured as described above. In addition, the variation of the manufacturing method of the spacer layer 5 is mentioned later.
  • thermoelectric conversion element 52 In the case of the laminated thermoelectric conversion element 52 (FIG. 6), the above process is repeated, or a plurality of the thermoelectric conversion elements 1 are manufactured and superposed by a method such as adhesion. Thus, the laminated thermoelectric conversion element 52 is manufactured.
  • the magnetic layer 2 is formed by an aerosol deposition method (AD method)
  • the electrode 3 is formed by a sputtering method
  • the spacer layer 5 is formed by a spin coating method.
  • AD method aerosol deposition method
  • the present invention is not limited to this example, and various film forming methods as described above can be applied.
  • the spacer layer 5 having the above characteristics is provided in contact with the thermoelectric conversion element body 10.
  • a high phonon conductive material 12 capable of elastically propagating phonons is dispersedly mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity.
  • the phonon of the spacer layer 5, particularly the phonon of the high phonon conductive material 12, the phonon of the magnetic layer 2, and the spin current of the magnetic layer 2 interact with each other.
  • a drag effect can be obtained efficiently. That is, the phonon drag effect can be efficiently expressed, and the same effect as that of increasing the thermal resistance of the thermoelectric conversion element body 10 can be obtained. That is, efficient thermoelectric conversion can be performed using heat effectively.
  • FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion element according to the second embodiment of the present invention.
  • the thermoelectric conversion element 1a according to the present embodiment is different from the spacer layer 5 of the thermoelectric conversion element 1 according to the first embodiment in the configuration of the spacer layer 5a.
  • differences from the first embodiment will be mainly described.
  • the spacer layer 5a has a multilayer structure. That is, the spacer layer 5 a includes the low phonon conductive material 11 including the high phonon conductive material 12 and the reflective layer 13.
  • the low phonon conductive material 11 including the high phonon conductive material 12 is as shown in the first embodiment.
  • the reflective layer 13 reflects phonons conducted downward ( ⁇ z direction) among phonons conducted through the high phonon conductive material 12. That is, phonons that are conducted through the high phonon conducting material 12 are prevented from conducting downward ( ⁇ z direction).
  • the number of phonons conducted downward ( ⁇ z direction) is not necessarily large, but the efficiency of phonon conduction can be further improved by preventing the conduction. Thereby, phonon drag can be used more effectively.
  • FIG. 9 is a cross-sectional view schematically showing the interface between the high-phonon conductive material and the reflective layer.
  • the acoustic impedance of the high phonon conductive material 12 and the acoustic impedance of the reflective layer 13 are not matched. Specifically, it is as follows.
  • phonons from the heat source or from the high phonon conductive material 12 may be conducted to the low phonon conductive material 11 through the reflective layer 13 and from there to the high phonon conductive material again.
  • the reflective layer 13 may be formed of the above-described low phonon conductive material or a high phonon conductive material as long as the above-described reflectance R 01 is satisfied. That is, the reflective layer 13 can be made of the above-described material similar to the low phonon conductive material 11 or the high phonon conductive material 12. However, in consideration of the contents of FIG. 9 described above, when the reflection layer 13 reflects the phonons that are directed downward ( ⁇ z direction) from the low phonon conductive material 11, the acoustic impedance of the reflection layer 13 is low phonon. It is more preferable that it is larger than the acoustic impedance of the conductive material 11.
  • FIG. 10A is a cross-sectional view showing another configuration of the thermoelectric conversion element according to the second embodiment of the present invention.
  • the thermoelectric conversion element 1a is laminated
  • the effect (FIG. 6) of the laminated thermoelectric conversion element 52 having the spacer layer 5 shown in the first embodiment is obtained, and the effect of suppressing the phonon flow directed downward ( ⁇ z direction) described above. Can also be obtained. Thereby, phonon drag can be used more effectively.
  • FIG. 10B is a cross-sectional view schematically showing a problem when thermoelectric conversion elements are stacked.
  • This figure shows a laminated thermoelectric conversion element 52 in which the thermoelectric conversion elements 1 of the first embodiment are laminated.
  • the hot phonon from the bottom to the top in the lower thermoelectric conversion element 1 and the cold phonon flow from the top to the bottom in the upper thermoelectric conversion element 1 are canceled, reducing the effect of the phonon drag.
  • the laminated thermoelectric conversion element 52a (FIG. 10A) in which a plurality of thermoelectric conversion elements 1a to which the reflective layer 3 is added are laminated, there is an effect of suppressing the above-described downward ( ⁇ z direction) phonon flow.
  • the phonon drag can be used more effectively without canceling the phonon.
  • thermoelectric conversion element 1a laminated thermoelectric conversion element 52a
  • the operation of the thermoelectric conversion element 1a is the same as that of the first embodiment, except that the reflection layer 13 reflects phonons traveling downward.
  • thermoelectric conversion element 1a laminated thermoelectric conversion element 52a
  • the manufacturing method of the thermoelectric conversion element 1a is the same as the manufacturing method of the first embodiment, in which the low phonon conductive material 11 including the high phonon conductive material 12 is formed and then spin coated thereon.
  • the present embodiment is the same as the first embodiment except that the reflective layer 13 is applied and heat-treated to form the spacer layer 5a.
  • thermoelectric conversion element 1a laminated thermoelectric conversion element 52a
  • the reflection layer 13 more effectively uses phonon drag caused by reflecting downward phonons. It is the same.
  • FIG. 11 is a cross-sectional view showing a configuration of a thermoelectric conversion element according to the third embodiment of the present invention.
  • the thermoelectric conversion element 1b according to the present embodiment is different from the spacer layer 5a of the thermoelectric conversion element 1a of the second embodiment in the configuration of the spacer layer 5b.
  • differences from the second embodiment will be mainly described.
  • the spacer layer 5b has a multilayer structure. That is, the spacer layer 5 b includes the low phonon conductive material 11 including the high phonon conductive material 12, the reflective layer 13, and the transmissive layer 14.
  • the low phonon conductive material 11 including the high phonon conductive material 12 and the reflective layer 13 are as described in the second embodiment.
  • the transmissive layer 14 transmits phonons conducted upward (+ z direction) among phonons conducted through the high phonon conductive material 12. That is, the phonons that are conducted through the high phonon conductive material 12 are prevented from being reflected. By preventing phonon reflection, the efficiency of phonon conduction can be further increased. Thereby, phonon drag can be used more effectively.
  • the reflective layer 13 may not be provided in the spacer layer 5b.
  • FIG. 12 is a cross-sectional view schematically showing an interface between the high phonon conductive material and the transmission layer.
  • the acoustic impedance of the high phonon conductive material 12 and the acoustic impedance of the transmission layer 14 must be matched. Is considered preferable. Specifically, it is as follows.
  • the transmissive layer 14 may be formed of the above-described low phonon conductive material or may be formed of a high phonon conductive material as long as the condition of the reflectance R 02 is satisfied. That is, the transmissive layer 14 can be made of the above-described material similar to the low phonon conductive material 11 or the high phonon conductive material 12. However, considering the content of FIG. 12 above, considering that the phonon traveling upward (+ z direction) from the high phonon conductive material 12 is transmitted through the transmissive layer 14, the acoustic impedance of the transmissive layer 14 is high phonon conductive material. It is considered that it is more preferable that the acoustic impedance is close to 12. Further, the acoustic impedance of the transmission layer 14 is preferably an intermediate value between the acoustic impedances of the high phonon conductive material 12 and the magnetic layer 2.
  • FIG. 13 is sectional drawing which shows the other structure of the thermoelectric conversion element which concerns on the 3rd Embodiment of this invention.
  • the thermoelectric conversion element 1b is laminated
  • the effect (FIG. 10A) of the laminated thermoelectric conversion element 52a having the spacer layer 5a shown in the second embodiment is obtained, and reflection of the phonon flow toward the upper side (+ z direction) is suppressed. An effect can also be obtained. Thereby, phonon drag can be used more effectively.
  • thermoelectric conversion element 1b laminated thermoelectric conversion element 52b
  • transmission layer 14 suppresses reflection of phonons upward.
  • thermoelectric conversion element 1b laminated thermoelectric conversion element 52b
  • the manufacturing method of the thermoelectric conversion element 1b is the same as that of the manufacturing method of the second embodiment, on the magnetic layer 2 before the low phonon conductive material 11 including the high phonon conductive material 12 is formed.
  • the second embodiment is the same as the second embodiment except that the transmissive layer 14 is applied by spin coating and heat-treated.
  • thermoelectric conversion element 1b laminated thermoelectric conversion element 52b
  • the transmission layer 14 more effectively utilizes phonon drag by suppressing reflection of phonons upward. It is the same as the form.
  • FIG. 14 is a perspective view showing the configuration of the first embodiment of the present invention.
  • This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element.
  • the spacer layer 5 in FIG. 14 is a carbon nanotube mixed resin, and the carbon nanotube portion corresponds to the high phonon conductive material 12 and the resin portion corresponds to the low phonon conductive material 11.
  • thermoelectric conversion element bodies 10 are stacked, but the number of layers may be any number.
  • the thermoelectric conversion element main body 10 is the uppermost part, but the spacer layer 5 may be the uppermost part, and the substrate 9 may be the uppermost part.
  • the substrate 9 can be viewed as the reflective layer 13 (a part of the spacer layer 5), the transmissive layer 14 (a part of the spacer layer 5), or simply depending on the material and the direction of the temperature gradient. It can also be viewed as a support member.
  • thermoelectric conversion element main body 10 is produced as described above (FIG. 15A).
  • thermoelectric conversion element body 10 of the second layer is produced in the same manner as (1), and is laminated on the spacer layer 5 (FIG. 15C).
  • the PMMA solution containing carbon nanotubes is applied to the surface of the electrode 3 of the thermoelectric conversion element main body 10 of the second layer, and the spacer layer 5 is produced.
  • the spacer layer 5 in which the low phonon conductive material 11 made of acrylic resin and the high phonon conductive material 21 made of carbon nanotube are mixed is obtained.
  • thermoelectric conversion element having a thickness of 500 ⁇ m is manufactured.
  • the opposite side surfaces of the laminated thermoelectric conversion element are polished to expose the electrodes 3 of each layer. And each layer was electrically connected using the electrically conductive paste, and 10 parallel thermoelectric conversion elements were produced.
  • the spacer layer 5 can be manufactured by other methods.
  • 15D to 15F are perspective views showing modifications of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention.
  • the spacer layer 5 is manufactured as follows. (1) First, an iron-containing silica sol coating solution is prepared by the following procedure. (I) Take 3.6 ml of TMOS (Tetramethoxysilane) and cool with ice water. (Ii) While vigorously stirring the cooled TMOS, 74 ⁇ l of deionized water is gradually added therein. (Iii) Add 5 ⁇ l of 0.04N HCl to the resulting solution and leave it to cool 15 Stir for minutes.
  • TMOS Tetramethoxysilane
  • carbon nanotubes are grown for 1 minute by introducing methanol at a saturated vapor pressure while the temperature is raised to 750 ° C. in a vacuum using a vacuum annealing furnace. After 1 minute, the methanol introduction is stopped and the mixture is gradually cooled in vacuum.
  • a film is produced.
  • the carbon nanotubes are not substantially oriented in a specific direction and are dispersed in a random direction.
  • FIG. 16 is a perspective view showing the configuration of the second embodiment of the present invention.
  • This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element.
  • a thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated. .
  • the thermoelectric conversion element of FIG. 16 is the same as that of Example 1 except that the stacking order of the electrode 3 and the magnetic layer 2 is reversed.
  • the manufacturing method is also the same as that of Example 1 except that the stacking order of the electrode 3 and the magnetic layer 2 is reversed.
  • FIG. 17A is a perspective view showing the configuration of the third embodiment of the present invention.
  • This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element.
  • a thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated.
  • the spacer layer 5 in FIG. 17 is a porous alumina film formed by using an anodic oxidation method, and the alumina portion corresponds to the high phonon conductive material 12 and the void portion corresponds to the low phonon conductive material 11. It can also be seen that the alumina portion extends in a direction perpendicular to the film surface of the thermoelectric conversion element.
  • the thermoelectric conversion element of FIG. 17 is the same as that of Example 2 except that the spacer layer 5 is different.
  • thermoelectric conversion element is manufactured as follows. (1) First, quartz glass having 5 ⁇ 5 cm 2 and a thickness of 100 ⁇ m is prepared as the substrate 9. Next, a YIG film having a thickness of 100 nm is formed on the substrate 9 by using the MOD method as the magnetic layer 2. Subsequently, a Pt film having a film thickness of 10 nm is formed on the Pt film using the sputtering method as the electrode 3. The thermoelectric conversion element body 10 is produced as described above. (2) Next, an aluminum film having a thickness of 5 ⁇ m is formed on the surface of the electrode 3 of the thermoelectric conversion element body 10. Thereafter, a porous alumina film is formed from the aluminum film by using an anodic oxidation method.
  • thermoelectric conversion elements with a porous alumina film. Thereafter, the plurality of thermoelectric conversion elements are laminated using the adhesive resin 30. (4) Further, the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind
  • the adhesive resin 30 can be regarded as the reflective layer 13 (a part of the spacer layer 5) or the transmissive layer 14 (a part of the spacer layer 5) depending on the material and the direction of the temperature gradient. It can also be seen as a simple adhesive member.
  • Example 4 is a modification of Example 3 that uses a porous alumina film.
  • FIG. 17B is a perspective view showing the configuration of the fourth embodiment of the present invention.
  • This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element.
  • a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) provided on the substrate 9 and a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on the spacer layer 5 are provided.
  • 17B includes a porous alumina film (11) formed by using an anodic oxidation method, a Ni rod (12) embedded in a pore of the porous alumina film, the surface of the porous alumina film, and Ni.
  • the Ni rod and the Ni thin film were deposited on the porous alumina film by electroless plating.
  • the alumina portion corresponds to the low phonon conductive material 12
  • the Ni rod portion corresponds to the high phonon conductive material 11
  • the Ni thin film portion corresponds to the phonon transmission layer 14. It can also be seen that the Ni rod portion extends in a direction perpendicular to the film surface of the thermoelectric conversion element body.
  • the thermoelectric conversion element of FIG. 17B is the same as Example 2 except that the spacer layer 5 is different (the stacking order of the electrode 3 and the magnetic layer 2 is reversed).
  • thermoelectric conversion element is manufactured as follows. (1) First, using the method of Example 3, 5 ⁇ 5 cm 2 and 100 ⁇ m thick quartz glass are prepared as the substrate 9. Next, an aluminum film having a thickness of 5 ⁇ m is formed on the substrate 9. Thereafter, a porous alumina film is formed from the aluminum film by using an anodic oxidation method. (2) Next, an electroless Ni plating solution is brought into contact with the surface of the porous alumina film, and plating is performed to produce the Ni-made high-phonon conductive material 12 and the transmission layer 14 (Ni rod and Ni thin film). (3) Next, a 100 nm-thick YIG film is formed on the surface of the Ni transmission layer 14 as the magnetic layer 2 by using the MOD method.
  • thermoelectric conversion element body 10 is produced as described above.
  • the steps (1) to (3) are repeated to form a plurality of thermoelectric conversion elements with a porous alumina film. Thereafter, the plurality of thermoelectric conversion elements are laminated using the adhesive resin 30.
  • the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind
  • FIG. 18 is a perspective view showing the configuration of the fifth embodiment of the present invention.
  • This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element.
  • a thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated.
  • the spacer layer 5 in FIG. 18 is a cellulose resin with carbon nanotubes, and the carbon nanotube portion corresponds to the high phonon conductive material 12 and the cellulose resin portion corresponds to the low phonon conductive material 11.
  • the carbon nanotubes are not substantially oriented in a specific direction and are dispersed in a random direction.
  • the thermoelectric conversion element of FIG. 18 is the same as that of Example 2 except that the spacer layer 5 is different.
  • thermoelectric conversion element is manufactured as follows. (1) First, quartz glass having 5 ⁇ 5 cm 2 and a thickness of 100 ⁇ m is prepared as the substrate 9. Next, a YIG film having a thickness of 100 nm is formed on the substrate 9 by using the MOD method as the magnetic layer 2. Subsequently, a Pt film having a film thickness of 10 nm is formed on the Pt film using the sputtering method as the electrode 3. The thermoelectric conversion element body 10 is produced as described above. (2) Next, a porous cellulose resin having a thickness of 400 ⁇ m used for a filter or the like is prepared. Subsequently, a solution is prepared by diluting an aqueous semiconductor carbon nanotube solution manufactured by NanoIntegris 10-fold.
  • thermoelectric conversion element with a cellulose resin with a carbon nanotube is produced.
  • the carbon nanotube-attached cellulose resin can be produced by filtering the semiconductor carbon nanotubes in an aqueous solution using a porous cellulose resin as a filter paper.
  • the semiconductor carbon nanotubes tend to be oriented in the direction in which the liquid penetrates into the porous cellulose resin, and is more fixed to the upstream surface, so this surface is used as an electrode or magnetic body of the thermoelectric conversion element body. It is possible to select an optimum configuration such as making contact.
  • the steps (1) to (3) are repeated to form a plurality of thermoelectric conversion elements with a carbon nanotube-attached cellulose resin. Thereafter, the plurality of thermoelectric conversion elements are laminated without using an adhesive or the like, and are brought into close contact with each other using a press. (5) Further, the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind

Abstract

A thermoelectric conversion element is provided with a thermoelectric conversion element main body and a spacer layer provided on a surface of the thermoelectric conversion element main body. The thermoelectric conversion element main body is provided with a magnetic body layer having magnetization in at least one in-plane direction and an electromotive body layer provided on the magnetic body layer and including material having spin orbital interaction. The spacer layer is provided with a low thermal conductivity layer, which is formed of a material with a relatively low thermal conductivity, and a plurality of high thermal conductivity bodies that are dispersed within the low thermal conductivity layer and are materials with relatively high thermal conductivity. More phonons are conducted by the plurality of high thermal conductivity bodies than by the low thermal conductivity layer.

Description

熱電変換素子及びその製造方法Thermoelectric conversion element and manufacturing method thereof
 本発明は、スピンゼーベック効果及び逆スピンホール効果を利用した熱電変換素子に関する。 The present invention relates to a thermoelectric conversion element using a spin Seebeck effect and an inverse spin Hall effect.
 近年、持続可能な社会に向けた環境・エネルギー問題への取り組みが活発化している。そのような中で、熱電変換素子への期待が高まっている。熱は体温、太陽光、エンジン、工業排熱など様々な媒体から得ることができる最も一般的なエネルギー源であるからある。そのため、低炭素社会におけるエネルギー利用の高効率化や、ユビキタス端末・センサ等への給電といった用途において、熱電変換素子は今後ますます重要となることが予想される。 In recent years, efforts for environmental and energy issues toward a sustainable society have become active. Under such circumstances, expectations for thermoelectric conversion elements are increasing. This is because heat is the most common energy source that can be obtained from various media such as body temperature, sunlight, engine, and industrial exhaust heat. Therefore, thermoelectric conversion elements are expected to become more important in the future in applications such as increasing the efficiency of energy use in a low-carbon society and supplying power to ubiquitous terminals and sensors.
 一方、最近、「スピントロニクス(spintronics)」と呼ばれる電子技術が脚光を浴びている。従来のエレクトロニクスは、電子の1つの性質である「電荷」だけを利用してきたが、スピントロニクスは、それに加えて、電子の他の性質である「スピン」をも積極的に利用する。特に、電子のスピン角運動量の流れである「スピン流(spin current)」は重要な概念である。スピン流のエネルギー散逸は少ないため、スピン流を利用することによって高効率な情報伝達を実現できる可能性がある。従って、スピン流の生成、検出、制御は重要なテーマである。 On the other hand, an electronic technology called “spintronics” has recently been highlighted. Conventional electronics have used only “charge”, which is one property of electrons, while spintronics also actively uses “spin”, which is another property of electrons. In particular, “spin current”, which is a flow of spin angular momentum of electrons, is an important concept. Since the energy dissipation of the spin current is small, there is a possibility that highly efficient information transfer can be realized by using the spin current. Therefore, generation, detection and control of spin current are important themes.
 例えば、電流が流れるとスピン流が生成される現象が知られている。これは、「スピンホール効果(spin-Hall effect)」と呼ばれている。また、その逆の現象として、スピン流が流れると起電力が発生することも知られている。これは、「逆スピンホール効果(inverse spin-Hall effect)」と呼ばれている。逆スピンホール効果を利用することによって、スピン流を検出することができる。尚、スピンホール効果も逆スピンホール効果も、「スピン軌道相互作用(spin orbit coupling)」が大きな物質(例:Pt、Au)において特に有意に発現する。 For example, a phenomenon in which a spin current is generated when a current flows is known. This is called the “spin-hall effect”. It is also known as an opposite phenomenon that an electromotive force is generated when a spin current flows. This is called the “inverse spin-Hall effect”. By using the inverse spin Hall effect, the spin current can be detected. It should be noted that both the spin Hall effect and the reverse spin Hall effect are particularly significantly expressed in a substance (eg, Pt, Au) having a large “spin orbit coupling”.
 また、それに関連して、磁性体における「スピンゼーベック効果(spin-Seebeck effect)」の存在が明らかになっている。スピンゼーベック効果とは、磁化を有する磁性体に温度勾配が印加されると、温度勾配と平行方向にスピン流が誘起される現象である。すなわち、スピンゼーベック効果により、熱がスピン流に変換される(熱スピン流変換)。なお、温度勾配によって誘起されたスピン流は、上述の逆スピンホール効果を利用して電界(電流、電圧)に変換することが可能である。つまり、スピンゼーベック効果と逆スピンホール効果を併せて利用することによって、温度勾配を電気に変換する「熱電変換」が可能となる。 In connection with this, the existence of the “spin-Seebeck effect” in magnetic materials has been clarified. The spin Seebeck effect is a phenomenon in which, when a temperature gradient is applied to a magnetized magnetic material, a spin current is induced in a direction parallel to the temperature gradient. That is, heat is converted into a spin current by the spin Seebeck effect (thermal spin current conversion). Note that the spin current induced by the temperature gradient can be converted into an electric field (current, voltage) using the above-described inverse spin Hall effect. That is, by using the spin Seebeck effect and the inverse spin Hall effect in combination, “thermoelectric conversion” that converts a temperature gradient into electricity becomes possible.
 特許文献1(特開2009-130070号公報)、非特許文献1(Nature Materials,vol.9,p.894(2010))及び非特許文献2(Applied Physics Letters,vol.97,p172505(2010))にはスピンゼーベック効果に基づく熱電変換素子が開示されている。スピンゼーベック効果によって生じた角運動量の流れ(スピン流)を、逆スピンホール効果によって電流(起電力)として取り出す構造が示されている。 Patent Document 1 (Japanese Patent Laid-Open No. 2009-130070), Non-Patent Document 1 (Nature Materials, vol. 9, p. 894 (2010)) and Non-Patent Document 2 (Applied Physics Letters, vol. 97, p 172505 (2010)) ) Discloses a thermoelectric conversion element based on the spin Seebeck effect. A structure is shown in which an angular momentum flow (spin current) generated by the spin Seebeck effect is extracted as a current (electromotive force) by the inverse spin Hall effect.
 図1A及び図1Bは、特許文献1に開示されている熱電変換素子の構成を示す斜視図である。耐熱性繊維フィルム161とSiO膜162の積層体の上に熱スピン流変換部163が形成されている。熱スピン流変換部163は、Ta膜164、PdPtMn膜165及びNiFe膜166の積層構造を有している。Ta膜164は、基板と磁性層との接合効果と磁性層の酸化防止効果とを有するバッファー層で、PdPtMn膜165はNiFe膜166の磁化方向を固定する反強磁性のピン層である。NiFe膜166は、長手方向に面内方向の磁化を有している。更に、NiFe膜166上にはPt電極167が形成されており、そのPt電極167の両端は端子168、168にそれぞれ接続されている。また、この熱電変換素子は、耐熱性繊維フィルム161が内側になるようにロールケーキ状に巻き回して小型化する。 1A and 1B are perspective views showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1. FIG. A heat spin current conversion unit 163 is formed on a laminate of the heat resistant fiber film 161 and the SiO 2 film 162. The thermal spin current converter 163 has a laminated structure of a Ta film 164, a PdPtMn film 165, and a NiFe film 166. The Ta film 164 is a buffer layer having a bonding effect between the substrate and the magnetic layer and an antioxidant effect of the magnetic layer, and the PdPtMn film 165 is an antiferromagnetic pinned layer that fixes the magnetization direction of the NiFe film 166. The NiFe film 166 has in-plane magnetization in the longitudinal direction. Further, a Pt electrode 167 is formed on the NiFe film 166, and both ends of the Pt electrode 167 are connected to terminals 168 1 and 168 2 respectively. In addition, the thermoelectric conversion element is reduced in size by being wound into a roll cake so that the heat-resistant fiber film 161 is inside.
 このように構成された熱電変換素子において、NiFe膜166が、スピンゼーベック効果によって温度勾配からスピン流を生成する役割を果たし、Pt電極167が、逆スピンホール効果によってスピン流から起電力を生成する役割を果たす。具体的には、NiFe膜166のPt電極167を設けていない側を熱源に近づけて面内方向に温度勾配が印加されると、スピンゼーベック効果により、その温度勾配と平行な方向にスピン流が発生する。すると、NiFe膜166からPt電極167にスピン流が流れ込む、あるいは、Pt電極167からNiFe膜166にスピン流が流れ出す。Pt電極167では、逆スピンホール効果により、そのスピン流方向とNiFe磁化方向とに直交する方向に起電力が生成される。その起電力は、Pt電極167の両端に設けられた端子168、端子168から取り出すことができる。 In the thermoelectric conversion element configured as described above, the NiFe film 166 plays a role of generating a spin current from the temperature gradient by the spin Seebeck effect, and the Pt electrode 167 generates an electromotive force from the spin current by the inverse spin Hall effect. Play a role. Specifically, when a temperature gradient is applied in the in-plane direction by bringing the side of the NiFe film 166 not provided with the Pt electrode 167 closer to the heat source, a spin current is generated in a direction parallel to the temperature gradient due to the spin Seebeck effect. appear. Then, a spin current flows from the NiFe film 166 to the Pt electrode 167 or a spin current flows from the Pt electrode 167 to the NiFe film 166. In the Pt electrode 167, an electromotive force is generated in a direction orthogonal to the spin current direction and the NiFe magnetization direction by the inverse spin Hall effect. The electromotive force can be taken out from the terminals 168 1 and 168 2 provided at both ends of the Pt electrode 167.
 また、非特許文献1において、熱電変換素子は、膜厚3.9μmの磁性絶縁体(イットリウム鉄ガーネット(YIG、YFe12))と膜厚15nmの金属電極(Pt電極)とで構成されている。この場合、特許文献4と同様に、熱電変換素子に、磁性絶縁体膜面に平行な方向の温度勾配(面内温度勾配)を与えることにより熱電変換が実証されている。この構成の素子は、一般に横型のスピン流熱電変換素子と呼ばれる。 In Non-Patent Document 1, the thermoelectric conversion element is composed of a magnetic insulator (yttrium iron garnet (YIG, Y 3 Fe 5 O 12 )) having a film thickness of 3.9 μm and a metal electrode (Pt electrode) having a film thickness of 15 nm. It is configured. In this case, as in Patent Document 4, thermoelectric conversion has been demonstrated by giving the thermoelectric conversion element a temperature gradient (in-plane temperature gradient) in a direction parallel to the magnetic insulator film surface. An element having this configuration is generally called a horizontal spin-flow thermoelectric conversion element.
 また、非特許文献2において、熱電変換素子は、厚さ1mmの磁性絶縁体板(イットリウム鉄ガーネット(YIG、YFe12))と膜厚15nmの金属電極(Pt電極)とで構成されている。この場合、熱電変換素子に、磁性絶縁体板面に垂直な方向の温度勾配(面直温度勾配)を与えることによって熱電変換が実証されている。この構成の素子は、一般に縦型のスピン流熱電変換素子と呼ばれる。 In Non-Patent Document 2, the thermoelectric conversion element is composed of a magnetic insulator plate (yttrium iron garnet (YIG, Y 3 Fe 5 O 12 )) having a thickness of 1 mm and a metal electrode (Pt electrode) having a thickness of 15 nm. Has been. In this case, thermoelectric conversion has been demonstrated by giving the thermoelectric conversion element a temperature gradient in a direction perpendicular to the surface of the magnetic insulator plate (surface temperature gradient). The element having this configuration is generally called a vertical spin current thermoelectric conversion element.
 関連する技術として、特許文献2(特開2009-295824号公報)には、磁性体誘電層上に2つの金属電極を設けたスピントロニクスデバイスが開示されている。このスピンとロニクスデバイスは、一方の電極中で信号電流により誘起されたスピン流と磁性体誘電層中のスピンとを交換してスピン波スピン流を発生させ、そのスピン波スピン流を磁性体誘電層中に伝播させ、他方の電極と磁性体誘電層との界面でスピン波スピン流-純スピン波の交換を行うことにより、他方の電極に信号電力を生じさせて、2つの電極間で信号電流の輸送を行う。すなわち、磁性誘電体層と金属電極との界面でスピン波スピン流-純スピン流の変換を行う。更に、特許文献3(特開2010-245419号公報)には、マイクロ波発振素子が開示されている。このマイクロ波発振素子は、金属層から強磁性体層へ純スピン流を注入してマイクロ波発振を励起する。 As a related technique, Patent Document 2 (Japanese Patent Laid-Open No. 2009-295824) discloses a spintronic device in which two metal electrodes are provided on a magnetic dielectric layer. This spin and ronix device generates a spin wave spin current by exchanging the spin current induced by the signal current in one electrode and the spin in the magnetic dielectric layer, and the spin wave spin current is generated by the magnetic dielectric. Propagating into the layer and exchanging the spin wave spin current-pure spin wave at the interface between the other electrode and the magnetic dielectric layer, the signal power is generated in the other electrode and the signal is transferred between the two electrodes. Transport current. That is, the spin wave spin current-pure spin current is converted at the interface between the magnetic dielectric layer and the metal electrode. Further, Patent Document 3 (Japanese Patent Laid-Open No. 2010-245419) discloses a microwave oscillation element. This microwave oscillation element excites microwave oscillation by injecting a pure spin current from a metal layer into a ferromagnetic layer.
特開2009-130070号公報JP 2009-130070 A 特開2009-295824号公報JP 2009-295824 A 特開2010-245419号公報JP 2010-245419 A
 しかし、発明者は、上記の各熱電変換素子に関して、今回初めて以下の事実を発見した。
 スピンゼーベック効果及びスピンホール効果を用いた熱電変換素子において、磁性体層と金属電極との積層体を一層分用いた場合、熱電変換素子で発電を行っていても、熱源と接触していない側から熱が逃げてしまうと考えられる。特に、積層体の膜厚を薄くした場合に、その影響は顕著となる。したがって、そのような逃げてしまう熱を有効に利用して効率的な熱電変換を行うことが必要である。
However, the inventor has discovered the following facts for the first time regarding each of the thermoelectric conversion elements described above.
In the thermoelectric conversion element using the spin Seebeck effect and the spin Hall effect, when one layer of the magnetic material layer and the metal electrode is used, even if power is generated by the thermoelectric conversion element, the side that is not in contact with the heat source It is thought that heat escapes from. In particular, when the film thickness of the laminate is reduced, the effect becomes significant. Therefore, it is necessary to perform efficient thermoelectric conversion by effectively using such heat that escapes.
 一般的に、熱電変換素子では、熱を有効に利用するためには、素子全体の熱抵抗を高め、素子に出来るだけ大きな温度差をつける方が有利である。そのためには、素子全体の熱伝導率を低くする必要がある。例えば、縦型のスピン流熱電変換素子の場合、素子の温度勾配方向の厚さを厚くする等の方法が考えられる。しかし、スピンゼーベック効果及びスピンホール効果を用いた熱電変換素子の場合、スピン流を発生するための磁性体層及びスピン軌道相互作用を有する電極の特性としては、それぞれスピン流の生成効率及び逆スピンホール効果を高めることなどが優先する。それらのために温度勾配方向の厚さは制限される傾向にある。すなわち、スピン流を用いた熱電変換素子では、温度勾配方向の厚さを自由に設定できない。その結果、スピン流の生成効率及び逆スピンホール効果の向上と同時に低熱伝導率を達成することは、材料設計の点で自由度が非常に小さく難しい。発生する熱に応じてより大きな出力を得ることが可能な技術が望まれている。 Generally, in a thermoelectric conversion element, in order to effectively use heat, it is advantageous to increase the thermal resistance of the entire element and to give the element a temperature difference as large as possible. For that purpose, it is necessary to lower the thermal conductivity of the entire device. For example, in the case of a vertical spin-flow thermoelectric conversion element, a method of increasing the thickness of the element in the temperature gradient direction is conceivable. However, in the case of a thermoelectric conversion element using the spin Seebeck effect and the spin Hall effect, the characteristics of the magnetic material layer for generating the spin current and the electrode having the spin orbit interaction include the generation efficiency of the spin current and the reverse spin, respectively. Priority is given to enhancing the Hall effect. For these reasons, the thickness in the temperature gradient direction tends to be limited. That is, in the thermoelectric conversion element using the spin current, the thickness in the temperature gradient direction cannot be freely set. As a result, it is difficult to achieve a low thermal conductivity at the same time as improving the generation efficiency of the spin current and the inverse spin Hall effect in terms of material design. A technique capable of obtaining a larger output according to the generated heat is desired.
 従って、本発明の目的は、発生する熱に応じて効率的な熱電変換を行うことが可能な熱電変換装置及び熱電変換方法を提供することにある。 Therefore, an object of the present invention is to provide a thermoelectric conversion device and a thermoelectric conversion method capable of performing efficient thermoelectric conversion in accordance with generated heat.
 この発明のこれらの目的とそれ以外の目的と利益とは以下の説明と添付図面とによって容易に確認することができる。 These and other objects and benefits of the present invention can be easily confirmed by the following description and attached drawings.
 本発明の第1の観点における熱電変換素子は、熱電変換素子本体と、熱電変換素子本体の表面上に設けられたスペーサ層とを具備している。熱電変換素子本体は、少なくとも一つの面内方向の磁化を有する磁性体層と、磁性体層上に設けられ、スピン軌道相互作用を有する材料を含む起電体層とを備えている。スペーサ層は、熱伝導率が相対的に低い材料で設けられた低熱伝導層と、低熱伝導層内に分散され、熱伝導率が相対的に高い材料である複数の高熱伝導体とを備えている。低熱伝導層と比較して、複数の高熱伝導体にフォノンが多く伝導する。 The thermoelectric conversion element according to the first aspect of the present invention includes a thermoelectric conversion element body and a spacer layer provided on the surface of the thermoelectric conversion element body. The thermoelectric conversion element body includes at least one magnetic layer having in-plane magnetization, and an electromotive layer provided on the magnetic layer and including a material having spin-orbit interaction. The spacer layer includes a low thermal conductive layer provided with a material having a relatively low thermal conductivity, and a plurality of high thermal conductors that are dispersed in the low thermal conductive layer and are materials having a relatively high thermal conductivity. Yes. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors.
 本発明の第2の観点における熱電変換素子の製造方法は、基板上に熱電変換素子本体を形成する工程と、熱電変換素子本体上にスペーサ層を形成する工程とを具備している。熱電変換素子を形成する工程は、基板上に、少なくとも一つの面内方向の磁化を有する磁性体層及びスピン軌道相互作用を有する材料を含む起電体層のうちの一方である第1層を形成する工程と、第1層上に、磁性体層及び起電体層のうちの他方である第2層を形成する工程とを備えている。スペーサ層を形成する工程は、熱伝導率が相対的に低い材料で設けられ、熱伝導率が相対的に高い材料である複数の高熱伝導体が分散された低熱伝導層を熱電変換素子本体上に形成する工程を備えている。低熱伝導層と比較して、複数の高熱伝導体にフォノンが多く伝導する。複数の高熱伝導体は、低熱伝導層内に配向せずに分散されている。 The method for manufacturing a thermoelectric conversion element according to the second aspect of the present invention includes a step of forming a thermoelectric conversion element body on a substrate and a step of forming a spacer layer on the thermoelectric conversion element body. The step of forming the thermoelectric conversion element includes forming a first layer, which is one of a magnetic layer having magnetization in at least one in-plane direction and an electromotive layer including a material having spin-orbit interaction, on a substrate. A step of forming, and a step of forming a second layer, which is the other of the magnetic layer and the electromotive layer, on the first layer. The step of forming the spacer layer is performed on the thermoelectric conversion element body by providing a low thermal conductive layer in which a plurality of high thermal conductors, which are provided with a material having a relatively low thermal conductivity, are dispersed. The process to form in is provided. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors. The plurality of high thermal conductors are dispersed without being oriented in the low thermal conductive layer.
 本発明の第2の観点における熱電変換素子の製造方法は、基板上に熱電変換素子本体を形成する工程と、熱電変換素子本体上にスペーサ層を形成する工程とを具備している。熱電変換素子を形成する工程は、基板上に、少なくとも一つの面内方向の磁化を有する磁性体層及びスピン軌道相互作用を有する材料を含む起電体層のうちの一方である第1層を形成する工程と、第1層上に、磁性体層及び起電体層のうちの他方である第2層を形成する工程とを備えている。スペーサ層を形成する工程は、熱伝導率が相対的に低い材料で設けられ、熱伝導率が相対的に高い材料である複数の高熱伝導体が分散された低熱伝導層を熱電変換素子本体上に形成する工程を備えている。低熱伝導層と比較して、複数の高熱伝導体にフォノンが多く伝導する。複数の高熱伝導体は、低熱伝導層内に、熱電変換素子本体の面に垂直な方向全体に配向して分散されている。 The method for manufacturing a thermoelectric conversion element according to the second aspect of the present invention includes a step of forming a thermoelectric conversion element body on a substrate and a step of forming a spacer layer on the thermoelectric conversion element body. The step of forming the thermoelectric conversion element includes forming a first layer, which is one of a magnetic layer having magnetization in at least one in-plane direction and an electromotive layer including a material having spin-orbit interaction, on a substrate. A step of forming, and a step of forming a second layer, which is the other of the magnetic layer and the electromotive layer, on the first layer. The step of forming the spacer layer is performed on the thermoelectric conversion element body by providing a low thermal conductive layer in which a plurality of high thermal conductors, which are provided with a material having a relatively low thermal conductivity, are dispersed. The process to form in is provided. Compared to the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors. The plurality of high thermal conductors are oriented and dispersed in the entire direction perpendicular to the surface of the thermoelectric conversion element body in the low thermal conductive layer.
 本発明により、発生する熱に応じて効率的な熱電変換を行うことが可能な熱電変換装置及び熱電変換方法を提供することができる。 According to the present invention, it is possible to provide a thermoelectric conversion device and a thermoelectric conversion method capable of performing efficient thermoelectric conversion according to generated heat.
図1Aは、特許文献1に開示されている熱電変換素子の構成を示す斜視図である。1A is a perspective view showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1. FIG. 図1Bは、特許文献1に開示されている熱電変換素子の構成を示す斜視図である。FIG. 1B is a perspective view showing a configuration of a thermoelectric conversion element disclosed in Patent Document 1. 図2Aは、スピンゼーベック効果の原理及びスピンゼーベック効果を発現させるための基本構造を示す模式図である。FIG. 2A is a schematic diagram showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect. 図2Bは、スピンゼーベック効果の原理及びスピンゼーベック効果を発現させるための基本構造を示す模式図である。FIG. 2B is a schematic diagram showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect. 図3は、フォノンドラッグ効果での基本構造の状況を示す模式図である。FIG. 3 is a schematic diagram showing the situation of the basic structure in the phonon drag effect. 図4は、本発明の第1の実施の形態に係る熱電変換素子の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of the thermoelectric conversion element according to the first embodiment of the present invention. 図5は、本発明の第1の実施の形態に係る熱電変換素子のスペーサ層の平均自由行程を示す模式図である。FIG. 5 is a schematic diagram showing the mean free path of the spacer layer of the thermoelectric conversion element according to the first embodiment of the present invention. 図6は、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の効果を説明する模式図である。FIG. 6 is a schematic diagram for explaining the effect of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. 図7Aは、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の構成例を示す模式図である。FIG. 7A is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. 図7Bは、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の構成例を示す模式図である。FIG. 7B is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. 図7Cは、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の構成例を示す模式図である。FIG. 7C is a schematic diagram illustrating a configuration example of a spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. 図8は、本発明の第2の実施の形態に係る熱電変換素子の構成を示す断面図である。FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion element according to the second embodiment of the present invention. 図9は、高フォノン伝導材料と反射層との界面を模式的に示す断面図である。FIG. 9 is a cross-sectional view schematically showing the interface between the high-phonon conductive material and the reflective layer. 図10Aは、本発明の第2の実施の形態に係る熱電変換素子の他の構成を示す断面図である。FIG. 10A is a cross-sectional view showing another configuration of the thermoelectric conversion element according to the second embodiment of the present invention. 図10Bは、熱電変換素子を積層した場合での問題点を模式的に示す断面図である。FIG. 10B is a cross-sectional view schematically showing a problem when the thermoelectric conversion elements are stacked. 図11は、本発明の第3の実施の形態に係る熱電変換素子の構成を示す断面図である。FIG. 11 is a cross-sectional view showing a configuration of a thermoelectric conversion element according to the third embodiment of the present invention. 図12は、高フォノン伝導材料と透過層との界面を模式的に示す断面図である。FIG. 12 is a cross-sectional view schematically showing an interface between the high phonon conductive material and the transmission layer. 図13は、本発明の第3の実施の形態に係る熱電変換素子の他の構成を示す断面図である。FIG. 13: is sectional drawing which shows the other structure of the thermoelectric conversion element which concerns on the 3rd Embodiment of this invention. 図14は、本発明の実施例1の構成を示す斜視図である。FIG. 14 is a perspective view showing the configuration of the first embodiment of the present invention. 図15Aは、本発明の実施例1の熱電変換素子の製造方法を示す斜視図である。FIG. 15A is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. 図15Bは、本発明の実施例1の熱電変換素子の製造方法を示す斜視図である。FIG. 15B is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. 図15Cは、本発明の実施例1の熱電変換素子の製造方法を示す斜視図である。FIG. 15C is a perspective view illustrating the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. 図15Dは、本発明の実施例1の熱電変換素子の製造方法の変形例を示す斜視図である。FIG. 15D is a perspective view showing a modification of the method for manufacturing a thermoelectric conversion element according to the first embodiment of the present invention. 図15Eは、本発明の実施例1の熱電変換素子の製造方法の変形例を示す斜視図である。FIG. 15E is a perspective view illustrating a modification of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. 図15Fは、本発明の実施例1の熱電変換素子の製造方法の変形例を示す斜視図である。FIG. 15F is a perspective view illustrating a modification of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. 図16は、本発明の実施例2の構成を示す斜視図である。FIG. 16 is a perspective view showing the configuration of the second embodiment of the present invention. 図17Aは、本発明の実施例3の構成を示す斜視図である。FIG. 17A is a perspective view showing the configuration of the third embodiment of the present invention. 図17Bは、本発明の実施例4の構成を示す斜視図である。FIG. 17B is a perspective view showing the configuration of the fourth embodiment of the present invention. 図18は、本発明の実施例5の構成を示す斜視図である。FIG. 18 is a perspective view showing the configuration of the fifth embodiment of the present invention.
 以下、本発明の実施の形態に係る熱電変換素子及びその製造方法について、添付図面を参照して説明する。 Hereinafter, a thermoelectric conversion element and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to the accompanying drawings.
1.基本動作原理
 まず、スピンゼーベック効果の原理及びスピンゼーベック効果を発現させるための基本構造について説明する。図2A~図2Bは、スピンゼーベック効果の原理及びスピンゼーベック効果を発現させるための基本構造を示す模式図である。
1. Basic Operation Principle First, the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect will be described. 2A to 2B are schematic diagrams showing the principle of the spin Seebeck effect and the basic structure for expressing the spin Seebeck effect.
 図2Aに示すように、基本構造は、支持体上に成膜した磁化Mを有する磁性体層と、その上部に配置された金属膜とを備えている。このような基本素子に対して面直方向(z方向)の温度勾配を印加した場合、金属膜と磁性体層との間の界面にスピン流が誘起される。このスピン流を、金属膜における逆スピンホール効果によって電気的な起電力に変換することで、「温度勾配から熱起電力を生成する熱電変換」が可能となる。 As shown in FIG. 2A, the basic structure includes a magnetic layer having a magnetization M formed on a support and a metal film disposed on the magnetic layer. When a temperature gradient in the perpendicular direction (z direction) is applied to such a basic element, a spin current is induced at the interface between the metal film and the magnetic layer. By converting this spin current into an electric electromotive force by the inverse spin Hall effect in the metal film, “thermoelectric conversion that generates a thermoelectromotive force from a temperature gradient” becomes possible.
 非特許文献3(Jiang Xiao,et al.,“Theory of magnon-driven spin Seebeck effect”,Physical Review B 81,214418(2010))には、微視的なスピンゼーベック理論が開示されている。それによると、金属膜と磁性体層との界面において誘起されるスピン流Jは、この界面における格子温度Tとマグノン温度Tとの間の温度差ΔTmp=T-Tによって駆動されることが分かっている。ここで、格子温度Tとは、熱による格子振動(フォノン)の大きさを表すパラメータ(通常の意味での「温度」)である。また、マグノン温度Tとは、スピンの熱運動の激しさを表すパラメータに相当する。これらによれば、スピン流Jは以下のようにΔTmpに比例する(eは面直方向(z方向)の単位ベクトル)。
   J∝ΔTmp=(T-T)e …(1)
Non-Patent Document 3 (Jiang Xiao, et al., “Theory of Magnon-Driven Spin Seeb effect”, Physical Review B 81, 14418 (2010)) discloses a microscopic spin Seebeck theory. According to this, the spin current J s induced at the interface between the metal film and the magnetic layer is expressed by the temperature difference ΔT mp = T p −T m between the lattice temperature T p and the magnon temperature T m at this interface. I know it will be driven. Here, the lattice temperature T p is a parameter (“temperature” in a normal sense) representing the magnitude of lattice vibration (phonon) due to heat. Further, the magnon temperature T m, corresponding to the parameter representing the intensity of spin thermal motion. According to these, the spin current J s is proportional to ΔT mp as follows ( ez is a unit vector in the perpendicular direction (z direction)).
J s ∝ΔT mp e z = (T p −T m ) e z (1)
 図2Aに示すように、基本構造全体が一様な温度にある場合、マグノン系はフォノン系と熱平衡状態にある。そのため、格子温度Tとマグノン温度Tとは常に等しく(ΔTmp=0)、スピン流は駆動されない。したがって、金属膜において起電力は生じない。 As shown in FIG. 2A, when the entire basic structure is at a uniform temperature, the magnon system is in thermal equilibrium with the phonon system. Therefore, the lattice temperature T p and the magnon temperature T m are always equal (ΔT mp = 0), and the spin current is not driven. Therefore, no electromotive force is generated in the metal film.
 これに対し、図2Bに示すように、例えば、基本構造の下部面(金属膜側)を一様に加熱し、基本構造の上面と底面との間に温度差ΔTを印加した場合を考える。このとき磁性体層の中において、格子温度(通常の「温度」)は、熱伝導率等で決まる温度勾配を示す。一方、マグノン温度(スピンの熱運動を表す)は、(a)強磁性体やフェリ磁性体中では多くのスピンが相互作用して協調運動する、(b)マグノン運動は環境(熱浴)との相互作用が小さい(熱浴に対して非平衡のまま伝播可能)、という2つの理由から、格子温度とは異なる非平衡的な温度分布を持つ。特に、マグノンと環境との相互作用が小さい状況では、マグノンはフォノン散乱をほとんど受けず(熱浴と非平衡の状態で)磁性体中を移動できる。そのため、単純近似の下では、マグノン温度は磁性体層全体の温度分布を平均した一定値を持つと考えてよい。 On the other hand, as shown in FIG. 2B, for example, consider a case where the lower surface (metal film side) of the basic structure is uniformly heated and a temperature difference ΔT is applied between the upper surface and the bottom surface of the basic structure. At this time, in the magnetic layer, the lattice temperature (ordinary “temperature”) shows a temperature gradient determined by the thermal conductivity or the like. On the other hand, the magnon temperature (representing the thermal motion of a spin) is (a) many spins interact and cooperate in a ferromagnet or ferrimagnet, and (b) magnon motion is the environment (heat bath). Has a non-equilibrium temperature distribution different from the lattice temperature for two reasons, that is, the interaction is small (it can propagate in a non-equilibrium state with respect to the heat bath). In particular, in a situation where the interaction between the magnon and the environment is small, the magnon hardly receives phonon scattering (in a non-equilibrium state with the heat bath) and can move in the magnetic material. Therefore, under a simple approximation, the magnon temperature may be considered to have a constant value obtained by averaging the temperature distribution of the entire magnetic layer.
 この結果、図2Bの金属膜と磁性体層との界面では、格子温度Tは、下部(金属膜)側の加熱に伴って大きく上昇する。一方、マグノン温度Tは、非局所的な空間平均をとり、大きく上昇しない。以上のことから、界面で大きな格子-マグノン温度差ΔTmp=T-Tが生じることになる。従って、この温度差ΔTmpを駆動源として、磁性体層から金属膜へと界面スピン流Jがポンピングされる。以上が、先に述べたスピンゼーベック効果の微視的な駆動メカニズムである。 As a result, the interface between the metal film and the magnetic layer of Figure 2B, the lattice temperature T p is greatly increased with the heating of the lower (metal film) side. On the other hand, the magnon temperature Tm takes a non-local spatial average and does not increase greatly. From the above, a large lattice-magnon temperature difference ΔT mp = T p -T m occurs at the interface. Therefore, the temperature difference ΔTmp as a drive source, interfacial spin current J s is pumped to the metal film from the magnetic layer. The above is the microscopic driving mechanism of the spin Seebeck effect described above.
 この熱駆動されたスピン流Jが、金属膜におけるスピンホール効果によって電場信号EISHEに変換されることで、金属膜の端部間には起電力信号Vが生じる。ここで、電場EISHEとスピン流Jと磁化Mとの関係は、以下の式で与えられる。
   EISHE=(θSHρ)J×M/|M| …(2)
ここで、θSHはスピンホール角(電流-スピン流間の変換効率に相当)、ρは金属膜のシート抵抗を表す。EISHE、J及びMはベクトルである。この式が示すように、熱誘起された電場EISHEは、スピン流Jsと磁化Mの両方に垂直な方向に生じる。従って、金属膜面において生じる熱起電力Vも、スピン流及び温度勾配の方向(z方向)と磁化方向(x方向)にそれぞれ垂直な方向(y方向)において、大きな値を有する。
The heat driven spin current J s is, by being converted into electric signals E Ishe by spin Hall effect in the metal film, electromotive force signal V occurs between the ends of the metal film. Here, the relationship among the electric field E ISHE , the spin current J s, and the magnetization M is given by the following equation.
E ISHE = (θ SH ρ) J s × M / | M | (2)
Here, θ SH represents the spin Hall angle (corresponding to the conversion efficiency between current and spin current), and ρ represents the sheet resistance of the metal film. E ISHE , J s and M are vectors. As this equation shows, the thermally induced electric field E ISHE occurs in a direction perpendicular to both the spin current Js and the magnetization M. Accordingly, the thermoelectromotive force V generated on the metal film surface also has a large value in the direction (y direction) perpendicular to the direction of the spin current and temperature gradient (z direction) and the magnetization direction (x direction).
2.スピン流のフォノンドラッグ効果による熱電効果の増大
 最近になって、磁性体や金属におけるスピン流が、周囲の物体のフォノンエネルギーによって駆動もしくは増強される「フォノンドラッグ効果」が見出された(非特許文献4)。発明者らは、この効果を適切に利用することで、熱電変換機能を極めて薄い金属/磁性体積層膜で実現する構造を設計した。図3は、フォノンドラッグ効果での基本構造の状況を示す模式図である。金属膜と磁性体層との間におけるスピンゼーベック効果に加えて、磁性体層と基板中のフォノンとの相互作用を通して熱電効果が増強される「フォノンドラッグ効果」の寄与が強く示唆される。
2. Increasing thermoelectric effect due to phonon drag effect of spin current Recently, a “phonon drag effect” has been found in which spin current in magnetic materials and metals is driven or enhanced by phonon energy of surrounding objects (non-patented) Reference 4). The inventors have designed a structure that realizes the thermoelectric conversion function with an extremely thin metal / magnetic laminated film by appropriately utilizing this effect. FIG. 3 is a schematic diagram showing the situation of the basic structure in the phonon drag effect. In addition to the spin Seebeck effect between the metal film and the magnetic layer, the contribution of the “phonon drag effect” in which the thermoelectric effect is enhanced through the interaction between the magnetic layer and the phonon in the substrate is strongly suggested.
 ここでいうフォノンドラッグとは、電極膜/磁性体膜構造におけるスピン流が、支持体を含めた素子全体のフォノンと非局所的に相互作用する現象を指す。非特許文献4(Applied Physics Letters,vol.97,p252506(2010))には、磁性体膜面に平行な方向の温度勾配(面内温度勾配)を与えた場合におけるフォノンドラッグ効果が開示されている。このフォノンドラッグ過程を考慮すると、図3の右側に示すように極めて薄い磁性体層におけるスピン流が、フォノンとの非局所相互作用を介して、これより遥かに厚い基板中の温度分布を感じることができるために、実効的な熱電効果が大きく増大する。すなわち、薄い磁性体層に印加される温度差ΔTMAGだけでなく、厚い支持体に印加される温度差ΔTもスピン流の熱駆動に寄与する結果、より大きな熱起電力が金属電極中に生成されると考えられる。 The phonon drag here refers to a phenomenon in which the spin current in the electrode film / magnetic film structure interacts non-locally with the phonons of the entire device including the support. Non-Patent Document 4 (Applied Physics Letters, vol. 97, p252506 (2010)) discloses a phonon drag effect when a temperature gradient (in-plane temperature gradient) in a direction parallel to the magnetic film surface is given. Yes. Considering this phonon drag process, as shown on the right side of FIG. 3, the spin current in an extremely thin magnetic layer can sense a temperature distribution in a much thicker substrate through non-local interaction with phonons. Therefore, the effective thermoelectric effect is greatly increased. That is, not only the temperature difference ΔT MAG applied to the thin magnetic layer but also the temperature difference ΔT S applied to the thick support contributes to the thermal drive of the spin current, so that a larger thermoelectromotive force is generated in the metal electrode. It is thought that it is generated.
 このようなフォノンドラッグ効果については、基本的な原理実証については上述のように報告されている。しかし、この効果を用いて効率的に熱電変換を実行する熱電変換デバイスについては、これまで具体的な提案が無かった。本発明の各実施の形態では、上記スピンゼーベック効果及び逆スピンホール効果に加えて、更に上記フォノンドラッグ効果を適用した、効率的な熱電変換素子及びその製造方法について以下に詳細に説明する。 As for the phonon drag effect like this, basic proof of principle has been reported as described above. However, there has been no specific proposal for a thermoelectric conversion device that efficiently performs thermoelectric conversion using this effect. In each embodiment of the present invention, an efficient thermoelectric conversion element and a method for manufacturing the thermoelectric conversion element in which the phonon drag effect is further applied in addition to the spin Seebeck effect and the reverse spin Hall effect will be described in detail below.
(第1の実施の形態)
3.熱電変換素子の構成
 次に、本発明の第1の実施の形態に係る熱電変換素子の構成について説明する。図4は、本発明の第1の実施の形態に係る熱電変換素子の構成を示す斜視図である。図4に示すように、熱電変換素子1は、スペーサ層5と、スペーサ層5上に接して設けられた熱電変換素子本体10とを具備している。熱電変換素子本体10は、スピンゼーベック効果及びスピンホール効果を用いた熱電変換素子である。なお、熱電変換素子1は、基板(図示されず)と接していても良い。
(First embodiment)
3. Next, the configuration of the thermoelectric conversion element according to the first embodiment of the present invention will be described. FIG. 4 is a perspective view showing the configuration of the thermoelectric conversion element according to the first embodiment of the present invention. As shown in FIG. 4, the thermoelectric conversion element 1 includes a spacer layer 5 and a thermoelectric conversion element main body 10 provided in contact with the spacer layer 5. The thermoelectric conversion element body 10 is a thermoelectric conversion element using a spin Seebeck effect and a spin Hall effect. The thermoelectric conversion element 1 may be in contact with a substrate (not shown).
 スペーサ層5は、熱電変換素子本体10に上述のフォノンドラッグ効果を効果的に発現させる。スペーサ層5は、そのようなフォノンドラッグ効果を効果的に発現させる材料で形成されている。スペーサ層5は、膜面に垂直な方向(面直方向)の温度差を保持しながら、フォノンをよく伝導させる材料が好ましい。言い換えると、スペーサ層5は、熱伝導性が低く、フォノン伝導性が高い材料性の高い材料であることが好ましい。温度差を保持することは、伝導させるフォノンのエネルギー分散を大きく保つことを示している。 The spacer layer 5 causes the thermoelectric conversion element body 10 to effectively exhibit the above-described phonon drag effect. The spacer layer 5 is formed of a material that effectively exhibits such a phonon drag effect. The spacer layer 5 is preferably made of a material that conducts phonons well while maintaining a temperature difference in a direction perpendicular to the film surface (perpendicular direction). In other words, the spacer layer 5 is preferably made of a material having low material conductivity and high phonon conductivity. Maintaining the temperature difference indicates that the energy dispersion of the phonons to be conducted is kept large.
 本実施の形態では、熱電変換素子本体10の熱抵抗を高めることが困難であることに鑑み、上記特性を有するスペーサ層5を熱電変換素子本体10に接して設けている。そのスペーサ層5によって、熱電変換素子1として面直方向に大きな温度差を保持することができる。加えて、スペーサ層5から、熱電変換に寄与するフォノンを供給することができる。それらにより熱電変換素子本体10に対してフォノンドラッグ効果を発現させることができ、熱電変換素子本体10の熱抵抗を高めたのと同様の効果を得ることができる。すなわち、熱を有効に利用して効率的な熱電変換を行うことが可能となる。以下、スペーサ層5について詳細に説明する。 In this embodiment, the spacer layer 5 having the above characteristics is provided in contact with the thermoelectric conversion element body 10 in view of the difficulty in increasing the thermal resistance of the thermoelectric conversion element body 10. The spacer layer 5 can maintain a large temperature difference in the direction perpendicular to the surface of the thermoelectric conversion element 1. In addition, phonons that contribute to thermoelectric conversion can be supplied from the spacer layer 5. As a result, a phonon drag effect can be exerted on the thermoelectric conversion element body 10, and the same effect as that of increasing the thermal resistance of the thermoelectric conversion element body 10 can be obtained. That is, efficient thermoelectric conversion can be performed using heat effectively. Hereinafter, the spacer layer 5 will be described in detail.
 スペーサ層5は、低フォノン伝導材料11と高フォノン伝導材料12とを備え、両者が組み合わされた構造を有している。ただし、高フォノン伝導材料12及び低フォノン伝導材料11とは、励起されたフォノンが材料中で弾性的に進むことが出来る平均の距離によって性質付けられる材料である。すなわち、高フォノン伝導材料12及び低フォノン伝導材料11の材料中のフォノンの平均自由行程をそれぞれΛph2及びΛph1としたときに、Λph2>>Λph1の相対的な関係を有する二種類の材料を指す。このとき、低フォノン伝導材料11と高フォノン伝導材料12とは化合物を形成しているのではない。高フォノン伝導材料12は、低フォノン伝導材料11中に分散して存在している。言い換えれば、スペーサ層5は、高フォノン伝導材料12と、それを支持する母材(マトリクス)としての低フォノン伝導材料11とから構成されている。 The spacer layer 5 includes a low phonon conductive material 11 and a high phonon conductive material 12, and has a structure in which both are combined. However, the high phonon conductive material 12 and the low phonon conductive material 11 are materials characterized by an average distance at which excited phonons can travel elastically in the material. That is, the mean free path of the phonons in the material of a high phonon conductivity material 12 and the low phonon conductive material 11 when the lambda ph2 and lambda ph1 respectively, of two types having a relative relationship lambda ph2 >> lambda ph1 Refers to material. At this time, the low phonon conductive material 11 and the high phonon conductive material 12 do not form a compound. The high phonon conductive material 12 is dispersed in the low phonon conductive material 11. In other words, the spacer layer 5 is composed of a high phonon conductive material 12 and a low phonon conductive material 11 as a base material (matrix) that supports it.
 スペーサ層5では、スペーサ層5に対して垂直な方向(面直方向;z方向)へ一定の熱流がある条件の下で、スペーサ層5の両面により大きな温度差が発生するように、平均熱伝導率を低くする必要がある。平均熱伝導率を低くする方法として、ここでは、フォノンの平均自由行程と熱伝導率との間には比例関係があることに基づいて、スペーサ層5の大部分を低フォノン伝導材料11が占め、その一部に高フォノン伝導材料12を用いる構成とする。この図4の例では、低フォノン伝導材料11中に、熱電変換素子本体10の面に対して垂直な方向(面直方向;z方向)へ伸びるロッド状又はフィルム状の複数の高フォノン伝導材料12が分散されている。 In the spacer layer 5, the average heat is generated so that a large temperature difference is generated between both surfaces of the spacer layer 5 under the condition that there is a constant heat flow in a direction perpendicular to the spacer layer 5 (perpendicular direction; z direction). The conductivity needs to be lowered. As a method for reducing the average thermal conductivity, here, the low phonon conductive material 11 occupies most of the spacer layer 5 based on the fact that there is a proportional relationship between the mean free path of phonons and the thermal conductivity. The high phonon conductive material 12 is used for a part thereof. In the example of FIG. 4, a plurality of high phonon conductive materials in the form of rods or films extending in a direction perpendicular to the surface of the thermoelectric conversion element body 10 (perpendicular direction; z direction) in the low phonon conductive material 11. 12 are distributed.
 このような構成とする理由は以下のとおりである。図5は、本発明の第1の実施の形態に係る熱電変換素子のスペーサ層の平均自由行程を示す模式図である。この図において、スペーサ層5の上部(+z側)は低温(Cold)、下部(-z側)は高温(Hot)である。上部は熱電変換素子本体10であり、下部は熱源である。 The reasons for this configuration are as follows. FIG. 5 is a schematic diagram showing the mean free path of the spacer layer of the thermoelectric conversion element according to the first embodiment of the present invention. In this figure, the upper part (+ z side) of the spacer layer 5 is a low temperature (Cold), and the lower part (−z side) is a high temperature (Hot). The upper part is the thermoelectric conversion element body 10, and the lower part is a heat source.
 単に平均熱伝導率を低くするだけなら、低フォノン伝導材料11だけでスペーサ層5を作製すればよい。しかし、その場合、スペーサ層5からスペーサ層5と磁性体層2との界面に到達するフォノンは、界面から概ねΛph1程度の範囲に限定される。そのようなフォノンが存在する範囲は、スペーサ層5の厚さより非常に薄くなる。そのため、この場合、スペーサ層5全体に生じた温度差に起因したフォノンドラッグ効果を期待できない。しかし、スペーサ層5の一部分にフォノンを弾性的に伝搬することができる高フォノン伝導材料12を用いれば、スペーサ層5からスペーサ層5と磁性体層2との界面に到達するフォノンは、高フォノン伝導材料12近傍だけではあるが、界面から概ねΛph2程度の範囲に広がる。そのため、スペーサ層5全体に生じた温度差に起因したフォノンドラッグ効果を得ることができる。 If the average thermal conductivity is merely lowered, the spacer layer 5 may be formed using only the low phonon conductive material 11. However, in that case, the phonons reaching the interface between the spacer layer 5 and the magnetic layer 2 from the spacer layer 5 are limited to a range of about Λph1 from the interface. The range in which such phonons exist is much thinner than the thickness of the spacer layer 5. Therefore, in this case, the phonon drag effect due to the temperature difference generated in the entire spacer layer 5 cannot be expected. However, if the high phonon conductive material 12 capable of elastically propagating phonons is used for a part of the spacer layer 5, the phonons reaching the interface between the spacer layer 5 and the magnetic layer 2 from the spacer layer 5 are high phonons. Although it is only in the vicinity of the conductive material 12, it spreads in the range of about Λph2 from the interface. Therefore, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained.
 スペーサ層5は、熱電変換素子本体10にフォノンを効率的に伝導すべく、以下の特性を有していることが更に好ましい。高フォノン伝導材料12は、そのいくつかが、熱電変換素子本体10側(+z側)では、熱電変換素子本体10から低フォノン伝導材料11のフォノンの平均自由行程Λph1の距離の範囲に部分的に達していることが好ましい。また、高フォノン伝導材料12同士の距離は、少なくとも一部が、低フォノン伝導材料11のフォノンの平均自由行程Λph1の距離の範囲に存在することが好ましい。また、高フォノン伝導材料12は、そのいくつかが、スペーサ層5の下部(-z側の部分)では、スペーサ層5の下端面から低フォノン伝導材料11のフォノンの平均自由行程Λph1の距離の範囲に部分的に達していることが好ましい。 The spacer layer 5 further preferably has the following characteristics in order to efficiently conduct phonons to the thermoelectric conversion element body 10. Some of the high phonon conductive materials 12 are partially within the range of the phonon mean free path Λ ph1 of the low phonon conductive material 11 from the thermoelectric conversion element main body 10 on the thermoelectric conversion element main body 10 side (+ z side). Is preferably reached. Further, it is preferable that at least a part of the distance between the high phonon conductive materials 12 exists in the range of the distance of the phonon mean free path Λ ph1 of the low phonon conductive material 11. Further, some of the high phonon conductive material 12 is a distance of the phonon mean free path Λ ph1 of the low phonon conductive material 11 from the lower end surface of the spacer layer 5 at the lower part (the portion on the −z side) of the spacer layer 5. It is preferable that this range is partially reached.
 図4を参照して、更に、高フォノン伝導材料12は、そのいくつかが、熱電変換素子本体10側(+z側)では、熱電変換素子本体10に部分的に接していることがより好ましい。また、高フォノン伝導材料12同士は、少なくとも一部が、接していることが好ましい。また、高フォノン伝導材料12は、そのいくつかが、スペーサ層5の下部(-z側の部分)では、スペーサ層5の下端面に部分的に接していることが好ましい。更に好ましくは、高フォノン伝導材料12は、熱電変換素子本体10側(+z側)では熱電変換素子本体10に部分的に接し、スペーサ層5の下部(-z側の部分)ではスペーサ層5の下端面に接していることが好ましい。この図4の例では、高フォノン伝導材料12として、熱電変換素子本体10側(+z側)では熱電変換素子本体10に接し、スペーサ層5の下部(-z側の部分)ではスペーサ層5の下端面に接しているロッド状又はフィルム状の材料が示されている。 Referring to FIG. 4, it is more preferable that some of the high phonon conductive material 12 is partially in contact with the thermoelectric conversion element body 10 on the thermoelectric conversion element body 10 side (+ z side). Further, it is preferable that at least a part of the high phonon conductive materials 12 are in contact with each other. Further, it is preferable that some of the high phonon conductive materials 12 are partially in contact with the lower end surface of the spacer layer 5 at the lower portion (the portion on the −z side) of the spacer layer 5. More preferably, the high phonon conductive material 12 is partially in contact with the thermoelectric conversion element main body 10 on the thermoelectric conversion element main body 10 side (+ z side), and below the spacer layer 5 (the portion on the −z side). It is preferable to be in contact with the lower end surface. In the example of FIG. 4, the high phonon conductive material 12 is in contact with the thermoelectric conversion element body 10 on the thermoelectric conversion element body 10 side (+ z side), and the spacer layer 5 below the spacer layer 5 (−z side portion). A rod-like or film-like material in contact with the lower end surface is shown.
 高フォノン伝導材料12、すなわち高フォノン伝導特性を持つ材料としては、高フォノン伝導ナノワイアや、ナノチューブのような高熱伝導率材料である。カーボンナノチューブ、窒化ホウ素ナノチューブ、種々の半導体ナノワイア及び金属ナノワイアが例示される。カーボンナノチューブ及び窒化ホウ素ナノチューブに関しては、単層構造を持つ物や多層構造を持つ物などを用いることができる。ただし、本実施の形態のスピン流を用いた熱電変換素子1においては、スペーサ層5の材料中にフォノン以外の熱輸送機構が少ないことが望ましい。そのため、フォノンと同じく熱を運ぶ自由電子が多く存在する良導電体よりも、半導体や絶縁体的な物質であることが好ましい。そのため、半導体的な単層カーボンナノチューブや窒化ホウ素ナノチューブを単離したものなどがより良い性能を得るための高フォノン伝導材料としてより好適である。また、金属ナノワイアや半導体ナノワイアは、合成が簡便で安価であることから、製造コストを含めて良い特性を得るための高フォノン伝導材料として適している。 As the high phonon conductive material 12, that is, a material having high phonon conductive properties, there are high phonon conductive nanowires and high thermal conductivity materials such as nanotubes. Examples include carbon nanotubes, boron nitride nanotubes, various semiconductor nanowires and metal nanowires. As for carbon nanotubes and boron nitride nanotubes, those having a single-layer structure or those having a multilayer structure can be used. However, in the thermoelectric conversion element 1 using the spin current of the present embodiment, it is desirable that the material of the spacer layer 5 has few heat transport mechanisms other than phonons. For this reason, it is preferable to use a semiconductor or insulator-like material rather than a good conductor in which many free electrons that carry heat exist as in the case of phonons. For this reason, a semiconductor-like single-walled carbon nanotube or a boron nitride nanotube isolated is more suitable as a high-phonon conductive material for obtaining better performance. In addition, metal nanowires and semiconductor nanowires are suitable as high-phonon conductive materials for obtaining good characteristics including manufacturing costs because they are easily synthesized and inexpensive.
 低フォノン伝導材料11、すなわち低フォノン伝導特性をもつ材料としては、多孔質材料(母体+空気、多孔質シリカ、ジルコニアなど)、ナノ結晶の集合体、ポリマーなど低熱伝導率材料である。各種の炭素ポリマー材料及びシリコーン系ポリマー材料に例示される。また、これらの材料を母材として用い、さらに発砲形成することによってスペーサ層5内に空隙を設け、より熱伝導率を小さくする手法を用いることができる。その他に、ゾルゲル法などを用いて作製したセラミック材料を用いることができる。セラミック材料についても、多孔質構造を形成して熱伝導率を低くしたり、有機物質とセラミックのハイブリッド材料を用いて強度や可塑性などの機能性を向上したりすることができる。 The low phonon conductive material 11, that is, a material having low phonon conductive characteristics includes a low thermal conductivity material such as a porous material (matrix + air, porous silica, zirconia, etc.), an aggregate of nanocrystals, and a polymer. Examples are various carbon polymer materials and silicone polymer materials. In addition, a method can be used in which these materials are used as a base material, and a void is provided in the spacer layer 5 by forming a foam to further reduce the thermal conductivity. In addition, a ceramic material manufactured using a sol-gel method or the like can be used. Also for ceramic materials, it is possible to reduce the thermal conductivity by forming a porous structure, or to improve the functionality such as strength and plasticity by using a hybrid material of an organic substance and a ceramic.
 このように、本実施の形態のスペーサ層5では、低フォノン伝導材料11中に、フォノンを弾性的に伝搬することができる高フォノン伝導材料12を分散的に混合している。そのため、平均熱伝導率を低くしてスペーサ層5全体に生じた温度差を保持しつつ、高フォノン伝導材料12によりフォノンを弾性的に伝搬させることができる。それにより、スペーサ層5全体に生じた温度差に起因したフォノンドラッグ効果を効率的に得ることができる。 As described above, in the spacer layer 5 of the present embodiment, the high phonon conductive material 12 capable of elastically propagating phonons is dispersedly mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity. Thereby, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained efficiently.
 基板は、熱電変換素子本体10におけるスペーサ層5と接する面と反対の面、又は、スペーサ層5における熱電変換素子本体10と接する面と反対の面、のいずれかに接していてもよい。基板は、例えば、熱電変換素子1を支持するために設けられる。その場合、基板は、熱電変換素子1を支持することができるものであれば材料・構造を問わない。例えば、Si、アルミニウム及び鉄のような金属(塗装されているものを含む)、ガラス、アルミナ、サファイア及びガドリニウムガリウムガーネット(GGG)のようなセラミックス、ポリイミドやポリエチレンのような樹脂の各材料の基板を用いることができる。また、形状は必ずしも板状である必要はなく、湾曲や凹凸を有する構造や変形可能な構造でもよい。なお、基板は、熱電変換素子本体10におけるスペーサ層5と接する面と反対の面に設けられる場合には、他のスペーサ層5であっても良い。また、スペーサ層5における熱電変換素子本体10と接する面と反対の面に設けられる場合には、他の熱電変換素子本体10であっても良い。 The substrate may be in contact with either the surface opposite to the surface in contact with the spacer layer 5 in the thermoelectric conversion element body 10 or the surface opposite to the surface in contact with the thermoelectric conversion element body 10 in the spacer layer 5. The substrate is provided to support the thermoelectric conversion element 1, for example. In that case, as long as the substrate can support the thermoelectric conversion element 1, the material and the structure are not limited. For example, substrates of metals (including painted ones) such as Si, aluminum and iron, ceramics such as glass, alumina, sapphire and gadolinium gallium garnet (GGG), and resins such as polyimide and polyethylene. Can be used. Further, the shape does not necessarily have to be a plate shape, and may be a structure having a curve or unevenness or a deformable structure. The substrate may be another spacer layer 5 when provided on the surface opposite to the surface in contact with the spacer layer 5 in the thermoelectric conversion element body 10. Further, when the spacer layer 5 is provided on the surface opposite to the surface in contact with the thermoelectric conversion element body 10, the other thermoelectric conversion element body 10 may be used.
 熱電変換素子本体10は、磁性体層2と電極3とを備えている。電極3上に起電力取り出し用の端子を備えていても良い。 The thermoelectric conversion element body 10 includes a magnetic layer 2 and an electrode 3. A terminal for extracting an electromotive force may be provided on the electrode 3.
 熱電変換素子本体10の磁性体層2は、スペーサ層5上に直接的に設けられ、スペーサ層5に保持されている。ただし、直接的とは、スペーサ層5上に直接成膜されていることである。それにより、スペーサ層5と磁性体層2とが強固に密着(原子レベルで密着)していることにより、スペーサ層5と磁性体層2との間でフォノンの受け渡しが可能となる。すなわち、上述のフォノンドラッグの効果を得ることがでる。なお、磁性体層2とスペーサ層5との間に何らかの膜や基板が挿入されていても、その挿入膜や基板とスペーサ層5及び磁性体層2とが直接成膜され直接接触していれば、フォノンドラッグの効を同様に得られることは明らかである。したがって、ここでいう直接的ということには、上記挿入膜や基板が挿入されている場合を含んでいる。 The magnetic layer 2 of the thermoelectric conversion element body 10 is directly provided on the spacer layer 5 and is held by the spacer layer 5. However, “directly” means that the film is formed directly on the spacer layer 5. Accordingly, the spacer layer 5 and the magnetic layer 2 are firmly adhered (at the atomic level), so that phonons can be transferred between the spacer layer 5 and the magnetic layer 2. That is, the above-described phonon drag effect can be obtained. Even if any film or substrate is inserted between the magnetic layer 2 and the spacer layer 5, the inserted film or substrate, the spacer layer 5, and the magnetic layer 2 may be directly formed and in direct contact with each other. For example, it is clear that the effect of phonon drag can be obtained similarly. Therefore, the term “direct” here includes the case where the insertion film or the substrate is inserted.
 磁性体層2は、温度勾配∇T(温度差ΔT)によりスピン流を発生する。磁性体層2は、少なくとも1つの磁化Mを有する磁性体を有している。その磁化方向は、少なくとも、膜面(xy面)に平行な成分を有している。本実施の形態では、膜面に平行な一方向(-y方向)に磁化を有しているものとする。この磁化は、単独で発現していても良いし、磁性体層2の磁化Mを固定する他の磁化固定層(図示されず)で固定されていても良い。 The magnetic layer 2 generates a spin current due to a temperature gradient ∇T (temperature difference ΔT). The magnetic layer 2 has a magnetic body having at least one magnetization M. The magnetization direction has at least a component parallel to the film surface (xy plane). In the present embodiment, it is assumed that magnetization is present in one direction (−y direction) parallel to the film surface. This magnetization may be expressed independently, or may be fixed by another magnetization fixed layer (not shown) that fixes the magnetization M of the magnetic layer 2.
 磁性体層2は、磁性体である。磁性体層2は、熱伝導率の小さな材料ほど効率よく熱電効果を奏するため、磁性絶縁体であることが好ましい。このような材料としては、例えば、ガーネットフェライト(イットリウム鉄フェライト)やスピネルフェライトなどの酸化物磁性材料を適用することができる。なお、磁性体層2として、ガーネットフェライトのイットリウムサイトをビスマス等で一部不純物置換した材料を含んでいてもよい。このようにイットリウムサイトを不純物置換することにより、磁性体層2と電極3との間のエネルギー準位間の整合が向上すると考えられる。そのため、界面でのスピン流の取り出し効率を増大させ、熱電変換効率を向上させることができる可能性がある。例えば、ガーネットフェライトとしてイットリウム鉄ガーネット(YIG)にビスマスを添加した材料である。 The magnetic layer 2 is a magnetic material. The magnetic layer 2 is preferably a magnetic insulator because a material having a smaller thermal conductivity exhibits a more efficient thermoelectric effect. As such a material, for example, an oxide magnetic material such as garnet ferrite (yttrium iron ferrite) or spinel ferrite can be applied. The magnetic layer 2 may include a material obtained by partially replacing yttrium sites of garnet ferrite with impurities such as bismuth. Thus, it is considered that the energy level matching between the magnetic layer 2 and the electrode 3 is improved by replacing the yttrium site with impurities. Therefore, there is a possibility that the spin current extraction efficiency at the interface can be increased and the thermoelectric conversion efficiency can be improved. For example, a material obtained by adding bismuth to yttrium iron garnet (YIG) as garnet ferrite.
 ここで、磁性体層2の形成方法としては、スパッタ法、有機金属分解法(MOD法)、ゾルゲル法、エアロゾルデポジション法(AD法)、ディップ法、スプレー法、スピンコート法、メッキ法及び印刷法などのいずれかの方法を用いて成膜する方法が挙げられる。これらのうち、AD法を用いて成膜するのが特に好ましい。これは、AD法では、微粒子の衝突エネルギーによって多結晶膜形成・稠密化が行われることから、他の成膜方法に比べて基板を選ばず、金属膜上への成膜も可能であるためである。また、スパッタ法、MOD法などの成膜方法で成膜可能な膜厚は、通常、最大1μm程度であるのに対し、AD法を用いれば10μm以上の厚膜の高速成膜が可能である。そのため、後述する特性厚t程度の膜厚の磁性体層2を短時間で形成できる。加えて、ノズルの2次元スキャンにより、高速かつ大面積の成膜が可能となる。それにより、低コスト・大面積の熱電変換素子を実現できる。 Here, as a formation method of the magnetic layer 2, sputtering method, organometallic decomposition method (MOD method), sol-gel method, aerosol deposition method (AD method), dipping method, spray method, spin coating method, plating method and A method of forming a film using any method such as a printing method may be mentioned. Of these, the film formation using the AD method is particularly preferable. This is because, in the AD method, a polycrystalline film is formed and densified by the collision energy of fine particles, so that it is possible to form a film on a metal film without selecting a substrate as compared with other film forming methods. It is. In addition, the film thickness that can be formed by a film forming method such as sputtering or MOD is usually about 1 μm at maximum, but if the AD method is used, a film having a thickness of 10 μm or more can be formed at high speed. . Therefore, it is possible to form the magnetic layer 2 having a thickness of about later-described characteristics thickness t c in a short time. In addition, two-dimensional scanning of nozzles enables high-speed and large-area film formation. Thereby, a low-cost, large-area thermoelectric conversion element can be realized.
 なお特性膜厚tは、磁性体層2において、熱起電力の大きさが飽和する膜厚である。例えば、磁性体層2の膜厚が薄い場合、熱起電力の大きさは膜厚に比例して大きくなる。しかし、その膜厚がある膜厚以上になると、熱起電力の大きさは概ね飽和して、膜厚を増加しても増加しなくなる。そのある膜厚を特性膜厚tという。磁性体層2が単結晶の場合、特性膜厚tは数mmに及ぶ可能性がある。しかし、上記各成膜法で形成される磁性体層2は多結晶膜であるため、特性膜厚tはたとえば数μm~数10μm程度になると考えられる。したがって、磁性体層2の膜厚は、効率的な熱起電力の生成の観点から、少なくとも特性膜厚tの80%以上であることが好ましい。上限は特に制限はないが、材料の無駄を考慮して、特性膜厚tの150%程度が好ましい。 The characteristic film thickness t c is a film thickness at which the magnitude of the thermoelectromotive force is saturated in the magnetic layer 2. For example, when the magnetic layer 2 is thin, the magnitude of the thermoelectromotive force increases in proportion to the film thickness. However, when the film thickness exceeds a certain film thickness, the magnitude of the thermoelectromotive force is almost saturated and does not increase even if the film thickness is increased. The certain film thickness is referred to as a characteristic film thickness t c . When the magnetic layer 2 is a single crystal, the characteristic film thickness t c may reach several mm. However, since the magnetic layer 2 formed by each of the film forming methods is a polycrystalline film, the characteristic film thickness t c is considered to be about several μm to several tens of μm, for example. Accordingly, the thickness of the magnetic layer 2 is preferably at least 80% of the characteristic thickness t c from the viewpoint of efficient generation of thermoelectromotive force. The upper limit is not particularly limited, but is preferably about 150% of the characteristic film thickness t c in consideration of material waste.
 熱電変換素子本体10の電極3(起電体層ともいう)は、磁性体層2上に設けられている。電極3は、逆スピンホール効果を用いてスピン流から熱起電力を取り出すスピン流から熱起電力を取り出すために、電極3は磁性体層2上に直接的に設けられていることが好ましい。電極3は、逆スピンホール効果を用いて熱起電力を取り出すために、スピン軌道相互作用を有する材料を有している。このような材料としては、例えばスピン軌道相互作用の比較的大きなAu、Pt及びPdのような金属、又はこれら金属を含有する合金が挙げられる。なお、逆スピンホール効果を強めるために、上記した金属や合金にFe、Cu及びIrなどの少なくとも一つの不純物を添加した材料を電極3の材料として用いてもよい。例えば、Cuなどの一般的な金属膜材料に、Au、Pt、Pd及びIrなどの少なくとも一つの材料を0.5~10%程度ドープした材料でも、同様の効果を得ることができる。 The electrode 3 (also referred to as an electromotive layer) of the thermoelectric conversion element body 10 is provided on the magnetic layer 2. The electrode 3 is preferably provided directly on the magnetic layer 2 in order to extract the thermoelectromotive force from the spin current that extracts the thermoelectromotive force from the spin current using the reverse spin Hall effect. The electrode 3 includes a material having a spin orbit interaction in order to extract a thermoelectromotive force using the inverse spin Hall effect. Examples of such a material include metals such as Au, Pt, and Pd that have a relatively large spin-orbit interaction, and alloys containing these metals. In order to enhance the reverse spin Hall effect, a material obtained by adding at least one impurity such as Fe, Cu, or Ir to the above metal or alloy may be used as the material of the electrode 3. For example, the same effect can be obtained even when a general metal film material such as Cu is doped with at least one material such as Au, Pt, Pd and Ir by about 0.5 to 10%.
 電極3の形成方法としては、スパッタ法、蒸着法、メッキ法、スクリーン印刷法、インクジェット法、スプレー法及びスピンコート法などのいずれかの方法で磁性体層2上に成膜する方法が挙げられる。電極3の膜厚は、少なくとも電極材料のスピン拡散長(磁性体層2のスピン流が電極3内に侵入する深さ)以上に設定するのが好ましい。具体的には、例えばAuであれば50nm以上、Ptであれば10nm以上に設定するのが好ましい。電極3の膜厚には特に制限はない。材料の無駄(コスト)などを考慮すれば、不必要に厚くする必要はなく、例えば100nmである。 Examples of the method of forming the electrode 3 include a method of forming a film on the magnetic layer 2 by any method such as sputtering, vapor deposition, plating, screen printing, ink jet, spray, and spin coating. . The film thickness of the electrode 3 is preferably set to at least the spin diffusion length of the electrode material (depth at which the spin current of the magnetic layer 2 penetrates into the electrode 3). Specifically, for example, it is preferable to set 50 nm or more for Au and 10 nm or more for Pt. The film thickness of the electrode 3 is not particularly limited. If waste (cost) of the material is taken into consideration, it is not necessary to increase the thickness unnecessarily, for example, 100 nm.
 熱電変換素子1の端子(図示されず)は、電極3上の二点に互いに離間して設けられている。端子は、端子間の電位差を熱起電力として取り出すことができるものであれば、構造、形状及び位置は特に制限はない。 The terminals (not shown) of the thermoelectric conversion element 1 are provided at two points on the electrode 3 so as to be separated from each other. The terminal is not particularly limited in structure, shape, and position as long as the potential difference between the terminals can be taken out as a thermoelectromotive force.
 このような熱電変換素子1におけるスペーサ層5は、以下のような場合に特に有効である。図6は、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の効果を説明する模式図である。ここでは、太陽熱を用いた発電における変換効率向上を例に説明する。ただし、図6の左側(a)は、単純型積層熱電変換素子51である。単純型積層熱電変換素子51は、複数の熱電変換素子本体10を単純に積層している。積層型熱電変換素子51は、下部の熱浴22と、熱浴22上に連続的に積層された複数の熱電変換素子本体10と、複数の熱電変換素子本体10の上部に載置された熱浴21とを備えている。一方、図6の右側(b)は、スペーサ型積層熱電変換素子52である。積層熱電変換素子52は、スペーサ層5を介して複数の熱電変換素子本体10を積層している。すなわち、積層熱電変換素子52は上述された複数の熱電変換素子1を積層したということができる。積層熱電変換素子52は、下部の熱浴24と、熱浴24上に連続的に積層された複数の熱電変換素子1と、複数の熱電変換素子1の上部に載置された熱浴23を備えている。 The spacer layer 5 in such a thermoelectric conversion element 1 is particularly effective in the following cases. FIG. 6 is a schematic diagram for explaining the effect of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. Here, an explanation will be given by taking an example of improving conversion efficiency in power generation using solar heat. However, the left side (a) of FIG. 6 is the simple laminated thermoelectric conversion element 51. The simple laminated thermoelectric conversion element 51 simply has a plurality of thermoelectric conversion element bodies 10 laminated thereon. The laminated thermoelectric conversion element 51 includes a lower heat bath 22, a plurality of thermoelectric conversion element bodies 10 stacked continuously on the heat bath 22, and heat mounted on the upper portions of the plurality of thermoelectric conversion element bodies 10. Bath 21. On the other hand, the right side (b) of FIG. 6 is the spacer-type laminated thermoelectric conversion element 52. In the laminated thermoelectric conversion element 52, a plurality of thermoelectric conversion element bodies 10 are laminated via the spacer layer 5. That is, it can be said that the laminated thermoelectric conversion element 52 is formed by laminating the plurality of thermoelectric conversion elements 1 described above. The laminated thermoelectric conversion element 52 includes a lower heat bath 24, a plurality of thermoelectric conversion elements 1 continuously stacked on the heat bath 24, and a heat bath 23 placed on top of the plurality of thermoelectric conversion elements 1. I have.
 ここでは、熱浴22及び熱浴24を水冷により50℃に保持しているとき(T1a=T1b)、太陽光からq=1.0kW/mのエネルギーが共通に供給されている場合、上部の熱浴21の温度(T2a)及び熱浴23の温度(T2b)が何度になるかを考える。すなわち、上部の熱浴21と下部の熱浴22との温度差ΔT1、及び、上部の熱浴23と下部の熱浴24との温度差ΔT2を考える。更に、その時の各積層熱電変換素子の熱起電力V1、V2を考える。ただし、運用面を考慮して積層熱電変換素子の厚みを等しいと仮定する。すなわち、熱浴21と熱浴22との距離、及び、熱浴23と熱浴24との距離は等しい(L=1cm)とする。 Here, when the heat bath 22 and the heat bath 24 are kept at 50 ° C. by water cooling (T 1a = T 1b ), the energy of q = 1.0 kW / m 2 is commonly supplied from sunlight. , consider what temperature of the upper part of the heat bath 21 temperature (T 2a) and the hot bath 23 (T 2b) is many times. That is, the temperature difference ΔT1 between the upper heat bath 21 and the lower heat bath 22 and the temperature difference ΔT2 between the upper heat bath 23 and the lower heat bath 24 are considered. Further, consider the thermoelectromotive forces V1 and V2 of each laminated thermoelectric conversion element at that time. However, it is assumed that the thickness of the laminated thermoelectric conversion element is equal in consideration of operation. That is, the distance between the heat bath 21 and the heat bath 22 and the distance between the heat bath 23 and the heat bath 24 are equal (L 0 = 1 cm).
 図6の左側(a)単純型積層熱電変換素子51の場合、温度差ΔT1は以下のように計算される。
 熱電変換素子本体10の1層分の厚さをd=100μm(設定値)とし、熱電変換素子本体10の全体の厚さ(熱浴間の厚さ)をL=1cm(設定値)とする。このとき、d、Lより、熱電変換素子本体10の層数は、N1(=L/d)=100層となる。
 また、熱電変換素子本体10の1層分の熱伝導率をλ=5W/mK(設定値)とする。このとき、L、λより、熱電変換素子本体10の全体(100層)の熱透過率は、k1(=λ/L)=500W/mKとなる。
 以上から、太陽光からの熱流q=1.0kW/m(設定値)のとき、q、k1より、熱電変換素子本体10の全体(100層)での温度差は、ΔT1(=q/k1)=2℃(K)となる。ことのき、上部の熱浴21は52℃となる。
In the case of the left side (a) simple laminated thermoelectric conversion element 51 in FIG. 6, the temperature difference ΔT1 is calculated as follows.
The thickness of one layer of the thermoelectric conversion element body 10 is d = 100 μm (set value), and the entire thickness of the thermoelectric conversion element body 10 (thickness between the heat baths) is L 0 = 1 cm (set value). To do. At this time, from d and L 0 , the number of layers of the thermoelectric conversion element body 10 is N1 (= L 0 / d) = 100 layers.
Further, the thermal conductivity of one layer of the thermoelectric conversion element body 10 is λ = 5 W / mK (set value). In this case, L 0, from lambda, the thermal transmittance of the entire (100 layers) of the thermoelectric conversion element main body 10 becomes k1 (= λ / L 0) = 500W / m 2 K.
From the above, when the heat flow from sunlight q = 1.0 kW / m 2 (set value), the temperature difference in the entire thermoelectric conversion element body 10 (100 layers) is ΔT1 (= q / k1) = 2 ° C. (K). At this time, the temperature of the upper heat bath 21 is 52 ° C.
 更に、図6の左側(a)単純型積層熱電変換素子51の場合、熱起電力V1は、上記ΔT1を用いれば、以下のように計算される。
 熱電変換素子本体10の1層分のスピンゼーベック係数をSS=1μV/K(設定値)とする。このとき、N1、ΔT1、SSより、熱電変換素子本体10の全体(100層)の熱起電力はV1=ΔT1/N1×SS×N1=2μVとなる。なお、この場合、スペーサ層5が無いので、フォノンドラッグの効果は無い。
Further, in the case of the left side (a) simple laminated thermoelectric conversion element 51 in FIG. 6, the thermoelectromotive force V1 is calculated as follows using ΔT1.
The spin Seebeck coefficient for one layer of the thermoelectric conversion element body 10 is SS = 1 μV / K (set value). At this time, from N1, ΔT1, and SS, the thermoelectromotive force of the entire thermoelectric conversion element body 10 (100 layers) is V1 = ΔT1 / N1 × SS × N1 = 2 μV. In this case, since there is no spacer layer 5, there is no phonon drag effect.
 一方、図6の右側(b)スペーサ型積層熱電変換素子52の場合、温度差ΔT2は以下のように計算される。
 熱電変換素子本体10の1層分の厚さをd=100μm(設定値)とし、スペーサ層5の1層分の厚さをds=400μm(設定値)とし、(熱電変換素子本体10+スペーサ層5)の全体の厚さ(熱浴間の厚さ)をL=1cm(設定値)とする。このとき、d、ds、Lより、(熱電変換素子本体10+スペーサ層5)の層数は、N2(=L/(d+ds))=20層となる。
 また、熱電変換素子本体10の1層分の熱伝導率をλ=5W/mK(設定値)とし、スペーサ層5の1層分の熱伝導率をλs=0.1W/mK(設定値)とする。このとき、L、λ、λsより、(熱電変換素子本体10+スペーサ層5)の全体(20層)の熱透過率は、k2=12.4W/mKとなる。
 以上から、太陽光からの熱流q=1.0kW/m(設定値)のとき、q、k2より、(熱電変換素子本体10+スペーサ層5)の全体(20層)での温度差は、ΔT2(=q/k2)=80.4℃(K)となる。このとき、熱電変換素子本体10からの寄与はΔT21=0.4℃(K)、スペーサ層5からの寄与はΔT22=80℃(K)である。ことのき、上部の熱浴21は130.4℃となる。
On the other hand, in the case of the right side (b) spacer-type laminated thermoelectric conversion element 52 in FIG. 6, the temperature difference ΔT2 is calculated as follows.
The thickness of one layer of the thermoelectric conversion element body 10 is d = 100 μm (set value), the thickness of one layer of the spacer layer 5 is ds = 400 μm (set value), and (thermoelectric conversion element body 10 + spacer layer The total thickness of 5) (thickness between heat baths) is set to L 0 = 1 cm (set value). At this time, from d, ds, and L 0 , the number of layers of (thermoelectric conversion element body 10 + spacer layer 5) is N 2 (= L 0 / (d + ds)) = 20 layers.
The thermal conductivity of one layer of the thermoelectric conversion element body 10 is λ = 5 W / mK (set value), and the thermal conductivity of one layer of the spacer layer 5 is λs = 0.1 W / mK (set value). And At this time, the heat transmittance of the whole (20 layers) of (thermoelectric conversion element body 10 + spacer layer 5) is k2 = 12.4 W / m 2 K from L 0 , λ, λs.
From the above, when the heat flow from sunlight q = 1.0 kW / m 2 (set value), the temperature difference in the whole (20 layers) of (thermoelectric conversion element body 10 + spacer layer 5) from q and k2 is ΔT2 (= q / k2) = 80.4 ° C. (K). At this time, the contribution from the thermoelectric conversion element body 10 is ΔT21 = 0.4 ° C. (K), and the contribution from the spacer layer 5 is ΔT22 = 80 ° C. (K). At this time, the upper heat bath 21 is 130.4 ° C.
 更に、図6の右側(b)スペーサ型積層熱電変換素子52の場合、熱起電力V2は、上記ΔT2(ΔT21、ΔT22)を用いれば、以下のように計算される。
 熱電変換素子本体10の1層分のスピンゼーベック係数をSS=1μV/K(設定値)とする。このとき、N2、ΔT21、SSより、熱電変換素子本体10の全体(20層)の熱起電力はV21=ΔT21/N2×SS×N2=0.4μVとなる。
 一方、スペーサ層5の1層分のフォノンドラッグ係数をSSPD=1μV/K(設定値)とする。このとき、N2、ΔT22、SSPDより、スペーサ層5の全体(20層)の寄与による熱起電力はV22=ΔT22/N2×SSPD×N2=80μVとなる。
 以上のことから、スペーサ型積層熱電変換素子52の場合、熱起電力はV2=V21+V22=80.4μVとなる。
Further, in the case of the right side (b) spacer-type laminated thermoelectric conversion element 52 in FIG. 6, the thermoelectromotive force V2 is calculated as follows using ΔT2 (ΔT21, ΔT22).
The spin Seebeck coefficient for one layer of the thermoelectric conversion element body 10 is SS = 1 μV / K (set value). At this time, the thermoelectromotive force of the entire thermoelectric conversion element body 10 (20 layers) is V21 = ΔT21 / N2 × SS × N2 = 0.4 μV from N2, ΔT21, and SS.
On the other hand, the phonon drag coefficient for one layer of the spacer layer 5 is set to SSPD = 1 μV / K (set value). At this time, the thermoelectromotive force due to the contribution of the entire spacer layer 5 (20 layers) is V22 = ΔT22 / N2 × SSPD × N2 = 80 μV from N2, ΔT22, and SSPD.
From the above, in the case of the spacer-type laminated thermoelectric conversion element 52, the thermoelectromotive force is V2 = V21 + V22 = 80.4 μV.
 以上に示すように、図6の左側(a)単純型積層熱電変換素子51の場合、熱電変換素子本体10の数(N1)は100層と多い。しかし、熱透過率(k1)が高いためその温度差(ΔT1)は小さい(2℃)。その結果、熱起電力(V1)はそれほど大きくならない(2μV)。一方、図6の右側(b)スペーサ型積層熱電変換素子52の場合、スペーサ層5が入る分、熱電変換素子本体10(N2)は20層と少ない。そのため、そのままでは熱起電力は低下するとも考えられる。しかし、スペーサ層5は、フォノンドラッグ効果を発現させる。すなわち、熱電変換素子本体10の磁性体層や電極のスピンは、フォノンを介してスペーサ層5にかかる温度勾配を感じ、その温度勾配が逆スピンホール電圧に反映される。そのため、熱電変換素子本体10の本来の熱起電力(V21)だけでなく、フォノンドラッグの効果による熱起電力(V22)も付加される。加えて、スペーサ層5の熱伝導率は低いため、スペーサ層5の温度勾配(ΔT22)は熱電変換素子本体10のそれに比べて大きい(80℃)。その結果、トータルの熱起電力(V2)は非常に大きくなる(80.4μV)。 As described above, in the case of the left side (a) simple laminated thermoelectric conversion element 51 in FIG. 6, the number (N1) of thermoelectric conversion element bodies 10 is as large as 100 layers. However, since the heat transmittance (k1) is high, the temperature difference (ΔT1) is small (2 ° C.). As a result, the thermoelectromotive force (V1) does not increase so much (2 μV). On the other hand, in the case of the right side (b) spacer-type laminated thermoelectric conversion element 52 in FIG. 6, the thermoelectric conversion element main body 10 (N2) is as few as 20 layers as the spacer layer 5 is inserted. Therefore, it is considered that the thermoelectromotive force is lowered as it is. However, the spacer layer 5 exhibits a phonon drag effect. That is, the spin of the magnetic layer and the electrode of the thermoelectric conversion element body 10 feels a temperature gradient applied to the spacer layer 5 through the phonons, and the temperature gradient is reflected in the reverse spin Hall voltage. Therefore, not only the original thermoelectromotive force (V21) of the thermoelectric conversion element body 10 but also the thermoelectromotive force (V22) due to the effect of phonon drag is added. In addition, since the thermal conductivity of the spacer layer 5 is low, the temperature gradient (ΔT22) of the spacer layer 5 is larger (80 ° C.) than that of the thermoelectric conversion element body 10. As a result, the total thermoelectromotive force (V2) becomes very large (80.4 μV).
 すなわち、スペーサ層5を設けることで、フォノンドラッグの効果(SSPD係数に反映)により、上述の熱電変換素子1の熱起電力を大きくすることができる。更に、複数の熱電変換素子1を積層することにより、より大きな熱起電力を得ることができる。特に、本実施の形態のスペーサ層5は、低フォノン伝導材料11中に、フォノンを弾性的に伝搬することができる高フォノン伝導材料12を混合している。そのため、平均熱伝導率を低くしてスペーサ層5全体に生じた温度差を保持しつつ、高フォノン伝導材料12によりフォノンを弾性的に伝搬させることができる。それにより、スペーサ層5全体に生じた温度差に起因したフォノンドラッグ効果を効率的に得ることができる。 That is, by providing the spacer layer 5, the thermoelectromotive force of the thermoelectric conversion element 1 can be increased due to the effect of phonon drag (reflected in the SSPD coefficient). Furthermore, a larger thermoelectromotive force can be obtained by laminating a plurality of thermoelectric conversion elements 1. In particular, in the spacer layer 5 of the present embodiment, a high phonon conductive material 12 capable of elastically propagating phonons is mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity. Thereby, the phonon drag effect resulting from the temperature difference produced in the entire spacer layer 5 can be obtained efficiently.
 次に、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の構成について説明する。図7A~図7Cは、本発明の第1の実施の形態に係る熱電変換素子におけるスペーサ層の構成例を示す模式図である。これらの図は、スペーサ層の例であり、上記特性を満足するのであれば、他の構成を有していてもよい。 Next, the configuration of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention will be described. 7A to 7C are schematic views showing a configuration example of the spacer layer in the thermoelectric conversion element according to the first embodiment of the present invention. These figures are examples of the spacer layer, and may have other configurations as long as the above characteristics are satisfied.
 図7Aを参照すると、スペーサ層5では、低フォノン伝導材料11の母材に繊維状の高フォノン伝導材料12が概ねランダムに分散されている。このとき、低フォノン伝導材料11の全体に亘って配向せずに分散されていることが好ましい。すなわち、スペーサ層5内で、高フォノン伝導材料12が概ね同じ密度で存在していることが好ましい。また、上下方向(z方向)にフォノンの流れを促進できれば、必ずしも上下方向だけに延伸している必要は無く、左右方向(x方向やy方向)にも延伸していてよい。その場合、例えば、各繊維状の高フォノン伝導材料12において、左右方向の成分と比較して、上下方向の成分が多ければよい。あるいは、経路は問わないが、一つ又は複数の高フォノン伝道材料12が、下部(-z側の部分)から上部(+z側の部分)に、フォノン平均自由行程Λの距離以内で、連続的につながっていればよい。スペーサ層5のその他の特性については、上述のとおりである。 Referring to FIG. 7A, in the spacer layer 5, the fibrous high phonon conductive material 12 is dispersed almost randomly in the base material of the low phonon conductive material 11. At this time, the low phonon conductive material 11 is preferably dispersed without being oriented. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density. Further, as long as the phonon flow can be promoted in the vertical direction (z direction), it is not always necessary to extend only in the vertical direction, and it may be extended in the horizontal direction (x direction or y direction). In this case, for example, each fibrous high phonon conductive material 12 only needs to have a larger vertical component than a horizontal component. Alternatively, regardless of the path, one or a plurality of high phonon transmission materials 12 are continuously formed from the lower part (the −z side part) to the upper part (the + z side part) within a distance of the phonon mean free path Λ. If it is connected to. Other characteristics of the spacer layer 5 are as described above.
 図7Bを参照すると、スペーサ層5では、低フォノン伝導材料11の母材にフィルム状の高フォノン伝導材料12がxy面に概ね垂直に配置されている(垂直方向に配向している)。このとき、低フォノン伝導材料11の全体に亘って分散されていることが好ましい。すなわち、スペーサ層5内で、高フォノン伝導材料12が概ね同じ密度で存在していることが好ましい。ただし、高フォノン伝導材料12は平面的なフィルムでなくてもよく、曲面的なフィルムや曲面と平面とが混合したフィルムであってもよい。また、高フォノン伝導材料12は厚みが一定のフィルムでなくてもよく、厚みが位置により異なっていてもよい。更に、yz面に互いに平行に配置されていなくてもよく、xy面に概ね垂直であればこの配置に限定されるものではない。互いに平行でなくてもよいし、互いに交差していてもよいし、等間隔でなくてもよい。更に、上下方向(z方向)にフォノンの流れを促進できれば、高フォノン伝導材料12のいくつかがxy面に概ね垂直でなくてもよいし、一つの高フォノン伝導材料12の一部がxy面に概ね垂直でなくてもよい。スペーサ層5のその他の特性については、上述のとおりである。 Referring to FIG. 7B, in the spacer layer 5, a film-like high phonon conductive material 12 is disposed on the base material of the low phonon conductive material 11 substantially perpendicularly to the xy plane (orientated in the vertical direction). At this time, it is preferable that the low phonon conductive material 11 is dispersed throughout. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density. However, the high phonon conductive material 12 may not be a flat film, but may be a curved film or a film in which a curved surface and a flat surface are mixed. Further, the high phonon conductive material 12 may not be a film having a constant thickness, and the thickness may be different depending on the position. Furthermore, it does not need to be arranged parallel to the yz plane, and is not limited to this arrangement as long as it is substantially perpendicular to the xy plane. They do not have to be parallel to each other, may cross each other, and may not be equally spaced. Furthermore, as long as the phonon flow can be promoted in the vertical direction (z direction), some of the high phonon conductive materials 12 may not be substantially perpendicular to the xy plane, or a part of one high phonon conductive material 12 may be the xy plane. It does not have to be generally perpendicular. Other characteristics of the spacer layer 5 are as described above.
 図7Cを参照すると、スペーサ層5では、低フォノン伝導材料11の母材にロッド状の高フォノン伝導材料12がxy面に概ね垂直に配置されている(垂直方向に配向している)。このとき、低フォノン伝導材料11の全体に亘って分散されていることが好ましい。すなわち、スペーサ層5内で、高フォノン伝導材料12が概ね同じ密度で存在していることが好ましい。ただし、高フォノン伝導材料12は真っ直ぐのロッドでなくてもよく、曲がったロッドや曲がったロッドと真っ直ぐのロッドとが混合していてもよい。また、高フォノン伝導材料12は断面が一定のロッドでなくてもよく、断面が位置により異なっていてもよい。更に、互いに等間隔に配置されてなくてもよく、分布に極端に斑がなければ等間隔である必要は無い。更に、上下方向(z方向)にフォノンの流れを促進できれば、高フォノン伝導材料12のいくつかがxy面に概ね垂直でなくてもよいし、一つの高フォノン伝導材料12の一部がxy面に概ね垂直でなくてもよい。スペーサ層5のその他の特性については、上述のとおりである。 Referring to FIG. 7C, in the spacer layer 5, the rod-shaped high phonon conductive material 12 is arranged substantially perpendicular to the xy plane (oriented in the vertical direction) on the base material of the low phonon conductive material 11. At this time, it is preferable that the low phonon conductive material 11 is dispersed throughout. That is, it is preferable that the high phonon conductive material 12 exists in the spacer layer 5 at substantially the same density. However, the high phonon conductive material 12 may not be a straight rod, and a bent rod or a bent rod and a straight rod may be mixed. Further, the high phonon conductive material 12 may not be a rod having a constant cross section, and the cross section may be different depending on the position. Furthermore, they do not have to be equally spaced from each other, and need not be equally spaced if the distribution is not extremely uneven. Furthermore, as long as the phonon flow can be promoted in the vertical direction (z direction), some of the high phonon conductive materials 12 may not be substantially perpendicular to the xy plane, or a part of one high phonon conductive material 12 may be the xy plane. It does not have to be generally perpendicular. Other characteristics of the spacer layer 5 are as described above.
4.熱電変換素子の動作
 次に、熱電変換素子1の動作について図4を参照して説明する。なお、この動作は図6の積層熱電変換素子52においても同様である。
4). Operation of Thermoelectric Conversion Element Next, the operation of the thermoelectric conversion element 1 will be described with reference to FIG. This operation is the same in the laminated thermoelectric conversion element 52 of FIG.
 まず、熱電変換素子1において、磁性体層2に外部磁場Hを印加し、磁性体層2を所定の方向に磁化する(磁化M)。図4では、磁性体層2を-y方向に磁化している。その後、磁性体層2の膜面(xy面)に対して垂直方向(z方向)に温度勾配を印加する。図4では、-z方向に温度勾配∇T(スペーサ層5の側が高温の温度差ΔT)を印加している。そのようにすると、磁性体層2におけるスピンゼーベック効果により、この温度勾配∇Tに沿って、低温方向(+z方向)に角運動量の流れ(スピン流)が誘起される。この磁性体層2において生成されたスピン流は、スペーサ層5の特に高フォノン伝導材料12のフォノンや磁性体層2のフォノンと相互作用して増強されながら(フォノンドラッグ効果)、近接する電極3へと流れ込む。流れ込んだスピン流は、この電極3における逆スピンホール効果によって、磁性体層2の磁化Mの方向に対して垂直方向の電流Jsへと変換される。この電流Jsは、電極3のx方向の両端に設けられた二つの端子(図示されず)間に電位差Vを生じさせる。従って、当該電位差Vをその二つの端から熱起電力Eとして取り出すことができる。すなわち、熱電変換素子1は、磁性体層2に印加される温度差(温度勾配∇T)から熱起電力Eを生成する。 First, in the thermoelectric conversion element 1, an external magnetic field H is applied to the magnetic layer 2 to magnetize the magnetic layer 2 in a predetermined direction (magnetization M). In FIG. 4, the magnetic layer 2 is magnetized in the −y direction. Thereafter, a temperature gradient is applied in the direction (z direction) perpendicular to the film surface (xy plane) of the magnetic layer 2. In FIG. 4, a temperature gradient ∇T (temperature difference ΔT where the spacer layer 5 side is high temperature) is applied in the −z direction. As a result, the spin Seebeck effect in the magnetic layer 2 induces an angular momentum flow (spin flow) in the low temperature direction (+ z direction) along the temperature gradient ∇T. While the spin current generated in the magnetic layer 2 interacts with the phonons of the high-phonon conductive material 12 of the spacer layer 5 and the phonons of the magnetic layer 2 and is enhanced (phonon drag effect), the adjacent electrode 3 Flow into. The flowing spin current is converted into a current Js perpendicular to the direction of the magnetization M of the magnetic layer 2 by the reverse spin Hall effect in the electrode 3. This current Js causes a potential difference V between two terminals (not shown) provided at both ends of the electrode 3 in the x direction. Therefore, the potential difference V can be taken out as the thermoelectromotive force E from the two ends. That is, the thermoelectric conversion element 1 generates the thermoelectromotive force E from the temperature difference (temperature gradient ∇T) applied to the magnetic layer 2.
 以上のようにして、本実施の形態に係る熱電変換素子1が動作する。 As described above, the thermoelectric conversion element 1 according to the present embodiment operates.
 本実施の形態に係る熱電変換素子の構造において、スペーサ層5を設け、そのフォノンドラッグ効果を利用することにより、スペーサ層5に例えば100nm以下の薄い電極/磁性体層構造を成膜するだけで高起電力の熱電変換デバイスが実現できる。それにより、バルク磁性体などを用いる場合に比べ、原材料コスト・製造コストを大幅に低減することができる。 In the structure of the thermoelectric conversion element according to the present embodiment, the spacer layer 5 is provided, and the phonon drag effect is used to form a thin electrode / magnetic layer structure of, for example, 100 nm or less on the spacer layer 5. A high electromotive force thermoelectric conversion device can be realized. Thereby, compared with the case where a bulk magnetic body etc. are used, raw material cost and manufacturing cost can be reduced significantly.
5.熱電変換素子の製造方法
 次に、熱電変換素子1(図4)の製造方法の一例について説明する。なお、この製造方法は積層熱電変換素子52(図6)においても同様である。
5. Method for Manufacturing Thermoelectric Conversion Element Next, an example of a method for manufacturing the thermoelectric conversion element 1 (FIG. 4) will be described. This manufacturing method is the same for the laminated thermoelectric conversion element 52 (FIG. 6).
 まず、基板を準備し、スパッタ成膜装置のチャンバ内のフォルダに固定する。続いて、基板上にスパッタ法により白金(Pt)膜の電極3を形成する。次に、電極3付きの基板をエアロゾル成膜装置のチャンバ内のフォルダに固定する。続いて、電極3上にエアロゾルデポジション法によりイットリウム鉄ガーネット(YIG)膜の磁性体層2を形成する。次に、磁性体層2及び電極3付きの基板を塗布装置のチャンバ内のフォルダに固定する。続いて、磁性体層2上にスピンコート法により高フォノン伝導材料12を含む低フォノン伝導材料11を塗布し、熱処理してスペーサ層5を形成する。以上のようにして熱電変換素子1が製造される。なお、スペーサ層5の製造方法のバリエーションについては後述される。 First, prepare the substrate and fix it to the folder in the chamber of the sputter deposition system. Subsequently, a platinum (Pt) film electrode 3 is formed on the substrate by sputtering. Next, the substrate with the electrode 3 is fixed to a folder in the chamber of the aerosol film forming apparatus. Subsequently, a magnetic layer 2 of an yttrium iron garnet (YIG) film is formed on the electrode 3 by an aerosol deposition method. Next, the substrate with the magnetic layer 2 and the electrode 3 is fixed to a folder in the chamber of the coating apparatus. Subsequently, the low phonon conductive material 11 including the high phonon conductive material 12 is applied on the magnetic layer 2 by spin coating, and the spacer layer 5 is formed by heat treatment. The thermoelectric conversion element 1 is manufactured as described above. In addition, the variation of the manufacturing method of the spacer layer 5 is mentioned later.
 積層熱電変換素子52(図6)の場合には、上記プロセスを繰り返す、又は、上記熱電変換素子1を複数個製造して接着などの方法で重ね合わせる。そのようにして、積層熱電変換素子52が製造される。 In the case of the laminated thermoelectric conversion element 52 (FIG. 6), the above process is repeated, or a plurality of the thermoelectric conversion elements 1 are manufactured and superposed by a method such as adhesion. Thus, the laminated thermoelectric conversion element 52 is manufactured.
 上記製造方法では、磁性体層2はエアロゾルデポジション法(AD法)で形成し、電極3はスパッタ法で形成し、スペーサ層5はスピンコート法で形成している。しかし、これは一例であり、本発明はこの例に限定されるものではなく、上述のような各種成膜方法を適用することができる。 In the above manufacturing method, the magnetic layer 2 is formed by an aerosol deposition method (AD method), the electrode 3 is formed by a sputtering method, and the spacer layer 5 is formed by a spin coating method. However, this is merely an example, and the present invention is not limited to this example, and various film forming methods as described above can be applied.
6.作用効果
 本実施の形態では、少なくとも以下のような作用効果を得ることができる。ただし、本明細書の記載と添付図面とから、その他の作用効果についても容易に確認することができる。
6). Effects In the present embodiment, at least the following effects can be obtained. However, other functions and effects can be easily confirmed from the description of the present specification and the accompanying drawings.
 本実施の形態は、熱電変換素子本体10の熱抵抗を高めることが困難であることに鑑み、上記特性を有するスペーサ層5を熱電変換素子本体10に接して設けている。スペーサ層5では、低フォノン伝導材料11中に、フォノンを弾性的に伝搬することができる高フォノン伝導材料12を分散的に混合している。そのため、平均熱伝導率を低くしてスペーサ層5全体に生じた温度差を保持しつつ、高フォノン伝導材料12によりフォノンを弾性的に伝搬させることができる。それにより、スペーサ層5の特に高フォノン伝導材料12のフォノンや磁性体層2のフォノンと磁性体層2のスピン流とを相互作用させて、スペーサ層5全体に生じた温度差に起因したフォノンドラッグ効果を効率的に得ることができる。すなわち、フォノンドラッグ効果を効率的に発現させることができ、熱電変換素子本体10の熱抵抗を高めたのと同様の効果を得ることができる。すなわち、熱を有効に利用して効率的な熱電変換を行うことが可能となる。 In the present embodiment, in view of the difficulty in increasing the thermal resistance of the thermoelectric conversion element body 10, the spacer layer 5 having the above characteristics is provided in contact with the thermoelectric conversion element body 10. In the spacer layer 5, a high phonon conductive material 12 capable of elastically propagating phonons is dispersedly mixed in the low phonon conductive material 11. Therefore, phonons can be elastically propagated by the high phonon conductive material 12 while maintaining the temperature difference generated in the entire spacer layer 5 by reducing the average thermal conductivity. As a result, the phonon of the spacer layer 5, particularly the phonon of the high phonon conductive material 12, the phonon of the magnetic layer 2, and the spin current of the magnetic layer 2 interact with each other. A drag effect can be obtained efficiently. That is, the phonon drag effect can be efficiently expressed, and the same effect as that of increasing the thermal resistance of the thermoelectric conversion element body 10 can be obtained. That is, efficient thermoelectric conversion can be performed using heat effectively.
(第2の実施の形態)
 次に、本発明の第2の実施の形態に係る熱電変換素子の構成について説明する。図8は、本発明の第2の実施の形態に係る熱電変換素子の構成を示す断面図である。本実施の形態に係る熱電変換素子1aは、スペーサ層5aの構成が第1の実施の形態の熱電変換素子1のスペーサ層5と相違する。以下、第1の実施の形態と相違する点について主に説明する。
(Second Embodiment)
Next, the configuration of the thermoelectric conversion element according to the second embodiment of the present invention will be described. FIG. 8 is a cross-sectional view showing the configuration of the thermoelectric conversion element according to the second embodiment of the present invention. The thermoelectric conversion element 1a according to the present embodiment is different from the spacer layer 5 of the thermoelectric conversion element 1 according to the first embodiment in the configuration of the spacer layer 5a. Hereinafter, differences from the first embodiment will be mainly described.
 スペーサ層5aは、多層構造を有している。すなわち、スペーサ層5aは、高フォノン伝導材料12を含んだ低フォノン伝導材料11と、反射層13とを備えている。高フォノン伝導材料12を含んだ低フォノン伝導材料11は、第1の実施の形態に示したとおりである。反射層13は、高フォノン伝導材料12を伝導するフォノンのうち、下方(-z方向)に伝導してくるフォノンを反射する。すなわち、高フォノン伝導材料12を伝導するフォノンが下方(-z方向)に伝導することを防止する。下方(-z方向)に伝導してくるフォノンは必ずしも多くないが、その伝導を防止することで、フォノン伝導の効率をより高めることができる。それにより、フォノンドラッグをより効果的に利用することができる。 The spacer layer 5a has a multilayer structure. That is, the spacer layer 5 a includes the low phonon conductive material 11 including the high phonon conductive material 12 and the reflective layer 13. The low phonon conductive material 11 including the high phonon conductive material 12 is as shown in the first embodiment. The reflective layer 13 reflects phonons conducted downward (−z direction) among phonons conducted through the high phonon conductive material 12. That is, phonons that are conducted through the high phonon conducting material 12 are prevented from conducting downward (−z direction). The number of phonons conducted downward (−z direction) is not necessarily large, but the efficiency of phonon conduction can be further improved by preventing the conduction. Thereby, phonon drag can be used more effectively.
 ここで、反射層13がフォノンを反射する原理について説明する。図9は、高フォノン伝導材料と反射層との界面を模式的に示す断面図である。フォノンが高フォノン伝導材料12と反射層13との界面B1を反射するためには、高フォノン伝導材料12の音響インピーダンスと反射層13の音響インピーダンスとが整合していないことが好ましいと考えられる。具体的には、以下のとおりである。高フォノン伝導材料12の音響インピーダンスをZ、反射層13の音響インピーダンスをZとすれば、高フォノン伝導材料12からのフォノンを反射層13が反射するときの界面B1での反射率R01は下式で表される。
   R01=|Z-Z|/(Z+Z) …(3)
このとき、音響インピーダンスが整合せず、反射率が透過率よりも相対的に大きいことが好ましい状態と考えられる。実験的又はシミュレーション的には、反射率(絶対値)が1/2より大きく1よりも小さい範囲であればフォノンの反射により好ましいと考えられる。この場合、反射層13の音響インピーダンスは、高フォノン伝導材料12の音響インピーダンスの3倍以上、もしくは1/3以下であることが好ましい。
Here, the principle that the reflective layer 13 reflects phonons will be described. FIG. 9 is a cross-sectional view schematically showing the interface between the high-phonon conductive material and the reflective layer. In order for the phonon to reflect the interface B1 between the high phonon conductive material 12 and the reflective layer 13, it is preferable that the acoustic impedance of the high phonon conductive material 12 and the acoustic impedance of the reflective layer 13 are not matched. Specifically, it is as follows. If the acoustic impedance of the high phonon conductive material 12 is Z 1 and the acoustic impedance of the reflective layer 13 is Z 2 , the reflectance R 01 at the interface B 1 when the reflective layer 13 reflects the phonons from the high phonon conductive material 12. Is represented by the following equation.
R 01 = | Z 2 −Z 1 | / (Z 1 + Z 2 ) (3)
At this time, it is considered preferable that the acoustic impedance does not match and the reflectance is relatively larger than the transmittance. Experimentally or simulationally, if the reflectance (absolute value) is in a range larger than ½ and smaller than 1, it is considered preferable for phonon reflection. In this case, the acoustic impedance of the reflective layer 13 is preferably 3 times or more or 1/3 or less of the acoustic impedance of the high phonon conductive material 12.
 なお、熱源から又は高フォノン伝導材料12からのフォノンは反射層13を介して、低フォノン伝導材料11に伝導し、そこから再び高フォノン伝導材料に伝導する場合もある。 Note that phonons from the heat source or from the high phonon conductive material 12 may be conducted to the low phonon conductive material 11 through the reflective layer 13 and from there to the high phonon conductive material again.
 反射層13は、上記の反射率R01の条件を満足していれば、上述された低フォノン伝導材料で形成されてもよいし、高フォノン伝導材料で形成されていてもよい。すなわち、反射層13は、低フォノン伝導材料11又は高フォノン伝導材料12と同様の上述の材料を用いることができる。ただし、上記図9の内容を考慮して、低フォノン伝導材料11から下方(-z方向)に向かうフォノンを反射層13で反射させることを考えた場合、反射層13の音響インピーダンスは、低フォノン伝導材料11の音響インピーダンスよりも大きいことがより好ましいと考えられる。 The reflective layer 13 may be formed of the above-described low phonon conductive material or a high phonon conductive material as long as the above-described reflectance R 01 is satisfied. That is, the reflective layer 13 can be made of the above-described material similar to the low phonon conductive material 11 or the high phonon conductive material 12. However, in consideration of the contents of FIG. 9 described above, when the reflection layer 13 reflects the phonons that are directed downward (−z direction) from the low phonon conductive material 11, the acoustic impedance of the reflection layer 13 is low phonon. It is more preferable that it is larger than the acoustic impedance of the conductive material 11.
 反射層13を設ける効果は、特に熱電変換素子1aを積層した場合に顕著である。図10Aは、本発明の第2の実施の形態に係る熱電変換素子の他の構成を示す断面図である。この図では、熱電変換素子1aが積層されて、スペーサ型積層熱電変換素子52aを構成している。この場合、第1の実施の形態で示したスペーサ層5を有する積層熱電変換素子52の効果(図6)を得ると共に、上述された下方(-z方向)に向かうフォノンの流れを抑制する効果も得ることができる。それにより、フォノンドラッグをより効果的に利用することができる。 The effect of providing the reflective layer 13 is particularly remarkable when the thermoelectric conversion elements 1a are stacked. FIG. 10A is a cross-sectional view showing another configuration of the thermoelectric conversion element according to the second embodiment of the present invention. In this figure, the thermoelectric conversion element 1a is laminated | stacked and the spacer type | mold lamination | stacking thermoelectric conversion element 52a is comprised. In this case, the effect (FIG. 6) of the laminated thermoelectric conversion element 52 having the spacer layer 5 shown in the first embodiment is obtained, and the effect of suppressing the phonon flow directed downward (−z direction) described above. Can also be obtained. Thereby, phonon drag can be used more effectively.
 図10Bは、熱電変換素子を積層した場合での問題点を模式的に示す断面図である。この図では、第1の実施の形態の熱電変換素子1が積層された積層熱電変換素子52を示している。この場合、下側の熱電変換素子1における下から上へ向かう熱いフォノンのと、上側の熱電変換素子1における上から下へ向かう冷たいフォノンの流れとがキャンセルして、フォノンドラッグの効果を低減させてしまうおそれがある。しかし、上記の反射層3を付加した熱電変換素子1aを複数積層させた積層熱電変換素子52a(図10A)では、上述された下方(-z方向)に向かうフォノンの流れを抑制する効果あるので、フォノンのキャンセルが起こらず、フォノンドラッグをより効果的に利用することができる。 FIG. 10B is a cross-sectional view schematically showing a problem when thermoelectric conversion elements are stacked. This figure shows a laminated thermoelectric conversion element 52 in which the thermoelectric conversion elements 1 of the first embodiment are laminated. In this case, the hot phonon from the bottom to the top in the lower thermoelectric conversion element 1 and the cold phonon flow from the top to the bottom in the upper thermoelectric conversion element 1 are canceled, reducing the effect of the phonon drag. There is a risk that. However, in the laminated thermoelectric conversion element 52a (FIG. 10A) in which a plurality of thermoelectric conversion elements 1a to which the reflective layer 3 is added are laminated, there is an effect of suppressing the above-described downward (−z direction) phonon flow. The phonon drag can be used more effectively without canceling the phonon.
 熱電変換素子1a(積層熱電変換素子52a)の動作は、反射層13が下方へ向かうフォノンを反射するほかは、第1の実施の形態と同様である。 The operation of the thermoelectric conversion element 1a (laminated thermoelectric conversion element 52a) is the same as that of the first embodiment, except that the reflection layer 13 reflects phonons traveling downward.
 熱電変換素子1a(積層熱電変換素子52a)の製造方法は、第1の実施の形態の製造方法において、高フォノン伝導材料12を含む低フォノン伝導材料11を形成後、その上にスピンコート法により反射層13を塗布し、熱処理することでスペーサ層5aを形成するほかは、第1の実施の形態と同様である。 The manufacturing method of the thermoelectric conversion element 1a (laminated thermoelectric conversion element 52a) is the same as the manufacturing method of the first embodiment, in which the low phonon conductive material 11 including the high phonon conductive material 12 is formed and then spin coated thereon. The present embodiment is the same as the first embodiment except that the reflective layer 13 is applied and heat-treated to form the spacer layer 5a.
 熱電変換素子1a(積層熱電変換素子52a)の作用効果は、反射層13が下方へ向かうフォノンを反射することによるフォノンドラッグをより効果的に利用することのほかは、第1の実施の形態と同様である。 The effect of the thermoelectric conversion element 1a (laminated thermoelectric conversion element 52a) is the same as that of the first embodiment, except that the reflection layer 13 more effectively uses phonon drag caused by reflecting downward phonons. It is the same.
(第3の実施の形態)
 次に、本発明の第3の実施の形態に係る熱電変換素子の構成について説明する。図11は、本発明の第3の実施の形態に係る熱電変換素子の構成を示す断面図である。本実施の形態に係る熱電変換素子1bは、スペーサ層5bの構成が第2の実施の形態の熱電変換素子1aのスペーサ層5aと相違する。以下、第2の実施の形態と相違する点について主に説明する。
(Third embodiment)
Next, the configuration of the thermoelectric conversion element according to the third embodiment of the present invention will be described. FIG. 11 is a cross-sectional view showing a configuration of a thermoelectric conversion element according to the third embodiment of the present invention. The thermoelectric conversion element 1b according to the present embodiment is different from the spacer layer 5a of the thermoelectric conversion element 1a of the second embodiment in the configuration of the spacer layer 5b. Hereinafter, differences from the second embodiment will be mainly described.
 スペーサ層5bは、多層構造を有している。すなわち、スペーサ層5bは、高フォノン伝導材料12を含んだ低フォノン伝導材料11と、反射層13と、透過層14とを備えている。高フォノン伝導材料12を含んだ低フォノン伝導材料11及び反射層13は、第2の実施の形態に示したとおりである。透過層14は、高フォノン伝導材料12を伝導するフォノンのうち、上方(+z方向)に伝導してくるフォノンを透過させる。すなわち、高フォノン伝導材料12を伝導するフォノンが反射されることを防止する。フォノンの反射を防止することで、フォノン伝導の効率をより高めることができる。それにより、フォノンドラッグをより効果的に利用することができる。なお、スペーサ層5bにおいて、反射層13は無くても良い。 The spacer layer 5b has a multilayer structure. That is, the spacer layer 5 b includes the low phonon conductive material 11 including the high phonon conductive material 12, the reflective layer 13, and the transmissive layer 14. The low phonon conductive material 11 including the high phonon conductive material 12 and the reflective layer 13 are as described in the second embodiment. The transmissive layer 14 transmits phonons conducted upward (+ z direction) among phonons conducted through the high phonon conductive material 12. That is, the phonons that are conducted through the high phonon conductive material 12 are prevented from being reflected. By preventing phonon reflection, the efficiency of phonon conduction can be further increased. Thereby, phonon drag can be used more effectively. Note that the reflective layer 13 may not be provided in the spacer layer 5b.
 ここで、透過層14がフォノンを透過させる原理について説明する。図12は、高フォノン伝導材料と透過層との界面を模式的に示す断面図である。フォノンが高フォノン伝導材料12と透過層14との界面B2を透過する(低反射となる)ためには、高フォノン伝導材料12の音響インピーダンスと透過層14の音響インピーダンスとが整合していることが好ましいと考えられる。具体的には、以下のとおりである。高フォノン伝導材料12の音響インピーダンスをZ、透過層14の音響インピーダンスをZとすれば、高フォノン伝導材料12からのフォノンを透過層14が反射するときの界面B2での反射率R02は下式で表される。
   R02=|Z-Z|/(Z+Z) …(4)
このとき、音響インピーダンスが整合して、反射率が透過率より相対的に小さいことが好ましい状態と考えられる。実験的又はシミュレーション的には、反射率(絶対値)が0より大きく1/2より小さい範囲であればフォノンの反射が小さくなりより好ましいと考えられる。この場合、透過層14の音響インピーダンスは、高フォノン伝導材料12の各々の音響インピーダンスの1/3以上3倍以下であることが好ましい。
Here, the principle by which the transmission layer 14 transmits phonons will be described. FIG. 12 is a cross-sectional view schematically showing an interface between the high phonon conductive material and the transmission layer. In order for phonons to pass through the interface B2 between the high phonon conductive material 12 and the transmission layer 14 (becomes low reflection), the acoustic impedance of the high phonon conductive material 12 and the acoustic impedance of the transmission layer 14 must be matched. Is considered preferable. Specifically, it is as follows. If the acoustic impedance of the high phonon conductive material 12 is Z 3 and the acoustic impedance of the transmissive layer 14 is Z 4 , the reflectance R 02 at the interface B 2 when the phonon from the high phonon conductive material 12 reflects the phonon. Is represented by the following equation.
R 02 = | Z 3 −Z 4 | / (Z 3 + Z 4 ) (4)
At this time, it is considered preferable that the acoustic impedance is matched and the reflectance is relatively smaller than the transmittance. Experimentally or simulationally, if the reflectance (absolute value) is in a range larger than 0 and smaller than ½, the reflection of phonons is considered to be more preferable. In this case, the acoustic impedance of the transmission layer 14 is preferably 1/3 or more and 3 times or less of each acoustic impedance of the high phonon conductive material 12.
 透過層14は、上記の反射率R02の条件を満足していれば、上述された低フォノン伝導材料で形成されてもよいし、高フォノン伝導材料で形成されていてもよい。すなわち、透過層14は、低フォノン伝導材料11又は高フォノン伝導材料12と同様の上述の材料を用いることができる。ただし、上記図12の内容を考慮して、高フォノン伝導材料12から上方(+z方向)に向かうフォノンを透過層14で透過させることを考えると、透過層14の音響インピーダンスは、高フォノン伝導材料12の音響インピーダンスに近いことがより好ましいと考えられる。
 さらに、透過層14の音響インピーダンスは、高フォノン伝導材料12と磁性体層2の音響インピーダンスの中間的な値であることが好ましい。
The transmissive layer 14 may be formed of the above-described low phonon conductive material or may be formed of a high phonon conductive material as long as the condition of the reflectance R 02 is satisfied. That is, the transmissive layer 14 can be made of the above-described material similar to the low phonon conductive material 11 or the high phonon conductive material 12. However, considering the content of FIG. 12 above, considering that the phonon traveling upward (+ z direction) from the high phonon conductive material 12 is transmitted through the transmissive layer 14, the acoustic impedance of the transmissive layer 14 is high phonon conductive material. It is considered that it is more preferable that the acoustic impedance is close to 12.
Further, the acoustic impedance of the transmission layer 14 is preferably an intermediate value between the acoustic impedances of the high phonon conductive material 12 and the magnetic layer 2.
 透過層14を設ける効果は、特に熱電変換素子1bを積層した場合に顕著である。図13は、本発明の第3の実施の形態に係る熱電変換素子の他の構成を示す断面図である。この図では、熱電変換素子1bが積層されて、スペーサ型積層熱電変換素子52bを構成している。この場合、第2の実施の形態で示したスペーサ層5aを有する積層熱電変換素子52aの効果(図10A)を得ると共に、上述された上方(+z方向)に向かうフォノンの流れの反射を抑制する効果も得ることができる。それにより、フォノンドラッグをより効果的に利用することができる。 The effect of providing the transmission layer 14 is particularly remarkable when the thermoelectric conversion element 1b is laminated. FIG. 13: is sectional drawing which shows the other structure of the thermoelectric conversion element which concerns on the 3rd Embodiment of this invention. In this figure, the thermoelectric conversion element 1b is laminated | stacked and the spacer type | mold lamination | stacking thermoelectric conversion element 52b is comprised. In this case, the effect (FIG. 10A) of the laminated thermoelectric conversion element 52a having the spacer layer 5a shown in the second embodiment is obtained, and reflection of the phonon flow toward the upper side (+ z direction) is suppressed. An effect can also be obtained. Thereby, phonon drag can be used more effectively.
 熱電変換素子1b(積層熱電変換素子52b)の動作は、透過層14が上方へ向かうフォノンの反射を抑制するほかは、第2の実施の形態と同様である。 The operation of the thermoelectric conversion element 1b (laminated thermoelectric conversion element 52b) is the same as that of the second embodiment except that the transmission layer 14 suppresses reflection of phonons upward.
 熱電変換素子1b(積層熱電変換素子52b)の製造方法は、第2の実施の形態の製造方法において、高フォノン伝導材料12を含む低フォノン伝導材料11を形成前に、磁性体層2上にスピンコート法により透過層14を塗布し、熱処理するほかは、第2の実施の形態と同様である。 The manufacturing method of the thermoelectric conversion element 1b (laminated thermoelectric conversion element 52b) is the same as that of the manufacturing method of the second embodiment, on the magnetic layer 2 before the low phonon conductive material 11 including the high phonon conductive material 12 is formed. The second embodiment is the same as the second embodiment except that the transmissive layer 14 is applied by spin coating and heat-treated.
 熱電変換素子1b(積層熱電変換素子52b)の作用効果は、透過層14が上方へ向かうフォノンの反射を抑制することによるフォノンドラッグをより効果的に利用することのほかは、第2の実施の形態と同様である。 The effect of the thermoelectric conversion element 1b (laminated thermoelectric conversion element 52b) is the same as that of the second embodiment except that the transmission layer 14 more effectively utilizes phonon drag by suppressing reflection of phonons upward. It is the same as the form.
 以下、上記各実施の形態に関する実施例について説明する。
[実施例1]
 図14は、本発明の実施例1の構成を示す斜視図である。
 この熱電変換素子は、スペーサ型の積層熱電変換素子である。基板9上に設けられた熱電変換素子本体10(磁性体層2及び電極3)と、スペーサ層5(低フォノン伝導材料11及び高フォノン伝導材料12)とを備える熱電変換素子が積層されている。この図14のスペーサ層5は、カーボンナノチューブ混合樹脂であり、カーボンナノチューブ部分が高フォノン伝導材料12に相当し、樹脂部分が低フォノン伝導材料11に相当する。カーボンナノチューブは、実質的に特定の方向に配向せず、ランダム方向に分散している。この図14では4層の熱電変換素子本体10を積層しているが、その層数は何層であってもよい。また、この図14では熱電変換素子本体10を最上部としているが、スペーサ層5を最上部としてもよいし、基板9を最上部としてもよい。基板9は、その材料や温度勾配の向きにより、反射層13(スペーサ層5の一部)と見ることもできるし、透過層14(スペーサ層5の一部)と見ることもできるし、単なる支持部材と見ることもできる。
Examples relating to the above embodiments will be described below.
[Example 1]
FIG. 14 is a perspective view showing the configuration of the first embodiment of the present invention.
This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element. A thermoelectric conversion element including a thermoelectric conversion element main body 10 (magnetic layer 2 and electrode 3) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated. . The spacer layer 5 in FIG. 14 is a carbon nanotube mixed resin, and the carbon nanotube portion corresponds to the high phonon conductive material 12 and the resin portion corresponds to the low phonon conductive material 11. The carbon nanotubes are not substantially oriented in a specific direction and are dispersed in a random direction. In FIG. 14, four layers of thermoelectric conversion element bodies 10 are stacked, but the number of layers may be any number. In FIG. 14, the thermoelectric conversion element main body 10 is the uppermost part, but the spacer layer 5 may be the uppermost part, and the substrate 9 may be the uppermost part. The substrate 9 can be viewed as the reflective layer 13 (a part of the spacer layer 5), the transmissive layer 14 (a part of the spacer layer 5), or simply depending on the material and the direction of the temperature gradient. It can also be viewed as a support member.
 図15A~図15Cは、本発明の実施例1の熱電変換素子の製造方法を示す斜視図である。この熱電変換素子は以下のように製造される。
(1)まず、基板9として5×5cm、厚さ100μmの石英ガラスを準備する。次に、基板9上に、磁性体層2としてMOD法を用いて膜厚100nmのYIG膜を作製する。続いて、Pt膜上に、電極3としてスパッタ法を用いて膜厚10nmのPt膜を作製する。以上のようにして熱電変換素子本体10を作製する(図15A)。
(2)次に、NanoIntegris社製のバウダー状半導体カーボンナノチューブ1μgを、10mlのアニソールに入れ、10分間超音波分散を行った分散液を生成する。続いて、平均分子量45万Daのポリメチルメタクリレート(PMMA)を、10mlのアニソールに2重量%分散した樹脂溶液を生成する。その後、上記分散液と上記樹脂溶液とを混合し、良く攪拌する。それにより、スペーサ層5用のカーボンナノチューブ入りPMMA溶液を生成する。
(3)続いて、1層目の熱電変換素子本体10の電極3の表面に、カーボンナノチューブ入りPMMA溶液を塗布する。それにより、スペーサ層5を作製する(図15B)。
(4)次に、(1)と同様にして2層目の熱電変換素子本体10を作製し、スペーサ層5上に積層する(図15C)。その後、(3)と同様にして、2層目の熱電変換素子本体10の電極3の表面に、カーボンナノチューブ入りPMMA溶液を塗布して、スペーサ層5を作製する。これにより、アクリル樹脂の低フォノン伝導材料11とカーボンナノチューブの高フォノン伝導材料21とが混合したスペーサ層5が得られる。
(5)そして、(4)の工程を繰り返し、例えば、合計10層の積層を行った後、積層素子を並行板(絶縁体板)に挟み、窒素雰囲気中で200度の熱処理を20時間行う。それにより、厚さ500μmの積層熱電変換素子が作製される。
(6)更に、積層熱電変換素子の対向する側面を研磨し、各層の電極3を露出させる。そして、導電性ペーストを用いて各層を電気的に接続し、10層の並列型熱電変換素子を作製した。
15A to 15C are perspective views showing a method for manufacturing the thermoelectric conversion element of Example 1 of the present invention. This thermoelectric conversion element is manufactured as follows.
(1) First, quartz glass having 5 × 5 cm 2 and a thickness of 100 μm is prepared as the substrate 9. Next, a YIG film having a thickness of 100 nm is formed on the substrate 9 by using the MOD method as the magnetic layer 2. Subsequently, a Pt film having a film thickness of 10 nm is formed on the Pt film using the sputtering method as the electrode 3. The thermoelectric conversion element main body 10 is produced as described above (FIG. 15A).
(2) Next, 1 μg of powdered semiconductor carbon nanotubes manufactured by NanoIntegris is placed in 10 ml of anisole to produce a dispersion liquid which is subjected to ultrasonic dispersion for 10 minutes. Subsequently, a resin solution in which 2% by weight of polymethyl methacrylate (PMMA) having an average molecular weight of 450,000 Da is dispersed in 10 ml of anisole is produced. Thereafter, the dispersion and the resin solution are mixed and stirred well. Thereby, a carbon nanotube-containing PMMA solution for the spacer layer 5 is generated.
(3) Subsequently, a PMMA solution containing carbon nanotubes is applied to the surface of the electrode 3 of the thermoelectric conversion element body 10 of the first layer. Thereby, the spacer layer 5 is produced (FIG. 15B).
(4) Next, the thermoelectric conversion element body 10 of the second layer is produced in the same manner as (1), and is laminated on the spacer layer 5 (FIG. 15C). Thereafter, in the same manner as in (3), the PMMA solution containing carbon nanotubes is applied to the surface of the electrode 3 of the thermoelectric conversion element main body 10 of the second layer, and the spacer layer 5 is produced. Thereby, the spacer layer 5 in which the low phonon conductive material 11 made of acrylic resin and the high phonon conductive material 21 made of carbon nanotube are mixed is obtained.
(5) Then, the process of (4) is repeated, for example, after a total of 10 layers are laminated, the laminated element is sandwiched between parallel plates (insulator plates), and a heat treatment at 200 degrees is performed for 20 hours in a nitrogen atmosphere . Thereby, a laminated thermoelectric conversion element having a thickness of 500 μm is manufactured.
(6) Further, the opposite side surfaces of the laminated thermoelectric conversion element are polished to expose the electrodes 3 of each layer. And each layer was electrically connected using the electrically conductive paste, and 10 parallel thermoelectric conversion elements were produced.
 上記製造方法において、スペーサ層5は他の方法でも製造することができる。図15D~図15Fは、本発明の実施例1の熱電変換素子の製造方法の変形例を示す斜視図である。このスペーサ層5は以下のように製造される。
(1)まず、以下の手順で鉄混入シリカゾルの塗布液を作製する。
 (i)TMOS(Tetramethoxysilane)3.6mlを取り、氷水で冷却する。
 (ii)冷却されたTMOSを強く攪拌しながら、その中に脱イオン水74μlを徐々に加える。
 (iii)得られた溶液に0.04NのHCl5μlを加え、それを冷却したまま15
分攪拌する。
 (iv)得られた溶液(TMOSゾル)を超音波バスで15分攪拌する。
 (v)1重量%の鉄アセチルアセトナート-メタノール溶液500μlを作製する。
 (vi)平均分子量300のポリエチレングリコール(PEG)3.6と脱イオン水7.2mlとをよく混合しておく。
 (vii)TMOSゾルを攪拌しながら、その中に鉄アセチルアセトナート-メタノール溶液を少しずつ加え、よく混合する。
 (viii)TMOSゾルを攪拌しながら、更にその中にPEG水溶液を少しずつ加え、よく混合する。
 (ix)混合した溶液を、0.45μmのテフロン(登録商標)製のフィルタでろ過する。
 (x)濾過された溶液をアルカリ洗浄し、よく乾燥させたフラスコにいれ、真空エバポレータにセットする。
 (xi)10.液温45℃、真空度を200mbarに維持し、35分脱気処理を行う。
(2)次に、(1)で得られた塗布液を、熱電変換素子本体10の電極3の表面にスピンコート法で塗布し、約30μmの厚さの膜(11a)を形成する(図15D)。
(3)続いて、400度のホットプレート上で5分間焼成する(図15E)。その結果、多孔質シリカ膜11a(孔11bを含む)が形成される。
(4)その後、真空アニール炉を用いて真空中で750度に昇温した状態で、飽和蒸気圧のメタノールを導入して1分間カーボンナノチューブの成長を行う。1分後、メタノール導入をやめ、真空中徐々に冷却する。これにより、電変換素子本体10の電極3の表面に、スペーサ層5として、高フォノン伝導材料12としてのカーボンナノチューブと低フォノン伝導材料11としての多孔質シリカ膜11a(孔11bを含む)の複合膜を作製する。この場合にも、カーボンナノチューブは、実質的に特定の方向に配向せず、ランダム方向に分散している。
In the above manufacturing method, the spacer layer 5 can be manufactured by other methods. 15D to 15F are perspective views showing modifications of the method for manufacturing the thermoelectric conversion element according to the first embodiment of the present invention. The spacer layer 5 is manufactured as follows.
(1) First, an iron-containing silica sol coating solution is prepared by the following procedure.
(I) Take 3.6 ml of TMOS (Tetramethoxysilane) and cool with ice water.
(Ii) While vigorously stirring the cooled TMOS, 74 μl of deionized water is gradually added therein.
(Iii) Add 5 μl of 0.04N HCl to the resulting solution and leave it to cool 15
Stir for minutes.
(Iv) The obtained solution (TMOS sol) is stirred with an ultrasonic bath for 15 minutes.
(V) Make 500 μl of 1 wt% iron acetylacetonate-methanol solution.
(Vi) A polyethylene glycol (PEG) 3.6 having an average molecular weight of 300 and 7.2 ml of deionized water are mixed well.
(Vii) While stirring the TMOS sol, add the iron acetylacetonate-methanol solution little by little and mix well.
(Viii) While stirring the TMOS sol, add the PEG aqueous solution little by little and mix well.
(Ix) The mixed solution is filtered through a 0.45 μm filter made of Teflon (registered trademark).
(X) The filtered solution is washed with alkali, placed in a well-dried flask, and set in a vacuum evaporator.
(Xi) 10. The liquid temperature is maintained at 45 ° C. and the degree of vacuum is maintained at 200 mbar, and deaeration treatment is performed for 35 minutes.
(2) Next, the coating liquid obtained in (1) is applied to the surface of the electrode 3 of the thermoelectric conversion element body 10 by a spin coating method to form a film (11a) having a thickness of about 30 μm (FIG. 15D).
(3) Subsequently, it is baked for 5 minutes on a 400 degree hot plate (FIG. 15E). As a result, the porous silica film 11a (including the holes 11b) is formed.
(4) Thereafter, carbon nanotubes are grown for 1 minute by introducing methanol at a saturated vapor pressure while the temperature is raised to 750 ° C. in a vacuum using a vacuum annealing furnace. After 1 minute, the methanol introduction is stopped and the mixture is gradually cooled in vacuum. Thus, a composite of carbon nanotubes as the high phonon conductive material 12 and the porous silica film 11a (including the holes 11b) as the low phonon conductive material 11 as the spacer layer 5 on the surface of the electrode 3 of the electric conversion element body 10. A film is produced. Also in this case, the carbon nanotubes are not substantially oriented in a specific direction and are dispersed in a random direction.
[実施例2]
 図16は、本発明の実施例2の構成を示す斜視図である。
 この熱電変換素子は、スペーサ型の積層熱電変換素子である。基板9上に設けられた熱電変換素子本体10(電極3及び磁性体層2)と、スペーサ層5(低フォノン伝導材料11及び高フォノン伝導材料12)とを備える熱電変換素子が積層されている。この図16の熱電変換素子は、電極3と磁性体層2との積層順番が逆である他は実施例1と同じである。製造方法も、電極3と磁性体層2との積層順番が逆である他は実施例1と同じである。
[Example 2]
FIG. 16 is a perspective view showing the configuration of the second embodiment of the present invention.
This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element. A thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated. . The thermoelectric conversion element of FIG. 16 is the same as that of Example 1 except that the stacking order of the electrode 3 and the magnetic layer 2 is reversed. The manufacturing method is also the same as that of Example 1 except that the stacking order of the electrode 3 and the magnetic layer 2 is reversed.
[実施例3]
 図17Aは、本発明の実施例3の構成を示す斜視図である。
 この熱電変換素子は、スペーサ型の積層熱電変換素子である。基板9上に設けられた熱電変換素子本体10(電極3及び磁性体層2)と、スペーサ層5(低フォノン伝導材料11及び高フォノン伝導材料12)とを備える熱電変換素子が積層されている。この図17のスペーサ層5は、陽極酸化法を用いて形成されたポーラスアルミナ膜であり、アルミナ部分が高フォノン伝導材料12に相当し、空隙部分が低フォノン伝導材料11に相当する。アルミナ部分は熱電変換素子の膜面に垂直な方向に延伸していると見ることもできる。この図17の熱電変換素子は、スペーサ層5が異なる他は実施例2と同じである。
[Example 3]
FIG. 17A is a perspective view showing the configuration of the third embodiment of the present invention.
This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element. A thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated. . The spacer layer 5 in FIG. 17 is a porous alumina film formed by using an anodic oxidation method, and the alumina portion corresponds to the high phonon conductive material 12 and the void portion corresponds to the low phonon conductive material 11. It can also be seen that the alumina portion extends in a direction perpendicular to the film surface of the thermoelectric conversion element. The thermoelectric conversion element of FIG. 17 is the same as that of Example 2 except that the spacer layer 5 is different.
 この熱電変換素子は、以下のように製造される。
(1)まず、基板9として5×5cm、厚さ100μmの石英ガラスを準備する。次に、基板9上に、磁性体層2としてMOD法を用いて膜厚100nmのYIG膜を作製する。続いて、Pt膜上に、電極3としてスパッタ法を用いて膜厚10nmのPt膜を作製する。以上のようにして熱電変換素子本体10を作製する。
(2)次に、熱電変換素子本体10の電極3の表面に、厚さ5μmのアルミ膜を形成する。その後、陽極酸化法を用いて、アルミ膜からポーラスアルミナの膜を形成する。
(3)そして、(1)及び(2)の工程を繰り返し、ポーラスアルミナ膜付きの熱電変換素子を複数個形成する。その後、それら複数の熱電変換素子を接着性の樹脂30を用いて積層する。
(4)更に、積層素子を並行板(絶縁体板)に挟み、積層型の熱電変換素子を作製する。その後、積層熱電変換素子の対向する側面を研磨し、各層の電極3を露出させる。そして、導電性ペーストを用いて各層を電気的に接続し、並列型熱電変換素子を作製した。
This thermoelectric conversion element is manufactured as follows.
(1) First, quartz glass having 5 × 5 cm 2 and a thickness of 100 μm is prepared as the substrate 9. Next, a YIG film having a thickness of 100 nm is formed on the substrate 9 by using the MOD method as the magnetic layer 2. Subsequently, a Pt film having a film thickness of 10 nm is formed on the Pt film using the sputtering method as the electrode 3. The thermoelectric conversion element body 10 is produced as described above.
(2) Next, an aluminum film having a thickness of 5 μm is formed on the surface of the electrode 3 of the thermoelectric conversion element body 10. Thereafter, a porous alumina film is formed from the aluminum film by using an anodic oxidation method.
(3) The steps (1) and (2) are repeated to form a plurality of thermoelectric conversion elements with a porous alumina film. Thereafter, the plurality of thermoelectric conversion elements are laminated using the adhesive resin 30.
(4) Further, the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind | polished, and the electrode 3 of each layer is exposed. And each layer was electrically connected using the electrically conductive paste, and the parallel type thermoelectric conversion element was produced.
 なお、接着性の樹剤30は、その材料や温度勾配の向きにより、反射層13(スペーサ層5の一部)と見ることもできるし、透過層14(スペーサ層5の一部)と見ることもできるし、単なる接着部材と見ることもできる。 The adhesive resin 30 can be regarded as the reflective layer 13 (a part of the spacer layer 5) or the transmissive layer 14 (a part of the spacer layer 5) depending on the material and the direction of the temperature gradient. It can also be seen as a simple adhesive member.
[実施例4]
 実施例4は、ポーラスアルミナ膜を用いる実施例3の変形例である。図17Bは、本発明の実施例4の構成を示す斜視図である。
 この熱電変換素子は、スペーサ型の積層熱電変換素子である。基板9上に設けられたスペーサ層5(低フォノン伝導材料11及び高フォノン伝導材料12)と、スペーサ層5上に設けられた熱電変換素子本体10(電極3及び磁性体層2)とを備えている。この図17Bのスペーサ層5は、陽極酸化法を用いて形成されたポーラスアルミナ膜(11)と、ポーラスアルミナ膜のポア中に埋め込まれたNiロッド(12)と、ポーラスアルミナ膜の表面及びNiロッドを覆うように形成されたNi薄膜(14)とを備えている。Niロッド及びNi薄膜は、ポーラスアルミナ膜に無電解メッキによって堆積した。アルミナ部分が低フォノン伝導材料12に相当し、Niロッド部分が高フォノン伝導材料11に相当し、Ni薄膜部分がフォノン透過層14に相当する。Niロッド部分は熱電変換素子本体の膜面に垂直な方向に延伸していると見ることもできる。この図17Bの熱電変換素子は、スペーサ層5が異なる他は実施例2と同じである(電極3と磁性体層2との積層順番が逆)。
[Example 4]
Example 4 is a modification of Example 3 that uses a porous alumina film. FIG. 17B is a perspective view showing the configuration of the fourth embodiment of the present invention.
This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element. A spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) provided on the substrate 9 and a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on the spacer layer 5 are provided. ing. 17B includes a porous alumina film (11) formed by using an anodic oxidation method, a Ni rod (12) embedded in a pore of the porous alumina film, the surface of the porous alumina film, and Ni. And a Ni thin film (14) formed so as to cover the rod. The Ni rod and the Ni thin film were deposited on the porous alumina film by electroless plating. The alumina portion corresponds to the low phonon conductive material 12, the Ni rod portion corresponds to the high phonon conductive material 11, and the Ni thin film portion corresponds to the phonon transmission layer 14. It can also be seen that the Ni rod portion extends in a direction perpendicular to the film surface of the thermoelectric conversion element body. The thermoelectric conversion element of FIG. 17B is the same as Example 2 except that the spacer layer 5 is different (the stacking order of the electrode 3 and the magnetic layer 2 is reversed).
 この熱電変換素子は、以下のように製造される。
(1)まず、実施例3の方法を用いて、基板9として5×5cm、厚さ100μmの石英ガラスを準備する。次に、基板9上に、厚さ5μmのアルミ膜を形成する。その後、陽極酸化法を用いて、アルミ膜からポーラスアルミナの膜を形成する。
(2)次に、ポーラスアルミナ膜表面に、無電解Niメッキ液を接触させて、メッキを行い、Ni製の高フォノン伝導材料12及び透過層14(Niロッド及びNi薄膜)を作製する。
(3)次に、Ni製の透過層14の表面に、磁性体層2としてMOD法を用いて膜厚100nmのYIG膜を作製する。続いて、磁性体層2上に、電極3としてスパッタ法を用いて膜厚10nmのPt膜を作製する。以上のようにして熱電変換素子本体10を作製する。
(4)そして、(1)から(3)の工程を繰り返し、ポーラスアルミナ膜付きの熱電変換素子を複数個形成する。その後、それら複数の熱電変換素子を接着性の樹脂30を用いて積層する。
(5)更に、積層素子を並行板(絶縁体板)に挟み、積層型の熱電変換素子を作製する。その後、積層熱電変換素子の対向する側面を研磨し、各層の電極3を露出させる。そして、導電性ペーストを用いて各層を電気的に接続し、並列型熱電変換素子を作製した。
This thermoelectric conversion element is manufactured as follows.
(1) First, using the method of Example 3, 5 × 5 cm 2 and 100 μm thick quartz glass are prepared as the substrate 9. Next, an aluminum film having a thickness of 5 μm is formed on the substrate 9. Thereafter, a porous alumina film is formed from the aluminum film by using an anodic oxidation method.
(2) Next, an electroless Ni plating solution is brought into contact with the surface of the porous alumina film, and plating is performed to produce the Ni-made high-phonon conductive material 12 and the transmission layer 14 (Ni rod and Ni thin film).
(3) Next, a 100 nm-thick YIG film is formed on the surface of the Ni transmission layer 14 as the magnetic layer 2 by using the MOD method. Subsequently, a 10 nm-thick Pt film is formed on the magnetic layer 2 by sputtering as the electrode 3. The thermoelectric conversion element body 10 is produced as described above.
(4) The steps (1) to (3) are repeated to form a plurality of thermoelectric conversion elements with a porous alumina film. Thereafter, the plurality of thermoelectric conversion elements are laminated using the adhesive resin 30.
(5) Further, the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind | polished, and the electrode 3 of each layer is exposed. And each layer was electrically connected using the electrically conductive paste, and the parallel type thermoelectric conversion element was produced.
[実施例5]
 図18は、本発明の実施例5の構成を示す斜視図である。
 この熱電変換素子は、スペーサ型の積層熱電変換素子である。基板9上に設けられた熱電変換素子本体10(電極3及び磁性体層2)と、スペーサ層5(低フォノン伝導材料11及び高フォノン伝導材料12)とを備える熱電変換素子が積層されている。この図18のスペーサ層5は、カーボンナノチューブ付セルロース樹脂であり、カーボンナノチューブ部分が高フォノン伝導材料12に相当し、セルロース樹脂部分が低フォノン伝導材料11に相当する。カーボンナノチューブは、実質的に特定の方向に配向せず、ランダム方向に分散している。この図18の熱電変換素子は、スペーサ層5が異なる他は実施例2と同じである。
[Example 5]
FIG. 18 is a perspective view showing the configuration of the fifth embodiment of the present invention.
This thermoelectric conversion element is a spacer type laminated thermoelectric conversion element. A thermoelectric conversion element including a thermoelectric conversion element body 10 (electrode 3 and magnetic layer 2) provided on a substrate 9 and a spacer layer 5 (low phonon conductive material 11 and high phonon conductive material 12) is laminated. . The spacer layer 5 in FIG. 18 is a cellulose resin with carbon nanotubes, and the carbon nanotube portion corresponds to the high phonon conductive material 12 and the cellulose resin portion corresponds to the low phonon conductive material 11. The carbon nanotubes are not substantially oriented in a specific direction and are dispersed in a random direction. The thermoelectric conversion element of FIG. 18 is the same as that of Example 2 except that the spacer layer 5 is different.
 この熱電変換素子は、以下のように製造される。
(1)まず、基板9として5×5cm、厚さ100μmの石英ガラスを準備する。次に、基板9上に、磁性体層2としてMOD法を用いて膜厚100nmのYIG膜を作製する。続いて、Pt膜上に、電極3としてスパッタ法を用いて膜厚10nmのPt膜を作製する。以上のようにして熱電変換素子本体10を作製する。
(2)次に、フィルタなどに用いられる、厚さ400μmの多孔質セルロース樹脂を用意する。続いて、NanoIntegris社製の半導体カーボンナノチューブ水溶液を10倍に希釈した溶液を用意する。そして、セルロース樹脂をその溶液に浸して、超音波分散を行った後、セルロース樹脂を引き上げて、乾燥させる。
(3)続いて、1層目の熱電変換素子本体10の電極3の表面に、カーボンナノチューブ付セルロース樹脂を載置する。それにより、カーボンナノチューブ付セルロース樹脂付きの熱電変換素子を作製する。
 もしくは、カーボンナノチューブ付セルロース樹脂は、多孔質セルロース樹脂を濾紙として用い、水溶液中の半導体カーボンナノチューブを濾過することで作製することが出来る。この場合、半導体カーボンナノチューブは、多孔質セルロース樹脂に液が浸透する方向に配向する傾向が生じ、さらに上流側の面に多く固定されるため、この面を熱電変換素子本体の電極や磁性体に接するように作製するなどの最適な構成を選ぶことができる。
(4)そして、(1)~(3)の工程を繰り返し、カーボンナノチューブ付セルロース樹脂付きの熱電変換素子を複数個形成する。その後、それら複数の熱電変換素子を、接着剤などは用いずに積層し、プレス機を用いて密着させる。
(5)更に、積層素子を並行板(絶縁体板)に挟み、積層型の熱電変換素子を作製する。その後、積層熱電変換素子の対向する側面を研磨し、各層の電極3を露出させる。そして、導電性ペーストを用いて各層を電気的に接続し、並列型熱電変換素子を作製した。
This thermoelectric conversion element is manufactured as follows.
(1) First, quartz glass having 5 × 5 cm 2 and a thickness of 100 μm is prepared as the substrate 9. Next, a YIG film having a thickness of 100 nm is formed on the substrate 9 by using the MOD method as the magnetic layer 2. Subsequently, a Pt film having a film thickness of 10 nm is formed on the Pt film using the sputtering method as the electrode 3. The thermoelectric conversion element body 10 is produced as described above.
(2) Next, a porous cellulose resin having a thickness of 400 μm used for a filter or the like is prepared. Subsequently, a solution is prepared by diluting an aqueous semiconductor carbon nanotube solution manufactured by NanoIntegris 10-fold. And after immersing a cellulose resin in the solution and performing ultrasonic dispersion, the cellulose resin is pulled up and dried.
(3) Subsequently, a cellulose resin with a carbon nanotube is placed on the surface of the electrode 3 of the thermoelectric conversion element body 10 of the first layer. Thereby, the thermoelectric conversion element with a cellulose resin with a carbon nanotube is produced.
Alternatively, the carbon nanotube-attached cellulose resin can be produced by filtering the semiconductor carbon nanotubes in an aqueous solution using a porous cellulose resin as a filter paper. In this case, the semiconductor carbon nanotubes tend to be oriented in the direction in which the liquid penetrates into the porous cellulose resin, and is more fixed to the upstream surface, so this surface is used as an electrode or magnetic body of the thermoelectric conversion element body. It is possible to select an optimum configuration such as making contact.
(4) Then, the steps (1) to (3) are repeated to form a plurality of thermoelectric conversion elements with a carbon nanotube-attached cellulose resin. Thereafter, the plurality of thermoelectric conversion elements are laminated without using an adhesive or the like, and are brought into close contact with each other using a press.
(5) Further, the laminated element is sandwiched between parallel plates (insulator plates) to produce a laminated thermoelectric conversion element. Then, the side surface which a laminated thermoelectric conversion element opposes is grind | polished, and the electrode 3 of each layer is exposed. And each layer was electrically connected using the electrically conductive paste, and the parallel type thermoelectric conversion element was produced.
 以上、実施の形態を参照して本発明を説明したが、本発明は上記実施の形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解しうる様々な変更をすることができる。また、各実施の形態に記載の技術や、各実施例に記載の技術は、技術的な矛盾が生じない限り、他の実施の形態や他の実施例に適用することが可能である。 Although the present invention has been described above with reference to the embodiment, the present invention is not limited to the above embodiment. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention. Further, the technology described in each embodiment and the technology described in each example can be applied to other embodiments and other examples as long as no technical contradiction arises.
 この出願は、2011年9月27日に出願された特許出願番号2011-210464号の日本特許出願に基づいており、その出願による優先権の利益を主張し、その出願の開示は、引用することにより、そっくりそのままここに組み込まれている。 This application is based on Japanese Patent Application No. 2011-210464, filed on Sep. 27, 2011, and claims the benefit of the priority of the application, the disclosure of that application should be cited Is incorporated here as it is.

Claims (14)

  1.  熱電変換素子本体と、
     前記熱電変換素子本体の表面上に設けられたスペーサ層と
     を具備し、
     前記熱電変換素子本体は、
      少なくとも一つの面内方向の磁化を有する磁性体層と、
      前記磁性体層上に設けられ、スピン軌道相互作用を有する材料を含む起電体層と
      を備え、
     前記スペーサ層は、
      熱伝導率が相対的に低い材料で設けられた低熱伝導層と、
      前記低熱伝導層内に分散され、熱伝導率が相対的に高い材料である複数の高熱伝導体と
      を備え、
     前記低熱伝導層と比較して、前記複数の高熱伝導体にフォノンが多く伝導する
     熱電変換素子。
    A thermoelectric conversion element body;
    A spacer layer provided on the surface of the thermoelectric conversion element body,
    The thermoelectric conversion element body is
    A magnetic layer having at least one in-plane magnetization;
    An electromotive layer provided on the magnetic layer and including a material having a spin orbit interaction, and
    The spacer layer is
    A low thermal conductivity layer provided with a material having a relatively low thermal conductivity;
    A plurality of high thermal conductors that are dispersed in the low thermal conductive layer and are materials having relatively high thermal conductivity,
    A thermoelectric conversion element in which more phonons are conducted to the plurality of high thermal conductors than the low thermal conductive layer.
  2.  請求項1に記載の熱電変換素子において、
     前記複数の高熱伝導体は、前記低熱伝導層内に配向せずに分散されている
     熱電変換素子。
    In the thermoelectric conversion element according to claim 1,
    The plurality of high thermal conductors are dispersed without being oriented in the low thermal conductive layer.
  3.  請求項2に記載の熱電変換素子において、
     前記複数の高熱伝導体は、前記低熱伝導層内に配向せずに、前記低熱伝導層の全体に亘って分散されている
     熱電変換素子。
    The thermoelectric conversion element according to claim 2,
    The plurality of high thermal conductors are not oriented in the low thermal conductive layer, but are dispersed throughout the low thermal conductive layer.
  4.  請求項1に記載の熱電変換素子において、
     前記複数の高熱伝導体は、前記低熱伝導層内に、前記熱電変換素子本体の面に垂直な方向に配向して全体に亘って分散されている
     熱電変換素子。
    In the thermoelectric conversion element according to claim 1,
    The plurality of high thermal conductors are oriented in the direction perpendicular to the surface of the thermoelectric conversion element main body and dispersed throughout the low thermal conductive layer.
  5.  請求項1乃至4のいずれか一項に記載の熱電変換素子において、
     前記スペーサ層は、
      前記低熱伝導層における前記熱電変換素子本体と接触する面とは反対側の面の上に設けられた反射層を更に備え、
     前記反射層の音響インピーダンスは、前記複数の高熱伝導体各々の音響インピーダンスの3倍以上、もしくは1/3以下である
     熱電変換素子。
    In the thermoelectric conversion element as described in any one of Claims 1 thru | or 4,
    The spacer layer is
    A reflective layer provided on a surface opposite to the surface in contact with the thermoelectric conversion element body in the low thermal conductive layer;
    The acoustic impedance of the reflective layer is a thermoelectric conversion element that is not less than 3 times or not more than 1/3 of the acoustic impedance of each of the plurality of high thermal conductors.
  6.  請求項1乃至5のいずれか一項に記載の熱電変換素子において、
     前記スペーサ層は、前記低熱伝導層と前記熱電変換素子本体との間に設けられた透過層を更に備え、
     前記透過層の音響インピーダンスは、前記複数の高熱伝導体の各々の音響インピーダンスの1/3以上3倍以下である
     熱電変換素子。
    In the thermoelectric conversion element according to any one of claims 1 to 5,
    The spacer layer further includes a transmission layer provided between the low thermal conductive layer and the thermoelectric conversion element body,
    The thermoelectric conversion element, wherein the acoustic impedance of the transmission layer is not less than 1/3 and not more than 3 times the acoustic impedance of each of the plurality of high thermal conductors.
  7.  請求項1乃至6のいずれか一項に記載の熱電変換素子において、
     前記磁性体層の膜厚は、熱起電力の飽和する膜厚としての特性膜厚の80%以上、150%以下である
     熱電変換素子。
    In the thermoelectric conversion element according to any one of claims 1 to 6,
    The thermoelectric conversion element in which the film thickness of the magnetic layer is 80% or more and 150% or less of a characteristic film thickness as a film thickness at which thermoelectromotive force is saturated.
  8.  請求項1乃至7のいずれか一項に記載の熱電変換素子において、
     前記熱電変換素子本体は複数有り、
     前記スペーサ層は複数有り、
     前記複数の熱電変換素子本体の各々と、前記複数のスペーサ層の各々とは交互に積層されている
     熱電変換素子。
    In the thermoelectric conversion element according to any one of claims 1 to 7,
    There are a plurality of thermoelectric conversion element bodies,
    There are a plurality of the spacer layers,
    Each of the plurality of thermoelectric conversion element bodies and each of the plurality of spacer layers are alternately stacked.
  9.  基板上に熱電変換素子本体を形成する工程と、
     前記熱電変換素子本体上にスペーサ層を形成する工程と
     を具備し、
     前記熱電変換素子を形成する工程は、
     前記基板上に、少なくとも一つの面内方向の磁化を有する磁性体層及びスピン軌道相互作用を有する材料を含む起電体層のうちの一方である第1層を形成する工程と、
     前記第1層上に、前記磁性体層及び前記起電体層のうちの他方である第2層を形成する工程と
     を備え、
     前記スペーサ層を形成する工程は、
      熱伝導率が相対的に低い材料で設けられ、熱伝導率が相対的に高い材料である複数の高熱伝導体が分散された低熱伝導層を前記熱電変換素子本体上に形成する工程
      を備え、
      前記低熱伝導層と比較して、前記複数の高熱伝導体にフォノンが多く伝導し、
      前記複数の高熱伝導体は、前記低熱伝導層内に配向せずに分散されている
     熱電変換素子の製造方法。
    Forming a thermoelectric conversion element body on the substrate;
    Forming a spacer layer on the thermoelectric conversion element body, and
    The step of forming the thermoelectric conversion element includes:
    Forming, on the substrate, a first layer which is one of at least one magnetic layer having in-plane magnetization and an electromotive layer including a material having spin-orbit interaction;
    Forming a second layer which is the other of the magnetic layer and the electromotive layer on the first layer, and
    The step of forming the spacer layer includes
    Forming a low thermal conductive layer on the thermoelectric conversion element body, which is provided with a material having a relatively low thermal conductivity and in which a plurality of high thermal conductors that are materials having a relatively high thermal conductivity are dispersed;
    Compared with the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors,
    The method for manufacturing a thermoelectric conversion element, wherein the plurality of high thermal conductors are dispersed without being oriented in the low thermal conductive layer.
  10.  基板上に熱電変換素子本体を形成する工程と、
     前記熱電変換素子本体上にスペーサ層を形成する工程と
     を具備し、
     前記熱電変換素子を形成する工程は、
     前記基板上に、少なくとも一つの面内方向の磁化を有する磁性体層及びスピン軌道相互作用を有する材料を含む起電体層のうちの一方である第1層を形成する工程と、
     前記第1層上に、前記磁性体層及び前記起電体層のうちの他方である第2層を形成する工程と
     を備え、
     前記スペーサ層を形成する工程は、
      熱伝導率が相対的に低い材料で設けられ、熱伝導率が相対的に高い材料である複数の高熱伝導体が分散された低熱伝導層を前記熱電変換素子本体上に形成する工程
      を備え、
      前記低熱伝導層と比較して、前記複数の高熱伝導体にフォノンが多く伝導し、
      前記複数の高熱伝導体は、前記低熱伝導層内に、前記熱電変換素子本体の面に垂直な方向全体に配向して分散されている
     熱電変換素子の製造方法。
    Forming a thermoelectric conversion element body on the substrate;
    Forming a spacer layer on the thermoelectric conversion element body, and
    The step of forming the thermoelectric conversion element includes:
    Forming, on the substrate, a first layer which is one of at least one magnetic layer having in-plane magnetization and an electromotive layer including a material having spin-orbit interaction;
    Forming a second layer which is the other of the magnetic layer and the electromotive layer on the first layer, and
    The step of forming the spacer layer includes
    Forming a low thermal conductive layer on the thermoelectric conversion element body, which is provided with a material having a relatively low thermal conductivity and in which a plurality of high thermal conductors that are materials having a relatively high thermal conductivity are dispersed;
    Compared with the low thermal conductive layer, more phonons are conducted to the plurality of high thermal conductors,
    The method for producing a thermoelectric conversion element, wherein the plurality of high thermal conductors are oriented and dispersed in the entire direction perpendicular to the surface of the thermoelectric conversion element body in the low thermal conductive layer.
  11.  請求項9又は10に記載の熱電変換素子の製造方法において、
     前記スペーサ層を形成する工程は、
     前記低熱伝導層における前記熱電変換素子本体と接触する面とは反対側の面の上に反射層を形成する工程を更に備え、
     前記反射層の音響インピーダンスは、前記複数の高熱伝導体の音響インピーダンスの3倍以上、もしくは1/3以下である
     熱電変換素子の製造方法。
    In the manufacturing method of the thermoelectric conversion element according to claim 9 or 10,
    The step of forming the spacer layer includes
    Further comprising a step of forming a reflective layer on a surface opposite to the surface in contact with the thermoelectric conversion element body in the low thermal conductive layer,
    The method for manufacturing a thermoelectric conversion element, wherein the acoustic impedance of the reflective layer is three times or more or one third or less of the acoustic impedance of the plurality of high thermal conductors.
  12.  請求項9乃至11のいずれか一項に記載の熱電変換素子の製造方法において、
     前記スペーサ層を形成する工程は、
     前記低熱伝導層と前記熱電変換素子本体との間に透過層を形成する工程を更に備え、
     前記透過層の音響インピーダンスは、前記複数の高熱伝導体音響インピーダンスの1/3以上3倍以下である
     熱電変換素子の製造方法。
    In the manufacturing method of the thermoelectric conversion element according to any one of claims 9 to 11,
    The step of forming the spacer layer includes
    Further comprising a step of forming a transmission layer between the low thermal conductive layer and the thermoelectric conversion element body,
    The acoustic impedance of the transmission layer is 1/3 or more and 3 times or less of the plurality of high thermal conductor acoustic impedances.
  13.  請求項9乃至12のいずれか一項に記載の熱電変換素子の製造方法において、
     前記磁性体層の膜厚は、熱起電力の飽和する膜厚としての特性膜厚の80%以上、150%以下である
     熱電変換素子の製造方法。
    In the manufacturing method of the thermoelectric conversion element according to any one of claims 9 to 12,
    The method for manufacturing a thermoelectric conversion element, wherein the thickness of the magnetic layer is 80% or more and 150% or less of a characteristic film thickness as a film thickness at which thermoelectromotive force is saturated.
  14.  請求項9乃至13のいずれか一項に記載の熱電変換素子の製造方法において、
     前記熱電変換素子本体を形成する工程と前記スペーサ層を形成する工程とを複数回行い、前記熱電変換素子本体と、前記スペーサ層とが交互に積層されるように、前記熱電変換素子本体及び前記スペーサ層を複数個形成する工程を更に具備する
     熱電変換素子の製造方法。
    In the manufacturing method of the thermoelectric conversion element according to any one of claims 9 to 13,
    The step of forming the thermoelectric conversion element body and the step of forming the spacer layer are performed a plurality of times, and the thermoelectric conversion element body and the spacer layer are alternately stacked so that the thermoelectric conversion element body and the spacer layer are alternately stacked. A method for manufacturing a thermoelectric conversion element, further comprising a step of forming a plurality of spacer layers.
PCT/JP2012/073752 2011-09-27 2012-09-15 Thermoelectric conversion element and method for manufacturing same WO2013047253A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011210464 2011-09-27
JP2011-210464 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013047253A1 true WO2013047253A1 (en) 2013-04-04

Family

ID=47995286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/073752 WO2013047253A1 (en) 2011-09-27 2012-09-15 Thermoelectric conversion element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2013047253A1 (en)
WO (1) WO2013047253A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693501A3 (en) * 2012-08-02 2014-09-17 Hamilton Sundstrand Corporation Thin-film structure with asymmetric ballistic conductance
WO2016066216A1 (en) * 2014-10-31 2016-05-06 Universidad De Zaragoza Spin seebeck thermoelectric device and its uses
JP2020511791A (en) * 2017-03-09 2020-04-16 ラチース,リカルド Conversion material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066631A1 (en) * 2007-11-22 2009-05-28 Keio University Spin flow thermal conversion element and thermoelectric conversion element
WO2009151000A1 (en) * 2008-06-12 2009-12-17 学校法人 慶應義塾 Thermoelectric conversion element
WO2012161336A1 (en) * 2011-05-23 2012-11-29 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066631A1 (en) * 2007-11-22 2009-05-28 Keio University Spin flow thermal conversion element and thermoelectric conversion element
WO2009151000A1 (en) * 2008-06-12 2009-12-17 学校法人 慶應義塾 Thermoelectric conversion element
WO2012161336A1 (en) * 2011-05-23 2012-11-29 日本電気株式会社 Thermoelectric conversion element and thermoelectric conversion method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2693501A3 (en) * 2012-08-02 2014-09-17 Hamilton Sundstrand Corporation Thin-film structure with asymmetric ballistic conductance
WO2016066216A1 (en) * 2014-10-31 2016-05-06 Universidad De Zaragoza Spin seebeck thermoelectric device and its uses
JP2020511791A (en) * 2017-03-09 2020-04-16 ラチース,リカルド Conversion material

Also Published As

Publication number Publication date
JPWO2013047253A1 (en) 2015-03-26

Similar Documents

Publication Publication Date Title
JP5991589B2 (en) Thermoelectric conversion element, method for manufacturing thermoelectric conversion element, and thermoelectric conversion method
US9224936B2 (en) Thermoelectric conversion device
WO2013047254A1 (en) Member with thermoelectric conversion function, and method for producing same
US10461238B2 (en) Thermoelectric conversion structure and method for making the same
US10396267B2 (en) Thermoelectric conversion element and method of manufacturing the same, and heat radiation fin
WO2012161336A1 (en) Thermoelectric conversion element and thermoelectric conversion method
WO2013047253A1 (en) Thermoelectric conversion element and method for manufacturing same
JP6066091B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6233311B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP6565689B2 (en) Thermoelectric conversion element, thermoelectric conversion element module, and method of manufacturing thermoelectric conversion element
JPWO2013151088A1 (en) Thermoelectric conversion element, thermoelectric conversion system, and method of manufacturing thermoelectric conversion element
JP2014072250A (en) Thermoelectric transducer and method for manufacturing the same
JP6349863B2 (en) Spin current thermoelectric conversion element, manufacturing method thereof, and thermoelectric conversion device
Hu et al. Tuning thermoelectric conversion performance of BiSbTe/Epoxy flexible films with dot magnetic arrays
Huang et al. Broadband microwave absorption and adaptable multifunctionality of carbonaceous chiral metamaterials under deep subwavelength thickness
JP2015065254A (en) Thermoelectric conversion element and method for manufacturing the same
WO2023054583A1 (en) Thermoelectric body, thermoelectric generation element, multilayer thermoelectric body, multilayer thermoelectric generation element, thermoelectric generator, and heat flow sensor
JP6519230B2 (en) Thermoelectric conversion element and method of manufacturing the same
JP6191620B2 (en) Thermoelectric conversion element and manufacturing method thereof
JP2016042546A (en) Thermoelectric conversion element
JP2014183176A (en) Spin current thermoelectric transducer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836779

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013536180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836779

Country of ref document: EP

Kind code of ref document: A1