WO2013047069A1 - Radiographic-image image pick-up system, method and radiographic-image image pick-up control program - Google Patents

Radiographic-image image pick-up system, method and radiographic-image image pick-up control program Download PDF

Info

Publication number
WO2013047069A1
WO2013047069A1 PCT/JP2012/071896 JP2012071896W WO2013047069A1 WO 2013047069 A1 WO2013047069 A1 WO 2013047069A1 JP 2012071896 W JP2012071896 W JP 2012071896W WO 2013047069 A1 WO2013047069 A1 WO 2013047069A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
radiation
region
image
area
Prior art date
Application number
PCT/JP2012/071896
Other languages
French (fr)
Japanese (ja)
Inventor
中津川 晴康
大田 恭義
西納 直行
北野 浩一
岩切 直人
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013047069A1 publication Critical patent/WO2013047069A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/54Control of apparatus or devices for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors

Definitions

  • the present invention relates to a radiographic image capturing system, method, and radiographic image capturing control program, and in particular, a radiographic image capturing system, method, and method for capturing a radiographic image indicated by radiation emitted from a radiation source and transmitted through a subject.
  • the present invention relates to a radiographic imaging control program.
  • radiography apparatus such as FPD (Flat Panel Detector) which can arrange radiation sensitive layer on TFT (Thin Film Transistor) active matrix substrate and convert radiation directly into digital data have been put into practical use.
  • FPD Fluor Deposition Detector
  • TFT Thin Film Transistor
  • a radiographic apparatus that captures a radiographic image represented by irradiated radiation has been put to practical use.
  • the radiography apparatus using this radiation detector can see images immediately, compared with conventional radiography apparatuses using X-ray film or imaging plate, and radiographic imaging (moving image) (Photographing) can also be performed.
  • radiation detectors of this type have been proposed.
  • radiation is once converted into light by a scintillator such as CsI: Tl, GOS (Gd 2 O 2 S: Tb), and converted light.
  • Materials that can be used for the semiconductor layer in each method such as an indirect conversion method that converts the charge into a charge using a sensor such as a photodiode, and a direct conversion method that converts radiation into a charge in a semiconductor layer such as amorphous selenium.
  • the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
  • Pulsed irradiation has the advantage of increasing the irradiation amount per unit time because it can irradiate radiation only for the period required for imaging and can suppress the patient's exposure compared to continuous irradiation.
  • the image data In order to display the radiographic image obtained by fluoroscopy in real time, the image data must be transferred without delay from the radiation detector to the console. However, if the size of the image data to be transferred is large, display delay may occur. In order to prevent display delay, a method of irreversibly compressing the entire image data is conceivable. However, there is a possibility that the image data may be lost or the displayed image may be deteriorated, resulting in trouble.
  • the captured frame is divided into a plurality of small regions, the region of interest is specified based on the amount of change in the density feature value, and the shooting conditions such as the size of the region of interest are determined according to the frame rate and the like.
  • the shooting conditions such as the size of the region of interest are determined according to the frame rate and the like. Is also known (see Japanese Patent Laid-Open No. 6-209926).
  • a region where a tumor, a polyp, or the like exists is a region that is particularly desired to be displayed in real time without image deterioration, and is a region where image data should be transferred to the console without being compressed.
  • the size of the region of interest is set regardless of such a region, so that a region to be transferred without being compressed may be compressed before being transmitted.
  • the present invention has been made in order to solve the above-described problems.
  • image data of an area to be displayed in real time without deterioration in image quality is transmitted without being compressed reliably.
  • Another object of the present invention is to provide a radiographic imaging system and method capable of displaying in real time without deterioration in image quality.
  • the radiographic imaging system is a fluoroscopic imaging that continuously detects radiographic images by detecting the radiation irradiated in a pulse form from the radiation irradiating unit.
  • the image data of the radiographic image capturing unit that is enabled and the radiographic image non-compressed transfer region image data obtained by fluoroscopic imaging of the radiographic image capturing unit are transmitted without compression, and the image data of the remaining region is compressed Transmitting unit, receiving unit receiving the image data of the radiographic image transmitted from the transmitting unit, display unit displaying the radiographic image based on the image data received by the receiving unit, fluoroscopic imaging Specified as an area to be transferred in an uncompressed manner within the region of interest of the radiation image, which is below the upper limit of the amount of data that can be transferred without compression determined by the frame rate of The region containing the mandatory transfer area, and a, a transfer area setting unit that sets as the uncompressed transfer area.
  • a movement detection unit that detects the movement of the imaging region during fluoroscopic imaging is further provided, and the transfer region setting unit is detected by the motion detection unit within the region of interest.
  • the transfer region setting unit is detected by the motion detection unit within the region of interest.
  • a first changing unit that changes to be equal to or less than a frame rate that is an upper limit value, and a radiation irradiation period for each frame period for capturing each frame image according to the changed frame rate
  • a second changing unit that changes to be longer than the irradiation period before the frame rate is changed, and after the change of the frame rate and the irradiation period, according to the changed frame rate and the irradiation period,
  • An imaging control unit that controls the radiographic imaging unit to perform radiographic imaging in synchronization with the pulse irradiation while irradiating the radiographic imaging unit with radiation from the radiation irradiating unit; You may have.
  • the region in which the motion has occurred can be included in the uncompressed transfer region and transmitted. If the amount of data in the uncompressed transfer area that has been detected and the setting has been changed exceeds the upper limit of the amount of data that can be transferred without compression determined by the frame rate of fluoroscopic imaging, the frame rate is changed according to the amount of data. Therefore, it is possible to reliably transmit image data in an area to be displayed in real time without deterioration in image quality without being compressed, and display the image data in real time without deterioration in image quality. Furthermore, since the irradiation period is changed to become longer according to the change of the frame rate, a fluoroscopic image with smooth movement can be displayed.
  • the second changing unit sets the ratio of the irradiation period of radiation to each frame period for capturing each frame image corresponding to the changed frame rate to 12.5%. You may make it change so that it may become in the range of -80%.
  • the second changing unit has a ratio of the radiation irradiation period to each frame period corresponding to the changed frame rate within a range of 33% to 80%. You may make it change as follows.
  • the second changing unit when the frame rate after changing the fluoroscopic imaging is equal to or less than the first frame rate threshold, sets the ratio of the irradiation period to each frame period to 12.5. If the frame rate after changing the fluoroscopic imaging is less than or equal to the second frame rate threshold lower than the first frame rate threshold, the ratio of the irradiation period to each frame period is 33% to You may make it change so that it may exist in the range of 80%.
  • the first frame rate threshold may be 15 fps or more and 60 fps or less
  • the second frame rate threshold may be 5 fps or more and less than the first frame rate threshold.
  • the image processing apparatus further includes a gaze degree detection unit that detects a gaze degree with respect to a motion region in the radiographic image displayed on the display unit, and the transfer area setting unit is controlled by the gaze degree detection unit.
  • the gaze degree detection unit detects a gaze degree with respect to a motion region in the radiographic image displayed on the display unit.
  • the changed frame rate and irradiation period are changed to the state before the change.
  • the imaging control unit further includes a third changing unit that changes the frame rate and the irradiation period to the state before the change, and then changes the frame rate and the irradiation period according to the frame rate and the irradiation period that are returned to the state before the change.
  • the radiation image capturing unit may be controlled so that the radiation image capturing unit captures a radiation image in synchronization with the pulse irradiation while the radiation image capturing unit performs pulse irradiation of radiation.
  • the said radiographic imaging part arrange
  • the image data in the non-compressed transfer area of the radiographic image obtained by fluoroscopic imaging in the imaging unit is transmitted to the display unit without compression, and the image data in the remaining area of the radiographic image is compressed and the receiving unit
  • the transfer area setting unit may perform the setting based on a detection image detected by the detection unit.
  • the diaphragm unit that is provided between the radiation irradiation unit and the subject and adjusts the irradiation region of the radiation, and the region including at least the essential transfer region or the region of interest
  • An irradiation area setting unit that is set as an irradiation area of radiation and image data of the irradiation area set by the irradiation area setting unit are transmitted, and non-irradiation areas other than the irradiation area set by the irradiation area setting unit are transmitted.
  • a transmission control unit that controls the transmission unit so that image data is not transmitted.
  • a radiographic imaging system includes a radiographic imaging unit capable of performing radiographic imaging that continuously performs radiographic imaging, and radiation obtained by fluoroscopic imaging of the radiographic imaging unit.
  • the image data in the uncompressed transfer area of the image is transmitted uncompressed, and the image data in the remaining area is compressed and transmitted, and radiation is pulsed to the radiographic image capturing unit during fluoroscopic imaging
  • a radiation irradiating unit that radiates in a shape; a receiving unit that receives image data of a radiographic image transmitted from the transmitting unit; a display unit that displays a radiographic image based on the image data received by the receiving unit;
  • the region with the required transfer regions, and a, a transfer area setting unit that sets as the uncompressed transfer area.
  • the image data of the area to be displayed in real time without deterioration in image quality is reliably compressed in the radiographic image obtained by fluoroscopic imaging. Without being transmitted, and can be displayed in real time without deterioration in image quality.
  • the radiographic image capturing method is a radiographic image in which fluoroscopic imaging capable of continuously capturing radiographic images by detecting radiation irradiated in a pulse form from a radiation irradiating unit.
  • the image data of the uncompressed transfer area of the radiographic image obtained by fluoroscopic imaging of the imaging unit is transmitted without compression, the image data of the remaining area is compressed and transmitted, and the image data of the transmitted radiographic image is transmitted
  • an area that is equal to or less than the upper limit of the amount of data that can be transferred without compression determined by the frame rate of fluoroscopic radiography an area including an essential transfer area specified as an area to be transferred in an uncompressed area within the area of interest is set as the uncompressed transfer area.
  • the invention according to the twelfth aspect also operates in the same manner as the invention according to the first aspect, the image data of the area to be displayed in real time without deterioration in image quality is reliably compressed in the radiographic image obtained by fluoroscopic imaging. Without being transmitted, and can be displayed in real time without deterioration in image quality.
  • the radiological image capturing control program of the invention according to the thirteenth aspect causes a computer to function as a transfer area setting unit of the radiographic image capturing system according to any one of the first to tenth inventions.
  • a radiological moving image capturing control program comprising: a computer, a transfer area setting unit, a first changing unit, a second changing unit; It functions as a changing unit and a photographing control unit.
  • the present invention it is possible to reliably transmit image data of a region to be displayed in real time without deterioration in image quality in a radiographic image obtained by fluoroscopic imaging and display the image data in real time without deterioration in image quality.
  • the effect of being able to be obtained is obtained.
  • MIN1 to MAX1 are graphs showing the results of normalization processing so that the appropriate density ranges MIN2 to MAX2 are respectively obtained.
  • (3) is a graph showing an example of a conversion function used in the normalization processing. It is a flowchart which shows the flow of a process of the area
  • RIS Radiology Information System
  • the RIS 10 is a system for managing information such as medical appointments and diagnosis records in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS (Hospital Information System)”). .
  • HIS Healthcare Information System
  • the RIS 10 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 12, a RIS server 14, and a radiographic imaging system (or an operating room) installed in a hospital. (Hereinafter referred to as “imaging system”) 18, which are connected to an in-hospital network 16 comprising a wired or wireless LAN (Local Area Network) or the like.
  • imaging system a radiography requesting terminal devices
  • imaging system or an operating room installed in a hospital.
  • imaging system an in-hospital network 16 comprising a wired or wireless LAN (Local Area Network) or the like.
  • the RIS 10 constitutes a part of the HIS provided in the same hospital, and an HIS server (not shown) that manages the entire HIS is also connected to the in-hospital network 16.
  • the terminal device 12 is used by doctors and radiographers to input and browse diagnostic information and facility reservations, and radiographic image capturing requests and imaging reservations are also performed via the terminal device 12.
  • Each terminal device 12 includes a personal computer having a display device, and is capable of mutual communication via the RIS server 14 and the hospital network 16.
  • the RIS server 14 receives an imaging request from each terminal device 12, manages the radiographic imaging schedule in the imaging system 18, and includes a database 14A.
  • Database 14A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc.
  • Information on the electronic cassette 32 such as the number of times of use, and environment information indicating an environment in which a radiographic image is taken using the electronic cassette 32, that is, an environment in which the electronic cassette 32 is used (for example, a radiographic room or an operating room) It is comprised including.
  • the imaging system 18 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 14.
  • the imaging system 18 includes a radiation generator 34 that irradiates a subject with radiation X (see also FIG. 3) that is a dose according to the exposure conditions from a radiation source 130 (see also FIG. 2), and a subject.
  • the console 42 acquires various types of information included in the database 14A from the RIS server 14 and stores them in an HDD 110 (see FIG. 10) described later. Based on the information, the electronic cassette 32, the radiation generator 34, and the cradle 40 are stored. Control.
  • FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 44 of the imaging system 18 according to the present embodiment.
  • the radiation imaging room 44 has a standing table 45 used when performing radiation imaging in a standing position and a prone table 46 used when performing radiation imaging in a lying position.
  • the space in front of the standing base 45 is set as a subject imaging position 48 when performing radiography in the standing position, and the upper space of the prong position 46 is used in performing radiography in the prone position.
  • the imaging position 50 of the subject is set as a subject imaging position 48 when performing radiography in the standing position, and the upper space of the prong position 46 is used in performing radiography in the prone position.
  • the standing stand 45 is provided with a holding unit 150 that holds the electronic cassette 32, and the electronic cassette 32 is held by the holding unit 150 when a radiographic image is taken in the standing position.
  • a holding unit 152 that holds the electronic cassette 32 is provided in the prone position table 46, and the electronic cassette 32 is held by the holding unit 152 when radiographic images are taken in the prone position.
  • the radiation source 130 is arranged around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and in a standing position by radiation from a single radiation source 130.
  • 2 is provided that can be rotated in the vertical direction (arrow B direction in FIG. 2) and supported in a horizontal direction (in the arrow C direction in FIG. 2).
  • the support moving mechanism 52 includes a drive source that rotates the radiation source 130 about a horizontal axis, a drive source that moves the radiation source 130 in the vertical direction, and a drive source that moves the radiation source 130 in the horizontal direction. Each is provided (not shown).
  • the cradle 40 is formed with an accommodating portion 40A capable of accommodating the electronic cassette 32.
  • the built-in battery is charged in a state of being accommodated in the accommodating portion 40A of the cradle 40.
  • the electronic cassette 32 is taken out from the cradle 40 by a radiographer or the like, and the imaging posture is established. If it is in the upright position, it is held in the holding part 150 of the standing table 45, and if it is in the upright position, it is held in the holding part 152 of the standing table 46.
  • the radiation generator 34 and the console 42 are connected by cables and various types of information are transmitted and received by wired communication.
  • the cable connecting 42 is omitted.
  • Various information is transmitted and received between the electronic cassette 32 and the console 42 by wireless communication.
  • the communication between the radiation generator 34 and the console 42 may be performed by wireless communication.
  • the electronic cassette 32 is not used only in the state of being held by the holding portion 150 of the standing base 45 or the holding portion 152 of the standing base 46, and is not held by the holding portion because of its portability. It can also be used in the state.
  • FIG. 3 shows the internal configuration of the electronic cassette 32 according to the present embodiment.
  • the electronic cassette 32 includes a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure.
  • a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure.
  • one electronic cassette 32 can be used repeatedly by sterilizing and cleaning the electronic cassette 32 as necessary with a waterproof and airtight structure.
  • a radiation detector 60 for taking a radiation image of the radiation X transmitted through the subject from the irradiation surface 56 side of the housing 54 to which the radiation X is irradiated, A radiation detection unit 62 that performs detection is disposed in order.
  • an electronic circuit including a microcomputer and a chargeable and detachable battery 96A are disposed on one end side inside the housing 54.
  • the radiation detector 60 and the electronic circuit are operated by electric power supplied from the battery 96 ⁇ / b> A disposed in the case 31.
  • a lead plate or the like is arranged on the irradiation surface 56 side of the case 31.
  • the electronic cassette 32 according to the present embodiment is a rectangular parallelepiped whose irradiation surface 56 has a rectangular shape, and a case 31 is disposed at one end in the longitudinal direction.
  • a display unit 56A that displays an operation mode of the electronic cassette 32 such as an operation mode such as “ready state” and “data transmitting” and a remaining capacity of the battery 96A.
  • an operation mode such as “ready state” and “data transmitting” and a remaining capacity of the battery 96A.
  • a light emitting diode is applied as the display unit 56A.
  • the present invention is not limited to this, and other light emitting elements other than the light emitting diode, a liquid crystal display, an organic EL display, and the like are used. It may be a display means.
  • FIG. 4 is a cross-sectional view schematically showing configurations of the radiation detector 60 and the radiation detection unit 62 according to the present embodiment.
  • the radiation detector 60 includes a TFT active matrix substrate (hereinafter referred to as “TFT substrate”) 66 in which a thin film transistor (TFT: Thin Film Transistor, hereinafter referred to as “TFT”) 70 and a storage capacitor 68 are formed on an insulating substrate 64. I have.
  • TFT substrate TFT active matrix substrate
  • TFT Thin Film Transistor
  • a scintillator 71 that converts incident radiation into light is disposed.
  • the scintillator 71 for example, CsI: Tl, GOS can be used.
  • the scintillator 71 is not limited to these materials.
  • the insulating substrate 64 may be any substrate as long as it is light transmissive and absorbs little radiation.
  • a glass substrate, a transparent ceramic substrate, or a light transmissive resin substrate can be used.
  • the insulating substrate 64 is not limited to these materials.
  • the TFT substrate 66 is provided with a sensor portion 72 that corresponds to the first sensor portion of the present invention and generates charges when light converted by the scintillator 71 is incident thereon.
  • a flattening layer 67 for flattening the TFT substrate 66 is formed on the TFT substrate 66.
  • An adhesive layer 69 for bonding the scintillator 71 to the TFT substrate 66 is formed between the TFT substrate 66 and the scintillator 71 and on the planarizing layer 67.
  • the sensor unit 72 includes an upper electrode 72A, a lower electrode 72B, and a photoelectric conversion film 72C disposed between the upper and lower electrodes.
  • the photoelectric conversion film 72C absorbs the light emitted from the scintillator 71 and generates a charge corresponding to the absorbed light.
  • the photoelectric conversion film 72C may be formed of a material that generates charges when irradiated with light.
  • the photoelectric conversion film 72C may be formed of amorphous silicon, an organic photoelectric conversion material, or the like.
  • the photoelectric conversion film 72C containing amorphous silicon has a wide absorption spectrum and can absorb light emitted by the scintillator 71.
  • the photoelectric conversion film 72C includes an organic photoelectric conversion material, it has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emitted by the scintillator 71 are hardly absorbed by the photoelectric conversion film 72C, and radiation such as X-rays. Is effectively suppressed by the photoelectric conversion film 72C being absorbed.
  • the photoelectric conversion film 72C includes an organic photoelectric conversion material.
  • the organic photoelectric conversion material include quinacridone organic compounds and phthalocyanine organic compounds.
  • quinacridone organic compounds
  • phthalocyanine organic compounds For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 71, the difference in peak wavelength can be made within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 72C can be substantially maximized. Since an organic photoelectric conversion material applicable as the photoelectric conversion film 72C is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
  • FIG. 5 schematically shows the configuration of the TFT 70 and the storage capacitor 68 formed on the TFT substrate 66 according to the present embodiment.
  • a storage capacitor 68 for storing the charge transferred to the lower electrode 72B, and a TFT 70 for converting the charge stored in the storage capacitor 68 into an electric signal and outputting it.
  • the region where the storage capacitor 68 and the TFT 70 are formed has a portion that overlaps with the lower electrode 72B in a plan view. With such a configuration, the storage capacitor 68 and the TFT 70 in each pixel portion, the sensor portion 72, and the like. Therefore, the storage capacitor 68, the TFT 70, and the sensor unit 72 can be arranged with a small area.
  • the storage capacitor 68 is electrically connected to the corresponding lower electrode 72B through a wiring made of a conductive material formed through an insulating film 65A provided between the insulating substrate 64 and the lower electrode 72B. Yes. Thereby, the charges collected by the lower electrode 72B can be moved to the storage capacitor 68.
  • the active layer 70B is formed of an amorphous oxide.
  • the amorphous oxide constituting the active layer 70B an oxide containing at least one of In, Ga, and Zn (for example, In—O-based) is preferable, and at least two of In, Ga, and Zn are used.
  • An oxide containing In (eg, In—Zn—O, In—Ga—O, or Ga—Zn—O) is more preferable, and an oxide containing In, Ga, and Zn is particularly preferable.
  • In—Ga—Zn—O-based amorphous oxide an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number of less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
  • the active layer 70B of the TFT 70 is formed of an amorphous oxide, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain extremely small, effectively suppressing the generation of noise. Can do.
  • the insulating substrate 64 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bio-nanofiber can also be used.
  • flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene).
  • a conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example.
  • the insulating substrate 64 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
  • the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process.
  • aramid has a thermal expansion coefficient close to that of ITO (indium tin oxide) or a glass substrate, warping after production is small and it is difficult to crack.
  • aramid can form a substrate thinner than a glass substrate or the like.
  • the insulating substrate 64 may be formed by stacking an ultrathin glass substrate and aramid.
  • Bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetic acid bacteria, Acetobacter® Xylinum) and transparent resin.
  • the cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion.
  • a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose
  • a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber.
  • Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc.
  • a thin insulating substrate 64 can be formed.
  • FIG. 6 is a plan view showing the configuration of the TFT substrate 66 according to this embodiment.
  • the TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6).
  • a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6).
  • a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6).
  • the radiation detection unit 62 has a size of 17 inches ⁇ 17 inches
  • 2880 pixels 74 are arranged in the row direction and the column direction.
  • the radiation detector 60 includes a plurality of gate wirings 76 extending in a certain direction (row direction) for turning on / off each TFT 70, and an on-state TFT 70 extending in a crossing direction (column direction).
  • a plurality of data wirings 78 are provided for reading out charges via the.
  • the radiation detector 60 is flat and has a quadrilateral shape with four sides on the outer edge in plan view. Specifically, it is formed in a rectangular shape.
  • the radiation detector 60 is formed by attaching a scintillator 71 to the surface of the TFT substrate 66 as shown in FIG.
  • the scintillator 71 is formed by vapor deposition on the vapor deposition substrate 73 when it is intended to be formed of a columnar crystal such as CsI: Tl.
  • the vapor deposition substrate 73 is often an Al plate in terms of X-ray transmittance and cost, handling properties during vapor deposition, prevention of warpage due to its own weight, and deformation due to radiant heat. Therefore, a certain thickness (about several mm) is required.
  • the radiation detector 62 is attached to the surface of the radiation detector 60 on the scintillator 71 side.
  • a wiring layer 142 and an insulating layer 144 in which a wiring 160 (FIG. 8) to be described later is patterned are formed on a resin support substrate 140.
  • a plurality of sensor units 146 corresponding to the two sensor units are formed, and a scintillator 148 made of GOS or the like is formed on the sensor unit 146.
  • the sensor unit 146 includes an upper electrode 147A, a lower electrode 147B, and a photoelectric conversion film 147C disposed between the upper and lower electrodes.
  • the photoelectric conversion film 147 ⁇ / b> C generates a charge when light converted by the scintillator 148 is incident thereon.
  • the photoelectric conversion film 147C is preferably a photoelectric conversion film containing the above-described organic photoelectric conversion material, rather than a PIN-type or MIS-type photodiode using amorphous silicon. Compared to the case of using a PIN type photodiode or MIS type photodiode, this is a method using a photoelectric conversion film containing an organic photoelectric conversion material in terms of reduction in manufacturing cost and flexibility. Is advantageous.
  • the sensor unit 146 of the radiation detector 62 does not need to be formed as finely as the sensor unit 72 provided in each pixel 74 of the radiation detector 60, and is formed with a size of tens to hundreds of pixels of the radiation detector 60. That's fine.
  • FIG. 7 is a plan view showing an arrangement configuration of the sensor unit 146 of the radiation detection unit 62 according to the present embodiment.
  • a large number of sensor units 146 are arranged in a certain direction (row direction in FIG. 7) and in an intersecting direction (column direction in FIG. 7) with respect to the certain direction.
  • the sensor unit 146 is arranged in the row direction and column. 16 pieces are arranged in a matrix in the direction.
  • FIG. 8 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the present embodiment.
  • the radiation detector 60 includes a plurality of pixels 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 arranged in a matrix, and the sensor unit according to the irradiation of the radiation X to the electronic cassette 32.
  • the charges generated at 72 are stored in the storage capacitors 68 of the individual pixels 74.
  • the image information carried on the radiation X irradiated to the electronic cassette 32 is converted into charge information and held in the radiation detector 60.
  • each gate wiring 76 of the radiation detector 60 is connected to a gate line driver 80, and each data wiring 78 is connected to a signal processing unit 82.
  • the TFTs 70 of the individual pixels 74 are sequentially turned on in units of rows by a signal supplied from the gate line driver 80 through the gate wiring 76, and the TFTs 70 are turned on.
  • the charges stored in the storage capacitor 68 of the pixel 74 are transmitted through the data wiring 78 as an analog electric signal and input to the signal processing unit 82. Therefore, the charges accumulated in the accumulation capacitors 68 of the individual pixels 74 are read out in order in row units.
  • FIG. 9 shows an equivalent circuit diagram focusing on one pixel portion of the radiation detector 60 according to the present exemplary embodiment.
  • the source of the TFT 70 is connected to a data wiring 78, and the data wiring 78 is connected to a signal processing unit 82.
  • the drain of the TFT 70 is connected to the storage capacitor 68 and the photoelectric conversion unit 72, and the gate of the TFT 70 is connected to the gate wiring 76.
  • the signal processing unit 82 includes a sample hold circuit 84 for each data wiring 78.
  • the electric signal transmitted through each data wiring 78 is held in the sample hold circuit 84.
  • the sample hold circuit 84 includes an operational amplifier 84A and a capacitor 84B, and converts an electric signal into an analog voltage.
  • the sample hold circuit 84 is provided with a switch 84C as a reset circuit that shorts both electrodes of the capacitor 84B and discharges the electric charge accumulated in the capacitor 84B.
  • the operational amplifier 84A can adjust the gain amount by control from a cassette control unit 92 described later.
  • a multiplexer 86 and an A / D converter 88 are sequentially connected to the output side of the sample and hold circuit 84, and the electrical signals held in the individual sample and hold circuits are converted into analog voltages and sequentially supplied to the multiplexer 86 (serially). ) And converted into digital image information by the A / D converter 88.
  • An image memory 90 is connected to the signal processing unit 82 (see FIG. 8), and image data output from the A / D converter 88 of the signal processing unit 82 is stored in the image memory 90 in order.
  • the image memory 90 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 90 every time a radiographic image is captured.
  • the image memory 90 is connected to a cassette control unit 92 that controls the operation of the entire electronic cassette 32.
  • the cassette control unit 92 includes a microcomputer, and includes a CPU (Central Processing Unit) 92A, a memory 92B including a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), and a flash memory.
  • a non-volatile storage unit 92 ⁇ / b> C is provided.
  • a wireless communication unit 94 is connected to the cassette control unit 92.
  • the wireless communication unit 94 according to the present embodiment is compatible with a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g) and is based on wireless communication. Controls the transmission of various information to and from external devices.
  • the cassette control unit 92 can wirelessly communicate with the console 42 via the wireless communication unit 94, and can transmit and receive various information to and from the console 42.
  • the radiation detection unit 62 includes a large number of sensor units 146 arranged in a matrix.
  • the radiation detection unit 62 is provided with a plurality of wires 160 individually connected to the sensor units 146, and the wires 160 are connected to the signal detection unit 162.
  • the signal detection unit 162 includes an amplifier and an A / D converter provided for each wiring 160, and is connected to the cassette control unit 92.
  • the signal detection unit 162 performs sampling of each wiring 160 at a predetermined cycle by the control from the cassette control unit 92, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially converts the converted digital data, Output to the cassette control unit 92.
  • the electronic cassette 32 is provided with a power supply unit 96, and the various circuits and elements described above (gate line driver 80, signal processing unit 82, image memory 90, wireless communication unit 94, cassette control unit 92, signal detection).
  • the unit 162 and the like are operated by the electric power supplied from the power source unit 96.
  • the power supply unit 96 incorporates the above-described battery (secondary battery) 96A so as not to impair the portability of the electronic cassette 32, and supplies power from the charged battery 96A to various circuits and elements.
  • illustration of wirings connecting the power supply unit 96 to various circuits and elements is omitted.
  • FIG. 10 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
  • the console 42 is configured as a server computer, and includes a display 100 that displays an operation menu, a captured radiation image, and the like, and a plurality of keys, and an operation panel on which various information and operation instructions are input. 102.
  • the console 42 includes a CPU 104 that controls the operation of the entire apparatus, a ROM 106 that stores various programs including a control program in advance, a RAM 108 that temporarily stores various data, and various data. It includes an HDD 110 that stores and holds, a display driver 112 that controls display of various types of information on the display 100, and an operation input detection unit 114 that detects an operation state of the operation panel 102.
  • the console 42 includes a communication interface (I / F) unit 116 that transmits and receives various types of information such as an exposure condition to be described later to and from the radiation generator 34 via the connection terminal 42A and the communication cable 35, and an electronic cassette.
  • a wireless communication unit 118 that transmits and receives various types of information such as image capturing conditions, exposure conditions, and image data by wireless communication.
  • CPU 104, ROM 106, RAM 108, HDD 110, display driver 112, operation input detection unit 114, communication interface unit 116, and wireless communication unit 118 are connected to each other via a system bus BUS. Therefore, the CPU 104 can access the ROM 106, RAM 108, and HDD 110, controls display of various information on the display 100 via the display driver 112, and the radiation generator 34 via the communication I / F unit 116. And control of transmission / reception of various information to / from the radiation generator 34 via the wireless communication unit 118. Further, the CPU 104 can grasp the operation state of the user with respect to the operation panel 102 via the operation input detection unit 114.
  • the radiation generator 34 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42.
  • a radiation source control unit 134 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42.
  • the radiation source control unit 134 is also configured to include a microcomputer, and stores the received exposure conditions and the like.
  • the exposure conditions received from the console 42 include information on tube voltage and tube current.
  • the radiation source controller 134 irradiates the radiation X from the radiation source 130 based on the received exposure conditions.
  • the imaging system 18 is capable of still image shooting in which shooting is performed once and fluoroscopic shooting in which continuous shooting is performed, and still image shooting or fluoroscopic shooting is selected as a shooting mode. It is possible.
  • fluoroscopic imaging with pulse irradiation can irradiate radiation only for the period required for imaging, and can reduce the patient's exposure compared to continuous irradiation, so the irradiation dose per unit time is increased.
  • fluoroscopic imaging is performed by pulse irradiation.
  • FIG. 12 shows a time chart showing the flow of imaging operation when performing fluoroscopic imaging with pulse irradiation.
  • the console 42 transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 at a cycle corresponding to the designated frame rate.
  • the radiation generator 34 Each time the radiation generator 34 receives a synchronization signal, it generates and emits radiation at a tube voltage, a tube current, and an irradiation period corresponding to the exposure conditions received from the console 42.
  • the cassette control unit 92 of the electronic cassette 32 controls the gate line driver 80 after the irradiation period specified by the exposure condition after receiving the synchronization signal, and sequentially sets each gate line 76 from the gate line driver 80 line by line.
  • An on signal is output to turn on the TFTs 70 connected to the gate wirings 76 one line at a time to read an image.
  • the electric signal flowing out to each data wiring 78 of the radiation detector 60 is converted into digital image data by the signal processing unit 82, stored in the image memory 90, and transmitted to the console 42 one image at a time.
  • the image transmitted to the console 42 is subjected to various correction image processing such as shading correction in the console 42 and stored in the HDD 110, and is displayed on the display 100 for confirmation of the captured radiation image. , Transferred to the RIS server 14 and stored in the database 14A.
  • the terminal device 12 accepts an imaging request from a doctor or a radiographer when imaging a radiographic image.
  • an imaging request a patient to be imaged, an imaging region to be imaged, an imaging purpose, an imaging mode, a frame rate are specified, and a tube voltage, a tube current, and the like are specified as necessary.
  • the terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request.
  • the RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
  • the console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 10). .).
  • the radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
  • the electronic cassette 32 when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
  • the photographer designates still image photographing or fluoroscopic photographing as a photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X.
  • the radiation detection unit 62 detects the radiation, and when the radiation irradiation start is detected, each pixel 74 of the radiation detector 60 is detected. Imaging is started after a reset operation for taking out and removing the charges accumulated in the storage capacitor 68 is performed.
  • the console 42 transmits the tube voltage, the tube current, the frame rate in the pulse irradiation and the irradiation period to the radiation generator 34 and the electronic cassette 32 as the exposure conditions, and designates the designated imaging region, imaging purpose, imaging mode, tube voltage, The tube current and the allowable amount are transmitted to the electronic cassette 32 as photographing conditions.
  • the radiation source control unit 134 of the radiation generator 34 receives the exposure conditions from the console 42
  • the radiation control unit 134 stores the received exposure conditions
  • the cassette control unit 92 of the electronic cassette 32 receives the exposure conditions and imaging conditions from the console 42. Is received, the received exposure conditions and imaging conditions are stored in the storage unit 92C.
  • the photographer When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
  • the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32, and starts an imaging operation.
  • the radiation detection unit 62 detects the radiation to acquire a radiographic image for density correction, and the radiographic image for density correction.
  • the gain amount of the operational amplifier 84A from which an image with an appropriate density is obtained is obtained, and the obtained gain amount is fed back to adjust the gain amount of the operational amplifier 84A and the radiation image is read from the radiation detector 60. ing.
  • the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32, and then transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 in a cycle corresponding to the designated frame rate. .
  • the radiation generator 34 Each time the radiation generator 34 receives a synchronization signal, it generates and emits radiation at a tube voltage, a tube current, and an irradiation period corresponding to the exposure conditions received from the console 42.
  • the cassette control unit 92 of the electronic cassette 32 executes the shooting control program shown in FIG. 13 when a predetermined period elapses after receiving the synchronization signal.
  • the program is stored in advance in a predetermined area of the memory 92B (ROM).
  • step S ⁇ b> 24 the cassette control unit 92 arranges the detection values detected by the sensor units 146 provided in the radiation detection unit 62 in a two-dimensional manner corresponding to the arrangement of the sensor units 146. Is used as a pixel value to generate image data of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62.
  • This radiation image is a thinned-out image captured by the radiation detector 60 because each sensor unit 146 of the radiation detection unit 62 is formed with a size of several tens to several hundreds of pixels of the radiation detector 60.
  • the cassette control unit 92 analyzes the image data generated in step S26 and derives an appropriate gain amount for the operational amplifier 84A.
  • a storage area for storing the cumulative value of the digital data detected by each sensor unit 146 is prepared. It is assumed that the storage area stores a cumulative value of digital data from shooting (shooting of the previous frame).
  • FIG. 14A shows an example of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62
  • FIG. 14B shows a cumulative histogram of the radiographic image shown in FIG. 14A.
  • the cumulative histogram is a diagram in which the pixel value (luminance value) is represented on the horizontal axis and the appearance rate (frequency) of the pixel of the pixel value is represented on the vertical axis for all image data forming one radiation image.
  • the radiographic image has a large number of pixels in a subject region in which an image of the imaging region (a face in FIG. 14A) is shown and a so-called unexposed region in which the imaging region is not in image, the subject region and the non-existence region in the cumulative histogram
  • the cumulative value has a peak, and the subject region has a larger density change, so the width of the cumulative histogram is also widened.
  • In this cumulative histogram, specify the range of data values based on the image of the imaging region.
  • a known technique can be used as this specifying method.
  • dynamic contour extraction processing such as a snakes algorithm, contour extraction processing using Hough transform or the like is performed, and a region surrounded by a line along the contour point is recognized as a subject region.
  • the subject area may be recognized by using the technique described in Japanese Patent Laid-Open No. 4-11242.
  • a pattern image showing a standard shape for each imaging region is stored in the memory 92B (ROM).
  • the pattern matching is performed to obtain the similarity between the radiographic image and the pattern image while changing the position and enlargement ratio of the pattern image in accordance with the imaging region in the radiographic image taken, and the highest similarity is obtained.
  • the area may be recognized as a subject area.
  • a cumulative histogram of the recognized subject area of the radiographic image is obtained. For example, in the cumulative histogram, the half value width of the peak value is set as the main density range of the subject area, and the center of the density range becomes the center of the predetermined appropriate density range.
  • the gain amount of the operational amplifier 84A is obtained. For this gain amount, an appropriate gain amount is stored in advance in the memory 92B (ROM) as gain amount information for each difference between the center of the density range and the center of the appropriate density range.
  • the gain amount corresponding to the difference from the center may be obtained from the gain amount information, and the calculation that defines the relationship between the difference between the center of the density range and the center of the predetermined appropriate density range and the appropriate gain amount
  • the equation may be stored in the memory 92B (ROM), and the gain amount may be calculated from the difference between the center of the density range and the center of the appropriate density range using an arithmetic expression.
  • the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S28.
  • the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line. This step is performed at the timing when the irradiation period of the exposure condition has elapsed since the reception of the synchronization signal.
  • the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals.
  • the electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
  • the density range of the subject region in the read out radiation image can be set to an appropriate density range.
  • the cassette control unit 92 transmits the image data of the radiation image stored in the image memory 90 to the console 42 at a predetermined transfer rate, and ends the process.
  • the image data of the non-compressed transfer area is not compressed among the image data of the radiographic image, and the image data of the compressed transfer area other than the non-compressed transfer area is irreversibly compressed and transmitted to the console 42.
  • the console 42 When the console 42 receives the image data from the electronic cassette 32, the compressed image data of the received image data is subjected to decompression processing (or decoding). Of course, it is not necessary to decode the uncompressed image data. Thereafter, various types of image processing such as shading correction are performed as necessary, and the image information after the image processing is stored in the HDD 110 and displayed on the display 100 for confirmation of the captured radiographic image.
  • the image information stored in the HDD 110 is transferred to the RIS server 14 and stored in the database 14A.
  • the gain amount of the operational amplifier 84A as a processing parameter from the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62, the image of the subject region is appropriately adjusted without being saturated by the A / D converter 88.
  • the concentration range can be adjusted.
  • the electrical signal amplified by the operational amplifier 84A of the signal processing unit 82 is converted into digital data of a predetermined number of bits (for example, 16 bits) by the A / D converter 88, and the cassette control unit In 92, the 16-bit image data may be converted into 12-bit image data in the normalization process.
  • a predetermined number of bits for example, 16 bits
  • the 16-bit image data may be converted into 12-bit image data in the normalization process.
  • the radiation detection unit 62 detects the radiation to acquire a density correction radiation image, analyzes the density correction radiation image, and determines the main density range of the subject region. Then, various parameters for normalization processing are obtained so that the appropriate density range is obtained, and normalization processing is performed on the image data of the 16-bit radiation image read from the radiation detector 60 using the obtained various parameters. To 12-bit image data.
  • the operational amplifier 84 ⁇ / b> A is configured so that the electric signal flowing out to each data wiring 78 is within a range that can be converted into 16-bit digital data without being saturated by the A / D converter 88. It is assumed that the gain amount is adjusted to a predetermined value.
  • FIG. 15 shows a flowchart showing the flow of processing of the photographing control program when standardization processing is performed. Note that the same processing parts as those in the above-described photographing control program (see FIG. 13) are denoted by the same reference numerals and description thereof is omitted.
  • step S29 the cassette control unit 92 analyzes the image data generated in step S26, and derives appropriate values for various parameters of the normalization process.
  • the main density range of the subject region is MIN0 to MAX0 in the cumulative histogram a of the radiographic image captured under a certain imaging condition, and the imaging condition is different from the above imaging condition.
  • the main density range of the subject region is MIN1 to MAX1 in the cumulative histogram b of the radiographic image taken below.
  • the 16-bit image data that becomes the cumulative histogram indicated by a or b is converted into 12-bit image data by the normalization process, and the main area of the subject area is converted into the 16-bit image data at the time of the conversion.
  • the density ranges MIN0 to MAX0 and MIN1 to MAX1 are converted so as to become appropriate density ranges MIN2 to MAX2 in 12-bit image data, respectively.
  • FIG. 16 (2) shows the cumulative histogram a when MIN0 to MAX0 and MIN1 to MAX1 are converted to the proper density range MIN2 to MAX2 in 12-bit image data in this way. , B are shown.
  • a known technique can be used as a standardization method from 16-bit image data to 12-bit image data.
  • 16-bit image data D0 as input data is converted into 12-bit image data D1 as output based on a predetermined conversion function.
  • FIG. The conversion is performed using a linear function as indicated by a and b in (3).
  • values of Gain and Offset in which the main density range (for example, MIN0 to MAX0) of the subject area becomes the appropriate density range MIN2 to MAX2 are derived.
  • step S33 the cassette control unit 92 performs normalization processing on the 16-bit image data stored in the image memory 90 using the parameters derived in step S29 to convert the image data into 12-bit image data.
  • the converted image data is stored in the image memory 90.
  • the concentration range can be set to an appropriate concentration range.
  • step S34 the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S33 stored in the image memory 90, and ends the process. At this time, among the image data stored in the image memory 90, the image data in the non-compressed transfer area is not compressed, and the image data in the compressed transfer area is irreversibly compressed and transmitted to the console 42.
  • the density range of the subject area can be set to an appropriate density range in the radiographic image subjected to the normalization process.
  • the electronic cassette 32 is the radiographic image data detected by the radiation detector 60 in step S34 described with reference to FIGS.
  • the image data in the non-compressed transfer area is sent to the console 42 without being compressed, and the image data in the compressed transfer area other than the non-compressed transfer area is irreversibly compressed and sent to the console 42. Yes.
  • the uncompressed transfer area is set based on a radiation image (hereinafter, referred to as a density correction radiation image) detected by the radiation detection unit 62 in the initial imaging of fluoroscopic imaging.
  • the electronic cassette 32 transmits the image data of the radiation image detected by the radiation detector 60 based on the setting.
  • FIG. 17 shows a flowchart showing a flow of processing of an area setting processing program executed by the CPU 92A of the cassette control unit 92 in the fluoroscopic imaging according to the first embodiment.
  • This processing program is stored in advance in a predetermined area of the memory 92B (ROM), and is executed at the time of initial imaging immediately after the start of fluoroscopic imaging.
  • step S200 the CPU 92A acquires the image data of the density correction radiation image detected by the radiation detection unit 62.
  • the CPU 92A specifies a region of interest based on the pixel value (luminance value) obtained by analyzing the density correction radiation image, information on the designated imaging region, and information on the imaging purpose.
  • the lung field region is a region of interest
  • the gastric wall region is used to detect polyps or the like generated in the stomach wall. It becomes an area of interest.
  • the distal end region of the catheter and its surrounding region are the regions of interest.
  • region as a region of interest.
  • step S202 will be described in detail.
  • a region where the luminance value is included in the range A determined in advance according to the imaging region and the imaging purpose is extracted (see also FIG. 22).
  • the range of the luminance value is determined in advance for each imaging region and each imaging purpose, and is stored in a storage unit such as the memory 92B (ROM).
  • the region extracted by the luminance value may include a region outside the region of interest. Therefore, for example, a pattern image indicating the shape of a standard region of interest for each imaging region and imaging purpose is stored in advance in a storage unit such as the memory 92B, and a radiographic image captured for the extracted region is stored.
  • the pattern matching for obtaining the similarity between the radiation image and the pattern image may be performed while changing the position and enlargement ratio of the pattern image according to the imaging region, and the region with the highest similarity may be identified as the region of interest.
  • a region surrounded by a line along the contour point may be specified as a region of interest using a known technique such as a dynamic contour extraction process such as a snakes algorithm or a contour extraction process using Hough transform. .
  • the region of interest is a lung field region
  • the threshold value the number of valleys from the maximum luminance value side as the threshold depends on the region of interest
  • Information indicating the region of interest thus identified (for example, information indicating the position, size, and shape of the region of interest) is stored in a predetermined region of storage means such as the storage unit 92C.
  • a value corresponding to the resolution of the radiation detector 62 may be stored, but it may be converted into a value corresponding to the resolution of the radiation detector 60 and stored.
  • the lung field region is exemplified here as the region of interest, the present invention is not limited to this, and the region of interest may be a soft tissue region or a bone tissue region depending on the imaging purpose.
  • the CPU 92A specifies the MUST area.
  • a diseased part where a tumor or the like exists is an area that must be displayed in real time without image deterioration, and is an area where image data should be transferred without being compressed regardless of the frame rate. In this embodiment, this area is called a MUST area.
  • a region having a predetermined position, size, and shape determined from the imaging region and the imaging purpose may be specified as the MUST region.
  • information on the position, size, and shape of a standard MUST region with respect to the region of interest is stored in advance in a storage unit such as the memory 92B for each imaging region and imaging purpose, and this is referred to. You may do it.
  • a doctor or the like may input information on the position and size of the predicted disease in advance to the console 42 as imaging conditions, and specify the area indicated by the information as the MUST area.
  • the region may be identified as a MUST region (FIG. 18). See also).
  • a feature amount such as a disease is determined in advance
  • information indicating the feature amount is stored in advance in storage means such as the memory 92B, and the similarity to the feature amount is determined in advance.
  • information indicating the pattern image is stored in a storage unit such as the memory 92B, and pattern matching for obtaining a similarity with the pattern image is performed.
  • An area having a similarity equal to or greater than a predetermined threshold may be specified as the MUST area.
  • the MUST area specified in this way may be modified according to circumstances. For example, when a radiographic image for density correction is transmitted from the electronic cassette 32 to the console 42, and a doctor visually confirms the subject image for density correction displayed on the display 100, and a disease such as a tumor is larger than expected. Alternatively, when there is another disease, a doctor or the like may directly operate the operation panel 102 to correct the MUST area.
  • Information indicating the MUST area finally obtained in this way (for example, information indicating the position, size, and shape of the MUST area) is stored in a predetermined area of the storage unit 92C.
  • the MUST region exists within the region of interest identified in step S202.
  • FIG. 19 shows an example of the identified region of interest and MUST region.
  • pixels corresponding to the respective sensor units 146 of the radiation detection unit 62 (hereinafter referred to as “areas” in order to be distinguished from the pixels 74 corresponding to the sensor unit 72 of the radiation detector 60) are 16.
  • areas pixels corresponding to the respective sensor units 146 of the radiation detection unit 62
  • any number from 1 to 256 is assigned to each area.
  • An area number may be used as information indicating the region of interest and the MUST region.
  • step S206 the CPU 92A determines an upper limit value S of the number of areas that can be transferred without compression based on the designated frame rate.
  • the upper limit value of the amount of data that can be transferred without compression when the radiographic image detected by the radiation detector 60 of the electronic cassette 32 is transferred at a predetermined transfer rate and displayed without display delay.
  • Each frame rate is stored in advance in the memory 92B, and this is determined.
  • FIG. 20 shows an example of the upper limit value stored in the memory 92B.
  • the information shown in FIG. 20 is assumed to be stored in the memory 92B of the electronic cassette 32. Therefore, in step S206, the maximum number of areas S corresponding to the designated frame rate is determined based on this information.
  • the upper limit value of the amount of data that can be transferred without compression is the upper limit value of the number of areas that can be transferred without compression, but it is sufficient that the data amount (size) of the area can be determined.
  • the number the number of pixels, the area, or the upper limit value of the data amount itself may be stored for each frame rate.
  • the CPU 92A (as a transfer area setting unit) sets a rectangular area including the identified MUST area and having the number of areas equal to or less than S as an uncompressed transfer area.
  • Information indicating the non-compressed transfer area (for example, information indicating the position, size, and shape of the non-compressed transfer area) is stored in a predetermined area of the storage unit 92C, similarly to the region of interest and the MUST area.
  • the area number of the radiation detection unit 62 may be stored as information indicating the uncompressed transfer area.
  • FIG. 21 and FIG. 22 an example of the uncompressed transfer area set according to the present embodiment is indicated by a broken line. Note that the rectangular area surrounded by the thick solid line in FIGS. 21 and 22 is an uncompressed transfer area when it is set to include all of the region of interest regardless of the frame rate.
  • the electronic cassette 32 corresponds to the uncompressed transfer area in the image data of the radiographic image detected by the radiation detector 60 in step S34 (see FIGS. 13 and 15) according to the uncompressed transfer area information.
  • the image data is transmitted to the console 42 without being compressed, and the image data in the area corresponding to the compressed transfer area other than the non-compressed transfer area is compressed and transmitted to the console 42.
  • step S208 the number of areas is determined. However, the number of areas is converted into the number of pixels 74 of the radiation detector 60, and the number of pixels 74 corresponding to the upper limit value S of the number of areas is determined based on the number of pixels 74.
  • the compression transfer area may be determined and set. The number of areas may be converted into an area, and the uncompressed transfer area may be determined and set based on the area of the area corresponding to the upper limit value S of the number of areas.
  • the radiographic image obtained by fluoroscopic imaging is real-time without deterioration in image quality.
  • An area to be displayed can be reliably displayed in real time without deterioration in image quality.
  • detection of the motion region is performed as follows.
  • a threshold value of a motion amount that is recognized as a motion amount as a moving image is stored in the memory 92B in advance, and digital data (radiation for density correction) sequentially input from the signal detection unit 162 during fluoroscopic imaging.
  • Motion detection is performed using the image data of the image, and when a region in which the amount of motion detected in the region of interest is greater than or equal to the above threshold is generated, the region is extracted as a motion region, Information indicating the position, size, and shape of the motion region is stored in the storage unit 92C. Note that in motion detection, when a change in luminance value that is greater than or equal to a threshold value occurs, a region in which the change has occurred may be used as a motion region.
  • the image data used when detecting the motion region in this manner may be the image data of the density correction radiation image detected by the radiation detection unit 62, but the resolution of the image data is reduced. Low resolution image data may be used. Further, information indicating the position, size, and shape of the detected motion region may be stored in the storage unit 92C as information indicating the area number of the radiation detection unit 62.
  • FIG. 23 is a flowchart showing the flow of processing of the area setting change processing program executed by the CPU 92A of the cassette control unit 92 in the second embodiment. This program is executed when a motion region having a large amount of motion outside the uncompressed transfer region is generated in the region of interest specified in step S202 of the region setting process described in the first embodiment during fluoroscopic imaging.
  • step S300 the CPU 92A (as the transfer area setting unit) changes the setting of the uncompressed transfer area so as to include the MUST area and the motion area.
  • the minimum rectangular area including the motion area and the MUST area in the region of interest is determined and changed as an uncompressed transfer area.
  • Information indicating the non-compressed transfer area after the change is stored in a predetermined area of the storage unit 92C.
  • the area number of the radiation detection unit 62 may be stored as information indicating the uncompressed transfer area after the change.
  • 24 and 25 show examples of changing the uncompressed transfer area with broken lines. As shown in FIG. 24, three areas are detected as motion areas in the region of interest described in the first embodiment, and one of the three areas is an uncompressed transfer area before the change. Not included. Therefore, in this example, the uncompressed transfer area is expanded so that the motion area not included in the uncompressed transfer area before the change is included in the uncompressed transfer area.
  • the motion area is an area that has undergone a large change, it is a natural area to be visually confirmed without deterioration in image quality.
  • the MUST area is an important area and is removed from the uncompressed transfer area. It is not possible. In particular, in a situation where a single person is not watching the display but a plurality of people (doctors, engineers, etc.) are watching the display, a person who keeps an eye on the MUST area, not the movement area that occurred during shooting. May be present. Therefore, in this embodiment, the non-compressed transfer area is changed so that the motion area is included in the non-compressed transfer area without removing the MUST area, which is an important area, from the non-compressed transfer area.
  • step S302 the CPU 92A determines whether or not the number of areas in the non-compressed transfer area after the change is greater than the upper limit value S of the number of areas that can be transferred without compression. If a negative determination is made here, the process proceeds to step S304, and imaging is continued without changing the frame rate and the irradiation period.
  • step S302 the process proceeds to step S320. If the number of non-compressed transfer areas after the change is greater than S, real-time display may not be possible unless the frame rate is reduced. Therefore, in step S320, the CPU 92A changes the frame rate and the irradiation period.
  • the memory 92B stores in advance information on the upper limit value of the number of areas that can be transferred without compression for each frame rate (see also FIG. 20). Based on this information, the CPU 92A obtains a frame rate whose upper limit is the number of non-compressed transfer areas after the change, and determines a frame rate equal to or lower than the frame rate as the changed frame rate. To do. As apparent from FIG. 20, since the number of areas in the non-compressed transfer area after the change exceeds S, the frame rate after the change is lower than the frame rate before the change.
  • each image may become a frame-feed image in which movement has stopped.
  • the CPU 92A (as the second changing unit) keeps the radiation dose per unit time low in one pulse irradiation, Within each frame period for capturing each frame image, the irradiation period is changed to a longer period than before the change.
  • the human eye has a time resolution of about 50 ms to 100 ms, and blinking of light shorter than this time is perceived as being continuously lit.
  • Table 1 shows the results of evaluation with the frame rate set to 5 fps and the ratio of the pulse irradiation period within one frame period (1/5 second) changed.
  • the frame period must include a reading period for reading out the accumulated charges.
  • This reading period needs about 20% of the frame period.
  • the upper limit of the period during which radiation can be irradiated within the frame period in pulse irradiation is about 80%.
  • the ratio of the irradiation period to the frame period needs to be within the range of 12.5% to 80% in order to suppress the frame drop feeling to an acceptable level, and 33% to 80%. More preferably, it is within the range.
  • the ratio of the radiation irradiation period to each frame period corresponding to the fluoroscopic frame rate is changed to 80% (here, the ratio of the irradiation period before the change is less than 80%).
  • Change the exposure conditions such as tube voltage and tube current, and change the radiation dose per unit time.
  • the minimum dose necessary for radiographic image capture may not be ensured. Therefore, by dividing the minimum irradiation amount by the changed irradiation period, the minimum irradiation amount per unit time necessary for radiographic image acquisition is obtained, and the radiation irradiation amount per unit time can be obtained.
  • Change exposure conditions such as tube voltage and tube current.
  • the electronic cassette 32 transmits the changed exposure condition to the console 42.
  • the console 42 transfers the transmitted exposure conditions to the radiation generator 34. Thereafter, the console 42 transmits a synchronization signal according to the changed exposure condition, the radiation generator 34 emits radiation according to the changed exposure condition, and the electronic cassette 32 changes to the changed exposure condition. Based on this, the image is read out as described above.
  • a radiographic image is not viewed by a single doctor but may be viewed simultaneously by a plurality of people such as doctors and engineers. Therefore, even when the uncompressed transfer area is changed according to the amount of movement as described above, there are people who want to check the area where the movement has occurred, and some people who want to keep an eye on the MUST area and its vicinity. . Therefore, changing the uncompressed transfer area regardless of the MUST area has a problem in a situation where a plurality of persons confirm the radiation image.
  • the MUST region is not removed and the uncompressed transfer region is changed.
  • the irradiation period when the frame rate is lowered is not limited to the above, and may be obtained as follows, for example.
  • the frame rate threshold value is stored in the memory 92B in advance, and when the fluoroscopic frame rate is equal to or lower than the threshold value, the irradiation period of the pulse irradiation within the frame period is changed.
  • two frame rate threshold values (first frame rate threshold value, second frame rate threshold value) are stored.
  • the first frame rate threshold may be a frame rate at which the majority of people do not feel flicker.
  • the first frame rate threshold may be 15 fps (Frame Per Second) or more and 60 fps or less, and more preferably 15 fps or more and 30 fps or less.
  • the second frame rate threshold may be a frame rate at which the majority of people feel flicker.
  • the second frame rate threshold may be 5 fps or more and less than the first frame rate threshold, and more preferably 5 fps or more and less than 15 fps.
  • the first frame rate threshold is, for example, 30 fps
  • the second frame rate threshold is, for example, 15 fps.
  • the first frame rate threshold is, for example, 24 fps
  • the second frame rate threshold is, for example, It may be 5 fps.
  • a radiographic image is captured in synchronization with the pulse irradiation while performing pulse irradiation during a predetermined irradiation period.
  • This irradiation period is determined as a time during which stable shooting can be performed even at the maximum frame rate that can be shot by the shooting system 18 and stored in the HDD 110 as an initial value of the irradiation period.
  • the ratio of the irradiation period to the frame period is changed to 50%, and the radiographic image is captured in synchronization with the pulse irradiation while performing the pulse irradiation.
  • the imaging frame rate is equal to or lower than the second frame rate threshold, the ratio of the irradiation period to the frame period is changed to 80%, and pulse irradiation is performed, and a radiographic image is acquired in synchronization with the pulse irradiation.
  • FIG. 26 is a flowchart showing the flow of processing of the irradiation period determination processing program executed by the CPU 92A (as the second changing unit).
  • step S410 in the figure the CPU 92A determines whether or not the frame rate after changing the fluoroscopic imaging is equal to or higher than a first frame rate threshold (for example, 30 fps). If the determination is affirmative, the process proceeds to step S412. If the determination is negative, the process proceeds to step S414.
  • a first frame rate threshold for example, 30 fps
  • step S412 the CPU 92A determines the irradiation period of each pulse irradiation as a period indicated by the irradiation period initial value.
  • step S414 the CPU 92A determines whether or not the frame rate after changing the fluoroscopic imaging is equal to or lower than a second frame rate threshold (for example, 15 fps). If the determination is affirmative, the process proceeds to step S416. When it becomes negative determination, it transfers to step S420.
  • a second frame rate threshold for example, 15 fps
  • step S416 the CPU 92A determines that the radiation period of each pulse irradiation is 50% of the frame period corresponding to the designated frame rate.
  • the exposure conditions such as tube voltage and tube current are also changed so as to reduce the radiation dose per unit time as the irradiation period is changed.
  • step S420 the CPU 92A determines the radiation period of each pulse irradiation as a period of 80% of the frame period corresponding to the designated frame rate.
  • the exposure conditions such as tube voltage and tube current are also changed so as to reduce the radiation dose per unit time as the irradiation period is changed.
  • step S422 the CPU 92A transmits the determined irradiation period and the changed frame rate, tube voltage, tube current, and the like as the exposure conditions to the console 42, and ends the irradiation period determination processing program.
  • the irradiation period program illustrated in FIG. 25 may be executed to obtain and use the irradiation period corresponding to the frame rate.
  • the changed non-compressed transfer area is changed to the original uncompressed transfer area before the change. You may make it return to.
  • the photographing system 18 is provided with detection means (gaze degree detection means) for detecting the line-of-sight direction of the people who are viewing the display 100, and the gaze area of the people viewing the display 100 is out of the movement region. Configure to be detectable.
  • the detection means analyzes imaging data such as a camera that captures a person who views the display 100 and eye region image data captured by the imaging means, and derives each of the gaze directions of the person viewing. And derivation means.
  • imaging data such as a camera that captures a person who views the display 100 and eye region image data captured by the imaging means, and derives each of the gaze directions of the person viewing.
  • derivation means for example, an IRED (infrared light emitting diode) is installed on the display 100, the eyeball of the detection target person is irradiated with infrared light with the IRED, and the anterior segment image of the detection target is imaged and received It may be a means for detecting by estimating the position of the IRED cornea reflection image and pupil circle from the output signal of the infrared sensor.
  • the detection means for detecting the line-of-sight direction is not limited to these, and various known techniques can be employed.
  • the gaze degree is calculated from the ratio of.
  • a program for calculating the gaze degree and executing the processing to be transmitted to the electronic cassette 32 may be included in the program executed by the CPU 104 of the console 42.
  • the detection result of the line-of-sight direction may be transmitted from the console 42 to the electronic cassette 32 and the gaze degree may be calculated by the electronic cassette 32.
  • FIG. 27 is a flowchart showing the flow of processing of the area setting change processing program using the gaze degree. As in FIG. 23, this program is executed when a motion region having a large motion amount outside the uncompressed transfer region is generated in the region of interest specified in step S202 during fluoroscopic imaging.
  • FIG. 27 the same processing parts as those in the area setting change processing program of FIG. On the other hand, it is assumed that the detection of the gaze direction and the calculation of the gaze degree are started at the time when the motion region occurs and are performed in parallel with this program.
  • the CPU 92A determines whether or not the gaze degree with respect to the motion region exceeds the threshold value in step S306.
  • the degree of gaze of the plurality of people is determined. If even one person's gaze degree exceeds the threshold, an affirmative determination is made here. Further, if all the gaze degrees of a plurality of people are below the threshold value, a negative determination is made.
  • a gaze degree for each of the motion areas newly added to the uncompressed transfer area is determined, and if even one gaze degree exceeds the threshold, An affirmative determination is made and a negative determination is made if all the gaze degrees are below the threshold.
  • step S306 the uncompressed transfer area is maintained unchanged.
  • step S306 the CPU 92A proceeds to step S308.
  • step S308 the CPU 92A (as the transfer area setting unit) changes the non-compressed transfer area to the area before change and continues shooting. Needless to say, the area before the change includes the MUST area.
  • step S320 the CPU 92A determines whether or not the gaze degree with respect to the motion area exceeds the threshold value in step S322, as in step S306. During the period in which an affirmative determination is made in step S322, the uncompressed transfer area is maintained unchanged.
  • step S322 the CPU 92A changes the uncompressed transfer area to the area before change. Further, the CPU 92A (as the third changing unit) returns the exposure conditions such as the frame rate changed in step S320 to the exposure conditions before the change, and transmits the exposure conditions to the console 42. The console 42 transfers the received exposure conditions to the radiation generator 34. Thereafter, the console 42 transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 at a period corresponding to the restored frame rate. In addition, the electronic cassette 32 reads an image as described above based on the restored exposure condition, and the radiation generator 34 emits radiation according to the exposure condition.
  • the uncompressed transfer area can be automatically restored, and the reduced frame rate can be restored to the original.
  • a smoother image can be displayed compared to a state in which the rate is lowered, and the MUST area is always included in the non-compressed transfer area, so that the image quality is not always deteriorated in real time regardless of the occurrence of the moving area. Can be displayed.
  • step S323 A step of determining whether or not the threshold value is greater than a threshold value (threshold value for detecting body movement and greater than the threshold value used in motion detection) is illustrated in FIG. 17 when an affirmative determination is made in step S323.
  • the region setting process may be re-executed.
  • a diaphragm mechanism that adjusts the irradiation region of the radiation X may be provided.
  • the radiation generator 34 is provided with a diaphragm device (collimator) 500 and a diaphragm controller 502.
  • the diaphragm device 500 is provided between the radiation source 130 and the subject, and adjusts the irradiation region of the radiation X.
  • the diaphragm control unit 502 includes a microcomputer, and controls the aperture state of the diaphragm device 500 based on the irradiation area information received from the console 42 (this control is referred to as diaphragm control).
  • the console 42 may control the non-irradiated region to display a radiation image (still image) obtained before performing aperture control.
  • a transfer stop request for image data in the non-irradiation area may be transmitted from the console 42 to the electronic cassette 32 together with information on the irradiation area (or non-irradiation area). Thereby, the amount of data to be transferred from the electronic cassette 32 can be reduced.
  • the radiation X irradiation area includes at least the MUST area. Therefore, the irradiation region may be a MUST region, or a MUST region and a peripheral region of the MUST region. Further, the irradiation region of the radiation X may be a region of interest or may be a region including a peripheral region of the region of interest. In addition, the irradiation region of radiation X also includes a region in which a lesion is suspected (this region is not necessarily a disease region; hereinafter, referred to as a lesion candidate region). It is good also as an irradiation area.
  • a specific example of an initial setting process for setting an irradiation area at the time of initial imaging will be described.
  • FIG. 31 shows a flowchart showing a flow of processing of an initial setting processing program related to aperture control, which is executed by the CPU 104 of the console 42.
  • this processing program is stored in advance in a predetermined area of the ROM 106 or the HDD 110, and is executed at the time of initial imaging immediately after the start of fluoroscopic imaging.
  • this processing program is started, it is assumed that reception of image data of a subject image from the electronic cassette 32 has already started and display based on the image data has started.
  • the aperture state of the aperture stop device 500 is an initial state with no aperture. Therefore, as shown in FIG. 35, the entire region to be imaged is imaged without limiting the irradiation area, and the imaged subject image is transmitted to the console 42.
  • step S600 the CPU 104 (as the irradiation region setting unit) executes a lesion candidate region setting process.
  • a lesion candidate area is set.
  • the lesion candidate area may not be set in this lesion candidate area setting process.
  • the CPU 104 sets the radiation X irradiation area.
  • the irradiation region can be, for example, a rectangular region including a MUST region or a region of interest and a lesion candidate region set by a lesion candidate region setting process.
  • the CPU 104 may acquire information indicating the position of the MUST region or the region of interest from the electronic cassette 32, or the CPU 104 itself may specify the MUST region or the region of interest.
  • the irradiation region is limited to only the MUST region (or the MUST region and the lesion candidate region), a real-time radiation image can be obtained only in the narrowed region. Since it is easier to check the MUST area itself for the area around the MUST area, it is preferable to set the irradiation area so that the area around the MUST area is included. Similarly, the irradiation area may be set so that the area around the lesion candidate area is included.
  • step S604 the CPU 104 transmits information on the set irradiation region to the radiation generator 34, and causes the diaphragm control unit 502 to perform diaphragm control.
  • the aperture control unit 502 irradiates the set irradiation region with the radiation X based on the irradiation region information transmitted from the console 42, and the region other than the set irradiation region receives the radiation X.
  • the diaphragm device 500 is controlled so as not to be irradiated.
  • step S606 the CPU 104 (as a transmission control unit) performs transfer control of image data. Specifically, the CPU 104 transmits to the electronic cassette 32 a request to stop transferring image data of the non-irradiation area together with information on the irradiation area (or non-irradiation area). Upon receiving this request, the electronic cassette 32 transfers the image data to the console 42 for the irradiation area, and stops transferring the image data for the non-irradiation area. When the irradiation area includes the non-compression transfer area and the compression transfer area, the electronic cassette 32 transmits the image data in the non-compression transfer area of the irradiation area without compression, and the image in the compression transfer area. Data is compressed before being sent.
  • step S608 the CPU 104 performs display control. Specifically, the CPU 104 displays an image in real time based on the image data transferred from the electronic cassette 32 for the irradiation area, and an image (still image) taken immediately before applying the aperture for the non-irradiation area.
  • the display driver 112 is controlled so that is displayed.
  • FIG. 32 is a flowchart illustrating an example of a lesion candidate area setting process.
  • step S610 the CPU 104 determines whether or not a region in the subject image displayed on the display 100 is designated by operating the operation panel 102 by a doctor or the like.
  • a region in the subject image displayed on the display 100 is designated by operating the operation panel 102 by a doctor or the like.
  • a plurality of areas may be designated.
  • the program may be configured so that the area can be specified in units of areas.
  • the area designation is accepted by the CPU 104 until a predetermined time (area designation waiting time) elapses after the execution of the initial setting process or the lesion candidate area setting process. That is, the CPU 104 does not shift from step S610 to the next step until the area designation waiting time elapses.
  • a predetermined time area designation waiting time
  • the candidate lesion region can be determined by observing the respiratory dynamics in several cycles. Therefore, for example, a time corresponding to a plurality of cycles that can be determined is set in advance as the designated waiting time, and the CPU 104 waits for the area designation by continuing the designated waiting time.
  • the heart rate per unit time of the subject may be measured in advance, and the designated waiting time may be calculated and set based on the heart rate.
  • step S610 If the CPU 104 makes an affirmative determination in step S610, it sets the designated region as a lesion candidate region in step S612. The CPU 104 displays the position of the set lesion candidate area on the display 100. If the CPU 104 makes a negative determination in step S610, it skips step S612.
  • step S614 the CPU 104 determines whether or not the operation panel 102 is operated by a doctor or the like and an instruction to cancel the designation of the lesion candidate area has been issued.
  • an affirmative determination is made in step S614 if a cancellation instruction is issued for at least one of them.
  • the cancellation instruction is accepted by the CPU 104 until a predetermined time (cancellation cancellation waiting time) elapses after the radiation image is displayed on the display 100. That is, the CPU 104 does not proceed from step S614 to the next step until the specified waiting time has elapsed.
  • the user can visually confirm the subject image after designating a certain region to be a lesion candidate region, and can cancel the designation if it is determined that it is unnecessary as a result of the confirmation.
  • step S614 If the CPU 104 makes an affirmative determination in step S614, it cancels the setting of the area instructed to be canceled in step S616. As a result, the cancel-instructed area is excluded from the lesion candidate area.
  • the lesion candidate area setting process ends.
  • the lesion candidate area setting process may be completed when a negative determination is made in step S610.
  • the CPU 104 sets a rectangular region including the lesion candidate region set as described above and the region of interest as an irradiation region in step S602 of FIG.
  • FIG. 36 shows an example of a radiation irradiation region. If no lesion candidate area is set (that is, the area is not specified or the area designation is canceled), for example, as shown in FIG. It is good. As described above, instead of the region of interest, a rectangular region including a MUST region may be used as the irradiation region.
  • FIG. 33 is a flowchart illustrating another example of a lesion candidate area setting process.
  • the lesion candidate area setting process shown in FIG. 33 is started until a predetermined time elapses after the acquisition of the image data of the subject image photographed by the electronic cassette 32 without the irradiation area being narrowed down. Shall not be.
  • the lesion candidate region can be determined by observing the respiratory dynamics in several cycles. Therefore, for example, a time corresponding to a plurality of cycles that can be determined is set in advance, and the CPU 104 acquires image data of a radiographic image for at least the set time, and then performs this lesion candidate region setting process. It is assumed that the process of step S620 is performed.
  • step S620 the CPU 104 determines whether or not there is an area where the luminance value is within the set range in each acquired subject image.
  • a range of luminance values to be extracted as a lesion candidate region is set in advance, and the set range is referred to as a setting range.
  • the brightness value of each of the subject images taken within the predetermined time is confirmed.
  • step S622 When the CPU 104 makes an affirmative determination in step S620, in step S622, it sets an area whose luminance value is within the setting range as a lesion candidate area. For example, if there is a subject image including a block having a luminance value within the set range among the subject images for the preset time, an affirmative determination is made in step S620, and in step S622, the block is determined as a lesion candidate region.
  • the program may be configured so that the area can be set in units of areas.
  • the luminance values of all the pixels included in the lesion candidate area may not be within the set range. For example, if there is an area where the luminance value of the number of pixels equal to or greater than a predetermined ratio is within the set range, an affirmative determination may be made in step S620. Further, the region set as the lesion candidate region may be a region having a size larger than a preset size.
  • step S620 if a negative determination is made in step S620, the process in step S622 is skipped, and the lesion candidate area setting process ends.
  • an example has been described in which an area in which the luminance value is within the setting range is set as a lesion candidate area, but the conditions for setting the lesion candidate area are not limited to this, and the imaging purpose, imaging site, etc. Can be determined according to
  • the irradiation region setting may be updated by performing a lesion candidate region setting process.
  • FIG. 34 is a flowchart showing an example of the shooting operation setting process performed after the initial setting process. This setting process during shooting operation is started when the initial setting process is completed.
  • step S650 the CPU 104 determines whether or not a predetermined time has elapsed. If the CPU 104 determines in step S650 that the predetermined time has elapsed, the CPU 104 proceeds to step S652.
  • step S652 the CPU 104 returns the aperture device 500 to the initial state. That is, as shown in FIG. 35, the diaphragm device 500 is reset so that an image is taken without narrowing the irradiation area.
  • step S654 the CPU 104 performs transfer control of image data. Specifically, the CPU 104 transmits a transfer request so that image data of the entire imaging region that is imaged without narrowing the irradiation area is transmitted.
  • the electronic cassette 32 transfers the image data to the console 42 in accordance with the transfer request. At that time, the electronic cassette 32 transmits the image data in the non-compressed transfer area without compression in the image data to be transmitted, and compresses and transmits the image data in the compressed transfer area.
  • step S656 the CPU 104 controls the display driver 112 so that the entire subject image when the aperture is not applied is displayed in real time based on the image data transmitted from the electronic cassette 32.
  • step S658 the CPU 104 performs a lesion candidate area setting process as described with reference to FIGS. As a result, a new lesion candidate region may be found, or a region already set as a lesion candidate region may be excluded from the lesion candidate region.
  • the CPU 104 resets the irradiation region in step S660 after the lesion candidate region setting process in step S658.
  • the method for resetting the irradiation area is the same as that in step S602, and thus the description thereof is omitted.
  • step S662 the CPU 104 transmits information on the newly set irradiation area to the radiation generation apparatus 34, and causes the diaphragm control unit 502 to perform diaphragm control.
  • step S664 the CPU 104 controls transfer of image data of the electronic cassette. Specifically, the CPU 104 transmits a transfer stop request for image data in the non-irradiation area to the electronic cassette 32 together with information on the irradiation area or the non-irradiation area.
  • step S666 the CPU 104 displays an image in real time based on the image data transferred from the electronic cassette 32 for the irradiation region, and an image (still image) taken immediately before the aperture is applied to the non-irradiation region.
  • the display driver 112 is controlled so as to be displayed.
  • step S668 the CPU 104 determines whether or not a predetermined time has elapsed. If the CPU 104 determines in step S668 that the predetermined time has not elapsed, the process proceeds to step S670. In step S670, CPU 104 determines whether or not shooting has ended.
  • step S670 determines in step S670 that shooting has not ended
  • the process returns to step S668.
  • the CPU 104 determines in step S670 that shooting has ended, it ends the setting process during shooting operation. Furthermore, when the CPU 104 determines in step S668 that the predetermined time has elapsed, the CPU 104 returns to step S652.
  • the lesion candidate area setting process by performing the lesion candidate area setting process at predetermined time intervals, for example, when it is determined that the area set as the lesion candidate area is not a lesion candidate area after the setting, the lesion Since the irradiation area not including the candidate area can be set, the exposure dose of the subject can be reduced.
  • the lesion candidate area for example, the radiation X irradiation area is changed from the area shown in FIG. 36 to the area shown in FIG.
  • a region that has not been set as a lesion candidate region in the initial setting process can be set as a lesion candidate region during imaging.
  • the exposure dose can be reduced by setting the irradiation region and performing aperture control.
  • the program may be configured to be executed while skipping the lesion candidate area setting process in step S658 and the irradiation area resetting in step S660. That is, although the lesion candidate area set in the lesion candidate area setting process of the initial setting process is not changed, the real-time display and the still image display of the non-irradiation area can be switched at predetermined time intervals.
  • the above embodiment does not limit the invention according to the claims (claims), and all the combinations of features described in the embodiment are essential for the solution means of the invention. Is not limited.
  • the embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
  • transfer of image data from the electronic cassette 32 to the console 42 is generally more time-consuming for wireless communication than wired communication that can realize high-speed communication such as an optical fiber.
  • the non-compressed transfer area setting process and the area setting changing process described in the above embodiments are performed, and the uncompressed transfer area is processed.
  • the configuration of transmitting without compression and transmitting the compressed transfer area with lossless compression is particularly effective.
  • switching means for switching between wired communication and wireless communication is provided so that the operator can change the communication method. If the communication method is switched to wireless communication when the switchable configuration is configured, one of the area setting process and the area setting change process described in each of the above embodiments is performed. If the non-compressed transfer area is transmitted without being compressed, and the compressed transfer area is reversibly compressed and transmitted, for example, regardless of the frame rate, it is switched to wired communication.
  • a rectangular area including a region of interest (for example, an area indicated by a thick frame line in FIG. 21) may be always set as an uncompressed transfer area.
  • the electronic cassette 32 is provided with a wireless communication unit 94 as an example of a transmission unit that transmits image data to the console 42, and the cassette control unit 92 (CPU 92A) of the electronic cassette 32 sets the area.
  • the wireless cassette 94 transmits the image data in the non-compressed transfer area to the console 42 without being compressed, and the image data in the compressed transfer area is reversible.
  • the imaging system 18 that compresses and transmits to the console 42 has been described, but is not limited thereto.
  • the imaging system 18 may have a mobile terminal device provided with a display unit separately from the console 42.
  • the electronic cassette 32 transmits not only the console 42 but also the portable terminal device to the console 42 without compressing the image data in the uncompressed transfer area by the wireless communication unit 94, and The image data can be reversibly compressed and transmitted to the console 42.
  • the radiation generating device 34 is provided with a diaphragm mechanism (a diaphragm device 500 and a diaphragm controller 502) that narrows the radiation irradiation region.
  • the image data transmitted from the electronic cassette 32 to the communication control device 700 or the console 42 after narrowing the irradiation area can be only the image data of the irradiation area.
  • FIG. 38 schematically shows a configuration example of the imaging system 181 including the communication control device.
  • components other than the wireless communication unit 118 and the display 100 of the console 42 are schematically shown as a console body 800.
  • the imaging system 181 also includes a radiation generator 34, which is not shown here.
  • the electronic cassette 32 is connected to the communication control device 700 by wire. The electronic cassette 32 transmits the entire image data of the subject image to the communication control device 700 without being compressed.
  • the CPU included in the communication control device 700 that has received the image data from the electronic cassette 32 by wired communication performs the region setting process and the region setting change process, and wirelessly communicates with the console 42 via the wireless communication unit 700A. Transfer image data by communication.
  • the communication control device 700 transmits the image data in the uncompressed transfer area to the console 42 without being compressed, and transmits the image data in the compressed transfer area to the console 42 after lossless compression.
  • the console 42 receives image data by the wireless communication unit 118 and displays a subject image on the display 100 based on the received image data.
  • the photographing system may further include a mobile terminal device provided with a display unit.
  • FIG. 39 schematically illustrates a configuration example of an imaging system 182 including the communication control device 700 and the mobile terminal device 900.
  • the imaging system 182 also includes a radiation generator 34, which is not shown here.
  • the mobile terminal device 900 includes a display unit 900A such as a touch panel display and a wireless communication unit 900B for performing wireless communication with an external device.
  • components other than the wireless communication unit 118 and the display 100 of the console 42 are schematically shown as a console body 800.
  • the communication control device 700 is connected to the electronic cassette 32 and the console 42 by wire.
  • the electronic cassette 32 transmits the entire image data of the subject image to the communication control device 700 without being compressed.
  • the CPU included in the communication control apparatus 700 that has received the image data from the electronic cassette 32 by wired communication performs the area setting process and the area setting change process.
  • the image data of the entire area is transmitted without compression without distinction of the transfer area, and is transmitted to the portable terminal device 900 without compression for the uncompressed transfer area of the image data of the subject image,
  • the compression transfer area is transmitted with lossless compression.
  • the portable terminal device 900 displays an image on the display unit 900A based on the received image data.
  • the communication control device 700 also transmits the non-compressed transfer area of the image data of the subject image without compression to the console 42 and transmits the compressed transfer area after lossless compression. Good.
  • the communication control device 700 illustrated with reference to FIGS. 38 and 39 may be built in or integrally provided in the electronic cassette 32.
  • FIG. 40 schematically illustrates a configuration example of the imaging system 183 when the console 42 receives image data from the electronic cassette 32 by wired communication and transfers image data from the console 42 to the mobile terminal device 900 by wireless communication.
  • the imaging system 183 also includes a radiation generator 34, which is not shown here.
  • the electronic cassette 32 and the console 42 are connected by wire.
  • the electronic cassette 32 transmits uncompressed image data of the entire subject image to the console 42.
  • the CPU 104 of the console main body 800 of the console 42 performs the region setting process and the region setting change process, and transmits image data to the mobile terminal device 900 via the wireless communication unit 118 by wireless communication.
  • the image data in the uncompressed transfer area is transmitted to the mobile terminal device 900 without being compressed, and the image data in the compressed transfer area is reversibly compressed and transmitted to the mobile terminal device 900.
  • the mobile terminal device 900 displays an image on the display unit 900A based on the received image data.
  • the diaphragm mechanism (the diaphragm device 500 and the diaphragm control) that narrows the radiation irradiation area.
  • the image data transmitted from the electronic cassette 32 to the communication control device 700 or the console 42 after narrowing the irradiation region may be only the image data of the irradiation region. it can.
  • the area setting process and the area setting changing process may be performed by any of the communication control device 700, the electronic cassette 32, and the console 42, and the apparatus that performs the process is not particularly limited.
  • the frame rate is reduced to a frame rate having the upper limit of the number of areas in the non-compressed transfer area, and the irradiation period is changed according to the frame rate to perform imaging. May be.
  • the present invention is applied to the electronic cassette 32 which is a portable radiation imaging apparatus.
  • the present invention is not limited to this, and a stationary radiation imaging apparatus. You may apply to.
  • the gain amount of the operational amplifier 84A is adjusted or the parameter of the normalization process is adjusted has been described.
  • the present invention is not limited to this.
  • both the gain amount of the operational amplifier 84A and the parameter of the normalization process may be adjusted, and further, the parameter of another process may be adjusted.
  • the linear function is used as the conversion function of the normalization processing
  • the present invention is not limited to this.
  • a conversion function represented by a high-order function such as a quadratic function or a cubic function
  • a plurality of assumed cumulative histograms and a lookup table corresponding to each of the cumulative histograms are prepared, and a lookup table corresponding to the one that is close to the obtained cumulative histogram from the assumed cumulative histograms. May be determined as the normalization processing characteristics, and the image data may be converted based on the lookup table.
  • the scintillator 148 is formed in the radiation detection unit 62
  • the present invention is not limited to this.
  • the radiation detector 60 detects the radiation without providing the scintillator 148 in the radiation detector 62 as shown in FIG. It is good also as what attaches to the surface on the opposite side to the TFT substrate 66 of the device 60 (surface on the scintillator 71 side), and each sensor part 146 of the radiation detection part 62 concerned detects the light of the scintillator 71.
  • the scintillator 148 becomes unnecessary, and thus the radiation detection unit 62 can be formed thinner.
  • the radiation detector 62 is provided on the surface opposite to the TFT substrate 66 of the scintillator 71. Since the radiation X passes through the radiation detector 60 after passing through the radiation detector 60, it is possible to prevent the radiation image taken by the radiation detector 60 from being affected by the provision of the radiation detector 62.
  • the radiation detector 62 may be attached to the surface of the radiation detector 60 on the TFT substrate 66 side.
  • the radiation X may be incident from above or below in FIG. 29.
  • the sensor unit 146 performs organic photoelectric conversion in order to suppress radiation absorption by the sensor unit 146 of the radiation detection unit 62. It is preferable to form with a photoelectric conversion film containing the material.
  • the radiation detector 60 has been described as having an indirect conversion method in which radiation is converted into light once, and the converted light is converted into electric charge by the sensor unit 72 and accumulated.
  • the present invention is not limited to this.
  • the radiation detector 60 may be a direct conversion system that converts radiation into electric charges in a semiconductor layer such as amorphous selenium.
  • the electronic cassette 32 may transfer the radiation image detected by each sensor unit 146 of the radiation detection unit 62 to the console 42 and cause the console 42 to display on the display 100. Thereby, it is possible to quickly check the blurring and positioning of the subject from the displayed radiation image.
  • the cassette control unit 92 of the electronic cassette 32 generates various parameters from the radiation images detected by the sensor units 146 of the radiation detection unit 62, and is generated from the radiation detector 60.
  • the radiographic image normalization processing is performed (see also the imaging control processing program described with reference to FIGS. 13 and 15 in the first embodiment), but the present invention is not limited to this. Absent.
  • the cassette control unit 92 may transmit the digital data input from the signal detection unit 162 to the console 42 as needed, and the console 42 may perform any processing.
  • the cassette control unit 92 of the electronic cassette 32 performs the region setting process and the region setting change process based on the radiation image detected by each sensor unit 146 of the radiation detection unit 62 .
  • the present invention is not limited to this (see also FIG. 17 of the first embodiment, and FIGS. 23 and 27 of the second embodiment).
  • digital data image data of density image for density correction
  • the cassette control unit 92 may be transmitted to the console 42 at any time, and any processing may be performed in the console 42.
  • the region setting process and the region setting change processing program are stored in the HDD 110 of the console 42 and executed by the CPU 104 of the console 42.
  • the image data of the radiographic image for density correction has a resolution that is much lower than the resolution of the radiographic image detected by the radiation detector 60 and is detected by the radiation detector 60 if there is some margin in the transfer rate. Even when the image data of the radiation image to be displayed is displayed in real time, it can be transmitted without any trouble.
  • the density correction radiographic image may be used for setting, and when motion detection is performed, the radiographic image captured and transmitted by the radiation detector 60 may be used for detection.
  • the radiation image detected by the radiation detector 60 is used not only as a density correction radiation image but also for region setting processing and region setting change processing.
  • the radiation image may not be used for density correction but may be used only for region setting processing or region setting change processing.
  • the console 42 transmits an instruction signal instructing the electronic cassette 32 and the radiation generator 34 to start exposure, and the radiation generator 34 uses the instruction signal as a trigger to trigger the exposure condition.
  • the electronic cassette 32 may be configured to detect radiation that is equal to or greater than a threshold value from the radiation generator 34 and to read out a radiation image after the irradiation period has elapsed, in accordance with the frame rate and the irradiation period.
  • the synchronization signal may be transmitted to one of the electronic cassette 32 and the radiation generator 34, and the synchronization signal may not be transmitted to the other. That is, the method of synchronizing during shooting is not limited to the above embodiment.
  • the present invention is not limited to this.
  • the radiation to be detected may be X-rays, visible light, ultraviolet rays, infrared rays, gamma rays, particle rays, or the like.
  • the present invention is not limited to this.
  • the present invention can be applied to imaging other parts, and can be used for angios. Is also applicable.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Engineering & Computer Science (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Measurement Of Radiation (AREA)

Abstract

In the present invention, when transmitting, in a noncompressed state, image data of noncompressed transfer regions of a radiographic image obtained by transmission image pick-up, and transmitting the image data of remaining regions in a compressed state, a region is set as a noncompression transfer region; such region being a region which is at or below the upper limit value of a data volume that can be transmitted in a noncompressed state determined by the frame rate of transmission image pick-up and that includes an essential transfer region (MUST region) specified as a region within an interest region of a radiographic image and that is to be transferred in a noncompressed state.

Description

放射線画像撮影システム、方法及び放射線画像撮影制御プログラムRadiographic imaging system, method, and radiographic imaging control program
 本発明は、放射線画像撮影システム、方法及び放射線画像撮影制御プログラムに係り、特に、放射線源から射出されて被検者を透過した放射線により示される放射線画像の撮影を行う放射線画像撮影システム、方法及び放射線画像撮影制御プログラムに関する。 The present invention relates to a radiographic image capturing system, method, and radiographic image capturing control program, and in particular, a radiographic image capturing system, method, and method for capturing a radiographic image indicated by radiation emitted from a radiation source and transmitted through a subject. The present invention relates to a radiographic imaging control program.
 近年、TFT(Thin Film Transistor)アクティブマトリクス基板上に放射線感応層を配置し、放射線を直接デジタルデータに変換できるFPD(Flat Panel Detector)等の放射線検出器が実用化されており、この放射線検出器を用いて、照射された放射線により表わされる放射線画像を撮影する放射線撮影装置が実用化されている。この放射線検出器を用いた放射線撮影装置は、従来のX線フィルムやイメージングプレートを用いた放射線撮影装置に比べて、即時に画像を確認でき、連続的に放射線画像の撮影を行う透視撮影(動画撮影)も行うことができるといったメリットがある。 In recent years, radiation detectors such as FPD (Flat Panel Detector) which can arrange radiation sensitive layer on TFT (Thin Film Transistor) active matrix substrate and convert radiation directly into digital data have been put into practical use. A radiographic apparatus that captures a radiographic image represented by irradiated radiation has been put to practical use. The radiography apparatus using this radiation detector can see images immediately, compared with conventional radiography apparatuses using X-ray film or imaging plate, and radiographic imaging (moving image) (Photographing) can also be performed.
 この種の放射線検出器は、種々のタイプのものが提案されており、例えば、放射線を一度CsI:Tl、GOS(GdS:Tb)などのシンチレータで光に変換し、変換した光をフォトダイオードなどのセンサ部で電荷に変換して蓄積する間接変換方式や、放射線をアモルファスセレン等の半導体層で電荷に変換する直接変換方式等があり、各方式でも半導体層に使用可能な材料が種々存在する。放射線撮影装置では、放射線検出器に蓄積された電荷を電気信号として読み出し、読み出した電気信号を増幅器で増幅した後にA/D(アナログ/デジタル)変換部でデジタルデータに変換している。 Various types of radiation detectors of this type have been proposed. For example, radiation is once converted into light by a scintillator such as CsI: Tl, GOS (Gd 2 O 2 S: Tb), and converted light. Materials that can be used for the semiconductor layer in each method, such as an indirect conversion method that converts the charge into a charge using a sensor such as a photodiode, and a direct conversion method that converts radiation into a charge in a semiconductor layer such as amorphous selenium. There are various types. In the radiation imaging apparatus, the electric charge accumulated in the radiation detector is read as an electric signal, and the read electric signal is amplified by an amplifier and then converted into digital data by an A / D (analog / digital) converter.
 ところで、透視撮影の撮影方法には、放射線源から放射線を連続的に照射(連続照射)させつつ所定のフレームレートで撮影する方法と、フレームレートに同期させて放射線をパルス状に照射(パルス照射)させつつ放射線の照射に同期して撮影する方法がある。パルス照射は、撮影に必要な期間だけ放射線を照射でき、連続照射に比べて患者の被曝量を抑制できるため、単位時間当たりの照射量を上げられる利点がある。 By the way, there are two types of fluoroscopic imaging methods: a method of imaging at a predetermined frame rate while continuously irradiating (continuous irradiation) radiation from a radiation source, and a pulse irradiation (pulse irradiation) in synchronization with the frame rate. ) And taking a picture in synchronism with radiation. Pulsed irradiation has the advantage of increasing the irradiation amount per unit time because it can irradiate radiation only for the period required for imaging and can suppress the patient's exposure compared to continuous irradiation.
 透視撮影で得られた放射線画像をリアルタイムに表示するためには、放射線検出器からコンソールへ遅滞なく画像データを転送しなくてはならない。しかしながら、転送すべき画像データのサイズが大きいと、表示遅延が発生するおそれがある。そこで、表示遅延を起こさないために、画像データ全体を非可逆圧縮したりする方法も考えられるが、画像データの欠損や、表示される画像に劣化が生じ、支障が出るおそれがある。 In order to display the radiographic image obtained by fluoroscopy in real time, the image data must be transferred without delay from the radiation detector to the console. However, if the size of the image data to be transferred is large, display delay may occur. In order to prevent display delay, a method of irreversibly compressing the entire image data is conceivable. However, there is a possibility that the image data may be lost or the displayed image may be deteriorated, resulting in trouble.
 そこで、関心領域以外の非関心領域の階調分解能を落とすことにより、転送するデータ量を小さくする装置が知られている(特開2007-97977号公報参照。)。しかしながら、関心領域を固定とすると、フレームレートが高い場合に、関心領域のサイズによっては、転送すべきデータ量が大きすぎ、放射線画像をリアルタイムに表示することが困難となる。 Therefore, an apparatus is known in which the amount of data to be transferred is reduced by reducing the gradation resolution of non-interest regions other than the region of interest (see Japanese Patent Application Laid-Open No. 2007-9797). However, if the region of interest is fixed, when the frame rate is high, depending on the size of the region of interest, the amount of data to be transferred is too large, and it is difficult to display a radiation image in real time.
 これに対して、撮影されたフレームを複数の小領域に分割して、濃度値特徴量の変化量に基づいて関心領域を特定し、フレームレート等に応じて、関心領域のサイズ等の撮影条件を設定する装置も知られている(特開平6-209926号公報参照。)。 On the other hand, the captured frame is divided into a plurality of small regions, the region of interest is specified based on the amount of change in the density feature value, and the shooting conditions such as the size of the region of interest are determined according to the frame rate and the like. Is also known (see Japanese Patent Laid-Open No. 6-209926).
 関心領域内において、例えば腫瘍やポリープ等が存在する領域は、特に画像劣化なくリアルタイムに表示させたい領域であり、圧縮せずに画像データをコンソールに転送すべき領域であるが、上記特開平6-209926号公報に記載の技術では、そうした領域に関わらず、関心領域のサイズを設定してしまうため、圧縮せずに転送すべき領域が場合によっては圧縮されて送信される事態が生じうる。 In the region of interest, for example, a region where a tumor, a polyp, or the like exists is a region that is particularly desired to be displayed in real time without image deterioration, and is a region where image data should be transferred to the console without being compressed. In the technique described in Japanese Patent No. -209926, the size of the region of interest is set regardless of such a region, so that a region to be transferred without being compressed may be compressed before being transmitted.
 本発明は上記問題点を解決するためになされたものであり、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる放射線画像撮影システム及び方法を提供することを目的とする。 The present invention has been made in order to solve the above-described problems. In the radiographic image obtained by fluoroscopic imaging, image data of an area to be displayed in real time without deterioration in image quality is transmitted without being compressed reliably. Another object of the present invention is to provide a radiographic imaging system and method capable of displaying in real time without deterioration in image quality.
 上記目的を達成するために、本発明の第1の態様に係る放射線画像撮影システムは、放射線照射部からのパルス状に照射された放射線を検出して放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部と、前記放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信する送信部と、前記送信部から送信された放射線画像の画像データを受信する受信部と、前記受信部により受信された画像データに基づいて放射線画像を表示する表示部と、透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する転送領域設定部と、を備えている。 In order to achieve the above object, the radiographic imaging system according to the first aspect of the present invention is a fluoroscopic imaging that continuously detects radiographic images by detecting the radiation irradiated in a pulse form from the radiation irradiating unit. The image data of the radiographic image capturing unit that is enabled and the radiographic image non-compressed transfer region image data obtained by fluoroscopic imaging of the radiographic image capturing unit are transmitted without compression, and the image data of the remaining region is compressed Transmitting unit, receiving unit receiving the image data of the radiographic image transmitted from the transmitting unit, display unit displaying the radiographic image based on the image data received by the receiving unit, fluoroscopic imaging Specified as an area to be transferred in an uncompressed manner within the region of interest of the radiation image, which is below the upper limit of the amount of data that can be transferred without compression determined by the frame rate of The region containing the mandatory transfer area, and a, a transfer area setting unit that sets as the uncompressed transfer area.
 このような構成によれば、透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、非圧縮転送領域として設定することができるので、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる。 According to such a configuration, the area that is equal to or less than the upper limit of the amount of data that can be transferred in a non-compressed manner determined by the frame rate of the fluoroscopic imaging, and is specified as a region that should be transferred in a non-compressed area within the region of interest of the radiation image Since the area including the required transfer area can be set as an uncompressed transfer area, the image data of the area that should be displayed in real time without deterioration in image quality in the radiographic image obtained by fluoroscopic imaging can be reliably compressed. It can be sent and displayed in real time with no degradation in image quality.
 なお、第2の態様に係る発明のように、透視撮影中に、撮影部位の動きを検出する動き検出部を更に備え、前記転送領域設定部は、関心領域内において、前記動き検出部により検出される動き量が所定の閾値以上の動き領域が、前記設定した非圧縮転送領域以外の領域に発生した場合には、前記動き領域及び前記必須転送領域を含む領域が前記非圧縮転送領域となるように設定変更し、前記設定変更された前記非圧縮転送領域のデータ量が前記上限値を超える場合には、透視撮影のフレームレートを、前記設定変更された前記非圧縮転送領域のデータ量を上限値とするフレームレート以下となるように変更する第1変更部と、前記変更後のフレームレートに応じた各フレーム画像を撮影するための各フレーム期間に対する放射線の照射期間が、前記フレームレートが変更される以前の照射期間よりも長くなるように変更する第2変更部と、前記フレームレート及び照射期間の変更後は、前記変更されたフレームレート及び照射期間に応じて、前記放射線照射部から前記放射線画像撮影部に対して放射線をパルス照射させつつ当該パルス照射に同期させて前記放射線画像撮影部で放射線画像の撮影が行われるように制御する撮影制御部と、を更に備えていてもよい。 Note that, as in the invention according to the second aspect, a movement detection unit that detects the movement of the imaging region during fluoroscopic imaging is further provided, and the transfer region setting unit is detected by the motion detection unit within the region of interest. When a motion area whose amount of motion is greater than or equal to a predetermined threshold occurs in an area other than the set non-compressed transfer area, the area including the motion area and the essential transfer area becomes the non-compressed transfer area. If the data amount of the non-compressed transfer area whose setting has been changed exceeds the upper limit value, the frame rate of fluoroscopic imaging is changed to the data amount of the non-compressed transfer area whose setting has been changed. A first changing unit that changes to be equal to or less than a frame rate that is an upper limit value, and a radiation irradiation period for each frame period for capturing each frame image according to the changed frame rate A second changing unit that changes to be longer than the irradiation period before the frame rate is changed, and after the change of the frame rate and the irradiation period, according to the changed frame rate and the irradiation period, An imaging control unit that controls the radiographic imaging unit to perform radiographic imaging in synchronization with the pulse irradiation while irradiating the radiographic imaging unit with radiation from the radiation irradiating unit; You may have.
 このような構成によれば、透視撮影中に、確認すべき動きが発生した場合であっても、該動きが発生した領域を、非圧縮転送領域に含めて送信することができ、動き領域が検出されて上記設定変更された非圧縮転送領域のデータ量が透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値を超える場合には、該データ量に応じてフレームレートを変更させることができ、画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる。更に又、フレームレートの変更に応じて、照射期間も長くなるように変更するため、動きの滑らかな透視画像を表示させることができる。 According to such a configuration, even if a motion to be confirmed occurs during fluoroscopic imaging, the region in which the motion has occurred can be included in the uncompressed transfer region and transmitted. If the amount of data in the uncompressed transfer area that has been detected and the setting has been changed exceeds the upper limit of the amount of data that can be transferred without compression determined by the frame rate of fluoroscopic imaging, the frame rate is changed according to the amount of data. Therefore, it is possible to reliably transmit image data in an area to be displayed in real time without deterioration in image quality without being compressed, and display the image data in real time without deterioration in image quality. Furthermore, since the irradiation period is changed to become longer according to the change of the frame rate, a fluoroscopic image with smooth movement can be displayed.
 第3の態様に係る発明のように、前記第2変更部は、前記変更後のフレームレートに応じた各フレーム画像を撮影するための各フレーム期間に対する放射線の照射期間の割合を12.5%~80%の範囲内となるように変更するようにしてもよい。 As in the invention according to the third aspect, the second changing unit sets the ratio of the irradiation period of radiation to each frame period for capturing each frame image corresponding to the changed frame rate to 12.5%. You may make it change so that it may become in the range of -80%.
 また、第4の態様に係る発明のように、前記第2変更部は、前記変更後のフレームレートに応じた各フレーム期間に対する放射線の照射期間の割合を33%~80%の範囲内となるように変更するようにしてもよい。 Further, as in the invention according to the fourth aspect, the second changing unit has a ratio of the radiation irradiation period to each frame period corresponding to the changed frame rate within a range of 33% to 80%. You may make it change as follows.
 また、第5の態様に係る発明のように、前記第2変更部は、透視撮影の変更後のフレームレートが第1フレームレート閾値以下の場合、各フレーム期間に対する照射期間の割合を12.5%~80%となるように変更し、透視撮影の変更後のフレームレートが当該第1フレームレート閾値よりも低い第2フレームレート閾値以下の場合、各フレーム期間に対する照射期間の割合を33%~80%の範囲内となるように変更するようにしてもよい。 Further, as in the invention according to the fifth aspect, when the frame rate after changing the fluoroscopic imaging is equal to or less than the first frame rate threshold, the second changing unit sets the ratio of the irradiation period to each frame period to 12.5. If the frame rate after changing the fluoroscopic imaging is less than or equal to the second frame rate threshold lower than the first frame rate threshold, the ratio of the irradiation period to each frame period is 33% to You may make it change so that it may exist in the range of 80%.
 更にまた、第6の態様に係る発明のように、前記第1フレームレート閾値は、15fps以上かつ60fps以下とし、前記第2フレームレート閾値は、5fps以上かつ前記第1フレームレート閾値未満としてもよい。 Furthermore, as in the sixth aspect of the invention, the first frame rate threshold may be 15 fps or more and 60 fps or less, and the second frame rate threshold may be 5 fps or more and less than the first frame rate threshold. .
 第7の態様に係る発明のように、前記表示部に表示された放射線画像における動き領域に対する注視度を検出する注視度検出部を更に備え、前記転送領域設定部は、前記注視度検出部により検出された注視度が予め定められた閾値以下となった場合に、前記設定変更された非圧縮転送領域を変更前の非圧縮転送領域に戻すようにしてもよい。 As in the invention according to the seventh aspect, the image processing apparatus further includes a gaze degree detection unit that detects a gaze degree with respect to a motion region in the radiographic image displayed on the display unit, and the transfer area setting unit is controlled by the gaze degree detection unit. When the detected gaze degree is equal to or less than a predetermined threshold, the non-compressed transfer area whose setting has been changed may be returned to the uncompressed transfer area before the change.
 第8の態様に係る発明のように、前記注視度検出部により検出された注視度が予め定められた閾値以下となったときには、前記変更されたフレームレート及び照射期間を変更前の状態に変更する第3変更部を更に備え、前記撮影制御部は、前記フレームレート及び照射期間が変更前の状態に変更された後は、前記変更前の状態に戻されたフレームレート及び照射期間に応じて、前記放射線照射部から前記放射線画像撮影部に対して放射線をパルス照射させつつ当該パルス照射に同期させて前記放射線画像撮影部で放射線画像の撮影が行われるように制御するようにしてもよい。 As in the invention according to the eighth aspect, when the gaze degree detected by the gaze degree detection unit is equal to or less than a predetermined threshold, the changed frame rate and irradiation period are changed to the state before the change. The imaging control unit further includes a third changing unit that changes the frame rate and the irradiation period to the state before the change, and then changes the frame rate and the irradiation period according to the frame rate and the irradiation period that are returned to the state before the change. The radiation image capturing unit may be controlled so that the radiation image capturing unit captures a radiation image in synchronization with the pulse irradiation while the radiation image capturing unit performs pulse irradiation of radiation.
 第9の態様に係る発明のように、前記放射線画像撮影部は、放射線又は放射線が変換された光が照射されることにより電荷が発生する第1センサ部を有する画素が2次元状に複数配置された撮影部と、前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、を備え、前記送信部は、前記撮影部で透視撮影により得られた放射線画像の非圧縮転送領域の画像データについて非圧縮で前記表示部に送信し、該放射線画像の残りの領域の画像データについては圧縮して前記受信部に送信し、前記転送領域設定部は、前記検出部で検出された検出画像に基づいて前記設定を行うようにしてもよい。 Like the invention which concerns on a 9th aspect, the said radiographic imaging part arrange | positions the pixel which has a 1st sensor part which generate | occur | produces an electric charge by irradiating the light or the light into which the radiation was converted arrange | positioned two-dimensionally An imaging unit, and a detection unit arranged in a stack with the imaging unit and having a plurality of two-dimensionally arranged second sensor units having a larger area than the first sensor unit, and the transmission unit The image data in the non-compressed transfer area of the radiographic image obtained by fluoroscopic imaging in the imaging unit is transmitted to the display unit without compression, and the image data in the remaining area of the radiographic image is compressed and the receiving unit The transfer area setting unit may perform the setting based on a detection image detected by the detection unit.
 第10の態様に係る発明のように、前記放射線照射部と被験者との間に設けられ、前記放射線の照射領域を調整する絞り部と、少なくとも前記必須転送領域又は前記関心領域を含む領域を前記放射線の照射領域として設定する照射領域設定部と、前記照射領域設定部により設定された照射領域の画像データの送信が行われ、前記照射領域設定部により設定された照射領域以外の非照射領域の画像データの送信が行われないように前記送信部を制御する送信制御部と、を更に備えていてもよい。 As in the invention according to the tenth aspect, the diaphragm unit that is provided between the radiation irradiation unit and the subject and adjusts the irradiation region of the radiation, and the region including at least the essential transfer region or the region of interest An irradiation area setting unit that is set as an irradiation area of radiation and image data of the irradiation area set by the irradiation area setting unit are transmitted, and non-irradiation areas other than the irradiation area set by the irradiation area setting unit are transmitted. A transmission control unit that controls the transmission unit so that image data is not transmitted.
 本発明の第11の態様に係る放射線画像撮影システムは、放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部と、前記放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信する送信部と、透視撮影の際に前記放射線画像撮影部に対して放射線をパルス状に照射する放射線照射部と、前記送信部から送信された放射線画像の画像データを受信する受信部と、前記受信部により受信された画像データに基づいて放射線画像を表示する表示部と、透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する転送領域設定部と、を備えている。 A radiographic imaging system according to an eleventh aspect of the present invention includes a radiographic imaging unit capable of performing radiographic imaging that continuously performs radiographic imaging, and radiation obtained by fluoroscopic imaging of the radiographic imaging unit. The image data in the uncompressed transfer area of the image is transmitted uncompressed, and the image data in the remaining area is compressed and transmitted, and radiation is pulsed to the radiographic image capturing unit during fluoroscopic imaging A radiation irradiating unit that radiates in a shape; a receiving unit that receives image data of a radiographic image transmitted from the transmitting unit; a display unit that displays a radiographic image based on the image data received by the receiving unit; An area that is less than or equal to the upper limit of the amount of data that can be transferred in a non-compressed manner determined by the imaging frame rate, and is a special area that should be transferred in an uncompressed area within the region of interest of the radiation image The region with the required transfer regions, and a, a transfer area setting unit that sets as the uncompressed transfer area.
 第11の態様に係る発明も、第1の態様に係る発明と同様に作用するため、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる。 Since the invention according to the eleventh aspect operates in the same manner as the invention according to the first aspect, the image data of the area to be displayed in real time without deterioration in image quality is reliably compressed in the radiographic image obtained by fluoroscopic imaging. Without being transmitted, and can be displayed in real time without deterioration in image quality.
 また、第12の態様に係る発明の放射線画像撮影方法は、放射線照射部からのパルス状に照射された放射線を検出して放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信し、該送信された放射線画像の画像データを受信して表示する表示部により透視撮影された放射線画像を表示する際に、透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する。 The radiographic image capturing method according to the twelfth aspect of the present invention is a radiographic image in which fluoroscopic imaging capable of continuously capturing radiographic images by detecting radiation irradiated in a pulse form from a radiation irradiating unit. The image data of the uncompressed transfer area of the radiographic image obtained by fluoroscopic imaging of the imaging unit is transmitted without compression, the image data of the remaining area is compressed and transmitted, and the image data of the transmitted radiographic image is transmitted When displaying a radiographic image that is fluoroscopically captured by the display unit that receives and displays the image, an area that is equal to or less than the upper limit of the amount of data that can be transferred without compression determined by the frame rate of fluoroscopic radiography, An area including an essential transfer area specified as an area to be transferred in an uncompressed area within the area of interest is set as the uncompressed transfer area.
 第12の態様に係る発明も、第1の態様に係る発明と同様に作用するため、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる。 Since the invention according to the twelfth aspect also operates in the same manner as the invention according to the first aspect, the image data of the area to be displayed in real time without deterioration in image quality is reliably compressed in the radiographic image obtained by fluoroscopic imaging. Without being transmitted, and can be displayed in real time without deterioration in image quality.
 第13の態様に係る発明の放射線動画像撮影制御プログラムは、コンピュータを、第1~第10の何れか一つの発明に係る放射線動画像撮影システムの転送領域設定部として機能させる。 The radiological image capturing control program of the invention according to the thirteenth aspect causes a computer to function as a transfer area setting unit of the radiographic image capturing system according to any one of the first to tenth inventions.
 第14の態様に係る発明の放射線動画像撮影制御プログラムは、コンピュータを、第2~第10の何れか一つの発明に係る放射線動画像撮影システムの転送領域設定部、第1変更部、第2変更部、並びに撮影制御部として機能させる。 According to a fourteenth aspect of the present invention, there is provided a radiological moving image capturing control program comprising: a computer, a transfer area setting unit, a first changing unit, a second changing unit; It functions as a changing unit and a photographing control unit.
 本発明によれば、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域の画像データを、確実に圧縮せずに送信して、画質の劣化なくリアルタイムに表示させることができる、という効果が得られる。 According to the present invention, it is possible to reliably transmit image data of a region to be displayed in real time without deterioration in image quality in a radiographic image obtained by fluoroscopic imaging and display the image data in real time without deterioration in image quality. The effect of being able to be obtained is obtained.
実施の形態に係る放射線情報システムの構成を示すブロック図である。It is a block diagram which shows the structure of the radiation information system which concerns on embodiment. 実施の形態に係る放射線画像撮影システムの放射線撮影室における各装置の配置状態の一例を示す側面図である。It is a side view which shows an example of the arrangement | positioning state of each apparatus in the radiography room of the radiographic imaging system which concerns on embodiment. 実施の形態に係る電子カセッテの内部構成を示す透過斜視図である。It is a permeation | transmission perspective view which shows the internal structure of the electronic cassette concerning embodiment. 実施の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector and radiation detection part which concern on embodiment. 実施の形態に係る放射線検出器の薄膜トランジスタ及びコンデンサの構成を示した断面図である。It is sectional drawing which showed the structure of the thin-film transistor and capacitor | condenser of the radiation detector which concern on embodiment. 実施の形態に係るTFT基板の構成を示す平面図である。It is a top view which shows the structure of the TFT substrate which concerns on embodiment. 実施の形態に係る放射線検出部のセンサ部の配置構成を示す平面図である。It is a top view which shows the arrangement configuration of the sensor part of the radiation detection part which concerns on embodiment. 実施の形態に係る電子カセッテの電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electric system of the electronic cassette concerning embodiment. 実施の形態に係る放射線検出器の1画素部分に注目した等価回路図である。It is the equivalent circuit diagram which paid its attention to 1 pixel part of the radiation detector which concerns on embodiment. 第1及び第2の実施の形態に係るコンソール及び放射線発生装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical system of the console and radiation generator which concern on 1st and 2nd embodiment. 連続照射での放射線の照射期間、単位時間当たりの放射線の照射量、画像読出タイミングを示すタイムチャートである。It is a time chart which shows the irradiation period of the radiation in continuous irradiation, the irradiation amount of the radiation per unit time, and the image reading timing. パルス照射での放射線の照射期間、単位時間当たりの放射線の照射量、画像読出タイミングを示すタイムチャートである。It is a time chart which shows the irradiation period of the radiation by pulse irradiation, the irradiation amount of radiation per unit time, and the image reading timing. 透視撮影の撮影動作の流れを示すタイムチャートである。It is a time chart which shows the flow of imaging | photography operation | movement of fluoroscopic imaging. 実施の形態に係る撮影制御プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the imaging | photography control program which concerns on embodiment. 放射線検出部の各センサ部により検出された放射線画像の一例を示す図である。It is a figure which shows an example of the radiographic image detected by each sensor part of a radiation detection part. 図14Aの累積ヒストグラムを示すグラフである。It is a graph which shows the accumulation histogram of FIG. 14A. 撮影制御プログラム(変形例)の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of an imaging | photography control program (modification). (1)は異なる撮影条件下で撮影された放射線画像の累積ヒストグラムa、bを示すグラフであり、(2)は(1)の累積ヒストグラムa、bの被写体領域の主な濃度範囲MIN0~MAX0及びMIN1~MAX1がそれぞれ適正濃度範囲MIN2~MAX2となるように規格化処理した結果を示すグラフであり、(3)は規格化処理で用いる変換関の一例を示すグラフである。(1) is a graph showing cumulative histograms a and b of radiographic images taken under different imaging conditions, and (2) is a main density range MIN0 to MAX0 of the subject area of cumulative histograms a and b in (1). And MIN1 to MAX1 are graphs showing the results of normalization processing so that the appropriate density ranges MIN2 to MAX2 are respectively obtained. (3) is a graph showing an example of a conversion function used in the normalization processing. 第1の実施の形態に係る領域設定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the area | region setting process program which concerns on 1st Embodiment. 輝度値に不連続な部分が存在する放射線画像を模式的に示した図である。It is the figure which showed typically the radiographic image in which the discontinuous part exists in a luminance value. 関心領域、MUST領域、及び非圧縮転送領域の具体例を示した図である。It is the figure which showed the specific example of the region of interest, the MUST region, and the uncompressed transfer region. 放射線検出部のエリア数を縦軸に、フレームレートを横軸にして表わした、フレームレート毎の、リアルタイムで表示させるときに非圧縮で転送可能なエリア数の上限値を示すグラフである。It is a graph which shows the upper limit of the number of areas which can be transferred without compression when displaying in real time for each frame rate, with the number of areas of the radiation detection unit being expressed on the vertical axis and the frame rate on the horizontal axis. 関心領域、MUST領域、変更前の非圧縮転送領域、及び変更後の非圧縮転送領域の具体例を示した図である。It is the figure which showed the specific example of the region of interest, the MUST area, the uncompressed transfer area before the change, and the uncompressed transfer area after the change. 第1の実施の形態に係る、輝度値を縦軸に、放射線検出部のエリア番号を横軸にして表わした、エリア番号毎の輝度値を示す棒グラフである。It is a bar graph which shows the luminance value for every area number which represented the luminance value on the vertical axis | shaft and used the area number of the radiation detection part on the horizontal axis based on 1st Embodiment. 第2の実施の形態に係る領域設定変更処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the area | region setting change process program which concerns on 2nd Embodiment. 第2の実施の形態に係る、関心領域、MUST領域、変更前の非圧縮転送領域、及び変更後の非圧縮転送領域の具体例を示した図である。It is the figure which showed the specific example of the region of interest, MUST area | region, the uncompressed transfer area before a change, and the uncompressed transfer area after a change based on 2nd Embodiment. 第2の実施の形態に係る、輝度値を縦軸に、放射線検出部のエリア番号を横軸にして表わした、エリア番号毎の輝度値を示す棒グラフである。It is a bar graph which shows the luminance value for every area number which represented the luminance value on the vertical axis | shaft and used the area number of the radiation detection part on the horizontal axis based on 2nd Embodiment. 第2の実施の形態に係る照射期間決定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the irradiation period determination processing program which concerns on 2nd Embodiment. 第2の実施の形態に係る領域設定変更処理プログラム(変形例)の処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the area | region setting change process program (modification) concerning 2nd Embodiment. 他の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector which concerns on another form, and a radiation detection part. 他の形態に係る放射線検出器及び放射線検出部の構成を模式的に示した断面図である。It is sectional drawing which showed typically the structure of the radiation detector which concerns on another form, and a radiation detection part. 第3の実施の形態に係るコンソール及び放射線発生装置の電気系の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of the electrical system of the console and radiation generator which concern on 3rd Embodiment. 第3の実施の形態に係るコンソールのCPUにより実行される、絞り制御に関する初期設定処理プログラムの処理の流れを示すフローチャートである。It is a flowchart which shows the flow of a process of the initial setting process program regarding aperture control performed by CPU of the console which concerns on 3rd Embodiment. 病変候補領域設定処理の一例を示すフローチャートである。It is a flowchart which shows an example of a lesion candidate area | region setting process. 病変候補領域設定処理の他の例を示すフローチャートである。It is a flowchart which shows the other example of a lesion candidate area | region setting process. 初期設定処理の後に行われる撮影動作中設定処理の一例を示すフローチャートである。It is a flowchart which shows an example of the setting process during imaging | photography operation | movement performed after an initial setting process. 放射線の照射領域の具体例を示す図である。It is a figure which shows the specific example of the irradiation area | region of a radiation. 放射線の照射領域の具体例を示す図である。It is a figure which shows the specific example of the irradiation area | region of a radiation. 放射線の照射領域の具体例を示す図である。It is a figure which shows the specific example of the irradiation area | region of a radiation. 撮影システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of an imaging | photography system. 撮影システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of an imaging | photography system. 撮影システムの構成例を示す模式図である。It is a schematic diagram which shows the structural example of an imaging | photography system.
 以下、図面を参照して、本発明を実施するための形態について詳細に説明する。なお、ここでは、本発明を、可搬型の放射線撮影装置(以下「電子カセッテ」ともいう。)を用いて放射線画像の撮影を行う放射線画像撮影システムに適用した場合の形態例について説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. Here, a description will be given of an example in which the present invention is applied to a radiation image capturing system that captures a radiation image using a portable radiation imaging apparatus (hereinafter also referred to as “electronic cassette”).
 [第1の実施の形態] [First embodiment]
 まず、図1を参照して、本実施の形態に係る放射線情報システム(以下、「RIS(Radiology Information System)」と称する。)10の構成について説明する。 First, the configuration of a radiation information system (hereinafter referred to as “RIS (Radiology Information System)”) 10 according to the present embodiment will be described with reference to FIG.
 RIS10は、放射線科部門内における、診療予約、診断記録等の情報管理を行うためのシステムであり、病院情報システム(以下、「HIS(Hospital Information System)」と称する。)の一部を構成する。 The RIS 10 is a system for managing information such as medical appointments and diagnosis records in the radiology department, and constitutes a part of a hospital information system (hereinafter referred to as “HIS (Hospital Information System)”). .
 RIS10は、複数台の撮影依頼端末装置(以下、「端末装置」と称する。)12、RISサーバ14、及び病院内の放射線撮影室(あるいは手術室)の個々に設置された放射線画像撮影システム(以下、「撮影システム」と称する。)18を有しており、これらが有線や無線のLAN(Local Area Network)等から成る病院内ネットワーク16に各々接続されて構成されている。なお、RIS10は、同じ病院内に設けられたHISの一部を構成しており、病院内ネットワーク16には、HIS全体を管理するHISサーバ(図示省略。)も接続されている。 The RIS 10 includes a plurality of radiography requesting terminal devices (hereinafter referred to as “terminal devices”) 12, a RIS server 14, and a radiographic imaging system (or an operating room) installed in a hospital. (Hereinafter referred to as “imaging system”) 18, which are connected to an in-hospital network 16 comprising a wired or wireless LAN (Local Area Network) or the like. The RIS 10 constitutes a part of the HIS provided in the same hospital, and an HIS server (not shown) that manages the entire HIS is also connected to the in-hospital network 16.
 端末装置12は、医師や放射線技師が、診断情報や施設予約の入力、閲覧等を行うためのものであり、放射線画像の撮影依頼や撮影予約もこの端末装置12を介して行われる。各端末装置12は、表示装置を有するパーソナル・コンピュータを含んで構成され、RISサーバ14と病院内ネットワーク16を介して相互通信が可能とされている。 The terminal device 12 is used by doctors and radiographers to input and browse diagnostic information and facility reservations, and radiographic image capturing requests and imaging reservations are also performed via the terminal device 12. Each terminal device 12 includes a personal computer having a display device, and is capable of mutual communication via the RIS server 14 and the hospital network 16.
 一方、RISサーバ14は、各端末装置12からの撮影依頼を受け付け、撮影システム18における放射線画像の撮影スケジュールを管理するものであり、データベース14Aを含んで構成されている。 On the other hand, the RIS server 14 receives an imaging request from each terminal device 12, manages the radiographic imaging schedule in the imaging system 18, and includes a database 14A.
 データベース14Aは、患者(被検者)の属性情報(氏名、性別、生年月日、年齢、血液型、体重、患者ID(Identification)等)、病歴、受診歴、過去に撮影した放射線画像等の患者に関する情報、撮影システム18で用いられる、後述する電子カセッテ32の識別番号(ID情報)、型式、サイズ、感度、使用可能な撮影部位(対応可能な撮影依頼の内容)、使用開始年月日、使用回数等の電子カセッテ32に関する情報、及び電子カセッテ32を用いて放射線画像を撮影する環境、すなわち、電子カセッテ32を使用する環境(一例として、放射線撮影室や手術室等)を示す環境情報を含んで構成されている。 Database 14A includes patient (subject) attribute information (name, sex, date of birth, age, blood type, weight, patient ID (Identification), etc.), medical history, medical history, radiation images taken in the past, etc. Information related to the patient, identification number (ID information) of the electronic cassette 32 (to be described later) used in the imaging system 18, model, size, sensitivity, usable imaging part (content of imaging request that can be supported), date of start of use , Information on the electronic cassette 32 such as the number of times of use, and environment information indicating an environment in which a radiographic image is taken using the electronic cassette 32, that is, an environment in which the electronic cassette 32 is used (for example, a radiographic room or an operating room) It is comprised including.
 撮影システム18は、RISサーバ14からの指示に応じて医師や放射線技師の操作により放射線画像の撮影を行う。撮影システム18は、放射線源130(図2も参照。)から曝射条件に従った線量とされた放射線X(図3も参照。)を被検者に照射する放射線発生装置34と、被検者の撮影部位を透過した放射線Xを吸収して電荷を発生する放射線検出器60(図3も参照。)を内蔵する電子カセッテ32と、電子カセッテ32に内蔵されているバッテリを充電するクレードル40と、電子カセッテ32,放射線発生装置34,及びクレードル40を制御するコンソール42と、を備えている。 The imaging system 18 captures a radiographic image by an operation of a doctor or a radiographer according to an instruction from the RIS server 14. The imaging system 18 includes a radiation generator 34 that irradiates a subject with radiation X (see also FIG. 3) that is a dose according to the exposure conditions from a radiation source 130 (see also FIG. 2), and a subject. An electronic cassette 32 incorporating a radiation detector 60 (see also FIG. 3) that absorbs the radiation X transmitted through the imaging region of the person and generates an electric charge, and a cradle 40 that charges a battery built in the electronic cassette 32 A console 42 for controlling the electronic cassette 32, the radiation generator 34, and the cradle 40.
 コンソール42は、RISサーバ14からデータベース14Aに含まれる各種情報を取得して後述するHDD110(図10参照。)に記憶し、当該情報に基づいて、電子カセッテ32、放射線発生装置34、及びクレードル40の制御を行う。 The console 42 acquires various types of information included in the database 14A from the RIS server 14 and stores them in an HDD 110 (see FIG. 10) described later. Based on the information, the electronic cassette 32, the radiation generator 34, and the cradle 40 are stored. Control.
 図2には、本実施の形態に係る撮影システム18の放射線撮影室44における各装置の配置状態の一例が示されている。 FIG. 2 shows an example of the arrangement state of each device in the radiation imaging room 44 of the imaging system 18 according to the present embodiment.
 同図に示すように、放射線撮影室44には、立位での放射線撮影を行う際に用いられる立位台45と、臥位での放射線撮影を行う際に用いられる臥位台46とが設置されており、立位台45の前方空間は立位での放射線撮影を行う際の被検者の撮影位置48とされ、臥位台46の上方空間は臥位での放射線撮影を行う際の被検者の撮影位置50とされている。 As shown in the figure, the radiation imaging room 44 has a standing table 45 used when performing radiation imaging in a standing position and a prone table 46 used when performing radiation imaging in a lying position. The space in front of the standing base 45 is set as a subject imaging position 48 when performing radiography in the standing position, and the upper space of the prong position 46 is used in performing radiography in the prone position. The imaging position 50 of the subject.
 立位台45には電子カセッテ32を保持する保持部150が設けられており、立位での放射線画像の撮影を行う際には、電子カセッテ32が保持部150に保持される。同様に、臥位台46には電子カセッテ32を保持する保持部152が設けられており、臥位での放射線画像の撮影を行う際には、電子カセッテ32が保持部152に保持される。 The standing stand 45 is provided with a holding unit 150 that holds the electronic cassette 32, and the electronic cassette 32 is held by the holding unit 150 when a radiographic image is taken in the standing position. Similarly, a holding unit 152 that holds the electronic cassette 32 is provided in the prone position table 46, and the electronic cassette 32 is held by the holding unit 152 when radiographic images are taken in the prone position.
 また、放射線撮影室44には、単一の放射線源130からの放射線によって立位での放射線撮影も臥位での放射線撮影も可能とするために、放射線源130を、水平な軸回り(図2の矢印A方向)に回動可能で、鉛直方向(図2の矢印B方向)に移動可能で、更に水平方向(図2の矢印C方向)に移動可能に支持する支持移動機構52が設けられている。ここで、支持移動機構52は、放射線源130を水平な軸回りに回動させる駆動源と、放射線源130を鉛直方向に移動させる駆動源と、放射線源130を水平方向に移動させる駆動源を各々備えている(何れも図示省略。)。 Further, in the radiation imaging room 44, the radiation source 130 is arranged around a horizontal axis (see FIG. 5) in order to enable radiation imaging in a standing position and in a standing position by radiation from a single radiation source 130. 2 is provided that can be rotated in the vertical direction (arrow B direction in FIG. 2) and supported in a horizontal direction (in the arrow C direction in FIG. 2). It has been. Here, the support moving mechanism 52 includes a drive source that rotates the radiation source 130 about a horizontal axis, a drive source that moves the radiation source 130 in the vertical direction, and a drive source that moves the radiation source 130 in the horizontal direction. Each is provided (not shown).
 一方、クレードル40には、電子カセッテ32を収納可能な収容部40Aが形成されている。 On the other hand, the cradle 40 is formed with an accommodating portion 40A capable of accommodating the electronic cassette 32.
 電子カセッテ32は、未使用時にはクレードル40の収容部40Aに収納された状態で内蔵されているバッテリに充電が行われ、放射線画像の撮影時には放射線技師等によってクレードル40から取り出され、撮影姿勢が立位であれば立位台45の保持部150に保持され、撮影姿勢が臥位であれば臥位台46の保持部152に保持される。 When the electronic cassette 32 is not in use, the built-in battery is charged in a state of being accommodated in the accommodating portion 40A of the cradle 40. When a radiographic image is captured, the electronic cassette 32 is taken out from the cradle 40 by a radiographer or the like, and the imaging posture is established. If it is in the upright position, it is held in the holding part 150 of the standing table 45, and if it is in the upright position, it is held in the holding part 152 of the standing table 46.
 ここで、本実施の形態に係る撮影システム18では、放射線発生装置34とコンソール42とをそれぞれケーブルで接続して有線通信によって各種情報の送受信を行うが、図2では、放射線発生装置34とコンソール42を接続するケーブルを省略している。また、電子カセッテ32とコンソール42との間は、無線通信によって各種情報の送受信を行う。なお、放射線発生装置34とコンソール42の間の通信も無線通信によって通信を行うものとしてもよい。 Here, in the imaging system 18 according to the present embodiment, the radiation generator 34 and the console 42 are connected by cables and various types of information are transmitted and received by wired communication. In FIG. The cable connecting 42 is omitted. Various information is transmitted and received between the electronic cassette 32 and the console 42 by wireless communication. The communication between the radiation generator 34 and the console 42 may be performed by wireless communication.
 なお、電子カセッテ32は、立位台45の保持部150や臥位台46の保持部152で保持された状態のみで使用されるものではなく、その可搬性から、保持部に保持されていない状態で使用することもできる。 The electronic cassette 32 is not used only in the state of being held by the holding portion 150 of the standing base 45 or the holding portion 152 of the standing base 46, and is not held by the holding portion because of its portability. It can also be used in the state.
 図3には、本実施の形態に係る電子カセッテ32の内部構成が示されている。 FIG. 3 shows the internal configuration of the electronic cassette 32 according to the present embodiment.
 同図に示すように、電子カセッテ32は、放射線Xを透過させる材料からなる筐体54を備えており、防水性、密閉性を有する構造とされている。電子カセッテ32は、手術室等で使用されるとき、血液やその他の雑菌が付着するおそれがある。そこで、電子カセッテ32を防水性、密閉性を有する構造として、必要に応じて殺菌洗浄することにより、1つの電子カセッテ32を繰り返し続けて使用することができる。 As shown in the figure, the electronic cassette 32 includes a housing 54 made of a material that transmits the radiation X, and has a waterproof and airtight structure. When the electronic cassette 32 is used in an operating room or the like, there is a risk that blood and other germs may adhere. Therefore, one electronic cassette 32 can be used repeatedly by sterilizing and cleaning the electronic cassette 32 as necessary with a waterproof and airtight structure.
 筐体54の内部には、放射線Xが照射される筐体54の照射面56側から、被検者を透過した放射線Xによる放射線画像を撮影するための放射線検出器60、照射された放射線の検出を行う放射線検出部62が順に配設されている。 Inside the housing 54, a radiation detector 60 for taking a radiation image of the radiation X transmitted through the subject from the irradiation surface 56 side of the housing 54 to which the radiation X is irradiated, A radiation detection unit 62 that performs detection is disposed in order.
 また、筐体54の内部の一端側には、マイクロコンピュータを含む電子回路及び充電可能で、かつ着脱可能なバッテリ96Aを収容するケース31が配置されている。放射線検出器60、及び電子回路は、ケース31に配置されたバッテリ96Aから供給される電力によって作動する。ケース31内部に収容された各種回路が放射線Xの照射に伴って損傷することを回避するため、ケース31の照射面56側には鉛板等を配設しておくことが望ましい。なお、本実施の形態に係る電子カセッテ32は、照射面56の形状が長方形とされた直方体とされており、その長手方向一端部にケース31が配置されている。 In addition, an electronic circuit including a microcomputer and a chargeable and detachable battery 96A are disposed on one end side inside the housing 54. The radiation detector 60 and the electronic circuit are operated by electric power supplied from the battery 96 </ b> A disposed in the case 31. In order to avoid various circuits housed in the case 31 from being damaged by the radiation X irradiation, it is desirable to arrange a lead plate or the like on the irradiation surface 56 side of the case 31. The electronic cassette 32 according to the present embodiment is a rectangular parallelepiped whose irradiation surface 56 has a rectangular shape, and a case 31 is disposed at one end in the longitudinal direction.
 また、筐体54の外壁の所定位置には、‘レディ状態’,‘データ送信中’といった動作モード、バッテリ96Aの残容量の状態等の電子カセッテ32の動作状態を示す表示を行う表示部56Aが設けられている。なお、本実施の形態に係る電子カセッテ32では、表示部56Aとして、発光ダイオードを適用しているが、これに限らず、発光ダイオード以外の発光素子や、液晶ディスプレイ、有機ELディスプレイ等の他の表示手段としてもよい。 Further, at a predetermined position on the outer wall of the housing 54, a display unit 56A that displays an operation mode of the electronic cassette 32 such as an operation mode such as “ready state” and “data transmitting” and a remaining capacity of the battery 96A. Is provided. In the electronic cassette 32 according to the present embodiment, a light emitting diode is applied as the display unit 56A. However, the present invention is not limited to this, and other light emitting elements other than the light emitting diode, a liquid crystal display, an organic EL display, and the like are used. It may be a display means.
 図4には、本実施形態に係る放射線検出器60及び放射線検出部62の構成を模式的に示した断面図が示されている。 FIG. 4 is a cross-sectional view schematically showing configurations of the radiation detector 60 and the radiation detection unit 62 according to the present embodiment.
 放射線検出器60は、絶縁性基板64に薄膜トランジスタ(TFT:Thin Film Transistor、以下「TFT」という)70、及び蓄積容量68が形成されたTFTアクティブマトリクス基板(以下、「TFT基板」という)66を備えている。 The radiation detector 60 includes a TFT active matrix substrate (hereinafter referred to as “TFT substrate”) 66 in which a thin film transistor (TFT: Thin Film Transistor, hereinafter referred to as “TFT”) 70 and a storage capacitor 68 are formed on an insulating substrate 64. I have.
 このTFT基板66上には、入射される放射線を光に変換するシンチレータ71が配置される。 On the TFT substrate 66, a scintillator 71 that converts incident radiation into light is disposed.
 シンチレータ71としては、例えば、CsI:Tl、GOSを用いることができる。なお、シンチレータ71は、これらの材料に限られるものではない。 As the scintillator 71, for example, CsI: Tl, GOS can be used. The scintillator 71 is not limited to these materials.
 絶縁性基板64としては、光透過性を有し且つ放射線の吸収が少ないものであれば何れでもよく、例えば、ガラス基板、透明セラミック基板、光透過性の樹脂基板を用いることができる。なお、絶縁性基板64は、これらの材料に限られるものではない。 The insulating substrate 64 may be any substrate as long as it is light transmissive and absorbs little radiation. For example, a glass substrate, a transparent ceramic substrate, or a light transmissive resin substrate can be used. The insulating substrate 64 is not limited to these materials.
 TFT基板66には、本発明の第1センサ部に対応し、シンチレータ71によって変換された光が入射されることにより電荷を発生するセンサ部72が形成されている。また、TFT基板66には、TFT基板66上を平坦化するための平坦化層67が形成されている。また、TFT基板66とシンチレータ71との間であって、平坦化層67上には、シンチレータ71をTFT基板66に接着するための接着層69が形成されている。 The TFT substrate 66 is provided with a sensor portion 72 that corresponds to the first sensor portion of the present invention and generates charges when light converted by the scintillator 71 is incident thereon. A flattening layer 67 for flattening the TFT substrate 66 is formed on the TFT substrate 66. An adhesive layer 69 for bonding the scintillator 71 to the TFT substrate 66 is formed between the TFT substrate 66 and the scintillator 71 and on the planarizing layer 67.
 センサ部72は、上部電極72A、下部電極72B、及び該上下の電極間に配置された光電変換膜72Cを有している。 The sensor unit 72 includes an upper electrode 72A, a lower electrode 72B, and a photoelectric conversion film 72C disposed between the upper and lower electrodes.
 光電変換膜72Cは、シンチレータ71から発せられた光を吸収し、吸収した光に応じた電荷を発生する。光電変換膜72Cは、光が照射されることにより電荷を発生する材料により形成すればよく、例えば、アモルファスシリコンや有機光電変換材料などにより形成することができる。アモルファスシリコンを含む光電変換膜72Cであれば、幅広い吸収スペクトルを持ち、シンチレータ71による発光を吸収することができる。有機光電変換材料を含む光電変換膜72Cであれば、可視域にシャープな吸収スペクトルを持ち、シンチレータ71による発光以外の電磁波が光電変換膜72Cに吸収されることがほとんどなく、X線等の放射線が光電変換膜72Cで吸収されることによって発生するノイズを効果的に抑制することができる。 The photoelectric conversion film 72C absorbs the light emitted from the scintillator 71 and generates a charge corresponding to the absorbed light. The photoelectric conversion film 72C may be formed of a material that generates charges when irradiated with light. For example, the photoelectric conversion film 72C may be formed of amorphous silicon, an organic photoelectric conversion material, or the like. The photoelectric conversion film 72C containing amorphous silicon has a wide absorption spectrum and can absorb light emitted by the scintillator 71. If the photoelectric conversion film 72C includes an organic photoelectric conversion material, it has a sharp absorption spectrum in the visible range, and electromagnetic waves other than light emitted by the scintillator 71 are hardly absorbed by the photoelectric conversion film 72C, and radiation such as X-rays. Is effectively suppressed by the photoelectric conversion film 72C being absorbed.
 本実施の形態では、光電変換膜72Cに有機光電変換材料を含んで構成する。有機光電変換材料としては、例えばキナクリドン系有機化合物及びフタロシアニン系有機化合物が挙げられる。例えばキナクリドンの可視域における吸収ピーク波長は560nmであるため、有機光電変換材料としてキナクリドンを用い、シンチレータ71の材料としてCsI(Tl)を用いれば、上記ピーク波長の差を5nm以内にすることが可能となり、光電変換膜72Cで発生する電荷量をほぼ最大にすることができる。この光電変換膜72Cとして適用可能な有機光電変換材料については、特開2009-32854号公報において詳細に説明されているため説明を省略する。 In the present embodiment, the photoelectric conversion film 72C includes an organic photoelectric conversion material. Examples of the organic photoelectric conversion material include quinacridone organic compounds and phthalocyanine organic compounds. For example, since the absorption peak wavelength in the visible region of quinacridone is 560 nm, if quinacridone is used as the organic photoelectric conversion material and CsI (Tl) is used as the material of the scintillator 71, the difference in peak wavelength can be made within 5 nm. Thus, the amount of charge generated in the photoelectric conversion film 72C can be substantially maximized. Since an organic photoelectric conversion material applicable as the photoelectric conversion film 72C is described in detail in Japanese Patent Application Laid-Open No. 2009-32854, description thereof is omitted.
 図5には、本実施の形態に係るTFT基板66に形成されたTFT70及び蓄積容量68の構成が概略的に示されている。 FIG. 5 schematically shows the configuration of the TFT 70 and the storage capacitor 68 formed on the TFT substrate 66 according to the present embodiment.
 絶縁性基板64上には、下部電極72Bに対応して、下部電極72Bに移動した電荷を蓄積する蓄積容量68と、蓄積容量68に蓄積された電荷を電気信号に変換して出力するTFT70が形成されている。蓄積容量68及びTFT70の形成された領域は、平面視において下部電極72Bと重なる部分を有しており、このような構成とすることで、各画素部における蓄積容量68及びTFT70とセンサ部72とが厚さ方向で重なりを有することとなり、少ない面積で蓄積容量68及びTFT70とセンサ部72を配置できる。 On the insulating substrate 64, corresponding to the lower electrode 72B, a storage capacitor 68 for storing the charge transferred to the lower electrode 72B, and a TFT 70 for converting the charge stored in the storage capacitor 68 into an electric signal and outputting it. Is formed. The region where the storage capacitor 68 and the TFT 70 are formed has a portion that overlaps with the lower electrode 72B in a plan view. With such a configuration, the storage capacitor 68 and the TFT 70 in each pixel portion, the sensor portion 72, and the like. Therefore, the storage capacitor 68, the TFT 70, and the sensor unit 72 can be arranged with a small area.
 蓄積容量68は、絶縁性基板64と下部電極72Bとの間に設けられた絶縁膜65Aを貫通して形成された導電性材料の配線を介して対応する下部電極72Bと電気的に接続されている。これにより、下部電極72Bで捕集された電荷を蓄積容量68に移動させることができる。 The storage capacitor 68 is electrically connected to the corresponding lower electrode 72B through a wiring made of a conductive material formed through an insulating film 65A provided between the insulating substrate 64 and the lower electrode 72B. Yes. Thereby, the charges collected by the lower electrode 72B can be moved to the storage capacitor 68.
 TFT70は、ゲート電極70A、ゲート絶縁膜65B、及び活性層(チャネル層)70Bが積層され、更に、活性層70B上にソース電極70Cとドレイン電極70Dが所定の間隔を開けて形成されている。また、放射線検出器60では、活性層70Bが非晶質酸化物により形成されている。活性層70Bを構成する非晶質酸化物としては、In、Ga及びZnのうちの少なくとも1つを含む酸化物(例えばIn-O系)が好ましく、In、Ga及びZnのうちの少なくとも2つを含む酸化物(例えばIn-Zn-O系、In-Ga-O系、Ga-Zn-O系)がより好ましく、In、Ga及びZnを含む酸化物が特に好ましい。In-Ga-Zn-O系非晶質酸化物としては、結晶状態における組成がInGaO(ZnO)(mは6未満の自然数)で表される非晶質酸化物が好ましく、特に、InGaZnOがより好ましい。 In the TFT 70, a gate electrode 70A, a gate insulating film 65B, and an active layer (channel layer) 70B are stacked, and a source electrode 70C and a drain electrode 70D are formed on the active layer 70B at a predetermined interval. In the radiation detector 60, the active layer 70B is formed of an amorphous oxide. As the amorphous oxide constituting the active layer 70B, an oxide containing at least one of In, Ga, and Zn (for example, In—O-based) is preferable, and at least two of In, Ga, and Zn are used. An oxide containing In (eg, In—Zn—O, In—Ga—O, or Ga—Zn—O) is more preferable, and an oxide containing In, Ga, and Zn is particularly preferable. As the In—Ga—Zn—O-based amorphous oxide, an amorphous oxide whose composition in a crystalline state is represented by InGaO 3 (ZnO) m (m is a natural number of less than 6) is preferable, and in particular, InGaZnO. 4 is more preferable.
 TFT70の活性層70Bを非晶質酸化物で形成したものとすれば、X線等の放射線を吸収せず、あるいは吸収したとしても極めて微量に留まるため、ノイズの発生を効果的に抑制することができる。 If the active layer 70B of the TFT 70 is formed of an amorphous oxide, it will not absorb radiation such as X-rays, or even if it absorbs it, it will remain extremely small, effectively suppressing the generation of noise. Can do.
 ここで、TFT70の活性層70Bを構成する非晶質酸化物や、光電変換膜72Cを構成する有機光電変換材料は、何れも低温での成膜が可能である。従って、絶縁性基板64としては、半導体基板、石英基板、及びガラス基板等の耐熱性の高い基板に限定されず、プラスチック等の可撓性基板、アラミド、バイオナノファイバを用いることもできる。具体的には、ポリエチレンテレフタレート、ポリブチレンフタレート、ポリエチレンナフタレート等のポリエステル、ポリスチレン、ポリカーボネート、ポリエーテルスルホン、ポリアリレート、ポリイミド、ポリシクロオレフィン、ノルボルネン樹脂、ポリ(クロロトリフルオロエチレン)等の可撓性基板を用いることができる。このようなプラスチック製の可撓性基板を用いれば、軽量化を図ることもでき、例えば持ち運び等に有利となる。なお、絶縁性基板64には、絶縁性を確保するための絶縁層、水分や酸素の透過を防止するためのガスバリア層、平坦性あるいは電極等との密着性を向上するためのアンダーコート層等を設けてもよい。 Here, both the amorphous oxide constituting the active layer 70B of the TFT 70 and the organic photoelectric conversion material constituting the photoelectric conversion film 72C can be formed at a low temperature. Therefore, the insulating substrate 64 is not limited to a highly heat-resistant substrate such as a semiconductor substrate, a quartz substrate, and a glass substrate, and a flexible substrate such as plastic, aramid, or bio-nanofiber can also be used. Specifically, flexible materials such as polyesters such as polyethylene terephthalate, polybutylene phthalate, and polyethylene naphthalate, polystyrene, polycarbonate, polyethersulfone, polyarylate, polyimide, polycycloolefin, norbornene resin, and poly (chlorotrifluoroethylene). A conductive substrate can be used. If such a plastic flexible substrate is used, it is possible to reduce the weight, which is advantageous for carrying around, for example. The insulating substrate 64 includes an insulating layer for ensuring insulation, a gas barrier layer for preventing permeation of moisture and oxygen, an undercoat layer for improving flatness or adhesion to electrodes, and the like. May be provided.
 アラミドは、200度以上の高温プロセスを適用できるために、透明電極材料を高温硬化させて低抵抗化でき、また、ハンダのリフロー工程を含むドライバICの自動実装にも対応できる。また、アラミドは、ITO(indium tin oxide)やガラス基板と熱膨張係数が近いため、製造後の反りが少なく、割れにくい。また、アラミドは、ガラス基板等と比べて薄く基板を形成できる。なお、超薄型ガラス基板とアラミドを積層して絶縁性基板64を形成してもよい。 Since aramid can be applied to a high-temperature process of 200 ° C. or higher, the transparent electrode material can be cured at a high temperature to lower its resistance, and can also be used for automatic mounting of a driver IC including a solder reflow process. Moreover, since aramid has a thermal expansion coefficient close to that of ITO (indium tin oxide) or a glass substrate, warping after production is small and it is difficult to crack. In addition, aramid can form a substrate thinner than a glass substrate or the like. Note that the insulating substrate 64 may be formed by stacking an ultrathin glass substrate and aramid.
 バイオナノファイバは、バクテリア(酢酸菌、Acetobacter Xylinum)が産出するセルロースミクロフィブリル束(バクテリアセルロース)と透明樹脂との複合したものである。セルロースミクロフィブリル束は、幅50nmと可視光波長に対して1/10のサイズで、かつ、高強度、高弾性、低熱膨である。バクテリアセルロースにアクリル樹脂、エポキシ樹脂等の透明樹脂を含浸・硬化させることで、繊維を60-70%も含有しながら、波長500nmで約90%の光透過率を示すバイオナノファイバが得られる。バイオナノファイバは、シリコン結晶に匹敵する低い熱膨張係数(3-7ppm)を有し、鋼鉄並の強度(460MPa)、高弾性(30GPa)で、かつフレキシブルであることから、ガラス基板等と比べて薄く絶縁性基板64を形成できる。 Bionanofiber is a composite of cellulose microfibril bundle (bacterial cellulose) produced by bacteria (acetic acid bacteria, Acetobacter® Xylinum) and transparent resin. The cellulose microfibril bundle has a width of 50 nm and a size of 1/10 of the visible light wavelength, and has high strength, high elasticity, and low thermal expansion. By impregnating and curing a transparent resin such as acrylic resin or epoxy resin into bacterial cellulose, a bio-nanofiber having a light transmittance of about 90% at a wavelength of 500 nm can be obtained while containing 60-70% of the fiber. Bionanofiber has a low coefficient of thermal expansion (3-7ppm) comparable to silicon crystals, and is as strong as steel (460MPa), highly elastic (30GPa), and flexible. Compared to glass substrates, etc. A thin insulating substrate 64 can be formed.
 図6には、本実施の形態に係るTFT基板66の構成を示す平面図が示されている。 FIG. 6 is a plan view showing the configuration of the TFT substrate 66 according to this embodiment.
 TFT基板66には、上述のセンサ部72、蓄積容量68、TFT70と、を含んで構成される画素74が一定方向(図6の行方向)及び一定方向に対する交差方向(図6の列方向)に2次元状に複数設けられている。例えば、放射線検出部62を、17インチ×17インチのサイズとした場合、画素74を行方向及び列方向に2880個ずつ配置する。 The TFT substrate 66 includes a pixel 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 described above in a certain direction (row direction in FIG. 6) and a crossing direction with respect to the certain direction (column direction in FIG. 6). Are provided two-dimensionally. For example, when the radiation detection unit 62 has a size of 17 inches × 17 inches, 2880 pixels 74 are arranged in the row direction and the column direction.
 また、放射線検出器60には、一定方向(行方向)に延設され各TFT70をオン・オフさせるための複数本のゲート配線76と、交差方向(列方向)に延設されオン状態のTFT70を介して電荷を読み出すための複数本のデータ配線78が設けられている。 Further, the radiation detector 60 includes a plurality of gate wirings 76 extending in a certain direction (row direction) for turning on / off each TFT 70, and an on-state TFT 70 extending in a crossing direction (column direction). A plurality of data wirings 78 are provided for reading out charges via the.
 放射線検出器60は、平板状で平面視において外縁に4辺を有する四辺形状をしている。具体的には矩形状に形成されている。 The radiation detector 60 is flat and has a quadrilateral shape with four sides on the outer edge in plan view. Specifically, it is formed in a rectangular shape.
 本実施形態に係る放射線検出器60は、図4に示すように、このようなTFT基板66の表面にシンチレータ71が貼り付けられて形成される。 The radiation detector 60 according to the present embodiment is formed by attaching a scintillator 71 to the surface of the TFT substrate 66 as shown in FIG.
 シンチレータ71は、例えば、CsI:Tl等の柱状結晶で形成しようとする場合、蒸着基板73への蒸着によって形成される。このように蒸着によってシンチレータ71を形成する場合、蒸着基板73は、X線の透過率、コストの面からAlの板がよく使用され、蒸着の際のハンドリング性、自重による反り防止、輻射熱による変形等からある程度(数mm程度)の厚みが必要となる。 The scintillator 71 is formed by vapor deposition on the vapor deposition substrate 73 when it is intended to be formed of a columnar crystal such as CsI: Tl. Thus, when forming the scintillator 71 by vapor deposition, the vapor deposition substrate 73 is often an Al plate in terms of X-ray transmittance and cost, handling properties during vapor deposition, prevention of warpage due to its own weight, and deformation due to radiant heat. Therefore, a certain thickness (about several mm) is required.
 このような放射線検出器60のシンチレータ71側の面には、放射線検出部62が貼り付けられている。 The radiation detector 62 is attached to the surface of the radiation detector 60 on the scintillator 71 side.
 放射線検出部62は、例えば、樹脂性の支持基板140上に、後述する配線160(図8)がパターニングされた配線層142及び絶縁層144が形成されており、その上に、本発明の第2センサ部に対応する複数のセンサ部146が形成され、当該センサ部146上に、GOS等からなるシンチレータ148が形成されている。センサ部146は、上部電極147A、下部電極147B、及び該上下の電極間に配置された光電変換膜147Cを有している。光電変換膜147Cには、シンチレータ148によって変換された光が入射されることにより電荷を発生する。この光電変換膜147Cは、アモルファスシリコンを用いたPIN型、MIS型フォトダイオードよりも、上述の有機光電変換材料が含有された光電変換膜が好ましい。これは、PIN型フォトダイオードやMIS型フォトダイオードを用いた場合と比較して、製造コストの削減や、フレキシブル化への対応の点で有機光電変換材料が含有された光電変換膜を用いた方が有利だからである。この放射線検出部62のセンサ部146は、放射線検出器60の各画素74に設けられたセンサ部72ほど細かく形成する必要はなく、放射線検出器60の数十から数百画素のサイズで形成すればよい。 In the radiation detection unit 62, for example, a wiring layer 142 and an insulating layer 144 in which a wiring 160 (FIG. 8) to be described later is patterned are formed on a resin support substrate 140. A plurality of sensor units 146 corresponding to the two sensor units are formed, and a scintillator 148 made of GOS or the like is formed on the sensor unit 146. The sensor unit 146 includes an upper electrode 147A, a lower electrode 147B, and a photoelectric conversion film 147C disposed between the upper and lower electrodes. The photoelectric conversion film 147 </ b> C generates a charge when light converted by the scintillator 148 is incident thereon. The photoelectric conversion film 147C is preferably a photoelectric conversion film containing the above-described organic photoelectric conversion material, rather than a PIN-type or MIS-type photodiode using amorphous silicon. Compared to the case of using a PIN type photodiode or MIS type photodiode, this is a method using a photoelectric conversion film containing an organic photoelectric conversion material in terms of reduction in manufacturing cost and flexibility. Is advantageous. The sensor unit 146 of the radiation detector 62 does not need to be formed as finely as the sensor unit 72 provided in each pixel 74 of the radiation detector 60, and is formed with a size of tens to hundreds of pixels of the radiation detector 60. That's fine.
 図7には、本実施の形態に係る放射線検出部62のセンサ部146の配置構成を示す平面図が示されている。 7 is a plan view showing an arrangement configuration of the sensor unit 146 of the radiation detection unit 62 according to the present embodiment.
 放射線検出部62には、センサ部146が一定方向(図7の行方向)及び一定方向に対する交差方向(図7の列方向)に多数配置されており、例えば、センサ部146を行方向及び列方向に16個ずつマトリクス状に配置する。 In the radiation detection unit 62, a large number of sensor units 146 are arranged in a certain direction (row direction in FIG. 7) and in an intersecting direction (column direction in FIG. 7) with respect to the certain direction. For example, the sensor unit 146 is arranged in the row direction and column. 16 pieces are arranged in a matrix in the direction.
 図8には、本実施の形態に係る電子カセッテ32の電気系の要部構成を示すブロック図が示されている。 FIG. 8 is a block diagram showing the main configuration of the electrical system of the electronic cassette 32 according to the present embodiment.
 放射線検出器60は、上述したように、センサ部72、蓄積容量68、TFT70を備えた画素74がマトリクス状に多数個配置されており、電子カセッテ32への放射線Xの照射に伴ってセンサ部72で発生された電荷は、個々の画素74の蓄積容量68に蓄積される。これにより、電子カセッテ32に照射された放射線Xに担持されていた画像情報は電荷情報へ変換されて放射線検出器60に保持される。 As described above, the radiation detector 60 includes a plurality of pixels 74 including the sensor unit 72, the storage capacitor 68, and the TFT 70 arranged in a matrix, and the sensor unit according to the irradiation of the radiation X to the electronic cassette 32. The charges generated at 72 are stored in the storage capacitors 68 of the individual pixels 74. As a result, the image information carried on the radiation X irradiated to the electronic cassette 32 is converted into charge information and held in the radiation detector 60.
 また、放射線検出器60の個々のゲート配線76はゲート線ドライバ80に接続されており、個々のデータ配線78は信号処理部82に接続されている。個々の画素74の蓄積容量68に電荷が蓄積されると、個々の画素74のTFT70は、ゲート線ドライバ80からゲート配線76を介して供給される信号により行単位で順にオンされ、TFT70がオンされた画素74の蓄積容量68に蓄積されている電荷は、アナログの電気信号としてデータ配線78を伝送されて信号処理部82に入力される。従って、個々の画素74の蓄積容量68に蓄積されている電荷は行単位で順に読み出される。 Further, each gate wiring 76 of the radiation detector 60 is connected to a gate line driver 80, and each data wiring 78 is connected to a signal processing unit 82. When charges are accumulated in the storage capacitors 68 of the individual pixels 74, the TFTs 70 of the individual pixels 74 are sequentially turned on in units of rows by a signal supplied from the gate line driver 80 through the gate wiring 76, and the TFTs 70 are turned on. The charges stored in the storage capacitor 68 of the pixel 74 are transmitted through the data wiring 78 as an analog electric signal and input to the signal processing unit 82. Therefore, the charges accumulated in the accumulation capacitors 68 of the individual pixels 74 are read out in order in row units.
 図9には、本実施の形態に係る放射線検出器60の1画素部分に注目した等価回路図が示されている。 FIG. 9 shows an equivalent circuit diagram focusing on one pixel portion of the radiation detector 60 according to the present exemplary embodiment.
 同図に示すように、TFT70のソースは、データ配線78に接続されており、このデータ配線78は、信号処理部82に接続されている。また、TFT70のドレインは蓄積容量68及び光電変換部72に接続され、TFT70のゲートはゲート配線76に接続されている。 As shown in the figure, the source of the TFT 70 is connected to a data wiring 78, and the data wiring 78 is connected to a signal processing unit 82. The drain of the TFT 70 is connected to the storage capacitor 68 and the photoelectric conversion unit 72, and the gate of the TFT 70 is connected to the gate wiring 76.
 信号処理部82は、個々のデータ配線78毎にサンプルホールド回路84を備えている。個々のデータ配線78を伝送された電気信号はサンプルホールド回路84に保持される。サンプルホールド回路84はオペアンプ84Aとコンデンサ84Bを含んで構成され、電気信号をアナログ電圧に変換する。また、サンプルホールド回路84にはコンデンサ84Bの両電極をショートさせ、コンデンサ84Bに蓄積された電荷を放電させるリセット回路としてスイッチ84Cが設けられている。オペアンプ84Aは、後述するカセッテ制御部92からの制御によりゲイン量を調整可能とされている。 The signal processing unit 82 includes a sample hold circuit 84 for each data wiring 78. The electric signal transmitted through each data wiring 78 is held in the sample hold circuit 84. The sample hold circuit 84 includes an operational amplifier 84A and a capacitor 84B, and converts an electric signal into an analog voltage. The sample hold circuit 84 is provided with a switch 84C as a reset circuit that shorts both electrodes of the capacitor 84B and discharges the electric charge accumulated in the capacitor 84B. The operational amplifier 84A can adjust the gain amount by control from a cassette control unit 92 described later.
 サンプルホールド回路84の出力側にはマルチプレクサ86、A/D変換器88が順に接続されており、個々のサンプルホールド回路に保持された電気信号はアナログ電圧に変換されてマルチプレクサ86に順に(シリアルに)入力され、A/D変換器88によってデジタルの画像情報へ変換される。 A multiplexer 86 and an A / D converter 88 are sequentially connected to the output side of the sample and hold circuit 84, and the electrical signals held in the individual sample and hold circuits are converted into analog voltages and sequentially supplied to the multiplexer 86 (serially). ) And converted into digital image information by the A / D converter 88.
 信号処理部82には画像メモリ90が接続されており(図8参照。)、信号処理部82のA/D変換器88から出力された画像データは画像メモリ90に順に記憶される。画像メモリ90は複数フレーム分の画像データを記憶可能な記憶容量を有しており、放射線画像の撮影が行われる毎に、撮影によって得られた画像データが画像メモリ90に順次記憶される。 An image memory 90 is connected to the signal processing unit 82 (see FIG. 8), and image data output from the A / D converter 88 of the signal processing unit 82 is stored in the image memory 90 in order. The image memory 90 has a storage capacity capable of storing image data for a plurality of frames, and image data obtained by imaging is sequentially stored in the image memory 90 every time a radiographic image is captured.
 画像メモリ90は電子カセッテ32全体の動作を制御するカセッテ制御部92と接続されている。カセッテ制御部92はマイクロコンピュータを含んで構成されており、CPU(中央処理装置)92A、ROM(Read Only Memory)及びRAM(Random Access Memory)を含むメモリ92B、HDD(ハードディスク・ドライブ)やフラッシュメモリ等からなる不揮発性の記憶部92Cを備えている。 The image memory 90 is connected to a cassette control unit 92 that controls the operation of the entire electronic cassette 32. The cassette control unit 92 includes a microcomputer, and includes a CPU (Central Processing Unit) 92A, a memory 92B including a ROM (Read Only Memory) and a RAM (Random Access Memory), an HDD (Hard Disk Drive), and a flash memory. A non-volatile storage unit 92 </ b> C is provided.
 また、カセッテ制御部92には無線通信部94が接続されている。本実施の形態に係る無線通信部94は、IEEE(Institute of Electrical and Electronics Engineers)802.11a/b/g等に代表される無線LAN(Local Area Network)規格に対応しており、無線通信による外部機器との間での各種情報の伝送を制御する。カセッテ制御部92は、無線通信部94を介してコンソール42と無線通信が可能とされており、コンソール42との間で各種情報の送受信が可能とされている。 In addition, a wireless communication unit 94 is connected to the cassette control unit 92. The wireless communication unit 94 according to the present embodiment is compatible with a wireless LAN (Local Area Network) standard represented by IEEE (Institute of Electrical and Electronics Electronics) (802.11a / b / g) and is based on wireless communication. Controls the transmission of various information to and from external devices. The cassette control unit 92 can wirelessly communicate with the console 42 via the wireless communication unit 94, and can transmit and receive various information to and from the console 42.
 一方、放射線検出部62は、上述したように、センサ部146がマトリクス状に多数個配置されている。また、放射線検出部62には、各センサ部146とそれぞれ個別に接続された複数の配線160が設けられており、各配線160は信号検出部162に接続されている。 On the other hand, as described above, the radiation detection unit 62 includes a large number of sensor units 146 arranged in a matrix. The radiation detection unit 62 is provided with a plurality of wires 160 individually connected to the sensor units 146, and the wires 160 are connected to the signal detection unit 162.
 信号検出部162は、配線160毎に設けられた増幅器及びA/D変換器を備えており、カセッテ制御部92と接続されている。信号検出部162は、カセッテ制御部92からの制御により、所定の周期で各配線160のサンプリングを行って各配線160を伝送される電気信号をデジタルデータに変換し、変換したデジタルデータを順次、カセッテ制御部92へ出力する。 The signal detection unit 162 includes an amplifier and an A / D converter provided for each wiring 160, and is connected to the cassette control unit 92. The signal detection unit 162 performs sampling of each wiring 160 at a predetermined cycle by the control from the cassette control unit 92, converts the electrical signal transmitted through each wiring 160 into digital data, and sequentially converts the converted digital data, Output to the cassette control unit 92.
 また、電子カセッテ32には電源部96が設けられており、上述した各種回路や各素子(ゲート線ドライバ80、信号処理部82、画像メモリ90、無線通信部94、カセッテ制御部92、信号検出部162等)は、電源部96から供給された電力によって作動する。電源部96は、電子カセッテ32の可搬性を損なわないように、前述したバッテリ(二次電池)96Aを内蔵しており、充電されたバッテリ96Aから各種回路や各素子へ電力を供給する。なお、図8では、電源部96と各種回路や各素子を接続する配線の図示を省略している。 In addition, the electronic cassette 32 is provided with a power supply unit 96, and the various circuits and elements described above (gate line driver 80, signal processing unit 82, image memory 90, wireless communication unit 94, cassette control unit 92, signal detection). The unit 162 and the like are operated by the electric power supplied from the power source unit 96. The power supply unit 96 incorporates the above-described battery (secondary battery) 96A so as not to impair the portability of the electronic cassette 32, and supplies power from the charged battery 96A to various circuits and elements. In FIG. 8, illustration of wirings connecting the power supply unit 96 to various circuits and elements is omitted.
 図10には、本実施の形態に係るコンソール42及び放射線発生装置34の電気系の要部構成を示すブロック図が示されている。 FIG. 10 is a block diagram showing the main configuration of the electrical system of the console 42 and the radiation generator 34 according to the present embodiment.
 コンソール42は、サーバ・コンピュータとして構成されており、操作メニューや撮影された放射線画像等を表示するディスプレイ100と、複数のキーを含んで構成され、各種の情報や操作指示が入力される操作パネル102と、を備えている。 The console 42 is configured as a server computer, and includes a display 100 that displays an operation menu, a captured radiation image, and the like, and a plurality of keys, and an operation panel on which various information and operation instructions are input. 102.
 また、本実施の形態に係るコンソール42は、装置全体の動作を司るCPU104と、制御プログラムを含む各種プログラム等が予め記憶されたROM106と、各種データを一時的に記憶するRAM108と、各種データを記憶して保持するHDD110と、ディスプレイ100への各種情報の表示を制御するディスプレイドライバ112と、操作パネル102に対する操作状態を検出する操作入力検出部114と、を備えている。また、コンソール42は、接続端子42A及び通信ケーブル35を介して放射線発生装置34との間で後述する曝射条件等の各種情報の送受信を行う通信インタフェース(I/F)部116と、電子カセッテ32との間で無線通信により撮影条件、曝射条件、及び画像データ等の各種情報の送受信を行う無線通信部118と、を備えている。 The console 42 according to the present embodiment includes a CPU 104 that controls the operation of the entire apparatus, a ROM 106 that stores various programs including a control program in advance, a RAM 108 that temporarily stores various data, and various data. It includes an HDD 110 that stores and holds, a display driver 112 that controls display of various types of information on the display 100, and an operation input detection unit 114 that detects an operation state of the operation panel 102. In addition, the console 42 includes a communication interface (I / F) unit 116 that transmits and receives various types of information such as an exposure condition to be described later to and from the radiation generator 34 via the connection terminal 42A and the communication cable 35, and an electronic cassette. And a wireless communication unit 118 that transmits and receives various types of information such as image capturing conditions, exposure conditions, and image data by wireless communication.
 CPU104、ROM106、RAM108、HDD110、ディスプレイドライバ112、操作入力検出部114、通信インタフェース部116、及び無線通信部118は、システムバスBUSを介して相互に接続されている。従って、CPU104は、ROM106、RAM108、HDD110へのアクセスを行うことができると共に、ディスプレイドライバ112を介したディスプレイ100への各種情報の表示の制御、通信I/F部116を介した放射線発生装置34との各種情報の送受信の制御、及び無線通信部118を介した放射線発生装置34との各種情報の送受信の制御を各々行うことができる。また、CPU104は、操作入力検出部114を介して操作パネル102に対するユーザの操作状態を把握することができる。 CPU 104, ROM 106, RAM 108, HDD 110, display driver 112, operation input detection unit 114, communication interface unit 116, and wireless communication unit 118 are connected to each other via a system bus BUS. Therefore, the CPU 104 can access the ROM 106, RAM 108, and HDD 110, controls display of various information on the display 100 via the display driver 112, and the radiation generator 34 via the communication I / F unit 116. And control of transmission / reception of various information to / from the radiation generator 34 via the wireless communication unit 118. Further, the CPU 104 can grasp the operation state of the user with respect to the operation panel 102 via the operation input detection unit 114.
 一方、放射線発生装置34は、放射線源130と、コンソール42との間で曝射条件等の各種情報を送受信する通信I/F部132と、受信した曝射条件に基づいて放射線源130を制御する線源制御部134と、を備えている。 On the other hand, the radiation generator 34 controls the radiation source 130 based on the received radiation conditions and the communication I / F unit 132 that transmits and receives various information such as the radiation conditions between the radiation source 130 and the console 42. A radiation source control unit 134.
 線源制御部134もマイクロコンピュータを含んで構成されており、受信した曝射条件等を記憶する。このコンソール42から受信する曝射条件には管電圧、管電流の情報が含まれている。線源制御部134は、受信した曝射条件に基づいて放射線源130から放射線Xを照射させる。 The radiation source control unit 134 is also configured to include a microcomputer, and stores the received exposure conditions and the like. The exposure conditions received from the console 42 include information on tube voltage and tube current. The radiation source controller 134 irradiates the radiation X from the radiation source 130 based on the received exposure conditions.
 なお、本実施の形態に係る撮影システム18は、1回ずつ撮影を行う静止画撮影と、連続的に撮影を行う透視撮影が可能とされており、撮影モードとして静止画撮影又は透視撮影が選択可能とされている。 Note that the imaging system 18 according to the present embodiment is capable of still image shooting in which shooting is performed once and fluoroscopic shooting in which continuous shooting is performed, and still image shooting or fluoroscopic shooting is selected as a shooting mode. It is possible.
 ところで、図11Aに示すように、連続照射での透視撮影は、撮影中に放射線源130から放射線が連続的に照射されており、画像読出時にも放射線が照射されるため、単位時間当たりの放射線の照射量を低く抑えて被検者48の被曝量を抑える必要がある。 By the way, as shown in FIG. 11A, in fluoroscopic imaging with continuous irradiation, radiation is continuously irradiated from the radiation source 130 during imaging, and radiation is also irradiated during image reading. Therefore, it is necessary to suppress the exposure dose of the subject 48 by reducing the dose of the subject.
 一方、図11Bに示すように、パルス照射での透視撮影は、撮影に必要な期間だけ放射線を照射でき、連続照射に比べて患者の被曝量を抑制できるため、単位時間当たりの照射量を上げられる利点がある。 On the other hand, as shown in FIG. 11B, fluoroscopic imaging with pulse irradiation can irradiate radiation only for the period required for imaging, and can reduce the patient's exposure compared to continuous irradiation, so the irradiation dose per unit time is increased. There are advantages to being
 このため、本実施の形態に係る撮影システム18では、透視撮影をパルス照射で行う。 For this reason, in the imaging system 18 according to the present embodiment, fluoroscopic imaging is performed by pulse irradiation.
 図12には、パルス照射での透視撮影を行う際の撮影動作の流れを示すタイムチャートが示されている。 FIG. 12 shows a time chart showing the flow of imaging operation when performing fluoroscopic imaging with pulse irradiation.
 コンソール42は、指定されたフレームレートに応じた周期で同期信号を放射線発生装置34及び電子カセッテ32へ送信する。 The console 42 transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 at a cycle corresponding to the designated frame rate.
 放射線発生装置34は、同期信号を受信する毎に、コンソール42から受信した曝射条件に応じた管電圧、管電流、及び照射期間で放射線を発生・射出する。 Each time the radiation generator 34 receives a synchronization signal, it generates and emits radiation at a tube voltage, a tube current, and an irradiation period corresponding to the exposure conditions received from the console 42.
 電子カセッテ32のカセッテ制御部92は、同期信号を受信してから曝射条件で指定された照射期間の経過後にゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させ、各ゲート配線76に接続された各TFT70を1ラインずつ順にオンさせて画像を読み出す。放射線検出器60の各データ配線78に流れ出した電気信号は信号処理部82でデジタルの画像データに変換されて、画像メモリ90に記憶され、1画像ずつコンソール42へ送信される。コンソール42へ送信された画像は、コンソール42でシェーディング補正などの各種の補正する画像処理が行われてHDD110に記憶されると共に、撮影した放射線画像の確認等のためにディスプレイ100に表示され、また、RISサーバ14に転送されてデータベース14Aにも格納される。 The cassette control unit 92 of the electronic cassette 32 controls the gate line driver 80 after the irradiation period specified by the exposure condition after receiving the synchronization signal, and sequentially sets each gate line 76 from the gate line driver 80 line by line. An on signal is output to turn on the TFTs 70 connected to the gate wirings 76 one line at a time to read an image. The electric signal flowing out to each data wiring 78 of the radiation detector 60 is converted into digital image data by the signal processing unit 82, stored in the image memory 90, and transmitted to the console 42 one image at a time. The image transmitted to the console 42 is subjected to various correction image processing such as shading correction in the console 42 and stored in the HDD 110, and is displayed on the display 100 for confirmation of the captured radiation image. , Transferred to the RIS server 14 and stored in the database 14A.
 次に、本実施の形態に係る撮影システム18で透視撮影を行う場合の作用を説明する。 Next, the operation when performing fluoroscopic imaging with the imaging system 18 according to the present embodiment will be described.
 端末装置12(図1参照。)は、放射線画像の撮影する場合、医師又は放射線技師からの撮影依頼を受け付ける。当該撮影依頼では、撮影対象とする患者、撮影対象とする撮影部位、撮影目的、撮影モード、フレームレートが指定され、管電圧、管電流などが必要に応じて指定される。 The terminal device 12 (see FIG. 1) accepts an imaging request from a doctor or a radiographer when imaging a radiographic image. In the imaging request, a patient to be imaged, an imaging region to be imaged, an imaging purpose, an imaging mode, a frame rate are specified, and a tube voltage, a tube current, and the like are specified as necessary.
 端末装置12は、受け付けた撮影依頼の内容をRISサーバ14に通知する。RISサーバ14は、端末装置12から通知された撮影依頼の内容をデータベース14Aに記憶する。 The terminal device 12 notifies the RIS server 14 of the contents of the accepted imaging request. The RIS server 14 stores the contents of the imaging request notified from the terminal device 12 in the database 14A.
 コンソール42は、RISサーバ14にアクセスすることにより、RISサーバ14から撮影依頼の内容及び撮影対象とする患者の属性情報を取得し、撮影依頼の内容及び患者の属性情報をディスプレイ100(図10参照。)に表示する。 The console 42 accesses the RIS server 14 to acquire the content of the imaging request and the attribute information of the patient to be imaged from the RIS server 14, and displays the content of the imaging request and the attribute information of the patient on the display 100 (see FIG. 10). .).
 撮影者は、ディスプレイ100に表示された撮影依頼の内容に基づいて放射線画像の撮影を開始する。 The radiographer starts radiographic image capturing based on the content of the radiography request displayed on the display 100.
 例えば、図2に示すように、臥位台46上に横臥した被検者の患部の撮影を行う際、臥位台46の保持部152に電子カセッテ32を配置する。 For example, as shown in FIG. 2, when imaging the affected part of the subject lying on the prone table 46, the electronic cassette 32 is arranged on the holding unit 152 of the prone table 46.
 そして、撮影者は、操作パネル102に対して撮影モードとして静止画撮影又は透視撮影を指定し、更に、操作パネル102に対して放射線Xを照射する際の管電圧及び管電流等を指定する。 Then, the photographer designates still image photographing or fluoroscopic photographing as a photographing mode for the operation panel 102, and further designates a tube voltage, a tube current, and the like when the operation panel 102 is irradiated with the radiation X.
 ここで、放射線検出器60は、X線が照射されていない状態であっても暗電流等によってセンサ部72に電荷が発生して各画素74の蓄積容量68に電荷が蓄積される。 Here, even when the radiation detector 60 is not irradiated with X-rays, charges are generated in the sensor unit 72 by dark current or the like, and the charges are stored in the storage capacitors 68 of the respective pixels 74.
 このため、本実施の形態に係る電子カセッテ32では、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行い、放射線の照射開始を検出すると放射線検出器60の各画素74の蓄積容量68に蓄積された電荷を取り出して除去するリセット動作を行った後に撮影を開始する。 For this reason, in the electronic cassette 32 according to the present embodiment, when the radiation image is taken, the radiation detection unit 62 detects the radiation, and when the radiation irradiation start is detected, each pixel 74 of the radiation detector 60 is detected. Imaging is started after a reset operation for taking out and removing the charges accumulated in the storage capacitor 68 is performed.
 コンソール42は、管電圧、管電流、パルス照射におけるフレームレート及び照射期間を曝射条件として放射線発生装置34及び電子カセッテ32へ送信し、指定された撮影部位、撮影目的、撮影モード、管電圧、管電流、許容量を撮影条件として電子カセッテ32へ送信する。放射線発生装置34の線源制御部134は、コンソール42から曝射条件を受信すると、受信した曝射条件を記憶し、電子カセッテ32のカセッテ制御部92は、コンソール42から曝射条件、撮影条件を受信すると、受信した曝射条件、撮影条件を記憶部92Cに記憶する。 The console 42 transmits the tube voltage, the tube current, the frame rate in the pulse irradiation and the irradiation period to the radiation generator 34 and the electronic cassette 32 as the exposure conditions, and designates the designated imaging region, imaging purpose, imaging mode, tube voltage, The tube current and the allowable amount are transmitted to the electronic cassette 32 as photographing conditions. When the radiation source control unit 134 of the radiation generator 34 receives the exposure conditions from the console 42, the radiation control unit 134 stores the received exposure conditions, and the cassette control unit 92 of the electronic cassette 32 receives the exposure conditions and imaging conditions from the console 42. Is received, the received exposure conditions and imaging conditions are stored in the storage unit 92C.
 撮影者は、撮影準備完了すると、コンソール42の操作パネル102に対して撮影を指示する撮影指示操作を行う。 When the photographer completes preparation for photographing, the photographer performs a photographing instruction operation for instructing photographing on the operation panel 102 of the console 42.
 コンソール42は、操作パネル102に対して撮影開始操作が行われると、曝射開始を指示する指示情報を放射線発生装置34及び電子カセッテ32へ送信して撮影動作を開始する。 When an imaging start operation is performed on the operation panel 102, the console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32, and starts an imaging operation.
 また、本実施の形態に係る電子カセッテ32では、放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行って濃度補正用の放射線画像を取得し、その濃度補正用の放射線画像を解析して、適切な濃度の画像が得られるオペアンプ84Aのゲイン量を求め、求めたゲイン量をフィードバックさせてオペアンプ84Aのゲイン量等を調整して放射線検出器60から放射線画像の読み出しを行っている。 In the electronic cassette 32 according to the present embodiment, when a radiographic image is taken, the radiation detection unit 62 detects the radiation to acquire a radiographic image for density correction, and the radiographic image for density correction. The gain amount of the operational amplifier 84A from which an image with an appropriate density is obtained is obtained, and the obtained gain amount is fed back to adjust the gain amount of the operational amplifier 84A and the radiation image is read from the radiation detector 60. ing.
 コンソール42は、曝射開始を指示する指示情報を放射線発生装置34及び電子カセッテ32へ送信した後、指定されたフレームレートに応じた周期で同期信号を放射線発生装置34及び電子カセッテ32へ送信する。 The console 42 transmits instruction information for instructing the start of exposure to the radiation generator 34 and the electronic cassette 32, and then transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 in a cycle corresponding to the designated frame rate. .
 放射線発生装置34は、同期信号を受信する毎に、コンソール42から受信した曝射条件に応じた管電圧、管電流、照射期間で放射線を発生・射出する。 Each time the radiation generator 34 receives a synchronization signal, it generates and emits radiation at a tube voltage, a tube current, and an irradiation period corresponding to the exposure conditions received from the console 42.
 電子カセッテ32のカセッテ制御部92は、同期信号を受信して所定期間が経過すると、図13に示す撮影制御プログラムを実行する。なお、当該プログラムはメモリ92B(ROM)の所定の領域に予め記憶されている。 The cassette control unit 92 of the electronic cassette 32 executes the shooting control program shown in FIG. 13 when a predetermined period elapses after receiving the synchronization signal. The program is stored in advance in a predetermined area of the memory 92B (ROM).
 ステップS24では、カセッテ制御部92は、放射線検出部62に設けられた各センサ部146で検出された検出値をそれぞれ各センサ部146の配列に対応して2次元状に配列し、各検出値を画素値として放射線検出部62の各センサ部146により検出された放射線画像の画像データを生成する。この放射線画像は、放射線検出部62の各センサ部146が放射線検出器60の数十から数百画素のサイズで形成されるため、放射線検出器60により撮影される画像の間引き画像となる。 In step S <b> 24, the cassette control unit 92 arranges the detection values detected by the sensor units 146 provided in the radiation detection unit 62 in a two-dimensional manner corresponding to the arrangement of the sensor units 146. Is used as a pixel value to generate image data of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62. This radiation image is a thinned-out image captured by the radiation detector 60 because each sensor unit 146 of the radiation detection unit 62 is formed with a size of several tens to several hundreds of pixels of the radiation detector 60.
 次のステップS28では、カセッテ制御部92は、上記ステップS26で生成した画像データの解析を行い、オペアンプ84Aの適切なゲイン量を導出する。 In the next step S28, the cassette control unit 92 analyzes the image data generated in step S26 and derives an appropriate gain amount for the operational amplifier 84A.
 ここで、この画像の解析について説明する。なお、本実施の形態では、各センサ部146毎に、各センサ部146により検出されたデジタルデータの累計値を記憶する記憶領域を用意しており、透視撮影の連続的な撮影において、前回の撮影(前フレームの撮影)からのデジタルデータの累計値を記憶する記憶領域としているものとする。 Here, the analysis of this image will be described. In this embodiment, for each sensor unit 146, a storage area for storing the cumulative value of the digital data detected by each sensor unit 146 is prepared. It is assumed that the storage area stores a cumulative value of digital data from shooting (shooting of the previous frame).
 図14Aには、放射線検出部62の各センサ部146により検出された放射線画像の一例が示されており、図14Bには、図14Aに示す放射線画像の累積ヒストグラムが示されている。累積ヒストグラムとは、1枚の放射線画像を成す全画像データについて、画素値(輝度値)を横軸に、その画素値の画素の出現率(頻度)を縦軸にして表した図である。 FIG. 14A shows an example of a radiographic image detected by each sensor unit 146 of the radiation detection unit 62, and FIG. 14B shows a cumulative histogram of the radiographic image shown in FIG. 14A. The cumulative histogram is a diagram in which the pixel value (luminance value) is represented on the horizontal axis and the appearance rate (frequency) of the pixel of the pixel value is represented on the vertical axis for all image data forming one radiation image.
 放射線画像は、撮影部位の像(図14Aでは顔)が写った被写体領域と、撮影部位の写っていない所謂、素抜け領域で画素数が多いため、累積ヒストグラムにおいても被写体領域及び素抜け領域の累積値でピークとなり、また、被写体領域の方が濃度変化が大きいため、累積ヒストグラムにおいても幅が広くなる。 Since the radiographic image has a large number of pixels in a subject region in which an image of the imaging region (a face in FIG. 14A) is shown and a so-called unexposed region in which the imaging region is not in image, the subject region and the non-existence region in the cumulative histogram The cumulative value has a peak, and the subject region has a larger density change, so the width of the cumulative histogram is also widened.
 この累積ヒストグラムにおいて、撮影部位の像によるデータ値の範囲を特定する。この特定方法としては、公知の技術を用いることができる。本実施の形態では、スネークスアルゴリズムなどの動的輪郭抽出処理、ハフ変換などを利用した輪郭抽出処理を行い、輪郭点に沿った線で囲まれる領域を被写体領域と認識する。なお、例えば、特開平4-11242号に記載の技術を用いて、被写体領域を認識するものとしてもよく、また、例えば、撮影部位毎に標準的な形状を示すパターン画像をメモリ92B(ROM)に記憶しておき、撮影された放射線画像内で撮影部位に応じたパターン画像の位置や拡大率を変えつつ、放射線画像とパターン画像との類似度を求めるパターンマッチングを行い、類似度の最も高い領域を被写体領域と認識するものとしてもよい。 ∙ In this cumulative histogram, specify the range of data values based on the image of the imaging region. A known technique can be used as this specifying method. In the present embodiment, dynamic contour extraction processing such as a snakes algorithm, contour extraction processing using Hough transform or the like is performed, and a region surrounded by a line along the contour point is recognized as a subject region. For example, the subject area may be recognized by using the technique described in Japanese Patent Laid-Open No. 4-11242. For example, a pattern image showing a standard shape for each imaging region is stored in the memory 92B (ROM). The pattern matching is performed to obtain the similarity between the radiographic image and the pattern image while changing the position and enlargement ratio of the pattern image in accordance with the imaging region in the radiographic image taken, and the highest similarity is obtained. The area may be recognized as a subject area.
 放射線画像の認識された被写体領域の累積ヒストグラムを求め、例えば、当該累積ヒストグラムにおいてピーク値の半値幅を被写体領域の主な濃度範囲として、当該濃度範囲の中心が所定の適正濃度範囲の中心になるようなオペアンプ84Aのゲイン量を求める。このゲイン量は、濃度範囲の中心と適正濃度範囲の中心との差毎に適正なゲイン量をゲイン量情報としてメモリ92B(ROM)に予め記憶しておき、濃度範囲の中心と適正濃度範囲の中心との差に対応するゲイン量をゲイン量情報から求めるものとしてもよく、また、濃度範囲の中心と所定の適正濃度範囲の中心との差と、適正なゲイン量との関係を定めた演算式をメモリ92B(ROM)に記憶しておき、濃度範囲の中心と適正濃度範囲の中心との差から演算式によりゲイン量を算出するものとしてもよい。 A cumulative histogram of the recognized subject area of the radiographic image is obtained. For example, in the cumulative histogram, the half value width of the peak value is set as the main density range of the subject area, and the center of the density range becomes the center of the predetermined appropriate density range. The gain amount of the operational amplifier 84A is obtained. For this gain amount, an appropriate gain amount is stored in advance in the memory 92B (ROM) as gain amount information for each difference between the center of the density range and the center of the appropriate density range. The gain amount corresponding to the difference from the center may be obtained from the gain amount information, and the calculation that defines the relationship between the difference between the center of the density range and the center of the predetermined appropriate density range and the appropriate gain amount The equation may be stored in the memory 92B (ROM), and the gain amount may be calculated from the difference between the center of the density range and the center of the appropriate density range using an arithmetic expression.
 次のステップS30では、カセッテ制御部92は、オペアンプ84Aのゲイン量を上記ステップS28で導出したゲイン量に調整する。 In the next step S30, the cassette control unit 92 adjusts the gain amount of the operational amplifier 84A to the gain amount derived in step S28.
 次のステップS32では、カセッテ制御部92は、ゲート線ドライバ80を制御してゲート線ドライバ80から1ラインずつ順に各ゲート配線76にオン信号を出力させる。本ステップは、同期信号の受信から曝射条件の照射期間が経過したタイミングで行われる。 In the next step S32, the cassette control unit 92 controls the gate line driver 80 to output an ON signal to each gate line 76 in order from the gate line driver 80 line by line. This step is performed at the timing when the irradiation period of the exposure condition has elapsed since the reception of the synchronization signal.
 放射線検出器60では、各ゲート配線76に接続された各TFT70が1ラインずつ順にオンされると、1ラインずつ順に各蓄積容量68に蓄積された電荷が電気信号として各データ配線78に流れ出す。各データ配線78に流れ出した電気信号は信号処理部82のオペアンプ84Aで増幅された後、マルチプレクサ86を介してA/D変換器88に順に入力され、デジタルの画像データに変換されて、画像メモリ90に記憶される。 In the radiation detector 60, when the TFTs 70 connected to the gate wirings 76 are turned on line by line, the charges accumulated in the storage capacitors 68 line by line flow out to the data lines 78 as electric signals. The electric signals flowing out to the respective data lines 78 are amplified by the operational amplifier 84A of the signal processing unit 82, and then sequentially input to the A / D converter 88 through the multiplexer 86, converted into digital image data, and image memory 90.
 このように、オペアンプ84Aのゲイン量を調整して放射線検出器60から放射線画像の読み出しを行うことにより、読み出された放射線画像において被写体領域の濃度範囲を適正濃度範囲にすることができる。 As described above, by adjusting the gain amount of the operational amplifier 84A and reading out the radiation image from the radiation detector 60, the density range of the subject region in the read out radiation image can be set to an appropriate density range.
 次のステップS34では、カセッテ制御部92は、画像メモリ90に記憶された放射線画像の画像データを予め定められた転送レートでコンソール42へ送信し、処理を終了する。このとき、放射線画像の画像データのうち、非圧縮転送領域の画像データは圧縮せず、非圧縮転送領域以外の圧縮転送領域の画像データは非可逆圧縮してコンソール42へ送信する。 In the next step S34, the cassette control unit 92 transmits the image data of the radiation image stored in the image memory 90 to the console 42 at a predetermined transfer rate, and ends the process. At this time, the image data of the non-compressed transfer area is not compressed among the image data of the radiographic image, and the image data of the compressed transfer area other than the non-compressed transfer area is irreversibly compressed and transmitted to the console 42.
 コンソール42は、電子カセッテ32から画像データを受信すると、受信した画像データのうち、圧縮されている画像データについては、伸長処理(或いはデコードといってもよい)を施す。非圧縮の画像データについては当然ながらデコードする必要はない。その後、必要に応じてシェーディング補正などの各種の補正する画像処理を行い、画像処理後の画像情報をHDD110に記憶すると共に、撮影した放射線画像の確認等のためにディスプレイ100に表示する。また、HDD110に記憶された画像情報は、RISサーバ14に転送されてデータベース14Aにも格納される。 When the console 42 receives the image data from the electronic cassette 32, the compressed image data of the received image data is subjected to decompression processing (or decoding). Of course, it is not necessary to decode the uncompressed image data. Thereafter, various types of image processing such as shading correction are performed as necessary, and the image information after the image processing is stored in the HDD 110 and displayed on the display 100 for confirmation of the captured radiographic image. The image information stored in the HDD 110 is transferred to the RIS server 14 and stored in the database 14A.
 このように、センサ部72を有する画素74が2次元状に複数配置された放射線検出器60と積層して、センサ部72よりも面積が大きいセンサ部146が2次元状に複数配置された放射線検出部62を配置し、放射線検出部62のセンサ部146による検出結果から得られる画像に基づいて、放射線検出器60の各画素74から電荷を読み出して放射線画像を生成する際の処理パラメータを調整した後、放射線検出器60の各画素74から電荷を読み出し、調整された処理パラメータに基づく処理を行って診断用の放射線画像を生成するので、被検者の被曝量を増加させることなく濃度補正用の画像を取得して診断用の放射線画像の画質調整を行うことができる。 In this way, radiation in which a plurality of pixels 74 having the sensor unit 72 are stacked with the radiation detector 60 in which a plurality of pixels 74 are two-dimensionally arranged and a plurality of sensor units 146 having a larger area than the sensor unit 72 are arranged in two-dimensional shapes. The detection unit 62 is arranged, and based on the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62, the processing parameters for reading out the charge from each pixel 74 of the radiation detector 60 and generating the radiation image are adjusted. After that, the charge is read from each pixel 74 of the radiation detector 60, and a process based on the adjusted processing parameter is performed to generate a diagnostic radiation image. Therefore, density correction is performed without increasing the exposure dose of the subject. Image can be acquired and image quality adjustment of a diagnostic radiographic image can be performed.
 また、放射線検出部62のセンサ部146による検出結果から得られる画像から処理パラメータとしてオペアンプ84Aのゲイン量を調整することにより、被写体領域の画像をA/D変換器88で飽和させずに適切な濃度範囲に調整することができる。 Further, by adjusting the gain amount of the operational amplifier 84A as a processing parameter from the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62, the image of the subject region is appropriately adjusted without being saturated by the A / D converter 88. The concentration range can be adjusted.
 なお、上記電子カセッテ32において、信号処理部82のオペアンプ84Aで増幅された電気信号をA/D変換器88により、所定のビット数(例えば、16ビット)のデジタルデータに変換し、カセッテ制御部92において、16ビットの画像データを規格化処理において12ビットの画像データに変換するようにしてもよい。以下、このように変換する場合についての作用を簡便に説明する。 In the electronic cassette 32, the electrical signal amplified by the operational amplifier 84A of the signal processing unit 82 is converted into digital data of a predetermined number of bits (for example, 16 bits) by the A / D converter 88, and the cassette control unit In 92, the 16-bit image data may be converted into 12-bit image data in the normalization process. Hereinafter, the operation in the case of such conversion will be briefly described.
 放射線画像の撮影を行う際に、放射線検出部62により放射線の検出を行って濃度補正用の放射線画像を取得し、その濃度補正用の放射線画像を解析して、被写体領域の主な濃度範囲が、適正濃度範囲となるように規格化処理の各種パラメータを求め、放射線検出器60から読み出された16ビットの放射線画像の画像データに対して、求めた各種パラメータを用いて規格化処理を行って12ビットの画像データに変換する。 When capturing a radiation image, the radiation detection unit 62 detects the radiation to acquire a density correction radiation image, analyzes the density correction radiation image, and determines the main density range of the subject region. Then, various parameters for normalization processing are obtained so that the appropriate density range is obtained, and normalization processing is performed on the image data of the 16-bit radiation image read from the radiation detector 60 using the obtained various parameters. To 12-bit image data.
 なお、この場合においては、電子カセッテ32では、各データ配線78に流れ出した電気信号がA/D変換器88で飽和せずに16ビットのデジタルデータに変換可能な範囲となるようにオペアンプ84Aのゲイン量が所定の値に調整されているものとする。 In this case, in the electronic cassette 32, the operational amplifier 84 </ b> A is configured so that the electric signal flowing out to each data wiring 78 is within a range that can be converted into 16-bit digital data without being saturated by the A / D converter 88. It is assumed that the gain amount is adjusted to a predetermined value.
 図15には、規格化処理を行う場合の撮影制御プログラムの処理の流れを示すフローチャートが示されている。なお、前述した撮影制御プログラム(図13参照)と同一処理部分については同一の符号を付して説明を省略する。 FIG. 15 shows a flowchart showing the flow of processing of the photographing control program when standardization processing is performed. Note that the same processing parts as those in the above-described photographing control program (see FIG. 13) are denoted by the same reference numerals and description thereof is omitted.
 ステップS29では、カセッテ制御部92は、上記ステップS26で生成した画像データの解析を行い、規格化処理の各種パラメータの適切な値を導出する。 In step S29, the cassette control unit 92 analyzes the image data generated in step S26, and derives appropriate values for various parameters of the normalization process.
 ここで、この画像の解析について説明する。 Here, the analysis of this image will be described.
 例えば、図16(1)に示すように、ある撮影条件の下に撮影された放射線画像の累積ヒストグラムaにおいて被写体領域の主な濃度範囲がMIN0~MAX0であり、上記撮影条件とは異なる撮影条件の下に撮影された放射線画像の累積ヒストグラムbにおいて被写体領域の主な濃度範囲がMIN1~MAX1であるものとする。 For example, as shown in FIG. 16A, the main density range of the subject region is MIN0 to MAX0 in the cumulative histogram a of the radiographic image captured under a certain imaging condition, and the imaging condition is different from the above imaging condition. Assume that the main density range of the subject region is MIN1 to MAX1 in the cumulative histogram b of the radiographic image taken below.
 このようなa又はbで示す累積ヒストグラムとなる16ビットの画像データを規格化処理により12ビットの画像データの変換しており、その変換の際に、16ビットの画像データにおいて、被写体領域の主な濃度範囲MIN0~MAX0及びMIN1~MAX1がそれぞれ、12ビットの画像データにおいて、適正濃度範囲MIN2~MAX2となるように変換する。 The 16-bit image data that becomes the cumulative histogram indicated by a or b is converted into 12-bit image data by the normalization process, and the main area of the subject area is converted into the 16-bit image data at the time of the conversion. The density ranges MIN0 to MAX0 and MIN1 to MAX1 are converted so as to become appropriate density ranges MIN2 to MAX2 in 12-bit image data, respectively.
 図16(2)は、このようにして、16ビットの画像データにおいてMIN0~MAX0及びMIN1~MAX1が、12ビットの画像データにおいて適正濃度範囲MIN2~MAX2となるように変換した場合の累積ヒストグラムa、bが示されている。 FIG. 16 (2) shows the cumulative histogram a when MIN0 to MAX0 and MIN1 to MAX1 are converted to the proper density range MIN2 to MAX2 in 12-bit image data in this way. , B are shown.
 16ビットの画像データから12ビットの画像データへの規格化処理の方法としては、公知の技術を用いることができる。本実施の形態では、所定の変換関数に基づいて入力データである16ビットの画像データD0を出力である12ビットの画像データD1に変換しており、具体的には、変換関数として、図16(3)にa,bで示すような一次関数を用いて変換を行う。 A known technique can be used as a standardization method from 16-bit image data to 12-bit image data. In the present embodiment, 16-bit image data D0 as input data is converted into 12-bit image data D1 as output based on a predetermined conversion function. Specifically, as the conversion function, FIG. The conversion is performed using a linear function as indicated by a and b in (3).
 この一次関数は、D1=D0×Gain+Offsetと表わすことができ、Gainの値を変えることにより傾きが変わり、Offsetの値を変えることにより、直線全体をシフトさせることができる。 This linear function can be expressed as D1 = D0 × Gain + Offset, and the slope changes by changing the value of Gain, and the entire straight line can be shifted by changing the value of Offset.
 規格化処理の各種パラメータとして、被写体領域の主な濃度範囲(例えば、MIN0~MAX0)が適正濃度範囲MIN2~MAX2となるGain及びOffsetの値を導出する。 As various parameters of the normalization processing, values of Gain and Offset in which the main density range (for example, MIN0 to MAX0) of the subject area becomes the appropriate density range MIN2 to MAX2 are derived.
 ステップS33では、カセッテ制御部92は、画像メモリ90に記憶された16ビットの画像データに対して、ステップS29で導出したパラメータを用いて規格化処理を行って12ビットの画像データに変換し、変換後の画像データを画像メモリ90に記憶させる。 In step S33, the cassette control unit 92 performs normalization processing on the 16-bit image data stored in the image memory 90 using the parameters derived in step S29 to convert the image data into 12-bit image data. The converted image data is stored in the image memory 90.
 このように、被写体領域の主な濃度範囲が適正濃度範囲となるように規格化処理の各種パラメータを求めて画像データの規格化処理を行うことにより、規格化処理された放射線画像において被写体領域の濃度範囲を適正濃度範にすることができる。 In this way, various parameters of the normalization processing are obtained so that the main density range of the subject region becomes an appropriate density range, and the normalization processing of the image data is performed, so that the subject region in the normalized radiographic image is obtained. The concentration range can be set to an appropriate concentration range.
 ステップS34では、カセッテ制御部92は、画像メモリ90に記憶されたステップS33による変換後に画像データをコンソール42へ送信し、処理を終了する。このとき、画像メモリ90に記憶された画像データのうち、非圧縮転送領域の画像データは圧縮せず、圧縮転送領域の画像データは非可逆圧縮してコンソール42へ送信する。 In step S34, the cassette control unit 92 transmits the image data to the console 42 after the conversion in step S33 stored in the image memory 90, and ends the process. At this time, among the image data stored in the image memory 90, the image data in the non-compressed transfer area is not compressed, and the image data in the compressed transfer area is irreversibly compressed and transmitted to the console 42.
 このように、放射線検出部62のセンサ部146による検出結果から得られる画像に基づいて、被写体領域の主な濃度範囲が適正濃度範囲となるように規格化処理の各種パラメータを求めて画像データの規格化処理を行うことにより、規格化処理された放射線画像において被写体領域の濃度範囲を適正濃度範にすることができる。 Thus, based on the image obtained from the detection result by the sensor unit 146 of the radiation detection unit 62, various parameters of the normalization processing are obtained so that the main density range of the subject area becomes the appropriate density range, and the image data By performing the normalization process, the density range of the subject area can be set to an appropriate density range in the radiographic image subjected to the normalization process.
 前述したように、本実施の形態に係る電子カセッテ32は、透視撮影においては、上記図13及び図15を参照して説明したステップS34で、放射線検出器60により検出された放射線画像の画像データのうち非圧縮転送領域の画像データについては、圧縮せずにコンソール42に送信し、非圧縮転送領域以外の圧縮転送領域の画像データについては、非可逆圧縮してコンソール42に送信するようにしている。非圧縮転送領域は、透視撮影の初期撮影において上記放射線検出部62で検出された放射線画像(以下、濃度補正用の放射線画像という)に基づいて設定する。電子カセッテ32は、該設定に基づいて、放射線検出器60で検出された放射線画像の画像データを送信する。 As described above, the electronic cassette 32 according to the present embodiment is the radiographic image data detected by the radiation detector 60 in step S34 described with reference to FIGS. The image data in the non-compressed transfer area is sent to the console 42 without being compressed, and the image data in the compressed transfer area other than the non-compressed transfer area is irreversibly compressed and sent to the console 42. Yes. The uncompressed transfer area is set based on a radiation image (hereinafter, referred to as a density correction radiation image) detected by the radiation detection unit 62 in the initial imaging of fluoroscopic imaging. The electronic cassette 32 transmits the image data of the radiation image detected by the radiation detector 60 based on the setting.
 図17には、第1の実施の形態に係る透視撮影においてカセッテ制御部92のCPU92Aにより実行される領域設定処理プログラムの処理の流れを示すフローチャートが示されている。なお、本処理プログラムは、メモリ92B(ROM)の所定の領域に予め記憶されており、透視撮影開始直後の初期撮影の際に実行される。 FIG. 17 shows a flowchart showing a flow of processing of an area setting processing program executed by the CPU 92A of the cassette control unit 92 in the fluoroscopic imaging according to the first embodiment. This processing program is stored in advance in a predetermined area of the memory 92B (ROM), and is executed at the time of initial imaging immediately after the start of fluoroscopic imaging.
 ステップS200では、CPU92Aは、放射線検出部62により検出された濃度補正用の放射線画像の画像データを取得する。 In step S200, the CPU 92A acquires the image data of the density correction radiation image detected by the radiation detection unit 62.
 ステップS202では、CPU92Aは、濃度補正用の放射線画像を解析して得られた画素値(輝度値)と、指定された撮影部位の情報、及び撮影目的の情報に基づいて、関心領域を特定して設定する。例えば、疾患の有無を検出することを目的とする胸部撮影では肺野領域が関心領域となり、バリウム等を使用した胃の透視撮影では、胃壁に生じているポリープなどを検出するために胃壁領域が関心領域となる。また、心臓カテーテル術の撮影では、カテーテルの先端領域及びその周辺領域が関心領域となる。また、肺野領域や胃壁領域を撮影する場合、該撮影領域内の腫瘍等の疾患部分及びその周辺部分を関心領域としてもよい。 In step S202, the CPU 92A specifies a region of interest based on the pixel value (luminance value) obtained by analyzing the density correction radiation image, information on the designated imaging region, and information on the imaging purpose. To set. For example, in chest radiography for the purpose of detecting the presence or absence of a disease, the lung field region is a region of interest, and in fluoroscopic imaging of the stomach using barium or the like, the gastric wall region is used to detect polyps or the like generated in the stomach wall. It becomes an area of interest. Further, in cardiac catheterization imaging, the distal end region of the catheter and its surrounding region are the regions of interest. Moreover, when imaging a lung field area | region or a stomach wall area | region, it is good also considering a disease part, such as a tumor, and its peripheral part in this imaging | photography area | region as a region of interest.
 ここで、上記ステップS202の処理について詳しく説明する。 Here, the process of step S202 will be described in detail.
 関心領域の特定は、まず、輝度値が、撮影部位及び撮影目的に応じて予め定められた範囲A内に含まれる領域を抽出する(図22も参照)。なお、輝度値の範囲は、撮影部位及び撮影目的毎に、予め定められ、メモリ92B(ROM)等の記憶手段に記憶されている。なお、輝度値により抽出された領域には、関心領域外の領域が含まれている場合がある。そこで、例えば、予め、撮影部位及び撮影目的毎に標準的な関心領域の形状を示すパターン画像をメモリ92B等の記憶手段に記憶しておき、上記抽出した領域に対して、撮影された放射線画像内で撮影部位に応じたパターン画像の位置や拡大率を変えつつ、放射線画像とパターン画像との類似度を求めるパターンマッチングを行い、類似度の最も高い領域を関心領域として特定するものとしてもよい。あるいは、スネークスアルゴリズムなどの動的輪郭抽出処理、ハフ変換などを利用した輪郭抽出処理等の公知の技術を用い、輪郭点に沿った線で囲まれる領域を関心領域として特定するようにしてもよい。 To specify the region of interest, first, a region where the luminance value is included in the range A determined in advance according to the imaging region and the imaging purpose is extracted (see also FIG. 22). Note that the range of the luminance value is determined in advance for each imaging region and each imaging purpose, and is stored in a storage unit such as the memory 92B (ROM). Note that the region extracted by the luminance value may include a region outside the region of interest. Therefore, for example, a pattern image indicating the shape of a standard region of interest for each imaging region and imaging purpose is stored in advance in a storage unit such as the memory 92B, and a radiographic image captured for the extracted region is stored. The pattern matching for obtaining the similarity between the radiation image and the pattern image may be performed while changing the position and enlargement ratio of the pattern image according to the imaging region, and the region with the highest similarity may be identified as the region of interest. . Alternatively, a region surrounded by a line along the contour point may be specified as a region of interest using a known technique such as a dynamic contour extraction process such as a snakes algorithm or a contour extraction process using Hough transform. .
 また、特開2009-119133に記載のように、例えば、関心領域が肺野領域である場合には、前述した輝度値の累積ヒストグラムから、素抜け領域を除外した後に、最大輝度値側から最初の谷間(最大輝度値側から何番目の谷間を閾値とするかは関心領域による)を閾値とし2値化して抽出し、その後、上記と同様に、パターンマッチングや輪郭抽出処理等の公知の技術を用いて関心領域を特定するようにしてもよい。 Further, as described in Japanese Patent Application Laid-Open No. 2009-119133, for example, when the region of interest is a lung field region, after removing the background missing region from the cumulative histogram of luminance values described above, And then binarizing and extracting the threshold value (the number of valleys from the maximum luminance value side as the threshold depends on the region of interest), and then, as described above, known techniques such as pattern matching and contour extraction processing The region of interest may be specified using.
 こうして特定した関心領域を示す情報(例えば関心領域の位置、大きさ、及び形状を示す情報)は、記憶部92C等の記憶手段の所定の領域に記憶しておく。なお、この設定は、放射線検出部62の分解能に応じた値を記憶するようによいが、放射線検出器60の分解能に応じた値に変換して記憶するようにしてもよい。また、ここでは、肺野領域を関心領域として例示したが、これに限定されず、撮影目的によっては、関心領域が軟部組織領域の場合もあれば、骨組織領域の場合もある。 Information indicating the region of interest thus identified (for example, information indicating the position, size, and shape of the region of interest) is stored in a predetermined region of storage means such as the storage unit 92C. In this setting, a value corresponding to the resolution of the radiation detector 62 may be stored, but it may be converted into a value corresponding to the resolution of the radiation detector 60 and stored. Although the lung field region is exemplified here as the region of interest, the present invention is not limited to this, and the region of interest may be a soft tissue region or a bone tissue region depending on the imaging purpose.
 次に、ステップS204では、CPU92Aは、MUST領域を特定する。例えば腫瘍等が存在する疾患部分は、特に、画像劣化なくリアルタイムに表示させなければならない領域であって、フレームレートに拘わらず、圧縮せずに画像データを転送すべき領域であり、本実施の形態では、この領域をMUST領域と呼称している。 Next, in step S204, the CPU 92A specifies the MUST area. For example, a diseased part where a tumor or the like exists is an area that must be displayed in real time without image deterioration, and is an area where image data should be transferred without being compressed regardless of the frame rate. In this embodiment, this area is called a MUST area.
 例えば、上記特定された関心領域に対して、撮影部位及び撮影目的から定まる、予め定められた位置、大きさ、及び形状の領域をMUST領域として特定してもよい。この場合、例えば、予め、撮影部位及び撮影目的毎に、関心領域に対する標準的なMUST領域の位置、大きさ、及び形状の情報をメモリ92B等の記憶手段に記憶しておき、これを参照するようにしてもよい。また、医師等が、予想される疾患の位置や大きさの情報を予め撮影条件としてコンソール42に入力しておき、該情報が示す領域をMUST領域として特定してもよい。 For example, for the identified region of interest, a region having a predetermined position, size, and shape determined from the imaging region and the imaging purpose may be specified as the MUST region. In this case, for example, information on the position, size, and shape of a standard MUST region with respect to the region of interest is stored in advance in a storage unit such as the memory 92B for each imaging region and imaging purpose, and this is referred to. You may do it. In addition, a doctor or the like may input information on the position and size of the predicted disease in advance to the console 42 as imaging conditions, and specify the area indicated by the information as the MUST area.
 また、例えば、上記特定された関心領域内において、周囲の輝度値と比較して予め定められた閾値以上異なる領域が存在する場合には、該領域をMUST領域として特定してもよい(図18も参照)。 Further, for example, when there is a region different from the surrounding luminance value by a predetermined threshold or more in the identified region of interest, the region may be identified as a MUST region (FIG. 18). See also).
 更にまた、疾患などの特徴量が予め定められている場合には、該特徴量を示す情報を予めメモリ92B等の記憶手段に記憶しておき、この特徴量との類似度が予め定められた閾値以上の領域をMUST領域として特定してもよい。また、疾患を示すパターン画像が予め定められている場合には、該パターン画像を示す情報をメモリ92B等の記憶手段に記憶しておき、このパターン画像との類似度を求めるパターンマッチングを行い、類似度が予め定められた閾値以上の領域をMUST領域として特定するものとしてもよい。 Furthermore, when a feature amount such as a disease is determined in advance, information indicating the feature amount is stored in advance in storage means such as the memory 92B, and the similarity to the feature amount is determined in advance. You may specify the area | region more than a threshold value as a MUST area | region. In addition, when a pattern image indicating a disease is determined in advance, information indicating the pattern image is stored in a storage unit such as the memory 92B, and pattern matching for obtaining a similarity with the pattern image is performed. An area having a similarity equal to or greater than a predetermined threshold may be specified as the MUST area.
 なお、このように特定したMUST領域を、場合に応じて修正してもよい。例えば、電子カセッテ32からコンソール42に濃度補正用の放射線画像を送信し、ディスプレイ100に表示された濃度補正用の被写体画像を医師が目視で確認し、腫瘍等の疾患が予想以上に大きかった場合や、他にも疾患があった場合等に、医師等が操作パネル102を操作して直接MUST領域を修正するようにしてもよい。 Note that the MUST area specified in this way may be modified according to circumstances. For example, when a radiographic image for density correction is transmitted from the electronic cassette 32 to the console 42, and a doctor visually confirms the subject image for density correction displayed on the display 100, and a disease such as a tumor is larger than expected. Alternatively, when there is another disease, a doctor or the like may directly operate the operation panel 102 to correct the MUST area.
 こうして最終的に得られたMUST領域を示す情報(例えばMUST領域の位置、大きさ、形状を示す情報)は、記憶部92Cの所定の領域に記憶しておく。当然ながら、MUST領域は、ステップS202で特定された関心領域内に存在する。 Information indicating the MUST area finally obtained in this way (for example, information indicating the position, size, and shape of the MUST area) is stored in a predetermined area of the storage unit 92C. Of course, the MUST region exists within the region of interest identified in step S202.
 図19に、特定された関心領域、及びMUST領域の一例を示す。なお、図19には、放射線検出部62の各センサ部146に対応する画素(以下、放射線検出器60のセンサ部72に対応する画素74と区別するため「エリア」と呼称する)が、16×16=256個ある場合の各領域が図示されている。ここでは、各エリア毎に1から256までの何れかの番号が付与されている。なお、上記関心領域及びMUST領域を示す情報として、エリア番号を使用してもよい。 FIG. 19 shows an example of the identified region of interest and MUST region. In FIG. 19, pixels corresponding to the respective sensor units 146 of the radiation detection unit 62 (hereinafter referred to as “areas” in order to be distinguished from the pixels 74 corresponding to the sensor unit 72 of the radiation detector 60) are 16. Each region in the case of × 16 = 256 is illustrated. Here, any number from 1 to 256 is assigned to each area. An area number may be used as information indicating the region of interest and the MUST region.
 次に、ステップS206では、CPU92Aは、指定されたフレームレートに基づいて、非圧縮で転送可能なエリア数の上限値Sを判断する。ここでは、電子カセッテ32の放射線検出器60により検出された放射線画像を予め定められた転送レートで転送して表示遅延なく表示させるときの、非圧縮で転送可能なデータ量の上限値の情報が、フレームレート毎に予めメモリ92Bに記憶されており、これにより判断する。図20に、メモリ92Bに記憶されている上限値の一例を示す。 Next, in step S206, the CPU 92A determines an upper limit value S of the number of areas that can be transferred without compression based on the designated frame rate. Here, there is information on the upper limit value of the amount of data that can be transferred without compression when the radiographic image detected by the radiation detector 60 of the electronic cassette 32 is transferred at a predetermined transfer rate and displayed without display delay. Each frame rate is stored in advance in the memory 92B, and this is determined. FIG. 20 shows an example of the upper limit value stored in the memory 92B.
 図20は、エリア数を縦軸に、フレームレート(fps=frames per second)を横軸にして表わした、フレームレートに対する、非圧縮で転送可能なエリア数の上限値(表示遅延が発生しない最大転送エリア数)を示すグラフである。この例では、総エリア数が256の場合が図示されており、この図から、フレームレートが高くなるに従って、非圧縮で転送可能なエリア数の上限値が減少していくのがわかる。図20に示す情報は、電子カセッテ32のメモリ92Bに記憶されているものとする。従って、ステップS206では、この情報に基づいて、指定されたフレームレートに対応する最大エリア数Sを判断する。なお、ここでは、非圧縮で転送可能なデータ量の上限値を、非圧縮で転送可能なエリア数の上限値とする例について説明したが、領域のデータ量(サイズ)が判断できればよく、エリア数に代えて画素数や面積、あるいはデータ量そのものの上限値がフレームレート毎に記憶されていてもよい。 FIG. 20 shows the upper limit of the number of areas that can be transferred without compression with respect to the frame rate (the maximum value that does not cause display delay) with the number of areas on the vertical axis and the frame rate (fps = framesframeper second) on the horizontal axis. It is a graph which shows the number of transfer areas. In this example, a case where the total number of areas is 256 is illustrated, and it can be seen from this figure that the upper limit value of the number of areas that can be transferred without compression decreases as the frame rate increases. The information shown in FIG. 20 is assumed to be stored in the memory 92B of the electronic cassette 32. Therefore, in step S206, the maximum number of areas S corresponding to the designated frame rate is determined based on this information. Here, an example has been described in which the upper limit value of the amount of data that can be transferred without compression is the upper limit value of the number of areas that can be transferred without compression, but it is sufficient that the data amount (size) of the area can be determined. Instead of the number, the number of pixels, the area, or the upper limit value of the data amount itself may be stored for each frame rate.
 次に、ステップS208では、(転送領域設定部としての)CPU92Aは、上記特定したMUST領域を含む領域であって、エリア数がS以下の矩形領域を非圧縮転送領域として設定する。非圧縮転送領域を示す情報(例えば、非圧縮転送領域の位置、大きさ、及び形状を示す情報)は、関心領域、MUST領域と同様に、記憶部92Cの所定の領域に記憶しておく。なお、非圧縮転送領域を示す情報として、放射線検出部62のエリア番号を記憶するようにしてもよい。図21、図22に、本実施の形態により設定された非圧縮転送領域の一例を破線で示す。なお、図21、図22の太実線で囲んだ矩形領域は、フレームレートに関わらず関心領域の全てを含むように設定した場合の非圧縮転送領域である。 Next, in step S208, the CPU 92A (as a transfer area setting unit) sets a rectangular area including the identified MUST area and having the number of areas equal to or less than S as an uncompressed transfer area. Information indicating the non-compressed transfer area (for example, information indicating the position, size, and shape of the non-compressed transfer area) is stored in a predetermined area of the storage unit 92C, similarly to the region of interest and the MUST area. The area number of the radiation detection unit 62 may be stored as information indicating the uncompressed transfer area. In FIG. 21 and FIG. 22, an example of the uncompressed transfer area set according to the present embodiment is indicated by a broken line. Note that the rectangular area surrounded by the thick solid line in FIGS. 21 and 22 is an uncompressed transfer area when it is set to include all of the region of interest regardless of the frame rate.
 電子カセッテ32は、非圧縮転送領域情報に従って、上記ステップS34において(図13及び図15を参照)、放射線検出器60により検出された放射線画像の画像データのうち、非圧縮転送領域に対応する領域の画像データについては、圧縮せずにコンソール42に送信し、非圧縮転送領域以外の圧縮転送領域に対応する領域の画像データについては、圧縮してコンソール42に送信する。 The electronic cassette 32 corresponds to the uncompressed transfer area in the image data of the radiographic image detected by the radiation detector 60 in step S34 (see FIGS. 13 and 15) according to the uncompressed transfer area information. The image data is transmitted to the console 42 without being compressed, and the image data in the area corresponding to the compressed transfer area other than the non-compressed transfer area is compressed and transmitted to the console 42.
 なお、上記ステップS208では、エリア数で判断するようにしたが、エリア数を放射線検出器60の画素74の数に換算し、エリア数の上限値Sに対応する画素74の数に基づいて非圧縮転送領域を決定して設定してもよい。エリア数を面積に換算し、エリア数の上限値Sに対応する領域の面積に基づいて非圧縮転送領域を決定して設定してもよい。 In step S208, the number of areas is determined. However, the number of areas is converted into the number of pixels 74 of the radiation detector 60, and the number of pixels 74 corresponding to the upper limit value S of the number of areas is determined based on the number of pixels 74. The compression transfer area may be determined and set. The number of areas may be converted into an area, and the uncompressed transfer area may be determined and set based on the area of the area corresponding to the upper limit value S of the number of areas.
 以上説明したように、フレームレートに応じて非圧縮転送領域を設定する際に、非圧縮転送領域にMUST領域が含まれるようにしたため、透視撮影により得られた放射線画像において画質の劣化なくリアルタイムに表示すべき領域を、確実に画質の劣化なくリアルタイムに表示させることができる。 As described above, since the MUST area is included in the non-compressed transfer area when the non-compressed transfer area is set according to the frame rate, the radiographic image obtained by fluoroscopic imaging is real-time without deterioration in image quality. An area to be displayed can be reliably displayed in real time without deterioration in image quality.
 [第2の実施の形態] [Second Embodiment]
 本実施の形態では、透視撮影中に、非圧縮転送領域外で動き量が大きい「動き領域」が発生した場合の作用について説明する。 In the present embodiment, an operation when a “motion region” having a large amount of motion outside the non-compressed transfer region occurs during fluoroscopic imaging will be described.
 第2の実施の形態に係るRIS10、撮影システム18、電子カセッテ32の構成は、上記第1の実施の形態と同一であるので、ここでの説明は省略する。 Since the configurations of the RIS 10, the imaging system 18, and the electronic cassette 32 according to the second embodiment are the same as those of the first embodiment, description thereof is omitted here.
 なお、本実施の形態において、動き領域の検出は以下のようにして行われる。 In the present embodiment, detection of the motion region is performed as follows.
 電子カセッテ32では、動画として動き量が大きいと認識される動き量の閾値がメモリ92Bに予め記憶されており、透視撮影中、信号検出部162から順次入力されるデジタルデータ(濃度補正用の放射線画像の画像データ)を用いて動き検出を行い、関心領域内で前フレームと比較して検出される動き量が上記閾値以上の領域が発生した場合に、該領域を動き領域として抽出し、該動き領域の位置、大きさ、形状を示す情報を記憶部92Cに記憶する。なお、動き検出では、輝度値に閾値以上の変化が生じた場合に、該変化が生じた領域を動き領域としてもよい。 In the electronic cassette 32, a threshold value of a motion amount that is recognized as a motion amount as a moving image is stored in the memory 92B in advance, and digital data (radiation for density correction) sequentially input from the signal detection unit 162 during fluoroscopic imaging. Motion detection is performed using the image data of the image, and when a region in which the amount of motion detected in the region of interest is greater than or equal to the above threshold is generated, the region is extracted as a motion region, Information indicating the position, size, and shape of the motion region is stored in the storage unit 92C. Note that in motion detection, when a change in luminance value that is greater than or equal to a threshold value occurs, a region in which the change has occurred may be used as a motion region.
 なお、このように動き領域を検出するときに用いる画像データは、放射線検出部62で検出された濃度補正用の放射線画像の画像データを用いても良いが、該画像データの解像度を低下させた低解像度の画像データを用いてもよい。また、検出した動き領域の位置、大きさ、及び形状を示す情報を、放射線検出部62のエリア番号を示す情報として記憶部92Cに記憶してもよい。 Note that the image data used when detecting the motion region in this manner may be the image data of the density correction radiation image detected by the radiation detection unit 62, but the resolution of the image data is reduced. Low resolution image data may be used. Further, information indicating the position, size, and shape of the detected motion region may be stored in the storage unit 92C as information indicating the area number of the radiation detection unit 62.
 図23には、第2の実施の形態において、カセッテ制御部92のCPU92Aにより実行される領域設定変更処理プログラムの処理の流れを示すフローチャートが示されている。本プログラムは、透視撮影途中で、第1の実施の形態で説明した領域設定処理のステップS202で特定した関心領域内において非圧縮転送領域外で動き量が大きい動き領域が発生した場合に実行される。 FIG. 23 is a flowchart showing the flow of processing of the area setting change processing program executed by the CPU 92A of the cassette control unit 92 in the second embodiment. This program is executed when a motion region having a large amount of motion outside the uncompressed transfer region is generated in the region of interest specified in step S202 of the region setting process described in the first embodiment during fluoroscopic imaging. The
 ステップS300では、(転送領域設定部としての)CPU92Aが、MUST領域及び動き領域を含むように、非圧縮転送領域の設定を変更する。ここでは、関心領域内の動き領域及びMUST領域を含む最小の矩形領域を非圧縮転送領域として決定し変更するものとする。なお、変更後の非圧縮転送領域を示す情報は、記憶部92Cの所定の領域に記憶しておく。なお、変更後の非圧縮転送領域を示す情報として、放射線検出部62のエリア番号を記憶するようにしてもよい。図24及び図25に、非圧縮転送領域の変更例を破線で示す。図24に示すように、第1の実施の形態で説明した関心領域内において、3つのエリアが動き領域として検出されているが、この3つのエリアのうち1つは変更前の非圧縮転送領域に含まれていない。そこで、この例では、変更前の非圧縮転送領域に含まれない動き領域が非圧縮転送領域に含まれるように非圧縮転送領域を広げた。 In step S300, the CPU 92A (as the transfer area setting unit) changes the setting of the uncompressed transfer area so as to include the MUST area and the motion area. Here, the minimum rectangular area including the motion area and the MUST area in the region of interest is determined and changed as an uncompressed transfer area. Information indicating the non-compressed transfer area after the change is stored in a predetermined area of the storage unit 92C. Note that the area number of the radiation detection unit 62 may be stored as information indicating the uncompressed transfer area after the change. 24 and 25 show examples of changing the uncompressed transfer area with broken lines. As shown in FIG. 24, three areas are detected as motion areas in the region of interest described in the first embodiment, and one of the three areas is an uncompressed transfer area before the change. Not included. Therefore, in this example, the uncompressed transfer area is expanded so that the motion area not included in the uncompressed transfer area before the change is included in the uncompressed transfer area.
 ここで、動き領域は、大きな変化があった領域であるから当然に画質の劣化なく目視で確認したい領域であるが、前述したようにMUST領域は重要な領域であって非圧縮転送領域からはずすことはできない。特に、一人がディスプレイを見ているのではなく、複数の人(医師や技師等)がディスプレイを見ている状況においては、撮影途中で発生した動き領域ではなく、MUST領域を注視し続ける人が存在する場合もある。そこで、本実施の形態では、重要な領域であるMUST領域を非圧縮転送領域からはずすことなく、動き領域が非圧縮転送領域に含まれるように非圧縮転送領域を変更する。 Here, since the motion area is an area that has undergone a large change, it is a natural area to be visually confirmed without deterioration in image quality. However, as described above, the MUST area is an important area and is removed from the uncompressed transfer area. It is not possible. In particular, in a situation where a single person is not watching the display but a plurality of people (doctors, engineers, etc.) are watching the display, a person who keeps an eye on the MUST area, not the movement area that occurred during shooting. May be present. Therefore, in this embodiment, the non-compressed transfer area is changed so that the motion area is included in the non-compressed transfer area without removing the MUST area, which is an important area, from the non-compressed transfer area.
 ステップS302では、CPU92Aは、変更後の非圧縮転送領域のエリア数が、非圧縮で転送可能なエリア数の上限値Sより多いか否かを判断する。ここで否定判断した場合には、ステップS304に進み、フレームレート、及び照射期間の変更は行わずに撮影を続行する。 In step S302, the CPU 92A determines whether or not the number of areas in the non-compressed transfer area after the change is greater than the upper limit value S of the number of areas that can be transferred without compression. If a negative determination is made here, the process proceeds to step S304, and imaging is continued without changing the frame rate and the irradiation period.
 すなわち、変更後の非圧縮転送領域のエリア数が、S以下の場合には、フレームレートを低下させなくても、リアルタイムに表示することが可能である。従って、ここでは、フレームレートや照射期間は変更しない。 That is, when the number of areas of the uncompressed transfer area after the change is equal to or less than S, it is possible to display in real time without reducing the frame rate. Accordingly, the frame rate and the irradiation period are not changed here.
 一方、CPU92Aが、ステップS302で、肯定判断した場合には、ステップS320に進む。変更後の非圧縮転送領域のエリア数が、Sより多い場合には、フレームレートを低下させないと、リアルタイムに表示することができないおそれがある。そこで、ステッS320において、CPU92Aは、フレームレート及び照射期間を変更する。 On the other hand, if the CPU 92A makes a positive determination in step S302, the process proceeds to step S320. If the number of non-compressed transfer areas after the change is greater than S, real-time display may not be possible unless the frame rate is reduced. Therefore, in step S320, the CPU 92A changes the frame rate and the irradiation period.
 フレームレートについては、前述したように、メモリ92Bには、フレームレート毎の、非圧縮で転送可能なエリア数の上限値の情報が予め記憶されており(図20も参照)、(第1変更部としての)CPU92Aは、この情報に基づいて、上記変更後の非圧縮転送領域のエリア数を上限値とするフレームレートを求め、該フレームレート以下のフレームレートを、変更後のフレームレートとして決定する。図20から明らかなように、変更後の非圧縮転送領域のエリア数はSを超えているため、変更後のフレームレートは変更前のフレームレートより下がることになる。 Regarding the frame rate, as described above, the memory 92B stores in advance information on the upper limit value of the number of areas that can be transferred without compression for each frame rate (see also FIG. 20). Based on this information, the CPU 92A obtains a frame rate whose upper limit is the number of non-compressed transfer areas after the change, and determines a frame rate equal to or lower than the frame rate as the changed frame rate. To do. As apparent from FIG. 20, since the number of areas in the non-compressed transfer area after the change exceeds S, the frame rate after the change is lower than the frame rate before the change.
 なお、フレームレートが低下すると、撮影間隔が大きくなるため、目の残像も消えてしまうので、動きの滑らかな透視画像を撮影できない。前述したように、パルス照射は、照射期間が短いため、各画像が動きの止まったコマ送り画像になりかねない。 Note that when the frame rate decreases, the imaging interval increases, and the afterimage of the eyes disappears. Therefore, a fluoroscopic image with smooth movement cannot be captured. As described above, since pulse irradiation has a short irradiation period, each image may become a frame-feed image in which movement has stopped.
 そこで、本実施の形態では、透視撮影のフレームレートを低下させた場合、(第2変更部としての)CPU92Aが、1回のパルス照射での単位時間当たりの放射線の照射量を低く抑えると共に、各フレーム画像を撮影するための各フレーム期間内で照射期間を変更前に比べて長い期間に変更する。 Therefore, in the present embodiment, when the frame rate of fluoroscopic imaging is reduced, the CPU 92A (as the second changing unit) keeps the radiation dose per unit time low in one pulse irradiation, Within each frame period for capturing each frame image, the irradiation period is changed to a longer period than before the change.
 ここで、人の目は、時間分解能が約50ms~100ms程度であり、この時間よりも短い光の点滅は連続点灯しているように知覚される。 Here, the human eye has a time resolution of about 50 ms to 100 ms, and blinking of light shorter than this time is perceived as being continuously lit.
 例えば、以下の表1には、フレームレートを5fpsとし、1フレーム期間(1/5秒間)内でのパルス照射の期間の割合を変えて評価を行った結果が示されている。 For example, Table 1 below shows the results of evaluation with the frame rate set to 5 fps and the ratio of the pulse irradiation period within one frame period (1/5 second) changed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 一方、フレーム期間には、蓄積された電荷を読み出す読出期間も含む必要がある。この読出期間はフレーム期間の20%程度必要である。このため、パルス照射におけるフレーム期間内で放射線を照射できる期間の上限は約80%である。 On the other hand, the frame period must include a reading period for reading out the accumulated charges. This reading period needs about 20% of the frame period. For this reason, the upper limit of the period during which radiation can be irradiated within the frame period in pulse irradiation is about 80%.
 よって、パルス照射による透視撮影では、コマ落ち感を許容レベルに抑えるには、フレーム期間に対する照射期間の割合を12.5%~80%の範囲内である必要があり、33%~80%の範囲内とすることがより好ましい。 Therefore, in fluoroscopic imaging using pulse irradiation, the ratio of the irradiation period to the frame period needs to be within the range of 12.5% to 80% in order to suppress the frame drop feeling to an acceptable level, and 33% to 80%. More preferably, it is within the range.
 本実施の形態では、透視撮影のフレームレートに応じた各フレーム期間に対する放射線の照射期間の割合を80%に変更すると共に(ここでは、変更前の照射期間の割合は、80%未満である。)、管電圧、管電流等の曝射条件を変更して単位時間当たりの放射線の照射量も変更する。なお、曝射条件を変更して単位時間当たりの放射線の照射量を低くし過ぎた場合、放射線画像の撮影に必要な最低照射量を確保できない場合がある。そこで、変更した照射期間で最低照射量を除算することにより、放射線画像の撮影に必要な最低の単位時間当たりの放射線の照射量を求め、当該単位時間当たりの放射線の照射量が得られる範囲で管電圧、管電流等の曝射条件を変更する。 In the present embodiment, the ratio of the radiation irradiation period to each frame period corresponding to the fluoroscopic frame rate is changed to 80% (here, the ratio of the irradiation period before the change is less than 80%). ) Change the exposure conditions such as tube voltage and tube current, and change the radiation dose per unit time. In addition, when the exposure condition is changed and the radiation dose per unit time is made too low, the minimum dose necessary for radiographic image capture may not be ensured. Therefore, by dividing the minimum irradiation amount by the changed irradiation period, the minimum irradiation amount per unit time necessary for radiographic image acquisition is obtained, and the radiation irradiation amount per unit time can be obtained. Change exposure conditions such as tube voltage and tube current.
 そして、電子カセッテ32は、上記変更した曝射条件をコンソール42に送信する。コンソール42は、送信された曝射条件を放射線発生装置34に転送する。これ以降、コンソール42は、変更された曝射条件に従って同期信号を送信し、放射線発生装置34は、変更された曝射条件に従って放射線を照射し、電子カセッテ32は、変更された曝射条件に基づいて前述したように画像の読み出しを行う。 Then, the electronic cassette 32 transmits the changed exposure condition to the console 42. The console 42 transfers the transmitted exposure conditions to the radiation generator 34. Thereafter, the console 42 transmits a synchronization signal according to the changed exposure condition, the radiation generator 34 emits radiation according to the changed exposure condition, and the electronic cassette 32 changes to the changed exposure condition. Based on this, the image is read out as described above.
 このように、フレームレート及び照射期間を変更することにより、動きが滑らかな透視画像を撮影できるだけでなく、画質の劣化なくリアルタイムに表示させたい領域を、確実性高く画質の劣化なくリアルタイムに表示させることができ、且つ被検者の被曝量を抑制できる。 In this way, by changing the frame rate and the irradiation period, it is possible not only to shoot a fluoroscopic image with smooth movement, but also to display in real time a region that is desired to be displayed in real time without deterioration in image quality and without deterioration in image quality. And the exposure dose of the subject can be suppressed.
 また、前述したように、放射線画像は、医師一人が見るのではなく、医師や技師等、複数の人が同時に見ることがある。従って、上記のように動き量等によって非圧縮転送領域を変更する場合であっても、動きがあった領域を確認したい人もいれば、上記MUST領域やその近傍を注視し続けたい人もいる。従って、MUST領域に関わらず非圧縮転送領域を変更することは、複数人で放射線画像を確認する状況下においては問題がある。しかしながら、本実施の形態で説明したように、動き領域が発生して、該動き領域を含むように非圧縮転送領域を変更する場合であっても、MUST領域ははずさずに非圧縮転送領域を変更して撮影が続行されるようにしたことで、複数人が放射線画像を目視している状況下においても、適切に表示を行うことができる。 In addition, as described above, a radiographic image is not viewed by a single doctor but may be viewed simultaneously by a plurality of people such as doctors and engineers. Therefore, even when the uncompressed transfer area is changed according to the amount of movement as described above, there are people who want to check the area where the movement has occurred, and some people who want to keep an eye on the MUST area and its vicinity. . Therefore, changing the uncompressed transfer area regardless of the MUST area has a problem in a situation where a plurality of persons confirm the radiation image. However, as described in the present embodiment, even when a motion region is generated and the non-compressed transfer region is changed to include the motion region, the MUST region is not removed and the uncompressed transfer region is changed. By changing the imaging so as to continue the imaging, it is possible to appropriately display even under a situation where a plurality of people are viewing the radiation image.
 なお、フレームレートを低下させた場合の照射期間は、上記に限定されず、例えば以下のように求めてもよい。 Note that the irradiation period when the frame rate is lowered is not limited to the above, and may be obtained as follows, for example.
 フレームレート閾値をメモリ92Bに予め記憶しており、透視撮影のフレームレートが閾値以下となった場合、フレーム期間内でのパルス照射の照射期間の変更を行う。ここでは、このフレームレート閾値を2つ(第1フレームレート閾値、第2フレームレート閾値)を記憶している。第1フレームレート閾値は、大多数の人がチラツキを感じないフレームレートであればよい。具体的に、第1フレームレート閾値は、15fps(Frame Per Second)以上かつ60fps以下であればよく、15fps以上かつ30fps以下とすることがより好ましい。第2フレームレート閾値は大多数の人がチラツキを感じるフレームレートであればよい。具体的に、第2フレームレート閾値は、5fps以上かつ第1フレームレート閾値未満であればよく、5fps以上且つ15fps未満とすることがより好ましい。ここでは、第1フレームレート閾値を、例えば、30fpsとし、第2フレームレート閾値を、例えば、15fpsとするが、第1フレームレート閾値を、例えば、24fpsとし、第2フレームレート閾値を、例えば、5fpsとしてもよい。 The frame rate threshold value is stored in the memory 92B in advance, and when the fluoroscopic frame rate is equal to or lower than the threshold value, the irradiation period of the pulse irradiation within the frame period is changed. Here, two frame rate threshold values (first frame rate threshold value, second frame rate threshold value) are stored. The first frame rate threshold may be a frame rate at which the majority of people do not feel flicker. Specifically, the first frame rate threshold may be 15 fps (Frame Per Second) or more and 60 fps or less, and more preferably 15 fps or more and 30 fps or less. The second frame rate threshold may be a frame rate at which the majority of people feel flicker. Specifically, the second frame rate threshold may be 5 fps or more and less than the first frame rate threshold, and more preferably 5 fps or more and less than 15 fps. Here, the first frame rate threshold is, for example, 30 fps, and the second frame rate threshold is, for example, 15 fps. However, the first frame rate threshold is, for example, 24 fps, and the second frame rate threshold is, for example, It may be 5 fps.
 そして、撮影システム18では、透視撮影のフレームレートが第1フレームレート閾値よりも大きい場合、予め定められた照射期間でパルス照射させつつ当該パルス照射に同期させて放射線画像の撮影を行う。この照射期間は、撮影システム18において撮影可能な最大のフレームレートでも安定して撮影が可能な時間に定められ、照射期間初期値としてHDD110に記憶されている。 And in the imaging system 18, when the frame rate of fluoroscopic imaging is larger than the first frame rate threshold value, a radiographic image is captured in synchronization with the pulse irradiation while performing pulse irradiation during a predetermined irradiation period. This irradiation period is determined as a time during which stable shooting can be performed even at the maximum frame rate that can be shot by the shooting system 18 and stored in the HDD 110 as an initial value of the irradiation period.
 また、透視撮影のフレームレートが第1フレームレート閾値以下の場合、フレーム期間に対する照射期間の割合を50%に変更してパルス照射させつつ当該パルス照射に同期させて放射線画像の撮影を行い、透視撮影のフレームレートが第2フレームレート閾値以下となった場合、フレーム期間に対する照射期間の割合を80%に変更してパルス照射させつつ当該パルス照射に同期させて放射線画像の撮影を行う。 Further, when the fluoroscopic frame rate is equal to or less than the first frame rate threshold, the ratio of the irradiation period to the frame period is changed to 50%, and the radiographic image is captured in synchronization with the pulse irradiation while performing the pulse irradiation. When the imaging frame rate is equal to or lower than the second frame rate threshold, the ratio of the irradiation period to the frame period is changed to 80%, and pulse irradiation is performed, and a radiographic image is acquired in synchronization with the pulse irradiation.
 以下、照射期間の変更(決定)に着目して説明する。図26には、(第2変更部としての)CPU92Aが実行する照射期間決定処理プログラムの処理の流れを示すフローチャートが示されている。 Hereinafter, description will be made by paying attention to the change (determination) of the irradiation period. FIG. 26 is a flowchart showing the flow of processing of the irradiation period determination processing program executed by the CPU 92A (as the second changing unit).
 同図のステップS410では、CPU92Aは、透視撮影の変更後のフレームレートが第1フレームレート閾値(例えば、30fps)以上であるか否か判定し、肯定判定となった場合はステップS412に移行し、否定判定となった場合はステップS414に移行する。 In step S410 in the figure, the CPU 92A determines whether or not the frame rate after changing the fluoroscopic imaging is equal to or higher than a first frame rate threshold (for example, 30 fps). If the determination is affirmative, the process proceeds to step S412. If the determination is negative, the process proceeds to step S414.
 ステップS412では、CPU92Aは、各パルス照射での放射線の照射期間を照射期間初期値により示される期間と決定する。 In step S412, the CPU 92A determines the irradiation period of each pulse irradiation as a period indicated by the irradiation period initial value.
 一方、ステップS414では、CPU92Aは、透視撮影の変更後のフレームレートが第2フレームレート閾値(例えば、15fps)以下であるか否か判定し、肯定判定となった場合はステップS416に移行し、否定判定となった場合はステップS420に移行する。 On the other hand, in step S414, the CPU 92A determines whether or not the frame rate after changing the fluoroscopic imaging is equal to or lower than a second frame rate threshold (for example, 15 fps). If the determination is affirmative, the process proceeds to step S416. When it becomes negative determination, it transfers to step S420.
 ステップS416では、CPU92Aは、各パルス照射での放射線の照射期間を、指定されたフレームレートに応じたフレーム期間の50%の期間と決定する。また、照射期間の変更に伴って単位時間当たりの放射線の照射量を低下させるように管電圧、管電流等の曝射条件も変更する。 In step S416, the CPU 92A determines that the radiation period of each pulse irradiation is 50% of the frame period corresponding to the designated frame rate. In addition, the exposure conditions such as tube voltage and tube current are also changed so as to reduce the radiation dose per unit time as the irradiation period is changed.
 一方、ステップS420では、CPU92Aは、各パルス照射での放射線の照射期間を、指定されたフレームレートに応じたフレーム期間の80%の期間と決定する。また、照射期間の変更に伴って単位時間当たりの放射線の照射量を低下させるように管電圧、管電流等の曝射条件も変更する。 On the other hand, in step S420, the CPU 92A determines the radiation period of each pulse irradiation as a period of 80% of the frame period corresponding to the designated frame rate. In addition, the exposure conditions such as tube voltage and tube current are also changed so as to reduce the radiation dose per unit time as the irradiation period is changed.
 ステップS422では、CPU92Aは、決定した照射期間、及び変更後のフレームレート、管電圧、管電流等を曝射条件としてコンソール42へ送信し、本照射期間決定処理プログラムを終了する。 In step S422, the CPU 92A transmits the determined irradiation period and the changed frame rate, tube voltage, tube current, and the like as the exposure conditions to the console 42, and ends the irradiation period determination processing program.
 これにより、本実施の形態によれば、透視撮影のフレームレートが低い場合でも、動きが滑らかな透視画像を撮影できる。 Thereby, according to the present embodiment, it is possible to capture a fluoroscopic image with smooth movement even when the frame rate of fluoroscopic imaging is low.
 なお、このように照射期間を求める場合には、上記変更後のフレームレートの値によっては、照射期間が変更されないこともある(ステップS412も参照)。 In addition, when calculating | requiring an irradiation period in this way, depending on the value of the frame rate after the said change, an irradiation period may not be changed (refer also step S412).
 また、本実施の形態では、フレームレートを低下させた場合に、該フレームレートの低下に応じて照射期間を上記のように変更する例について説明したが、透視撮影を開始する前に指定された変更前のフレームレートについても、上記図25に例示した照射期間のプログラムを実行し、該フレームレートに応じた照射期間を求めて使用してもよい。 In the present embodiment, when the frame rate is reduced, the example in which the irradiation period is changed as described above according to the decrease in the frame rate has been described. Also for the frame rate before the change, the irradiation period program illustrated in FIG. 25 may be executed to obtain and use the irradiation period corresponding to the frame rate.
 ところで、上記のように非圧縮転送領域を変更した後、動き領域に対する注視度(視線を向けている度合い)が低くなったら、変更した非圧縮転送領域を、変更前の元の非圧縮転送領域に戻すようにしてもよい。 By the way, after the non-compressed transfer area is changed as described above, when the gaze degree (the degree of the line of sight) with respect to the motion area decreases, the changed non-compressed transfer area is changed to the original uncompressed transfer area before the change. You may make it return to.
 この場合には、撮影システム18に、ディスプレイ100を目視する人々の視線方向を検出する検出手段(注視度検出手段)を設け、ディスプレイ100を目視する人々の注視エリアが動き領域からはずれたことを検出可能に構成する。 In this case, the photographing system 18 is provided with detection means (gaze degree detection means) for detecting the line-of-sight direction of the people who are viewing the display 100, and the gaze area of the people viewing the display 100 is out of the movement region. Configure to be detectable.
 例えば、検出手段は、ディスプレイ100を目視する人を撮影するカメラ等の撮影手段と、該撮影手段により撮影された眼領域の画像データを解析して、目視する人の視線方向の各々を導出する導出手段とにより構成されていてもよい。また、例えば、検出手段として、IRED(赤外発光ダイオード)をディスプレイ100に設置し、該IREDで検出対象者の眼球を赤外照射し、検出対象者の前眼部画像を結像受光し、赤外線センサの出力信号からIREDの角膜反射像と瞳孔円の位置を推定することにより検出する手段であってもよい。なお、視線方向を検出する検出手段は、これらに限定されず、公知の様々な技術を採用することができる。 For example, the detection means analyzes imaging data such as a camera that captures a person who views the display 100 and eye region image data captured by the imaging means, and derives each of the gaze directions of the person viewing. And derivation means. Further, for example, as a detection means, an IRED (infrared light emitting diode) is installed on the display 100, the eyeball of the detection target person is irradiated with infrared light with the IRED, and the anterior segment image of the detection target is imaged and received It may be a means for detecting by estimating the position of the IRED cornea reflection image and pupil circle from the output signal of the infrared sensor. The detection means for detecting the line-of-sight direction is not limited to these, and various known techniques can be employed.
 そして、電子カセッテ32から動き領域の情報をコンソール42に送信し、コンソール42側で上記検出手段の検出結果から、動き領域に対して視線を向けている注視時間を求め、所定時間内における注視時間の割合から注視度を計算する。注視度を計算して、電子カセッテ32に送信する処理を実行するプログラムを、コンソール42のCPU104が実行するプログラムに含めておけばよい。あるいは、視線方向の検出結果をコンソール42から電子カセッテ32に送信して、電子カセッテ32で、注視度を計算してもよい。 Then, information on the movement area is transmitted from the electronic cassette 32 to the console 42, and the gaze time during which the line of sight is directed toward the movement area is obtained from the detection result of the detection means on the console 42 side. The gaze degree is calculated from the ratio of. A program for calculating the gaze degree and executing the processing to be transmitted to the electronic cassette 32 may be included in the program executed by the CPU 104 of the console 42. Alternatively, the detection result of the line-of-sight direction may be transmitted from the console 42 to the electronic cassette 32 and the gaze degree may be calculated by the electronic cassette 32.
 ここで、図27を参照して非圧縮転送領域を変更する処理について詳しく説明する。
 図27は、注視度を用いた領域設定変更処理プログラムの処理の流れを示すフローチャートである。本プログラムは、図23と同様に、透視撮影途中で、上記ステップS202で特定した関心領域内において非圧縮転送領域外で動き量が大きい動き領域が発生した場合に実行される。
Here, the process of changing the uncompressed transfer area will be described in detail with reference to FIG.
FIG. 27 is a flowchart showing the flow of processing of the area setting change processing program using the gaze degree. As in FIG. 23, this program is executed when a motion region having a large motion amount outside the uncompressed transfer region is generated in the region of interest specified in step S202 during fluoroscopic imaging.
 また、図27において、図23の領域設定変更処理プログラムと同一処理部分については同一の符号を付して説明を省略する。一方、視線方向の検出及び注視度の計算は、動き領域が発生した時点から開始され、本プログラムと並行して行われているものとする。 In FIG. 27, the same processing parts as those in the area setting change processing program of FIG. On the other hand, it is assumed that the detection of the gaze direction and the calculation of the gaze degree are started at the time when the motion region occurs and are performed in parallel with this program.
 ステップS304の後は、CPU92Aは、ステップS306で動き領域に対する注視度が閾値を超えているか否かを判断する。ここで、複数の人がディスプレイ100を目視している場合には、複数の人の注視度について判断する。一人でも注視度が閾値を超えていれば、ここでは肯定判断される。また、複数の人の全ての注視度が閾値以下となった場合には、否定判断される。更に又、複数の動き領域が点在していた場合には、新たに非圧縮転送領域に加えた動き領域の各々に対する注視度を判断し、1つでも注視度が閾値を超えていれば、肯定判断し、全ての注視度が閾値以下となった場合には、否定判断する。 After step S304, the CPU 92A determines whether or not the gaze degree with respect to the motion region exceeds the threshold value in step S306. Here, when a plurality of people are viewing the display 100, the degree of gaze of the plurality of people is determined. If even one person's gaze degree exceeds the threshold, an affirmative determination is made here. Further, if all the gaze degrees of a plurality of people are below the threshold value, a negative determination is made. Furthermore, when a plurality of motion areas are scattered, a gaze degree for each of the motion areas newly added to the uncompressed transfer area is determined, and if even one gaze degree exceeds the threshold, An affirmative determination is made and a negative determination is made if all the gaze degrees are below the threshold.
 ステップS306で肯定判断されている期間は、非圧縮転送領域は変更されたまま維持される。 During the period in which an affirmative determination is made in step S306, the uncompressed transfer area is maintained unchanged.
 ステップS306で否定判断された場合には、CPU92Aは、ステップS308に進む。ステップS308では、(転送領域設定部としての)CPU92Aは、非圧縮転送領域を変更前の領域に変更し撮影を続行する。なお、変更前の領域には、MUST領域が含まれていることは言うまでもない。 If a negative determination is made in step S306, the CPU 92A proceeds to step S308. In step S308, the CPU 92A (as the transfer area setting unit) changes the non-compressed transfer area to the area before change and continues shooting. Needless to say, the area before the change includes the MUST area.
 また、ステップS320の後は、CPU92Aは、ステップS322で、ステップS306と同様に、動き領域に対する注視度が閾値を超えているか否かを判断する。ステップS322で肯定判断されている期間は、非圧縮転送領域は変更されたまま維持される。 Further, after step S320, the CPU 92A determines whether or not the gaze degree with respect to the motion area exceeds the threshold value in step S322, as in step S306. During the period in which an affirmative determination is made in step S322, the uncompressed transfer area is maintained unchanged.
 ステップS322で否定判断された場合には、CPU92Aは、ステップS324に進む。ステップS324では、CPU92Aは、非圧縮転送領域を変更前の領域に変更する。また、(第3変更部としての)CPU92Aは、ステップS320で変更したフレームレート等の曝射条件を変更前の曝射条件に戻し、該曝射条件をコンソール42に送信する。コンソール42は、受信した曝射条件を放射線発生装置34に転送する。これ以降、コンソール42は、元に戻したフレームレートに応じた周期で同期信号を放射線発生装置34及び電子カセッテ32へ送信する。また、電子カセッテ32は、元に戻した曝射条件に基づいて前述したように画像の読み出しを行い、放射線発生装置34は、該曝射条件に従って放射線を照射する。 If a negative determination is made in step S322, the CPU 92A proceeds to step S324. In step S324, the CPU 92A changes the uncompressed transfer area to the area before change. Further, the CPU 92A (as the third changing unit) returns the exposure conditions such as the frame rate changed in step S320 to the exposure conditions before the change, and transmits the exposure conditions to the console 42. The console 42 transfers the received exposure conditions to the radiation generator 34. Thereafter, the console 42 transmits a synchronization signal to the radiation generator 34 and the electronic cassette 32 at a period corresponding to the restored frame rate. In addition, the electronic cassette 32 reads an image as described above based on the restored exposure condition, and the radiation generator 34 emits radiation according to the exposure condition.
 これにより、動き領域における動きが、注視を継続すべき重要な動きでなかった場合には、自動的に非圧縮転送領域が元に戻り、低下させたフレームレートも元に戻すことができ、フレームレートを低下させた状態に比べてより滑らかな画像を表示させることができ、また、MUST領域については、常に非圧縮転送領域に含まれるため、動き領域の発生に拘わらず常に画質劣化なくリアルタイムに表示させることができる。 As a result, if the motion in the motion area is not an important motion that should be watched, the uncompressed transfer area can be automatically restored, and the reduced frame rate can be restored to the original. A smoother image can be displayed compared to a state in which the rate is lowered, and the MUST area is always included in the non-compressed transfer area, so that the image quality is not always deteriorated in real time regardless of the occurrence of the moving area. Can be displayed.
 なお、動き領域があまりに大きなものであった場合には、被検者の体が動いて動き検出された可能性がある。この場合にも、医師らは、ディスプレイ100への注視をやめるものと考えられるため、例えば、上記ステップS322の後、ステップS324の前に、ステップS323として(図示省略)動き量が予め定められた閾値(体動を検出するための閾値であって、動き検出で用いた閾値より大きい閾値)より大きいか否かを判断するステップを設け、ステップS323で肯定判断した場合には、図17に例示した領域設定処理を再実行するように構成してもよい。 Note that if the movement area is too large, the body of the subject may have moved and detected movement. In this case as well, doctors are considered to stop gaze on the display 100. Therefore, for example, after step S322, but before step S324, the amount of movement is predetermined as step S323 (not shown). A step of determining whether or not the threshold value is greater than a threshold value (threshold value for detecting body movement and greater than the threshold value used in motion detection) is illustrated in FIG. 17 when an affirmative determination is made in step S323. The region setting process may be re-executed.
 [第3の実施の形態] [Third embodiment]
 第1及び第2実施形態において例示した放射線発生装置34に、放射線Xの照射領域を調整する絞り機構が設けられていても良い。例えば、図30に示すように、放射線発生装置34に、絞り装置(コリメータ)500及び絞り制御部502を設ける。絞り装置500は、放射線源130と被験者との間に設けられ、放射線Xの照射領域を調整する。絞り制御部502は、マイクロコンピュータを含んで構成されており、コンソール42から受信する照射領域の情報に基づいて、絞り装置500の開口状態を制御する(この制御を、絞り制御という)。 In the radiation generator 34 exemplified in the first and second embodiments, a diaphragm mechanism that adjusts the irradiation region of the radiation X may be provided. For example, as shown in FIG. 30, the radiation generator 34 is provided with a diaphragm device (collimator) 500 and a diaphragm controller 502. The diaphragm device 500 is provided between the radiation source 130 and the subject, and adjusts the irradiation region of the radiation X. The diaphragm control unit 502 includes a microcomputer, and controls the aperture state of the diaphragm device 500 based on the irradiation area information received from the console 42 (this control is referred to as diaphragm control).
 なお、絞り制御を行うと、放射線Xの照射領域についてはリアルタイムの放射線画像が得られるが、放射線Xの照射領域以外の非照射領域についてはリアルタイムの放射線画像は得られない。そこで、コンソール42は、非照射領域には、絞り制御を行う前に得られた放射線画像(静止画)を表示するように制御してもよい。この場合、コンソール42から電子カセッテ32に対して、非照射領域の画像データの転送停止要求を照射領域(或いは非照射領域)の情報と共に送信してもよい。これにより、電子カセッテ32から転送すべきデータ量を削減することができる。 Note that when aperture control is performed, a real-time radiation image is obtained for the radiation X irradiation region, but a real-time radiation image cannot be obtained for a non-irradiation region other than the radiation X irradiation region. Therefore, the console 42 may control the non-irradiated region to display a radiation image (still image) obtained before performing aperture control. In this case, a transfer stop request for image data in the non-irradiation area may be transmitted from the console 42 to the electronic cassette 32 together with information on the irradiation area (or non-irradiation area). Thereby, the amount of data to be transferred from the electronic cassette 32 can be reduced.
 また、放射線Xの照射領域は、少なくともMUST領域を含むものとする。従って、照射領域は、MUST領域であってもよいし、MUST領域及びMUST領域の周辺領域であってもよい。また、放射線Xの照射領域は、関心領域であってもよいし、更には該関心領域の周辺領域を含む領域であってもよい。また、放射線Xの照射領域は、また、病変が疑われる領域(この領域は、必ずしも疾患の領域とは限らない。以下では、病変候補領域と呼称する)がある場合には、該領域も含めて照射領域としてもよい。以下、初期撮影の際に照射領域を設定する初期設定処理の具体例を説明する。 Further, the radiation X irradiation area includes at least the MUST area. Therefore, the irradiation region may be a MUST region, or a MUST region and a peripheral region of the MUST region. Further, the irradiation region of the radiation X may be a region of interest or may be a region including a peripheral region of the region of interest. In addition, the irradiation region of radiation X also includes a region in which a lesion is suspected (this region is not necessarily a disease region; hereinafter, referred to as a lesion candidate region). It is good also as an irradiation area. Hereinafter, a specific example of an initial setting process for setting an irradiation area at the time of initial imaging will be described.
 図31には、コンソール42のCPU104により実行される、絞り制御に関する初期設定処理プログラムの処理の流れを示すフローチャートが示されている。なお、本処理プログラムは、ROM106或いはHDD110の所定の領域に予め記憶されており、透視撮影開始直後の初期撮影の際に実行される。また、本処理プログラムが開始される際には、既に電子カセッテ32からの被写体画像の画像データの受信が開始されており、該画像データに基づく表示が開始されているものとする。なお、初期設定処理プログラムの開始時点では、絞り装置500の開口状態は、絞り込みのない初期状態とされている。従って、図35に示すように、照射領域が制限されずに撮影対象の部位全体が撮影され、該撮影された被写体画像がコンソール42に送信される。 FIG. 31 shows a flowchart showing a flow of processing of an initial setting processing program related to aperture control, which is executed by the CPU 104 of the console 42. Note that this processing program is stored in advance in a predetermined area of the ROM 106 or the HDD 110, and is executed at the time of initial imaging immediately after the start of fluoroscopic imaging. When this processing program is started, it is assumed that reception of image data of a subject image from the electronic cassette 32 has already started and display based on the image data has started. Note that, at the start of the initial setting processing program, the aperture state of the aperture stop device 500 is an initial state with no aperture. Therefore, as shown in FIG. 35, the entire region to be imaged is imaged without limiting the irradiation area, and the imaged subject image is transmitted to the console 42.
 ステップS600において、(照射領域設定部としての)CPU104は、病変候補領域設定処理を実行する。この病変候補領域設定処理により、病変候補領域が設定される。なお、後述するように、被写体画像に病変候補領域が存在しない場合には、この病変候補領域設定処理において病変候補領域が設定されない場合もある。 In step S600, the CPU 104 (as the irradiation region setting unit) executes a lesion candidate region setting process. By this lesion candidate area setting process, a lesion candidate area is set. As will be described later, when no lesion candidate area exists in the subject image, the lesion candidate area may not be set in this lesion candidate area setting process.
 ステップS602において、CPU104は、放射線Xの照射領域を設定する。照射領域は、例えば、MUST領域或いは関心領域と、病変候補領域設定処理により設定された病変候補領域と、を含む矩形領域とすることができる。CPU104は、電子カセッテ32から、MUST領域或いは関心領域の位置を示す情報を取得してもよいし、CPU104自身がMUST領域或いは関心領域を特定してもよい。 In step S602, the CPU 104 sets the radiation X irradiation area. The irradiation region can be, for example, a rectangular region including a MUST region or a region of interest and a lesion candidate region set by a lesion candidate region setting process. The CPU 104 may acquire information indicating the position of the MUST region or the region of interest from the electronic cassette 32, or the CPU 104 itself may specify the MUST region or the region of interest.
 なお、照射領域をMUST領域(或いはMUST領域及び病変候補領域)のみに絞ると、リアルタイムの放射線画像は該絞った領域のものしか得られない。MUST領域の周辺の領域についてもリアルタイムの放射線画像を表示する方がMUST領域自体を確認しやすいため、MUST領域の周辺の領域が含まれるように照射領域を設定するとよい。また、同様に、病変候補領域の周辺の領域が含まれるように照射領域を設定するとよい。 Note that if the irradiation region is limited to only the MUST region (or the MUST region and the lesion candidate region), a real-time radiation image can be obtained only in the narrowed region. Since it is easier to check the MUST area itself for the area around the MUST area, it is preferable to set the irradiation area so that the area around the MUST area is included. Similarly, the irradiation area may be set so that the area around the lesion candidate area is included.
 ステップS604において、CPU104は、放射線発生装置34に対して上記設定した照射領域の情報を送信して、上記絞り制御部502に絞り制御を行わせる。 In step S604, the CPU 104 transmits information on the set irradiation region to the radiation generator 34, and causes the diaphragm control unit 502 to perform diaphragm control.
 絞り制御部502は、コンソール42から送信された照射領域の情報に基づいて、上記設定された照射領域に対して放射線Xが照射され、上記設定された照射領域以外の領域には、放射線Xが照射されないように、絞り装置500を制御する。 The aperture control unit 502 irradiates the set irradiation region with the radiation X based on the irradiation region information transmitted from the console 42, and the region other than the set irradiation region receives the radiation X. The diaphragm device 500 is controlled so as not to be irradiated.
 ステップS606において、(送信制御部としての)CPU104は、画像データの転送制御を行う。具体的には、CPU104は、電子カセッテ32に、非照射領域の画像データの転送停止要求を照射領域(或いは非照射領域)の情報と共に送信する。この要求を受けた電子カセッテ32は、照射領域については、画像データをコンソール42に転送し、非照射領域については、画像データの転送を停止する。なお、照射領域が非圧縮転送領域と圧縮転送領域とを含む場合には、電子カセッテ32は、照射領域のうち非圧縮転送領域の画像データについては、非圧縮で送信し、圧縮転送領域の画像データについては圧縮して送信する。 In step S606, the CPU 104 (as a transmission control unit) performs transfer control of image data. Specifically, the CPU 104 transmits to the electronic cassette 32 a request to stop transferring image data of the non-irradiation area together with information on the irradiation area (or non-irradiation area). Upon receiving this request, the electronic cassette 32 transfers the image data to the console 42 for the irradiation area, and stops transferring the image data for the non-irradiation area. When the irradiation area includes the non-compression transfer area and the compression transfer area, the electronic cassette 32 transmits the image data in the non-compression transfer area of the irradiation area without compression, and the image in the compression transfer area. Data is compressed before being sent.
 ステップS608において、CPU104は、表示制御を行う。具体的には、CPU104は、照射領域については、電子カセッテ32から転送された画像データに基づいてリアルタイムに画像が表示され、非照射領域については絞りをかける直前に撮影された画像(静止画)が表示されるようにディスプレイドライバ112を制御する。 In step S608, the CPU 104 performs display control. Specifically, the CPU 104 displays an image in real time based on the image data transferred from the electronic cassette 32 for the irradiation area, and an image (still image) taken immediately before applying the aperture for the non-irradiation area. The display driver 112 is controlled so that is displayed.
 ここで、上記ステップS600で実行される病変候補領域設定処理について、具体例を挙げて説明する。図32は、病変候補領域設定処理の一例を示すフローチャートである。 Here, the lesion candidate area setting process executed in step S600 will be described with a specific example. FIG. 32 is a flowchart illustrating an example of a lesion candidate area setting process.
 ステップS610において、CPU104は、医師等により操作パネル102が操作され、ディスプレイ100に表示されている被写体画像内の領域が指定されたか否かを判断する。ここで複数箇所の領域が指定されてもよい。また、図19等に示すように、エリア単位で領域指定が可能となるようにプログラムを構成してもよい。 In step S610, the CPU 104 determines whether or not a region in the subject image displayed on the display 100 is designated by operating the operation panel 102 by a doctor or the like. Here, a plurality of areas may be designated. Further, as shown in FIG. 19 and the like, the program may be configured so that the area can be specified in units of areas.
 また、領域指定は、初期設定処理或いは病変候補領域設定処理の実行を開始してから予め定められた時(領域指定待ち時間)が経過するまで、CPU104により受け付けられる。すなわち、CPU104は、領域指定待ち時間が経過するまではステップS610から次のステップには移行しない。例えば、肺野部を撮影して呼吸動態を観察する場合、何サイクルかの呼吸動態を観察すれば、病変候補領域の判断ができる。従って、例えば、判断可能な複数サイクル分に相当する時間を指定待ち時間として予め設定しておき、CPU104は、該指定待ち時間継続して領域指定待ちを行うものとする。例えば、予め被験者の単位時間あたりの心拍数を計測して、該心拍数に基づいて指定待ち時間を計算して設定してもよい。 Further, the area designation is accepted by the CPU 104 until a predetermined time (area designation waiting time) elapses after the execution of the initial setting process or the lesion candidate area setting process. That is, the CPU 104 does not shift from step S610 to the next step until the area designation waiting time elapses. For example, when observing the respiratory dynamics by photographing the lung field, the candidate lesion region can be determined by observing the respiratory dynamics in several cycles. Therefore, for example, a time corresponding to a plurality of cycles that can be determined is set in advance as the designated waiting time, and the CPU 104 waits for the area designation by continuing the designated waiting time. For example, the heart rate per unit time of the subject may be measured in advance, and the designated waiting time may be calculated and set based on the heart rate.
 CPU104は、ステップS610において肯定判断した場合には、ステップS612において、指定された領域を病変候補領域として設定する。CPU104は、該設定した病変候補領域の位置をディスプレイ100に表示する。なお、CPU104は、ステップS610において否定判断した場合には、ステップS612をスキップする。 If the CPU 104 makes an affirmative determination in step S610, it sets the designated region as a lesion candidate region in step S612. The CPU 104 displays the position of the set lesion candidate area on the display 100. If the CPU 104 makes a negative determination in step S610, it skips step S612.
 ステップS614において、CPU104は、医師等により操作パネル102が操作され、病変候補領域の指定を取り消す取消指示がされたか否かを判断する。なお、ステップS612で病変候補領域として設定された領域が複数ある場合には、そのうちの少なくとも1つについて取消指示がなされれば、ステップS614では、肯定判断される。 In step S614, the CPU 104 determines whether or not the operation panel 102 is operated by a doctor or the like and an instruction to cancel the designation of the lesion candidate area has been issued. When there are a plurality of regions set as lesion candidate regions in step S612, an affirmative determination is made in step S614 if a cancellation instruction is issued for at least one of them.
 また、取消指示は、放射線画像をディスプレイ100に表示してから予め定められた時間(取消指示待ち時間)が経過するまで、CPU104により受け付けられる。すなわち、CPU104は、上記指定待ち時間が経過するまではステップS614から次のステップには移行しない。これにより、利用者は、何らかの領域を病変候補領域となるよう指定した後に、被写体画像を目視で確認でき、確認の結果、必要ないと判断されれば該指定を取り消すことができる。 Further, the cancellation instruction is accepted by the CPU 104 until a predetermined time (cancellation cancellation waiting time) elapses after the radiation image is displayed on the display 100. That is, the CPU 104 does not proceed from step S614 to the next step until the specified waiting time has elapsed. Thus, the user can visually confirm the subject image after designating a certain region to be a lesion candidate region, and can cancel the designation if it is determined that it is unnecessary as a result of the confirmation.
 CPU104は、ステップS614において肯定判断した場合には、ステップS616において取消指示された領域の設定を取り消す。これにより、取消指示された領域は、病変候補領域から除外される。 If the CPU 104 makes an affirmative determination in step S614, it cancels the setting of the area instructed to be canceled in step S616. As a result, the cancel-instructed area is excluded from the lesion candidate area.
 ステップS614において否定判断された場合には、病変候補領域設定処理が終了する。なお、この病変候補領域設定処理が初期撮影時に行われる場合において、ステップS610において否定判断されたときにも、病変候補領域設定処理が終了するように構成してもよい。 If a negative determination is made in step S614, the lesion candidate area setting process ends. In the case where the lesion candidate area setting process is performed at the time of initial imaging, the lesion candidate area setting process may be completed when a negative determination is made in step S610.
 CPU104は、前述したように、図31のステップS602において、以上説明したように設定された病変候補領域と、関心領域とを含む矩形領域を照射領域として設定する。図36に、放射線の照射領域の一例を示す。なお、病変候補領域が設定されなかった(すなわち、領域が指定されなかった、或いは領域指定が取り消された)場合には、例えば、図37に示すように、関心領域を含む矩形領域を照射領域としてもよい。なお、前述したように、関心領域の代わりに、MUST領域を含む矩形領域を照射領域としてもよい。 As described above, the CPU 104 sets a rectangular region including the lesion candidate region set as described above and the region of interest as an irradiation region in step S602 of FIG. FIG. 36 shows an example of a radiation irradiation region. If no lesion candidate area is set (that is, the area is not specified or the area designation is canceled), for example, as shown in FIG. It is good. As described above, instead of the region of interest, a rectangular region including a MUST region may be used as the irradiation region.
 このように、医師等に目視で被写体画像を確認させて領域を指定させ病変候補領域を設定することもできるが、CPU104が、予め定められた条件を満たす領域を抽出して、該抽出した領域を病変候補領域として設定することもできる。以下、図33を参照して後者の場合について説明する。図33は、病変候補領域設定処理の他の例を示すフローチャートである。 In this way, the doctor 104 or the like can visually confirm the subject image, specify the region, and set the lesion candidate region. However, the CPU 104 extracts a region that satisfies a predetermined condition, and extracts the extracted region. Can also be set as a lesion candidate region. Hereinafter, the latter case will be described with reference to FIG. FIG. 33 is a flowchart illustrating another example of a lesion candidate area setting process.
 なお、図33に示す病変候補領域設定処理は、照射領域を絞らない状態で電子カセッテ32により撮影された被写体画像の画像データの取得を開始してから予め定められた時間が経過するまでは開始されないものとする。例えば、前述したように、肺野部を撮影して呼吸動態を観察する場合、何サイクルかの呼吸動態を観察すれば、病変候補領域の判断ができる。従って、例えば、判断可能な複数サイクル分に相当する時間を予め設定しておき、CPU104は、少なくとも該設定された時間分だけ放射線画像の画像データを取得してから、本病変候補領域設定処理のステップS620の処理を行うものとする。 The lesion candidate area setting process shown in FIG. 33 is started until a predetermined time elapses after the acquisition of the image data of the subject image photographed by the electronic cassette 32 without the irradiation area being narrowed down. Shall not be. For example, as described above, when the lung field is imaged and the respiratory dynamics is observed, the lesion candidate region can be determined by observing the respiratory dynamics in several cycles. Therefore, for example, a time corresponding to a plurality of cycles that can be determined is set in advance, and the CPU 104 acquires image data of a radiographic image for at least the set time, and then performs this lesion candidate region setting process. It is assumed that the process of step S620 is performed.
 ステップS620において、CPU104は、取得した各被写体画像内で、輝度値が設定範囲内の領域があるか否かを判定する。ここでは、予め病変候補領域として抽出すべき輝度値の範囲が予め設定されており、該設定されている範囲を設定範囲と呼称している。また、ここでは、上記予め定められた時間内に撮影された被写体画像の各々の輝度値が確認される。 In step S620, the CPU 104 determines whether or not there is an area where the luminance value is within the set range in each acquired subject image. Here, a range of luminance values to be extracted as a lesion candidate region is set in advance, and the set range is referred to as a setting range. In addition, here, the brightness value of each of the subject images taken within the predetermined time is confirmed.
 CPU104は、ステップS620において肯定判断した場合には、ステップS622において、輝度値が設定範囲内の領域を病変候補領域として設定する。例えば、上記予め設定された時間分の被写体画像のうち、設定範囲内の輝度値となるブロックを含む被写体画像があれば、ステップS620において肯定判断され、ステップS622において、該ブロックが、病変候補領域として設定される。なお、図19等に示すように、エリア単位で領域設定が可能となるようにプログラムを構成してもよい。 When the CPU 104 makes an affirmative determination in step S620, in step S622, it sets an area whose luminance value is within the setting range as a lesion candidate area. For example, if there is a subject image including a block having a luminance value within the set range among the subject images for the preset time, an affirmative determination is made in step S620, and in step S622, the block is determined as a lesion candidate region. Set as Note that, as shown in FIG. 19 and the like, the program may be configured so that the area can be set in units of areas.
 なお、病変候補領域に含まれる全画素の輝度値が設定範囲内でなくてもよい。例えば、予め定められた割合以上の画素数の輝度値が設定範囲内の領域があれば、ステップS620において肯定判断するようにしてもよい。また、病変候補領域として設定される領域は、予め設定したサイズ以上の領域としてもよい。 Note that the luminance values of all the pixels included in the lesion candidate area may not be within the set range. For example, if there is an area where the luminance value of the number of pixels equal to or greater than a predetermined ratio is within the set range, an affirmative determination may be made in step S620. Further, the region set as the lesion candidate region may be a region having a size larger than a preset size.
 一方、ステップS620において否定判断された場合には、ステップS622の処理はスキップされ、病変候補領域設定処理が終了する。 On the other hand, if a negative determination is made in step S620, the process in step S622 is skipped, and the lesion candidate area setting process ends.
 なお、ここでは、輝度値が設定範囲内となる領域を病変候補領域として設定する例について説明したが、病変候補領域を設定するための条件は、これに限定されず、撮影目的や撮影部位等に応じて定めることができる。 Here, an example has been described in which an area in which the luminance value is within the setting range is set as a lesion candidate area, but the conditions for setting the lesion candidate area are not limited to this, and the imaging purpose, imaging site, etc. Can be determined according to
 なお、初期撮影時に照射領域を設定して絞り制御を行い、その後撮影が終了するまで、照射領域を変更せずに撮影を行うようにしてもよいが、初期撮影時だけでなく、撮影動作途中においても、病変候補領域設定処理を行って照射領域の設定を更新するようにしてもよい。 In addition, it is possible to set the irradiation area at the time of initial shooting, perform aperture control, and then perform shooting without changing the irradiation area until shooting is completed. In this case, the irradiation region setting may be updated by performing a lesion candidate region setting process.
 図34は、初期設定処理の後に行われる撮影動作中設定処理の一例を示すフローチャートである。なお、この撮影動作中設定処理は、初期設定処理が終了したときに開始されるものとする。 FIG. 34 is a flowchart showing an example of the shooting operation setting process performed after the initial setting process. This setting process during shooting operation is started when the initial setting process is completed.
 ステップS650において、CPU104は、所定時間が経過したか否かを判断する。CPU104は、ステップS650において、所定時間が経過したと判断した場合には、ステップS652に進む。 In step S650, the CPU 104 determines whether or not a predetermined time has elapsed. If the CPU 104 determines in step S650 that the predetermined time has elapsed, the CPU 104 proceeds to step S652.
 ステップS652において、CPU104は、絞り装置500を初期状態に戻す。すなわち、図35に示すように、照射領域を絞らずに撮影されるよう、絞り装置500をリセットする。 In step S652, the CPU 104 returns the aperture device 500 to the initial state. That is, as shown in FIG. 35, the diaphragm device 500 is reset so that an image is taken without narrowing the irradiation area.
 ステップS654において、CPU104は、画像データの転送制御を行う。具体的には、CPU104は、照射領域を絞らずに撮影された撮影部位全域の画像データが送信されるように転送要求を送信する。電子カセッテ32は、転送要求に従って、画像データをコンソール42に転送する。その際、電子カセッテ32は、送信する画像データのうち、非圧縮転送領域の画像データについては非圧縮で送信し、圧縮転送領域の画像データについては圧縮して送信する。 In step S654, the CPU 104 performs transfer control of image data. Specifically, the CPU 104 transmits a transfer request so that image data of the entire imaging region that is imaged without narrowing the irradiation area is transmitted. The electronic cassette 32 transfers the image data to the console 42 in accordance with the transfer request. At that time, the electronic cassette 32 transmits the image data in the non-compressed transfer area without compression in the image data to be transmitted, and compresses and transmits the image data in the compressed transfer area.
 ステップS656において、CPU104は、電子カセッテ32から送信された画像データに基づいてリアルタイムに、絞りをかけないときの被写体画像全域が表示されるように、ディスプレイドライバ112を制御する。 In step S656, the CPU 104 controls the display driver 112 so that the entire subject image when the aperture is not applied is displayed in real time based on the image data transmitted from the electronic cassette 32.
 ステップS658において、CPU104は、図32及び図33を参照して説明したように病変候補領域設定処理を行う。これにより、新たに病変候補領域が見つかることもあれば、病変候補領域として既に設定されている領域が、病変候補領域から除外されることもある。 In step S658, the CPU 104 performs a lesion candidate area setting process as described with reference to FIGS. As a result, a new lesion candidate region may be found, or a region already set as a lesion candidate region may be excluded from the lesion candidate region.
 CPU104は、ステップS658の病変候補領域設定処理の後は、ステップS660において、照射領域を再設定する。照射領域の再設定の方法は、上記ステップS602と同様であるため説明を省略する。 The CPU 104 resets the irradiation region in step S660 after the lesion candidate region setting process in step S658. The method for resetting the irradiation area is the same as that in step S602, and thus the description thereof is omitted.
 ステップS662において、CPU104は、新たに設定した照射領域の情報を放射線発生装置34に対して送信して、上記絞り制御部502に絞り制御を行わせる。 In step S662, the CPU 104 transmits information on the newly set irradiation area to the radiation generation apparatus 34, and causes the diaphragm control unit 502 to perform diaphragm control.
 ステップS664において、CPU104は、電子カセッテの画像データの転送制御を行う。具体的には、CPU104は、電子カセッテ32に対して、非照射領域の画像データの転送停止要求を照射領域或いは非照射領域の情報と共に送信する。 In step S664, the CPU 104 controls transfer of image data of the electronic cassette. Specifically, the CPU 104 transmits a transfer stop request for image data in the non-irradiation area to the electronic cassette 32 together with information on the irradiation area or the non-irradiation area.
 ステップS666において、CPU104は、照射領域については、電子カセッテ32から転送された画像データに基づいてリアルタイムに画像が表示され、非照射領域については絞りをかける直前に撮影された画像(静止画)が表示されるようにディスプレイドライバ112を制御する。 In step S666, the CPU 104 displays an image in real time based on the image data transferred from the electronic cassette 32 for the irradiation region, and an image (still image) taken immediately before the aperture is applied to the non-irradiation region. The display driver 112 is controlled so as to be displayed.
 ステップS668において、CPU104は、所定時間が経過したか否かを判断する。CPU104は、ステップS668において、所定時間が経過していないと判断した場合には、ステップS670に進む。ステップS670において、CPU104は、撮影が終了したか否かを判断する。 In step S668, the CPU 104 determines whether or not a predetermined time has elapsed. If the CPU 104 determines in step S668 that the predetermined time has not elapsed, the process proceeds to step S670. In step S670, CPU 104 determines whether or not shooting has ended.
 CPU104は、ステップS670において撮影が終了していないと判断した場合には、ステップS668に戻る。また、CPU104は、ステップS670において撮影が終了したと判断した場合には、撮影動作中設定処理を終了する。更にまた、CPU104は、ステップS668において所定時間が経過したと判断した場合には、ステップS652に戻る。 If the CPU 104 determines in step S670 that shooting has not ended, the process returns to step S668. On the other hand, if the CPU 104 determines in step S670 that shooting has ended, it ends the setting process during shooting operation. Furthermore, when the CPU 104 determines in step S668 that the predetermined time has elapsed, the CPU 104 returns to step S652.
 このように、所定時間間隔で、病変候補領域設定処理を行うことにより、例えば、病変候補領域として設定された領域が、その設定後に、病変候補領域ではないと判断された場合には、当該病変候補領域を含まない照射領域を設定できるため、被験者の被曝量を軽減できる。病変候補領域の変更により、例えば、放射線Xの照射領域が、図36に示す領域から図37に示す領域に変更される。また、一方では、初期設定処理では病変候補領域として設定されなかった領域を、撮影途中で病変候補領域として設定できる。 Thus, by performing the lesion candidate area setting process at predetermined time intervals, for example, when it is determined that the area set as the lesion candidate area is not a lesion candidate area after the setting, the lesion Since the irradiation area not including the candidate area can be set, the exposure dose of the subject can be reduced. By changing the lesion candidate area, for example, the radiation X irradiation area is changed from the area shown in FIG. 36 to the area shown in FIG. On the other hand, a region that has not been set as a lesion candidate region in the initial setting process can be set as a lesion candidate region during imaging.
 このように、本実施形態では、照射領域を設定して絞り制御を行うことにより、被曝量の軽減を図ることができる。 Thus, in this embodiment, the exposure dose can be reduced by setting the irradiation region and performing aperture control.
 なお、図34に示した撮影動作中設定処理において、ステップS658の病変候補領域設定処理及びステップS660の照射領域再設定をスキップして実行されるようにプログラムを構成してもよい。すなわち、初期設定処理の病変候補領域設定処理で設定された病変候補領域の変更はしないが、所定時間間隔で、非照射領域のリアルタイム表示と静止画表示とを切替えることもできる。 Note that in the setting process during the imaging operation shown in FIG. 34, the program may be configured to be executed while skipping the lesion candidate area setting process in step S658 and the irradiation area resetting in step S660. That is, although the lesion candidate area set in the lesion candidate area setting process of the initial setting process is not changed, the real-time display and the still image display of the non-irradiation area can be switched at predetermined time intervals.
 以上、本発明を第1、第2、及び第3の実施の形態を用いて説明したが、本発明の技術的範囲は上記各実施の形態に記載の範囲には限定されない。発明の要旨を逸脱しない範囲で上記各実施の形態に多様な変更又は改良を加えることができ、当該変更又は改良を加えた形態も本発明の技術的範囲に含まれる。 As mentioned above, although this invention was demonstrated using 1st, 2nd, and 3rd embodiment, the technical scope of this invention is not limited to the range as described in each said embodiment. Various changes or improvements can be added to the above-described embodiments without departing from the gist of the invention, and embodiments to which the changes or improvements are added are also included in the technical scope of the present invention.
 また、上記の実施の形態は、クレーム(請求項)に係る発明を限定するものではなく、また実施の形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。前述した実施の形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜の組み合わせにより種々の発明を抽出できる。実施の形態に示される全構成要件から幾つかの構成要件が削除されても、効果が得られる限りにおいて、この幾つかの構成要件が削除された構成が発明として抽出され得る。 Further, the above embodiment does not limit the invention according to the claims (claims), and all the combinations of features described in the embodiment are essential for the solution means of the invention. Is not limited. The embodiments described above include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. Even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, as long as an effect is obtained, a configuration from which these some constituent requirements are deleted can be extracted as an invention.
 例えば、上記実施の形態では、放射線発生装置34とコンソール42とをそれぞれケーブルで接続して有線通信によって各種情報の送受信を行う例について説明したが、無線通信で送受信を行うように構成してもよい。また、電子カセッテ32とコンソール42との間は、無線通信によって各種情報の送受信を行う例について説明したが、有線通信によって送受信を行うように構成してもよい。また、電子カセッテ32とコンソール42との間で、有線通信及び無線通信の双方の通信が可能に構成してもよい。 For example, in the above-described embodiment, an example has been described in which the radiation generation apparatus 34 and the console 42 are connected by cables, and various types of information are transmitted and received by wired communication. Good. Moreover, although the example which transmits / receives various information by radio | wireless communication between the electronic cassette 32 and the console 42 was demonstrated, you may comprise so that transmission / reception may be performed by wired communication. Moreover, you may comprise so that communication of both wired communication and radio | wireless communication is possible between the electronic cassette 32 and the console 42. FIG.
 なお、電子カセッテ32からコンソール42への画像データの転送は、一般的に、光ファイバー等の高速通信が実現可能な有線通信に比べて、無線通信の方が時間がかかる場合が多いため、電子カセッテ32とコンソール42との間で無線通信によって各種情報の送受信を行う場合において、上記各実施の形態で説明した非圧縮転送領域の領域設定処理や領域設定変更処理を行って、非圧縮転送領域については圧縮せずに送信し、圧縮転送領域については可逆圧縮して送信するという構成は特に有効である。 Note that transfer of image data from the electronic cassette 32 to the console 42 is generally more time-consuming for wireless communication than wired communication that can realize high-speed communication such as an optical fiber. In the case where various types of information are transmitted and received between the console 32 and the console 42 by wireless communication, the non-compressed transfer area setting process and the area setting changing process described in the above embodiments are performed, and the uncompressed transfer area is processed. The configuration of transmitting without compression and transmitting the compressed transfer area with lossless compression is particularly effective.
 更にまた、電子カセッテ32とコンソール42との間で、有線通信及び無線通信の双方の通信が可能に構成した場合において、有線通信と無線通信とを切替える切替手段を設け、操作者が通信方法を切替えることが可能な構成としたときに、該通信方法が無線通信に切替えられている場合に、上記各実施の形態で説明した領域設定処理や領域設定変更処理の何れかの処理が行われるようにして、非圧縮転送領域については圧縮せずに送信し、圧縮転送領域については可逆圧縮して送信するように構成し、有線通信に切替えられている場合には、例えば、フレームレートに拘わらず関心領域を含む矩形領域(例えば、図21の太枠線で示した領域)を常に非圧縮転送領域として設定するようにしてもよい。 Furthermore, in the case where both wired communication and wireless communication can be performed between the electronic cassette 32 and the console 42, switching means for switching between wired communication and wireless communication is provided so that the operator can change the communication method. If the communication method is switched to wireless communication when the switchable configuration is configured, one of the area setting process and the area setting change process described in each of the above embodiments is performed. If the non-compressed transfer area is transmitted without being compressed, and the compressed transfer area is reversibly compressed and transmitted, for example, regardless of the frame rate, it is switched to wired communication. A rectangular area including a region of interest (for example, an area indicated by a thick frame line in FIG. 21) may be always set as an uncompressed transfer area.
 なお、上記各実施の形態では、電子カセッテ32にコンソール42に対して画像データを送信する送信部の一例としての無線通信部94を設け、電子カセッテ32のカセッテ制御部92(CPU92A)が領域設定処理や領域設定変更処理を行い、電子カセッテ32からコンソール42に対して、無線通信部94により非圧縮転送領域の画像データは圧縮せずにコンソール42に送信し、圧縮転送領域の画像データは可逆圧縮してコンソール42に送信する撮影システム18について説明したが、これに限定されない。 In each of the above embodiments, the electronic cassette 32 is provided with a wireless communication unit 94 as an example of a transmission unit that transmits image data to the console 42, and the cassette control unit 92 (CPU 92A) of the electronic cassette 32 sets the area. The wireless cassette 94 transmits the image data in the non-compressed transfer area to the console 42 without being compressed, and the image data in the compressed transfer area is reversible. The imaging system 18 that compresses and transmits to the console 42 has been described, but is not limited thereto.
 例えば、撮影システム18が、コンソール42とは別に、表示部を備えた携帯端末装置を有していてもよい。この場合、電子カセッテ32は、コンソール42だけでなく、当該携帯端末装置に対しても、無線通信部94により非圧縮転送領域の画像データは圧縮せずにコンソール42に送信し、圧縮転送領域の画像データは可逆圧縮してコンソール42に送信することができる。このような構成であっても、第3の実施の形態で説明したように、放射線の照射領域を絞る絞り機構(絞り装置500及び絞り制御部502)を放射線発生装置34に設けた場合においては、照射領域を絞った後に電子カセッテ32から通信制御装置700又はコンソール42に送信される画像データは、照射領域の画像データのみとすることができる。 For example, the imaging system 18 may have a mobile terminal device provided with a display unit separately from the console 42. In this case, the electronic cassette 32 transmits not only the console 42 but also the portable terminal device to the console 42 without compressing the image data in the uncompressed transfer area by the wireless communication unit 94, and The image data can be reversibly compressed and transmitted to the console 42. Even in such a configuration, as described in the third embodiment, in the case where the radiation generating device 34 is provided with a diaphragm mechanism (a diaphragm device 500 and a diaphragm controller 502) that narrows the radiation irradiation region. The image data transmitted from the electronic cassette 32 to the communication control device 700 or the console 42 after narrowing the irradiation area can be only the image data of the irradiation area.
 更にまた、例えば、撮影システムに、コンソール42や電子カセッテ32とは別に、無線通信及び有線通信が可能な通信制御装置を設けてもよい。図38に、通信制御装置を含む撮影システム181の構成例を模式的に示す。なお、図38において、コンソール42の無線通信部118及びディスプレイ100以外の構成要素を、コンソール本体800として模式的に示した。また、撮影システム181には、放射線発生装置34も含まれるが、ここでは図示を省略した。電子カセッテ32は通信制御装置700と有線接続されている。電子カセッテ32は、通信制御装置700に対して被写体画像の全体の画像データを非圧縮で送信する。そして、電子カセッテ32から画像データを有線通信にて受信した通信制御装置700に含まれるCPUが、上記領域設定処理や領域設定変更処理を行い、コンソール42に対して無線通信部700Aを介して無線通信により画像データを転送する。この際、通信制御装置700は、非圧縮転送領域の画像データは圧縮せずにコンソール42に送信し、圧縮転送領域の画像データは可逆圧縮してコンソール42に送信する。コンソール42は、無線通信部118により画像データを受信し、受信した画像データに基づいてディスプレイ100に被写体画像を表示する。 Furthermore, for example, in addition to the console 42 and the electronic cassette 32, a communication control device capable of wireless communication and wired communication may be provided in the photographing system. FIG. 38 schematically shows a configuration example of the imaging system 181 including the communication control device. In FIG. 38, components other than the wireless communication unit 118 and the display 100 of the console 42 are schematically shown as a console body 800. The imaging system 181 also includes a radiation generator 34, which is not shown here. The electronic cassette 32 is connected to the communication control device 700 by wire. The electronic cassette 32 transmits the entire image data of the subject image to the communication control device 700 without being compressed. Then, the CPU included in the communication control device 700 that has received the image data from the electronic cassette 32 by wired communication performs the region setting process and the region setting change process, and wirelessly communicates with the console 42 via the wireless communication unit 700A. Transfer image data by communication. At this time, the communication control device 700 transmits the image data in the uncompressed transfer area to the console 42 without being compressed, and transmits the image data in the compressed transfer area to the console 42 after lossless compression. The console 42 receives image data by the wireless communication unit 118 and displays a subject image on the display 100 based on the received image data.
 また、撮影システムが、上記通信制御装置700に加え、更に、表示部を備えた携帯端末装置を含んでいてもよい。図39に、通信制御装置700及び携帯端末装置900を含む撮影システム182の構成例を模式的に示す。撮影システム182には、放射線発生装置34も含まれるが、ここでは図示を省略した。携帯端末装置900は、タッチパネルディスプレイ等の表示部900Aと、外部装置との間で無線通信を行うための無線通信部900Bとを備えている。図39においても、図38と同様に、コンソール42の無線通信部118及びディスプレイ100以外の構成要素を、コンソール本体800として模式的に示した。 In addition to the communication control device 700, the photographing system may further include a mobile terminal device provided with a display unit. FIG. 39 schematically illustrates a configuration example of an imaging system 182 including the communication control device 700 and the mobile terminal device 900. The imaging system 182 also includes a radiation generator 34, which is not shown here. The mobile terminal device 900 includes a display unit 900A such as a touch panel display and a wireless communication unit 900B for performing wireless communication with an external device. Also in FIG. 39, as in FIG. 38, components other than the wireless communication unit 118 and the display 100 of the console 42 are schematically shown as a console body 800.
 撮影システム182において、通信制御装置700を、電子カセッテ32及びコンソール42と有線接続する。電子カセッテ32は、通信制御装置700に対して被写体画像の全体の画像データを非圧縮で送信する。そして、電子カセッテ32から画像データを有線通信にて受信した通信制御装置700に含まれるCPUが、上記領域設定処理や領域設定変更処理を行い、コンソール42に対しては、圧縮転送領域及び非圧縮転送領域の区別なく全領域の画像データを圧縮せずに有線通信により送信し、携帯端末装置900に対しては、被写体画像の画像データのうち非圧縮転送領域については圧縮せずに送信し、圧縮転送領域については可逆圧縮して送信する。携帯端末装置900は、圧縮された画像データ及び非圧縮された画像データを受信すると、該受信した画像データに基づいて表示部900Aに画像を表示する。なお、通信制御装置700は、コンソール42に対しても、被写体画像の画像データのうち非圧縮転送領域については圧縮せずに送信し、圧縮転送領域については可逆圧縮して送信するようにしてもよい。 In the photographing system 182, the communication control device 700 is connected to the electronic cassette 32 and the console 42 by wire. The electronic cassette 32 transmits the entire image data of the subject image to the communication control device 700 without being compressed. Then, the CPU included in the communication control apparatus 700 that has received the image data from the electronic cassette 32 by wired communication performs the area setting process and the area setting change process. The image data of the entire area is transmitted without compression without distinction of the transfer area, and is transmitted to the portable terminal device 900 without compression for the uncompressed transfer area of the image data of the subject image, The compression transfer area is transmitted with lossless compression. When receiving the compressed image data and the uncompressed image data, the portable terminal device 900 displays an image on the display unit 900A based on the received image data. Note that the communication control device 700 also transmits the non-compressed transfer area of the image data of the subject image without compression to the console 42 and transmits the compressed transfer area after lossless compression. Good.
 なお、図38及び図39を参照して例示した通信制御装置700が、電子カセッテ32に内蔵され或いは一体的に設けられていても良い。 Note that the communication control device 700 illustrated with reference to FIGS. 38 and 39 may be built in or integrally provided in the electronic cassette 32.
 また、通信制御装置700の機能をコンソール42が担うように構成してもよい。図40に、コンソール42が電子カセッテ32から有線通信により画像データを受け取り、コンソール42から無線通信によって携帯端末装置900に画像データを転送する場合の撮影システム183の構成例を模式的に示す。撮影システム183には、放射線発生装置34も含まれるが、ここでは図示を省略した。 Further, the console 42 may be configured to perform the function of the communication control device 700. FIG. 40 schematically illustrates a configuration example of the imaging system 183 when the console 42 receives image data from the electronic cassette 32 by wired communication and transfers image data from the console 42 to the mobile terminal device 900 by wireless communication. The imaging system 183 also includes a radiation generator 34, which is not shown here.
 この撮影システム183では、電子カセッテ32とコンソール42とが有線接続されている。電子カセッテ32は、コンソール42に対して被写体画像全体の画像データを非圧縮で送信する。そして、コンソール42のコンソール本体800のCPU104が、上記領域設定処理や領域設定変更処理を行い、携帯端末装置900に対して無線通信部118を介して無線通信により画像データを送信する。この際、非圧縮転送領域の画像データは圧縮されずに携帯端末装置900に送信され、圧縮転送領域の画像データは可逆圧縮されて携帯端末装置900に送信される。携帯端末装置900は、圧縮された画像データ及び非圧縮された画像データを受信すると、該受信した画像データに基づいて表示部900Aに画像を表示する。 In this photographing system 183, the electronic cassette 32 and the console 42 are connected by wire. The electronic cassette 32 transmits uncompressed image data of the entire subject image to the console 42. Then, the CPU 104 of the console main body 800 of the console 42 performs the region setting process and the region setting change process, and transmits image data to the mobile terminal device 900 via the wireless communication unit 118 by wireless communication. At this time, the image data in the uncompressed transfer area is transmitted to the mobile terminal device 900 without being compressed, and the image data in the compressed transfer area is reversibly compressed and transmitted to the mobile terminal device 900. When receiving the compressed image data and the uncompressed image data, the mobile terminal device 900 displays an image on the display unit 900A based on the received image data.
 なお、図38~図40を参照して例示した撮影システム181、182、183においても、第3の実施の形態で説明したように、放射線の照射領域を絞る絞り機構(絞り装置500及び絞り制御部502)を放射線発生装置34に設けた場合においては、照射領域を絞った後に電子カセッテ32から通信制御装置700又はコンソール42に送信される画像データは、照射領域の画像データのみとすることができる。 In the imaging systems 181, 182, and 183 exemplified with reference to FIGS. 38 to 40, as described in the third embodiment, the diaphragm mechanism (the diaphragm device 500 and the diaphragm control) that narrows the radiation irradiation area. When the radiation generating device 34 is provided with the unit 502), the image data transmitted from the electronic cassette 32 to the communication control device 700 or the console 42 after narrowing the irradiation region may be only the image data of the irradiation region. it can.
 また、領域設定処理及び領域設定変更処理は、通信制御装置700、電子カセッテ32、及びコンソール42の何れかで行われればよく、当該処理を行う装置は特に限定されない。 Further, the area setting process and the area setting changing process may be performed by any of the communication control device 700, the electronic cassette 32, and the console 42, and the apparatus that performs the process is not particularly limited.
 また、領域設定処理の段階で、MUST領域を含む最小の矩形領域を非圧縮転送領域としても、非圧縮転送領域のエリア数が、指定されたフレームレートに応じた上限値S以下にならない場合には、上記ステップS320で説明したように、該非圧縮転送領域のエリア数を上限値とするフレームレートまでフレームレートを低下させ、該フレームレートに応じて照射期間も変更して、撮影を行うようにしてもよい。 In addition, even when the minimum rectangular area including the MUST area is set as the non-compressed transfer area at the stage of the area setting process, the number of areas of the non-compressed transfer area does not fall below the upper limit S corresponding to the designated frame rate As described in step S320 above, the frame rate is reduced to a frame rate having the upper limit of the number of areas in the non-compressed transfer area, and the irradiation period is changed according to the frame rate to perform imaging. May be.
 また、上記各実施の形態では、可搬型の放射線撮影装置である電子カセッテ32に本発明を適応した場合について説明したが、本発明はこれに限定されるものではなく、据置型の放射線撮影装置に適用してもよい。 In each of the above embodiments, the case where the present invention is applied to the electronic cassette 32 which is a portable radiation imaging apparatus has been described. However, the present invention is not limited to this, and a stationary radiation imaging apparatus. You may apply to.
 また、上記実施の形態では、オペアンプ84Aのゲイン量を調整したり、規格化処理のパラメータを調整する場合について説明したりしたが、これに限定されるものではない。例えば、オペアンプ84Aのゲイン量と規格化処理のパラメータとを共に調整するものとしてもよく、更に、他の処理のパラメータを調整するものとしてもよい。 In the above embodiment, the case where the gain amount of the operational amplifier 84A is adjusted or the parameter of the normalization process is adjusted has been described. However, the present invention is not limited to this. For example, both the gain amount of the operational amplifier 84A and the parameter of the normalization process may be adjusted, and further, the parameter of another process may be adjusted.
 また、規格化処理の変換関数として一次関数を用いた場合について説明したが、本発明はこれに限定されるものではない。例えば、2次関数や3次関数等の高次の関数で表される変換関数を使用してもよい。また、想定される複数の累積ヒストグラムと、この累積ヒストグラムの各々に対応するルックアップテーブルを用意しておき、想定される累積ヒストグラムの中から、求めた累積ヒストグラムに近いものに対応するルックアップテーブルを規格化処理特性として決定し、当該ルックアップテーブルに基づいて、画像データの変換を行わせるようにしてもよい。 Further, although the case where the linear function is used as the conversion function of the normalization processing has been described, the present invention is not limited to this. For example, a conversion function represented by a high-order function such as a quadratic function or a cubic function may be used. Also, a plurality of assumed cumulative histograms and a lookup table corresponding to each of the cumulative histograms are prepared, and a lookup table corresponding to the one that is close to the obtained cumulative histogram from the assumed cumulative histograms. May be determined as the normalization processing characteristics, and the image data may be converted based on the lookup table.
 また、上記各実施の形態では、放射線検出部62にシンチレータ148が形成されている場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線検出器60は、シンチレータ71が形成された蒸着基板73が光透過性を有するものとした場合、図28に示すように、係る放射線検出部62にシンチレータ148を設けずに、放射線検出器60のTFT基板66とは逆側の面(シンチレータ71側の面)に貼り付けて、係る放射線検出部62の各センサ部146がシンチレータ71の光を検出するものとしてもよい。このように、本実施の形態によれば、放射線検出部62をシンチレータ71に貼り付けることにより、シンチレータ148が不要となるため、放射線検出部62をより薄く形成できる。この場合、撮影の際に放射線XがTFT基板66側から入射するように筐体54内に配置すると、シンチレータ71のTFT基板66とは逆側の面に放射線検出部62を設けたことにより、放射線Xが放射線検出器60を透過した後に放射線検出部62を透過するため、放射線検出器60で撮影される放射線画像に放射線検出部62を設けたことによる影響が及ぶことを防ぐことができる。 In each of the above-described embodiments, the case where the scintillator 148 is formed in the radiation detection unit 62 has been described, but the present invention is not limited to this. For example, when the vapor deposition substrate 73 on which the scintillator 71 is formed has a light transmission property, the radiation detector 60 detects the radiation without providing the scintillator 148 in the radiation detector 62 as shown in FIG. It is good also as what attaches to the surface on the opposite side to the TFT substrate 66 of the device 60 (surface on the scintillator 71 side), and each sensor part 146 of the radiation detection part 62 concerned detects the light of the scintillator 71. As described above, according to the present embodiment, by attaching the radiation detection unit 62 to the scintillator 71, the scintillator 148 becomes unnecessary, and thus the radiation detection unit 62 can be formed thinner. In this case, when the radiation X is arranged in the housing 54 so that the radiation X is incident from the TFT substrate 66 side at the time of imaging, the radiation detector 62 is provided on the surface opposite to the TFT substrate 66 of the scintillator 71. Since the radiation X passes through the radiation detector 60 after passing through the radiation detector 60, it is possible to prevent the radiation image taken by the radiation detector 60 from being affected by the provision of the radiation detector 62.
 また、例えば、TFT基板66が光透過性を有する場合、図29に示すように、放射線検出器60のTFT基板66側の面に放射線検出部62を貼り付けてもよい。放射線Xは、図29の上方又は下方の何れから入射してもよいが、下方から入射する場合、放射線検出部62のセンサ部146での放射線の吸収を抑えるため、センサ部146は有機光電変換材料が含有された光電変換膜で形成することが好ましい。 Further, for example, when the TFT substrate 66 has optical transparency, as shown in FIG. 29, the radiation detector 62 may be attached to the surface of the radiation detector 60 on the TFT substrate 66 side. The radiation X may be incident from above or below in FIG. 29. However, when the radiation X is incident from below, the sensor unit 146 performs organic photoelectric conversion in order to suppress radiation absorption by the sensor unit 146 of the radiation detection unit 62. It is preferable to form with a photoelectric conversion film containing the material.
 また、上記各実施の形態では、放射線検出器60が、放射線を一度光に変換し、変換した光をセンサ部72で電荷に変換して蓄積する間接変換方式であるものとした場合について説明したが、本発明はこれに限定されるものではない。例えば、放射線検出器60が、放射線をアモルファスセレン等の半導体層で電荷に変換する直接変換方式であるものとしてもよい。 In each of the above-described embodiments, the radiation detector 60 has been described as having an indirect conversion method in which radiation is converted into light once, and the converted light is converted into electric charge by the sensor unit 72 and accumulated. However, the present invention is not limited to this. For example, the radiation detector 60 may be a direct conversion system that converts radiation into electric charges in a semiconductor layer such as amorphous selenium.
 また、上記各実施の形態では、放射線検出部62の各センサ部146により検出された放射線画像により、放射線検出器60から生成される放射線画像の画質の調整を行う場合について説明したが、本発明はこれに限定されるものではない。例えば、電子カセッテ32が放射線検出部62の各センサ部146により検出された放射線画像をコンソール42へ転送し、コンソール42がディスプレイ100に表示させるものとしてもよい。これにより、表示された放射線画像から被写体のぶれやポジショニングの確認を速やかに行うことができる。 In each of the above embodiments, the case where the image quality of the radiation image generated from the radiation detector 60 is adjusted by the radiation image detected by each sensor unit 146 of the radiation detection unit 62 has been described. Is not limited to this. For example, the electronic cassette 32 may transfer the radiation image detected by each sensor unit 146 of the radiation detection unit 62 to the console 42 and cause the console 42 to display on the display 100. Thereby, it is possible to quickly check the blurring and positioning of the subject from the displayed radiation image.
 また、上記各実施の形態では、電子カセッテ32のカセッテ制御部92において、放射線検出部62の各センサ部146により検出された放射線画像からの各種のパラメーラの決定処理、放射線検出器60から生成される放射線画像の規格化処理を行う場合について説明したが(第1の実施の形態で図13,図15を用いて説明した撮影制御処理プログラムも参照)、本発明はこれに限定されるものではない。例えば、カセッテ制御部92が信号検出部162から入力するデジタルデータを随時コンソール42へ送信するものとし、コンソール42において何れかの処理を行うものとしてもよい。 In the above embodiments, the cassette control unit 92 of the electronic cassette 32 generates various parameters from the radiation images detected by the sensor units 146 of the radiation detection unit 62, and is generated from the radiation detector 60. The radiographic image normalization processing is performed (see also the imaging control processing program described with reference to FIGS. 13 and 15 in the first embodiment), but the present invention is not limited to this. Absent. For example, the cassette control unit 92 may transmit the digital data input from the signal detection unit 162 to the console 42 as needed, and the console 42 may perform any processing.
 また、上記各実施の形態では、電子カセッテ32のカセッテ制御部92において、放射線検出部62の各センサ部146により検出された放射線画像により、領域設定処理及び領域設定変更処理を行う場合について説明したが(第1の実施の形態の図17,第2の実施の形態の図23、図27も参照)、本発明はこれに限定されるものではない。例えば、カセッテ制御部92が信号検出部162から入力するデジタルデータ(濃度補正用の放射線画像の画像データ)を随時コンソール42へ送信するものとし、コンソール42において何れかの処理を行うものとしてもよい。すなわち、上記領域設定処理及び領域設定変更処理プログラムを、コンソール42のHDD110等に記憶しておき、コンソール42のCPU104で実行するよう構成する。なお、濃度補正用の放射線画像の画像データは、放射線検出器60で検出される放射線画像の解像度よりもはるかに低い解像度であり、転送レートに多少の余裕があれば、放射線検出器60で検出される放射線画像の画像データをリアルタイムに表示させる場合であっても、支障なく送信可能となる。あるいは、領域設定処理では、濃度補正用の放射線画像を用いて設定し、動き検出する場合には、放射線検出器60で撮影され送信された放射線画像を用いて検出するようにしてもよい。 Further, in each of the above-described embodiments, the case where the cassette control unit 92 of the electronic cassette 32 performs the region setting process and the region setting change process based on the radiation image detected by each sensor unit 146 of the radiation detection unit 62 has been described. However, the present invention is not limited to this (see also FIG. 17 of the first embodiment, and FIGS. 23 and 27 of the second embodiment). For example, digital data (image data of density image for density correction) input from the signal detection unit 162 by the cassette control unit 92 may be transmitted to the console 42 at any time, and any processing may be performed in the console 42. . That is, the region setting process and the region setting change processing program are stored in the HDD 110 of the console 42 and executed by the CPU 104 of the console 42. Note that the image data of the radiographic image for density correction has a resolution that is much lower than the resolution of the radiographic image detected by the radiation detector 60 and is detected by the radiation detector 60 if there is some margin in the transfer rate. Even when the image data of the radiation image to be displayed is displayed in real time, it can be transmitted without any trouble. Alternatively, in the area setting process, the density correction radiographic image may be used for setting, and when motion detection is performed, the radiographic image captured and transmitted by the radiation detector 60 may be used for detection.
 また、上記各実施の形態では、放射線検出器60で検出される放射線画像を、濃度補正用の放射線画像として使用するだけでなく、領域設定処理や領域設定変更処理にも使用する例について説明したが、該放射線画像を、濃度補正に使用せず、領域設定処理や領域設定変更処理にのみ使用するように構成してもよい。 Further, in each of the above-described embodiments, an example has been described in which the radiation image detected by the radiation detector 60 is used not only as a density correction radiation image but also for region setting processing and region setting change processing. However, the radiation image may not be used for density correction but may be used only for region setting processing or region setting change processing.
 また、上記各実施の形態では、コンソール42から電子カセッテ32及び放射線発生装置34に同期信号を送信することにより、同期をとって透視撮影を行う例について説明したが、これに限定されるものではない。例えば、同期信号を使用せず、コンソール42から電子カセッテ32及び放射線発生装置34に曝射開始を指示する指示信号を送信し、放射線発生装置34は、該指示信号をトリガとして、曝射条件のフレームレート及び照射期間に応じて放射線をパルス照射し、電子カセッテ32は、放射線発生装置34からの閾値以上の放射線を検出して照射期間経過後に放射線画像の読み出しを行うように構成してもよい。或いは、電子カセッテ32及び放射線発生装置34の何れか一方に同期信号を送信し、他方には同期信号は送信しない構成とすることもできる。すなわち、撮影中の同期をとる手法は、上記実施の形態には限定されない。 In each of the above-described embodiments, an example in which fluoroscopic imaging is performed in synchronization by transmitting a synchronization signal from the console 42 to the electronic cassette 32 and the radiation generator 34 has been described. However, the present invention is not limited to this. Absent. For example, without using a synchronization signal, the console 42 transmits an instruction signal instructing the electronic cassette 32 and the radiation generator 34 to start exposure, and the radiation generator 34 uses the instruction signal as a trigger to trigger the exposure condition. The electronic cassette 32 may be configured to detect radiation that is equal to or greater than a threshold value from the radiation generator 34 and to read out a radiation image after the irradiation period has elapsed, in accordance with the frame rate and the irradiation period. . Alternatively, the synchronization signal may be transmitted to one of the electronic cassette 32 and the radiation generator 34, and the synchronization signal may not be transmitted to the other. That is, the method of synchronizing during shooting is not limited to the above embodiment.
 また、上記各実施の形態では、放射線としてX線を検出することにより放射線画像を撮影する放射線撮影装置に本発明を適用した場合について説明したが、本発明はこれに限定されるものではない。例えば、検出対象とする放射線は、X線の他や可視光、紫外線、赤外線、ガンマ線、粒子線等何れであってもよい。 In each of the above embodiments, the case where the present invention is applied to a radiation imaging apparatus that captures a radiation image by detecting X-rays as radiation has been described, but the present invention is not limited to this. For example, the radiation to be detected may be X-rays, visible light, ultraviolet rays, infrared rays, gamma rays, particle rays, or the like.
 その他、上記各実施の形態で説明した構成は一例であり、本発明の主旨を逸脱しない範囲内において、不要な部分を削除したり、新たな部分を追加したり、接続状態等を変更したりすることができることは言うまでもない。 In addition, the configuration described in each of the above embodiments is an example, and an unnecessary part is deleted, a new part is added, or a connection state is changed without departing from the gist of the present invention. It goes without saying that you can do it.
 更に、上記各実施の形態で説明した各種プログラムの処理の流れ(図13、図15、図17、図23、図27参照。)も一例であり、本発明の主旨を逸脱しない範囲内において、不要なステップSを削除したり、新たなステップSを追加したり、処理順序を入れ換えたりすることができることは言うまでもない。 Furthermore, the processing flow of the various programs described in the above embodiments (see FIGS. 13, 15, 17, 23, and 27) is also an example, and within the scope not departing from the gist of the present invention, Needless to say, unnecessary steps S can be deleted, new steps S can be added, and the processing order can be changed.
 また、上記各実施形態では、具体例として肺野の呼吸動態等を観察する場合を例示したが、これに限定されず、例えば、他の部位を撮影する場合にも適用できるし、アンギオなどにも適用できる。 In each of the above-described embodiments, the case where the respiratory dynamics of the lung field is observed as a specific example is exemplified, but the present invention is not limited to this. For example, the present invention can be applied to imaging other parts, and can be used for angios. Is also applicable.
 日本出願特願2011-209536号の開示はその全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese Patent Application No. 2011-209536 is incorporated herein by reference.
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.
18、181、182、183  撮影システム
32  電子カセッテ
60  放射線検出器
62  放射線検出部
72  センサ部
74  画素
80  ゲート線ドライバ
82  信号処理部
84A オペアンプ
88  A/D変換器
92  カセッテ制御部
92A CPU
100 ディスプレイ
146 センサ部
900 携帯端末装置
18, 181, 182, 183 Imaging system 32 Electronic cassette 60 Radiation detector 62 Radiation detection unit 72 Sensor unit 74 Pixel 80 Gate line driver 82 Signal processing unit 84A Operational amplifier 88 A / D converter 92 Cassette control unit 92A CPU
100 Display 146 Sensor unit 900 Portable terminal device

Claims (14)

  1.  放射線照射部からのパルス状に照射された放射線を検出して放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部と、
     前記放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信する送信部と、
     前記送信部から送信された放射線画像の画像データを受信する受信部と、
     前記受信部により受信された画像データに基づいて放射線画像を表示する表示部と、
     透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する転送領域設定部と、
     を備えた放射線画像撮影システム。
    A radiographic image capturing unit capable of detecting fluoroscopically irradiated radiation from the radiation irradiation unit and continuously capturing radiographic images;
    A non-compressed transmission region image data of a radiographic image obtained by fluoroscopic imaging of the radiographic image capturing unit, and a transmission unit that compresses and transmits image data of the remaining region;
    A receiving unit for receiving image data of a radiation image transmitted from the transmitting unit;
    A display unit that displays a radiation image based on the image data received by the receiving unit;
    An area that is equal to or less than the upper limit of the amount of data that can be transferred in a non-compressed manner determined by a fluoroscopic frame rate, and that includes an essential transfer area identified as an area to be transferred in a non-compressed area within the region of interest of the radiographic image A transfer area setting unit that sets the uncompressed transfer area;
    Radiographic imaging system equipped with.
  2.  透視撮影中に、撮影部位の動きを検出する動き検出部を更に備え、
     前記転送領域設定部は、関心領域内において、前記動き検出部により検出される動き量が所定の閾値以上の動き領域が、前記設定した非圧縮転送領域以外の領域に発生した場合には、前記動き領域及び前記必須転送領域を含む領域が前記非圧縮転送領域となるように設定変更し、
     前記設定変更された前記非圧縮転送領域のデータ量が前記上限値を超える場合には、透視撮影のフレームレートを、前記設定変更された前記非圧縮転送領域のデータ量を上限値とするフレームレート以下となるように変更する第1変更部と、
     前記変更後のフレームレートに応じた各フレーム画像を撮影するための各フレーム期間に対する放射線の照射期間が、前記フレームレートが変更される以前の照射期間よりも長くなるように変更する第2変更部と、
     前記フレームレート及び照射期間の変更後は、前記変更されたフレームレート及び照射期間に応じて、前記放射線照射部から前記放射線画像撮影部に対して放射線をパルス照射させつつ当該パルス照射に同期させて前記放射線画像撮影部で放射線画像の撮影が行われるように制御する撮影制御部と、を更に備えた
     請求項1に記載の放射線画像撮影システム。
    Further comprising a motion detector for detecting the movement of the imaging part during fluoroscopic imaging,
    In the region of interest, the transfer region setting unit, when a motion region whose amount of motion detected by the motion detection unit is equal to or greater than a predetermined threshold occurs in a region other than the set uncompressed transfer region, Change the setting so that the area including the motion area and the required transfer area becomes the uncompressed transfer area,
    When the data amount of the non-compressed transfer area whose setting has been changed exceeds the upper limit value, the frame rate of the fluoroscopic imaging is set to the upper limit value of the data amount of the non-compressed transfer area whose setting has been changed. A first change unit that changes to be:
    A second changing unit that changes a radiation irradiation period for each frame period for capturing each frame image according to the changed frame rate so as to be longer than an irradiation period before the frame rate is changed. When,
    After the change of the frame rate and the irradiation period, in synchronization with the pulse irradiation while irradiating the radiation from the radiation irradiation unit to the radiographic imaging unit according to the changed frame rate and the irradiation period. The radiographic imaging system according to claim 1, further comprising: an imaging control unit that controls the radiographic imaging unit to perform radiographic imaging.
  3.  前記第2変更部は、前記変更後のフレームレートに応じた各フレーム画像を撮影するための各フレーム期間に対する放射線の照射期間の割合を12.5%~80%の範囲内となるように変更する
     請求項2に記載の放射線画像撮影システム。
    The second changing unit changes the ratio of the radiation irradiation period to each frame period for capturing each frame image according to the changed frame rate to be within a range of 12.5% to 80%. The radiation image capturing system according to claim 2.
  4.  前記第2変更部は、前記変更後のフレームレートに応じた各フレーム期間に対する放射線の照射期間の割合を33%~80%の範囲内となるように変更する
     請求項3に記載の放射線画像撮影システム。
    The radiographic imaging according to claim 3, wherein the second changing unit changes the ratio of the radiation irradiation period to each frame period according to the changed frame rate so as to fall within a range of 33% to 80%. system.
  5.  前記第2変更部は、透視撮影の変更後のフレームレートが第1フレームレート閾値以下の場合、各フレーム期間に対する照射期間の割合を12.5%~80%となるように変更し、透視撮影の変更後のフレームレートが当該第1フレームレート閾値よりも低い第2フレームレート閾値以下の場合、各フレーム期間に対する照射期間の割合を33%~80%の範囲内となるように変更する
     請求項2~請求項4の何れか1項記載の放射線画像撮影システム。
    The second changing unit changes the ratio of the irradiation period with respect to each frame period to 12.5% to 80% when the frame rate after the change of the fluoroscopic imaging is equal to or less than the first frame rate threshold value. The ratio of the irradiation period to each frame period is changed to be within a range of 33% to 80% when the changed frame rate is equal to or lower than a second frame rate threshold lower than the first frame rate threshold. The radiation image capturing system according to any one of claims 2 to 4.
  6.  前記第1フレームレート閾値は、15fps以上かつ60fps以下とし、
     前記第2フレームレート閾値は、5fps以上かつ前記第1フレームレート閾値未満とした
     請求項5記載の放射線画像撮影システム。
    The first frame rate threshold is 15 fps or more and 60 fps or less,
    The radiographic image capturing system according to claim 5, wherein the second frame rate threshold is 5 fps or more and less than the first frame rate threshold.
  7.  前記表示部に表示された放射線画像における動き領域に対する注視度を検出する注視度検出部を更に備え、
     前記転送領域設定部は、前記注視度検出部により検出された注視度が予め定められた閾値以下となった場合に、前記設定変更された非圧縮転送領域を変更前の非圧縮転送領域に戻す
     請求項2~請求項6の何れか1項記載の放射線画像撮影システム。
    A gaze degree detection unit for detecting a gaze degree for a motion region in the radiation image displayed on the display unit;
    The transfer area setting unit returns the non-compressed transfer area whose setting has been changed to the uncompressed transfer area before the change when the gaze degree detected by the gaze degree detection unit is equal to or less than a predetermined threshold value. The radiographic image capturing system according to any one of claims 2 to 6.
  8.  前記注視度検出部により検出された注視度が予め定められた閾値以下となったときには、前記変更されたフレームレート及び照射期間を変更前の状態に変更する第3変更部を更に備え、
     前記撮影制御部は、前記フレームレート及び照射期間が変更前の状態に変更された後は、前記変更前の状態に戻されたフレームレート及び照射期間に応じて、前記放射線照射部から前記放射線画像撮影部に対して放射線をパルス照射させつつ当該パルス照射に同期させて前記放射線画像撮影部で放射線画像の撮影が行われるように制御する
     請求項7に記載の放射線画像撮影システム。
    When the gaze degree detected by the gaze degree detection unit is equal to or less than a predetermined threshold value, the apparatus further includes a third change unit that changes the changed frame rate and irradiation period to a state before the change,
    After the frame rate and the irradiation period are changed to the state before the change, the imaging control unit sends the radiation image from the radiation irradiation unit according to the frame rate and the irradiation period returned to the state before the change. The radiographic image capturing system according to claim 7, wherein the radiographic image is captured by the radiographic image capturing unit in synchronization with the pulse irradiation while radiation is applied to the image capturing unit.
  9.  前記放射線画像撮影部は、放射線又は放射線が変換された光が照射されることにより電荷が発生する第1センサ部を有する画素が2次元状に複数配置された撮影部と、前記撮影部と積層して配置され、前記第1センサ部よりも面積が大きい第2センサ部が2次元状に複数配置された検出部と、を備え、
     前記送信部は、前記撮影部で透視撮影により得られた放射線画像の非圧縮転送領域の画像データについて非圧縮で前記表示部に送信し、該放射線画像の残りの領域の画像データについては圧縮して前記受信部に送信し、
     前記転送領域設定部は、前記検出部で検出された検出画像に基づいて前記設定を行う
     請求項1~請求項8の何れか1項記載の放射線画像撮影システム。
    The radiographic imaging unit includes an imaging unit in which a plurality of pixels having a first sensor unit that generates a charge when irradiated with radiation or light converted from radiation is arranged in a two-dimensional manner, and the imaging unit. A plurality of second sensor units arranged in a two-dimensional manner, each having a larger area than the first sensor unit.
    The transmission unit transmits uncompressed image data of an uncompressed transfer area of a radiographic image obtained by fluoroscopic imaging in the imaging unit to the display unit, and compresses image data of the remaining area of the radiographic image. To the receiver,
    The radiographic imaging system according to any one of claims 1 to 8, wherein the transfer area setting unit performs the setting based on a detection image detected by the detection unit.
  10.  前記放射線照射部と被験者との間に設けられ、前記放射線の照射領域を調整する絞り部と、
     少なくとも前記必須転送領域又は前記関心領域を含む領域を前記放射線の照射領域として設定する照射領域設定部と、
     前記照射領域設定部により設定された照射領域の画像データの送信が行われ、前記照射領域設定部により設定された照射領域以外の非照射領域の画像データの送信が行われないように前記送信部を制御する送信制御部と、
     を更に備えた請求項1~請求項9の何れか1項記載の放射線画像撮影システム。
    A diaphragm that is provided between the radiation irradiating unit and the subject, and that adjusts an irradiation region of the radiation;
    An irradiation region setting unit that sets at least the essential transfer region or a region including the region of interest as the radiation irradiation region;
    The transmission unit is configured to transmit the image data of the irradiation region set by the irradiation region setting unit and not to transmit the image data of the non-irradiation region other than the irradiation region set by the irradiation region setting unit. A transmission control unit for controlling
    10. The radiographic imaging system according to claim 1, further comprising:
  11.  放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部と、
     前記放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信する送信部と、
     透視撮影の際に前記放射線画像撮影部に対して放射線をパルス状に照射する放射線照射部と、
     前記送信部から送信された放射線画像の画像データを受信する受信部と、
     前記受信部により受信された画像データに基づいて放射線画像を表示する表示部と、
     透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する転送領域設定部と、
     を備えた放射線画像撮影システム。
    A radiographic imaging unit capable of fluoroscopic imaging that continuously performs radiographic imaging;
    A non-compressed transmission region image data of a radiographic image obtained by fluoroscopic imaging of the radiographic image capturing unit, and a transmission unit that compresses and transmits image data of the remaining region;
    A radiation irradiating unit configured to irradiate the radiation image capturing unit in a pulsed manner during fluoroscopic imaging; and
    A receiving unit for receiving image data of a radiation image transmitted from the transmitting unit;
    A display unit that displays a radiation image based on the image data received by the receiving unit;
    An area that is equal to or less than the upper limit of the amount of data that can be transferred in a non-compressed manner determined by a fluoroscopic frame rate, and that includes an essential transfer area identified as an area to be transferred in a non-compressed area within the region of interest of the radiographic image A transfer area setting unit that sets the uncompressed transfer area;
    Radiographic imaging system equipped with.
  12.  放射線照射部からのパルス状に照射された放射線を検出して放射線画像の撮影を連続的に行う透視撮影が可能とされた放射線画像撮影部の透視撮影により得られた放射線画像の非圧縮転送領域の画像データについては非圧縮で送信し、残りの領域の画像データについては圧縮して送信し、該送信された放射線画像の画像データを受信して表示する表示部により透視撮影された放射線画像を表示する際に、透視撮影のフレームレートで定まる非圧縮で転送できるデータ量の上限値以下となる領域であって、前記放射線画像の関心領域内の非圧縮で転送すべき領域として特定した必須転送領域を含む領域を、前記非圧縮転送領域として設定する放射線画像撮影方法。 Non-compressed transfer area of a radiographic image obtained by fluoroscopic imaging of the radiographic imaging unit capable of continuously capturing radiographic images by detecting radiation emitted in a pulse form from the radiation irradiating unit The image data is transmitted without compression, the image data of the remaining area is compressed and transmitted, and the radiographic image taken by fluoroscopy is received by the display unit that receives and displays the image data of the transmitted radiation image. An essential transfer that is specified as an area to be transferred uncompressed within the region of interest of the radiation image, which is an area that is not more than the upper limit of the amount of data that can be transferred in a non-compressed manner determined by the fluoroscopic frame rate when displayed. A radiographic imaging method of setting an area including an area as the uncompressed transfer area.
  13.  コンピュータを、前記請求項1~10の何れか1項記載の放射線動画像撮影システムの転送領域設定部として機能させるための放射線動画像撮影制御プログラム。 11. A radiation moving image photographing control program for causing a computer to function as a transfer area setting unit of the radiation moving image photographing system according to any one of claims 1 to 10.
  14.  コンピュータを、前記請求項2~10の何れか1項記載の放射線動画像撮影システムの転送領域設定部、第1変更部、第2変更部、並びに撮影制御部として機能させるための放射線動画像撮影制御プログラム。 Radiographic video imaging for causing a computer to function as a transfer area setting unit, a first changing unit, a second changing unit, and an imaging control unit of the radiographic video imaging system according to any one of claims 2 to 10. Control program.
PCT/JP2012/071896 2011-09-26 2012-08-29 Radiographic-image image pick-up system, method and radiographic-image image pick-up control program WO2013047069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-209536 2011-09-26
JP2011209536 2011-09-26

Publications (1)

Publication Number Publication Date
WO2013047069A1 true WO2013047069A1 (en) 2013-04-04

Family

ID=47995117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071896 WO2013047069A1 (en) 2011-09-26 2012-08-29 Radiographic-image image pick-up system, method and radiographic-image image pick-up control program

Country Status (1)

Country Link
WO (1) WO2013047069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005073A (en) * 2017-06-22 2019-01-17 コニカミノルタ株式会社 Radioactive ray imaging system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209926A (en) * 1993-01-18 1994-08-02 Hitachi Ltd X-ray dynamic image photographing device
JP2002095640A (en) * 2000-09-26 2002-04-02 Toshiba Corp Diagnostic imaging apparatus
JP2007097977A (en) * 2005-10-07 2007-04-19 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2009290860A (en) * 2008-04-28 2009-12-10 Panasonic Corp Image device
JP2009297103A (en) * 2008-06-10 2009-12-24 Canon Inc X-ray image diagnosing apparatus, control unit, and image processing method
JP2010212925A (en) * 2009-03-10 2010-09-24 Konica Minolta Medical & Graphic Inc Portable device for photographing radiation image, and system for photographing radiation image
JP2010288230A (en) * 2009-06-15 2010-12-24 Tokai Paudekkusu:Kk Moving image information relay system and moving image information relay program
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device
JP2011152406A (en) * 2009-12-28 2011-08-11 Fujifilm Corp Radiographic image capturing system

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06209926A (en) * 1993-01-18 1994-08-02 Hitachi Ltd X-ray dynamic image photographing device
JP2002095640A (en) * 2000-09-26 2002-04-02 Toshiba Corp Diagnostic imaging apparatus
JP2007097977A (en) * 2005-10-07 2007-04-19 Ge Medical Systems Global Technology Co Llc X-ray ct apparatus
JP2009290860A (en) * 2008-04-28 2009-12-10 Panasonic Corp Image device
JP2009297103A (en) * 2008-06-10 2009-12-24 Canon Inc X-ray image diagnosing apparatus, control unit, and image processing method
JP2010212925A (en) * 2009-03-10 2010-09-24 Konica Minolta Medical & Graphic Inc Portable device for photographing radiation image, and system for photographing radiation image
JP2010288230A (en) * 2009-06-15 2010-12-24 Tokai Paudekkusu:Kk Moving image information relay system and moving image information relay program
JP2011137804A (en) * 2009-12-04 2011-07-14 Fujifilm Corp Radiation imaging device
JP2011152406A (en) * 2009-12-28 2011-08-11 Fujifilm Corp Radiographic image capturing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019005073A (en) * 2017-06-22 2019-01-17 コニカミノルタ株式会社 Radioactive ray imaging system
US10881370B2 (en) 2017-06-22 2021-01-05 Konica Minolta, Inc. Radiographic image capturing system
US11484280B2 (en) 2017-06-22 2022-11-01 Konica Minolta, Inc. Radiographic image capturing system

Similar Documents

Publication Publication Date Title
JP6122522B2 (en) Radiation imaging system, operating method thereof, and radiation image detection apparatus
JP5666716B2 (en) Radiation moving image processing apparatus, radiation moving image capturing apparatus, radiation moving image capturing system, radiation moving image processing method, radiation moving image processing program, and storage medium
JP5595876B2 (en) Radiography apparatus and radiation imaging system
JP5832966B2 (en) Radiation image capturing apparatus, radiation image capturing system, detection sensitivity control method and program for starting radiation irradiation
JP5460666B2 (en) Radiation imaging system and long imaging method of radiation imaging system
JP5602198B2 (en) Radiation imaging apparatus, radiographic image detection apparatus used therefor, and operating method thereof
JP5859934B2 (en) Radiation imaging system and operation method thereof, radiation image detection apparatus and operation program thereof
JP5986443B2 (en) Radiographic imaging apparatus, control method and program for detecting sensitivity at start of radiation irradiation
JP5643131B2 (en) Radiation imaging system
JP5455857B2 (en) Radiation image capturing apparatus, radiation image capturing method, and radiation image capturing program
JP5485308B2 (en) Radiographic imaging apparatus, radiographic imaging method and program
JP5485312B2 (en) Radiation detection apparatus, radiographic imaging apparatus, radiation detection method and program
JP2010087838A (en) Wireless communication terminal device
WO2012014612A1 (en) Radiography device and radiography system
JP2010075677A (en) Radiographic imaging device and image processing device
JP2011188922A (en) Radiographic image capturing device
JP2010214095A (en) Radiographic image capture system, radiation generation device, image capture control device and radiographic image capture device
JPWO2013125113A1 (en) Radiographic imaging control apparatus, radiographic imaging system, radiographic imaging apparatus control method, and radiographic imaging control program
JP5792569B2 (en) Radiation imaging system and long imaging method of radiation imaging system
WO2013047069A1 (en) Radiographic-image image pick-up system, method and radiographic-image image pick-up control program
JP2012040315A (en) Radiation imaging device, radiation imaging system, and radiation detection program
JP2014050418A (en) Radiographic system, radiation generation apparatus, and operation method of the same
JP2012045331A (en) Radiation imaging device and radiation imaging system
JP2012040053A (en) Radiation image capturing device and radiation image capturing system
WO2013042514A1 (en) Fluoroscopy device, method for setting region of interest for fluoroscopy device, radiography system, and fluoroscopy control program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12834697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12834697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP