WO2013047100A1 - Stereoscopic image display apparatus - Google Patents

Stereoscopic image display apparatus Download PDF

Info

Publication number
WO2013047100A1
WO2013047100A1 PCT/JP2012/072395 JP2012072395W WO2013047100A1 WO 2013047100 A1 WO2013047100 A1 WO 2013047100A1 JP 2012072395 W JP2012072395 W JP 2012072395W WO 2013047100 A1 WO2013047100 A1 WO 2013047100A1
Authority
WO
WIPO (PCT)
Prior art keywords
stereoscopic image
shutter
display device
pixel
emitted
Prior art date
Application number
PCT/JP2012/072395
Other languages
French (fr)
Japanese (ja)
Inventor
孝太 南澤
稲見 昌彦
▲すすむ▼ 舘
典昭 山口
茂人 吉田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013047100A1 publication Critical patent/WO2013047100A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/349Multi-view displays for displaying three or more geometrical viewpoints without viewer tracking
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/30Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers
    • G02B30/31Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving parallax barriers involving active parallax barriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • H04N13/31Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers
    • H04N13/315Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays using parallax barriers the parallax barriers being time-variant

Definitions

  • the present invention relates to a stereoscopic image display apparatus capable of displaying a stereoscopic image in multiple directions.
  • 3D image display technique there are mainly a method in which a user wears glasses and a method that does not require the user to wear glasses such as a parallax barrier method.
  • Patent Document 1 discloses a stereoscopic image display device having a liquid crystal panel for displaying a stereoscopic image and a liquid crystal panel functioning as a parallax barrier disposed on the front surface of the liquid crystal panel.
  • FIG. 22 is a diagram illustrating the configuration of the stereoscopic image display apparatus disclosed in Patent Document 1.
  • the stereoscopic image display device includes a display panel 250 for displaying a stereoscopic image, and an active barrier 230 that functions as a parallax barrier disposed on the front surface of the display panel 250.
  • the display panel 250 is composed of a liquid crystal display device, and the active barrier 230 is configured by arranging liquid crystal cells in a matrix.
  • a liquid crystal cell at an arbitrary position can be caused to function as a parallax barrier.
  • the observer observe the stereoscopic image with the longitudinal direction of the stereoscopic image display device as the vertical direction (vertically long type), and also in the longitudinal direction of the stereoscopic image display device as shown in FIG.
  • the horizontal direction horizontal type
  • the image displayed on the display panel 250 can be stereoscopically viewed by the observer.
  • the center position C1 of each screen in the case of displaying a stereoscopic image in a vertically long type and in the case of displaying a stereoscopic image in a horizontally long type can be made substantially coincident with the center position C2 of the observer, the observer can It is possible to visually recognize a stereoscopic image with almost no movement of the line of sight.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2006-154809 (published on June 15, 2006)
  • the stereoscopic image display device does not define the relationship between the pixel size of the display panel 250 (ie, the size of the liquid crystal cell) and the pixel size of the active barrier 230 (ie, the size of the liquid crystal cell).
  • the pixel size of the display panel 250 ie, the size of the liquid crystal cell
  • the pixel size of the active barrier 230 ie, the size of the liquid crystal cell
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to display a stereoscopic image from multiple viewpoints and suppress the occurrence of crosstalk.
  • a stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying a stereoscopic image in multiple directions, a display device in which pixels are arranged in a matrix, and a transmission device.
  • Shutter elements that can be switched between a state and a light-shielding state are arranged in a matrix, and the shutter device is arranged to face the light emitting surface of the display device, and the pixels and the shutter elements are arranged.
  • the shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
  • the shutter device since the shutter device is aligned with the light emitting surface of the display device, light emitted from the pixel can be transmitted or shielded by the shutter element. Thereby, a multi-viewpoint stereoscopic image display device that displays stereoscopic images in multiple directions can be obtained.
  • the shutter pitch of the shutter is smaller than the pixel pitch of the pixel in at least one direction among the directions in which the pixel and the shutter element are arranged, the stereoscopic images displayed in different directions. Crosstalk displayed with overlapping can be prevented.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying stereoscopic images in multiple directions, and can switch between a display device in which pixels are arranged in a matrix and a transmission state and a light shielding state.
  • the shutter elements are arranged in a matrix, and include a shutter device arranged to face the light emitting surface of the display device.
  • the shutter elements are arranged in at least one direction among the directions in which the pixels and the shutter elements are arranged.
  • the shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
  • This provides the effect of displaying a stereoscopic image from multiple viewpoints and suppressing the occurrence of crosstalk.
  • (A) is the schematic showing the stereoscopic image display apparatus with the same pixel pitch of an LED module, and the pixel pitch of a liquid crystal cell
  • (b) is a mode of the display of the stereoscopic image of the stereoscopic image display apparatus of (a). It is a figure explaining.
  • (A) is the schematic showing the stereoscopic image display apparatus which concerns on this Embodiment
  • (b) is a figure explaining the mode of a stereoscopic image display of the stereoscopic image display apparatus of (a). It is a figure explaining the production
  • FIG. 1 It is a perspective view showing the structure of the three-dimensional image display apparatus which concerns on this Embodiment.
  • (A) It is a top view showing the structure of the pixel of the shutter apparatus which is a permeation
  • (A) is a top view showing the structure of the pixel of the shutter apparatus which is a light-shielding state, (b) is sectional drawing showing the structure of a pixel.
  • FIG. 2 is a perspective view showing the configuration of the stereoscopic image display apparatus 1 according to the present embodiment.
  • FIG. 1 is a diagram schematically illustrating a cross section of the stereoscopic image display device 1.
  • the stereoscopic image display device 1 is a multi-view stereoscopic image display device capable of displaying a stereoscopic (3D) image in multiple directions.
  • the stereoscopic image display device 1 displays a multi-view stereoscopic image by displaying an image by space division and time division.
  • the stereoscopic image display device 1 includes a control unit 10, an LED (light emitting diode) display device 20 that is a self-luminous image display device, and a shutter that can switch between a light transmitting state and a light blocking state in a matrix. And a shutter device 30 as an active shutter.
  • a control unit 10 an LED (light emitting diode) display device 20 that is a self-luminous image display device, and a shutter that can switch between a light transmitting state and a light blocking state in a matrix.
  • a shutter device 30 as an active shutter.
  • the horizontal direction (horizontal direction) of the LED display device 20 and the shutter device 30 is defined as the X direction
  • the vertical direction (vertical direction) is defined as the Y direction.
  • the direction from the left side to the right side of the LED display device 20 and the shutter device 30 is the X plus direction
  • the direction from the upper side to the lower side of the LED display device 20 and the shutter device 30 is the Y plus direction.
  • the control unit 10 acquires a video signal from the outside, and controls driving of the LED display device 20 and the shutter device 30 in synchronization with each other based on the acquired video signal.
  • the LED display device 20 is a self-luminous display for image display.
  • the LED display device 20 is an LED array display in which a plurality of LED modules (pixels) M constituting one pixel are arranged in a matrix on the light emitting surface 20a.
  • the LED display device 20 sequentially displays a plurality of frames constituting one stereoscopic image by sequentially lighting a plurality of LED modules. Thereby, the stereoscopic image display apparatus 1 displays a stereoscopic image.
  • the shutter device 30 is a shutter that partially transmits or blocks light emitted from the LED display device 20.
  • the stereoscopic image display apparatus 1 displays a stereoscopic image in a plurality of directions. That is, the stereoscopic image display apparatus 1 realizes display of a multi-viewpoint stereoscopic image.
  • the shutter device 30 is arranged to face the light emitting surface 20a of the LED display device 20.
  • the shutter device 30 includes liquid crystal cells (shutter elements) SL arranged in a matrix as shutter elements that can be switched between a transmission state and a light shielding state.
  • the shutter device 30 includes an active substrate (not shown) in which a pixel electrode PE (see FIG. 5) made of a transparent electrode and a TFT element TR (see FIG. 5) functioning as a switching element of each liquid crystal cell are arranged for each liquid crystal cell. And a liquid crystal layer and a counter substrate (not shown) disposed opposite to the active substrate via the liquid crystal layer and provided with a common electrode (not shown) made of a transparent electrode.
  • the shutter device 30 switches the LED of the LED display device 20 by switching between the transmission state (white liquid crystal cell SL in FIG. 1) and the light shielding state (black liquid crystal cell SL in FIG. 1) of each liquid crystal cell SL. It functions as an active shutter that transmits or blocks light emitted from the module M.
  • a region where the adjacent transmissive liquid crystal cell SL is formed is a transmissive portion SLT.
  • a region adjacent to the transmissive portion SLT and where the light-shielded liquid crystal cell SL is formed is the light-shielding portion SLS.
  • the shutter device 30 is a liquid crystal display that displays a light shielding pattern or a transmission pattern using the liquid crystal cell SL as one pixel.
  • a general liquid crystal panel without a color filter can be used as the shutter device 30.
  • the configuration of the shutter device 30 is preferably a matrix structure capable of displaying a vertical viewpoint (described later), a horizontal viewpoint (described later), and a vertical and horizontal viewpoint (described later). More preferably, it has an active matrix structure in which each barrier can be dynamically switched.
  • the shutter pitch SP which is the pitch of the liquid crystal cell SL is smaller. That is, the shutter pitch SP, which is the pixel pitch of the shutter device 30 that is a display that displays a light shielding pattern, is smaller and higher definition than the pixel pitch PP of the LED display device 20 that is a display that displays a stereoscopic image. .
  • the stereoscopic image display device 1 can reduce crosstalk that occurs when a stereoscopic image is displayed from multiple viewpoints.
  • the ratio between the length of the pixel pitch PP and the length of the shutter pitch SP is 6: 1.
  • the ratio between the length of the pixel pitch PP and the length of the shutter pitch SP is not limited to this. That is, it is only necessary that the length of the pixel pitch PP> the length of the shutter pitch SS.
  • 9: 1 can be appropriately set.
  • the shutter device 20 is provided with a transmissive portion SLT that is configured by a plurality of adjacent liquid crystal cells SL disposed to face the LED module M in a transmissive state. Then, the length of the transmission part SLT in the direction in which the LED modules M are arranged (for example, the X direction or the Y direction) is compared with the length MS of the LED modules M in the direction in which the LED modules M are arranged (for example, the X direction or the Y direction). Shorter.
  • the stereoscopic image display apparatus 1 can narrow the light emitted from the LED module M by the transmission part SLT. Thereby, crosstalk can be reliably prevented. Details will be described later.
  • FIG. 3 is a plan view showing the configuration of the light emitting surface 20a of the LED display device 20.
  • the LED display device 20 is provided with LED modules M constituting pixels, and includes a light emitting surface 20a for displaying an image (parallax image).
  • the LED modules M are arranged in a matrix in the horizontal direction (that is, X direction) on the light emitting surface 20a and in the vertical direction (that is, Y direction) on the light emitting surface 20a.
  • the light emitting surface 20a includes a reflecting member 22 arranged in a lattice shape.
  • a region partitioned by the reflecting member 22 is a formation region P of the LED module M.
  • One LED module M which is one pixel is arranged in the formation area P of the LED module M.
  • the LED module M includes an LED (self-emitting element) R that emits red light, an LED (self-emitting element) G that emits green light, an LED (self-emitting element) B that emits blue light, and an LEDR / G.
  • a hemispherical lens member 23 covering B is provided.
  • LEDR ⁇ G ⁇ B is mounted on a substrate in the LED module formation region P.
  • one LEDR, G, and B are arranged in the LED module M, respectively, and are described as being arranged in a line in the X direction in this order.
  • the number and arrangement of the LEDs R, G, and B are not limited to this, and a plurality of the LEDs R, G, and B may be arranged in each pixel P.
  • the pixels P may be arranged so as to form an equilateral triangle.
  • the number and arrangement of the LEDR / G / B can be appropriately set according to the required specifications of the product.
  • FIG. 3 shows the LED modules M as a 5 ⁇ 5 array, but actually, the number of LED modules M in the LED display device 20 is larger.
  • the upper left LED module M11 will be referred to as the LED modules M12, M13,.
  • the LED modules M that are referred to as M14, M15,... And arranged in order from the LED module M11 in the Y direction may be referred to as LED modules M21, M31, M41, M51,.
  • the pixel pitch PP is a pitch between adjacent pixels P, that is, a pitch between adjacent LED modules M.
  • the pixel pitch PP X in the X direction is equal to the pixel pitch PP Y in the Y direction.
  • the pixel pitch P of the LED display device 20 is about 1.5 mm.
  • FIG. 4 is a circuit diagram showing the configuration of the LED display device 20.
  • the LED display device 20 includes a light emitting surface 20 a and a driver 25.
  • the driver 25 includes a source-side shift register 20SRS, a common-side shift register 20SRC, a gradation current generation circuit GR, transistors 20S1, 20S2, 20S3,..., And transistors 20T1, 20T2,. .
  • the light emitting surface 20a includes common lines 20C1, 20C2,..., Source lines 20L1, 20L2, 20L3.
  • the shift register 20SRS, the shift register 20SRC, and the gradation current generation circuit GR are each connected to the control unit 10.
  • the control unit 10 inputs display data to the gradation current generation circuit GR, inputs a horizontal synchronization signal (start pulse or the like) or a clock signal to the shift register 20SRS on the source side, and outputs a vertical synchronization signal (start pulse or the like) or clock.
  • the signal is input to the shift register 20SRC on the common side.
  • the gradation current generation circuit GR generates a constant current according to display data (gradation data) DAT input from the control unit 10.
  • the source lines 20L1 to 20L3 extend in the Y direction and are arranged in parallel to each other.
  • the common lines 20C1 and 20C2 extend in the X direction and are arranged in parallel to each other.
  • the source line 20L1 is connected to the gradation current generation circuit GR via the transistor 20S1, the source line 20L2 is connected to the gradation current generation circuit GR via the transistor 20S2, and the source line 20L3 is connected via the transistor 20S3. It is connected to the gradation current generation circuit GR.
  • the gate of the transistor 20S1 is connected to the output terminal 20n1 of the source-side shift register 20SRS
  • the gate of the transistor 20S2 is connected to the output terminal 20n2 of the source-side shift register 20SRS
  • the gate of the transistor 20S3 is connected to the output terminal 20SRS of the source-side shift register 20SRS. It is connected to the output terminal 20n3.
  • the common line 20C1 is grounded via the transistor 20T1
  • the common line 20C2 is grounded via the transistor 20T2
  • the gate of the transistor 20T1 is connected to the output terminal 20m1 of the shift register on the common side
  • the gate of the transistor 20T2 is common. Is connected to the output terminal 20m2 of the shift register on the side.
  • the anode of LEDR, the anode of LEDG, and the anode of LEDB of LED module M11 are connected to common line 20C1
  • the cathode of LEDR is connected to source line 20L1
  • the cathode of LEDG is source line 20L2.
  • the cathode of LEDB is connected to the source line 20L3.
  • the LEDR anode, LEDG anode, and LEDB anode of the LED module M21 are connected to the common line 20C2, and the cathode of the LEDR is connected to the source line 20L1.
  • the cathode is connected to the source line 20L2, and the cathode of LEDB is connected to the source line 20L3.
  • the LED display device 20 displays one image by causing LEDR, LEDG, and LEDB to emit light alone or in a superimposed manner.
  • FIG. 5 is a diagram illustrating the configuration of the shutter device 30.
  • the shutter device 30 includes a shutter array unit 31 and a driver 35.
  • the driver 35 includes a source driver 30SD on the source side and a common driver 30CD on the common side. Further, the shutter array unit 31 includes common lines 30C1, 30C2, 30C3, source lines 30L1, 30L2, 30L3, and liquid crystal cells SL arranged in a matrix.
  • the source driver 30SD and the common driver 30CD are connected to the control unit 10, respectively.
  • the control unit 10 inputs a horizontal synchronization signal (start pulse or the like) or a clock signal to the source driver 30SD, and inputs a vertical synchronization signal (start pulse or the like) or a clock signal to the common driver 30CD.
  • the source driver 30SD corresponds to a horizontal synchronization signal and a clock signal input from the control unit 10, and supplies a current for setting the liquid crystal cell SL in a transmissive state or a current for setting the liquid crystal cell SL in a light shielding state. Application to a predetermined liquid crystal cell.
  • the source line 30L1 is connected to the output terminal 30n1 of the source driver 30SD
  • the source line 30L2 is connected to the output terminal 30n2 of the source driver 30SD
  • the source line 30L3 is connected to the output terminal 30n3 of the source driver 30SD.
  • the common line 30C1 is connected to the output end 30m1 of the common driver 30CD
  • the common line 30C2 is connected to the output end 30m2 of the common driver 30CD
  • the common line 30C3 is connected to the output end 30m3 of the common driver 30CD.
  • the liquid crystal cell SL is provided with a pixel electrode PE made of a transparent electrode such as ITO and a TFT element TR functioning as a switching element for driving the liquid crystal in the liquid crystal cell SL.
  • a pixel electrode PE made of a transparent electrode such as ITO
  • a TFT element TR functioning as a switching element for driving the liquid crystal in the liquid crystal cell SL.
  • FIG. 5 the structure of the surface of the active substrate facing the counter substrate is particularly shown as the shutter array unit 31.
  • the upper left liquid crystal cell SL is referred to as a liquid crystal cell SL11
  • the liquid crystal cells SL arranged in order in the X direction are sequentially arranged as liquid crystal cells.
  • the liquid crystal cells SL arranged in order in the Y direction from the liquid crystal cell SL11 may be sequentially referred to as liquid crystal cells SL21, SL31, SL41, SL51,. .
  • a pitch between adjacent liquid crystal cells SL is a shutter pitch SP.
  • the X-direction of the shutter pitch SP and shutter pitch SP X when the Y-direction of the shutter pitch SP and shutter pitch SP Y, shutter pitch SP X and Yattapitchi SP Y together, smaller pixel pitch PP. Either of the shutter pitch SP X and the shutter pitch SP Y may be larger.
  • the gate of the TFT element TR is connected to the common line 30C1
  • the source of the TFT element TR is connected to the source line 30L1
  • the drain of the TFT element TR is connected to the pixel electrode PE.
  • the gate of the TFT element TR is connected to the common line 30C1
  • the source of the TFT element TR is connected to the source line 30L2
  • the drain of the TFT element TR is connected to the pixel electrode PE.
  • the gate of the TFT element TR is connected to the common line 30C1
  • the source of the TFT element TR is connected to the source line 30L3
  • the drain of the TFT element TR is connected to the pixel electrode PE.
  • the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L1, and the drain of the TFT element TR is connected to the pixel electrode PE.
  • the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L2, and the drain of the TFT element TR is connected to the pixel electrode PE.
  • the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L3, and the drain of the TFT element TR is connected to the pixel electrode PE.
  • the pixel electrode PE is an electrode for switching (driving) the transmission state or the light shielding state of the liquid crystal cell SL.
  • the shutter device 30 switches between the transmissive state and the light-shielded state of the liquid crystal cell SL by changing the orientation of the liquid crystal according to the potential difference between the pixel electrode PE and the common electrode of the counter substrate (not shown).
  • a transparent state is a region where the pixel electrode PE is formed.
  • FIG. 6 is a diagram illustrating a display state of a stereoscopic image of the stereoscopic image display device 1 for each elapsed time from a horizontal viewpoint.
  • 6A shows the display state of the stereoscopic image of the stereoscopic image display apparatus 1 at time 0/240 [sec]
  • FIG. 6B shows the stereoscopic image display apparatus 1 at time 1/240 [sec].
  • C shows the display state of the stereoscopic image of the stereoscopic image display device 1 at time 2/240 [sec]
  • (d) shows the display state of 3/240 [sec].
  • the stereoscopic image display state of the stereoscopic image display device 1 is represented, and (e) is a diagram illustrating the stereoscopic image display state of the stereoscopic image display device 1 at a time of 4/240 [sec].
  • FIG. 7 is a plan view showing a transmission part and a light shielding part of the shutter device 30 for each elapsed time from a horizontal viewpoint.
  • FIG. 7A is a plan view showing a transmission part and a light shielding part of the shutter device 30 at a time of 0/240 [sec]
  • FIG. 7B is a shutter device at a time of 1/240 [sec].
  • 30 is a plan view showing the transmissive part and the light shielding part of FIG. 30, (c) is a plan view showing the transmissive part and the light shielding part of the shutter device 30 at a time of 2/240 [sec], and (d) is a plan view. It is a top view showing the transmission part and light-shielding part of the shutter apparatus 30 in time 3/240 [sec], (e) is the transmission part and light-shielding part of the shutter apparatus 30 in time 4/240 [sec].
  • FIG. 7A is a plan view showing a transmission part and a light shielding part of the shutter
  • the stereoscopic image display device 1 sequentially displays five subframes constituting one frame in each of five directions when displaying a stereoscopic image of five viewpoints. Thereby, a stereoscopic image is displayed in each of five different directions.
  • the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per subframe.
  • a stereoscopic image is displayed at each of the viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5 that are sequentially arranged in the positive direction of X.
  • a slit-like transmissive portion SLT extending in the vertical direction has a plurality of light shielding portions SLS, transmissive portions SLT, light shielding portions SLS, transmissive portions SLT,.
  • the transmission state and the light shielding state of the liquid crystal cell SL are controlled so as to be arranged.
  • the slit of the transmission part SLT is provided in correspondence with the LED module M.
  • a plurality of liquid crystal SELs facing each of the LED modules M13 and M18 are set in a transmissive state, whereby the shutter device.
  • a transmissive portion SLT is formed at 30.
  • each of the viewpoints AX5 displays one different subframe among the five subframes constituting one frame.
  • the light emitted from each of the LED modules M11, M12, M13, M14, and M15 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M11 is emitted to the viewpoint AX5
  • the light emitted from the LED module M12 is emitted to the viewpoint AX4
  • the light emitted from the LED module M13 is emitted to the viewpoint AX3, and the light emitted from the LED module M14.
  • the emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M16, M17, M18, M19, and M110 is adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M12, M13, M14, and M15 is transmitted in the lateral direction (X direction).
  • the transmission part SLT to be transmitted is transmitted as a common transmission part.
  • the light emitted from the LED module M16 is emitted to the viewpoint AX5
  • the light emitted from the LED module M17 is emitted to the viewpoint AX4
  • the light emitted from the LED module M18 is emitted to the viewpoint AX3
  • the emitted light is emitted to the viewpoint AX2
  • the emitted light from the LED module M110 is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M11, M12, M13, and M14 is transmitted through one common transmission part SLT.
  • the emitted light from the LED module M11 is emitted to the viewpoint AX4
  • the emitted light from the LED module M12 is emitted to the viewpoint AX3
  • the emitted light from the LED module M13 is emitted to the viewpoint AX2
  • the emitted light from the LED module M14 The incident light is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M15, M16, M17, M18, and M19 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M12, M13, and M14 is transmitted.
  • the part SLT is transmitted as a common transmission part.
  • the light emitted from the LED module M15 is emitted to the viewpoint AX5
  • the light emitted from the LED module M16 is emitted to the viewpoint AX4
  • the light emitted from the LED module M17 is emitted to the viewpoint AX3
  • the light emitted from the LED module M18 The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M19 is emitted to the viewpoint AX1.
  • a plurality of liquid crystal SELs facing each of the LED modules M11 and M16 are set in a transmissive state, so that transmission is possible from 1/240 [sec]. Slide the position of the part SLT in the X minus direction.
  • the light emitted from each of the LED modules M11, M12, and M13 is transmitted through one common transmission part SLT.
  • the emitted light from the LED module M11 is emitted to the viewpoint AX3
  • the emitted light from the LED module M12 is emitted to the viewpoint AX2
  • the emitted light from the LED module M13 is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M14, M15, M16, M17, and M18 is transmitted through the transmissive part SLT that transmits the light emitted from the LED modules M11, M12, and M13, and the transmissive part SLT adjacent in the lateral direction (X direction).
  • the light emitted from the LED module M14 is emitted to the viewpoint AX5
  • the light emitted from the LED module M15 is emitted to the viewpoint AX4
  • the light emitted from the LED module M16 is emitted to the viewpoint AX3
  • the light emitted from the LED module M17 is emitted to the viewpoint AX2
  • the emitted light from the LED module M18 is emitted to the viewpoint AX1.
  • a plurality of liquid crystal SELs facing each of the LED modules M15 and M110 are set in a transmissive state, so that transmission is possible from 2/240 [sec]. Slide the position of the part SLT in the X minus direction.
  • the light emitted from each of the LED modules M13, M14, M15, M16, and M17 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M13 is emitted to the viewpoint AX5
  • the light emitted from the LED module M14 is emitted to the viewpoint AX4
  • the light emitted from the LED module M15 is emitted to the viewpoint AX3
  • the light emitted from the LED module M16 The emitted light is emitted to the viewpoint AX2
  • the emitted light from the LED module M17 is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M18, M19, and M110 is a transmissive portion SLT that is adjacent in the lateral direction (X direction) to the transmissive portion SLT through which the emitted light from the LED modules M13, M14, M15, M16, and M17 is transmitted.
  • X direction the lateral direction
  • M15, M16, and M17 the transmissive portion SLT through which the emitted light from the LED modules M13, M14, M15, M16, and M17 is transmitted.
  • X direction the emitted light from the LED modules M13, M14, M15, M16, and M17
  • the emitted light from the LED module M18 is emitted to the viewpoint AX5
  • the emitted light from the LED module M19 is emitted to the viewpoint AX4
  • the emitted light from the LED module M110 is emitted to the viewpoint AX3.
  • a plurality of liquid crystal SELs facing each of the LED modules M14 and M19 are set in a transmissive state, so that transmission is possible from 3/240 [sec]. Slide the position of the part SLT in the X minus direction.
  • each of the LED modules M12, M13, M14, M15, and M16 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M12 is emitted to the viewpoint AX5
  • the light emitted from the LED module M13 is emitted to the viewpoint AX4
  • the light emitted from the LED module M14 is emitted to the viewpoint AX3
  • the light emitted from the LED module M15 The emitted light is emitted to the viewpoint AX2
  • the emitted light from the LED module M16 is emitted to the viewpoint AX1.
  • the light emitted from each of the LED modules M17, M18, M19, and M110 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M12, M13, M14, M15, and M16 is transmitted.
  • the part SLT is transmitted as a common transmission part.
  • the light emitted from the LED module M17 is emitted to the viewpoint AX5
  • the light emitted from the LED module M18 is emitted to the viewpoint AX4
  • the light emitted from the LED module M19 is emitted to the viewpoint AX3
  • the light emitted from the LED module M110 The incident light is emitted to the viewpoint AX2.
  • the stereoscopic image display device 1 displays a stereoscopic image as a stereoscopic image pixel for displaying, for example, the LED modules M16 to M110 to the observer of the viewpoint AX1.
  • the stereoscopic image is displayed to the observer at the viewpoint AX2, for example, using the LED modules M15 to M109 as the stereoscopic image pixels for displaying one stereoscopic image.
  • the stereoscopic image is displayed to the observer at the viewpoint AX3 using, for example, the LED modules M14 to M108 as the stereoscopic image pixels for displaying one stereoscopic image.
  • the stereoscopic image is displayed to the observer of the viewpoint AX4 using, for example, the LED modules M13 to M107 as stereoscopic image pixels for displaying one stereoscopic image. Further, a stereoscopic image is displayed to the observer at the viewpoint AX5, for example, using the LED modules M13 to M109 as the stereoscopic image pixels for displaying one stereoscopic image.
  • the stereoscopic image display device 1 displays a plurality of stereoscopic images using the plurality of pixels as one pixel for stereoscopic image display.
  • FIG. 8 is a diagram for explaining how an image displayed by the stereoscopic image display device 1 is viewed by an observer.
  • FIG. 8A shows the relationship between the image D0 displayed by the stereoscopic image display device 1 and each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5, and FIG. 8B shows one stereoscopic display.
  • the five frames DA, DB, DC, DD, and DE constituting the image D are represented, and (c) represents one stereoscopic image D.
  • the observer of the viewpoint AX1 receives ( b)
  • the frame DA is visually recognized as a display image as shown in (i)
  • the observer of the viewpoint AX2 sees the frame DB as a display image as shown in (b) (ii) of FIG.
  • the observer sees the frame DC as a display image as shown in (b) and (iii) of FIG. 8, and the observer sees the frame DD as shown in (b) and (iv) of FIG.
  • the frame DE is visually recognized as a display image by an observer who is visually recognized as an image AX5.
  • each observer of AX4 and AX5 visually recognizes as a display image, so that each observer of the viewpoints AX1, AX2, AX3, AX4, and AX5 visually recognizes one stereoscopic image D as shown in FIG. 8C. can do.
  • the stereoscopic image display device 1 displays five different images in one set at high speed in five directions, so that the user does not wear glasses for visually recognizing the stereoscopic image.
  • a stereoscopic image can be displayed in five directions.
  • the plurality of directions for displaying a stereoscopic image is not limited to five directions, but may be four directions or less, or may be six directions or more.
  • the stereoscopic image display apparatus 1 includes, for example, the pixel pitch PP X in the direction in which the pixels for stereoscopic images for displaying one stereoscopic image, such as the LED modules M16 to M110, are arranged, and the shutter pitch SP X.
  • the shutter pitch SP X is smaller.
  • the ratio of the pixel pitch PP X and the shutter pitch SP X is 6: 1.
  • the ratio between the pixel pitch PP X and the shutter pitch SP X is not limited to 6: 1, and can be changed as appropriate, for example, 9: 1.
  • one stereoscopic image D is composed of a plurality of frames DA, DB, DC, DD, DE displayed in order, and each of the plurality of frames DA, DB, DC, DD, DE is Among the plurality of LED modules M constituting the stereoscopic image pixel (for example, LED modules M16 to M110 for the observer of the viewpoint AX1), different LED modules M (for example, for the observer of the viewpoint AX1) Any one of the LED modules M16 to M110) is displayed as one pixel.
  • each of the plurality of frames DA, DB, DC, DD, and DE is displayed as a pixel that is different from each other among the plurality of pixels constituting the pixel for the stereoscopic image.
  • 1 can display a stereoscopic image in multiple directions.
  • the plurality of LED modules M constituting the stereoscopic image pixels are arranged in a line in the horizontal direction on the light emitting surface 20a. Thereby, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface 20a.
  • FIG. 9A is a schematic diagram illustrating the stereoscopic image display device 100 in which the pixel pitch of the LED module is equal to the pixel pitch of the liquid crystal cell
  • FIG. 9B is a stereoscopic image of the stereoscopic image display device 100 in FIG. It is a figure explaining the mode of a display.
  • FIG. 10A is a schematic diagram illustrating the stereoscopic image display apparatus 1 according to the present embodiment
  • FIG. 10B is a diagram for explaining a display state of the stereoscopic image of the stereoscopic image display apparatus 1 of FIG. is there.
  • the stereoscopic image display device 100 includes an LED display device 120 and a shutter device 130.
  • the LED display device 120 has the same configuration as the LED display 20.
  • the shutter pitch SP which is the pitch of the liquid crystal cells 130SL, is the same as the pixel pitch PP of the LED display device 120.
  • the transmissive portion 130SLT is provided in the shutter device 130 by setting the liquid crystal cell 130SL facing the LED module M13 in a transmissive state.
  • the light emitted from each of the LED modules M11, M12, M13, M14, and M15 of the LED display device 120 passes through one common transmission unit 130SLT.
  • the emitted light from the LED module M11 is emitted to the viewpoint AX5
  • the emitted light from the LED module M12 is emitted to the viewpoint AX4
  • the emitted light from the LED module M13 is emitted to the viewpoint AX3, and from the LED module M14.
  • the emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
  • the shutter pitch SP of the shutter device 100 and the pixel pitch PP of the LED display device 120 are equal, light emitted from adjacent LED modules is mixed between the viewpoints.
  • the light emitted from the LED module M15 and the light emitted from the LED module M14 are mixed between the viewpoint AX1 and the viewpoint AX2, and the light emitted from the LED module M14 and the LED module are mixed between the viewpoint AX2 and the viewpoint AX3.
  • the light emitted from M13 is mixed in color
  • the light emitted from the LED module M13 and the light emitted from the LED module M12 are mixed between the viewpoints AX3 and AX4, and the LED module between the viewpoints AX4 and AX5.
  • the light emitted from M12 and the light emitted from LED module M11 are mixed.
  • crosstalk occurs in which light emitted from adjacent LED modules is mixed between adjacent viewpoints. For this reason, depending on the angle at which the observer observes the stereoscopic image, the observer visually recognizes the image in which crosstalk has occurred, which causes a reduction in display quality.
  • the stereoscopic image display apparatus 100 sets the slit position of the transmission unit 130SLT to the pixel pitch of the LED module M. It can be set only at equal pitch intervals with PP, and cannot be set to an optimum position for suppressing crosstalk.
  • the position of the LED display device 120 or the shutter device 130 must be physically shifted, which is not practical.
  • the stereoscopic image display device 1 has a liquid crystal of the shutter device 30 as compared with the pixel pitch PP that is the pitch of the LED modules M of the LED display device 20.
  • the shutter pitch SP which is the pitch of the cell SL, is finer. For this reason, the transmissive part SLT whose length in the X direction is shorter than the pixel pitch PP of the LED module M can be formed in the shutter device 30.
  • the pitch of the liquid crystal cells SL of the shutter device 30 is larger than the length M (the length MS X in the X direction) of the LED module M of the LED display device 20.
  • a certain shutter pitch SP is finer. For this reason, the length of the transmissive part SLT in the X direction can be made shorter than the length MS of the LED module M.
  • the length MS X in the X direction of the LED module M13 is longer.
  • the transmissive portion SLT is provided so that the length is short.
  • the light emitted from each of the LED modules M11, M12, M13, M14, and M15 of the LED display device 20 passes through one common transmission part SLT.
  • the emitted light from the LED module M11 is emitted to the viewpoint AX5
  • the emitted light from the LED module M12 is emitted to the viewpoint AX4
  • the emitted light from the LED module M13 is emitted to the viewpoint AX3, and from the LED module M14.
  • the emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
  • the length of the transmissive portion SLT in the X direction is shorter than the pixel pitch PP of the LED module M, the light emitted to each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5 is It is narrowed down by the transmission part SLT, and it is possible to prevent the occurrence of crosstalk among the viewpoints AX1, AX2, AX3, AX4, and AX5.
  • the length of the transmissive part SLT in the X direction is shorter than the length MS X of the LED module M13 in the X direction, so that each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint It is possible to prevent crosstalk from occurring between AX4 and viewpoint AX5.
  • the slit position of the transmissive part SLT is set to the pixel pitch of the LED module M. It can be set more finely than PP, and the relative position of the liquid crystal cell 130SLP with respect to the LED module M can be finely adjusted simply by changing the display of the shutter pattern of the shutter device 30. For this reason, there is no need to physically move the relative position between the LED display device 20 and the shutter device 30, so that a practical stereoscopic image display device 1 can be obtained.
  • the stereoscopic image display device 1 displays a stereoscopic image from a horizontal viewpoint
  • the shutter pitch SP of the liquid crystal cell SL is smaller than the pixel pitch PP that is the pitch of the LED module M in the X direction.
  • the transmissive portion SLT of the shutter device 30 is formed by a plurality of liquid crystal cells SL arranged at positions facing any one of the LED modules M among the plurality of LED modules M constituting the stereoscopic image pixel. Has been. Then, the transmissive portion SLT sequentially moves so as to face any one of the different LED modules M among the plurality of LED modules M constituting the stereoscopic image pixel for each of the frames DA to DE.
  • the light emitted from each of the plurality of LED modules M configuring the stereoscopic image pixel is transmitted through the transmission part SLT and emitted in different directions. Thereby, a three-dimensional image can be displayed in multiple directions.
  • FIG. 16 is a diagram illustrating the relationship between the number of viewpoints and the transmission part. As shown in FIG. 16, as the number of viewpoints increases, the opening area of the transmission part SLT becomes smaller. In FIG. 16, the white spot represents the transmission part SLT.
  • the stereoscopic image display apparatus 1 can display a multi-view stereoscopic image by adopting a vertical viewpoint or a vertical / horizontal viewpoint in addition to the horizontal viewpoint.
  • This vertical viewpoint and vertical and horizontal viewpoint will be described later.
  • the area of the transmissive part SLT decreases as the number of viewpoints increases, as in the horizontal viewpoint.
  • multi-viewpoint autostereoscopic display can be performed without reducing the resolution.
  • the stereoscopic image display device 1 uses an LED display with a higher brightness than the liquid crystal display for the LED display device 20, the stereoscopic image display device 1 can display a stereoscopic image with a brightness that is visible even under ambient light. it can.
  • Step 3 (Stereoscopic image generation procedure) Next, a procedure for generating a stereoscopic image will be described with reference to FIG.
  • FIG. 11 is a diagram illustrating a procedure for generating a stereoscopic image.
  • the image of the structure 5 arranged in the three-dimensional space is projected onto the surface of the shutter device 30 from all lines of sight (for example, five viewpoints).
  • a shutter pattern having a slit-like transmission portion SLT is displayed on the shutter device 30.
  • the projection image from each viewpoint direction is masked.
  • all masked images in the line of sight (for example, five viewpoints) directions are projected onto the light emitting surface 20 a of the LED display device 20. Thereby, a three-dimensional image can be generated.
  • the stereoscopic image display device 1 is not limited to a horizontal viewpoint that displays a plurality of stereoscopic images in the horizontal direction, and may display a multi-viewpoint stereoscopic image by another display method.
  • FIG. 12 is a diagram illustrating a display state of a stereoscopic image of the stereoscopic image display device 1 for each elapsed time from a vertical viewpoint.
  • 12A shows the display state of the stereoscopic image of the stereoscopic image display apparatus 1 at time 0/240 [sec]
  • FIG. 12B shows the stereoscopic image display apparatus 1 at time 1/240 [sec].
  • C shows the display state of the stereoscopic image of the stereoscopic image display device 1 at time 2/240 [sec]
  • (d) shows the display state of 3/240 [sec].
  • the stereoscopic image display state of the stereoscopic image display device 1 is represented, and (e) is a diagram illustrating the stereoscopic image display state of the stereoscopic image display device 1 at a time of 4/240 [sec].
  • FIG. 13 is a plan view showing a transmission part and a light shielding part of the shutter device 30 at each elapsed time from a vertical viewpoint.
  • FIG. 13A is a plan view showing a transmission part and a light shielding part of the shutter device 30 at a time of 0/240 [sec]
  • FIG. 13B is a shutter device at a time of 1/240 [sec].
  • 30 is a plan view showing the transmissive part and the light shielding part of FIG. 30, (c) is a plan view showing the transmissive part and the light shielding part of the shutter device 30 at a time of 2/240 [sec], and (d) is a plan view. It is a top view showing the transmission part and light-shielding part of the shutter apparatus 30 in time 3/240 [sec], (e) is the transmission part and light-shielding part of the shutter apparatus 30 in time 4/240 [sec].
  • FIG. 13A is a plan view showing a transmission part and a light shielding part of the shutter
  • the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per subframe.
  • the state of the transmissive part SLT and the light shielding part SLS of the shutter device 30 is as follows. As shown in FIG. The transmission state and the light shielding state of the liquid crystal cell SL are controlled so that a plurality of transmission portions SLT, light shielding portions SLS, transmission portions SLT,.
  • a transmissive portion SLT is formed in the shutter device 30 by setting a plurality of liquid crystal SELs facing the LED modules M31 and M81 to a transmissive state.
  • each of the viewpoints AY5 displays one different subframe among the five subframes constituting one frame.
  • the light emitted from each of the LED modules M11, M21, M31, M41, and M51 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M11 is emitted to the viewpoint AY5
  • the light emitted from the LED module M21 is emitted to the viewpoint AY4
  • the light emitted from the LED module M31 is emitted to the viewpoint AY3, and the light emitted from the LED module M41.
  • the emitted light is emitted to the viewpoint AY2
  • the emitted light from the LED module M51 is emitted to the viewpoint AY1.
  • the light emitted from each of the LED modules M61, M71, M81, M91, and M101 is adjacent to the transmission portion SLT through which the light emitted from the LED modules M11, M21, M31, M41, and M51 is transmitted in the vertical direction (Y direction).
  • the transmission part SLT to be transmitted is transmitted as a common transmission part.
  • the emitted light from the LED module M61 is emitted to the viewpoint AY5, the emitted light from the LED module M71 is emitted to the viewpoint AY4, the emitted light from the LED module M81 is emitted to the viewpoint AY3, and the emitted light from the LED module M91.
  • the emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M101 is emitted to the viewpoint AY1.
  • a plurality of liquid crystal SELs facing each of the LED modules M21 and M71 are set in a transmissive state, so that transmission can be performed from 0/240 [sec]. Slide the position of the part SLT in the Y minus direction.
  • the light emitted from each of the LED modules M11, M21, M31, and M41 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M11 is emitted to the viewpoint AY4
  • the light emitted from the LED module M21 is emitted to the viewpoint AY3
  • the light emitted from the LED module M31 is emitted to the viewpoint AY2
  • the light emitted from the LED module M41 The incident light is emitted to the viewpoint AY1.
  • the light emitted from each of the LED modules M51, M61, M71, M81, and M91 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M21, M31, and M41 is transmitted.
  • the part SLT is transmitted as a common transmission part.
  • the light emitted from the LED module M51 is emitted to the viewpoint AY5
  • the light emitted from the LED module M61 is emitted to the viewpoint AY4
  • the light emitted from the LED module M71 is emitted to the viewpoint AY3
  • the light emitted from the LED module M81 The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M19 is emitted to the viewpoint AY1.
  • a plurality of liquid crystal SELs facing each of the LED modules M11 and M61 are set in a transmissive state, so that transmission is possible from 1/240 [sec]. Slide the position of the part SLT in the Y minus direction.
  • the light emitted from each of the LED modules M11, M21, and M31 is transmitted through one common transmission part SLT.
  • the emitted light from the LED module M11 is emitted to the viewpoint AY3
  • the emitted light from the LED module M21 is emitted to the viewpoint AY2
  • the emitted light from the LED module M31 is emitted to the viewpoint AY1.
  • the light emitted from each of the LED modules M41, M51, M61, M71, and M81 is transmitted through the light-transmitting portion SLT that transmits light emitted from the LED modules M11, M21, and M31, and the light-transmitting portion SLT adjacent in the vertical direction (Y direction).
  • the light emitted from the LED module M41 is emitted to the viewpoint AY5, the light emitted from the LED module M15 is emitted to the viewpoint AY4, the light emitted from the LED module M16 is emitted to the viewpoint AY3, and the light emitted from the LED module M17.
  • the emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M18 is emitted to the viewpoint AY1.
  • a plurality of liquid crystal SELs facing each of the LED modules M51 and M101 are set in a transmissive state, so that transmission is possible from 2/240 [sec]. Slide the position of the part SLT in the Y minus direction.
  • the light emitted from each of the LED modules M31, M41, M51, M61, and M71 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M31 is emitted to the viewpoint AY5
  • the light emitted from the LED module M41 is emitted to the viewpoint AY4
  • the light emitted from the LED module M51 is emitted to the viewpoint AY3
  • the light emitted from the LED module M61 The emitted light is emitted to the viewpoint AY2
  • the emitted light from the LED module M71 is emitted to the viewpoint AY1.
  • the light emitted from each of the LED modules M81, M91, and M101 is transmitted through the light-transmitting portion SLT that transmits light emitted from the LED modules M31, M41, M51, M61, and M71, and the light-transmitting portion SLT adjacent in the vertical direction (Y direction).
  • the emitted light from the LED module M81 is emitted to the viewpoint AY5
  • the emitted light from the LED module M91 is emitted to the viewpoint AY4
  • the emitted light from the LED module M101 is emitted to the viewpoint AY3.
  • the light emitted from each of the LED modules M21, M31, M41, M51, and M61 is transmitted through one common transmission part SLT.
  • the light emitted from the LED module M21 is emitted to the viewpoint AY5
  • the light emitted from the LED module M31 is emitted to the viewpoint AY4
  • the light emitted from the LED module M41 is emitted to the viewpoint AY3
  • the light emitted from the LED module M51 The emitted light is emitted to the viewpoint AY2
  • the emitted light from the LED module M61 is emitted to the viewpoint AY1.
  • the light emitted from each of the LED modules M71, M81, M91, and M101 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M21, M31, M41, M51, and M61 is transmitted in the vertical direction (Y direction).
  • the part SLT is transmitted as a common transmission part.
  • the light emitted from the LED module M71 is emitted to the viewpoint AY5
  • the light emitted from the LED module M81 is emitted to the viewpoint AY4
  • the light emitted from the LED module M91 is emitted to the viewpoint AY3
  • the light emitted from the LED module M101 The incident light is emitted to the viewpoint AY2.
  • the stereoscopic image display device 1 can display a stereoscopic image of five viewpoints in the vertical direction.
  • the direction which displays a stereo image is not limited to 5 directions, 4 directions or less may be sufficient and 6 directions or more may be sufficient.
  • a plurality of pixels for example, M61 to M101 for the observer of the viewpoint AY1 constituting the above-mentioned standing image pixels are arranged in the vertical direction (Y direction) on the light emitting surface 20a. They may be arranged in a line. Thereby, a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface 20a.
  • the stereoscopic image display apparatus 1 includes, for example, the pixel pitch PP Y in the direction in which the pixels for stereoscopic images for displaying one stereoscopic image, such as the LED modules M61 to M101, and the shutter pitch SP Y are arranged. and in, the smaller the shutter pitch SP Y.
  • FIG. 14 is a diagram illustrating a state of the stereoscopic image display apparatus 1 displaying a stereoscopic image from a vertical and horizontal viewpoint.
  • FIG. 15 is a diagram illustrating a method of displaying a stereoscopic image from a vertical and horizontal viewpoint.
  • one stereoscopic image is displayed by displaying frames in a plurality of directions in the horizontal and vertical directions.
  • the stereoscopic image display device 1 displays one stereoscopic image by sequentially displaying 12 frames obtained by dividing one set.
  • the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per frame.
  • a region MSET indicated by a broken line in FIG. 15 is a range in which one transmission portion SLT operates (slides) per set.
  • the arrow in the area MSET in FIG. 15 indicates the direction in which the transmission part SLT operates (slides) per set.
  • the area MEST includes four LED modules M in the horizontal direction and three LED modules M in the vertical direction among the LED modules M.
  • the transmission state and the light shielding state of the liquid crystal cell SL of the shutter device 30 are controlled so that the transmission part SLT is located in the upper left of the region MSET.
  • the light emitted from the 12 LED modules M around the LED module M centering on the LED module M facing the transmission part SLT is transmitted through the transmission part SLT as a common transmission part, and is different from each other. It is emitted in the direction.
  • the first frame of the 12 frames constituting one set is displayed in 12 directions.
  • the transmissive part SLT is slid in the X plus direction by the pitch of the LED module M from time 0/240 [sec].
  • the light emitted from the 12 LED modules M around the LED module M around the LED module M facing the transmissive part SLT that has slid passes through the transmissive part SLT as a common transmissive part, and It is emitted in 12 different directions.
  • the second frame of the 12 frames constituting one set is displayed in 12 directions.
  • the transmissive part SLT is sequentially slid in the horizontal direction (X plus direction), and when it reaches the right end of the area MSET, it is slid to the left end of the second step from the top of the area MSET, and sequentially in the right direction ( The light emitted from the LED module M is transmitted by sliding in the X plus direction).
  • the light emitted from the LED module M is transmitted through the transmission part SLT located in the lower right of the region MSET, so that one set of stereoscopic images including 12 frames can be displayed in 12 directions. Is displayed.
  • the stereoscopic image display apparatus 1 can display a multi-viewpoint stereoscopic image with a vertical and horizontal viewpoint combining a horizontal viewpoint and a vertical viewpoint.
  • a plurality of pixels constituting the stereoscopic image pixels are arranged side by side in the horizontal direction on the light emitting surface 20a (for example, LED modules M11 to M14), A plurality of the light emitting surfaces 20a may be arranged in the vertical direction (for example, LED modules M11 to M31).
  • a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface 20a, and a plurality of stereoscopic images can also be displayed in a direction parallel to the vertical direction on the light emitting surface 20a. For this reason, a stereoscopic image can be displayed in multiple viewpoints over a wide range.
  • the stereoscopic image display device 1 displays one stereoscopic image by the four LED modules M adjacent in the horizontal direction and the three LED modules M adjacent in the vertical direction.
  • the directions in which image pixels are arranged are the X direction and the Y direction.
  • the pixel pitch PP X, in the shutter pitch SP X is smaller towards the shutter pitch SP X, further, a pixel pitch PP Y, in the shutter pitch SP Y, the smaller the shutter pitch SP Y.
  • FIG. 17 is a perspective view showing the configuration of the stereoscopic image display device 4 according to the present embodiment.
  • the stereoscopic image display device 4 is different from the stereoscopic image display device 1 in that a shutter device 40 is provided instead of the shutter device 30.
  • Other configurations of the stereoscopic image display device 4 are the same as those of the stereoscopic image display device 1.
  • the shutter device 30 described in the first embodiment is a liquid crystal panel.
  • the shutter device 40 according to the present embodiment is not a liquid crystal panel but a MEMS shutter panel.
  • FIG. 18A is a plan view showing a part of the pixel configuration of the shutter device 40, and FIG. 18B is a diagram for explaining the operation of the MEMS shutter.
  • the shutter device 40 has a plurality of pixels (shutter elements) PXM arranged in a matrix.
  • the pixel PXM of the shutter device 40 includes a MEMS shutter SH, a support column 43, and a MEMS shutter SH provided on the substrate 45 provided with the opening and slidable on the surface of the substrate 45.
  • a spring portion 42 and an electrode portion 41 are provided for sliding movement.
  • the MEMS shutter SH can be slid in the direction of the arrow shown in FIG.
  • the LED display disposed on the back side of the shutter device 40 by sliding the MEMS shutter SH by electrostatic force so that the opening provided in the substrate 45 of the pixel PXM and the opening of the MEMS shutter 45 overlap each other.
  • Light emitted from the LED module M of the device 20 passes through the pixel PXM. That is, the pixel PXM is in a transmissive state.
  • the LED display device 20 disposed on the back side of the shutter device 40 by sliding the MEMS shutter SH by electrostatic force so that the substrate 45 is disposed in the opening of the MEMS shutter 45 when viewed in plan.
  • the light emitted from the LED module M is blocked by the pixel PXM. That is, the pixel PXM is in a light shielding state.
  • the shutter device 40 operates (slides) the MEMS shutter SH with electrostatic force in this manner, the switching between the transmission state and the light shielding state of the pixel PXM can be performed faster than the liquid crystal cell SL.
  • the pitch of the pixels PXM, when displaying a stereoscopic image with horizontal viewpoint by the stereoscopic image display apparatus 4 is made smaller than the pixel PP X is the pitch in the X direction of the LED module M pitches in the X direction of the pixel PXM, stereoscopic
  • the pitch of the pixels PXM in the Y direction is set smaller than the pixel PP Y that is the pitch of the LED modules M in the Y direction.
  • the pixel PP X is a X direction pitches of the LED module M in the X direction of the pixel PXM, and the pixel PXM
  • the pitch in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
  • the stereoscopic image display device 4 transmits the emitted light of the LED module M through the opening of the pixel PXM and displays a stereoscopic image
  • the transmittance is higher than when the liquid crystal cell SL functions as a shutter. .
  • the stereoscopic image display device 4 the number of viewpoints is larger, flickering is suppressed, and a stereoscopic image can be displayed with high luminance.
  • FIG. 19 is a perspective view showing the configuration of the stereoscopic image display device 5 according to the present embodiment.
  • the stereoscopic image display device 5 is different from the stereoscopic image display device 1 in that a shutter device 50 is provided instead of the shutter device 30.
  • Other configurations of the stereoscopic image display device 5 are the same as those of the stereoscopic image display device 1.
  • the shutter device 30 described in the first embodiment is a liquid crystal panel.
  • the shutter device 50 according to the present embodiment is not a liquid crystal panel but an EW (electrowetting) shutter panel.
  • FIG. 20A is a plan view illustrating the configuration of the pixel PXE of the shutter device 50 in the transmissive state
  • FIG. 20B is a cross-sectional view illustrating the configuration of the pixel PXE.
  • FIG. 21A is a plan view illustrating the configuration of the pixel PXE of the shutter device 50 in a light-shielding state
  • FIG. 21B is a cross-sectional view illustrating the configuration of the pixel PXE.
  • the shutter device 50 has a plurality of pixels PXE arranged in a matrix.
  • the shutter device 50 includes a nonpolar solution 52 sealed in a region partitioned as a pixel (shutter element) PXE between the substrate 54 a and the substrate 54 b and a polar solution, and slides in the nonpolar solution 52. And a shutter EWSH.
  • the polar solution is made of a material that blocks light.
  • a light shielding member 56 having an opening 51 is disposed on the surface of the substrate 54a facing the substrate 54b.
  • a region where the opening 51 is formed is a transmission portion.
  • a region where the light shielding member 56 is formed is a light shielding portion.
  • the nonpolar solution 52 is arranged between the nonpolar solution 52 and the electrodes 53a and 53b arranged in parallel in the layer between the light shielding member 56 and the nonpolar solution 52 and the substrate 54b. It is sandwiched between the electrodes 53c.
  • the electrode 53a is disposed so as to cover the opening 51, and the electrode 53b is juxtaposed with the electrode 53a in the pixel PXE.
  • the pixel PXE In order to make the pixel PXE in a transmissive state, a voltage is applied between the electrode 53c and the electrode 53a. Then, the shutter EWSH, which is a polar electrode, moves between the electrode 53c and the electrode 53b. As a result, the pixel PXE is in a transmissive state, and light emitted from the LED module M (arrow 55 in FIG. 20B) disposed on the back side of the substrate 54a is transmitted through the opening 51.
  • the shutter EWSH which is a polar electrode
  • the shutter EWSH which is a polar electrode, moves between the electrode 53c and the electrode 53a. Accordingly, the shutter EWSH covers the opening 51, and the pixel PXE is in a light shielding state. As a result, light emitted from the LED module M arranged on the back side of the substrate 54a (arrow 55 in FIG. 21B) is shielded by the shutter EWSH.
  • the shutter device 50 which is an electrowetting panel transmits the light emitted from the LED module M through the opening 51, the transmittance is higher than that in the case where the shutter is configured by a liquid crystal panel.
  • the stereoscopic image display device 5 since the shutter device 50 is configured by an electrowetting panel, the transmittance is higher and the number of viewpoints is larger than when the shutter device is configured by a liquid crystal panel. But it can be displayed with high brightness.
  • the pitch of the pixel PXE when a stereoscopic image is displayed from the horizontal viewpoint by the stereoscopic image display device 5, the pitch of the pixel PXE in the X direction is smaller than the pixel PP X that is the pitch of the LED module M in the X direction.
  • the pitch of the pixels PXE in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
  • the pixel PP X is a X direction of the pitch of the LED module M pitches in the X direction of the pixel PXE, and the pixel PXE
  • the pitch in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
  • the stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying a stereoscopic image in multiple directions, and includes a display device in which pixels are arranged in a matrix, a transmission state, and a light shielding state. Are arranged in a matrix, and includes a shutter device disposed opposite to the light emitting surface of the display device, and at least of the directions in which the pixels and the shutter are disposed. In one direction, the shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
  • the shutter device since the shutter device is aligned with the light emitting surface of the display device, light emitted from the pixel can be transmitted or shielded by the shutter element. Thereby, a multi-viewpoint stereoscopic image display device that displays stereoscopic images in multiple directions can be obtained.
  • the shutter pitch of the shutter is smaller than the pixel pitch of the pixel in at least one direction among the directions in which the pixel and the shutter element are arranged, the stereoscopic images displayed in different directions. Crosstalk displayed with overlapping can be prevented.
  • the display device preferably includes a self-luminous element in the pixel.
  • a stereoscopic image pixel that displays one stereoscopic image is composed of a plurality of the pixels arranged adjacent to each other, and the shutter element includes a plurality of pixels that constitute the stereoscopic image pixel.
  • the pixel pitch in the direction in which a plurality of pixels constituting the stereoscopic image pixel are arranged and the shutter pitch in the direction in which the shutter elements are arranged are arranged in parallel with the direction in which the pixels are arranged. It is preferable that this is smaller.
  • the stereoscopic image pixel for displaying one stereoscopic image is composed of the plurality of pixels arranged adjacent to each other.
  • a stereoscopic image can be displayed as a pixel.
  • the shutter elements are arranged in parallel in a direction in which a plurality of pixels constituting the stereoscopic image pixels are arranged, and a pixel pitch in a direction in which the plurality of pixels constituting the stereoscopic image pixels are arranged.
  • the shutter pitch is smaller than the shutter pitch in the direction in which the shutter elements are arranged.
  • the shutter device is provided with a transmissive portion configured by transmitting one or a plurality of adjacent shutter elements that are opposed to the pixel to be in a transmissive state, and the stereoscopic image pixel. It is preferable that the length of the transmissive portion in the direction in which the plurality of pixels constituting the stereoscopic image pixel are arranged is shorter than the length of the pixel in the direction in which the plurality of pixels constituting the pixel are arranged.
  • the light emitted from the pixel can be narrowed down by the transmission portion. Thereby, crosstalk can be reliably prevented.
  • one stereoscopic image is composed of a plurality of frames that are displayed in order, and each of the plurality of frames includes a pixel that is different from one another among the plurality of pixels that constitute the pixel for the stereoscopic image. Preferably it is displayed.
  • each of the plurality of frames is displayed as a pixel that is different from one another among the plurality of pixels constituting the pixel for the stereoscopic image, so that a stereoscopic image can be displayed in multiple directions. it can.
  • the transmissive portion is formed by a shutter element arranged at a position facing any one of the plurality of pixels constituting the stereoscopic image pixel, and the transmissive portion is provided for each frame.
  • the plurality of pixels constituting the stereoscopic image pixel are sequentially moved so as to face any one of the different pixels.
  • the transmission unit sequentially moves so as to face any of the different pixels among the plurality of pixels constituting the stereoscopic image pixel for each frame.
  • Light emitted from each of the plurality of pixels constituting the light passes through the transmission part and is emitted in different directions. Thereby, a three-dimensional image can be displayed in multiple directions.
  • the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in the horizontal direction on the light emitting surface. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface.
  • the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in the vertical direction on the light emitting surface. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface.
  • the plurality of pixels constituting the stereoscopic image pixel are arranged in a row in the horizontal direction on the light emitting surface and arranged in a plurality in the vertical direction on the light emitting surface. Is preferred. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface, and a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface. For this reason, a stereoscopic image can be displayed in multiple viewpoints over a wide range.
  • the display device is preferably an LED display. According to the above configuration, it is possible to obtain a stereoscopic image display device that has high luminance and can be driven at a high frequency. As a result, a stereoscopic image display device in which crosstalk is suppressed can be obtained.
  • the shutter device is preferably a liquid crystal panel. With the above configuration, a high-performance stereoscopic image display device can be configured at low cost.
  • the shutter device may be a MEMS shutter panel.
  • the shutter device may be an electrowetting panel. Since a high-luminance stereoscopic image display device can be obtained with the above configuration, a stereoscopic image display device in which crosstalk is suppressed can be obtained.
  • the present invention can be used in a display device that displays a stereoscopic image.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

A stereoscopic image display apparatus (1) comprises an LED display device (20) in which LED modules (M) are disposed in a matrix, and a shutter device (30) in which liquid crystal cells (SL) are disposed in a matrix as a shutter that can switch between a transmissive state and a light-shielding state; a shutter pitch (SP) of the liquid crystal cells (SL) being smaller than a pixel pitch (PP) of the LED modules (M) in at least one direction among the directions in which the LED modules (M) and the liquid crystal cells (SL) are disposed. Consequently, a stereoscopic image is displayed in multiple viewpoints and the generation of crosstalk is suppressed.

Description

立体画像表示装置Stereoscopic image display device
 本発明は多方向に立体画像が表示可能な立体画像表示装置に関する。 The present invention relates to a stereoscopic image display apparatus capable of displaying a stereoscopic image in multiple directions.
 近年、3D(立体)画像を表示する表示技術が開発されている。3D画像の表示技術としては、主に、ユーザに眼鏡を着用させる方式と、パララックスバリア方式等、ユーザの眼鏡の着用が不要な方式とを挙げることができる。 Recently, display technologies for displaying 3D (stereoscopic) images have been developed. As a 3D image display technique, there are mainly a method in which a user wears glasses and a method that does not require the user to wear glasses such as a parallax barrier method.
 このうち、ユーザに眼鏡を着用させる方式では、ユーザは、立体画像を視認するために専用の眼鏡を着用する必要があり不便なので、ユーザに眼鏡を着用させない方式の開発が進められている。 Among these, in the method in which the user wears glasses, it is inconvenient because the user needs to wear dedicated glasses in order to view a stereoscopic image, and therefore, development of a method in which the user does not wear glasses is being developed.
 特許文献1には、立体画像表示用の液晶パネルと、当該液晶パネルの前面に配された視差バリアとして機能させる液晶パネルとを有する立体画像表示装置が開示されている。 Patent Document 1 discloses a stereoscopic image display device having a liquid crystal panel for displaying a stereoscopic image and a liquid crystal panel functioning as a parallax barrier disposed on the front surface of the liquid crystal panel.
 図22は、特許文献1の立体画像表示装置の構成を表す図である。 FIG. 22 is a diagram illustrating the configuration of the stereoscopic image display apparatus disclosed in Patent Document 1.
 図22に示すように、立体画像表示装置は、立体画像表示用の表示パネル250と、表示パネル250の前面に配された視差バリアとして機能するアクティブバリア230とを備えている。 As shown in FIG. 22, the stereoscopic image display device includes a display panel 250 for displaying a stereoscopic image, and an active barrier 230 that functions as a parallax barrier disposed on the front surface of the display panel 250.
 立体画像表示装置では、表示パネル250は液晶表示装置からなると共に、アクティブバリア230も、液晶セルがマトリクス状に配されて構成されている。 In the stereoscopic image display device, the display panel 250 is composed of a liquid crystal display device, and the active barrier 230 is configured by arranging liquid crystal cells in a matrix.
 このため、アクティブバリア230に配されている液晶セルのうち、任意の位置の液晶セルを視差バリアとして機能させることができる。 For this reason, among the liquid crystal cells arranged in the active barrier 230, a liquid crystal cell at an arbitrary position can be caused to function as a parallax barrier.
 これにより、図23のように、立体画像表示装置の長手方向を鉛直方向として(縦長型)立体画像を観察者に観察させることができと共に、図24のように、立体画像表示装置の長手方向を水平方向として(横長型)も、表示パネル250に表示する画像を、観察者に立体視させることができる。さらに、縦長型で立体画像を表示する場合及び横長型で立体画像を表示する場合のそれぞれの画面の中心位置C1と、観察者の中心位置C2とをほぼ一致させることができるので、観察者は視線の移動をほぼ伴うことなく、立体画像を視認することができる。 Accordingly, as shown in FIG. 23, it is possible to make the observer observe the stereoscopic image with the longitudinal direction of the stereoscopic image display device as the vertical direction (vertically long type), and also in the longitudinal direction of the stereoscopic image display device as shown in FIG. With the horizontal direction (horizontal type), the image displayed on the display panel 250 can be stereoscopically viewed by the observer. Furthermore, since the center position C1 of each screen in the case of displaying a stereoscopic image in a vertically long type and in the case of displaying a stereoscopic image in a horizontally long type can be made substantially coincident with the center position C2 of the observer, the observer can It is possible to visually recognize a stereoscopic image with almost no movement of the line of sight.
日本国公開特許公報「特開2006‐154809号公報(2006年6月15日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2006-154809” (published on June 15, 2006)
 しかしながら、上記立体画像表示装置では、表示パネル250の画素サイズ(すなわち液晶セルのサイズ)と、アクティブバリア230の画素サイズ(すなわち液晶セルのサイズ)との関係について規定されておらず、観察者の観察位置によっては、意図しない画素による画像が観察者に視認されるといったクロストークが発生する。 However, the stereoscopic image display device does not define the relationship between the pixel size of the display panel 250 (ie, the size of the liquid crystal cell) and the pixel size of the active barrier 230 (ie, the size of the liquid crystal cell). Depending on the observation position, crosstalk occurs in which an image of unintended pixels is visually recognized by an observer.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、多視点で立体画像を表示し、かつ、クロストークの発生を抑えることである。 The present invention has been made to solve the above-described problems, and an object of the present invention is to display a stereoscopic image from multiple viewpoints and suppress the occurrence of crosstalk.
 上記の課題を解決するために、本発明の立体画像表示装置は、多方向への立体画像の表示が可能な立体画像表示装置であり、画素がマトリクス状に配されている表示装置と、透過状態と遮光状態との切替が可能なシャッタ素子がマトリクス状に配されており、上記表示装置の発光面と対向配置されているシャッタ装置とを備え、上記画素及び上記シャッタ素子が配されている方向のうち、少なくとも一方向で、上記画素の画素ピッチより、上記シャッタ素子のシャッタピッチの方が小さいことを特徴とする。 In order to solve the above problems, a stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying a stereoscopic image in multiple directions, a display device in which pixels are arranged in a matrix, and a transmission device. Shutter elements that can be switched between a state and a light-shielding state are arranged in a matrix, and the shutter device is arranged to face the light emitting surface of the display device, and the pixels and the shutter elements are arranged. In at least one of the directions, the shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
 上記構成によると、上記シャッタ装置が上記表示装置の発光面と配向配置されているので、上記画素から出射する光を、上記シャッタ素子で透過したり遮光したりすることができる。これにより、立体画像を多方向に表示する多視点の立体画像表示装置を得ることができる。 According to the above configuration, since the shutter device is aligned with the light emitting surface of the display device, light emitted from the pixel can be transmitted or shielded by the shutter element. Thereby, a multi-viewpoint stereoscopic image display device that displays stereoscopic images in multiple directions can be obtained.
 そして、上記画素及び上記シャッタ素子が配されている方向のうち、少なくとも一方向は、上記画素の画素ピッチより、上記シャッタのシャッタピッチの方が小さいので、異なる方向に表示している立体画像同士が重なって表示されるクロストークを防止することができる。 And, since the shutter pitch of the shutter is smaller than the pixel pitch of the pixel in at least one direction among the directions in which the pixel and the shutter element are arranged, the stereoscopic images displayed in different directions. Crosstalk displayed with overlapping can be prevented.
 本発明の立体画像表示装置は、多方向への立体画像の表示が可能な立体画像表示装置であり画素がマトリクス状に配されている表示装置と、透過状態と遮光状態との切替が可能なシャッタ素子がマトリクス状に配されており、上記表示装置の発光面と対向配置されているシャッタ装置とを備え、上記画素及び上記シャッタ素子が配されている方向のうち、少なくとも一方向で、上記画素の画素ピッチより、上記シャッタ素子のシャッタピッチの方が小さい。 The stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying stereoscopic images in multiple directions, and can switch between a display device in which pixels are arranged in a matrix and a transmission state and a light shielding state. The shutter elements are arranged in a matrix, and include a shutter device arranged to face the light emitting surface of the display device. The shutter elements are arranged in at least one direction among the directions in which the pixels and the shutter elements are arranged. The shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
 これにより、多視点で立体画像を表示し、かつ、クロストークの発生を抑えるという効果を奏する。 This provides the effect of displaying a stereoscopic image from multiple viewpoints and suppressing the occurrence of crosstalk.
立体画像表示装置の断面を模式的に表す図である。It is a figure which represents typically the cross section of a three-dimensional image display apparatus. 立体画像表示装置の構成を表す斜視図である。It is a perspective view showing the structure of a three-dimensional image display apparatus. LEDディスプレイ装置の発光面の構成を表す平面図である。It is a top view showing the structure of the light emission surface of an LED display apparatus. LEDディスプレイ装置の構成を表す回路図である。It is a circuit diagram showing the structure of a LED display apparatus. シャッタ装置の構成を表す図である。It is a figure showing the structure of a shutter apparatus. 横視点での、経過時間毎の立体画像表示装置の立体画像の表示状態を表す図である。It is a figure showing the display state of the stereo image of the stereo image display apparatus for every elapsed time in a horizontal viewpoint. 横視点での、経過時間毎のシャッタ装置の透過部と遮光部とを表す平面図であるIt is a top view showing the permeation | transmission part and light-shielding part of the shutter apparatus for every elapsed time in a horizontal viewpoint. 立体画像表示装置が表示する画像の、観察者による見え方を説明する図である。It is a figure explaining how an observer sees an image which a stereoscopic image display device displays. (a)はLEDモジュールの画素ピッチと、液晶セルの画素ピッチとが等しい立体画像表示装置を表す概略図であり、(b)は(a)の立体画像表示装置の立体画像の表示の様子を説明する図である。(A) is the schematic showing the stereoscopic image display apparatus with the same pixel pitch of an LED module, and the pixel pitch of a liquid crystal cell, (b) is a mode of the display of the stereoscopic image of the stereoscopic image display apparatus of (a). It is a figure explaining. (a)は本実施の形態に係る立体画像表示装置を表す概略図であり、(b)は(a)の立体画像表示装置の立体画像の表示の様子を説明する図である。(A) is the schematic showing the stereoscopic image display apparatus which concerns on this Embodiment, (b) is a figure explaining the mode of a stereoscopic image display of the stereoscopic image display apparatus of (a). 立体画像の生成手順を説明する図である。It is a figure explaining the production | generation procedure of a stereo image. 縦視点での、経過時間毎の立体画像表示装置の立体画像の表示状態を表す図である。It is a figure showing the display state of the stereo image of the stereo image display apparatus for every elapsed time in a vertical viewpoint. 縦視点での、経過時間毎のシャッタ装置の透過部と遮光部とを表す平面図である。It is a top view showing the permeation | transmission part and light-shielding part of the shutter apparatus for every elapsed time from a vertical viewpoint. 縦横視点で立体画像を表示している立体画像表示装置の様子を表す図である。It is a figure showing the mode of the stereo image display apparatus which is displaying the stereo image from the vertical and horizontal viewpoint. 縦横視点で立体画像を表示する方法を説明する図である。It is a figure explaining the method to display a stereo image from a vertical and horizontal viewpoint. 視点数と透過部との関係を表す図である。It is a figure showing the relationship between the number of viewpoints and a permeation | transmission part. は本実施の形態に係る立体画像表示装置の構成を表す斜視図である。These are perspective views showing the structure of the stereoscopic image display apparatus which concerns on this Embodiment. (a)はシャッタ装置の画素の構成の一部を表す平面図であり、(b)はMEMSシャッタの動作を説明する図である。(A) is a top view showing a part of pixel structure of a shutter apparatus, (b) is a figure explaining operation | movement of a MEMS shutter. 本実施の形態に係る立体画像表示装置の構成を表す斜視図である。It is a perspective view showing the structure of the three-dimensional image display apparatus which concerns on this Embodiment. (a)透過状態であるシャッタ装置の画素の構成を表す平面図であり、(b)は画素の構成を表す断面図である。(A) It is a top view showing the structure of the pixel of the shutter apparatus which is a permeation | transmission state, (b) is sectional drawing showing the structure of a pixel. (a)は遮光状態であるシャッタ装置の画素の構成を表す平面図であり、(b)は画素の構成を表す断面図である。(A) is a top view showing the structure of the pixel of the shutter apparatus which is a light-shielding state, (b) is sectional drawing showing the structure of a pixel. 従来の立体画像表示装置の構成を表す図である。It is a figure showing the structure of the conventional stereo image display apparatus. 従来の立体画像表示装置の画像の見え方を説明する図である。It is a figure explaining how the image of the conventional stereoscopic image display apparatus looks. 従来の立体画像表示装置の画像の見え方を説明する図である。It is a figure explaining how the image of the conventional stereoscopic image display apparatus looks.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 (立体画像表示装置の概略)
 まず、図1、及び図2を用いて、第1の実施の形態に係る立体画像表示装置1の構成の概略について説明する。
(Outline of stereoscopic image display device)
First, the outline of the configuration of the stereoscopic image display apparatus 1 according to the first embodiment will be described with reference to FIGS. 1 and 2.
 図2は、本実施の形態にかかる立体画像表示装置1の構成を表す斜視図である。図1は、立体画像表示装置1の断面を模式的に表す図である。 FIG. 2 is a perspective view showing the configuration of the stereoscopic image display apparatus 1 according to the present embodiment. FIG. 1 is a diagram schematically illustrating a cross section of the stereoscopic image display device 1.
 立体画像表示装置1は、多方向への立体(3D)画像の表示が可能な多視点の立体画像表示装置である。立体画像表示装置1は、空間分割、及び時分割して画像を表示することで、多視点の立体画像を表示する。 The stereoscopic image display device 1 is a multi-view stereoscopic image display device capable of displaying a stereoscopic (3D) image in multiple directions. The stereoscopic image display device 1 displays a multi-view stereoscopic image by displaying an image by space division and time division.
 立体画像表示装置1は、制御部10と、自発光型の画像表示装置であるLED(発光ダイオード)ディスプレイ装置20と、光を透過させる状態と遮光させる状態とを切替可能なシャッタがマトリクス状に配されたアクティブシャッタであるシャッタ装置30とを備えている。 The stereoscopic image display device 1 includes a control unit 10, an LED (light emitting diode) display device 20 that is a self-luminous image display device, and a shutter that can switch between a light transmitting state and a light blocking state in a matrix. And a shutter device 30 as an active shutter.
 なお、図1、2に示すように、LEDディスプレイ装置20及びシャッタ装置30の横方向(水平方向)をX方向とし、縦方向(垂直方向)をY方向として説明する。また、向って、LEDディスプレイ装置20及びシャッタ装置30の左側から右側へ向う方向がXプラス方向であり、LEDディスプレイ装置20及びシャッタ装置30の上側から下側へ向う方向がYプラス方向である。 1 and 2, the horizontal direction (horizontal direction) of the LED display device 20 and the shutter device 30 is defined as the X direction, and the vertical direction (vertical direction) is defined as the Y direction. Further, the direction from the left side to the right side of the LED display device 20 and the shutter device 30 is the X plus direction, and the direction from the upper side to the lower side of the LED display device 20 and the shutter device 30 is the Y plus direction.
 制御部10は、外部から映像信号を取得し、当該取得した映像信号に基づいて、LEDディスプレイ装置20及びシャッタ装置30を同期して、駆動制御する。 The control unit 10 acquires a video signal from the outside, and controls driving of the LED display device 20 and the shutter device 30 in synchronization with each other based on the acquired video signal.
 LEDディスプレイ装置20は、画像表示用の自発光型ディスプレイである。LEDディスプレイ装置20は、発光面20aに、一画素を構成するLEDモジュール(画素)Mが複数、マトリクス状に配されているLEDアレイディスプレイである。 The LED display device 20 is a self-luminous display for image display. The LED display device 20 is an LED array display in which a plurality of LED modules (pixels) M constituting one pixel are arranged in a matrix on the light emitting surface 20a.
 LEDディスプレイ装置20は、複数配されたLEDモジュールを順次点灯させていくことで、一つの立体画像を構成する複数のフレームを順次表示する。これにより、立体画像表示装置1は立体画像を表示する。 The LED display device 20 sequentially displays a plurality of frames constituting one stereoscopic image by sequentially lighting a plurality of LED modules. Thereby, the stereoscopic image display apparatus 1 displays a stereoscopic image.
 シャッタ装置30は、LEDディスプレイ装置20から発光された光を部分的に透過したり、遮光したりするシャッタである。これにより、立体画像表示装置1は、複数の方向に立体画像を表示する。すなわち、立体画像表示装置1は多視点の立体画像の表示を実現する。 The shutter device 30 is a shutter that partially transmits or blocks light emitted from the LED display device 20. Thereby, the stereoscopic image display apparatus 1 displays a stereoscopic image in a plurality of directions. That is, the stereoscopic image display apparatus 1 realizes display of a multi-viewpoint stereoscopic image.
 シャッタ装置30は、LEDディスプレイ装置20の発光面20aに対向して配されている。シャッタ装置30は、透過状態と遮光状態との切替が可能なシャッタ素子としてマトリクス状に配された液晶セル(シャッタ素子)SLを備えている。 The shutter device 30 is arranged to face the light emitting surface 20a of the LED display device 20. The shutter device 30 includes liquid crystal cells (shutter elements) SL arranged in a matrix as shutter elements that can be switched between a transmission state and a light shielding state.
 シャッタ装置30は、透明電極からなる画素電極PE(図5参照)及び各液晶セルのスイッチング素子として機能するTFT素子TR(図5参照)が各液晶セル毎に配されたアクティブ基板(不図示)と、液晶層と、液晶層を介してアクティブ基板と対向配置され、透明電極からなる共通電極(不図示)が配された対向基板(不図示)とを備えている。 The shutter device 30 includes an active substrate (not shown) in which a pixel electrode PE (see FIG. 5) made of a transparent electrode and a TFT element TR (see FIG. 5) functioning as a switching element of each liquid crystal cell are arranged for each liquid crystal cell. And a liquid crystal layer and a counter substrate (not shown) disposed opposite to the active substrate via the liquid crystal layer and provided with a common electrode (not shown) made of a transparent electrode.
 シャッタ装置30は、液晶セルSLそれぞれの透過状態(図1の白抜きの液晶セルSL)と、遮光状態(図1の黒く塗りつぶされた液晶セルSL)を切替えることで、LEDディスプレイ装置20のLEDモジュールMから発光された光を透過したり、遮光したりするアクティブシャッタとして機能する。 The shutter device 30 switches the LED of the LED display device 20 by switching between the transmission state (white liquid crystal cell SL in FIG. 1) and the light shielding state (black liquid crystal cell SL in FIG. 1) of each liquid crystal cell SL. It functions as an active shutter that transmits or blocks light emitted from the module M.
 シャッタ装置30のうち、隣接する透過状態の液晶セルSLが形成されている領域が透過部SLTである。また、透過部SLTと隣接しており遮光状態の液晶セルSLが形成されている領域が遮光部SLSである。 In the shutter device 30, a region where the adjacent transmissive liquid crystal cell SL is formed is a transmissive portion SLT. A region adjacent to the transmissive portion SLT and where the light-shielded liquid crystal cell SL is formed is the light-shielding portion SLS.
 このように、シャッタ装置30は、液晶セルSLを一画素として遮光パターン又は透過パターンを表示する液晶ディスプレイである。 As described above, the shutter device 30 is a liquid crystal display that displays a light shielding pattern or a transmission pattern using the liquid crystal cell SL as one pixel.
 シャッタ装置30としては、カラーフィルタが配されていない、一般的な液晶パネルを用いることができる。 As the shutter device 30, a general liquid crystal panel without a color filter can be used.
 シャッタ装置30の構成は、縦視点(後述する)、横視点(後述する)、縦横視点(後述する)の表示が可能な、マトリクス構造が好ましい。より好適には、各バリアを動的に切替可能な、アクティブマトリクス構造を有していることが好ましい。 The configuration of the shutter device 30 is preferably a matrix structure capable of displaying a vertical viewpoint (described later), a horizontal viewpoint (described later), and a vertical and horizontal viewpoint (described later). More preferably, it has an active matrix structure in which each barrier can be dynamically switched.
 そして、立体画像表示装置1では、図1に示すように、LEDディスプレイ装置20に配されている複数のLEDモジュールMのピッチである画素ピッチPPと比べて、シャッタ装置30に配されている複数の液晶セルSLのピッチであるシャッタピッチSPの方が小さい。すなわち、立体画像を表示するディスプレイであるLEDディスプレイ装置20の画素ピッチPPと比べて、遮光パターンを表示するディスプレイであるシャッタ装置30の画素ピッチであるシャッタピッチSPの方が小さく、高精細である。 In the stereoscopic image display device 1, as shown in FIG. 1, a plurality of pixels arranged in the shutter device 30 compared to the pixel pitch PP which is the pitch of the plurality of LED modules M arranged in the LED display device 20. The shutter pitch SP which is the pitch of the liquid crystal cell SL is smaller. That is, the shutter pitch SP, which is the pixel pitch of the shutter device 30 that is a display that displays a light shielding pattern, is smaller and higher definition than the pixel pitch PP of the LED display device 20 that is a display that displays a stereoscopic image. .
 これにより、立体画像表示装置1は、多視点で立体画像を表示した場合に発生するクロストークの低減が可能である。 Thereby, the stereoscopic image display device 1 can reduce crosstalk that occurs when a stereoscopic image is displayed from multiple viewpoints.
 一例として、立体画像表示装置1は、画素ピッチPPの長さと、シャッタピッチSPの長さとの比は、6:1となっている。なお、画素ピッチPPの長さと、シャッタピッチSPの長さとの比はこれに限定されるものではない。すなわち、画素ピッチPPの長さ>シャッタピッチSSの長さ、となっていればよく、例えば、9:1とする等、適宜設定が可能である。 As an example, in the stereoscopic image display device 1, the ratio between the length of the pixel pitch PP and the length of the shutter pitch SP is 6: 1. Note that the ratio between the length of the pixel pitch PP and the length of the shutter pitch SP is not limited to this. That is, it is only necessary that the length of the pixel pitch PP> the length of the shutter pitch SS. For example, 9: 1 can be appropriately set.
 また、シャッタ装置20には、LEDモジュールMと対向配置されている互いに隣接する複数の液晶セルSLが透過状態となることで構成されている透過部SLTが配されている。そして、LEDモジュールMが並ぶ方向(例えばX方向もしくはY方向)のLEDモジュールMの長さMSと比べて、LEDモジュールMが並ぶ方向(例えばX方向もしくはY方向)の透過部SLTの長さの方が短い。 Further, the shutter device 20 is provided with a transmissive portion SLT that is configured by a plurality of adjacent liquid crystal cells SL disposed to face the LED module M in a transmissive state. Then, the length of the transmission part SLT in the direction in which the LED modules M are arranged (for example, the X direction or the Y direction) is compared with the length MS of the LED modules M in the direction in which the LED modules M are arranged (for example, the X direction or the Y direction). Shorter.
 これによって、立体画像表示装置1は、LEDモジュールMから出射された光を、透過部SLTによって絞ることができる。これにより、クロストークを確実に防止することができる。なお、詳細は後述する。 Thereby, the stereoscopic image display apparatus 1 can narrow the light emitted from the LED module M by the transmission part SLT. Thereby, crosstalk can be reliably prevented. Details will be described later.
 (LEDディスプレイ装置20の構成)
 次に、図3、及び図4を用いて立体画像表示装置1のLEDディスプレイ装置20の構成について説明する。
(Configuration of LED display device 20)
Next, the configuration of the LED display device 20 of the stereoscopic image display device 1 will be described with reference to FIGS. 3 and 4.
 図3は、LEDディスプレイ装置20の発光面20aの構成を表す平面図である。 FIG. 3 is a plan view showing the configuration of the light emitting surface 20a of the LED display device 20. FIG.
 LEDディスプレイ装置20は、画素を構成するLEDモジュールMが配されており、画像(視差画像)を表示する発光面20aを備えている。 The LED display device 20 is provided with LED modules M constituting pixels, and includes a light emitting surface 20a for displaying an image (parallax image).
 LEDモジュールMは、発光面20aにおける水平方向(すなわちX方向)及び発光面20aにおける垂直方向(すなわちY方向)にマトリクス状に配されている。 The LED modules M are arranged in a matrix in the horizontal direction (that is, X direction) on the light emitting surface 20a and in the vertical direction (that is, Y direction) on the light emitting surface 20a.
 図3に示すように、発光面20aは、格子状に配された反射部材22を備えている。この反射部材22によって区画された領域がLEDモジュールMの形成領域Pである。LEDモジュールMの形成領域P内には、一画素であるLEDモジュールMが一つ配されている。 As shown in FIG. 3, the light emitting surface 20a includes a reflecting member 22 arranged in a lattice shape. A region partitioned by the reflecting member 22 is a formation region P of the LED module M. One LED module M which is one pixel is arranged in the formation area P of the LED module M.
 LEDモジュールMは、赤色光を発光するLED(自発光素子)Rと、緑色光を発光するLED(自発光素子)Gと、青色光を発光するLED(自発光素子)Bと、LEDR・G・Bを覆う半球形状のレンズ部材23とを備えている。LEDR・G・Bは、LEDモジュール形成領域P内の基板に実装されている。本実施の形態では、LEDR・G・Bは、LEDモジュールM内にそれぞれ一つずつ配されており、この順に、X方向に一列に並んで配されているものとして説明する。 The LED module M includes an LED (self-emitting element) R that emits red light, an LED (self-emitting element) G that emits green light, an LED (self-emitting element) B that emits blue light, and an LEDR / G. A hemispherical lens member 23 covering B is provided. LEDR · G · B is mounted on a substrate in the LED module formation region P. In the present embodiment, one LEDR, G, and B are arranged in the LED module M, respectively, and are described as being arranged in a line in the X direction in this order.
 しかし、LEDR・G・Bの個数や配列は、これに限定されるものではなく、LEDR・G・Bは画素Pにそれぞれ複数配されていてもよく、さらに、LEDR・G・Bは、例えば、画素P内に正三角形状を構成するように配されていてもよい。LEDR・G・Bの個数や配列は、製品の要求される仕様によって適宜設定が可能である。 However, the number and arrangement of the LEDs R, G, and B are not limited to this, and a plurality of the LEDs R, G, and B may be arranged in each pixel P. The pixels P may be arranged so as to form an equilateral triangle. The number and arrangement of the LEDR / G / B can be appropriately set according to the required specifications of the product.
 また、説明の便宜上、図3では、LEDモジュールMを、5×5の配列として記載しているが、実際には、LEDディスプレイ装置20のLEDモジュールMの個数の数はもっと多いものである。 For convenience of explanation, FIG. 3 shows the LED modules M as a 5 × 5 array, but actually, the number of LED modules M in the LED display device 20 is larger.
 なお、以下の説明では、マトリクス状に配されたLEDモジュールMのうち、一番左上のLEDモジュールM11とし、X方向に順に並んで配されているLEDモジュールMを、順にLEDモジュールM12・M13・M14・M15・・・と称し、LEDモジュールM11からY方向に順に並んで配されているLEDモジュールMを、順にLEDモジュールM21・M31・M41・M51・・・と称する場合がある。 In the following description, among the LED modules M arranged in a matrix, the upper left LED module M11 will be referred to as the LED modules M12, M13,. The LED modules M that are referred to as M14, M15,... And arranged in order from the LED module M11 in the Y direction may be referred to as LED modules M21, M31, M41, M51,.
 画素ピッチPPは、隣接する画素P間のピッチ、すなわち、隣接するLEDモジュールM間のピッチである。 The pixel pitch PP is a pitch between adjacent pixels P, that is, a pitch between adjacent LED modules M.
 本実施の形態では、X方向の画素ピッチPPと、Y方向の画素ピッチPPとは等しいものとする。 In the present embodiment, it is assumed that the pixel pitch PP X in the X direction is equal to the pixel pitch PP Y in the Y direction.
 一例として、LEDディスプレイ装置20の画素ピッチPは、1.5mm程度である。 As an example, the pixel pitch P of the LED display device 20 is about 1.5 mm.
 図4は、LEDディスプレイ装置20の構成を表す回路図である。 FIG. 4 is a circuit diagram showing the configuration of the LED display device 20.
 図4に示すように、LEDディスプレイ装置20は、発光面20aと、ドライバ25とを備えている。 As shown in FIG. 4, the LED display device 20 includes a light emitting surface 20 a and a driver 25.
 ドライバ25は、ソース側のシフトレジスタ20SRSと、コモン側のシフトレジスタ20SRCと、階調電流生成回路GRと、トランジスタ20S1・20S2・20S3・・・と、トランジスタ20T1・20T2・・・と、を含む。また、発光面20aは、コモンライン20C1・20C2・・・と、ソースライン20L1・20L2・20L3・・・と、LEDモジュールMとを含む。 The driver 25 includes a source-side shift register 20SRS, a common-side shift register 20SRC, a gradation current generation circuit GR, transistors 20S1, 20S2, 20S3,..., And transistors 20T1, 20T2,. . The light emitting surface 20a includes common lines 20C1, 20C2,..., Source lines 20L1, 20L2, 20L3.
 シフトレジスタ20SRS、シフトレジスタ20SRC、階調電流生成回路GRは、それぞれ、制御部10と接続されている。 The shift register 20SRS, the shift register 20SRC, and the gradation current generation circuit GR are each connected to the control unit 10.
 制御部10は、階調電流生成回路GRに表示データを入力し、水平同期信号(スタートパルス等)やクロック信号をソース側のシフトレジスタ20SRSに入力し、垂直同期信号(スタートパルス等)やクロック信号をコモン側のシフトレジスタ20SRCに入力する。また、階調電流生成回路GRは、制御部10から入力された表示データ(階調データ)DATに応じた定電流を生成する。 The control unit 10 inputs display data to the gradation current generation circuit GR, inputs a horizontal synchronization signal (start pulse or the like) or a clock signal to the shift register 20SRS on the source side, and outputs a vertical synchronization signal (start pulse or the like) or clock. The signal is input to the shift register 20SRC on the common side. Further, the gradation current generation circuit GR generates a constant current according to display data (gradation data) DAT input from the control unit 10.
 ソースライン20L1~20L3は、Y方向に延伸しており、互いに平行に配されている。また、コモンライン20C1・20C2はX方向に延伸しており、互いに平行に配されている。ソースライン20L1・20L3・20L3・・・と、コモンライン20C1・20C2・・・と、は交差して配されている。 The source lines 20L1 to 20L3 extend in the Y direction and are arranged in parallel to each other. The common lines 20C1 and 20C2 extend in the X direction and are arranged in parallel to each other. The source lines 20L1, 20L3, 20L3,... And the common lines 20C1, 20C2,.
 ソースライン20L1は、トランジスタ20S1を介して階調電流生成回路GRに接続され、ソースライン20L2は、トランジスタ20S2を介して階調電流生成回路GRに接続され、ソースライン20L3は、トランジスタ20S3を介して階調電流生成回路GRに接続されている。 The source line 20L1 is connected to the gradation current generation circuit GR via the transistor 20S1, the source line 20L2 is connected to the gradation current generation circuit GR via the transistor 20S2, and the source line 20L3 is connected via the transistor 20S3. It is connected to the gradation current generation circuit GR.
 トランジスタ20S1のゲートはソース側のシフトレジスタ20SRSの出力端20n1に接続され、トランジスタ20S2のゲートはソース側のシフトレジスタ20SRSの出力端20n2に接続され、トランジスタ20S3のゲートはソース側のシフトレジスタ20SRSの出力端20n3に接続されている。 The gate of the transistor 20S1 is connected to the output terminal 20n1 of the source-side shift register 20SRS, the gate of the transistor 20S2 is connected to the output terminal 20n2 of the source-side shift register 20SRS, and the gate of the transistor 20S3 is connected to the output terminal 20SRS of the source-side shift register 20SRS. It is connected to the output terminal 20n3.
 コモンライン20C1は、トランジスタ20T1を介して接地され、コモンライン20C2は、トランジスタ20T2を介して接地され、トランジスタ20T1のゲートはコモン側のシフトレジスタの出力端20m1に接続され、トランジスタ20T2のゲートはコモン側のシフトレジスタの出力端20m2に接続されている。 The common line 20C1 is grounded via the transistor 20T1, the common line 20C2 is grounded via the transistor 20T2, the gate of the transistor 20T1 is connected to the output terminal 20m1 of the shift register on the common side, and the gate of the transistor 20T2 is common. Is connected to the output terminal 20m2 of the shift register on the side.
 また、LEDモジュールM11(左上のLEDモジュールM)のLEDRのアノード、LEDGのアノードおよびLEDBのアノードはコモンライン20C1に接続され、LEDRのカソードはソースライン20L1に接続され、LEDGのカソードはソースライン20L2に接続され、LEDBのカソードはソースライン20L3に接続されている。 In addition, the anode of LEDR, the anode of LEDG, and the anode of LEDB of LED module M11 (upper left LED module M) are connected to common line 20C1, the cathode of LEDR is connected to source line 20L1, and the cathode of LEDG is source line 20L2. The cathode of LEDB is connected to the source line 20L3.
 LEDモジュールM21(LEDモジュールM11のY方向に隣接するLEDモジュールM)のLEDRのアノード、LEDGのアノードおよびLEDBのアノードはコモンライン20C2に接続され、LEDRのカソードはソースライン20L1に接続され、LEDGのカソードはソースライン20L2に接続され、LEDBのカソードはソースライン20L3に接続されている。 The LEDR anode, LEDG anode, and LEDB anode of the LED module M21 (the LED module M adjacent in the Y direction of the LED module M11) are connected to the common line 20C2, and the cathode of the LEDR is connected to the source line 20L1. The cathode is connected to the source line 20L2, and the cathode of LEDB is connected to the source line 20L3.
 LEDディスプレイ装置20は、LEDR、LEDG、及びLEDBを単独又は重畳発光させることで、一つの画像を表示する。 The LED display device 20 displays one image by causing LEDR, LEDG, and LEDB to emit light alone or in a superimposed manner.
 (シャッタ装置30の構成)
 次に、図5を用いてシャッタ装置30の構成について説明する。図5はシャッタ装置30の構成を表す図である。
(Configuration of shutter device 30)
Next, the configuration of the shutter device 30 will be described with reference to FIG. FIG. 5 is a diagram illustrating the configuration of the shutter device 30.
 図5に示すように、シャッタ装置30は、シャッタアレイ部31と、ドライバ35とを備えている。 As shown in FIG. 5, the shutter device 30 includes a shutter array unit 31 and a driver 35.
 ドライバ35は、ソース側のソースドライバ30SDと、コモン側のコモンドライバ30CDとを含む。また、シャッタアレイ部31は、コモンライン30C1・30C2・30C3・・・と、ソースライン30L1・30L2・30L3・・・と、マトリクス状に配された液晶セルSLとを含む。 The driver 35 includes a source driver 30SD on the source side and a common driver 30CD on the common side. Further, the shutter array unit 31 includes common lines 30C1, 30C2, 30C3, source lines 30L1, 30L2, 30L3, and liquid crystal cells SL arranged in a matrix.
 ソースドライバ30SD、コモンドライバ30CDは、それぞれ、制御部10と接続されている。 The source driver 30SD and the common driver 30CD are connected to the control unit 10, respectively.
 制御部10は、水平同期信号(スタートパルス等)やクロック信号をソースドライバ30SDに入力し、垂直同期信号(スタートパルス等)やクロック信号をコモンドライバ30CDに入力する。ソースドライバ30SDは、制御部10から入力された水平同期信号やクロック信号に対応して、液晶セルSLを透過状態とするための電流、または、液晶セルSLを遮光状態とするための電流を、所定の液晶セルに印加する。 The control unit 10 inputs a horizontal synchronization signal (start pulse or the like) or a clock signal to the source driver 30SD, and inputs a vertical synchronization signal (start pulse or the like) or a clock signal to the common driver 30CD. The source driver 30SD corresponds to a horizontal synchronization signal and a clock signal input from the control unit 10, and supplies a current for setting the liquid crystal cell SL in a transmissive state or a current for setting the liquid crystal cell SL in a light shielding state. Application to a predetermined liquid crystal cell.
 ソースライン30L1・30L2・30L3・・・は、Y方向に延伸しており、互いに平行に配されている。また、コモンライン30C1・30C2・30C3・・・はX方向に延伸しており、互いに平行に配されている。ソースライン30L1・30L2・30L3・・・と、コモンライン30C1・30C2・30C3・・・と、は交差して配されている。 The source lines 30L1, 30L2, 30L3,... Extend in the Y direction and are arranged in parallel to each other. Further, the common lines 30C1, 30C2, 30C3,... Extend in the X direction and are arranged in parallel to each other. The source lines 30L1, 30L2, 30L3,... And the common lines 30C1, 30C2, 30C3,.
 ソースライン30L1はソースドライバ30SDの出力端30n1に接続され、ソースライン30L2はソースドライバ30SDの出力端30n2に接続され、ソースライン30L3はソースドライバ30SDの出力端30n3に接続されている。 The source line 30L1 is connected to the output terminal 30n1 of the source driver 30SD, the source line 30L2 is connected to the output terminal 30n2 of the source driver 30SD, and the source line 30L3 is connected to the output terminal 30n3 of the source driver 30SD.
 コモンライン30C1はコモンドライバ30CDの出力端30m1に接続され、コモンライン30C2はコモンドライバ30CDの出力端30m2に接続され、コモンライン30C3はコモンドライバ30CDの出力端30m3に接続されている。 The common line 30C1 is connected to the output end 30m1 of the common driver 30CD, the common line 30C2 is connected to the output end 30m2 of the common driver 30CD, and the common line 30C3 is connected to the output end 30m3 of the common driver 30CD.
 ソースライン30L1・30L2・30L3・・・と、コモンライン30C1・30C2・30C3・・・とによって区画された領域が液晶セルSLである。 A region defined by the source lines 30L1, 30L2, 30L3,... And the common lines 30C1, 30C2, 30C3,.
 液晶セルSLは、ITO等の透明電極からなる画素電極PEと、液晶セルSL内の液晶を駆動させるスイッチング素子として機能するTFT素子TRとが配されている。なお、図5では、シャッタアレイ部31として、特に、上記アクティブ基板の上記対向基板との対向面の構造を示している。 The liquid crystal cell SL is provided with a pixel electrode PE made of a transparent electrode such as ITO and a TFT element TR functioning as a switching element for driving the liquid crystal in the liquid crystal cell SL. In FIG. 5, the structure of the surface of the active substrate facing the counter substrate is particularly shown as the shutter array unit 31.
 また、以下の説明では、マトリクス状に配された液晶セルSLのうち、一番左上の液晶セルSLを液晶セルSL11とし、X方向に順に並んで配されている液晶セルSLを、順に液晶セルSL12・SL13・SL14・SL15・・・と称し、液晶セルSL11からY方向に順に並んで配されている液晶セルSLを、順に液晶セルSL21・SL31・SL41・SL51・・・と称する場合がある。 In the following description, among the liquid crystal cells SL arranged in a matrix, the upper left liquid crystal cell SL is referred to as a liquid crystal cell SL11, and the liquid crystal cells SL arranged in order in the X direction are sequentially arranged as liquid crystal cells. The liquid crystal cells SL arranged in order in the Y direction from the liquid crystal cell SL11 may be sequentially referred to as liquid crystal cells SL21, SL31, SL41, SL51,. .
 隣接する液晶セルSL間のピッチが、シャッタピッチSPである。X方向のシャッタピッチSPをシャッタピッチSPとし、Y方向のシャッタピッチSPをシャッタピッチSPとすると、シャッタピッチSP及びャッタピッチSP共に、画素ピッチPPより小さい。シャッタピッチSPと、シャッタピッチSPとでは何れの方が大きくてもよい。 A pitch between adjacent liquid crystal cells SL is a shutter pitch SP. The X-direction of the shutter pitch SP and shutter pitch SP X, when the Y-direction of the shutter pitch SP and shutter pitch SP Y, shutter pitch SP X and Yattapitchi SP Y together, smaller pixel pitch PP. Either of the shutter pitch SP X and the shutter pitch SP Y may be larger.
 なお、本実施の形態では、液晶セルSLは、シャッタピッチSPより、シャッタピッチSPの方が大きい縦長(長手方向がY方向)形状である。 In this embodiment, the liquid crystal cell SL, from the shutter pitch SP X, Vertical towards shutter pitch SP Y is large (the longitudinal direction is the Y direction) is in the shape.
 液晶セルSL11で、TFT素子TRのゲートはコモンライン30C1に接続され、TFT素子TRのソースはソースライン30L1に接続され、TFT素子TRのドレインは画素電極PEに接続されている。液晶セルSL12で、TFT素子TRのゲートはコモンライン30C1に接続され、TFT素子TRのソースはソースライン30L2に接続され、TFT素子TRのドレインは画素電極PEに接続されている。液晶セルSL13で、TFT素子TRのゲートはコモンライン30C1に接続され、TFT素子TRのソースはソースライン30L3に接続され、TFT素子TRのドレインは画素電極PEに接続されている。 In the liquid crystal cell SL11, the gate of the TFT element TR is connected to the common line 30C1, the source of the TFT element TR is connected to the source line 30L1, and the drain of the TFT element TR is connected to the pixel electrode PE. In the liquid crystal cell SL12, the gate of the TFT element TR is connected to the common line 30C1, the source of the TFT element TR is connected to the source line 30L2, and the drain of the TFT element TR is connected to the pixel electrode PE. In the liquid crystal cell SL13, the gate of the TFT element TR is connected to the common line 30C1, the source of the TFT element TR is connected to the source line 30L3, and the drain of the TFT element TR is connected to the pixel electrode PE.
 液晶セルSL21で、TFT素子TRのゲートはコモンライン30C2に接続され、TFT素子TRのソースはソースライン30L1に接続され、TFT素子TRのドレインは画素電極PEに接続されている。液晶セルSL22で、TFT素子TRのゲートはコモンライン30C2に接続され、TFT素子TRのソースはソースライン30L2に接続され、TFT素子TRのドレインは画素電極PEに接続されている。液晶セルSL23で、TFT素子TRのゲートはコモンライン30C2に接続され、TFT素子TRのソースはソースライン30L3に接続され、TFT素子TRのドレインは画素電極PEに接続されている。 In the liquid crystal cell SL21, the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L1, and the drain of the TFT element TR is connected to the pixel electrode PE. In the liquid crystal cell SL22, the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L2, and the drain of the TFT element TR is connected to the pixel electrode PE. In the liquid crystal cell SL23, the gate of the TFT element TR is connected to the common line 30C2, the source of the TFT element TR is connected to the source line 30L3, and the drain of the TFT element TR is connected to the pixel electrode PE.
 画素電極PEは、液晶セルSLの透過状態又は遮光状態を切替える(駆動する)ための電極である。シャッタ装置30は、画素電極PEと、図示しない対向基板の共通電極との間の電位差によって、液晶の配向を異ならせることで、液晶セルSLの透過状態と遮光状態とを切替える。液晶セルSLのうち、透過状態となるのは、画素電極PEが形成されている領域である。 The pixel electrode PE is an electrode for switching (driving) the transmission state or the light shielding state of the liquid crystal cell SL. The shutter device 30 switches between the transmissive state and the light-shielded state of the liquid crystal cell SL by changing the orientation of the liquid crystal according to the potential difference between the pixel electrode PE and the common electrode of the counter substrate (not shown). In the liquid crystal cell SL, a transparent state is a region where the pixel electrode PE is formed.
 (立体画像の表示方法(横視点))
 次に、図6~図8を用いて、立体画像表示装置1の立体画像の表示方法について説明する。
(3D image display method (horizontal view))
Next, a stereoscopic image display method of the stereoscopic image display device 1 will be described with reference to FIGS.
 図6は、横視点での、経過時間毎の立体画像表示装置1の立体画像の表示状態を表す図である。図6の(a)は時刻が0/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(b)は時刻が1/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(c)は時刻が2/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(d)は時刻が3/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(e)は時刻が4/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表す図である。 FIG. 6 is a diagram illustrating a display state of a stereoscopic image of the stereoscopic image display device 1 for each elapsed time from a horizontal viewpoint. 6A shows the display state of the stereoscopic image of the stereoscopic image display apparatus 1 at time 0/240 [sec], and FIG. 6B shows the stereoscopic image display apparatus 1 at time 1/240 [sec]. (C) shows the display state of the stereoscopic image of the stereoscopic image display device 1 at time 2/240 [sec], and (d) shows the display state of 3/240 [sec]. The stereoscopic image display state of the stereoscopic image display device 1 is represented, and (e) is a diagram illustrating the stereoscopic image display state of the stereoscopic image display device 1 at a time of 4/240 [sec].
 図7は、横視点での、経過時間毎のシャッタ装置30の透過部と遮光部とを表す平面図である。図7の(a)は時刻が0/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(b)は時刻が1/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(c)は時刻が2/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(d)は時刻が3/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(e)は時刻が4/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図である。 FIG. 7 is a plan view showing a transmission part and a light shielding part of the shutter device 30 for each elapsed time from a horizontal viewpoint. FIG. 7A is a plan view showing a transmission part and a light shielding part of the shutter device 30 at a time of 0/240 [sec], and FIG. 7B is a shutter device at a time of 1/240 [sec]. 30 is a plan view showing the transmissive part and the light shielding part of FIG. 30, (c) is a plan view showing the transmissive part and the light shielding part of the shutter device 30 at a time of 2/240 [sec], and (d) is a plan view. It is a top view showing the transmission part and light-shielding part of the shutter apparatus 30 in time 3/240 [sec], (e) is the transmission part and light-shielding part of the shutter apparatus 30 in time 4/240 [sec]. FIG.
 一例として、横方向(X方向)に5視点の立体画像を表示する場合について説明する。 As an example, a case where a stereoscopic image of five viewpoints is displayed in the horizontal direction (X direction) will be described.
 1つの立体画像を1フレームとすると、立体画像表示装置1は、5視点の立体画像を表示する場合は、5方向のそれぞれに、1フレームを構成する5つのサブフレームを順次表示する。これにより、異なる5方向のそれぞれに立体画像を表示する。 Assuming that one stereoscopic image is one frame, the stereoscopic image display device 1 sequentially displays five subframes constituting one frame in each of five directions when displaying a stereoscopic image of five viewpoints. Thereby, a stereoscopic image is displayed in each of five different directions.
 ここでは、立体画像表示装置1は、1サブフレームあたり、240Hzの駆動周波数で駆動するものとして説明する。 Here, it is assumed that the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per subframe.
 図6の(a)に示すように、Xのプラス方向に向けて順に並ぶ視点AX1、視点AX2、視点AX3、視点AX4、視点AX5のそれぞれに立体画像を表示するものとする。 As shown in FIG. 6A, a stereoscopic image is displayed at each of the viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5 that are sequentially arranged in the positive direction of X.
 このときのシャッタ装置30の透過部SLT及び遮光部SLSの状態は、図7の(a)のようになる。横視点で立体画像を表示するには、縦方向に伸びるスリット状の透過部SLTが、横方向に順に、遮光部SLS、透過部SLT、遮光部SLS、透過部SLT、・・・と複数個配されるように、液晶セルSLの透過状態と遮光状態とを制御する。 At this time, the states of the transmission part SLT and the light shielding part SLS of the shutter device 30 are as shown in FIG. In order to display a stereoscopic image from a horizontal viewpoint, a slit-like transmissive portion SLT extending in the vertical direction has a plurality of light shielding portions SLS, transmissive portions SLT, light shielding portions SLS, transmissive portions SLT,. The transmission state and the light shielding state of the liquid crystal cell SL are controlled so as to be arranged.
 図6の(a)に示すように、透過部SLTのスリットは、LEDモジュールMと対応させて設ける。 As shown in FIG. 6A, the slit of the transmission part SLT is provided in correspondence with the LED module M.
 ここでは、図6の(a)に示すように、横方向(X方向)には、LEDモジュールM13・M18のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、シャッタ装置30に透過部SLTを形成している。 Here, as shown in FIG. 6A, in the lateral direction (X direction), a plurality of liquid crystal SELs facing each of the LED modules M13 and M18 are set in a transmissive state, whereby the shutter device. A transmissive portion SLT is formed at 30.
 これにより、横方向に並ぶLEDモジュールMのうち、5個のLEDモジュールMが1セットとなって、一つの透過部SLTを透過して、5個の視点AX1、視点AX2、視点AX3、視点AX4、視点AX5のそれぞれに、1フレームを構成する5個のサブフレームのうち互いに異なる一つのサブフレームを表示する。 As a result, among the LED modules M arranged in the horizontal direction, five LED modules M form one set and pass through one transmission part SLT, and five viewpoints AX1, AX2, AX3, and AX4. Each of the viewpoints AX5 displays one different subframe among the five subframes constituting one frame.
 図6の(a)では、LEDモジュールM11・M12・M13・M14・M15それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AX5へ出射され、LEDモジュールM12からの出射光は視点AX4へ出射され、LEDモジュールM13からの出射光は視点AX3へ出射され、LEDモジュールM14からの出射光は視点AX2へ出射され、LEDモジュールM15からの出射光は視点AX1へ出射される。 6A, the light emitted from each of the LED modules M11, M12, M13, M14, and M15 is transmitted through one common transmission part SLT. The light emitted from the LED module M11 is emitted to the viewpoint AX5, the light emitted from the LED module M12 is emitted to the viewpoint AX4, the light emitted from the LED module M13 is emitted to the viewpoint AX3, and the light emitted from the LED module M14. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
 また、LEDモジュールM16・M17・M18・M19・M110それぞれからの出射光は、LEDモジュールM11・M12・M13・M14・M15からの出射光が透過する透過部SLTと横方向(X方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM16からの出射光は視点AX5へ出射され、LEDモジュールM17からの出射光は視点AX4へ出射され、LEDモジュールM18からの出射光は視点AX3へ出射され、LEDモジュールM19からの出射光は視点AX2へ出射され、LEDモジュールM110からの出射光は視点AX1へ出射される。 The light emitted from each of the LED modules M16, M17, M18, M19, and M110 is adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M12, M13, M14, and M15 is transmitted in the lateral direction (X direction). The transmission part SLT to be transmitted is transmitted as a common transmission part. The light emitted from the LED module M16 is emitted to the viewpoint AX5, the light emitted from the LED module M17 is emitted to the viewpoint AX4, the light emitted from the LED module M18 is emitted to the viewpoint AX3, and the light emitted from the LED module M19. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M110 is emitted to the viewpoint AX1.
 次に、1/240〔sec〕では、図6の(b)、図7の(b)に示すように、透過部SLTの位置を、Xマイナス方向へスライドさせる。 Next, at 1/240 [sec], the position of the transmission part SLT is slid in the X minus direction as shown in FIGS. 6B and 7B.
 ここでは、図6の(b)に示すように、LEDモジュールM12・M17のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、0/240〔sec〕のときから、透過部SLTの位置をXマイナス方向へスライドさせる。 Here, as shown in FIG. 6B, by transmitting a plurality of liquid crystal SELs facing each of the LED modules M12 and M17 in a transmissive state, transmission from 0/240 [sec] is performed. Slide the position of the part SLT in the X minus direction.
 これにより、LEDモジュールM11・M12・M13・M14それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AX4へ出射され、LEDモジュールM12からの出射光は視点AX3へ出射され、LEDモジュールM13からの出射光は視点AX2へ出射され、LEDモジュールM14からの出射光は視点AX1へ出射される。 Thereby, the light emitted from each of the LED modules M11, M12, M13, and M14 is transmitted through one common transmission part SLT. The emitted light from the LED module M11 is emitted to the viewpoint AX4, the emitted light from the LED module M12 is emitted to the viewpoint AX3, the emitted light from the LED module M13 is emitted to the viewpoint AX2, and the emitted light from the LED module M14. The incident light is emitted to the viewpoint AX1.
 また、LEDモジュールM15・M16・M17・M18・M19それぞれからの出射光は、LEDモジュールM11・M12・M13・M14からの出射光が透過する透過部SLTと横方向(X方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM15からの出射光は視点AX5へ出射され、LEDモジュールM16からの出射光は視点AX4へ出射され、LEDモジュールM17からの出射光は視点AX3へ出射され、LEDモジュールM18からの出射光は視点AX2へ出射され、LEDモジュールM19からの出射光は視点AX1へ出射される。 The light emitted from each of the LED modules M15, M16, M17, M18, and M19 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M12, M13, and M14 is transmitted. The part SLT is transmitted as a common transmission part. The light emitted from the LED module M15 is emitted to the viewpoint AX5, the light emitted from the LED module M16 is emitted to the viewpoint AX4, the light emitted from the LED module M17 is emitted to the viewpoint AX3, and the light emitted from the LED module M18. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M19 is emitted to the viewpoint AX1.
 次に、2/240〔sec〕では、図6の(c)、図7の(c)に示すように、透過部SLTの位置を、さらに、Xマイナス方向へスライドさせる。 Next, at 2/240 [sec], as shown in FIGS. 6C and 7C, the position of the transmission part SLT is further slid in the X minus direction.
 ここでは、図6の(c)に示すように、LEDモジュールM11・M16のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、1/240〔sec〕のときから、透過部SLTの位置をXマイナス方向へスライドさせる。 Here, as shown in FIG. 6C, a plurality of liquid crystal SELs facing each of the LED modules M11 and M16 are set in a transmissive state, so that transmission is possible from 1/240 [sec]. Slide the position of the part SLT in the X minus direction.
 これにより、LEDモジュールM11・M12・M13それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AX3へ出射され、LEDモジュールM12からの出射光は視点AX2へ出射され、LEDモジュールM13からの出射光は視点AX1へ出射される。 Thereby, the light emitted from each of the LED modules M11, M12, and M13 is transmitted through one common transmission part SLT. The emitted light from the LED module M11 is emitted to the viewpoint AX3, the emitted light from the LED module M12 is emitted to the viewpoint AX2, and the emitted light from the LED module M13 is emitted to the viewpoint AX1.
 また、LEDモジュールM14・M15・M16・M17・M18それぞれからの出射光は、LEDモジュールM11・M12・M13からの出射光が透過する透過部SLTと横方向(X方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM14からの出射光は視点AX5へ出射され、LEDモジュールM15からの出射光は視点AX4へ出射され、LEDモジュールM16からの出射光は視点AX3へ出射され、LEDモジュールM17からの出射光は視点AX2へ出射され、LEDモジュールM18からの出射光は視点AX1へ出射される。 In addition, the light emitted from each of the LED modules M14, M15, M16, M17, and M18 is transmitted through the transmissive part SLT that transmits the light emitted from the LED modules M11, M12, and M13, and the transmissive part SLT adjacent in the lateral direction (X direction). Are transmitted as a common transmission part. The light emitted from the LED module M14 is emitted to the viewpoint AX5, the light emitted from the LED module M15 is emitted to the viewpoint AX4, the light emitted from the LED module M16 is emitted to the viewpoint AX3, and the light emitted from the LED module M17. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M18 is emitted to the viewpoint AX1.
 次に、3/240〔sec〕では、図6の(d)、図7の(d)に示すように、透過部SLTの位置を、さらに、Xマイナス方向へスライドさせる。 Next, at 3/240 [sec], as shown in FIG. 6D and FIG. 7D, the position of the transmission part SLT is further slid in the X minus direction.
 ここでは、図6の(d)に示すように、LEDモジュールM15・M110のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、2/240〔sec〕のときから、透過部SLTの位置をXマイナス方向へスライドさせる。 Here, as shown in FIG. 6 (d), a plurality of liquid crystal SELs facing each of the LED modules M15 and M110 are set in a transmissive state, so that transmission is possible from 2/240 [sec]. Slide the position of the part SLT in the X minus direction.
 これにより、LEDモジュールM13・M14・M15・M16・M17それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM13からの出射光は視点AX5へ出射され、LEDモジュールM14からの出射光は視点AX4へ出射され、LEDモジュールM15からの出射光は視点AX3へ出射され、LEDモジュールM16からの出射光は視点AX2へ出射され、LEDモジュールM17からの出射光は視点AX1へ出射される。 Thereby, the light emitted from each of the LED modules M13, M14, M15, M16, and M17 is transmitted through one common transmission part SLT. The light emitted from the LED module M13 is emitted to the viewpoint AX5, the light emitted from the LED module M14 is emitted to the viewpoint AX4, the light emitted from the LED module M15 is emitted to the viewpoint AX3, and the light emitted from the LED module M16. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M17 is emitted to the viewpoint AX1.
 また、LEDモジュールM18・M19・M110それぞれからの出射光は、LEDモジュールM13・M14・M15・M16・M17からの出射光が透過する透過部SLTと横方向(X方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM18からの出射光は視点AX5へ出射され、LEDモジュールM19からの出射光は視点AX4へ出射され、LEDモジュールM110からの出射光は視点AX3へ出射される。 The light emitted from each of the LED modules M18, M19, and M110 is a transmissive portion SLT that is adjacent in the lateral direction (X direction) to the transmissive portion SLT through which the emitted light from the LED modules M13, M14, M15, M16, and M17 is transmitted. Are transmitted as a common transmission part. The emitted light from the LED module M18 is emitted to the viewpoint AX5, the emitted light from the LED module M19 is emitted to the viewpoint AX4, and the emitted light from the LED module M110 is emitted to the viewpoint AX3.
 次に、4/240〔sec〕では、図6の(e)、図7の(e)に示すように、透過部SLTの位置を、さらに、Xマイナス方向へスライドさせる。 Next, at 4/240 [sec], as shown in FIGS. 6E and 7E, the position of the transmission portion SLT is further slid in the X minus direction.
 ここでは、図6の(e)に示すように、LEDモジュールM14・M19のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、3/240〔sec〕のときから、透過部SLTの位置をXマイナス方向へスライドさせる。 Here, as shown in FIG. 6 (e), a plurality of liquid crystal SELs facing each of the LED modules M14 and M19 are set in a transmissive state, so that transmission is possible from 3/240 [sec]. Slide the position of the part SLT in the X minus direction.
 これにより、LEDモジュールM12・M13・M14・M15・M16それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM12からの出射光は視点AX5へ出射され、LEDモジュールM13からの出射光は視点AX4へ出射され、LEDモジュールM14からの出射光は視点AX3へ出射され、LEDモジュールM15からの出射光は視点AX2へ出射され、LEDモジュールM16からの出射光は視点AX1へ出射される。 Thereby, the light emitted from each of the LED modules M12, M13, M14, M15, and M16 is transmitted through one common transmission part SLT. The light emitted from the LED module M12 is emitted to the viewpoint AX5, the light emitted from the LED module M13 is emitted to the viewpoint AX4, the light emitted from the LED module M14 is emitted to the viewpoint AX3, and the light emitted from the LED module M15. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M16 is emitted to the viewpoint AX1.
 また、LEDモジュールM17・M18・M19・M110それぞれからの出射光は、LEDモジュールM12・M13・M14・M15・M16からの出射光が透過する透過部SLTと横方向(X方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM17からの出射光は視点AX5へ出射され、LEDモジュールM18からの出射光は視点AX4へ出射され、LEDモジュールM19からの出射光は視点AX3へ出射され、LEDモジュールM110からの出射光は視点AX2へ出射される。 The light emitted from each of the LED modules M17, M18, M19, and M110 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M12, M13, M14, M15, and M16 is transmitted. The part SLT is transmitted as a common transmission part. The light emitted from the LED module M17 is emitted to the viewpoint AX5, the light emitted from the LED module M18 is emitted to the viewpoint AX4, the light emitted from the LED module M19 is emitted to the viewpoint AX3, and the light emitted from the LED module M110. The incident light is emitted to the viewpoint AX2.
 このように、立体画像表示装置1は、視点AX1の観察者に、例えば、LEDモジュールM16~M110を、一つの立体画像を表示する立体画像用の画素として立体画像を表示する。また、視点AX2の観察者に、例えば、LEDモジュールM15~M109を、一つの立体画像を表示する立体画像用の画素として立体画像を表示する。また、視点AX3の観察者に、例えば、LEDモジュールM14~M108を、一つの立体画像を表示する立体画像用の画素として立体画像を表示する。また、視点AX4の観察者に、例えば、LEDモジュールM13~M107を、一つの立体画像を表示する立体画像用の画素として立体画像を表示する。また、視点AX5の観察者に、例えば、LEDモジュールM13~M109を、一つの立体画像を表示する立体画像用の画素として立体画像を表示する。 In this way, the stereoscopic image display device 1 displays a stereoscopic image as a stereoscopic image pixel for displaying, for example, the LED modules M16 to M110 to the observer of the viewpoint AX1. In addition, the stereoscopic image is displayed to the observer at the viewpoint AX2, for example, using the LED modules M15 to M109 as the stereoscopic image pixels for displaying one stereoscopic image. In addition, the stereoscopic image is displayed to the observer at the viewpoint AX3 using, for example, the LED modules M14 to M108 as the stereoscopic image pixels for displaying one stereoscopic image. Further, the stereoscopic image is displayed to the observer of the viewpoint AX4 using, for example, the LED modules M13 to M107 as stereoscopic image pixels for displaying one stereoscopic image. Further, a stereoscopic image is displayed to the observer at the viewpoint AX5, for example, using the LED modules M13 to M109 as the stereoscopic image pixels for displaying one stereoscopic image.
 このようにして、立体画像表示装置1は、複数の画素を立体画像表示用の一画素として、複数の立体画像を表示している。 In this way, the stereoscopic image display device 1 displays a plurality of stereoscopic images using the plurality of pixels as one pixel for stereoscopic image display.
 図8は、立体画像表示装置1が表示する画像の、観察者による見え方を説明する図である。 FIG. 8 is a diagram for explaining how an image displayed by the stereoscopic image display device 1 is viewed by an observer.
 図8の(a)は、立体画像表示装置1が表示している画像D0と、各視点AX1・視点AX2・視点AX3・視点AX4・視点AX5との関係を表し、(b)は一つの立体画像Dを構成する5つのフレームDA・DB・DC・DD・DEを表し、(c)は一つの立体画像Dを表している。 8A shows the relationship between the image D0 displayed by the stereoscopic image display device 1 and each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5, and FIG. 8B shows one stereoscopic display. The five frames DA, DB, DC, DD, and DE constituting the image D are represented, and (c) represents one stereoscopic image D.
 例えば、図8の(a)に示すように、時刻0/240〔sec〕で、立体画像表示装置1が画像(視差画像)D0を表示した場合、視点AX1の観察者には図8の(b)(i)に示すようにフレームDAが表示画像として視認され、視点AX2の観察者には図8の(b)(ii)に示すようにフレームDBが表示画像として視認され、視点AX3の観察者には図8の(b)(iii)に示すようにフレームDCが表示画像として視認され、視点AX4の観察者には図8の(b)(iv)に示すようにフレームDDが表示画像として視認され、視点AX5の観察者には図8の(b)(v)に示すようにフレームDEが表示画像として視認される。 For example, as shown in FIG. 8A, when the stereoscopic image display device 1 displays an image (parallax image) D0 at time 0/240 [sec], the observer of the viewpoint AX1 receives ( b) The frame DA is visually recognized as a display image as shown in (i), and the observer of the viewpoint AX2 sees the frame DB as a display image as shown in (b) (ii) of FIG. The observer sees the frame DC as a display image as shown in (b) and (iii) of FIG. 8, and the observer sees the frame DD as shown in (b) and (iv) of FIG. As shown in FIGS. 8B and 8V, the frame DE is visually recognized as a display image by an observer who is visually recognized as an image AX5.
 視点AX1・AX2・AX3・AX4・AX5のそれぞれで順番は相違するが、図8の(b)(i)~(v)に示すフレームDA~DEを、それぞれ1回づつ視点AX1・AX2・AX3・AX4・AX5それぞれの観察者が表示画像として視認することで、視点AX1・AX2・AX3・AX4・AX5それぞれの観察者は、図8の(c)に示すように一つの立体画像Dを視認することができる。 Although the order of the viewpoints AX1, AX2, AX3, AX4, and AX5 is different, the frames DA to DE shown in (b), (i), and (v) of FIG. 8 are each viewed once, AX1, AX2, and AX3.・ Each observer of AX4 and AX5 visually recognizes as a display image, so that each observer of the viewpoints AX1, AX2, AX3, AX4, and AX5 visually recognizes one stereoscopic image D as shown in FIG. 8C. can do.
 このように、立体画像表示装置1は、5つで一つのセットとなる異なる画像を、5方向に高速に表示することで、ユーザに立体画像を視認するための眼鏡をかけさせることなく、裸眼でかつ、5方向に立体画像を表示することができる。なお、立体画像を表示する複数の方向は、5方向に限定されるものではなく、4方向以下であってもよいし、6方向以上であってもよい。 In this way, the stereoscopic image display device 1 displays five different images in one set at high speed in five directions, so that the user does not wear glasses for visually recognizing the stereoscopic image. In addition, a stereoscopic image can be displayed in five directions. Note that the plurality of directions for displaying a stereoscopic image is not limited to five directions, but may be four directions or less, or may be six directions or more.
 このように立体画像表示装置1は、例えば、LEDモジュールM16~M110等、一つの立体画像を表示する立体画像用の画素が並ぶ方向(すなわちX方向)の画素ピッチPPと、シャッタピッチSPとでは、シャッタピッチSPの方が小さい。 In this way, the stereoscopic image display apparatus 1 includes, for example, the pixel pitch PP X in the direction in which the pixels for stereoscopic images for displaying one stereoscopic image, such as the LED modules M16 to M110, are arranged, and the shutter pitch SP X. In this case, the shutter pitch SP X is smaller.
 一例として、図1に示したように、画素ピッチPPと、シャッタピッチSPとの比は6:1としている。 As an example, as shown in FIG. 1, the ratio of the pixel pitch PP X and the shutter pitch SP X is 6: 1.
 これにより、立体画像用の画素を構成する複数のLEDモジュールMのそれぞれから出射される光の混色を抑えることができるので、クロストークを防止することができる。なお、画素ピッチPPと、シャッタピッチSPとの比は6:1に限定されず、例えば、9:1とする等、適宜変更可能である。 Thereby, since the color mixture of the light radiate | emitted from each of the some LED module M which comprises the pixel for stereoscopic images can be suppressed, crosstalk can be prevented. Note that the ratio between the pixel pitch PP X and the shutter pitch SP X is not limited to 6: 1, and can be changed as appropriate, for example, 9: 1.
 また、上述したように、一つの立体画像Dは順に表示される複数のフレームDA・DB・DC・DD・DEから構成されており、複数のフレームDA・DB・DC・DD・DEのそれぞれは、上記立体画像用の画素(例えば、視点AX1の観察者にとってのLEDモジュールM16~M110等)を構成する複数のLEDモジュールMのうち、互いに異なるLEDモジュールM(例えば、視点AX1の観察者にとってのLEDモジュールM16~M110の何れか)を一画素として表示される。 Further, as described above, one stereoscopic image D is composed of a plurality of frames DA, DB, DC, DD, DE displayed in order, and each of the plurality of frames DA, DB, DC, DD, DE is Among the plurality of LED modules M constituting the stereoscopic image pixel (for example, LED modules M16 to M110 for the observer of the viewpoint AX1), different LED modules M (for example, for the observer of the viewpoint AX1) Any one of the LED modules M16 to M110) is displayed as one pixel.
 これにより、複数のフレームDA・DB・DC・DD・DEのそれぞれは、上記立体画像用の画素を構成する複数の画素のうち、互いに異なる画素を一画素として表示されるので、立体画像表示装置1は多方向に立体画像を表示することができる。 Accordingly, each of the plurality of frames DA, DB, DC, DD, and DE is displayed as a pixel that is different from each other among the plurality of pixels constituting the pixel for the stereoscopic image. 1 can display a stereoscopic image in multiple directions.
 このように、立体画像表示装置1では、上記立体画像用の画素を構成する複数のLEDモジュールMは、発光面20aにおける水平方向に一列に並んで配されている。これにより、発光面20aにおける水平方向に平行な方向に、立体画像を複数表示することができる。 As described above, in the stereoscopic image display apparatus 1, the plurality of LED modules M constituting the stereoscopic image pixels are arranged in a line in the horizontal direction on the light emitting surface 20a. Thereby, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface 20a.
 (LEDディスプレイ装置20及びシャッタ装置30の解像度について)
 次に、図9の(a)(b)、図10の(a)(b)を用いて、LEDディスプレイ装置20及びシャッタ装置30の解像度について説明する。
(Regarding the resolution of the LED display device 20 and the shutter device 30)
Next, the resolution of the LED display device 20 and the shutter device 30 will be described with reference to FIGS. 9A and 9B and FIGS. 10A and 10B.
 図9の(a)はLEDモジュールの画素ピッチと、液晶セルの画素ピッチとが等しい立体画像表示装置100を表す概略図であり、(b)は(a)の立体画像表示装置100の立体画像の表示の様子を説明する図である。 9A is a schematic diagram illustrating the stereoscopic image display device 100 in which the pixel pitch of the LED module is equal to the pixel pitch of the liquid crystal cell, and FIG. 9B is a stereoscopic image of the stereoscopic image display device 100 in FIG. It is a figure explaining the mode of a display.
 図10の(a)は本実施の形態に係る立体画像表示装置1を表す概略図であり、(b)は(a)の立体画像表示装置1の立体画像の表示の様子を説明する図である。 FIG. 10A is a schematic diagram illustrating the stereoscopic image display apparatus 1 according to the present embodiment, and FIG. 10B is a diagram for explaining a display state of the stereoscopic image of the stereoscopic image display apparatus 1 of FIG. is there.
 まず、図9の(a)(b)を用いて、LEDディスプレイ装置の画素ピッチと、シャッタ装置の画素ピッチとが同じである立体画像表示装置100で、多視点の立体画像を表示する場合について説明する。 First, with reference to FIGS. 9A and 9B, a case where a stereoscopic image display device 100 in which the pixel pitch of the LED display device is the same as the pixel pitch of the shutter device displays a multi-viewpoint stereoscopic image. explain.
 立体画像表示装置100は、LEDディスプレイ装置120と、シャッタ装置130とを備えている。 The stereoscopic image display device 100 includes an LED display device 120 and a shutter device 130.
 LEDディスプレイ装置120は、LEDディスプレイ20と同様の構成である。シャッタ装置130は、液晶セル130SLのピッチであるシャッタピッチSPが、LEDディスプレイ装置120の画素ピッチPPと同じである。 The LED display device 120 has the same configuration as the LED display 20. In the shutter device 130, the shutter pitch SP, which is the pitch of the liquid crystal cells 130SL, is the same as the pixel pitch PP of the LED display device 120.
 立体画像表示装置100で、横方向5視点の立体画像を表示するために、例えば、LEDモジュールM13と対向する液晶セル130SLを透過状態とすることで、シャッタ装置130に透過部130SLTを設ける。 In order to display a stereoscopic image of five viewpoints in the horizontal direction on the stereoscopic image display device 100, for example, the transmissive portion 130SLT is provided in the shutter device 130 by setting the liquid crystal cell 130SL facing the LED module M13 in a transmissive state.
 そして、図9の(b)に示すように、LEDディスプレイ装置120のLEDモジュールM11・M12・M13・M14・M15それぞれから出射された光は、一つの共通する透過部130SLTを透過する。 9B, the light emitted from each of the LED modules M11, M12, M13, M14, and M15 of the LED display device 120 passes through one common transmission unit 130SLT.
 その結果、LEDモジュールM11からの出射光は視点AX5へ出射され、LEDモジュールM12からの出射光は視点AX4へ出射され、LEDモジュールM13からの出射光は視点AX3へ出射され、LEDモジュールM14からの出射光は視点AX2へ出射され、LEDモジュールM15からの出射光は視点AX1へ出射される。 As a result, the emitted light from the LED module M11 is emitted to the viewpoint AX5, the emitted light from the LED module M12 is emitted to the viewpoint AX4, the emitted light from the LED module M13 is emitted to the viewpoint AX3, and from the LED module M14. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
 しかし、立体画像表示装置100では、シャッタ装置100のシャッタピッチSPと、LEDディスプレイ装置120の画素ピッチPPが等しいため、各視点間では、隣接するLEDモジュールから出射された光が混色してしまう。 However, in the stereoscopic image display device 100, since the shutter pitch SP of the shutter device 100 and the pixel pitch PP of the LED display device 120 are equal, light emitted from adjacent LED modules is mixed between the viewpoints.
 例えば、視点AX1と視点AX2との間ではLEDモジュールM15から出射した光とLEDモジュールM14から出射した光とが混色し、視点AX2と視点AX3との間ではLEDモジュールM14から出射した光とLEDモジュールM13から出射した光とが混色し、視点AX3と視点AX4との間ではLEDモジュールM13から出射した光とLEDモジュールM12から出射した光とが混色し、視点AX4と視点AX5との間ではLEDモジュールM12から出射した光とLEDモジュールM11から出射した光とが混色する。 For example, the light emitted from the LED module M15 and the light emitted from the LED module M14 are mixed between the viewpoint AX1 and the viewpoint AX2, and the light emitted from the LED module M14 and the LED module are mixed between the viewpoint AX2 and the viewpoint AX3. The light emitted from M13 is mixed in color, the light emitted from the LED module M13 and the light emitted from the LED module M12 are mixed between the viewpoints AX3 and AX4, and the LED module between the viewpoints AX4 and AX5. The light emitted from M12 and the light emitted from LED module M11 are mixed.
 このように、立体画像表示装置100では、隣接する視点の間では、隣接するLEDモジュールからの出射光が混色するクロストークが発生する。このため、観察者の立体画像を観察する角度によっては、観察者はクロストークが発生した画像を視認することとなり、表示品位低下の原因となる。 Thus, in the stereoscopic image display apparatus 100, crosstalk occurs in which light emitted from adjacent LED modules is mixed between adjacent viewpoints. For this reason, depending on the angle at which the observer observes the stereoscopic image, the observer visually recognizes the image in which crosstalk has occurred, which causes a reduction in display quality.
 さらに、例えば、5視点ではなく、さらに多視点化する場合や、逆に視点数を減らす場合であっても、立体画像表示装置100では、透過部130SLTのスリット位置を、LEDモジュールMの画素ピッチPPと等ピッチ間隔でしか設定できず、クロストークを抑えるための最適な位置とすることができない。 Further, for example, even when the number of viewpoints is increased instead of five viewpoints or when the number of viewpoints is reduced, the stereoscopic image display apparatus 100 sets the slit position of the transmission unit 130SLT to the pixel pitch of the LED module M. It can be set only at equal pitch intervals with PP, and cannot be set to an optimum position for suppressing crosstalk.
 そして、LEDモジュールMに対する液晶セル130SLPの相対位置の微調整を行うには、物理的にLEDディスプレイ装置120もしくはシャッタ装置130の位置をずらすしかなく、実用的ではない。 In order to finely adjust the relative position of the liquid crystal cell 130SLP with respect to the LED module M, the position of the LED display device 120 or the shutter device 130 must be physically shifted, which is not practical.
 一方、図10の(a)に示すように、本実施の形態に係る立体画像表示装置1は、LEDディスプレイ装置20のLEDモジュールMのピッチである画素ピッチPPと比べて、シャッタ装置30の液晶セルSLのピッチであるシャッタピッチSPの方が細かい。このため、シャッタ装置30に、LEDモジュールMの画素ピッチPPよりもX方向の長さが短い透過部SLTを形成することができる。 On the other hand, as shown in FIG. 10A, the stereoscopic image display device 1 according to the present embodiment has a liquid crystal of the shutter device 30 as compared with the pixel pitch PP that is the pitch of the LED modules M of the LED display device 20. The shutter pitch SP, which is the pitch of the cell SL, is finer. For this reason, the transmissive part SLT whose length in the X direction is shorter than the pixel pitch PP of the LED module M can be formed in the shutter device 30.
 さらに、本実施の形態の立体画像表示装置1では、LEDディスプレイ装置20のLEDモジュールMの長さM(X方向の長さMS)と比べても、シャッタ装置30の液晶セルSLのピッチであるシャッタピッチSPの方が細かい。このため、透過部SLTのX方向の長さを、LEDモジュールMの長さMSよりも短くすることができる。 Furthermore, in the stereoscopic image display device 1 according to the present embodiment, the pitch of the liquid crystal cells SL of the shutter device 30 is larger than the length M (the length MS X in the X direction) of the LED module M of the LED display device 20. A certain shutter pitch SP is finer. For this reason, the length of the transmissive part SLT in the X direction can be made shorter than the length MS of the LED module M.
 例えば、立体画像表示装置1で、横方向5視点の立体画像を表示するために、LEDモジュールM13と対向する複数の液晶セルSLのうち、LEDモジュールM13のX方向の長さMSよりも長さが短くなるように透過部SLTを設ける。 For example, in order to display a stereoscopic image of five viewpoints in the lateral direction on the stereoscopic image display device 1, out of the plurality of liquid crystal cells SL facing the LED module M13, the length MS X in the X direction of the LED module M13 is longer. The transmissive portion SLT is provided so that the length is short.
 そして、図10の(b)に示すように、LEDディスプレイ装置20のLEDモジュールM11・M12・M13・M14・M15それぞれから出射された光は、一つの共通する透過部SLTを透過する。 Then, as shown in FIG. 10B, the light emitted from each of the LED modules M11, M12, M13, M14, and M15 of the LED display device 20 passes through one common transmission part SLT.
 その結果、LEDモジュールM11からの出射光は視点AX5へ出射され、LEDモジュールM12からの出射光は視点AX4へ出射され、LEDモジュールM13からの出射光は視点AX3へ出射され、LEDモジュールM14からの出射光は視点AX2へ出射され、LEDモジュールM15からの出射光は視点AX1へ出射される。 As a result, the emitted light from the LED module M11 is emitted to the viewpoint AX5, the emitted light from the LED module M12 is emitted to the viewpoint AX4, the emitted light from the LED module M13 is emitted to the viewpoint AX3, and from the LED module M14. The emitted light is emitted to the viewpoint AX2, and the emitted light from the LED module M15 is emitted to the viewpoint AX1.
 上記のように、透過部SLTのX方向の長さは、LEDモジュールMの画素ピッチPPよりも短いので、各視点AX1・視点AX2・視点AX3・視点AX4・視点AX5に出射される光は、透過部SLTで絞られ、これにより、各視点AX1・視点AX2・視点AX3・視点AX4・視点AX5間でクロストークが発生することを防止することができる。 As described above, since the length of the transmissive portion SLT in the X direction is shorter than the pixel pitch PP of the LED module M, the light emitted to each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint AX4, and viewpoint AX5 is It is narrowed down by the transmission part SLT, and it is possible to prevent the occurrence of crosstalk among the viewpoints AX1, AX2, AX3, AX4, and AX5.
 さらに、本実施の形態では、透過部SLTのX方向の長さは、LEDモジュールM13のX方向の長さMSよりも短いので、より確実に、各視点AX1・視点AX2・視点AX3・視点AX4・視点AX5間でクロストークが発生することを防止することができる。 Further, in the present embodiment, the length of the transmissive part SLT in the X direction is shorter than the length MS X of the LED module M13 in the X direction, so that each viewpoint AX1, viewpoint AX2, viewpoint AX3, viewpoint It is possible to prevent crosstalk from occurring between AX4 and viewpoint AX5.
 また、立体画像表示装置1で、例えば、5視点ではなく、さらに多視点化する場合や、逆に視点数を減らす場合であっても、透過部SLTのスリット位置を、LEDモジュールMの画素ピッチPPより細かく設定することができ、シャッタ装置30のシャッターパターンの表示を変更するだけで、LEDモジュールMに対する液晶セル130SLPの相対位置の微調整を行うことができる。このため、LEDディスプレイ装置20とシャッタ装置30との相対位置を物理的に移動させるなどの作業が必要ないので、実用的な立体画像表示装置1を得ることができる。 Further, in the stereoscopic image display device 1, for example, even when the number of viewpoints is increased instead of five viewpoints or when the number of viewpoints is reduced, the slit position of the transmissive part SLT is set to the pixel pitch of the LED module M. It can be set more finely than PP, and the relative position of the liquid crystal cell 130SLP with respect to the LED module M can be finely adjusted simply by changing the display of the shutter pattern of the shutter device 30. For this reason, there is no need to physically move the relative position between the LED display device 20 and the shutter device 30, so that a practical stereoscopic image display device 1 can be obtained.
 このように、立体画像表示装置1は、横視点で立体画像を表示するため、X方向でのLEDモジュールMのピッチである画素ピッチPPより、液晶セルSLのシャッタピッチSPの方が小さい。これにより、視点AX1・AX2・AX3・AX4・AX5間で立体画像同士が重なって表示されるクロストークを防止することができる。 Thus, since the stereoscopic image display device 1 displays a stereoscopic image from a horizontal viewpoint, the shutter pitch SP of the liquid crystal cell SL is smaller than the pixel pitch PP that is the pitch of the LED module M in the X direction. As a result, it is possible to prevent crosstalk in which stereoscopic images are displayed overlapping each other among the viewpoints AX1, AX2, AX3, AX4, and AX5.
 また、シャッタ装置30の透過部SLTは、上記立体画像用の画素を構成する複数のLEDモジュールMのうち、何れかのLEDモジュールMに対向する位置に配されている複数の液晶セルSLによって形成されている。そして、透過部SLTは、フレームDA~DE毎に、上記立体画像用の画素を構成する複数のLEDモジュールMのうち、異なるLEDモジュールMの何れかと対向するように順に移動する。 Further, the transmissive portion SLT of the shutter device 30 is formed by a plurality of liquid crystal cells SL arranged at positions facing any one of the LED modules M among the plurality of LED modules M constituting the stereoscopic image pixel. Has been. Then, the transmissive portion SLT sequentially moves so as to face any one of the different LED modules M among the plurality of LED modules M constituting the stereoscopic image pixel for each of the frames DA to DE.
 これにより、上記立体画像用の画素を構成する複数のLEDモジュールMのそれぞれから出射した光は、透過部SLTを透過して、互いに異なる方向に出射する。これにより、多方向に立体画像を表示することができる。 Thereby, the light emitted from each of the plurality of LED modules M configuring the stereoscopic image pixel is transmitted through the transmission part SLT and emitted in different directions. Thereby, a three-dimensional image can be displayed in multiple directions.
 図16は、視点数と透過部との関係を表す図である。図16に示すように、視点数が増加するにつれ、透過部SLTの開口領域は小さくなる。図16では、白抜き箇所が透過部SLTを表している。 FIG. 16 is a diagram illustrating the relationship between the number of viewpoints and the transmission part. As shown in FIG. 16, as the number of viewpoints increases, the opening area of the transmission part SLT becomes smaller. In FIG. 16, the white spot represents the transmission part SLT.
 また、図16に示すように、立体画像表示装置1は、横視点の他にも、縦視点や縦横視点を採用することで、多視点の立体画像を表示することができる。この縦視点や、縦横視点については後述する。縦視点や、縦横視点であっても、視点数が増加するにつれ、透過部SLTの領域が小さくなることは、横視点と同様である。 Also, as shown in FIG. 16, the stereoscopic image display apparatus 1 can display a multi-view stereoscopic image by adopting a vertical viewpoint or a vertical / horizontal viewpoint in addition to the horizontal viewpoint. This vertical viewpoint and vertical and horizontal viewpoint will be described later. Even in the vertical viewpoint and the vertical and horizontal viewpoint, the area of the transmissive part SLT decreases as the number of viewpoints increases, as in the horizontal viewpoint.
 ここで、アクティブシャッタではなく、シャッタの位置が固定された固定スリット方式では、ある画素の表示画像は、ある特定の視点に対応したもののみである。このため、このような固定スリット方式の立体画像表示装置は、多視点にすればするほど解像度が下がった。 Here, in the fixed slit method in which the position of the shutter is fixed instead of the active shutter, a display image of a certain pixel is only one corresponding to a specific viewpoint. For this reason, the resolution of such a fixed-slit stereoscopic image display apparatus decreases as the number of viewpoints increases.
 一方、立体画像表示装置1によると、解像度を削ることなく多視点の裸眼立体表示を行うことができる。 On the other hand, according to the three-dimensional image display device 1, multi-viewpoint autostereoscopic display can be performed without reducing the resolution.
 また、立体画像表示装置1は、LEDディスプレイ装置20に、液晶ディスプレイよりも高輝度なLEDディスプレイを使用しているため、環境光下でも視認可能な程度、高輝度な立体画像を表示することができる。 In addition, since the stereoscopic image display device 1 uses an LED display with a higher brightness than the liquid crystal display for the LED display device 20, the stereoscopic image display device 1 can display a stereoscopic image with a brightness that is visible even under ambient light. it can.
 (立体画像生成手順)
 次に、図11を用いて、立体画像の生成手順について説明する。
(Stereoscopic image generation procedure)
Next, a procedure for generating a stereoscopic image will be described with reference to FIG.
 図11は、立体画像の生成手順を説明する図である。図11の(a)(b)に示すように、3次元空間に配された構造物5の画像を、全ての視線(例えば5視点)方向からシャッタ装置30面に投射する。次に、図11の(c)(d)に示すように、シャッタ装置30に、スリット状の透過部SLTを有するシャッターパターンを表示する。これにより、各視点方向からの射影画像をマスキングする。次に、図11の(e)(f)に示すようにマスキングされた全ての視線(例えば5視点)方向の画像をLEDディスプレイ装置20の発光面20aに投射する。これにより、立体画像を生成することができる。 FIG. 11 is a diagram illustrating a procedure for generating a stereoscopic image. As shown in FIGS. 11A and 11B, the image of the structure 5 arranged in the three-dimensional space is projected onto the surface of the shutter device 30 from all lines of sight (for example, five viewpoints). Next, as shown in FIGS. 11C and 11D, a shutter pattern having a slit-like transmission portion SLT is displayed on the shutter device 30. Thereby, the projection image from each viewpoint direction is masked. Next, as shown in (e) and (f) of FIG. 11, all masked images in the line of sight (for example, five viewpoints) directions are projected onto the light emitting surface 20 a of the LED display device 20. Thereby, a three-dimensional image can be generated.
 (立体画像の表示方法(縦視点))
 立体画像表示装置1では、横方向に複数に立体画像を表示する横視点に限定されず、他の表示方法によって、多視点の立体画像を表示してもよい。
(3D image display method (vertical view))
The stereoscopic image display device 1 is not limited to a horizontal viewpoint that displays a plurality of stereoscopic images in the horizontal direction, and may display a multi-viewpoint stereoscopic image by another display method.
 次に、図12、図13を用いて、縦方向(Y方向)に複数の立体画像を表示する縦視点で立体画像を表示する方法について説明する。 Next, a method of displaying a stereoscopic image from a vertical viewpoint that displays a plurality of stereoscopic images in the vertical direction (Y direction) will be described with reference to FIGS.
 図12は、縦視点での、経過時間毎の立体画像表示装置1の立体画像の表示状態を表す図である。図12の(a)は時刻が0/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(b)は時刻が1/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(c)は時刻が2/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(d)は時刻が3/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表し、(e)は時刻が4/240〔sec〕での立体画像表示装置1の立体画像の表示状態を表す図である。 FIG. 12 is a diagram illustrating a display state of a stereoscopic image of the stereoscopic image display device 1 for each elapsed time from a vertical viewpoint. 12A shows the display state of the stereoscopic image of the stereoscopic image display apparatus 1 at time 0/240 [sec], and FIG. 12B shows the stereoscopic image display apparatus 1 at time 1/240 [sec]. (C) shows the display state of the stereoscopic image of the stereoscopic image display device 1 at time 2/240 [sec], and (d) shows the display state of 3/240 [sec]. The stereoscopic image display state of the stereoscopic image display device 1 is represented, and (e) is a diagram illustrating the stereoscopic image display state of the stereoscopic image display device 1 at a time of 4/240 [sec].
 図13は、縦視点での、経過時間毎のシャッタ装置30の透過部と遮光部とを表す平面図である。図13の(a)は時刻が0/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(b)は時刻が1/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(c)は時刻が2/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(d)は時刻が3/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図であり、(e)は時刻が4/240〔sec〕でのシャッタ装置30の透過部と遮光部とを表す平面図である。 FIG. 13 is a plan view showing a transmission part and a light shielding part of the shutter device 30 at each elapsed time from a vertical viewpoint. FIG. 13A is a plan view showing a transmission part and a light shielding part of the shutter device 30 at a time of 0/240 [sec], and FIG. 13B is a shutter device at a time of 1/240 [sec]. 30 is a plan view showing the transmissive part and the light shielding part of FIG. 30, (c) is a plan view showing the transmissive part and the light shielding part of the shutter device 30 at a time of 2/240 [sec], and (d) is a plan view. It is a top view showing the transmission part and light-shielding part of the shutter apparatus 30 in time 3/240 [sec], (e) is the transmission part and light-shielding part of the shutter apparatus 30 in time 4/240 [sec]. FIG.
 一例として、縦方向(Y方向)に5視点の立体画像を表示する場合について説明する。 As an example, a case where a stereoscopic image of five viewpoints is displayed in the vertical direction (Y direction) will be described.
 ここでは、立体画像表示装置1は、1サブフレームあたり、240Hzの駆動周波数で駆動するものとして説明する。 Here, it is assumed that the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per subframe.
 図12の(a)に示すように、Yのプラス方向に向けて順に並ぶ視点AY1、視点AY2、視点AY3、視点AY4、視点AY5のそれぞれに立体画像を表示するものとする。 As shown in FIG. 12A, it is assumed that a stereoscopic image is displayed at each of the viewpoints AY1, AY2, AY3, AY4, and AY5 that are sequentially arranged in the positive Y direction.
 このときのシャッタ装置30の透過部SLT及び遮光部SLSの状態は、図13の(a)に示すように、横方向に伸びるスリット状の透過部SLTが、縦方向に順に、遮光部SLS、透過部SLT、遮光部SLS、透過部SLT、・・・と複数個配されるように、液晶セルSLの透過状態と遮光状態とを制御する。 At this time, the state of the transmissive part SLT and the light shielding part SLS of the shutter device 30 is as follows. As shown in FIG. The transmission state and the light shielding state of the liquid crystal cell SL are controlled so that a plurality of transmission portions SLT, light shielding portions SLS, transmission portions SLT,.
 図12の(a)に示すように、LEDモジュールM31・M81のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、シャッタ装置30に透過部SLTを形成している。 As shown in FIG. 12A, a transmissive portion SLT is formed in the shutter device 30 by setting a plurality of liquid crystal SELs facing the LED modules M31 and M81 to a transmissive state.
 これにより、縦方向に並ぶLEDモジュールMのうち、5個のLEDモジュールが1セットとなって、一つの透過部SLTを透過して、5個の視点AY1、視点AY2、視点AY3、視点AY4、視点AY5のそれぞれに、1フレームを構成する5個のサブフレームのうち互いに異なる一つのサブフレームを表示する。 Thereby, among the LED modules M arranged in the vertical direction, five LED modules are set as one set, and are transmitted through one transmission part SLT, and five viewpoints AY1, AY2, AY3, AY4, Each of the viewpoints AY5 displays one different subframe among the five subframes constituting one frame.
 図12の(a)では、LEDモジュールM11・M21・M31・M41・M51それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AY5へ出射され、LEDモジュールM21からの出射光は視点AY4へ出射され、LEDモジュールM31からの出射光は視点AY3へ出射され、LEDモジュールM41からの出射光は視点AY2へ出射され、LEDモジュールM51からの出射光は視点AY1へ出射される。 In FIG. 12A, the light emitted from each of the LED modules M11, M21, M31, M41, and M51 is transmitted through one common transmission part SLT. The light emitted from the LED module M11 is emitted to the viewpoint AY5, the light emitted from the LED module M21 is emitted to the viewpoint AY4, the light emitted from the LED module M31 is emitted to the viewpoint AY3, and the light emitted from the LED module M41. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M51 is emitted to the viewpoint AY1.
 また、LEDモジュールM61・M71・M81・M91・M101それぞれからの出射光は、LEDモジュールM11・M21・M31・M41・M51からの出射光が透過する透過部SLTと縦方向(Y方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM61からの出射光は視点AY5へ出射され、LEDモジュールM71からの出射光は視点AY4へ出射され、LEDモジュールM81からの出射光は視点AY3へ出射され、LEDモジュールM91からの出射光は視点AY2へ出射され、LEDモジュールM101からの出射光は視点AY1へ出射される。 In addition, the light emitted from each of the LED modules M61, M71, M81, M91, and M101 is adjacent to the transmission portion SLT through which the light emitted from the LED modules M11, M21, M31, M41, and M51 is transmitted in the vertical direction (Y direction). The transmission part SLT to be transmitted is transmitted as a common transmission part. The emitted light from the LED module M61 is emitted to the viewpoint AY5, the emitted light from the LED module M71 is emitted to the viewpoint AY4, the emitted light from the LED module M81 is emitted to the viewpoint AY3, and the emitted light from the LED module M91. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M101 is emitted to the viewpoint AY1.
 次に、1/240〔sec〕では、図12の(b)、図13の(b)に示すように、透過部SLTの位置を、Yマイナス方向へスライドさせる。 Next, at 1/240 [sec], as shown in FIGS. 12B and 13B, the position of the transmission part SLT is slid in the Y minus direction.
 ここでは、図12の(b)に示すように、LEDモジュールM21・M71のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、0/240〔sec〕のときから、透過部SLTの位置をYマイナス方向へスライドさせる。 Here, as shown in FIG. 12 (b), a plurality of liquid crystal SELs facing each of the LED modules M21 and M71 are set in a transmissive state, so that transmission can be performed from 0/240 [sec]. Slide the position of the part SLT in the Y minus direction.
 これにより、LEDモジュールM11・M21・M31・M41それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AY4へ出射され、LEDモジュールM21からの出射光は視点AY3へ出射され、LEDモジュールM31からの出射光は視点AY2へ出射され、LEDモジュールM41からの出射光は視点AY1へ出射される。 Thereby, the light emitted from each of the LED modules M11, M21, M31, and M41 is transmitted through one common transmission part SLT. The light emitted from the LED module M11 is emitted to the viewpoint AY4, the light emitted from the LED module M21 is emitted to the viewpoint AY3, the light emitted from the LED module M31 is emitted to the viewpoint AY2, and the light emitted from the LED module M41. The incident light is emitted to the viewpoint AY1.
 また、LEDモジュールM51・M61・M71・M81・M91それぞれからの出射光は、LEDモジュールM11・M21・M31・M41からの出射光が透過する透過部SLTと縦方向(Y方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM51からの出射光は視点AY5へ出射され、LEDモジュールM61からの出射光は視点AY4へ出射され、LEDモジュールM71からの出射光は視点AY3へ出射され、LEDモジュールM81からの出射光は視点AY2へ出射され、LEDモジュールM19からの出射光は視点AY1へ出射される。 The light emitted from each of the LED modules M51, M61, M71, M81, and M91 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M11, M21, M31, and M41 is transmitted. The part SLT is transmitted as a common transmission part. The light emitted from the LED module M51 is emitted to the viewpoint AY5, the light emitted from the LED module M61 is emitted to the viewpoint AY4, the light emitted from the LED module M71 is emitted to the viewpoint AY3, and the light emitted from the LED module M81. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M19 is emitted to the viewpoint AY1.
 次に、2/240〔sec〕では、図12の(c)、図13の(c)に示すように、透過部SLTの位置を、さらに、Yマイナス方向へスライドさせる。 Next, at 2/240 [sec], as shown in FIGS. 12C and 13C, the position of the transmission part SLT is further slid in the Y-minus direction.
 ここでは、図12の(c)に示すように、LEDモジュールM11・M61のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、1/240〔sec〕のときから、透過部SLTの位置をYマイナス方向へスライドさせる。 Here, as shown in FIG. 12 (c), a plurality of liquid crystal SELs facing each of the LED modules M11 and M61 are set in a transmissive state, so that transmission is possible from 1/240 [sec]. Slide the position of the part SLT in the Y minus direction.
 これにより、LEDモジュールM11・M21・M31それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM11からの出射光は視点AY3へ出射され、LEDモジュールM21からの出射光は視点AY2へ出射され、LEDモジュールM31からの出射光は視点AY1へ出射される。 Thereby, the light emitted from each of the LED modules M11, M21, and M31 is transmitted through one common transmission part SLT. The emitted light from the LED module M11 is emitted to the viewpoint AY3, the emitted light from the LED module M21 is emitted to the viewpoint AY2, and the emitted light from the LED module M31 is emitted to the viewpoint AY1.
 また、LEDモジュールM41・M51・M61・M71・M81それぞれからの出射光は、LEDモジュールM11・M21・M31からの出射光が透過する透過部SLTと縦方向(Y方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM41からの出射光は視点AY5へ出射され、LEDモジュールM15からの出射光は視点AY4へ出射され、LEDモジュールM16からの出射光は視点AY3へ出射され、LEDモジュールM17からの出射光は視点AY2へ出射され、LEDモジュールM18からの出射光は視点AY1へ出射される。 In addition, the light emitted from each of the LED modules M41, M51, M61, M71, and M81 is transmitted through the light-transmitting portion SLT that transmits light emitted from the LED modules M11, M21, and M31, and the light-transmitting portion SLT adjacent in the vertical direction (Y direction). Are transmitted as a common transmission part. The light emitted from the LED module M41 is emitted to the viewpoint AY5, the light emitted from the LED module M15 is emitted to the viewpoint AY4, the light emitted from the LED module M16 is emitted to the viewpoint AY3, and the light emitted from the LED module M17. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M18 is emitted to the viewpoint AY1.
 次に、3/240〔sec〕では、図12の(d)、図13の(d)に示すように、透過部SLTの位置を、さらに、Yマイナス方向へスライドさせる。 Next, at 3/240 [sec], as shown in FIG. 12 (d) and FIG. 13 (d), the position of the transmission part SLT is further slid in the Y minus direction.
 ここでは、図12の(d)に示すように、LEDモジュールM51・M101のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、2/240〔sec〕のときから、透過部SLTの位置をYマイナス方向へスライドさせる。 Here, as shown in FIG. 12 (d), a plurality of liquid crystal SELs facing each of the LED modules M51 and M101 are set in a transmissive state, so that transmission is possible from 2/240 [sec]. Slide the position of the part SLT in the Y minus direction.
 これにより、LEDモジュールM31・M41・M51・M61・M71それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM31からの出射光は視点AY5へ出射され、LEDモジュールM41からの出射光は視点AY4へ出射され、LEDモジュールM51からの出射光は視点AY3へ出射され、LEDモジュールM61からの出射光は視点AY2へ出射され、LEDモジュールM71からの出射光は視点AY1へ出射される。 Thereby, the light emitted from each of the LED modules M31, M41, M51, M61, and M71 is transmitted through one common transmission part SLT. The light emitted from the LED module M31 is emitted to the viewpoint AY5, the light emitted from the LED module M41 is emitted to the viewpoint AY4, the light emitted from the LED module M51 is emitted to the viewpoint AY3, and the light emitted from the LED module M61. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M71 is emitted to the viewpoint AY1.
 また、LEDモジュールM81・M91・M101それぞれからの出射光は、LEDモジュールM31・M41・M51・M61・M71からの出射光が透過する透過部SLTと縦方向(Y方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM81からの出射光は視点AY5へ出射され、LEDモジュールM91からの出射光は視点AY4へ出射され、LEDモジュールM101からの出射光は視点AY3へ出射される。 In addition, the light emitted from each of the LED modules M81, M91, and M101 is transmitted through the light-transmitting portion SLT that transmits light emitted from the LED modules M31, M41, M51, M61, and M71, and the light-transmitting portion SLT adjacent in the vertical direction (Y direction). Are transmitted as a common transmission part. The emitted light from the LED module M81 is emitted to the viewpoint AY5, the emitted light from the LED module M91 is emitted to the viewpoint AY4, and the emitted light from the LED module M101 is emitted to the viewpoint AY3.
 次に、4/240〔sec〕では、図12の(e)、図13の(e)に示すように、透過部SLTの位置を、さらに、Yマイナス方向へスライドさせる。 Next, at 4/240 [sec], as shown in FIGS. 12E and 13E, the position of the transmission part SLT is further slid in the Y-minus direction.
 ここでは、図12の(e)に示すように、LEDモジュールM41・M91のそれぞれと対向する液晶SELのうちの複数個を透過状態とすることで、3/240〔sec〕のときから、透過部SLTの位置をYマイナス方向へスライドさせる。 Here, as shown in FIG. 12 (e), by transmitting a plurality of liquid crystal SELs facing each of the LED modules M41 and M91 in a transmissive state, transmission is possible from 3/240 [sec]. Slide the position of the part SLT in the Y minus direction.
 これにより、LEDモジュールM21・M31・M41・M51・M61それぞれから出射された光は、一つの共通する透過部SLTを透過する。そして、LEDモジュールM21からの出射光は視点AY5へ出射され、LEDモジュールM31からの出射光は視点AY4へ出射され、LEDモジュールM41からの出射光は視点AY3へ出射され、LEDモジュールM51からの出射光は視点AY2へ出射され、LEDモジュールM61からの出射光は視点AY1へ出射される。 Thereby, the light emitted from each of the LED modules M21, M31, M41, M51, and M61 is transmitted through one common transmission part SLT. The light emitted from the LED module M21 is emitted to the viewpoint AY5, the light emitted from the LED module M31 is emitted to the viewpoint AY4, the light emitted from the LED module M41 is emitted to the viewpoint AY3, and the light emitted from the LED module M51. The emitted light is emitted to the viewpoint AY2, and the emitted light from the LED module M61 is emitted to the viewpoint AY1.
 また、LEDモジュールM71・M81・M91・M101それぞれからの出射光は、LEDモジュールM21・M31・M41・M51・M61からの出射光が透過する透過部SLTと縦方向(Y方向)に隣接する透過部SLTを、共通する透過部として透過する。そして、LEDモジュールM71からの出射光は視点AY5へ出射され、LEDモジュールM81からの出射光は視点AY4へ出射され、LEDモジュールM91からの出射光は視点AY3へ出射され、LEDモジュールM101からの出射光は視点AY2へ出射される。 In addition, the light emitted from each of the LED modules M71, M81, M91, and M101 is transmitted adjacent to the transmissive portion SLT through which the light emitted from the LED modules M21, M31, M41, M51, and M61 is transmitted in the vertical direction (Y direction). The part SLT is transmitted as a common transmission part. The light emitted from the LED module M71 is emitted to the viewpoint AY5, the light emitted from the LED module M81 is emitted to the viewpoint AY4, the light emitted from the LED module M91 is emitted to the viewpoint AY3, and the light emitted from the LED module M101. The incident light is emitted to the viewpoint AY2.
 このようにして、立体画像表示装置1は、縦方向に5視点の立体画像を表示することができる。なお、立体画像を表示する方向は、5方向に限定されるものではなく、4方向以下であってもよいし、6方向以上であってもよい。 In this way, the stereoscopic image display device 1 can display a stereoscopic image of five viewpoints in the vertical direction. In addition, the direction which displays a stereo image is not limited to 5 directions, 4 directions or less may be sufficient and 6 directions or more may be sufficient.
 このように、立体画像表示装置1は、上記立画像用の画素を構成する複数の画素(視点AY1の観察者にとっての例えばM61~M101等)は、発光面20aにおける垂直方向(Y方向)に一列に並んで配されていてもよい。これにより、発光面20aにおける垂直方向に平行な方向に、立体画像を複数表示することができる。 As described above, in the stereoscopic image display device 1, a plurality of pixels (for example, M61 to M101 for the observer of the viewpoint AY1) constituting the above-mentioned standing image pixels are arranged in the vertical direction (Y direction) on the light emitting surface 20a. They may be arranged in a line. Thereby, a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface 20a.
 このように立体画像表示装置1は、例えば、LEDモジュールM61~M101等、一つの立体画像を表示する立体画像用の画素が並ぶ方向(すなわちY方向)の画素ピッチPPと、シャッタピッチSPとでは、シャッタピッチSPの方が小さい。 As described above, the stereoscopic image display apparatus 1 includes, for example, the pixel pitch PP Y in the direction in which the pixels for stereoscopic images for displaying one stereoscopic image, such as the LED modules M61 to M101, and the shutter pitch SP Y are arranged. and in, the smaller the shutter pitch SP Y.
 これにより、立体画像用の画素を構成する複数のLEDモジュールMのそれぞれから出射される光の混色を抑えることができるので、クロストークを防止することができる。 Thereby, since color mixture of light emitted from each of the plurality of LED modules M constituting the stereoscopic image pixel can be suppressed, crosstalk can be prevented.
 (立体画像の表示方法(縦横視点))
 次に、図14、図15を用いて、横視点や縦視点とは異なる立体画像の表示方法である縦横視点の立体画像表示方法について説明する。
(3D image display method (vertical and horizontal viewpoint))
Next, a three-dimensional image display method for a vertical and horizontal viewpoint, which is a method for displaying a stereoscopic image different from the horizontal viewpoint and the vertical viewpoint, will be described with reference to FIGS.
 図14は、縦横視点で立体画像を表示している立体画像表示装置1の様子を表す図である。図15は、縦横視点で立体画像を表示する方法を説明する図である。 FIG. 14 is a diagram illustrating a state of the stereoscopic image display apparatus 1 displaying a stereoscopic image from a vertical and horizontal viewpoint. FIG. 15 is a diagram illustrating a method of displaying a stereoscopic image from a vertical and horizontal viewpoint.
 図14に示すように、縦横視点では、一つの立体画像を表示するために、横及び縦のそれぞれに複数方向にフレームを表示することで、一つの立体画像を表示する。 As shown in FIG. 14, in order to display one stereoscopic image at the vertical and horizontal viewpoints, one stereoscopic image is displayed by displaying frames in a plurality of directions in the horizontal and vertical directions.
 一例として、横方向4視点、縦方向3視点の合計12視点の縦横視点で立体画像を表示する方法について説明する。 As an example, a method of displaying a stereoscopic image with vertical and horizontal viewpoints of a total of 12 viewpoints of 4 viewpoints in the horizontal direction and 3 viewpoints in the vertical direction will be described.
 1つの立体画像を1セットとしたとき、立体画像表示装置1は、1セットを12個分割したフレームを順次表示することで一つの立体画像を表示する。 When one stereoscopic image is set as one set, the stereoscopic image display device 1 displays one stereoscopic image by sequentially displaying 12 frames obtained by dividing one set.
 ここでは、立体画像表示装置1は、1フレームあたり、240Hzの駆動周波数で駆動するものとして説明する。 Here, it is assumed that the stereoscopic image display device 1 is driven at a driving frequency of 240 Hz per frame.
 図15の破線で示す領域MSETは、1セットあたりに、一つの透過部SLTが動作(スライド)する範囲である。 A region MSET indicated by a broken line in FIG. 15 is a range in which one transmission portion SLT operates (slides) per set.
 また、図15の領域MSET内の矢印は、1セットあたりに透過部SLTが動作(スライド)する方向を示している。 Further, the arrow in the area MSET in FIG. 15 indicates the direction in which the transmission part SLT operates (slides) per set.
 領域MESTには、LEDモジュールMのうち、横方向に4個のLEDモジュールMが含まれ、縦方向に3個のLEDモジュールMが含まれているものとする。 Suppose that the area MEST includes four LED modules M in the horizontal direction and three LED modules M in the vertical direction among the LED modules M.
 時刻0/240〔sec〕のとき、透過部SLTが、領域MSETの左上に位置するように、シャッタ装置30の液晶セルSLの透過状態及び遮光状態が制御される。これにより、透過部SLTと対向するLEDモジュールMを中心として、当該LEDモジュールMの周囲12個のLEDモジュールMから出射された光は、透過部SLTを共通の透過部として透過し、互いに異なる12方向へと出射される。この結果、1セットを構成する12個のフレームのうちの一つ目のフレームが12方向へ表示される。 At time 0/240 [sec], the transmission state and the light shielding state of the liquid crystal cell SL of the shutter device 30 are controlled so that the transmission part SLT is located in the upper left of the region MSET. Thereby, the light emitted from the 12 LED modules M around the LED module M centering on the LED module M facing the transmission part SLT is transmitted through the transmission part SLT as a common transmission part, and is different from each other. It is emitted in the direction. As a result, the first frame of the 12 frames constituting one set is displayed in 12 directions.
 時刻1/240〔sec〕のとき、時刻0/240〔sec〕のときからLEDモジュールMのピッチ分、透過部SLTをXプラス方向へスライドさせる。これにより、スライドした透過部SLTと対向するLEDモジュールMを中心として、当該LEDモジュールMの周囲12個のLEDモジュールMから出射された光は、透過部SLTを共通の透過部として透過し、互いに異なる12方向へと出射される。この結果、1セットを構成する12個のフレームのうちの2つ目のフレームが12方向へ表示される。 At time 1/240 [sec], the transmissive part SLT is slid in the X plus direction by the pitch of the LED module M from time 0/240 [sec]. As a result, the light emitted from the 12 LED modules M around the LED module M around the LED module M facing the transmissive part SLT that has slid passes through the transmissive part SLT as a common transmissive part, and It is emitted in 12 different directions. As a result, the second frame of the 12 frames constituting one set is displayed in 12 directions.
 このように、順番に透過部SLTを横方向(Xプラス方向)にスライドさていき、領域MSETの右端にくると、次は領域MSETの上から2段目の左端にスライドさせ、順に右方向(Xプラス方向)へスライドさせてLEDモジュールMからの出射光を透過させていく。 In this way, the transmissive part SLT is sequentially slid in the horizontal direction (X plus direction), and when it reaches the right end of the area MSET, it is slid to the left end of the second step from the top of the area MSET, and sequentially in the right direction ( The light emitted from the LED module M is transmitted by sliding in the X plus direction).
 そして、11/240secのときに、LEDモジュールMから出射された光を領域MSETの右下に位置する透過部SLTを透過させることで、12個のフレームからなる1セットの立体画像が、12方向に表示される。 Then, at 11/240 sec, the light emitted from the LED module M is transmitted through the transmission part SLT located in the lower right of the region MSET, so that one set of stereoscopic images including 12 frames can be displayed in 12 directions. Is displayed.
 このように、立体画像表示装置1は、横視点と縦視点とを組み合わせた縦横視点により、多視点の立体画像を表示することができる。 As described above, the stereoscopic image display apparatus 1 can display a multi-viewpoint stereoscopic image with a vertical and horizontal viewpoint combining a horizontal viewpoint and a vertical viewpoint.
 このように、立体画像表示装置1は、立体画像用の画素を構成する複数の画素は、発光面20aにおける水平方向に複数個並んで配されている(例えば、LEDモジュールM11~M14)と共に、発光面20aにおける垂直方向にも複数個並んで配されて(例えば、LEDモジュールM11~M31等)いてもよい。 As described above, in the stereoscopic image display device 1, a plurality of pixels constituting the stereoscopic image pixels are arranged side by side in the horizontal direction on the light emitting surface 20a (for example, LED modules M11 to M14), A plurality of the light emitting surfaces 20a may be arranged in the vertical direction (for example, LED modules M11 to M31).
 これにより、発光面20aにおける水平方向と平行な方向に立体画像を複数表示することができると共に、発光面20aにおける垂直方向に平行な方向にも立体画像を複数表示することができる。このため、広範囲に立体画像を多視点表示することができる。 Thereby, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface 20a, and a plurality of stereoscopic images can also be displayed in a direction parallel to the vertical direction on the light emitting surface 20a. For this reason, a stereoscopic image can be displayed in multiple viewpoints over a wide range.
 このように立体画像表示装置1は、横方向に隣接する4つのLEDモジュールM及び縦方向に隣接する3つのLEDモジュールMによって一つの立体画像が表示されるので、一つの立体画像を表示する立体画像用の画素が並ぶ方向は、X方向及びY方向である。 As described above, the stereoscopic image display device 1 displays one stereoscopic image by the four LED modules M adjacent in the horizontal direction and the three LED modules M adjacent in the vertical direction. The directions in which image pixels are arranged are the X direction and the Y direction.
 このため、画素ピッチPPと、シャッタピッチSPとでは、シャッタピッチSPの方が小さく、さらに、画素ピッチPPと、シャッタピッチSPとでは、シャッタピッチSPの方が小さい。 Therefore, the pixel pitch PP X, in the shutter pitch SP X is smaller towards the shutter pitch SP X, further, a pixel pitch PP Y, in the shutter pitch SP Y, the smaller the shutter pitch SP Y.
 これにより、立体画像用の画素を構成する複数のLEDモジュールMのそれぞれから出射される光の混色を抑えることができるので、クロストークを防止することができる。 Thereby, since color mixture of light emitted from each of the plurality of LED modules M constituting the stereoscopic image pixel can be suppressed, crosstalk can be prevented.
 〔実施の形態2〕
 次に、図17、図18の(a)(b)を用いて、第2の実施形態に係る立体画像表示装置4の構成について説明する。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Next, the configuration of the stereoscopic image display apparatus 4 according to the second embodiment will be described with reference to FIGS. 17 and 18A and 18B. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図17は本実施の形態に係る立体画像表示装置4の構成を表す斜視図である。 FIG. 17 is a perspective view showing the configuration of the stereoscopic image display device 4 according to the present embodiment.
 図17に示すように、立体画像表示装置4は、シャッタ装置30に替えてシャッタ装置40を備えている点で立体画像表示装置1と相違する。立体画像表示装置4の他の構成は立体画像表示装置1と同様である。 As shown in FIG. 17, the stereoscopic image display device 4 is different from the stereoscopic image display device 1 in that a shutter device 40 is provided instead of the shutter device 30. Other configurations of the stereoscopic image display device 4 are the same as those of the stereoscopic image display device 1.
 実施形態1で説明したシャッタ装置30は液晶パネルであった。一方、本実施の形態に係るシャッタ装置40は、液晶パネルではなく、MEMSシャッタパネルである。 The shutter device 30 described in the first embodiment is a liquid crystal panel. On the other hand, the shutter device 40 according to the present embodiment is not a liquid crystal panel but a MEMS shutter panel.
 図18の(a)はシャッタ装置40の画素の構成の一部を表す平面図であり、(b)はMEMSシャッタの動作を説明する図である。 18A is a plan view showing a part of the pixel configuration of the shutter device 40, and FIG. 18B is a diagram for explaining the operation of the MEMS shutter.
 シャッタ装置40にはマトリクス状に複数の画素(シャッタ素子)PXMが配されている。 The shutter device 40 has a plurality of pixels (shutter elements) PXM arranged in a matrix.
 シャッタ装置40の画素PXMは、開口部が設けられた基板45に、開口部が設けられ基板45の表面をスライド可能に基板45に配されたMEMSシャッタSHと、支柱43と、MEMSシャッタSHをスライド可動とするためのばね部42及び電極部41が配されている。 The pixel PXM of the shutter device 40 includes a MEMS shutter SH, a support column 43, and a MEMS shutter SH provided on the substrate 45 provided with the opening and slidable on the surface of the substrate 45. A spring portion 42 and an electrode portion 41 are provided for sliding movement.
 MEMSシャッタSHは、静電気力により、図18の(b)に示す矢印の方向にスライドが可能である。 The MEMS shutter SH can be slid in the direction of the arrow shown in FIG.
 画素PXMの基板45に設けられた開口部と、MEMSシャッタ45の開口部とが重畳するように、静電気力によりMEMSシャッタSHをスライドさせることで、シャッタ装置40の背面側に配されたLEDディスプレイ装置20のLEDモジュールMから出射された光は、画素PXMを透過する。すなわち、画素PXMは透過状態となる。 The LED display disposed on the back side of the shutter device 40 by sliding the MEMS shutter SH by electrostatic force so that the opening provided in the substrate 45 of the pixel PXM and the opening of the MEMS shutter 45 overlap each other. Light emitted from the LED module M of the device 20 passes through the pixel PXM. That is, the pixel PXM is in a transmissive state.
 一方、平面視したときに、MEMSシャッタ45の開口部内に基板45が配されるように、静電気力によりMEMSシャッタSHをスライドさせることで、シャッタ装置40の背面側に配されたLEDディスプレイ装置20のLEDモジュールMから出射された光は、画素PXMで遮光される。すなわち画素PXMは遮光状態となる。 On the other hand, the LED display device 20 disposed on the back side of the shutter device 40 by sliding the MEMS shutter SH by electrostatic force so that the substrate 45 is disposed in the opening of the MEMS shutter 45 when viewed in plan. The light emitted from the LED module M is blocked by the pixel PXM. That is, the pixel PXM is in a light shielding state.
 シャッタ装置40は、このように、MEMSシャッタSHを静電気力で動作(スライド)させているので、画素PXMの透過状態と遮光状態との切替を、液晶セルSLよりも高速に行うことができる。 Since the shutter device 40 operates (slides) the MEMS shutter SH with electrostatic force in this manner, the switching between the transmission state and the light shielding state of the pixel PXM can be performed faster than the liquid crystal cell SL.
 画素PXMのピッチについて、立体画像表示装置4によって横視点で立体画像を表示する場合は、画素PXMのX方向のピッチをLEDモジュールMのX方向のピッチである画素PPよりも小さくし、立体画像表示装置4によって縦視点で立体画像を表示する場合は、画素PXMのY方向のピッチをLEDモジュールMのY方向のピッチである画素PPよりも小さくする。 The pitch of the pixels PXM, when displaying a stereoscopic image with horizontal viewpoint by the stereoscopic image display apparatus 4 is made smaller than the pixel PP X is the pitch in the X direction of the LED module M pitches in the X direction of the pixel PXM, stereoscopic When the image display device 4 displays a stereoscopic image from a vertical viewpoint, the pitch of the pixels PXM in the Y direction is set smaller than the pixel PP Y that is the pitch of the LED modules M in the Y direction.
 また、立体画像表示装置4によって縦横視点で立体画像を表示する場合は、画素PXMのX方向のピッチをLEDモジュールMのX方向のピッチである画素PPよりも小さくし、かつ、画素PXMのY方向のピッチをLEDモジュールMのY方向のピッチである画素PPよりも小さくする。 Also, when displaying a stereoscopic image with horizontal and vertical viewpoint by the stereoscopic image display apparatus 4 is made smaller than the pixel PP X is a X direction pitches of the LED module M in the X direction of the pixel PXM, and the pixel PXM The pitch in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
 これにより、多視点で立体画像を表示したときの、各視点間でのクロストークを防止することができる。 This makes it possible to prevent crosstalk between the viewpoints when displaying a stereoscopic image from multiple viewpoints.
 さらに、立体画像表示装置4は、LEDモジュールMの出射光を、画素PXMの開口部を透過させて、立体画像を表示するため、液晶セルSLをシャッタとして機能させる場合と比べて透過率が高い。 Furthermore, since the stereoscopic image display device 4 transmits the emitted light of the LED module M through the opening of the pixel PXM and displays a stereoscopic image, the transmittance is higher than when the liquid crystal cell SL functions as a shutter. .
 このため、立体画像表示装置4によると、より視点数が多く、かつ、フリッカを抑えて、高輝度が立体画像を表示することができる。 For this reason, according to the stereoscopic image display device 4, the number of viewpoints is larger, flickering is suppressed, and a stereoscopic image can be displayed with high luminance.
 〔実施の形態3〕
 次に、図19~図21を用いて、第3の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1、2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Next, a third embodiment will be described with reference to FIGS. For convenience of explanation, members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 図19は本実施の形態に係る立体画像表示装置5の構成を表す斜視図である。 FIG. 19 is a perspective view showing the configuration of the stereoscopic image display device 5 according to the present embodiment.
 図19に示すように、立体画像表示装置5は、シャッタ装置30に替えてシャッタ装置50を備えている点で立体画像表示装置1と相違する。立体画像表示装置5の他の構成は立体画像表示装置1と同様である。 As shown in FIG. 19, the stereoscopic image display device 5 is different from the stereoscopic image display device 1 in that a shutter device 50 is provided instead of the shutter device 30. Other configurations of the stereoscopic image display device 5 are the same as those of the stereoscopic image display device 1.
 実施形態1で説明したシャッタ装置30は液晶パネルであった。一方、本実施の形態に係るシャッタ装置50は、液晶パネルではなく、EW(エレクトロウェッティング)シャッタパネルである。 The shutter device 30 described in the first embodiment is a liquid crystal panel. On the other hand, the shutter device 50 according to the present embodiment is not a liquid crystal panel but an EW (electrowetting) shutter panel.
 図20の(a)は透過状態であるシャッタ装置50の画素PXEの構成を表す平面図であり、(b)は画素PXEの構成を表す断面図である。 20A is a plan view illustrating the configuration of the pixel PXE of the shutter device 50 in the transmissive state, and FIG. 20B is a cross-sectional view illustrating the configuration of the pixel PXE.
 図21の(a)は遮光状態であるシャッタ装置50の画素PXEの構成を表す平面図であり、(b)は画素PXEの構成を表す断面図である。 21A is a plan view illustrating the configuration of the pixel PXE of the shutter device 50 in a light-shielding state, and FIG. 21B is a cross-sectional view illustrating the configuration of the pixel PXE.
 シャッタ装置50にはマトリクス状に複数の画素PXEが配されている。 The shutter device 50 has a plurality of pixels PXE arranged in a matrix.
 シャッタ装置50は、基板54aと基板54bと間に、画素(シャッタ素子)PXEとして区画された領域内に封止された非極性溶液52と、極性溶液からなり、非極性溶液52中をスライドするシャッタEWSHとを備えている。また、極性溶液は光を遮光する材質からなるものである。 The shutter device 50 includes a nonpolar solution 52 sealed in a region partitioned as a pixel (shutter element) PXE between the substrate 54 a and the substrate 54 b and a polar solution, and slides in the nonpolar solution 52. And a shutter EWSH. The polar solution is made of a material that blocks light.
 基板54aの基板54bとの対向面には開口部51を有する遮光部材56が配されている。画素PXEのうち、開口部51が形成されている領域が透過部である。また、画素PXEのうち、遮光部材56が形成されている領域が遮光部である。 A light shielding member 56 having an opening 51 is disposed on the surface of the substrate 54a facing the substrate 54b. In the pixel PXE, a region where the opening 51 is formed is a transmission portion. Further, in the pixel PXE, a region where the light shielding member 56 is formed is a light shielding portion.
 また、非極性溶液52は、非極性溶液52と、遮光部材56との間の層に並置して配されている電極53a・53bと、非極性溶液52と基板54bとの間に配されている電極53cとによって挟まれている。電極53aは開口部51を覆って配されており、電極53bは、画素PXE内であって電極53aと並置されている。 The nonpolar solution 52 is arranged between the nonpolar solution 52 and the electrodes 53a and 53b arranged in parallel in the layer between the light shielding member 56 and the nonpolar solution 52 and the substrate 54b. It is sandwiched between the electrodes 53c. The electrode 53a is disposed so as to cover the opening 51, and the electrode 53b is juxtaposed with the electrode 53a in the pixel PXE.
 画素PXEを透過状態とするには、電極53cと電極53aとの間に電圧を印加する。すると、極性電極であるシャッタEWSHは電極53cと電極53bとの間に移動する。これより、画素PXEは透過状態となり、基板54aの裏面側に配されたLEDモジュールMからの出射光(図20の(b)の矢印55)は開口部51を透過する。 In order to make the pixel PXE in a transmissive state, a voltage is applied between the electrode 53c and the electrode 53a. Then, the shutter EWSH, which is a polar electrode, moves between the electrode 53c and the electrode 53b. As a result, the pixel PXE is in a transmissive state, and light emitted from the LED module M (arrow 55 in FIG. 20B) disposed on the back side of the substrate 54a is transmitted through the opening 51.
 一方、画素PXEを遮光状態とするには、電極53cと電極53bとの間に電圧を印加する(図21の(b)の矢印56)。すると、極性電極であるシャッタEWSHは電極53cと電極53aとの間に移動する。これにより、シャッタEWSHは開口部51を覆い、画素PXEは遮光状態となる。この結果、基板54aの裏面側に配されたLEDモジュールMからの出射光(図21の(b)の矢印55)はシャッタEWSHで遮光される。 On the other hand, in order to put the pixel PXE into a light shielding state, a voltage is applied between the electrode 53c and the electrode 53b (arrow 56 in FIG. 21B). Then, the shutter EWSH, which is a polar electrode, moves between the electrode 53c and the electrode 53a. Accordingly, the shutter EWSH covers the opening 51, and the pixel PXE is in a light shielding state. As a result, light emitted from the LED module M arranged on the back side of the substrate 54a (arrow 55 in FIG. 21B) is shielded by the shutter EWSH.
 このように、エレクトロウェッティングパネルであるシャッタ装置50は、LEDモジュールMから発光された光を開口部51を透過させるので、液晶パネルでシャッタを構成する場合と比べて透過率が高い。 Thus, since the shutter device 50 which is an electrowetting panel transmits the light emitted from the LED module M through the opening 51, the transmittance is higher than that in the case where the shutter is configured by a liquid crystal panel.
 このため、立体画像表示装置5によると、シャッタ装置50をエレクトロウェッティングパネルで構成しているので、シャッタ装置を液晶パネルで構成した場合と比べて、透過率がたかく、より視点数の多い画像でも高い輝度で表示することができる。 For this reason, according to the stereoscopic image display device 5, since the shutter device 50 is configured by an electrowetting panel, the transmittance is higher and the number of viewpoints is larger than when the shutter device is configured by a liquid crystal panel. But it can be displayed with high brightness.
 また、画素PXEのピッチについては、立体画像表示装置5によって横視点で立体画像を表示する場合は、画素PXEのX方向のピッチをLEDモジュールMのX方向のピッチである画素PPよりも小さくし、立体画像表示装置5によって縦視点で立体画像を表示する場合は、画素PXEのY方向のピッチをLEDモジュールMのY方向のピッチである画素PPよりも小さくする。 As for the pitch of the pixel PXE, when a stereoscopic image is displayed from the horizontal viewpoint by the stereoscopic image display device 5, the pitch of the pixel PXE in the X direction is smaller than the pixel PP X that is the pitch of the LED module M in the X direction. When the stereoscopic image display device 5 displays a stereoscopic image from a vertical viewpoint, the pitch of the pixels PXE in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
 また、立体画像表示装置5によって縦横視点で立体画像を表示する場合は、画素PXEのX方向のピッチをLEDモジュールMのX方向のピッチである画素PPよりも小さくし、かつ、画素PXEのY方向のピッチをLEDモジュールMのY方向のピッチである画素PPよりも小さくする。 Also, when displaying a stereoscopic image with horizontal and vertical viewpoint by the stereoscopic image display device 5, and less than the pixel PP X is a X direction of the pitch of the LED module M pitches in the X direction of the pixel PXE, and the pixel PXE The pitch in the Y direction is made smaller than the pixel PP Y that is the pitch in the Y direction of the LED module M.
 これにより、多視点で立体画像を表示したときの、各視点間でのクロストークを防止することができる。 This makes it possible to prevent crosstalk between the viewpoints when displaying a stereoscopic image from multiple viewpoints.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以上のように、本発明の立体画像表示装置は、多方向への立体画像の表示が可能な立体画像表示装置であり、画素がマトリクス状に配されている表示装置と、透過状態と遮光状態との切替が可能なシャッタ素子がマトリクス状に配されており、上記表示装置の発光面と対向配置されているシャッタ装置とを備え、上記画素及び上記シャッタが配されている方向のうち、少なくとも一方向で、上記画素の画素ピッチより、上記シャッタ素子のシャッタピッチの方が小さいことを特徴とする。 As described above, the stereoscopic image display device of the present invention is a stereoscopic image display device capable of displaying a stereoscopic image in multiple directions, and includes a display device in which pixels are arranged in a matrix, a transmission state, and a light shielding state. Are arranged in a matrix, and includes a shutter device disposed opposite to the light emitting surface of the display device, and at least of the directions in which the pixels and the shutter are disposed. In one direction, the shutter pitch of the shutter element is smaller than the pixel pitch of the pixel.
 上記構成によると、上記シャッタ装置が上記表示装置の発光面と配向配置されているので、上記画素から出射する光を、上記シャッタ素子で透過したり遮光したりすることができる。これにより、立体画像を多方向に表示する多視点の立体画像表示装置を得ることができる。 According to the above configuration, since the shutter device is aligned with the light emitting surface of the display device, light emitted from the pixel can be transmitted or shielded by the shutter element. Thereby, a multi-viewpoint stereoscopic image display device that displays stereoscopic images in multiple directions can be obtained.
 そして、上記画素及び上記シャッタ素子が配されている方向のうち、少なくとも一方向は、上記画素の画素ピッチより、上記シャッタのシャッタピッチの方が小さいので、異なる方向に表示している立体画像同士が重なって表示されるクロストークを防止することができる。 And, since the shutter pitch of the shutter is smaller than the pixel pitch of the pixel in at least one direction among the directions in which the pixel and the shutter element are arranged, the stereoscopic images displayed in different directions. Crosstalk displayed with overlapping can be prevented.
 また、上記表示装置は、上記画素に自発光素子を備えていることが好ましい。上記構成により、高輝度で立体画像を表示する立体画像表示装置を得ることができる。 The display device preferably includes a self-luminous element in the pixel. With the above configuration, a stereoscopic image display device that displays a stereoscopic image with high luminance can be obtained.
 また、一つの立体画像を表示する立体画像用の画素は、互いに隣接して配されている複数の上記画素から構成されており、上記シャッタ素子は、上記立体画像用の画素を構成する複数の画素が並ぶ方向に平行に並んで配されており、上記立体画像用の画素を構成する複数の画素が並ぶ方向の画素ピッチと、上記シャッタ素子が並ぶ方向のシャッタピッチとでは、当該シャッタピッチの方が小さいことが好ましい。 A stereoscopic image pixel that displays one stereoscopic image is composed of a plurality of the pixels arranged adjacent to each other, and the shutter element includes a plurality of pixels that constitute the stereoscopic image pixel. The pixel pitch in the direction in which a plurality of pixels constituting the stereoscopic image pixel are arranged and the shutter pitch in the direction in which the shutter elements are arranged are arranged in parallel with the direction in which the pixels are arranged. It is preferable that this is smaller.
 上記構成によると、一つの立体画像を表示する立体画像用の画素は、互いに隣接して配されている複数の上記画素から構成されているので、当該複数の画素を、立体画像表示用の一画素として立体画像を表示することができる。 According to the above configuration, the stereoscopic image pixel for displaying one stereoscopic image is composed of the plurality of pixels arranged adjacent to each other. A stereoscopic image can be displayed as a pixel.
 そして、上記シャッタ素子は、上記立体画像用の画素を構成する複数の画素が並ぶ方向に平行に並んで配されており、上記立体画像用の画素を構成する複数の画素が並ぶ方向の画素ピッチと、上記シャッタ素子が並ぶ方向のシャッタピッチとでは、当該シャッタピッチの方が小さい。これにより、上記立体画像用の画素を構成する複数の画素のそれぞれから出射される光の混色を抑えることができるので、クロストークを防止することができる。 The shutter elements are arranged in parallel in a direction in which a plurality of pixels constituting the stereoscopic image pixels are arranged, and a pixel pitch in a direction in which the plurality of pixels constituting the stereoscopic image pixels are arranged. The shutter pitch is smaller than the shutter pitch in the direction in which the shutter elements are arranged. Thereby, since the color mixture of the light radiate | emitted from each of the some pixel which comprises the pixel for the said stereo image can be suppressed, crosstalk can be prevented.
 また、上記シャッタ装置には、上記画素と対向配置されている一又は互いに隣接する複数のシャッタ素子が透過状態となることで構成されている透過部が配されており、上記立体画像用の画素を構成する複数の画素が並ぶ方向の上記画素の長さと比べて、上記立体画像用の画素を構成する複数の画素が並ぶ方向の上記透過部の長さの方が短いことが好ましい。 Further, the shutter device is provided with a transmissive portion configured by transmitting one or a plurality of adjacent shutter elements that are opposed to the pixel to be in a transmissive state, and the stereoscopic image pixel. It is preferable that the length of the transmissive portion in the direction in which the plurality of pixels constituting the stereoscopic image pixel are arranged is shorter than the length of the pixel in the direction in which the plurality of pixels constituting the pixel are arranged.
 上記構成によると、上記画素から出射された光を、上記透過部によって絞ることができる。これにより、クロストークを確実に防止することができる。 According to the above configuration, the light emitted from the pixel can be narrowed down by the transmission portion. Thereby, crosstalk can be reliably prevented.
 また、一つの立体画像は順に表示される複数のフレームから構成されており、上記複数のフレームのそれぞれは、上記立体画像用の画素を構成する複数の画素のうち、互いに異なる画素を一画素として表示されることが好ましい。 In addition, one stereoscopic image is composed of a plurality of frames that are displayed in order, and each of the plurality of frames includes a pixel that is different from one another among the plurality of pixels that constitute the pixel for the stereoscopic image. Preferably it is displayed.
 上記構成によると、上記複数のフレームのそれぞれは、上記立体画像用の画素を構成する複数の画素のうち、互いに異なる画素を一画素として表示されるので、多方向に立体画像を表示することができる。 According to the above configuration, each of the plurality of frames is displayed as a pixel that is different from one another among the plurality of pixels constituting the pixel for the stereoscopic image, so that a stereoscopic image can be displayed in multiple directions. it can.
 また、上記透過部は、上記立体画像用の画素を構成する複数の画素のうち、何れかの画素に対向する位置に配されているシャッタ素子によって形成されており、上記透過部は、フレーム毎に、上記立体画像用の画素を構成する複数の画素のうち、異なる画素の何れかと対向するように順に移動することが好ましい。 The transmissive portion is formed by a shutter element arranged at a position facing any one of the plurality of pixels constituting the stereoscopic image pixel, and the transmissive portion is provided for each frame. In addition, it is preferable that the plurality of pixels constituting the stereoscopic image pixel are sequentially moved so as to face any one of the different pixels.
 上記構成によると、上記透過部は、フレーム毎に、上記立体画像用の画素を構成する複数の画素のうち、異なる画素の何れかと対向するように順に移動するので、上記立体画像用の画素を構成する複数の画素のそれぞれから出射した光は、上記透過部を透過して、互いに異なる方向に出射する。これにより、多方向に立体画像を表示することができる。 According to the above configuration, the transmission unit sequentially moves so as to face any of the different pixels among the plurality of pixels constituting the stereoscopic image pixel for each frame. Light emitted from each of the plurality of pixels constituting the light passes through the transmission part and is emitted in different directions. Thereby, a three-dimensional image can be displayed in multiple directions.
 また、上記立体画像用の画素を構成する複数の画素は、上記発光面における水平方向に一列に並んで配されていることが好ましい。上記構成によると、上記発光面における水平方向に平行な方向に、立体画像を複数表示することができる。 In addition, it is preferable that the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in the horizontal direction on the light emitting surface. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface.
 また、上記立体画像用の画素を構成する複数の画素は、上記発光面における垂直方向に一列に並んで配されているが好ましい。上記構成によると、上記発光面における垂直方向に平行な方向に、立体画像を複数表示することができる。 Further, it is preferable that the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in the vertical direction on the light emitting surface. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface.
 また、上記立体画像用の画素を構成する複数の画素は、上記発光面における水平方向に複数個並んで配されていると共に、上記発光面における垂直方向にも複数個並んで配されていることが好ましい。上記構成によると、上記発光面における水平方向と平行な方向に立体画像を複数表示することができると共に、上記発光面における垂直方向に平行な方向にも立体画像を複数表示することができる。このため、広範囲に立体画像を多視点表示することができる。 The plurality of pixels constituting the stereoscopic image pixel are arranged in a row in the horizontal direction on the light emitting surface and arranged in a plurality in the vertical direction on the light emitting surface. Is preferred. According to the above configuration, a plurality of stereoscopic images can be displayed in a direction parallel to the horizontal direction on the light emitting surface, and a plurality of stereoscopic images can be displayed in a direction parallel to the vertical direction on the light emitting surface. For this reason, a stereoscopic image can be displayed in multiple viewpoints over a wide range.
 また、上記表示装置はLEDディスプレイであることが好ましい。上記構成によると、高輝度であり、また高周波数で駆動可能な立体画像表示装置を得ることができる。この結果、クロストークが抑制された立体画像表示装置を得ることができる。 The display device is preferably an LED display. According to the above configuration, it is possible to obtain a stereoscopic image display device that has high luminance and can be driven at a high frequency. As a result, a stereoscopic image display device in which crosstalk is suppressed can be obtained.
 また、上記シャッタ装置は液晶パネルであることが好ましい。上記構成により、安価に、高性能な立体画像表示装置を構成することができる。 The shutter device is preferably a liquid crystal panel. With the above configuration, a high-performance stereoscopic image display device can be configured at low cost.
 また、上記シャッタ装置はMEMSシャッタパネルであってもよい。上記構成により、高輝度であり、また高周波数で駆動可能な立体画像表示装置を得ることができる。この結果、クロストークが抑制された立体画像表示装置を得ることができる。 Further, the shutter device may be a MEMS shutter panel. With the above configuration, it is possible to obtain a stereoscopic image display device that has high luminance and can be driven at a high frequency. As a result, a stereoscopic image display device in which crosstalk is suppressed can be obtained.
 また、上記シャッタ装置はエレクトロウェッティングパネルであってもよい。上記構成により高輝度な立体画像表示装置を得ることができるのでクロストークが抑制された立体画像表示装置を得ることができる。 The shutter device may be an electrowetting panel. Since a high-luminance stereoscopic image display device can be obtained with the above configuration, a stereoscopic image display device in which crosstalk is suppressed can be obtained.
 本発明は、立体画像を表示する表示装置に利用することができる。 The present invention can be used in a display device that displays a stereoscopic image.
1 立体画像表示装置
4 立体画像表示装置
5 立体画像表示装置
10 制御部
20 LEDディスプレイ装置(表示装置)
30 シャッタ装置
31 シャッタアレイ部
40 シャッタ装置
45 MEMSシャッタ
50 シャッタ装置
AX1・AX2・AX3・AX4・AX5 視点
D 立体画像
DA・DB・DC・DD・DE フレーム
EWSH シャッタ
M LEDモジュール
PP 画素ピッチ
SP シャッタピッチ
SL 液晶セル(シャッタ素子)
PXM 画素(シャッタ素子)
PXE 画素(シャッタ素子)
R・G・B LED(自発光素子)
DESCRIPTION OF SYMBOLS 1 Stereoscopic image display apparatus 4 Stereoscopic image display apparatus 5 Stereoscopic image display apparatus 10 Control part 20 LED display apparatus (display apparatus)
30 Shutter device 31 Shutter array unit 40 Shutter device 45 MEMS shutter 50 Shutter device AX1, AX2, AX3, AX4, AX5 Viewpoint D Stereo image DA / DB / DC / DD / DE Frame EWSH Shutter M LED module PP Pixel pitch SP Shutter pitch SL Liquid crystal cell (shutter element)
PXM pixel (shutter element)
PXE pixel (shutter element)
R / G / B LED (Self-emitting element)

Claims (13)

  1.  多方向への立体画像の表示が可能な立体画像表示装置であって、
     画素がマトリクス状に配されている表示装置と、
     透過状態と遮光状態との切替が可能なシャッタ素子がマトリクス状に配されており、上記表示装置の発光面と対向配置されているシャッタ装置とを備え、
     上記画素及び上記シャッタ素子が配されている方向のうち、少なくとも一方向で、上記画素の画素ピッチより、上記シャッタ素子のシャッタピッチの方が小さいことを特徴とする立体画像表示装置。
    A stereoscopic image display device capable of displaying a stereoscopic image in multiple directions,
    A display device in which pixels are arranged in a matrix;
    Shutter elements that can be switched between a transmissive state and a light-shielded state are arranged in a matrix, and include a shutter device that is disposed to face the light emitting surface of the display device,
    A stereoscopic image display device, wherein a shutter pitch of the shutter element is smaller than a pixel pitch of the pixel in at least one direction among directions in which the pixel and the shutter element are arranged.
  2.  上記表示装置は、上記画素に自発光素子を備えていることを特徴とする請求項1に記載の立体画像表示装置。 The stereoscopic image display device according to claim 1, wherein the display device includes a self-luminous element in the pixel.
  3.  一つの立体画像を表示する立体画像用の画素は、
     互いに隣接して配されている複数の上記画素から構成されており、
     上記シャッタ素子は、上記立体画像用の画素を構成する複数の画素が並ぶ方向に平行に並んで配されており、
     上記立体画像用の画素を構成する複数の画素が並ぶ方向の画素ピッチと、
     上記シャッタ素子が並ぶ方向のシャッタピッチとでは、当該シャッタピッチの方が小さいことを特徴とする請求項1又は2に記載の立体画像表示装置。
    The stereoscopic image pixels that display one stereoscopic image are:
    It is composed of a plurality of the pixels arranged adjacent to each other,
    The shutter elements are arranged in parallel in a direction in which a plurality of pixels constituting the pixels for the stereoscopic image are arranged,
    A pixel pitch in a direction in which a plurality of pixels constituting the stereoscopic image pixel are arranged;
    The stereoscopic image display device according to claim 1, wherein the shutter pitch is smaller than a shutter pitch in a direction in which the shutter elements are arranged.
  4.  上記シャッタ装置には、上記画素と対向配置されている一又は互いに隣接する複数のシャッタ素子が透過状態となることで構成されている透過部が配されており、
     上記立体画像用の画素を構成する複数の画素が並ぶ方向の上記画素の長さと比べて、上記立体画像用の画素を構成する複数の画素が並ぶ方向の上記透過部の長さの方が短いことを特徴とする請求項3に記載の立体画像表示装置。
    The shutter device is provided with a transmissive portion configured such that one or a plurality of adjacent shutter elements arranged to face the pixel are in a transmissive state,
    The length of the transmission part in the direction in which the plurality of pixels constituting the stereoscopic image pixel is arranged is shorter than the length of the pixel in the direction in which the plurality of pixels constituting the stereoscopic image pixel are arranged. The stereoscopic image display apparatus according to claim 3, wherein
  5.  一つの立体画像は順に表示される複数のフレームから構成されており、
     上記複数のフレームのそれぞれは、
     上記立体画像用の画素を構成する複数の画素のうち、互いに異なる画素を一画素として表示されることを特徴とする請求項4に記載の立体画像表示装置。
    One stereoscopic image is composed of a plurality of frames displayed in order,
    Each of the plurality of frames is
    5. The stereoscopic image display device according to claim 4, wherein among the plurality of pixels constituting the stereoscopic image pixel, different pixels are displayed as one pixel.
  6.  上記透過部は、上記立体画像用の画素を構成する複数の画素のうち、何れかの画素に対向する位置に配されているシャッタ素子によって形成されており、
     上記透過部は、フレーム毎に、上記立体画像用の画素を構成する複数の画素のうち、異なる画素の何れかと対向するように順に移動することを特徴とする請求項5に記載の立体画像表示装置。
    The transmissive portion is formed by a shutter element arranged at a position facing any one of a plurality of pixels constituting the stereoscopic image pixel,
    The stereoscopic image display according to claim 5, wherein the transmission unit sequentially moves so as to face any one of different pixels among a plurality of pixels constituting the stereoscopic image pixel for each frame. apparatus.
  7.  上記立体画像用の画素を構成する複数の画素は、上記発光面における水平方向に一列に並んで配されていることを特徴とする請求項6に記載の立体画像表示装置。 The stereoscopic image display device according to claim 6, wherein the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in a horizontal direction on the light emitting surface.
  8.  上記立体画像用の画素を構成する複数の画素は、上記発光面における垂直方向に一列に並んで配されていることを特徴とする請求項6に記載の立体画像表示装置。 The stereoscopic image display device according to claim 6, wherein the plurality of pixels constituting the stereoscopic image pixels are arranged in a line in a vertical direction on the light emitting surface.
  9.  上記立体画像用の画素を構成する複数の画素は、上記発光面における水平方向に複数個並んで配されていると共に、上記発光面における垂直方向にも複数個並んで配されていることを特徴とする請求項6に記載の立体画像表示装置。 A plurality of pixels constituting the three-dimensional image pixels are arranged in a row in the horizontal direction on the light emitting surface, and a plurality of pixels are arranged in the vertical direction on the light emitting surface. The stereoscopic image display device according to claim 6.
  10.  上記表示装置はLEDディスプレイであることを特徴とする請求項2~9の何れか1項に記載の立体画像表示装置。 The stereoscopic image display device according to any one of claims 2 to 9, wherein the display device is an LED display.
  11.  上記シャッタ装置は液晶パネルであることを特徴とする請求項1~10の何れか1項に記載の立体画像表示装置。 11. The three-dimensional image display device according to claim 1, wherein the shutter device is a liquid crystal panel.
  12.  上記シャッタ装置はMEMSシャッタパネルであることを特徴とする請求項1~10の何れか1項に記載の立体画像表示装置。 11. The stereoscopic image display device according to claim 1, wherein the shutter device is a MEMS shutter panel.
  13.  上記シャッタ装置はエレクトロウェッティングパネルであることを特徴とする請求項1~10の何れか1項に記載の立体画像表示装置。 The three-dimensional image display device according to any one of claims 1 to 10, wherein the shutter device is an electrowetting panel.
PCT/JP2012/072395 2011-09-30 2012-09-03 Stereoscopic image display apparatus WO2013047100A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011218437 2011-09-30
JP2011-218437 2011-09-30

Publications (1)

Publication Number Publication Date
WO2013047100A1 true WO2013047100A1 (en) 2013-04-04

Family

ID=47995147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072395 WO2013047100A1 (en) 2011-09-30 2012-09-03 Stereoscopic image display apparatus

Country Status (1)

Country Link
WO (1) WO2013047100A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378613A (en) * 2013-08-12 2015-02-25 兆光科技有限公司 Three-dimensional television display
WO2022118911A1 (en) * 2020-12-02 2022-06-09 国立大学法人筑波大学 Image display device and image display method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915549A (en) * 1995-06-27 1997-01-17 Sharp Corp Three-dimensional display device
JP2003337303A (en) * 2002-05-17 2003-11-28 Canon Inc Device and system for stereoscopic image display
JP2009009081A (en) * 2007-06-27 2009-01-15 Samsung Sdi Co Ltd Electronic video display
WO2010062616A2 (en) * 2008-10-27 2010-06-03 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
JP2011053706A (en) * 2010-10-25 2011-03-17 Sony Corp Optical element, imaging device and driving method
JP2011064814A (en) * 2009-09-15 2011-03-31 Nikon Corp Display device, display method and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915549A (en) * 1995-06-27 1997-01-17 Sharp Corp Three-dimensional display device
JP2003337303A (en) * 2002-05-17 2003-11-28 Canon Inc Device and system for stereoscopic image display
JP2009009081A (en) * 2007-06-27 2009-01-15 Samsung Sdi Co Ltd Electronic video display
WO2010062616A2 (en) * 2008-10-27 2010-06-03 Pixtronix, Inc. Manufacturing structure and process for compliant mechanisms
JP2011064814A (en) * 2009-09-15 2011-03-31 Nikon Corp Display device, display method and program
JP2011053706A (en) * 2010-10-25 2011-03-17 Sony Corp Optical element, imaging device and driving method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378613A (en) * 2013-08-12 2015-02-25 兆光科技有限公司 Three-dimensional television display
EP2838266A3 (en) * 2013-08-12 2015-04-22 Lighthouse Technologies Limited Three-dimensional television display
WO2022118911A1 (en) * 2020-12-02 2022-06-09 国立大学法人筑波大学 Image display device and image display method

Similar Documents

Publication Publication Date Title
US7327410B2 (en) High resolution 3-D image display with liquid crystal shutter array
US7786953B2 (en) Apparatus displaying three-dimensional image
WO2013042332A1 (en) Video display method, video display panel, and video display apparatus
US20130194521A1 (en) Display apparatus having autostereoscopic 3d or 2d/3d switchable pixel arrangement
KR20040111041A (en) Display unit
JP5185145B2 (en) Stereoscopic image display apparatus and stereoscopic image display method
KR20080056592A (en) Auto stereoscopic display
JP2008197132A (en) Directional display
US9747846B2 (en) Display device
TW201300841A (en) Display device
KR100696926B1 (en) Display unit method for controlling display unit
US10228569B2 (en) Display device
US20130050284A1 (en) Display device and electronic unit
US9548013B2 (en) Image display device and drive method therefor
US10021375B2 (en) Display device and method of driving the same
TWI474048B (en) Display device
KR100617926B1 (en) Display device
US20120033058A1 (en) Stereoscopic Video Display Apparatus and Display Method
US20120092468A1 (en) Stereoscopic display device and stereoscopic display method
JP2009015100A (en) Electro-optic device and electronic apparatus
WO2013047100A1 (en) Stereoscopic image display apparatus
KR20160117938A (en) Backlight apparatus and display apparatus including the same
JP2014137511A (en) Stereoscopic image display device
WO2009057020A1 (en) Autostereoscopic display device
US20130265510A1 (en) Three-dimensional display device and active optical element thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP