WO2013046583A1 - Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium - Google Patents

Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium Download PDF

Info

Publication number
WO2013046583A1
WO2013046583A1 PCT/JP2012/005870 JP2012005870W WO2013046583A1 WO 2013046583 A1 WO2013046583 A1 WO 2013046583A1 JP 2012005870 W JP2012005870 W JP 2012005870W WO 2013046583 A1 WO2013046583 A1 WO 2013046583A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
hdd
phase difference
glass
maximum value
Prior art date
Application number
PCT/JP2012/005870
Other languages
French (fr)
Japanese (ja)
Inventor
登史晴 森
Original Assignee
コニカミノルタアドバンストレイヤー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタアドバンストレイヤー株式会社 filed Critical コニカミノルタアドバンストレイヤー株式会社
Publication of WO2013046583A1 publication Critical patent/WO2013046583A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/739Magnetic recording media substrates
    • G11B5/73911Inorganic substrates
    • G11B5/73921Glass or ceramic substrates

Definitions

  • the present invention relates to an HDD glass substrate, an HDD glass substrate manufacturing method, and an HDD information recording medium manufacturing method.
  • An information recording medium such as a magnetic disk is mounted on a computer or the like as an HDD (Hard Disk Drive).
  • An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
  • an aluminum substrate has been used as a substrate for an information recording medium.
  • the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
  • this glass substrate is generally subjected to chemical strengthening treatment.
  • This chemical strengthening treatment is to replace the ions (for example, Li, Na ions) in the glass substrate with those having a larger ionic radius (for example, Na ions, K ions), thereby giving an internal stress. It is a process to strengthen. By the replacement, compressive strain is generated on the surface of the glass substrate, and a compressive stress layer is formed.
  • a glass substrate is held using a fixing jig in a chemical strengthening solution obtained by heating a mixed powder of KNO 3 and NaNO 3 to 300 to 400 ° C. to liquefy.
  • Patent Document 1 a chemical strengthening solution obtained by heating a mixed powder of KNO 3 and NaNO 3 to 300 to 400 ° C. to liquefy.
  • the glass substrate is subjected to a chemical strengthening process in which a chemical strengthening process is performed, when it is used as an information recording medium (magnetic recording medium) in a severe thermal fluctuation environment, due to variations in stress due to the compressive stress layer.
  • the shape of the glass substrate may be deformed, which may cause a change in the shape of the magnetic recording medium over time, which may cause an HDD reading error.
  • HDD information such as one 2.5-inch recording medium, recording capacity of 500 GB (gigabyte), and surface recording density of 630 Gb (gigabit) / square inch or more.
  • the emergence of recording media is expected.
  • the head mechanism has been improved, and a head mechanism called DFH (Dynamic Flying Height) is known.
  • This DFH is a technique in which a special metal is used for the mounting position of the head, and the head protrudes from the recording medium at a minute distance by thermal expansion of the metal.
  • the gap between the head and the recording medium is reduced to about several nanometers, and head crashes are more likely to occur. Therefore, in an HDD information recording medium having a surface recording density of 630 Gb / square inch or more mounted on an HDD having a DFH head mechanism, strict evaluation of the compression stress layer has become more important than ever.
  • FIG. 1 shows the content of lithium oxide in the depth direction of the glass substrate by the above-described analysis with respect to the ion exchange state of the chemically strengthened glass substrate.
  • the glass substrate must be broken and inspected. It was also difficult to uniformly evaluate the entire substrate.
  • the measurement range is in units of several millimeters, so that it takes a lot of time to evaluate the entire main surface of the glass substrate, and productivity is deteriorated.
  • An object of the present invention is to provide a glass substrate for HDD and a method for manufacturing the same, which are suitable for use in an HDD apparatus having a surface recording density of 630 Gb / in 2 or more, which has few reading errors even when used for a long time. And Another object of the present invention is to provide a method for manufacturing an HDD information recording medium using the glass substrate for HDD.
  • One aspect of the present invention is an HDD glass substrate used in an HDD device having a surface recording density of 630 Gb / square inch or more, and has a compressive stress layer on a surface layer, and in the radial direction of the HDD glass substrate,
  • the phase difference from the position 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate to the position 0.5 mm inward from the outer diameter end of the glass substrate for HDD
  • the glass substrate for HDD wherein the maximum value is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
  • Another aspect of the present invention is a method for manufacturing a glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more, and includes a chemical strengthening step of forming a compressive stress layer on a surface layer.
  • the glass substrate for HDD obtained through the chemical strengthening step is from the position of 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate.
  • the maximum value of the phase difference from the outer diameter end to the position 0.5 mm inward is less than 4.0 nm.
  • Another aspect of the present invention is a method for manufacturing an HDD information recording medium, wherein a magnetic layer is provided on the glass substrate for HDD.
  • FIG. 1 is a diagram showing an ion exchange state of a glass substrate for HDD subjected to chemical strengthening treatment.
  • FIG. 2 is a diagram showing a measurement analysis range in the inspection / sorting method for the glass substrate for HDD according to the present embodiment.
  • FIG. 3 is a manufacturing process diagram illustrating a process in manufacturing a glass substrate for HDD.
  • FIG. 4 is a top view illustrating the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
  • FIG. 5 is a schematic view showing the steps of the direct press method in the method for manufacturing a glass substrate for HDD according to the present embodiment.
  • FIG. 6 is a schematic cross-sectional view showing a step of cutting out a disk-shaped glass substrate from a glass base plate in the method for manufacturing a glass substrate for HDD according to the present embodiment.
  • FIG. 7 is a schematic cross-sectional view showing an example of a polishing apparatus used in a rough polishing step and a precision polishing step in the method for manufacturing a glass substrate for HDD according to the present embodiment.
  • FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk as an example of an information recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
  • the present inventors have conducted intensive studies, and as a result, the residual stress variation is small, and even when the information recording medium is used for a long time in a harsh environment, the internal stress varies. It has been found that the resulting deformation (distortion) does not occur and the occurrence of reading errors can be suppressed.
  • the glass substrate for HDD is a glass substrate for HDD suitably used for an HDD apparatus having a compressive stress layer as a surface layer and having a surface recording density of 630 Gb / square inch or more.
  • a compressive stress layer as a surface layer
  • a surface recording density of 630 Gb / square inch or more.
  • the maximum value of the phase difference up to a certain position is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
  • 630 Gb / square inch or more is almost synonymous with 98 Gb / cm 2 or more.
  • the compressive stress layer can be regarded as an optical “strain layer” applied by a chemical strengthening process, and birefringence having different effective refractive indexes in a direction perpendicular to a direction parallel to the optical axis with respect to transmitted light. appear. Therefore, there is a difference in propagation speed between TE polarized light having parallel electric field components and TM polarized light having electric field components perpendicular to the lattice lines, and a phase difference (also referred to as retardation) appears in the transmitted light.
  • Such birefringence in the thickness direction and the planar direction of the glass substrate can measure the thickness of the compressive stress layer and the strength of the compressive stress by cutting out a slice from the glass substrate and measuring the phase difference of the cross section. Is possible. However, when the compressive stress due to the chemical strengthening treatment occurs uniformly in the plane direction of the glass substrate, birefringence does not occur when measuring the phase difference by the transmitted light from the surface direction of the glass substrate, No phase difference (retardation) is detected.
  • the compressive stress varies, that is, if the compressive stress is different in the plane, or if the compressive stress is generated in a different direction in the direction perpendicular to the surface direction.
  • the phase difference due to the transmitted light it can be detected as a phase difference, and the phase difference can be detected as a variation in the in-plane direction of the compressive stress.
  • a chemically strengthened glass substrate is irradiated with white light, and the amount of transmitted light phase difference at a plurality of locations on the glass substrate is measured. By measuring the phase difference, it is possible to evaluate the variation in compressive stress.
  • the retardation (retardation: Re) in the present invention represents a retardation generated in the in-plane direction of the glass substrate, and is represented by the following formula.
  • Re (nx ⁇ ny) ⁇ d
  • nx represents the refractive index in the direction x having the largest refractive index in the in-plane direction at the measurement point
  • ny represents the refractive index in the direction y orthogonal to the x direction in the in-plane direction at the measurement point
  • d represents glass. It represents the thickness (nm) of the substrate.
  • the unit of retardation (Re) is expressed in nm.
  • phase difference in the plane direction can be detected by measuring a phase difference in transmitted light from the surface direction using, for example, PA-100 (manufactured by Photonic Lattice).
  • PA-100 manufactured by Photonic Lattice
  • the measurement and analysis position of the phase difference is from the position 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate in the radial direction of the glass substrate for HDD. It is to the position which is 0.5 mm inward from the outer diameter end.
  • FIG. 2 is a cross-sectional view of the glass substrate, and is a view showing the measurement analysis position of the phase difference in the present embodiment.
  • a glass substrate for HDD having an outer diameter of 65 mm and an inner diameter of the center hole of 20 mm is used.
  • the width of the end surface is 0.15 mm, and it is preferable to measure the phase difference of the compressive stress layer on the main surface of the glass substrate excluding these.
  • the reason for not measuring the phase difference at the end face is that light may not be transmitted due to the edge of the end face, and the element side cannot distinguish whether it is a dark part due to an edge or a dark part due to birefringence. This is because a higher value is measured than the surface. Therefore, from the position 0.5 mm outward from the diameter end of the circular hole as described above, the position 0.5 mm inward from the outer diameter end is set as the range of the phase difference measurement analysis.
  • the maximum value of the phase difference measured as described above is less than 4.0 nm and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm, the surface of the glass substrate is used. Even when used in a harsh environment where it is repeatedly exposed to heating conditions as an information recording medium, the shape deformation due to the release of the compressive stress is reduced. It does not occur and the frequency of occurrence of read errors can be suppressed.
  • the maximum value of the phase difference represents the directionality of the compressive stress generated in the plane at each measurement point. If the compressive stress in a specific direction is large in the plane, the surface will be released when the compressive stress is released. Directionality also occurs in the stress applied in the inward direction, causing distortion.
  • the difference between the maximum value and the minimum value of the phase difference is an index indicating the magnitude of the variation of the compressive stress generated in the plane, and the compressive stress is directional at each location in the plane, specifically in the radial direction. If there is a difference in the size of the glass substrate, it will cause distortion of the glass substrate when the compressive stress is released during storage over time.
  • the maximum value of the phase difference of the phase difference is preferably less than 3.0 nm, and the difference between the maximum value and the minimum value of the phase difference is preferably less than 0.4 nm.
  • the maximum value of the phase difference at the measurement range position is less than 3.0 nm, and the maximum value and the minimum value of the phase difference. Is preferably less than 0.3 nm.
  • the thickness of the compressive stress layer increases, the variation of the compressive stress value in the glass substrate increases. Therefore, in a glass substrate having a compressive stress layer thickness of 10 to 50 ⁇ m, the frequency of error occurrence can be further reduced within the above-described phase difference range.
  • the maximum value of the phase difference at the measurement position is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is 0.5 nm. Since the variation in compressive stress is very small, the variation in compressive stress is also reduced for the HDD information recording medium (magnetic recording medium) manufactured from the HDD glass substrate. Therefore, fluctuations in the surface state of the HDD magnetic recording medium are suppressed, and reading errors of the HDD magnetic recording medium are suppressed. As a result, even if the HDD magnetic recording medium has a high surface recording density of 630 Gb / square inch or more, the recording area can be sufficiently expanded.
  • the glass substrate for HDD according to the present embodiment can sufficiently meet the demand for increasing the recording capacity of the magnetic recording medium for HDD. Therefore, it can be used satisfactorily for the production of HDD magnetic recording media having a surface recording density of 630 Gb / square inch or more.
  • Aluminosilicate glass is preferably used as the composition constituting the glass substrate for HDD used in the present embodiment.
  • the composition of such an aluminosilicate glass contains SiO 2 , Al 2 O 3 , and B 2 O 3 as main components of the glass base plate.
  • the alkali components of the glass workpiece Li 2 O, containing Na 2 O, and K 2 O.
  • alkaline earth components MgO, CaO, BaO, SrO, and ZnO are contained.
  • the total amount w (FMO) of SiO 2 , Al 2 O 3 and B 2 O 3 is preferably 70 to 85% by mass. This is to stabilize the glass structure. If the total amount is too small, the glass structure tends to become unstable. Moreover, when there is too much this total amount, the viscosity characteristic at the time of a fusion
  • the alkali component of the glass base plate used in the present embodiment is 1 to 8% by mass of Li 2 O, 2 to 13% by mass of Na 2 O, and 0.2 to 2% by mass of K 2 O. It is preferable that the total thereof, that is, the total of Li 2 O, Na 2 O and K 2 O is 3.2 to 23% by mass.
  • a glass base plate you may contain components other than the above. Specifically, for example, ZrO 2 or cerium oxide may be contained.
  • the ZrO 2 content is preferably 0 to 5% by mass.
  • the content of cerium oxide is preferably 0 to 2% by mass.
  • cerium oxide has an effect which suppresses generation
  • the manufacturing method of the glass substrate for HDD concerning this embodiment is a manufacturing method of the glass substrate for HDD which has a compressive-stress layer in a surface layer, and a surface recording density is 630 Gb / square inch or more, Comprising: The said glass substrate for HDD In the radial direction, the position is 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate, and 0.5 mm inward from the outer diameter end of the HDD glass substrate.
  • the chemical strengthening process in the manufacturing method concerning this embodiment is a well-known method, it will not specifically limit. Specifically, the process etc. which immerse the glass base plate which gave the disk processing process etc. which are mentioned later in a chemical strengthening process liquid are mentioned, for example. By immersing in this way, a compressive stress layer can be formed on the surface of the glass base plate. And by forming a compressive stress layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
  • the compressive stress layer applied to the chemical strengthening step is a layer having a compressive stress value of 2 kg / mm 2 or more.
  • the compressive stress is too strong, there are cases where the flatness is deteriorated, the maximum value of the compression stress value of the compressive stress layer is preferably 2 kg / mm 2 or more 50 kg / mm 2 or less.
  • the thickness of the compressive stress layer by chemical strengthening treatment applied to the conventional glass substrate for HDD is 100 to 200 ⁇ m, in recent years, the demand for the flatness of the glass substrate becomes more severe, The thickness is preferably 50 ⁇ m or less.
  • alkali metal ions such as lithium ions and sodium ions contained in the glass base plate are made to have a larger ion radius, such as potassium ions. It is preferably carried out by an ion exchange method in which the alkali metal ions are substituted. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass base plate is strengthened.
  • a compressive stress layer is suitably formed by this chemical strengthening process by using the glass composition as described above as a glass base plate that is a raw material of the glass substrate.
  • the glass composition as described above as a glass base plate that is a raw material of the glass substrate.
  • the content of Na 2 O is large, and the sodium ions of Na 2 O are chemically strengthened. Therefore, it is possible to reduce the variation in compressive stress.
  • the chemical strengthening treatment solution is not particularly limited as long as it is a chemical strengthening treatment solution used in the chemical strengthening step in the method for producing a glass substrate for a magnetic information recording medium.
  • a melt containing potassium ions a melt containing potassium ions and sodium ions, and the like can be given.
  • melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like examples include melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like.
  • using a combination of a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate has a low melting point, can prevent deformation of the glass base plate, and variations in compressive stress. It is preferable from the viewpoint that can be reduced.
  • a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate are preferably mixed in approximately the same amount.
  • the maximum value of the phase difference and the maximum value of the phase difference of the glass substrate are set to less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is set to less than 0.5 nm is particularly limited.
  • the unevenness of the compressive stress generated after the chemical strengthening step is eliminated by heating (annealing) or the like, shape deformation is caused. Therefore, it is preferable to suppress the occurrence of the phase difference in the chemical strengthening step.
  • a method is performed under conditions where temperature conditions at each location on the glass substrate surface are uniformized. Can be mentioned.
  • chemical strengthening is usually performed by immersing a plurality of glass substrates in a treatment tank filled with a chemical strengthening solution while being held by a holding jig. At this time, it is possible to make the temperature condition uniform to some extent by providing means for stirring the chemical strengthening treatment liquid or by swinging the glass substrate. Flow occurs in the chemical strengthening treatment liquid, and when it comes into contact with the glass substrate surface, it will contact with directionality, which may cause directionality in the compressive stress layer and cause phase difference. is there.
  • the chemical strengthening treatment liquid is melted at a high temperature, and convection naturally occurs to generate a regular flow, or a temperature distribution may occur between the upper and lower portions of the chemical treatment liquid. Therefore, as a method for homogenizing the temperature conditions at each location on the surface of the glass substrate, it is preferable to move the glass substrate largely in the chemical strengthening tank filled with the chemical treatment liquid during the chemical strengthening treatment. As a method. Specifically, it is preferable to move a distance of half or more of the depth of the chemical strengthening solution a plurality of times during the chemical strengthening treatment.
  • the method of taking out, changing the direction, and dipping again may be repeated.
  • an ultrasonic generator is provided in the chemical strengthening treatment tank and that the method is performed in combination with the above-described method while applying ultrasonic waves to the glass substrate.
  • the method for obtaining the glass base plate that is the basis of the glass substrate in the present embodiment, and a glass base plate obtained by a conventionally known direct press method or float method can be used.
  • FIG. 5 is a schematic diagram which shows the processing process of the glass base plate by the said direct press method.
  • FIG. 5A shows a lower mold 3 and an upper mold 4 constituting the mold.
  • the upper die 4 is in contact with the lower die 3 so as to surround the molding surface when the mold is clamped, and is provided with a stopper for regulating the interval between the molding surfaces.
  • FIG. 5B shows a casting process, and the molten glass flow 6 flowing out from the outflow pipe 5 is supplied to the center of the lower mold forming surface.
  • type 3 is formed is flat (except the part which shape
  • the molten glass is cut with the cutting blade 7 to obtain the gob 2 on the lower mold surface.
  • the gob is pressed by the upper mold 4 and the lower mold 3.
  • the interval between the upper and lower mold forming surfaces is regulated by the stopper.
  • the gob 2 is pressurized by the upper and lower molds, and is spread out in the cavity formed by the upper and lower molds, and is molded into the glass base plate 10 that is a press-molded product.
  • the peripheral edge of the molded product does not contact either the upper mold 4 or the lower mold 3 and remains on the glass base plate 10 as a free surface.
  • the upper die 4 is separated from the glass base plate 10 on the lower die 3 and retracts upward.
  • the outer diameter of the glass base plate (press-molded product) 10 is measured using, for example, optical means by a non-contact measurement method when the molded product is released from the upper mold 4 and is on the lower mold 3. Is done. After the outer diameter measurement, as shown in FIG. 5 (e), after the glass base plate 10 is cooled to a temperature that does not deform even when a force for taking out is applied, the glass base plate 10 is taken out from the lower mold 3. .
  • the float method is not shown, but a method of obtaining a glass base plate by casting a molten glass material on a molten metal (for example, molten tin) and solidifying the molten glass on the molten metal. It is.
  • a molten metal for example, molten tin
  • one surface is a free surface that does not contact the molten metal, and the other surface is formed as a highly smooth surface as a contact surface between the glass and the molten metal.
  • a through-hole 10d is formed at the center from a glass base plate formed from a glass material having a predetermined composition so that the inner periphery and the outer periphery are concentric as shown in FIG.
  • This is a process of processing into a disk-shaped glass base plate 10. An example of a specific disk processing step is shown in FIG.
  • FIG. 6A is a cross-sectional view of a plate-shaped glass base plate (glass material) 1.
  • the glass material a plate-shaped glass material manufactured by a direct press method or a float method is used.
  • a cut line is formed on one surface 1A of the glass base plate 1 to draw a curve that forms a substantially peripheral edge of a region to be a glass substrate for a magnetic disk.
  • circular cut lines 8 and 9 each depicting a disk-like outer peripheral side and inner peripheral side with a glass cutter 15 on one surface 1A of the glass base plate 1.
  • the outer peripheral side and inner peripheral cut lines 8 and 9 are formed obliquely with respect to the thickness direction of the glass base plate. Further, in the present embodiment, the cut lines 8 and 9 are formed obliquely outward from one surface 1A of the glass base plate 1 toward the other surface 1B, and when viewed in the cross-sectional view of FIG. The left and right incisions 8 and 8 and the incisions 9 and 9 are formed in a C shape.
  • the cut lines 8 and 9 are formed obliquely outward from the one surface 1A of the glass base plate 1 toward the other surface 1B, but the present invention is not limited thereto, and for example, the glass base plate 1 Incisions 8 and 9 are formed obliquely inward from one surface 1A to the other surface 1B, and when viewed in FIG. 6B, the left and right incisions 8 and 8 and the incisions 9 and 9 are It may be formed so as to have a reverse C shape, and the incision may be advanced so that the inner portion surrounded by the incision is extracted upward.
  • the cut lines 8 and 9 formed on one surface 1A of the glass base plate 1 are advanced toward the other surface 1B. Thereby, the inner region 10 a surrounded by the cut line 8 is separated from the glass base plate 1. The inner portion 10b surrounded by the cut line 9 is separated from the region 10a surrounded by the cut line 8.
  • means for advancing the cut lines 8 and 9 formed on one surface 1A of the glass base plate 1 in this way toward the other surface 1B side means for causing a difference in thermal expansion in the glass base plate 1, for example, A method of heating one side of the glass base plate 1 is preferable. By heating the glass base plate 1, a difference in thermal expansion occurs in the thickness direction of the glass base plate 1, and the glass base plate can be easily cut into a target disk shape.
  • the surface (contact surface) in contact with the molten metal and the other surface (free surface) are generated as described above.
  • the upper surface 1A is a contact surface and the lower surface is a free surface.
  • the surface roughness Ra of the glass base plate taken out as described above is preferably 10 ⁇ m or less and Rmax is preferably 50 ⁇ m or less. If the surface roughness Ra and the maximum height roughness Rz of the glass base plate after the cutting process are too large, the load of the grinding process is large, and if it is too low, the grinding rate (speed) in the grinding process is slow.
  • the surface roughness of a glass base plate or a glass substrate can be measured using a general surface roughness measuring machine.
  • the outer diameter r1 is 2.5 inches (about 64 mm), 1.8 inches (about 46 mm), 1 inch (about 25 mm), 0.8 inches (about 20 mm), etc. Is processed into a disk-shaped glass base plate having a thickness obtained by adding about 0.3 mm to the thickness of the finally produced glass substrate. If the thickness is exceeded, the machining allowance increases and the production efficiency deteriorates. Since the thickness of the finally manufactured glass substrate is determined, the thickness to be processed in the disk processing step is determined by calculating backward from the thickness.
  • the end surface polishing step is a step of processing the inner and outer diameters of the glass substrate by grinding the outer peripheral end surface and the inner peripheral end surface with a grinding wheel such as a drum-shaped diamond.
  • the inner and outer end faces of the glass substrate are polished by brushing in the inner and outer end face processing steps.
  • the brush is preferably made of nylon, polypropylene or the like having a diameter of about 0.2 to 0.3 mm.
  • the polishing liquid is preferably cerium oxide having a particle size of about several ⁇ m.
  • the surface roughness of the inner and outer end faces is preferably such that Rmax is 0.2 to 0.4 ⁇ m and Ra is about 0.02 to 0.04 ⁇ m.
  • the corner portion formed by the main surface and the end surface is removed.
  • the double-side grinding step is a step of processing the glass base plate to a predetermined plate thickness. Specifically, the process etc. which grind
  • the grinding apparatus used in the double-side grinding process is not particularly limited as long as it is a grinding apparatus used for manufacturing a glass substrate. Specifically, there is a grinding apparatus 11 as shown in FIG. FIG. 7 is a schematic cross-sectional view showing an example of a grinding apparatus used in a double-side grinding step in the method for manufacturing a glass substrate for magnetic information recording media according to the embodiment of the present invention.
  • the grinding apparatus 11 includes an apparatus main body 11a and a coolant supply unit 11b that supplies coolant, which is a coolant, to the apparatus main body 11a.
  • the apparatus main body 11a includes a disk-shaped upper surface plate 12 and a disk-shaped lower surface plate 13, and they are arranged at intervals in the vertical direction so that they are parallel to each other. Then, the disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 rotate in directions opposite to each other.
  • fixed abrasive grains 14 containing diamond particles are provided. Yes.
  • the fixed abrasive grains 14 containing diamond particles used in this double-side grinding step may be in the form of pellets by bonding a plurality of diamond particles with a resin, or by bonding or electrodeposition using a resin, You may use the sheet-like thing which adhered the diamond particle to the lower surface plate 13 planarly.
  • a carrier may be sandwiched between the fixed abrasive grains 14 and the surface plates 12 and 13.
  • the carrier revolves in the same direction as the lower surface plate 13 with respect to the center of rotation of the surface plates 12 and 13 while rotating while holding the plurality of glass base plates 10.
  • the disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 can be operated by separate driving.
  • the coolant 16 is supplied between the fixed abrasive grains 14 and the glass base plate 10 and between the fixed abrasive grains 14 and the glass base plate 10, respectively.
  • the plate 10 can be ground.
  • the coolant supply unit 11b includes a container containing a coolant 16 and a pump. That is, the coolant 16 in the container is supplied into the surface plates 12 and 13 by a pump and circulated. The facets from which the ground surfaces of the upper and lower surface plates 12 and 13 are cut off, which are generated during the circulation, are removed from the respective ground surfaces. Specifically, when the coolant 16 is circulated, it is filtered with a filter provided in the lower surface plate 13, and the facet is retained in the filter.
  • the difference between the minimum value and the maximum value of Ra obtained is about 0.01 to 0.4 ⁇ m.
  • the surface roughness Ra of the glass base plate used for the polishing process performed by the double-side grinding process is preferably 0.5 ⁇ m or less, and more preferably 0.3 ⁇ m or less.
  • the maximum height roughness Rz is preferably 3 ⁇ m or less. This is to facilitate the polishing process.
  • the machining allowance of the glass base plate in the double-side grinding step is 50 ⁇ m or more and 200 ⁇ m or less.
  • the advance allowance cannot sufficiently remove the undulation from 50 ⁇ m.
  • the processing time becomes long, and the efficiency of the manufacturing method is deteriorated as a result.
  • the number of glass base plates to be ground must be plural, specifically 80 or more, and more preferably 100 or more.
  • the number of glass substrates to be ground is less than 80, undulation removal cannot be performed efficiently. This is because a further change in internal stress occurs due to a further worsening of the upper and lower processing balance, resulting in a deterioration in flatness.
  • the processing rate is affected and the processing cannot be performed.
  • this double-side grinding step may be performed once or twice or more.
  • the parallelism, flatness and thickness of the glass base plate are preliminarily adjusted in the first double-side grinding step (first double-side grinding step), and the second double-side grinding step (second double-side grinding step) ), The parallelism, flatness and thickness of the glass base plate can be finely adjusted.
  • the double-side polishing step is intended to remove the scratches and distortions remaining in the double-side grinding step described above by polishing the main surface of the glass base plate with a polishing slurry containing cerium oxide.
  • the double-side polishing step may be divided into a rough polishing step (primary polishing step) and a fine polishing step (secondary polishing step), and is performed using the following polishing method.
  • the polishing apparatus used in the rough polishing step is not particularly limited as long as it is a polishing apparatus used for manufacturing a glass substrate.
  • the surface to be polished in the rough polishing step is a main surface.
  • the main surface is a surface parallel to the surface direction of the glass base plate.
  • the abrasive used in the polishing process of the present embodiment contains cerium oxide as a main component.
  • the content of cerium oxide is preferably 3 to 15% by mass with respect to the total amount of the polishing slurry. By setting it as such a range, the glass substrate for magnetic information recording media with higher smoothness can be manufactured.
  • the polishing slurry is a liquid in which the abrasive, dispersant, etc. are dispersed in water, that is, a slurry liquid.
  • a slurry liquid In the state where the abrasive is dispersed in water, even if the alkaline earth metal is contained in the water, the alkaline earth metal is dissolved, so that it hardly adheres to the surface of the glass base plate and is included in the abrasive. Alkaline earth metal tends to adhere to the surface of the glass base plate. For this reason, the use of an abrasive containing a small amount of alkaline earth metal can sufficiently suppress the adhesion of alkaline earth metal to the polished glass base plate.
  • the precision polishing process is a mirror polishing process that finishes a smooth mirror surface having a surface roughness (Rmax) of about 6 nm or less, for example, while maintaining the flat and smooth main surface obtained in the rough polishing process.
  • the precision polishing step is performed, for example, by using a polishing apparatus similar to that used in the rough polishing step and replacing the polishing pad from a hard polishing pad to a soft polishing pad.
  • the surface to be polished in the precision polishing step is the main surface, similar to the surface to be polished in the rough polishing step.
  • abrasive used in the precision polishing process an abrasive that causes less scratching even if the polishing performance is lower than that used in the rough polishing process is used.
  • a polishing agent containing silica-based abrasive grains having a particle diameter lower than that of the polishing agent used in the rough polishing step.
  • the average particle diameter of the silica-based abrasive is preferably about 20 nm.
  • polishing agent is supplied to a glass base plate, a polishing pad and a glass base plate are slid relatively, and the surface of a glass base plate is mirror-polished.
  • a cleaning step may be performed in addition to the above steps.
  • the cleaning step is a step of cleaning the glass substrate that has been subjected to the rough polishing step.
  • the glass substrate after the rough polishing by the rough polishing step is preferably cleaned by a cleaning step.
  • the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed.
  • the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed.
  • the glass substrate is cleaned using a hydrofluoric acid (HF) solution.
  • HF hydrofluoric acid
  • the abrasive is first dispersed and removed with an alkaline detergent, then the abrasive is dissolved and removed with an acid detergent, and finally the glass substrate is etched with HF to remove the abrasive stuck deeply into the glass substrate. is there.
  • the washing step is preferably performed in separate tanks for alkali washing, acid washing, and HF washing. This is because when these washings are performed in a single tank, efficient washing may not be possible. In particular, when the acid detergent and HF are put in the same tank, the etching rate of HF decreases at a place where there is a large amount of abrasive, and therefore there is a tendency that the inside of the substrate cannot be uniformly etched. Moreover, it is preferable to use a rinse tank after each washing. In some cases, a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents. Moreover, it is preferable to apply an ultrasonic wave to each washing tank and to use deaerated water for each detergent.
  • Shape inspection process In this shape inspection process, inspections such as scratches, cracks and adhesion of foreign substances are performed.
  • phase difference measurement process The measurement of the phase difference according to the present embodiment is performed on the glass substrate before the magnetic layer or the like is provided, and is measured after all the manufacturing steps of the glass substrate are performed.
  • phase difference As a specific method for measuring the phase difference, as described above, PA-100 (manufactured by Photonic Lattice) or the like can be used. With such a measuring apparatus, the phase difference of the entire glass substrate can be measured in a relatively short time.
  • Examples of processes provided in the method for manufacturing a glass substrate for HDD according to the present embodiment include a disk machining process, an end surface polishing process, a double-side grinding process, a double-side polishing process, a cleaning process, and a shape inspection process.
  • FIG. 3A and FIG. 3B are examples of manufacturing process diagrams of the HDD glass substrate according to the present embodiment.
  • the information recording medium for HDD according to this embodiment can be obtained by providing a magnetic layer or the like on a glass substrate for HDD.
  • FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk which is an example of an information recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
  • the magnetic disk D includes a magnetic film 102 formed on the main surface of a circular glass substrate 101 for a magnetic information recording medium.
  • a known method is used for the formation of the magnetic film 102.
  • a formation method for forming a magnetic film 102 by spin-coating a thermosetting resin in which magnetic particles are dispersed on a glass substrate 101 for a magnetic information recording medium, or a glass substrate for a magnetic information recording medium
  • a formation method for forming the magnetic film 102 on the substrate 101 by sputtering
  • a formation method electroless plating method
  • electroless plating method for forming the magnetic film 102 on the glass substrate 101 for magnetic information recording medium by electroless plating
  • the HDD glass substrate 101 according to the present embodiment is used as a magnetic recording medium.
  • the present invention is not limited to this and can be used for a magneto-optical disk, an optical disk, and the like. .
  • One aspect of the present invention is an HDD glass substrate used in an HDD device having a surface recording density of 630 Gb / square inch or more, and has a compressive stress layer on a surface layer, and in the radial direction of the HDD glass substrate,
  • the phase difference from the position 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate to the position 0.5 mm inward from the outer diameter end of the glass substrate for HDD
  • the glass substrate for HDD wherein the maximum value is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
  • the variation in the direction and size of the compressive stress value in the plane of the glass substrate is reduced, and the information recording medium is used for a long time in a harsh environment that is repeatedly exposed to heating conditions. Even in this case, the shape deformation due to the release of the compressive stress does not occur, and the occurrence frequency of reading errors can be suppressed. Therefore, when mounted on an HDD device having a high surface recording density of 630 Gb / square inch or more, even when used for a long time in a harsh environment, the shape change is sufficiently suppressed, and reading errors occur.
  • the glass substrate for HDD which can be suppressed is obtained.
  • the maximum value of the phase difference is less than 3.0 nm and the difference between the maximum value and the minimum value of the phase difference is less than 0.4 nm.
  • the thickness of the compressive stress layer is 10 to 50 ⁇ m
  • the maximum value of the phase difference is less than 3.0 nm
  • the difference between the maximum value and the minimum value of the phase difference is More preferably, it is less than 0.3 nm.
  • the shape change is further suppressed, and the occurrence of a reading error can be further suppressed. Therefore, the error occurrence frequency can be further reduced.
  • Another aspect of the present invention is a method for manufacturing a glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more, and includes a chemical strengthening step of forming a compressive stress layer on a surface layer.
  • the glass substrate for HDD obtained through the chemical strengthening step is from the position of 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate.
  • the maximum value of the phase difference from the outer diameter end to the position 0.5 mm inward is less than 4.0 nm.
  • the shape change is sufficiently suppressed even when used for a long time in a harsh environment.
  • the glass substrate for HDD which can suppress generation
  • Another aspect of the present invention is a method for manufacturing an HDD information recording medium, wherein a magnetic layer is provided on the glass substrate for HDD.
  • an HDD information recording medium with reduced error frequency can be manufactured.
  • Example 1 The following disk processing step, end surface polishing step, double-side grinding step, double-side polishing step, chemical strengthening step, and cleaning step were performed to produce 1000 glass substrates for HDD.
  • a glass base plate having a thickness of 1 mm manufactured by the float process was cut into a square having a predetermined size. This glass base plate was annealed at 400 ° C. for 3 hours, and after cooling, cut lines were formed on the surface of the glass base plate with a glass cutter. Circular streaks each describing the substantially peripheral edge on the outer peripheral side and the inner peripheral side of the region to be the glass substrate for a magnetic disk were formed. Then, the glass base plate in which the said cut line was formed was heated with the heater, and the glass base plate provided with the circular hole in the center part was obtained.
  • the molten glass used in this float process SiO 2 : 60 to 70% by mass, Al 2 O 3 : 10 to 18% by mass, Li 2 O: 2 to 8% by mass, Na 2 O: 8 to 17% by mass A composition having a composition containing% was used.
  • both sides of the glass base plate surface were ground by 50 ⁇ m each using a double-side grinding apparatus using alumina abrasive grains having a grain size of # 400.
  • the polishing pad was made of hard urethane foam
  • the polishing liquid was water in which cerium oxide having an average particle size of 10 ⁇ m was dispersed
  • the polishing time was 40 minutes.
  • mirror polishing was performed so that the surface roughness of the glass base plate was about 2 nm or less in terms of Rmax.
  • the polishing pad was replaced with a soft polisher, and the polishing liquid was water in which cerium oxide having an average particle size of 5 ⁇ m was dispersed, and the polishing time was 30 minutes.
  • a chemical strengthening step was performed on the glass substrate after the precision polishing step.
  • the chemical strengthening solution used was a mixture of potassium nitrate and sodium nitrate.
  • the chemical strengthening solution was heated to 400 ° C. and immersed in the glass disk for about 30 minutes for chemical strengthening. At this time, while swinging the glass substrate for each holding jig, the distance of 0.6 times the depth of the chemical strengthening solution is moved in the depth direction over 10 seconds, and further twice the depth of the chemical strengthening solution. The distance was repeatedly moved in the horizontal direction over 20 seconds.
  • the thickness of the compressive stress layer applied in this chemical strengthening step was 5 ⁇ m.
  • the error occurrence rate is obtained when it is mounted on a hard disk, and the relationship between each occurrence rate and the maximum value of the phase difference is shown in Table 1.
  • the HDD is set to a recording density corresponding to 250 GB on one side (500 GB on both sides), and the read / write error occurrence rate is obtained.
  • Table 1 shows the results of the thickness of the compressive stress layer of Example 1, the maximum value of the retardation of the glass substrate, the difference between the maximum value and the minimum value, and the error rate.
  • the occurrence rate of read / write errors was determined using magnetic recording media obtained under the same conditions from 100 glass substrates manufactured under the same conditions.
  • the error rate if the error rate is 5% or more, it is indicated as “x” as an unacceptable performance. If the error rate is less than 5%, it is expressed as ⁇ , if the error rate is less than 3%, it is indicated as ⁇ , and if the error rate is less than 1%, it is indicated as ⁇ .
  • Example 2 In Example 2, in the chemical strengthening step of Example 1, the glass substrate was further lifted from the chemical strengthening solution every 10 minutes, and the holding jig was rotated 90 degrees horizontally and re-immersed to perform chemical strengthening. Manufactured a glass substrate by the same method and evaluated.
  • Example 3 In Example 3, a glass substrate was produced and evaluated in the same manner as in Example 1 except that the chemical strengthening treatment time was changed to 65 minutes. The depth of the compressive stress layer at this time was 15 ⁇ m.
  • Example 4 In Example 4, a glass substrate was produced and evaluated in the same manner as in Example 2 except that the chemical strengthening treatment time was changed to 65 minutes.
  • Example 5 in the chemical strengthening treatment step of Example 4, a plurality of stirring devices are further provided in the chemical strengthening treatment tank, and a regular flow due to the convection of the chemical strengthening liquid is not generated, and an irregular flow velocity is generated.
  • a glass substrate was produced and evaluated in the same manner as in Example 4 except for the configuration.
  • Comparative Example 1 In Comparative Example 1, a glass substrate was manufactured in the same manner as in Example 1 except that the glass substrate was not moved during the chemical strengthening step and moved in the chemical strengthening solution in the chemical strengthening process of Example 1. And evaluated.
  • Comparative Example 2 In Comparative Example 2, in the chemical strengthening treatment process of Example 1, the glass substrate was not moved during the chemical strengthening process and was not moved in the chemical strengthening liquid. A glass substrate was produced and evaluated in the same manner as in Example 1 except that the chemical strengthening solution was circulated at a flow rate of.
  • Comparative Example 3 In Comparative Example 3, the glass substrate was manufactured and evaluated in the same manner as in Example 3 except that the holding jig was swung during the chemical strengthening step, but the movement in the chemical strengthening solution was not performed. .
  • the maximum value of the retardation is set to 4 nm or less by making the temperature uniform during the chemical strengthening process without generating a regular flow rate on the glass substrate surface.
  • the difference between the maximum value and the minimum value of the phase difference can be 0.5 nm or less, and as a result, no shape deformation occurs even after the heat shock is applied, and the recording density is very high, 630 Gb / square inch. It has been found that even when used in the above HDD, a glass substrate capable of suppressing the occurrence rate of read / write errors can be provided.
  • the effect of the present invention can be remarkably obtained by setting the maximum value of the phase difference to less than 3.0 nm and the difference between the maximum value and the minimum value of the phase difference to less than 0.4 nm.
  • the maximum value of the phase difference may be less than 3.0 nm, and the difference between the maximum value and the minimum value of the phase difference may be less than 0.3 nm. It turned out to be preferable.
  • Comparative Example 1 during the chemical strengthening treatment, the glass substrate surface was exposed to a regular flow rate due to the influence of convection, and the temperature uniformity was not sufficient. It has been found that the difference between the value and the minimum value exceeds the range of the present invention, and as a result, read / write errors frequently occur. In Comparative Example 2, since the temperature could be made relatively uniform by providing the stirring device, the difference between the maximum value and the minimum value of the phase difference could be reduced. The maximum value of the phase difference is increased by the flow and exceeds the range of the present invention. As a result, shape deformation occurs due to heat shock, read / write errors increase, and sufficient performance cannot be obtained.
  • the maximum value of the phase difference can be reduced to some extent by suppressing the generation of regular flow velocity on the glass substrate surface to some extent by swinging the glass substrate, but the uniformity of temperature conditions is sufficient. Therefore, the difference between the maximum value and the minimum value of the phase difference exceeds the range of the present invention. As a result, shape deformation occurs due to heat shock, read / write errors increase, and sufficient performance cannot be obtained. .
  • the shape change when mounted on an HDD device having a high surface recording density of 630 Gb / square inch or more, the shape change is sufficiently suppressed even when used for a long time in a harsh environment.
  • a glass substrate for HDD that can suppress the occurrence of errors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

One aspect of the present invention is an HDD glass substrate used in an HDD device with a surface recording density of not less than 630 Gb/square inch, wherein the HDD glass substrate is characterized in that the HDD glass substrate has a compressive stress layer on the surface layer, the maximum value of the phase difference in the radial direction of the HDD glass substrate from a position 0.5 mm outward from the diameter edge of a circular hole provided in the central portion of the glass substrate to a position 0.5 mm inward from the outer diameter edge of the HDD glass substrate is under 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is under 0.5 nm.

Description

HDD用ガラス基板、HDD用ガラス基板の製造方法及びHDD用情報記録媒体の製造方法HDD glass substrate, HDD glass substrate manufacturing method, and HDD information recording medium manufacturing method
 本発明は、HDD用ガラス基板、HDD用ガラス基板の製造方法及びHDD用情報記録媒体の製造方法に関する。 The present invention relates to an HDD glass substrate, an HDD glass substrate manufacturing method, and an HDD information recording medium manufacturing method.
 磁気ディスクなどの情報記録媒体は、コンピュータなどにHDD(Hard Disk Drive)として搭載される。情報記録媒体は、基板の表面上に、磁気、光、または光磁気などの性質を利用した記録層を含む磁気薄膜層が形成されて製造される。記録層が磁気ヘッドによって磁化されることによって、所定の情報が情報記録媒体に記録される。 An information recording medium such as a magnetic disk is mounted on a computer or the like as an HDD (Hard Disk Drive). An information recording medium is manufactured by forming a magnetic thin film layer including a recording layer using properties such as magnetism, light, or magnetomagnetism on the surface of a substrate. As the recording layer is magnetized by the magnetic head, predetermined information is recorded on the information recording medium.
 情報記録媒体用の基板としては、従来アルミニウム基板が用いられてきたが、記録密度の向上に伴い、アルミニウム基板に比較して基板表面の平滑性および強度に優れるガラス基板に徐々に置き換わりつつある。 Conventionally, an aluminum substrate has been used as a substrate for an information recording medium. However, as the recording density is improved, it is gradually being replaced by a glass substrate that is superior in smoothness and strength of the substrate surface as compared with an aluminum substrate.
 このガラス基板に、機械的強度を向上させるため、一般に化学強化処理が施される。この化学強化処理とは、ガラス基板中のイオン(例えばLi、Naイオン)を、よりイオン半径の大きなもの(例えばNaイオン、Kイオン)に置き換えることにより内部応力を持たせることによって、ガラス基板を強化させる処理のことである。当該置換によって、ガラス基板の表面に圧縮歪みを発生させ、圧縮応力層が形成される。 In order to improve the mechanical strength, this glass substrate is generally subjected to chemical strengthening treatment. This chemical strengthening treatment is to replace the ions (for example, Li, Na ions) in the glass substrate with those having a larger ionic radius (for example, Na ions, K ions), thereby giving an internal stress. It is a process to strengthen. By the replacement, compressive strain is generated on the surface of the glass substrate, and a compressive stress layer is formed.
 なお、前記化学強化処理としては、例えばKNOとNaNOとの混合粉末を300~400℃に加熱し液状化させた化学強化液中にて、固定治具を用いてガラス基板を保持させて行う(特許文献1)。 As the chemical strengthening treatment, for example, a glass substrate is held using a fixing jig in a chemical strengthening solution obtained by heating a mixed powder of KNO 3 and NaNO 3 to 300 to 400 ° C. to liquefy. (Patent Document 1).
 しかしながら、ガラス基板に化学強化処理を施す化学強化工程を施したとしても、情報記録媒体(磁気記録媒体)として過酷な熱変動環境化で使用された場合には、圧縮応力層による応力のばらつきによりガラス基板の形状が変形し、磁気記録媒体の形状の経時変化の原因となることがあり、それによりHDDの読み取りエラーの原因となる場合がある。 However, even if the glass substrate is subjected to a chemical strengthening process in which a chemical strengthening process is performed, when it is used as an information recording medium (magnetic recording medium) in a severe thermal fluctuation environment, due to variations in stress due to the compressive stress layer. The shape of the glass substrate may be deformed, which may cause a change in the shape of the magnetic recording medium over time, which may cause an HDD reading error.
 特に、昨今は高密度記録化が進行し、例えば2.5インチの記録媒体1枚で、記録容量が500GB(ギガバイト)、面記録密度が630Gb(ギガビット)/平方インチ以上というようなHDD用情報記録媒体の出現が予想されている。それに伴い、ヘッド機構も改良が進み、DFH(Dynamic Flying Height)と称されるヘッド機構が知られている。このDFHは、ヘッドの装着箇所に特殊な金属を用い、金属の熱膨張によってヘッドを記録媒体に対して微小距離で突出させる技術である。このようなDFHヘッド機構では、ヘッドと記録媒体との間隙は数nm程度まで小さくなり、ヘッドクラッシュがより起き易くなる。それゆえ、DFHヘッド機構を備えるHDDに搭載される、面記録密度が630Gb/平方インチ以上のHDD用情報記録媒体においては、従来以上に当該圧縮応力層に対する厳密な評価が重要となってきた。 In particular, high-density recording has been progressing recently, for example, HDD information such as one 2.5-inch recording medium, recording capacity of 500 GB (gigabyte), and surface recording density of 630 Gb (gigabit) / square inch or more. The emergence of recording media is expected. Accordingly, the head mechanism has been improved, and a head mechanism called DFH (Dynamic Flying Height) is known. This DFH is a technique in which a special metal is used for the mounting position of the head, and the head protrudes from the recording medium at a minute distance by thermal expansion of the metal. In such a DFH head mechanism, the gap between the head and the recording medium is reduced to about several nanometers, and head crashes are more likely to occur. Therefore, in an HDD information recording medium having a surface recording density of 630 Gb / square inch or more mounted on an HDD having a DFH head mechanism, strict evaluation of the compression stress layer has become more important than ever.
 従来、圧縮応力層に対する評価として、例えば、SEM-EDXなどの走査型分析電子顕微鏡の分析により、アルカリ成分の変化量による内部応力のばらつきの確認を行っていた。図1は、化学強化処理を行ったガラス基板のイオン交換状態について、前記分析によってガラス基板の深さ方向に対する酸化リチウムの含有量を示したものである。しかし、この分析確認には、逐一ガラス基板を破壊して検査しなければならなかった。また、基板全体を一様に評価することも困難であった。他の評価機として、ポーラリメーターや偏光顕微鏡によって断面観察を行うことは可能であるが、基板の主面全体を一様に評価できず、基板全面に対する圧縮応力層の厚みのばらつきを確かめることはできなかった。また、ポーラリメーターを用いるとその測定範囲は数mm単位であることから、ガラス基板の主面全体を評価するためには多大な時間を要し、生産性が悪化してしまう。 Conventionally, as an evaluation of the compressive stress layer, for example, an internal stress variation due to a change amount of an alkali component has been confirmed by analysis using a scanning analytical electron microscope such as SEM-EDX. FIG. 1 shows the content of lithium oxide in the depth direction of the glass substrate by the above-described analysis with respect to the ion exchange state of the chemically strengthened glass substrate. However, for this analysis confirmation, the glass substrate must be broken and inspected. It was also difficult to uniformly evaluate the entire substrate. As another evaluation machine, it is possible to perform cross-sectional observation with a polarimeter or a polarizing microscope, but the entire main surface of the substrate cannot be evaluated uniformly, and the variation in the thickness of the compressive stress layer on the entire surface of the substrate is confirmed. I couldn't. In addition, when a polarimeter is used, the measurement range is in units of several millimeters, so that it takes a lot of time to evaluate the entire main surface of the glass substrate, and productivity is deteriorated.
特許第3162558号公報Japanese Patent No. 3162558
 本発明は、長期間使用された場合においても読み取りエラーの発生が少ない、面記録密度が630Gb/平方インチ以上のHDD装置に好適に用いられるHDD用ガラス基板及びその製造方法を提供することを目的とする。また、本発明は、前記HDD用ガラス基板を用いたHDD用情報記録媒体の製造方法を提供することを目的とする。 An object of the present invention is to provide a glass substrate for HDD and a method for manufacturing the same, which are suitable for use in an HDD apparatus having a surface recording density of 630 Gb / in 2 or more, which has few reading errors even when used for a long time. And Another object of the present invention is to provide a method for manufacturing an HDD information recording medium using the glass substrate for HDD.
 本発明の一局面は、面記録密度が630Gb/平方インチ以上のHDD装置に用いられるHDD用ガラス基板であって、表層に圧縮応力層を有し、前記HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であり、前記位相差の最大値と最小値との差が0.5nm未満であることを特徴とするHDD用ガラス基板である。 One aspect of the present invention is an HDD glass substrate used in an HDD device having a surface recording density of 630 Gb / square inch or more, and has a compressive stress layer on a surface layer, and in the radial direction of the HDD glass substrate, The phase difference from the position 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate to the position 0.5 mm inward from the outer diameter end of the glass substrate for HDD The glass substrate for HDD, wherein the maximum value is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
 また、本発明の他の一局面は、面記録密度が630Gb/平方インチ以上であるHDD装置に用いられるHDD用ガラス基板の製造方法であって、表層に圧縮応力層を形成する化学強化工程を備え、前記化学強化工程を経て得られた前記HDD用ガラス基板は、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であることを特徴とするHDD用ガラス基板の製造方法である。 Another aspect of the present invention is a method for manufacturing a glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more, and includes a chemical strengthening step of forming a compressive stress layer on a surface layer. And the glass substrate for HDD obtained through the chemical strengthening step is from the position of 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate. The maximum value of the phase difference from the outer diameter end to the position 0.5 mm inward is less than 4.0 nm.
 また、本発明の他の一局面は、前記HDD用ガラス基板に磁性層を設けることを特徴とするHDD用情報記録媒体の製造方法である。 Another aspect of the present invention is a method for manufacturing an HDD information recording medium, wherein a magnetic layer is provided on the glass substrate for HDD.
 本発明の目的、特徴、局面、及び利点は、以下の詳細な記載と添付図面によって、より明白となる。 The objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description and the accompanying drawings.
図1は、化学強化処理を施したHDD用ガラス基板のイオン交換状態を示す図である。FIG. 1 is a diagram showing an ion exchange state of a glass substrate for HDD subjected to chemical strengthening treatment. 図2は、本実施形態に係るHDD用ガラス基板の検品・選別方法における測定解析範囲を示す図である。FIG. 2 is a diagram showing a measurement analysis range in the inspection / sorting method for the glass substrate for HDD according to the present embodiment. 図3は、HDD用ガラス基板の製造における工程を説明する製造工程図である。FIG. 3 is a manufacturing process diagram illustrating a process in manufacturing a glass substrate for HDD. 図4は、本実施形態に係るHDD用ガラス基板の製造方法により製造されるHDD用ガラス基板を示す上面図である。FIG. 4 is a top view illustrating the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment. 図5は、本実施形態に係るHDD用ガラス基板の製造方法におけるダイレクトプレス法の工程を示す概略図である。FIG. 5 is a schematic view showing the steps of the direct press method in the method for manufacturing a glass substrate for HDD according to the present embodiment. 図6は、本実施形態に係るHDD用ガラス基板の製造方法におけるガラス素板から円盤状のガラス基板を切り出す工程を示す概略断面図である。FIG. 6 is a schematic cross-sectional view showing a step of cutting out a disk-shaped glass substrate from a glass base plate in the method for manufacturing a glass substrate for HDD according to the present embodiment. 図7は、本実施形態に係るHDD用ガラス基板の製造方法における粗研磨工程や精密研磨工程で用いる研磨装置の一例を示す概略断面図である。FIG. 7 is a schematic cross-sectional view showing an example of a polishing apparatus used in a rough polishing step and a precision polishing step in the method for manufacturing a glass substrate for HDD according to the present embodiment. 図8は、本実施形態に係るHDD用ガラス基板の製造方法により製造されたHDD用ガラス基板を用いた情報記録媒体の一例である磁気ディスクを示す一部断面斜視図である。FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk as an example of an information recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment.
 前記課題を解決するために、本発明者らが鋭意検討を行った結果、残留応力のばらつきが小さく、情報記録媒体として過酷な環境下で長期間使用された場合においても、内部応力のばらつきに起因した変形(歪み)が発生せず、読み取りエラーの発生を抑制することが可能となることを見出した。 In order to solve the above problems, the present inventors have conducted intensive studies, and as a result, the residual stress variation is small, and even when the information recording medium is used for a long time in a harsh environment, the internal stress varies. It has been found that the resulting deformation (distortion) does not occur and the occurrence of reading errors can be suppressed.
 以下、本発明に係る実施形態について説明するが、本発明は、これらに限定されるものではない。 Hereinafter, embodiments according to the present invention will be described, but the present invention is not limited thereto.
 <HDD用ガラス基板>
 本実施形態に係るHDD用ガラス基板は、表層に圧縮応力層を有し、面記録密度が630Gb/平方インチ以上であるHDD装置に好適に用いられるHDD用ガラス基板であって、前記HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であり、前記位相差の最大値と最小値との差が0.5nm未満であることを特徴とする。
<Glass substrate for HDD>
The glass substrate for HDD according to the present embodiment is a glass substrate for HDD suitably used for an HDD apparatus having a compressive stress layer as a surface layer and having a surface recording density of 630 Gb / square inch or more. In the radial direction of the substrate, from the position that is 0.5 mm outward from the radial end of the circular hole provided in the center of the glass substrate, 0.5 mm inward from the outer radial end of the glass substrate for HDD. The maximum value of the phase difference up to a certain position is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
 なお、630Gb/平方インチ以上とは、98Gb/cm以上とほぼ同義である。 In addition, 630 Gb / square inch or more is almost synonymous with 98 Gb / cm 2 or more.
 (位相差の測定)
 ここで、前記位相差の測定方法について説明する。
(Measurement of phase difference)
Here, a method for measuring the phase difference will be described.
 前記圧縮応力層は、化学強化工程によって付与された光学的な「ひずみ層」と捉えることができ、透過光に対して光学軸に平行な方向と垂直な方向で有効屈折率が異なる複屈折が発生する。よって、電界成分が平行なTE偏光と、格子の線に電界成分が垂直なTM偏光の伝搬速度に差が生じ、透過光に位相差(リタデーションともいう)が発現する。 The compressive stress layer can be regarded as an optical “strain layer” applied by a chemical strengthening process, and birefringence having different effective refractive indexes in a direction perpendicular to a direction parallel to the optical axis with respect to transmitted light. appear. Therefore, there is a difference in propagation speed between TE polarized light having parallel electric field components and TM polarized light having electric field components perpendicular to the lattice lines, and a phase difference (also referred to as retardation) appears in the transmitted light.
 このようなガラス基板の厚み方向と平面方向における複屈折は、ガラス基板から切片を切り出し、その断面の位相差を測定することで、圧縮応力層の厚みや圧縮応力の強さを測定することが可能である。しかし、化学強化処理による圧縮応力がガラス基板の平面方向に均一に発生した場合においては、ガラス基板の表面方向から透過光による位相差の測定を行った場合においては、複屈折は発生せず、位相差(リタデーション)は検知されない。しかしながら、圧縮応力にばらつきがある場合は、すなわち面内で圧縮応力の大きさが異なっていたり、面方向に垂直な方向で異なった方向に圧縮応力が発生したりしていると、表面方向からの透過光による位相差の測定をした場合に、位相差として検出することができ、その位相差が圧縮応力の面内方向におけるばらつきとして検出することができるのである。 Such birefringence in the thickness direction and the planar direction of the glass substrate can measure the thickness of the compressive stress layer and the strength of the compressive stress by cutting out a slice from the glass substrate and measuring the phase difference of the cross section. Is possible. However, when the compressive stress due to the chemical strengthening treatment occurs uniformly in the plane direction of the glass substrate, birefringence does not occur when measuring the phase difference by the transmitted light from the surface direction of the glass substrate, No phase difference (retardation) is detected. However, if the compressive stress varies, that is, if the compressive stress is different in the plane, or if the compressive stress is generated in a different direction in the direction perpendicular to the surface direction, When the phase difference due to the transmitted light is measured, it can be detected as a phase difference, and the phase difference can be detected as a variation in the in-plane direction of the compressive stress.
 具体的には、化学強化処理されたガラス基板に白色光を照射し、ガラス基板の複数箇所における透過光の位相差の量を測定する。その位相差を測定することで、圧縮応力のばらつきを評価することが可能である。 Specifically, a chemically strengthened glass substrate is irradiated with white light, and the amount of transmitted light phase difference at a plurality of locations on the glass substrate is measured. By measuring the phase difference, it is possible to evaluate the variation in compressive stress.
 本発明における位相差(リタデーション:Re)は、ガラス基板の面内方向に発生する位相差を表し、下記の式で表されるものである。
   Re=(nx-ny)×d
 但し、nxは測定点における面内方向の最も屈折率が大きい方向xにおける屈折率を表し、nyは、測定点における面内方向のx方向と直交する方向yにおける屈折率を表し、dはガラス基板の厚さ(nm)を表す。リタデーション(Re)の単位はnm単位で表される。
The retardation (retardation: Re) in the present invention represents a retardation generated in the in-plane direction of the glass substrate, and is represented by the following formula.
Re = (nx−ny) × d
However, nx represents the refractive index in the direction x having the largest refractive index in the in-plane direction at the measurement point, ny represents the refractive index in the direction y orthogonal to the x direction in the in-plane direction at the measurement point, and d represents glass. It represents the thickness (nm) of the substrate. The unit of retardation (Re) is expressed in nm.
 このような面方向の位相差は、例えばPA-100(フォトニックラティス社製)等を用いて、表面方向からの透過光における位相差を測定することで検出可能である。該位相差の測定解析位置は、HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までである。 Such a phase difference in the plane direction can be detected by measuring a phase difference in transmitted light from the surface direction using, for example, PA-100 (manufactured by Photonic Lattice). The measurement and analysis position of the phase difference is from the position 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate in the radial direction of the glass substrate for HDD. It is to the position which is 0.5 mm inward from the outer diameter end.
 図2は、ガラス基板の断面図であり、本実施形態での、位相差の測定解析位置を表した図である。一般に、HDD用ガラス基板は、外径が65mmであり、中心孔の内径が20mmであるものが用いられる。また、端面加工工程を施した場合、端面の幅は0.15mmであり、これらを除いたガラス基板主面での圧縮応力層の位相差を測定することが好ましい。 FIG. 2 is a cross-sectional view of the glass substrate, and is a view showing the measurement analysis position of the phase difference in the present embodiment. In general, a glass substrate for HDD having an outer diameter of 65 mm and an inner diameter of the center hole of 20 mm is used. Moreover, when the end surface processing step is performed, the width of the end surface is 0.15 mm, and it is preferable to measure the phase difference of the compressive stress layer on the main surface of the glass substrate excluding these.
 前記端面における位相差を測定しない理由としては、端面のエッジが原因となって光が透過しなくなる場合があり、素子側でエッジによる暗部か複屈折による暗部かを区別できず、ガラス基板の主面に比べて高い数値が測定されるためである。したがって、上記のように円孔の径端より外方に0.5mmである位置から、外径端より内方に0.5mmである位置を位相差の測定解析の範囲とした。 The reason for not measuring the phase difference at the end face is that light may not be transmitted due to the edge of the end face, and the element side cannot distinguish whether it is a dark part due to an edge or a dark part due to birefringence. This is because a higher value is measured than the surface. Therefore, from the position 0.5 mm outward from the diameter end of the circular hole as described above, the position 0.5 mm inward from the outer diameter end is set as the range of the phase difference measurement analysis.
 上記のように測定された位相差の最大値が4.0nm未満であり、位相差の最大値と最小値との差が0.5nm未満であるHDD用ガラス基板であれば、ガラス基板の面内において圧縮応力値の方向及び大きさのバラツキが小さくなり、情報記録媒体として加熱条件下に繰り返し晒されるような過酷な環境下で長期間使用した場合においても、圧縮応力の開放による形状変形が起こらず、読み取りエラーの発生頻度を抑制することができる。すなわち、位相差の最大値は、各測定点における面内に発生する圧縮応力が持つ方向性を表すものであり、面内で特定方向の圧縮応力が大きいと圧縮応力が開放された際に面内方向に加わる応力にも方向性が発生してしまい、歪みの原因となる。また位相差の最大値と最小値との差は、面内において発生する圧縮応力のバラツキの大きさを示す指標であり、面内の各箇所、具体的には半径方向で圧縮応力が方向性を持った上にその大きさに差があると、経時保存時に圧縮応力が開放された際には、やはりガラス基板の歪みの原因となる。前記位相差の位相差の最大値が3.0nm未満であることが好ましく、前記位相差の最大値と最小値との差が0.4nm未満であることが好ましい。 If the maximum value of the phase difference measured as described above is less than 4.0 nm and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm, the surface of the glass substrate is used. Even when used in a harsh environment where it is repeatedly exposed to heating conditions as an information recording medium, the shape deformation due to the release of the compressive stress is reduced. It does not occur and the frequency of occurrence of read errors can be suppressed. In other words, the maximum value of the phase difference represents the directionality of the compressive stress generated in the plane at each measurement point. If the compressive stress in a specific direction is large in the plane, the surface will be released when the compressive stress is released. Directionality also occurs in the stress applied in the inward direction, causing distortion. The difference between the maximum value and the minimum value of the phase difference is an index indicating the magnitude of the variation of the compressive stress generated in the plane, and the compressive stress is directional at each location in the plane, specifically in the radial direction. If there is a difference in the size of the glass substrate, it will cause distortion of the glass substrate when the compressive stress is released during storage over time. The maximum value of the phase difference of the phase difference is preferably less than 3.0 nm, and the difference between the maximum value and the minimum value of the phase difference is preferably less than 0.4 nm.
 また、化学強化工程によって付与された圧縮応力層の厚さが10~50μmである場合、前記測定範囲位置における位相差の最大値が3.0nm未満であり、前記位相差の最大値と最小値との差が0.3nm未満であることが好ましい。 In addition, when the thickness of the compressive stress layer applied by the chemical strengthening step is 10 to 50 μm, the maximum value of the phase difference at the measurement range position is less than 3.0 nm, and the maximum value and the minimum value of the phase difference. Is preferably less than 0.3 nm.
 圧縮応力層の厚みが増大するとガラス基板内における圧縮応力値のばらつきが大きくなる。よって、圧縮応力層の厚さが10~50μmであるガラス基板においては、上記のような位相差の範囲であればエラー発生頻度をより低減することができる。 When the thickness of the compressive stress layer increases, the variation of the compressive stress value in the glass substrate increases. Therefore, in a glass substrate having a compressive stress layer thickness of 10 to 50 μm, the frequency of error occurrence can be further reduced within the above-described phase difference range.
 以上により、本実施形態に係るHDD用ガラス基板によれば、当該測定位置での位相差の最大値が4.0nm未満であり、該位相差の最大値と最小値との差が0.5nm未満であり、その圧縮応力のばらつきは非常に小さいため、このHDD用ガラス基板から製造されるHDD用情報記録媒体(磁気記録媒体)についても圧縮応力のばらつきが小さくなる。したがって、HDD用磁気記録媒体の表面状態の変動が抑制され、HDD用磁気記録媒体の読み取りエラーが抑制される。その結果、たとえ面記録密度が630Gb/平方インチ以上というような面記録密度が高いHDD用磁気記録媒体であっても、十分な記録領域の拡大が図ることができる。つまり、本実施形態に係るHDD用ガラス基板は、HDD用磁気記録媒体の記録容量の増大要請に十分対応することができる。したがって、面記録密度が630Gb/平方インチ以上のHDD用磁気記録媒体の製造に十分良好に用いることができる。 As described above, according to the glass substrate for HDD according to the present embodiment, the maximum value of the phase difference at the measurement position is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is 0.5 nm. Since the variation in compressive stress is very small, the variation in compressive stress is also reduced for the HDD information recording medium (magnetic recording medium) manufactured from the HDD glass substrate. Therefore, fluctuations in the surface state of the HDD magnetic recording medium are suppressed, and reading errors of the HDD magnetic recording medium are suppressed. As a result, even if the HDD magnetic recording medium has a high surface recording density of 630 Gb / square inch or more, the recording area can be sufficiently expanded. That is, the glass substrate for HDD according to the present embodiment can sufficiently meet the demand for increasing the recording capacity of the magnetic recording medium for HDD. Therefore, it can be used satisfactorily for the production of HDD magnetic recording media having a surface recording density of 630 Gb / square inch or more.
 (ガラス基板組成)
 本実施形態で用いられるHDD用ガラス基板を構成する組成は、アルミノシリケートガラスが好適に用いられる。かかるアルミノシリケートガラスの組成は、SiO、Al、及びBをガラス素板の主成分として含有する。また、ガラス素板のアルカリ成分として、LiO、NaO、及びKOを含有する。アルカリ土類成分として、MgO、CaO、BaO、SrO、及びZnOを含有する。
(Glass substrate composition)
Aluminosilicate glass is preferably used as the composition constituting the glass substrate for HDD used in the present embodiment. The composition of such an aluminosilicate glass contains SiO 2 , Al 2 O 3 , and B 2 O 3 as main components of the glass base plate. Further, as the alkali components of the glass workpiece, Li 2 O, containing Na 2 O, and K 2 O. As alkaline earth components, MgO, CaO, BaO, SrO, and ZnO are contained.
 そして、SiOとAlとBとの合計量w(FMO)が、70~85質量%であることが好ましい。これは、ガラスの構造を安定化させるためである。この合計量が少なすぎると、ガラス構造が不安定化する傾向がある。また、この合計量が多すぎると、溶融時の粘性特性が悪化し生産性が低下する傾向がある。 The total amount w (FMO) of SiO 2 , Al 2 O 3 and B 2 O 3 is preferably 70 to 85% by mass. This is to stabilize the glass structure. If the total amount is too small, the glass structure tends to become unstable. Moreover, when there is too much this total amount, the viscosity characteristic at the time of a fusion | melting will deteriorate, and there exists a tendency for productivity to fall.
 本実施形態で使用するガラス素板のアルカリ成分としては、上記のように、LiOが1~8質量%、NaOが2~13質量%、KOが0.2~2質量%であって、それらの合計、すなわちLiOとNaOとKOとの合計が3.2~23質量%であることが好ましい。 As described above, the alkali component of the glass base plate used in the present embodiment is 1 to 8% by mass of Li 2 O, 2 to 13% by mass of Na 2 O, and 0.2 to 2% by mass of K 2 O. It is preferable that the total thereof, that is, the total of Li 2 O, Na 2 O and K 2 O is 3.2 to 23% by mass.
 また、ガラス素板としては、上記以外の成分を含有してもよい。具体的には、例えば、ZrOや酸化セリウムを含有してもよい。そして、ZrOの含有量としては、0~5質量%であることが好ましい。また、酸化セリウムの含有量としては、0~2質量%が好ましい。なお、酸化セリウムは、酸化セリウムを含有する研磨剤を用いて、ガラス素板を研磨する際、微細な凹凸の発生を抑制する効果を有する。 Moreover, as a glass base plate, you may contain components other than the above. Specifically, for example, ZrO 2 or cerium oxide may be contained. The ZrO 2 content is preferably 0 to 5% by mass. The content of cerium oxide is preferably 0 to 2% by mass. In addition, cerium oxide has an effect which suppresses generation | occurrence | production of a fine unevenness | corrugation when grind | polishing a glass base plate using the abrasive | polishing agent containing a cerium oxide.
 <HDD用ガラス基板の製造方法>
 本実施形態にかかるHDD用ガラス基板の製造方法は、表層に圧縮応力層を有し、面記録密度が630Gb/平方インチ以上であるHDD用ガラス基板の製造方法であって、前記HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であり、前記位相差の最大値と最小値との差が0.5nm未満であるHDD用ガラス基板を選択する検品・選別工程を備えることを特徴とする。
<Method for producing glass substrate for HDD>
The manufacturing method of the glass substrate for HDD concerning this embodiment is a manufacturing method of the glass substrate for HDD which has a compressive-stress layer in a surface layer, and a surface recording density is 630 Gb / square inch or more, Comprising: The said glass substrate for HDD In the radial direction, the position is 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate, and 0.5 mm inward from the outer diameter end of the HDD glass substrate. A checking / selecting step of selecting a glass substrate for HDD having a maximum value of the phase difference up to a position of less than 4.0 nm and a difference between the maximum value and the minimum value of the phase difference of less than 0.5 nm. Features.
 本実施形態にかかる製造方法において、表層に圧縮応力層を形成する為の化学強化工程について詳述する。 In the manufacturing method according to this embodiment, a chemical strengthening step for forming a compressive stress layer on the surface layer will be described in detail.
 (化学強化工程)
 本実施形態にかかる製造方法における化学強化工程は、公知の方法であれば、特に限定されない。具体的には、例えば、後述する円盤加工工程等を施したガラス素板を化学強化処理液に浸漬させる工程等が挙げられる。このように浸漬させることによって、ガラス素板の表面に圧縮応力層を形成することができる。そして、圧縮応力層を形成することで耐衝撃性、耐振動性及び耐熱性等を向上させることができる。
(Chemical strengthening process)
If the chemical strengthening process in the manufacturing method concerning this embodiment is a well-known method, it will not specifically limit. Specifically, the process etc. which immerse the glass base plate which gave the disk processing process etc. which are mentioned later in a chemical strengthening process liquid are mentioned, for example. By immersing in this way, a compressive stress layer can be formed on the surface of the glass base plate. And by forming a compressive stress layer, impact resistance, vibration resistance, heat resistance, etc. can be improved.
 本実施形態において、化学強化工程に付与された圧縮応力層は、その圧縮応力値が2kg/mm以上となっている層とする。圧縮応力が強すぎると、平面度が悪化する場合があるため、圧縮応力層における圧縮応力値の最大値は、2kg/mm以上50kg/mm以下であることが好ましい。なお、従来のHDD用ガラス基板に施されていた化学強化処理による圧縮応力層の厚みは100~200μmであったが、近年においてはガラス基板の平面度に対する要求がより厳しくなり、圧縮応力層の厚みは50μm以下であることが好ましい。 In the present embodiment, the compressive stress layer applied to the chemical strengthening step is a layer having a compressive stress value of 2 kg / mm 2 or more. The compressive stress is too strong, there are cases where the flatness is deteriorated, the maximum value of the compression stress value of the compressive stress layer is preferably 2 kg / mm 2 or more 50 kg / mm 2 or less. Although the thickness of the compressive stress layer by chemical strengthening treatment applied to the conventional glass substrate for HDD is 100 to 200 μm, in recent years, the demand for the flatness of the glass substrate becomes more severe, The thickness is preferably 50 μm or less.
 前記化学強化工程は、加熱された化学強化処理液にガラス素板を浸漬させることによって、ガラス素板に含まれるリチウムイオンやナトリウムイオン等のアルカリ金属イオンをそれよりイオン半径の大きなカリウムイオン等のアルカリ金属イオンに置換するイオン交換法によって行われることが好ましい。イオン半径の違いによって生じる歪みにより、イオン交換された領域に圧縮応力が発生し、ガラス素板の表面が強化される。 In the chemical strengthening step, by immersing the glass base plate in a heated chemical strengthening treatment liquid, alkali metal ions such as lithium ions and sodium ions contained in the glass base plate are made to have a larger ion radius, such as potassium ions. It is preferably carried out by an ion exchange method in which the alkali metal ions are substituted. Due to the strain caused by the difference in ion radius, compressive stress is generated in the ion-exchanged region, and the surface of the glass base plate is strengthened.
 本実施形態では、ガラス基板の原料であるガラス素板として、上記のようなガラス組成のものを用いることによって、この化学強化工程によって圧縮応力層が好適に形成されると考えられる。具体的には、ガラス素板のアルカリ成分であるLiO、NaO、及びKOのうち、NaOの含有量が多く、このNaOのナトリウムイオンが、化学強化処理液に含まれるカリウムイオンに交換されやすいため、圧縮応力のばらつきを低減できる。 In this embodiment, it is thought that a compressive stress layer is suitably formed by this chemical strengthening process by using the glass composition as described above as a glass base plate that is a raw material of the glass substrate. Specifically, among Li 2 O, Na 2 O, and K 2 O, which are alkali components of the glass base plate, the content of Na 2 O is large, and the sodium ions of Na 2 O are chemically strengthened. Therefore, it is possible to reduce the variation in compressive stress.
 化学強化処理液としては、磁気情報記録媒体用ガラス基板の製造方法における化学強化工程で用いられる化学強化処理液であれば、特に限定されない。具体的には、例えば、カリウムイオンを含む溶融液、及びカリウムイオンやナトリウムイオンを含む溶融液等が挙げられる。 The chemical strengthening treatment solution is not particularly limited as long as it is a chemical strengthening treatment solution used in the chemical strengthening step in the method for producing a glass substrate for a magnetic information recording medium. Specifically, for example, a melt containing potassium ions, a melt containing potassium ions and sodium ions, and the like can be given.
 これらの溶融液としては、例えば、硝酸カリウム、硝酸ナトリウム、炭酸カリウム、及び炭酸ナトリウム等を溶融させて得られた溶融液等が挙げられる。この中でも、硝酸カリウムを溶融させて得られた溶融液と硝酸ナトリウムを溶融させて得られた溶融液とを組み合わせて用いることが、融点が低く、ガラス素板の変形を防止でき、圧縮応力のばらつきを低減できる観点から好ましい。その際、硝酸カリウムを溶融させて得られた溶融液と硝酸ナトリウムを溶融させて得られた溶融液とを、ほぼ同量ずつの混合させた混合液であることが好ましい。 Examples of these melts include melts obtained by melting potassium nitrate, sodium nitrate, potassium carbonate, sodium carbonate, and the like. Among these, using a combination of a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate has a low melting point, can prevent deformation of the glass base plate, and variations in compressive stress. It is preferable from the viewpoint that can be reduced. At that time, a melt obtained by melting potassium nitrate and a melt obtained by melting sodium nitrate are preferably mixed in approximately the same amount.
 本実施形態において、ガラス基板の位相差の最大値及び位相差の最大値を4.0nm未満とし、位相差の最大値と最小値の差を0.5nm未満とする方法としては、特に制限はないが、化学強化工程後に発生した圧縮応力のムラを加熱(アニール)等で解消すると、形状変形の原因となる為、化学強化工程において、位相差の発生を抑制することが好ましい。 In the present embodiment, the maximum value of the phase difference and the maximum value of the phase difference of the glass substrate are set to less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is set to less than 0.5 nm is particularly limited. However, if the unevenness of the compressive stress generated after the chemical strengthening step is eliminated by heating (annealing) or the like, shape deformation is caused. Therefore, it is preferable to suppress the occurrence of the phase difference in the chemical strengthening step.
 具体的には、化学強化工程(化学強化処理工程とも称する。)でガラス基板を化学強化処理液に浸漬する場合において、ガラス基板表面の各箇所における温度条件が均一化される条件で行う方法が挙げられる。 Specifically, when a glass substrate is immersed in a chemical strengthening treatment solution in a chemical strengthening step (also referred to as a chemical strengthening treatment step), a method is performed under conditions where temperature conditions at each location on the glass substrate surface are uniformized. Can be mentioned.
 化学強化処理工程では、通常、複数のガラス基板を保持治具で保持した状態で化学強化液が満たされた処理槽に浸漬することで化学強化が行われる。この際、化学強化処理液を撹拌するような手段を設けたり、ガラス基板を揺動させることである程度温度条件を均一にすることが可能であるが、化学強化処理液を撹拌した場合には、化学強化処理液に流れが発生し、ガラス基板表面に接触する際に方向性を持って接触することとなる為、圧縮応力層に方向性が発生し、位相差を発生させる原因となる場合がある。 In the chemical strengthening treatment step, chemical strengthening is usually performed by immersing a plurality of glass substrates in a treatment tank filled with a chemical strengthening solution while being held by a holding jig. At this time, it is possible to make the temperature condition uniform to some extent by providing means for stirring the chemical strengthening treatment liquid or by swinging the glass substrate. Flow occurs in the chemical strengthening treatment liquid, and when it comes into contact with the glass substrate surface, it will contact with directionality, which may cause directionality in the compressive stress layer and cause phase difference. is there.
 また、化学強化処理液は高温で溶融されており、自然に対流が発生して規則的な流れが発生したり、化学処理液の上部及び下部の間で温度分布が発生する場合もある。その為、ガラス基板表面の各箇所における温度条件を均一化する為の方法としては、化学強化処理中に、ガラス基板を化学処理液が満たされた化学強化槽中で、大きく移動させることが好ましい方法として挙げられる。具体的には、化学強化液の深さの半分以上の距離を化学強化処理中に複数回移動させることが好ましい。 Also, the chemical strengthening treatment liquid is melted at a high temperature, and convection naturally occurs to generate a regular flow, or a temperature distribution may occur between the upper and lower portions of the chemical treatment liquid. Therefore, as a method for homogenizing the temperature conditions at each location on the surface of the glass substrate, it is preferable to move the glass substrate largely in the chemical strengthening tank filled with the chemical treatment liquid during the chemical strengthening treatment. As a method. Specifically, it is preferable to move a distance of half or more of the depth of the chemical strengthening solution a plurality of times during the chemical strengthening treatment.
 また、深さ方向だけではなく、水平方向にも大きく移動させることが好ましい。また、移動させる際には、一定の方向に一定の速度で移動すると、相対的には、表面に接触する化学強化処理液に規則的な流速が発生し、圧縮応力層が面内に方向性を持つ原因となり、位相差を発生させる可能性がある為、化学強化処理液中を大きく移動させる際には、ガラス基板を揺動させながら移動させたり、不規則な軌道で移動させたり、化学強化処理液を撹拌させながら移動したりする方法が好ましく用いられる。 Also, it is preferable to move not only in the depth direction but also in the horizontal direction. In addition, when moving, when moving at a constant speed in a certain direction, a relatively high flow rate is generated in the chemical strengthening treatment liquid in contact with the surface, and the compressive stress layer is oriented in the plane. This may cause a phase difference, and when moving in the chemical strengthening solution, the glass substrate may be moved while being oscillated, moved in an irregular orbit, A method of moving the strengthening treatment liquid while stirring is preferably used.
 別の方法としては、化学強化処理液中に一旦浸漬した後、取り出して方向を変えて、再度浸漬する方法を繰り返して行ってもよい。この際にも、上記と同様にガラス基板の揺動や化学強化処理液の撹拌等と組合せて行うことが更に好ましい。また、化学強化処理槽に超音波発生装置を設け、ガラス基板に超音波を当てながら上述の方法と組み合わせて行うことも好ましい形態である。 As another method, after dipping once in the chemical strengthening treatment liquid, the method of taking out, changing the direction, and dipping again may be repeated. In this case as well, it is more preferable to carry out in combination with the shaking of the glass substrate and the stirring of the chemical strengthening treatment liquid, as described above. Moreover, it is also a preferable embodiment that an ultrasonic generator is provided in the chemical strengthening treatment tank and that the method is performed in combination with the above-described method while applying ultrasonic waves to the glass substrate.
 本実施形態におけるガラス基板の元となるガラス素板を得る方法としては特に限定はなく、従来公知のダイレクトプレス法やフロート法により得られたガラス素板を用いることができる。 There is no particular limitation on the method for obtaining the glass base plate that is the basis of the glass substrate in the present embodiment, and a glass base plate obtained by a conventionally known direct press method or float method can be used.
 ・ダイレクトプレス法
 図5は、前記ダイレクトプレス法によるガラス素板の加工工程を示す模式図である。
-Direct press method FIG. 5: is a schematic diagram which shows the processing process of the glass base plate by the said direct press method.
 図5(a)は、成形型を構成する、下型3、上型4である。上型4には、型締め時に成形面を囲むように下型3に当接しており、成形面の間隔を規制するためのストッパーが設けられている。図5(b)はキャスト工程であり、流出パイプ5から流出された溶融ガラス流6は、下型成形面の中央に供給されている。なお、図5(a)等に示すように、下型3の成形面が形成されている上面は、平坦になっている(ガラスブランクの肉厚部を成形する部分を除く。)。次の図5(c)における切断工程では、溶融ガラスを切断刃7で切断し、下型成形面上にゴブ2を得ている。続いて、図5(d)にて、該ゴブを上型4と下型3にてプレスを行っているが、型締め時には上記ストッパーによって上下型成形面の間隔が規制されている。ゴブ2は上下型により加圧されて、上下型によって形成されるキャビティ内に押し広げられて、プレス成形品であるガラス素板10に成形される。成形品の周縁部は、上型4、下型3のいずれにも接触せず、自由表面としてガラス素板10に残る。プレス成形後、上型4は下型3上のガラス素板10から離されて上方へ退避する。ガラス素板(プレス成形品)10の外径は、成形品が上型4から離型されて下型3上にある時点においては、例えば、非接触式測定法による光学的手段を用いて測定される。外径測定後、図5(e)のように、ガラス素板10が取り出しのための力を加えても変形しない温度まで冷却されてから、下型3からガラス素板10を取り出す工程を経る。 FIG. 5A shows a lower mold 3 and an upper mold 4 constituting the mold. The upper die 4 is in contact with the lower die 3 so as to surround the molding surface when the mold is clamped, and is provided with a stopper for regulating the interval between the molding surfaces. FIG. 5B shows a casting process, and the molten glass flow 6 flowing out from the outflow pipe 5 is supplied to the center of the lower mold forming surface. In addition, as shown to Fig.5 (a) etc., the upper surface in which the molding surface of the lower mold | type 3 is formed is flat (except the part which shape | molds the thick part of a glass blank). In the next cutting step shown in FIG. 5C, the molten glass is cut with the cutting blade 7 to obtain the gob 2 on the lower mold surface. Subsequently, in FIG. 5 (d), the gob is pressed by the upper mold 4 and the lower mold 3. At the time of mold clamping, the interval between the upper and lower mold forming surfaces is regulated by the stopper. The gob 2 is pressurized by the upper and lower molds, and is spread out in the cavity formed by the upper and lower molds, and is molded into the glass base plate 10 that is a press-molded product. The peripheral edge of the molded product does not contact either the upper mold 4 or the lower mold 3 and remains on the glass base plate 10 as a free surface. After press molding, the upper die 4 is separated from the glass base plate 10 on the lower die 3 and retracts upward. The outer diameter of the glass base plate (press-molded product) 10 is measured using, for example, optical means by a non-contact measurement method when the molded product is released from the upper mold 4 and is on the lower mold 3. Is done. After the outer diameter measurement, as shown in FIG. 5 (e), after the glass base plate 10 is cooled to a temperature that does not deform even when a force for taking out is applied, the glass base plate 10 is taken out from the lower mold 3. .
 ・フロート法
 フロート法は、図示しないが、溶融金属(例えば溶融スズ)の上に、溶融されたガラス素材を流延し、溶融金属上で溶融ガラスを固化させることで、ガラス素板を得る方法である。得られたガラス素板は、一方の面は溶融金属には接触しない自由表面となり、他方の面はガラスと溶融金属との接触面として平滑性が高い面として形成される。
-Float method The float method is not shown, but a method of obtaining a glass base plate by casting a molten glass material on a molten metal (for example, molten tin) and solidifying the molten glass on the molten metal. It is. In the obtained glass base plate, one surface is a free surface that does not contact the molten metal, and the other surface is formed as a highly smooth surface as a contact surface between the glass and the molten metal.
 (円盤加工工程)
 前記円盤加工工程は、所定の組成のガラス素材から板状に成形したガラス素板から、図4に示すように、内周及び外周が同心円となるように、中心部に貫通孔10dが形成された円盤状のガラス素板10に加工する工程である。具体的な円盤加工工程の一例を図6に示す。
(Disc machining process)
In the disk processing step, a through-hole 10d is formed at the center from a glass base plate formed from a glass material having a predetermined composition so that the inner periphery and the outer periphery are concentric as shown in FIG. This is a process of processing into a disk-shaped glass base plate 10. An example of a specific disk processing step is shown in FIG.
 図6(a)は板状のガラス素板(ガラス素材)1の断面図である。 FIG. 6A is a cross-sectional view of a plate-shaped glass base plate (glass material) 1.
 前記ガラス素材は、ダイレクトプレス法やフロート法で製造される板状のガラス素材を用いる。 As the glass material, a plate-shaped glass material manufactured by a direct press method or a float method is used.
 上記ガラス素板1の一方の面1Aに対して、磁気ディスク用ガラス基板となされる領域の略周縁をなす曲線を描く切筋を形成する。本実施の形態では、図6(b)に示すように、ガラス素板1の一方の面1Aにガラスカッター15で、円盤状の外周側及び内周側を描くそれぞれ円形の切筋8,9を形成する。 A cut line is formed on one surface 1A of the glass base plate 1 to draw a curve that forms a substantially peripheral edge of a region to be a glass substrate for a magnetic disk. In the present embodiment, as shown in FIG. 6 (b), circular cut lines 8 and 9 each depicting a disk-like outer peripheral side and inner peripheral side with a glass cutter 15 on one surface 1A of the glass base plate 1. Form.
 この場合の外周側及び内周側の切筋8,9はガラス素板の厚み方向に対して斜めに形成している。また、本実施の形態では、ガラス素板1の一方の面1Aから他方の面1B側に向かって外側へ斜めに切筋8,9を形成し、図6(b)の断面図で見ると、左右の切筋8,8及び切筋9,9がそれぞれハの字状になるように形成させている。また、本実施の形態では、ガラス素板1の一方の面1Aから他方の面1B側に向かって外側へ斜めに切筋8,9を形成したが、これに限らず、例えばガラス素板1の一方の面1Aから他方の面1B側に向かって内側へ斜めに切筋8,9を形成し、図6(b)で見ると、左右の切筋8,8及び切筋9,9がそれぞれ逆ハの字状になるように形成しておき、この切筋を進行させて切筋で囲まれる内側部分を上方へ抜き取るようにしてもよい。 In this case, the outer peripheral side and inner peripheral cut lines 8 and 9 are formed obliquely with respect to the thickness direction of the glass base plate. Further, in the present embodiment, the cut lines 8 and 9 are formed obliquely outward from one surface 1A of the glass base plate 1 toward the other surface 1B, and when viewed in the cross-sectional view of FIG. The left and right incisions 8 and 8 and the incisions 9 and 9 are formed in a C shape. Further, in the present embodiment, the cut lines 8 and 9 are formed obliquely outward from the one surface 1A of the glass base plate 1 toward the other surface 1B, but the present invention is not limited thereto, and for example, the glass base plate 1 Incisions 8 and 9 are formed obliquely inward from one surface 1A to the other surface 1B, and when viewed in FIG. 6B, the left and right incisions 8 and 8 and the incisions 9 and 9 are It may be formed so as to have a reverse C shape, and the incision may be advanced so that the inner portion surrounded by the incision is extracted upward.
 次に、図6(c)に示すように、ガラス素板1の一方の面1Aに形成した前記切筋8,9を他方の面1B側に向かって進行させる。これにより、切筋8で囲まれる内側の領域10aはガラス素板1から分離された状態となる。また、切筋9で囲まれる内側部分10bは上記切筋8で囲まれる領域10aから分離された状態となる。 Next, as shown in FIG. 6C, the cut lines 8 and 9 formed on one surface 1A of the glass base plate 1 are advanced toward the other surface 1B. Thereby, the inner region 10 a surrounded by the cut line 8 is separated from the glass base plate 1. The inner portion 10b surrounded by the cut line 9 is separated from the region 10a surrounded by the cut line 8.
 このようにガラス素板1の一方の面1Aに形成した前記切筋8,9を他方の面1B側に向かって進行させる手段としては、ガラス素板1に熱膨張差を生じさせる手段、例えばガラス素板1の片側面を加熱する方法が好ましく挙げられる。ガラス素板1を加熱することにより、ガラス素板1の板厚方向に熱膨張差が生じ、ガラス素板を目的の円盤状に容易に切断できる。 As means for advancing the cut lines 8 and 9 formed on one surface 1A of the glass base plate 1 in this way toward the other surface 1B side, means for causing a difference in thermal expansion in the glass base plate 1, for example, A method of heating one side of the glass base plate 1 is preferable. By heating the glass base plate 1, a difference in thermal expansion occurs in the thickness direction of the glass base plate 1, and the glass base plate can be easily cut into a target disk shape.
 続いて、図6(d)に示すように、切筋8で囲まれた内側の領域10a、10bを下方に押し出し、さらに切筋9で囲まれた領域10bを押し出すことにより、中心部に円孔を備えた円盤状のガラス素板10が得られる。 Subsequently, as shown in FIG. 6 (d), the inner regions 10a and 10b surrounded by the cut line 8 are pushed downward, and further, the region 10b surrounded by the cut line 9 is pushed out, so that a circle is formed at the center. A disk-shaped glass base plate 10 having holes is obtained.
 フロート法で形成されたガラス素板においては、上述のように溶融金属に接した面(接触面)と、他方の面(自由表面)とが生じる。図6(a)に示すガラス素材1の場合では、上側の面1Aが接触面で、下側の面が自由表面とされていることが好ましい。 In the glass base plate formed by the float process, the surface (contact surface) in contact with the molten metal and the other surface (free surface) are generated as described above. In the case of the glass material 1 shown in FIG. 6A, it is preferable that the upper surface 1A is a contact surface and the lower surface is a free surface.
 前述のように取り出したガラス素板の表面粗さRaは、10μm以下、Rmaxが50μm以下が好ましい。前記切出し工程後のガラス素板の表面粗さRaや最大高さ粗さRzが大きすぎると研削工程の負荷が大きく、低すぎると逆に研削工程における研削レート(速度)が遅くなる。なお、ガラス素板やガラス基板の表面粗さは、一般的な表面粗さ測定機を用いて測定することができる。 The surface roughness Ra of the glass base plate taken out as described above is preferably 10 μm or less and Rmax is preferably 50 μm or less. If the surface roughness Ra and the maximum height roughness Rz of the glass base plate after the cutting process are too large, the load of the grinding process is large, and if it is too low, the grinding rate (speed) in the grinding process is slow. In addition, the surface roughness of a glass base plate or a glass substrate can be measured using a general surface roughness measuring machine.
 以上による円盤加工工程において、例えば、外径r1が2.5インチ(約64mm)、1.8インチ(約46mm)、1インチ(約25mm)、0.8インチ(約20mm)等で、厚みは最終的に製造されるガラス基板の厚みに0.3mm程度を加えた厚みの円盤状のガラス素板に加工される。前記厚みを超えると加工取り代が増えるため製造効率が悪くなってしまう。最終的に製造されるガラス基板の厚さは決まっているため、そこから逆算し、該円盤加工工程において加工する厚みは決定される。 In the disk machining process as described above, for example, the outer diameter r1 is 2.5 inches (about 64 mm), 1.8 inches (about 46 mm), 1 inch (about 25 mm), 0.8 inches (about 20 mm), etc. Is processed into a disk-shaped glass base plate having a thickness obtained by adding about 0.3 mm to the thickness of the finally produced glass substrate. If the thickness is exceeded, the machining allowance increases and the production efficiency deteriorates. Since the thickness of the finally manufactured glass substrate is determined, the thickness to be processed in the disk processing step is determined by calculating backward from the thickness.
 (端面研磨工程)
 端面研磨工程は、ガラス基板の外周端面および内周端面を、例えば鼓状のダイヤモンド等の研削砥石により研削することで内・外径加工する工程である。
(End face polishing process)
The end surface polishing step is a step of processing the inner and outer diameters of the glass substrate by grinding the outer peripheral end surface and the inner peripheral end surface with a grinding wheel such as a drum-shaped diamond.
 ガラス基板の内周、外周の端面は、内周及び外周端面加工工程でブラシ研磨によるポリッシング加工を行う。ブラシは、φ0.2からφ0.3mm程度のナイロン、ポリプロピレン等を使用するのが好ましい。また、研磨液は、粒径が数μm程度の酸化セリウムが好ましい。ブラシ研磨の結果、内周、外周の端面の面粗さは、Rmaxが0.2~0.4μmで、Raが0.02~0.04μm程度とするのが好ましい。形状加工工程を経たガラス基板の端面の形状は、主表面と端面とが成す角部が取り除かれる。 The inner and outer end faces of the glass substrate are polished by brushing in the inner and outer end face processing steps. The brush is preferably made of nylon, polypropylene or the like having a diameter of about 0.2 to 0.3 mm. The polishing liquid is preferably cerium oxide having a particle size of about several μm. As a result of brush polishing, the surface roughness of the inner and outer end faces is preferably such that Rmax is 0.2 to 0.4 μm and Ra is about 0.02 to 0.04 μm. As for the shape of the end surface of the glass substrate that has undergone the shape processing step, the corner portion formed by the main surface and the end surface is removed.
 (両面研削工程)
 前記両面研削工程は、前記ガラス素板を所定の板厚に加工する工程である。具体的には、ガラス素板の両面を研削(両面研削)加工する工程等が挙げられる。このように加工することによって、ガラス素板の平行度、平坦度及び厚みを調整することができる。
(Double-side grinding process)
The double-side grinding step is a step of processing the glass base plate to a predetermined plate thickness. Specifically, the process etc. which grind | polish both surfaces of a glass base plate (double-sided grinding) are mentioned. By processing in this way, the parallelism, flatness and thickness of the glass base plate can be adjusted.
 両面研削工程で用いる研削装置は、ガラス基板の製造に用いる研削装置であれば、特に限定されない。具体的には、図7に示すような研削装置11が挙げられる。なお、図7は、本発明の実施形態に係る磁気情報記録媒体用ガラス基板の製造方法における両面研削工程で用いる研削装置の一例を示す概略断面図である。 The grinding apparatus used in the double-side grinding process is not particularly limited as long as it is a grinding apparatus used for manufacturing a glass substrate. Specifically, there is a grinding apparatus 11 as shown in FIG. FIG. 7 is a schematic cross-sectional view showing an example of a grinding apparatus used in a double-side grinding step in the method for manufacturing a glass substrate for magnetic information recording media according to the embodiment of the present invention.
 図7に示すような研削装置11は、両面同時研削可能な装置である。また、この研削装置11は、装置本体部11aと、装置本体部11aに冷却液であるクーラントを供給するクーラント供給部11bとを備えている。 7 is an apparatus capable of simultaneous grinding on both sides. The grinding apparatus 11 includes an apparatus main body 11a and a coolant supply unit 11b that supplies coolant, which is a coolant, to the apparatus main body 11a.
 装置本体部11aは、円盤状の上定盤12と円盤状の下定盤13とを備えており、それらが互いに平行になるように上下に間隔を隔てて配置されている。そして、円盤状の上定盤12と円盤状の下定盤13とが、互いに逆方向に回転する。 The apparatus main body 11a includes a disk-shaped upper surface plate 12 and a disk-shaped lower surface plate 13, and they are arranged at intervals in the vertical direction so that they are parallel to each other. Then, the disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 rotate in directions opposite to each other.
 この円盤状の上定盤12と円盤状の下定盤13との対向するそれぞれの面にガラス素板10の表裏の両面を研削するために、ダイヤモンド粒子を含有する固定砥粒14が配備されている。この両面研削工程で使用するダイヤモンド粒子を含む固定砥粒14は、複数のダイヤモンド粒子を樹脂で結合させてペレット状のものでもよいし、樹脂を用いた接着又は電着によって、上定盤12及び下定盤13にダイヤモンド粒子を平面的に接着させたシート状のものを用いてもよい。 In order to grind both the front and back surfaces of the glass base plate 10 on the opposing surfaces of the disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13, fixed abrasive grains 14 containing diamond particles are provided. Yes. The fixed abrasive grains 14 containing diamond particles used in this double-side grinding step may be in the form of pellets by bonding a plurality of diamond particles with a resin, or by bonding or electrodeposition using a resin, You may use the sheet-like thing which adhered the diamond particle to the lower surface plate 13 planarly.
 前記固定砥粒14と定盤12、13との間にはキャリアを挟んでいてもよい。このキャリアは複数のガラス素板10を保持した状態で、自転しながら定盤12,13の回転中心に対して下定盤13と同じ方向に公転する。なお、円盤状の上定盤12と円盤状の下定盤13とは、別駆動で動作することができる。このように動作している研削装置11において、クーラント16を固定砥粒14とガラス素板10との間、及び固定砥粒14とガラス素板10との間、それぞれに供給することでガラス素板10の研削処理を行うことができる。 A carrier may be sandwiched between the fixed abrasive grains 14 and the surface plates 12 and 13. The carrier revolves in the same direction as the lower surface plate 13 with respect to the center of rotation of the surface plates 12 and 13 while rotating while holding the plurality of glass base plates 10. The disk-shaped upper surface plate 12 and the disk-shaped lower surface plate 13 can be operated by separate driving. In the grinding apparatus 11 operating in this way, the coolant 16 is supplied between the fixed abrasive grains 14 and the glass base plate 10 and between the fixed abrasive grains 14 and the glass base plate 10, respectively. The plate 10 can be ground.
 クーラント供給部11bは、クーラント16を入れた容器とポンプとを備えている。すなわち、容器内のクーラント16をポンプによって定盤12,13内に供給し、循環させる。該循環中に生じる、上下の定盤12,13の研削面が削られた切子を、それぞれの研削面から除去する。具体的には、クーラント16を循環させる際に、下定盤13内に設けられたフィルタで濾過し、そのフィルタに切子を滞留させる。 The coolant supply unit 11b includes a container containing a coolant 16 and a pump. That is, the coolant 16 in the container is supplied into the surface plates 12 and 13 by a pump and circulated. The facets from which the ground surfaces of the upper and lower surface plates 12 and 13 are cut off, which are generated during the circulation, are removed from the respective ground surfaces. Specifically, when the coolant 16 is circulated, it is filtered with a filter provided in the lower surface plate 13, and the facet is retained in the filter.
 また、ガラス素板の算術平均粗さRaを複数個所測定した際に、得られたRaの最小値と最大値との差が0.01~0.4μm程度にすることが好ましい。 Further, when the arithmetic average roughness Ra of the glass base plate is measured at a plurality of locations, it is preferable that the difference between the minimum value and the maximum value of Ra obtained is about 0.01 to 0.4 μm.
 前記両面研削工程を施すと、後述する粗研磨工程にて行われる研磨を効率良く行うことができる。また、両面研削工程によって施された研磨工程に用いるガラス素板の表面粗さRaは0.5μm以下で好ましく、0.3μm以下であることがより好ましい。表面粗さRaが0.5μmより大きいと、その後の研磨工程を経ても大きなうねりが残ってしまう可能性がある。また、最大高さ粗さRzは3μm以下が好ましい。これは研磨工程を行いやすくするめである。 When the double-side grinding step is performed, polishing performed in the rough polishing step described later can be efficiently performed. Moreover, the surface roughness Ra of the glass base plate used for the polishing process performed by the double-side grinding process is preferably 0.5 μm or less, and more preferably 0.3 μm or less. When the surface roughness Ra is larger than 0.5 μm, a large undulation may remain even after the subsequent polishing step. Further, the maximum height roughness Rz is preferably 3 μm or less. This is to facilitate the polishing process.
 また、前記両面研削工程におけるガラス素板の取り代は、50μm以上200μm以下であることが好ましい。前取り代が50μmよりうねりを十分に取りきれない場合があり、200μmより大きいと加工時間が長くなり、結果製造方法の効率が悪くなる。 Moreover, it is preferable that the machining allowance of the glass base plate in the double-side grinding step is 50 μm or more and 200 μm or less. In some cases, the advance allowance cannot sufficiently remove the undulation from 50 μm. When the advance allowance is larger than 200 μm, the processing time becomes long, and the efficiency of the manufacturing method is deteriorated as a result.
 さらに、本実施形態の両面研削工程において、研削されるガラス素板は複数枚でなければならず、具体的には80枚以上であることが好ましく、100枚以上であることがさらに好ましい。研削されるガラス基板が80枚より少ないと、うねり除去が効率的に行えなくなる。これは、上下の加工バランスがさらに悪くなることにより、新たな内部応力の変化が生じ、結果平坦度が悪化してしまう。平坦度が悪化すると加工レートに影響を及ぼし加工行えなくなる。 Furthermore, in the double-sided grinding process of the present embodiment, the number of glass base plates to be ground must be plural, specifically 80 or more, and more preferably 100 or more. When the number of glass substrates to be ground is less than 80, undulation removal cannot be performed efficiently. This is because a further change in internal stress occurs due to a further worsening of the upper and lower processing balance, resulting in a deterioration in flatness. When the flatness is deteriorated, the processing rate is affected and the processing cannot be performed.
 また、この両面研削工程は、1回であってもよいし、2回以上であってもよい。例えば、2回行う場合、1回目の両面研削工程(第1両面研削工程)で、ガラス素板の平行度、平坦度及び厚みを予備調整し、2回目の両面研削工程(第2両面研削工程)で、ガラス素板の平行度、平坦度及び厚みを微調整することが可能となる。 Further, this double-side grinding step may be performed once or twice or more. For example, when it is performed twice, the parallelism, flatness and thickness of the glass base plate are preliminarily adjusted in the first double-side grinding step (first double-side grinding step), and the second double-side grinding step (second double-side grinding step) ), The parallelism, flatness and thickness of the glass base plate can be finely adjusted.
 <両面研磨工程>
 両面研磨工程は、ガラス素板の主面を、酸化セリウムを含有する研磨スラリーにて研磨し、上述した両面研削工程で残留した傷や歪みの除去を目的とするものである。前記両面研磨工程は、粗研磨工程(一次研磨工程)と精密研磨工程(二次研磨工程)に分けて施されることもあり、下記の研磨方法を用いて実施する。
<Double-side polishing process>
The double-side polishing step is intended to remove the scratches and distortions remaining in the double-side grinding step described above by polishing the main surface of the glass base plate with a polishing slurry containing cerium oxide. The double-side polishing step may be divided into a rough polishing step (primary polishing step) and a fine polishing step (secondary polishing step), and is performed using the following polishing method.
 (粗研磨工程)
 粗研磨工程で用いる研磨装置は、ガラス基板の製造に用いる研磨装置であれば、特に限定されない。
(Rough polishing process)
The polishing apparatus used in the rough polishing step is not particularly limited as long as it is a polishing apparatus used for manufacturing a glass substrate.
 前記粗研磨工程で研磨する表面は、主表面である。主表面とは、ガラス素板の面方向に平行な面である。 The surface to be polished in the rough polishing step is a main surface. The main surface is a surface parallel to the surface direction of the glass base plate.
 次に、本実施形態の研磨工程において用いられる研磨剤は、主成分として酸化セリウムを含有するものである。酸化セリウムの含有量は、研磨スラリー全量に対して3~15質量%であることが好ましい。このような範囲にすることで、より平滑性の高い磁気情報記録媒体用ガラス基板を製造することができる。 Next, the abrasive used in the polishing process of the present embodiment contains cerium oxide as a main component. The content of cerium oxide is preferably 3 to 15% by mass with respect to the total amount of the polishing slurry. By setting it as such a range, the glass substrate for magnetic information recording media with higher smoothness can be manufactured.
 また、研磨スラリーとは、前記研磨剤、分散剤等を水に分散させた状態の液体、すなわち、スラリー液のことである。前記研磨剤を水に分散させた状態では、水にアルカリ土類金属が含有されていても、アルカリ土類金属が溶解しているため、ガラス素板の表面に付着しにくく、研磨剤に含まれるアルカリ土類金属が、ガラス素板の表面に付着しやすい。このような理由で、前記研磨剤として、アルカリ土類金属の少ないものを用いることによって、研磨後のガラス素板に対するアルカリ土類金属の付着を充分に抑制できる。 Further, the polishing slurry is a liquid in which the abrasive, dispersant, etc. are dispersed in water, that is, a slurry liquid. In the state where the abrasive is dispersed in water, even if the alkaline earth metal is contained in the water, the alkaline earth metal is dissolved, so that it hardly adheres to the surface of the glass base plate and is included in the abrasive. Alkaline earth metal tends to adhere to the surface of the glass base plate. For this reason, the use of an abrasive containing a small amount of alkaline earth metal can sufficiently suppress the adhesion of alkaline earth metal to the polished glass base plate.
 (精密研磨工程)
 精密研磨工程は、前記粗研磨工程で得られた平坦平滑な主表面を維持しつつ、例えば、主表面の表面粗さ(Rmax)が6nm程度以下である平滑な鏡面に仕上げる鏡面研磨処理である、この精密研磨工程は、例えば、上記粗研磨工程で使用したものと同様の研磨装置を用い、研磨パッドを硬質研磨パッドから軟質研磨パッドに取り替えて行われる。なお、前記精密研磨工程で研磨する表面は、前記粗研磨工程で研磨する表面と同様、主表面である。
(Precision polishing process)
The precision polishing process is a mirror polishing process that finishes a smooth mirror surface having a surface roughness (Rmax) of about 6 nm or less, for example, while maintaining the flat and smooth main surface obtained in the rough polishing process. The precision polishing step is performed, for example, by using a polishing apparatus similar to that used in the rough polishing step and replacing the polishing pad from a hard polishing pad to a soft polishing pad. The surface to be polished in the precision polishing step is the main surface, similar to the surface to be polished in the rough polishing step.
 また、精密研磨工程で用いる研磨剤としては、粗研磨工程で用いた研磨剤より、研磨性が低くても、傷の発生がより少なくなる研磨剤が用いられる。具体的には、例えば、粗研磨工程で用いた研磨剤より、粒子径が低いシリカ系の砥粒(コロイダルシリカ)を含む研磨剤等が挙げられる。このシリカ系の砥粒の平均粒子径としては、20nm程度であることが好ましい。そして、前記研磨剤を含む研磨スラリー液をガラス素板に供給し、研磨パッドとガラス素板とを相対的に摺動させて、ガラス素板の表面を鏡面研磨する。 Further, as the abrasive used in the precision polishing process, an abrasive that causes less scratching even if the polishing performance is lower than that used in the rough polishing process is used. Specifically, for example, a polishing agent containing silica-based abrasive grains (colloidal silica) having a particle diameter lower than that of the polishing agent used in the rough polishing step. The average particle diameter of the silica-based abrasive is preferably about 20 nm. And the polishing slurry liquid containing the said abrasive | polishing agent is supplied to a glass base plate, a polishing pad and a glass base plate are slid relatively, and the surface of a glass base plate is mirror-polished.
 (洗浄工程)
 本実施形態に係るガラス基板の製造方法において、上記工程の他に、洗浄工程を施してもよい。該洗浄工程は、前記粗研磨工程が施されたガラス基板を洗浄する工程である。
(Washing process)
In the method for manufacturing a glass substrate according to the present embodiment, a cleaning step may be performed in addition to the above steps. The cleaning step is a step of cleaning the glass substrate that has been subjected to the rough polishing step.
 前記粗研磨工程による粗研磨後のガラス基板は、洗浄工程によって洗浄することが好ましい。例えば、pH13以上のアルカリ洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。次に、pH1以下の酸系洗剤を用いて、ガラス基板の洗浄を行い、ガラス基板にリンスを行う。最後に、フッ化水素酸(HF)溶液を用いて、ガラス基板の洗浄を行う。酸化セリウムを用いた研磨に関しては、アルカリ洗浄、酸洗浄、HF洗浄の順で洗浄を行うことが最も効率的である。これは、まずアルカリ洗剤で研磨材を分散除去し、次に酸洗剤で研磨材を溶解除去し、最後に、HFによってガラス基板をエッチングし、ガラス基板に深く刺さっている研磨材を除去するのである。 The glass substrate after the rough polishing by the rough polishing step is preferably cleaned by a cleaning step. For example, the glass substrate is washed with an alkaline detergent having a pH of 13 or more, and the glass substrate is rinsed. Next, the glass substrate is washed with an acid detergent having a pH of 1 or less, and the glass substrate is rinsed. Finally, the glass substrate is cleaned using a hydrofluoric acid (HF) solution. For polishing using cerium oxide, it is most efficient to perform cleaning in the order of alkali cleaning, acid cleaning, and HF cleaning. This is because the abrasive is first dispersed and removed with an alkaline detergent, then the abrasive is dissolved and removed with an acid detergent, and finally the glass substrate is etched with HF to remove the abrasive stuck deeply into the glass substrate. is there.
 前記洗浄工程は、アルカリ洗浄、酸洗浄、HF洗浄において、それぞれ別の槽で行うことが好ましい。これらの洗浄を単一の槽で行った場合には、効率的な洗浄ができない場合があるからである。特に、酸洗剤とHFを同一槽に入れた場合、HFのエッチング速度は、研磨材の多い場所で低下するため、基板内を均一にエッチングできなくなる傾向があるからである。また、各洗浄の後にリンス槽を用いることが好ましい。これらの洗剤には、場合によって界面活性剤、分散材、キレート剤、還元材などを添加しても良い。また、各洗浄槽には、超音波を印加し、それぞれの洗剤には脱気水を使用することが好ましい。 The washing step is preferably performed in separate tanks for alkali washing, acid washing, and HF washing. This is because when these washings are performed in a single tank, efficient washing may not be possible. In particular, when the acid detergent and HF are put in the same tank, the etching rate of HF decreases at a place where there is a large amount of abrasive, and therefore there is a tendency that the inside of the substrate cannot be uniformly etched. Moreover, it is preferable to use a rinse tank after each washing. In some cases, a surfactant, a dispersing agent, a chelating agent, a reducing material, and the like may be added to these detergents. Moreover, it is preferable to apply an ultrasonic wave to each washing tank and to use deaerated water for each detergent.
 (形状検査工程)
 本形状検査工程では、目視によるキズ、割れや異物の付着等の検査を行う。
(Shape inspection process)
In this shape inspection process, inspections such as scratches, cracks and adhesion of foreign substances are performed.
 (位相差の測定工程)
 本実施形態に係る位相差の測定は、磁性層等が設けられる前のガラス基板に対して行われるものであり、上述のガラス基板の製造工程が全て行われた後に測定されるものである。
(Phase difference measurement process)
The measurement of the phase difference according to the present embodiment is performed on the glass substrate before the magnetic layer or the like is provided, and is measured after all the manufacturing steps of the glass substrate are performed.
 具体的な位相差の測定方法としては、先述したように、PA-100(フォトニックラティス社製)等を用いて測定することができる。このような測定装置では、ガラス基板全面の位相差を比較的短時間に測定可能である。 As a specific method for measuring the phase difference, as described above, PA-100 (manufactured by Photonic Lattice) or the like can be used. With such a measuring apparatus, the phase difference of the entire glass substrate can be measured in a relatively short time.
 本実施形態にかかるHDD用ガラス基板の製造方法に備わる工程としては、円盤加工工程、端面研磨工程、両面研削工程、両面研磨工程、洗浄工程、形状検査工程等が挙げられる。 Examples of processes provided in the method for manufacturing a glass substrate for HDD according to the present embodiment include a disk machining process, an end surface polishing process, a double-side grinding process, a double-side polishing process, a cleaning process, and a shape inspection process.
 図3(a)及び図3(b)は、本実施形態にかかるHDD用ガラス基板の製造工程図の例である。 FIG. 3A and FIG. 3B are examples of manufacturing process diagrams of the HDD glass substrate according to the present embodiment.
 <HDD用情報記録媒体>
 本実施形態に係るHDD用情報記録媒体は、HDD用ガラス基板に磁性層等を設けることで得られる。
<Information recording medium for HDD>
The information recording medium for HDD according to this embodiment can be obtained by providing a magnetic layer or the like on a glass substrate for HDD.
 図8は、本実施形態に係るHDD用ガラス基板の製造方法により製造されたHDD用ガラス基板を用いた情報記録媒体の一例である磁気ディスクを示す一部断面斜視図である。この磁気ディスクDは、円形の磁気情報記録媒体用ガラス基板101の主表面に形成された磁性膜102を備えている。磁性膜102の形成には、公知の常套手段による形成方法が用いられる。例えば、磁性粒子を分散させた熱硬化性樹脂を磁気情報記録媒体用ガラス基板101上にスピンコートすることによって磁性膜102を形成する形成方法(スピンコート法)や、磁気情報記録媒体用ガラス基板101上にスパッタリングによって磁性膜102を形成する形成方法(スパッタリング法)や、磁気情報記録媒体用ガラス基板101上に無電解めっきによって磁性膜102を形成する形成方法(無電解めっき法)等が挙げられる。 FIG. 8 is a partial cross-sectional perspective view showing a magnetic disk which is an example of an information recording medium using the glass substrate for HDD manufactured by the method for manufacturing the glass substrate for HDD according to the present embodiment. The magnetic disk D includes a magnetic film 102 formed on the main surface of a circular glass substrate 101 for a magnetic information recording medium. For the formation of the magnetic film 102, a known method is used. For example, a formation method (spin coating method) for forming a magnetic film 102 by spin-coating a thermosetting resin in which magnetic particles are dispersed on a glass substrate 101 for a magnetic information recording medium, or a glass substrate for a magnetic information recording medium Examples include a formation method (sputtering method) for forming the magnetic film 102 on the substrate 101 by sputtering, a formation method (electroless plating method) for forming the magnetic film 102 on the glass substrate 101 for magnetic information recording medium by electroless plating, and the like. It is done.
 このような本実施形態における磁気情報記録媒体用ガラス基板101を基体とした磁気記録媒体は、磁気情報記録媒体用ガラス基板101が上述した組成により形成されるので、情報の記録再生を長期にわたり高い信頼性で行うことができる。 In such a magnetic recording medium based on the glass substrate 101 for magnetic information recording medium in the present embodiment, since the glass substrate 101 for magnetic information recording medium is formed with the above-described composition, information recording / reproducing is high for a long time. Can be done with reliability.
 なお、上記においては、本実施形態におけるHDD用ガラス基板101を磁気記録媒体に用いる場合について説明したが、これに限定されるものではなく、光磁気ディスクや光ディスク等にも用いることが可能である。 In the above description, the case where the HDD glass substrate 101 according to the present embodiment is used as a magnetic recording medium has been described. However, the present invention is not limited to this and can be used for a magneto-optical disk, an optical disk, and the like. .
 本明細書は、上述したように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 本発明の一局面は、面記録密度が630Gb/平方インチ以上のHDD装置に用いられるHDD用ガラス基板であって、表層に圧縮応力層を有し、前記HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であり、前記位相差の最大値と最小値との差が0.5nm未満であることを特徴とするHDD用ガラス基板である。 One aspect of the present invention is an HDD glass substrate used in an HDD device having a surface recording density of 630 Gb / square inch or more, and has a compressive stress layer on a surface layer, and in the radial direction of the HDD glass substrate, The phase difference from the position 0.5 mm outward from the diameter end of the circular hole provided in the center of the glass substrate to the position 0.5 mm inward from the outer diameter end of the glass substrate for HDD The glass substrate for HDD, wherein the maximum value is less than 4.0 nm, and the difference between the maximum value and the minimum value of the phase difference is less than 0.5 nm.
 このような構成によれば、ガラス基板の面内において圧縮応力値の方向及び大きさのバラツキが小さくなり、情報記録媒体として加熱条件下に繰り返し晒されるような過酷な環境下で長期間使用した場合においても、圧縮応力の開放による形状変形が起こらず、読み取りエラーの発生頻度を抑制することができる。よって、高密度である面記録密度が630Gb/平方インチ以上のHDD装置に搭載した場合において、過酷な環境下で長時間使用された場合においても形状変化が十分に抑制され、読み取りエラーの発生を抑制できるHDD用ガラス基板が得られる。 According to such a configuration, the variation in the direction and size of the compressive stress value in the plane of the glass substrate is reduced, and the information recording medium is used for a long time in a harsh environment that is repeatedly exposed to heating conditions. Even in this case, the shape deformation due to the release of the compressive stress does not occur, and the occurrence frequency of reading errors can be suppressed. Therefore, when mounted on an HDD device having a high surface recording density of 630 Gb / square inch or more, even when used for a long time in a harsh environment, the shape change is sufficiently suppressed, and reading errors occur. The glass substrate for HDD which can be suppressed is obtained.
 また、前記HDD用ガラス基板において、前記位相差の最大値が3.0nm未満であり、前記位相差の最大値と最小値との差が0.4nm未満であることが好適である。 In the HDD glass substrate, it is preferable that the maximum value of the phase difference is less than 3.0 nm and the difference between the maximum value and the minimum value of the phase difference is less than 0.4 nm.
 このような構成によれば、過酷な環境下で長時間使用された場合においても形状変化がより抑制され、読み取りエラーの発生をより抑制できる。 According to such a configuration, even when used for a long time in a harsh environment, the shape change is further suppressed, and the occurrence of a reading error can be further suppressed.
 また、前記HDD用ガラス基板において、前記圧縮応力層の厚さが10~50μmであり、前記位相差の最大値が3.0nm未満であり、前記位相差の最大値と最小値との差が0.3nm未満であることがさらに好適である。 Further, in the glass substrate for HDD, the thickness of the compressive stress layer is 10 to 50 μm, the maximum value of the phase difference is less than 3.0 nm, and the difference between the maximum value and the minimum value of the phase difference is More preferably, it is less than 0.3 nm.
 このような構成によれば、過酷な環境下で長時間使用された場合においても形状変化がより抑制され、読み取りエラーの発生をより抑制できる。よって、エラー発生頻度をより低減することができる。 According to such a configuration, even when used for a long time in a harsh environment, the shape change is further suppressed, and the occurrence of a reading error can be further suppressed. Therefore, the error occurrence frequency can be further reduced.
 また、本発明の他の一局面は、面記録密度が630Gb/平方インチ以上であるHDD装置に用いられるHDD用ガラス基板の製造方法であって、表層に圧縮応力層を形成する化学強化工程を備え、前記化学強化工程を経て得られた前記HDD用ガラス基板は、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であることを特徴とするHDD用ガラス基板の製造方法である。 Another aspect of the present invention is a method for manufacturing a glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more, and includes a chemical strengthening step of forming a compressive stress layer on a surface layer. And the glass substrate for HDD obtained through the chemical strengthening step is from the position of 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate. The maximum value of the phase difference from the outer diameter end to the position 0.5 mm inward is less than 4.0 nm.
 このような構成によれば、高密度である面記録密度が630Gb/平方インチ以上のHDD装置に搭載した場合において、過酷な環境下で長時間使用された場合においても形状変化が十分に抑制され、読み取りエラーの発生を抑制できるHDD用ガラス基板を製造することができる。 According to such a configuration, when mounted on an HDD device having a high surface recording density of 630 Gb / square inch or more, the shape change is sufficiently suppressed even when used for a long time in a harsh environment. The glass substrate for HDD which can suppress generation | occurrence | production of a reading error can be manufactured.
 また、本発明の他の一局面は、前記HDD用ガラス基板に磁性層を設けることを特徴とするHDD用情報記録媒体の製造方法である。 Another aspect of the present invention is a method for manufacturing an HDD information recording medium, wherein a magnetic layer is provided on the glass substrate for HDD.
 このような構成によれば、エラー発生頻度の低減されたHDD用情報記録媒体を製造することができる。 According to such a configuration, an HDD information recording medium with reduced error frequency can be manufactured.
 以下に実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
 〔実施例1〕
 以下の円盤加工工程、端面研磨工程、両面研削工程、両面研磨工程、化学強化工程、洗浄工程を施し、HDD用ガラス基板を1000枚製造した。
[Example 1]
The following disk processing step, end surface polishing step, double-side grinding step, double-side polishing step, chemical strengthening step, and cleaning step were performed to produce 1000 glass substrates for HDD.
 (円盤加工工程)
 フロート法で製造した厚さ1mmのガラス素板を所定の大きさの四角形に切断した。このガラス素板に400℃、3時間においてアニール処理を行い、冷却後にガラスカッターでガラス素板表面に対して切筋を形成した。磁気ディスク用ガラス基板とされる領域の外周側及び内周側の略周縁を描くそれぞれ円形の切り筋を形成した。続いて、上記切筋を形成したガラス素板をヒーターで加熱し、中心部に円孔を備えたガラス素板を得た。
(Disc machining process)
A glass base plate having a thickness of 1 mm manufactured by the float process was cut into a square having a predetermined size. This glass base plate was annealed at 400 ° C. for 3 hours, and after cooling, cut lines were formed on the surface of the glass base plate with a glass cutter. Circular streaks each describing the substantially peripheral edge on the outer peripheral side and the inner peripheral side of the region to be the glass substrate for a magnetic disk were formed. Then, the glass base plate in which the said cut line was formed was heated with the heater, and the glass base plate provided with the circular hole in the center part was obtained.
 なお、このフロート法で用いられた溶融ガラス、SiO:60~70質量%、Al:10~18質量%、LiO:2~8質量%、NaO:8~17質量%を含有する組成を有するものを使用した。 The molten glass used in this float process, SiO 2 : 60 to 70% by mass, Al 2 O 3 : 10 to 18% by mass, Li 2 O: 2 to 8% by mass, Na 2 O: 8 to 17% by mass A composition having a composition containing% was used.
 (端面研磨工程)
 続いて、研磨砥粒として酸化セリウム砥粒を含むスラリー(遊離砥粒)を用いて、ブラシ研磨方法により、ガラス素板を回転させながらガラス素板の外周端面および内周端面を研磨した。ここでは、ガラス基板前駆体の外周端面および内周端面の表面粗さがRmaxで0.4μm、Raで0.1μm程度になるまで研磨を行なった。
(End face polishing process)
Subsequently, the outer peripheral end face and the inner peripheral end face of the glass base plate were polished by a brush polishing method using a slurry (free abrasive grains) containing cerium oxide abrasive grains as polishing abrasive grains while rotating the glass base plate. Here, polishing was performed until the surface roughness of the outer peripheral end face and the inner peripheral end face of the glass substrate precursor was about 0.4 μm in Rmax and about 0.1 μm in Ra.
 (両面研削工程)
 次に、両面研削装置により、粒度#400のアルミナ砥粒を用いて、ガラス素板表面の両面をそれぞれ50μmずつ研削した。
(Double-side grinding process)
Next, both sides of the glass base plate surface were ground by 50 μm each using a double-side grinding apparatus using alumina abrasive grains having a grain size of # 400.
 (両面研磨工程)
 次に、両面研磨装置を用いて上記研削工程において残留した傷や歪みを除去した。研磨パッドは硬質発泡ウレタンを用い、研磨液は平均粒径10μmの酸化セリウムを分散させた水を用い、研磨時間は40分とした。
(Double-side polishing process)
Next, scratches and distortions remaining in the grinding process were removed using a double-side polishing apparatus. The polishing pad was made of hard urethane foam, the polishing liquid was water in which cerium oxide having an average particle size of 10 μm was dispersed, and the polishing time was 40 minutes.
 続いて、上記粗研磨工程で使用したものと同じ両面研磨装置を用い、ガラス素板の表面粗さをRmaxで2nm程度以下とする鏡面研磨加工を行った。研磨パッドは軟質ポリシャに交換し、研磨液は平均粒径5μmの酸化セリウムを分散させた水を用い、研磨時間は30分とした。 Subsequently, using the same double-side polishing apparatus as that used in the rough polishing step, mirror polishing was performed so that the surface roughness of the glass base plate was about 2 nm or less in terms of Rmax. The polishing pad was replaced with a soft polisher, and the polishing liquid was water in which cerium oxide having an average particle size of 5 μm was dispersed, and the polishing time was 30 minutes.
 (化学強化工程)
 上記精密研磨工程後のガラス基板に化学強化工程を施した。化学強化液は硝酸カリウムと硝酸ナトリウムの混合したものを用い、この化学強化溶液を400℃に加熱し、ガラスディスクを約30分浸漬することによって、化学強化を行なった。この際、ガラス基板を保持治具毎揺動させながら、化学強化液の深さの0.6倍の距離を10秒かけて深さ方向に移動し、更に化学強化液の深さの2倍の距離を20秒かけて水平方向に移動させことを繰り返した。この化学強化工程において付与される圧縮応力層の厚さを5μmとした。
(Chemical strengthening process)
A chemical strengthening step was performed on the glass substrate after the precision polishing step. The chemical strengthening solution used was a mixture of potassium nitrate and sodium nitrate. The chemical strengthening solution was heated to 400 ° C. and immersed in the glass disk for about 30 minutes for chemical strengthening. At this time, while swinging the glass substrate for each holding jig, the distance of 0.6 times the depth of the chemical strengthening solution is moved in the depth direction over 10 seconds, and further twice the depth of the chemical strengthening solution. The distance was repeatedly moved in the horizontal direction over 20 seconds. The thickness of the compressive stress layer applied in this chemical strengthening step was 5 μm.
 (洗浄工程)
 上記精密研磨工程を終えたガラスディスクを、中性洗剤、純水、純水、IPA、IPA(蒸気乾燥)の各洗浄槽に順次浸漬して、超音波洗浄し、乾燥した。
(Washing process)
The glass disk after the precision polishing step was sequentially immersed in each cleaning bath of neutral detergent, pure water, pure water, IPA, and IPA (steam drying), ultrasonically cleaned, and dried.
 以上のように製造した各HDD用ガラス基板の位相差を測定し、その最大値と、最大値と最小値の差を求めた。結果を表1に示す。なお、上記の工程においては、以下のリードライトエラー率で評価する為に、同一条件で100枚のガラス基板が製造されており、表1における位相差の最大値、最大値と最小値の差はその平均値が記載されている。 The phase difference of each HDD glass substrate manufactured as described above was measured, and the maximum value and the difference between the maximum value and the minimum value were obtained. The results are shown in Table 1. In the above process, in order to evaluate with the following read / write error rate, 100 glass substrates are manufactured under the same conditions. The maximum value of the phase difference in Table 1 and the difference between the maximum value and the minimum value are shown in Table 1. The average value is indicated.
 次いで、各ガラス基板に対して、5℃・50%RH×30分、80℃・90%RH×30分を1サイクルとして、計500サイクルのヒートショック試験を行った。 Next, a total of 500 heat shock tests were performed on each glass substrate, with 5 cycles of 50 ° C./50% RH × 30 minutes and 80 ° C./90% RH × 30 minutes as one cycle.
 以上のようにヒートショック試験後の各ガラス基板に磁性膜を製膜後、ハードディスクに搭載した際にエラーの発生率を求め、その各発生率と位相差の最大値との関係を表1に記した。この際、HDDとしては、片面250GB相当(両面500GB)に相当する記録密度に設定し、リードライトエラーの発生率を求めている。また、実施例1の圧縮応力層の厚さ、ガラス基板の位相差の最大値、最大値と最小値との差、エラー発生率の結果を表1に記した。また、リードライトエラーの発生率は、同一条件で製造された100枚のガラス基板から同一条件で得られた磁気記録媒体を用いて判定を行った。 As described above, after forming a magnetic film on each glass substrate after the heat shock test, the error occurrence rate is obtained when it is mounted on a hard disk, and the relationship between each occurrence rate and the maximum value of the phase difference is shown in Table 1. I wrote. At this time, the HDD is set to a recording density corresponding to 250 GB on one side (500 GB on both sides), and the read / write error occurrence rate is obtained. Table 1 shows the results of the thickness of the compressive stress layer of Example 1, the maximum value of the retardation of the glass substrate, the difference between the maximum value and the minimum value, and the error rate. The occurrence rate of read / write errors was determined using magnetic recording media obtained under the same conditions from 100 glass substrates manufactured under the same conditions.
 上記エラー判定においては、エラー発生率が5%以上の場合は、性能上許容できないものとして×として表す。エラー発生率が5%未満であれば△と表し、エラー発生率が、3%未満であれば○、エラー発生率が1%未満であれば◎とする。 In the above error determination, if the error rate is 5% or more, it is indicated as “x” as an unacceptable performance. If the error rate is less than 5%, it is expressed as Δ, if the error rate is less than 3%, it is indicated as ◯, and if the error rate is less than 1%, it is indicated as ◎.
 〔実施例2〕
 実施例2では、実施例1の化学強化工程において、さらに10分毎に化学強化液からガラス基板を引き揚げ、保持治具ごと水平方向に90度回転させて再浸漬して化学強化を行った以外は同様の方法でガラス基板を製造し、評価を行った。
[Example 2]
In Example 2, in the chemical strengthening step of Example 1, the glass substrate was further lifted from the chemical strengthening solution every 10 minutes, and the holding jig was rotated 90 degrees horizontally and re-immersed to perform chemical strengthening. Manufactured a glass substrate by the same method and evaluated.
 〔実施例3〕
 実施例3では、化学強化処理の時間を65分間に変更した以外は実施例1と同様の方法で、ガラス基板を製造し、評価を行った。この際の圧縮応力層の深さは15μmであった。
Example 3
In Example 3, a glass substrate was produced and evaluated in the same manner as in Example 1 except that the chemical strengthening treatment time was changed to 65 minutes. The depth of the compressive stress layer at this time was 15 μm.
 〔実施例4〕
 実施例4では、化学強化処理の時間を65分間に変更した以外は実施例2と同様の方法で、ガラス基板を製造し、評価を行った。
Example 4
In Example 4, a glass substrate was produced and evaluated in the same manner as in Example 2 except that the chemical strengthening treatment time was changed to 65 minutes.
 〔実施例5〕
 実施例5では、実施例4の化学強化処理工程において、さらに化学強化処理槽に複数の撹拌装置を設け、化学強化液の対流による規則的な流れを発生させず、不規則な流速を発生させる構成とした以外は実施例4と同様の方法でガラス基板を製造し、評価を行った。
Example 5
In Example 5, in the chemical strengthening treatment step of Example 4, a plurality of stirring devices are further provided in the chemical strengthening treatment tank, and a regular flow due to the convection of the chemical strengthening liquid is not generated, and an irregular flow velocity is generated. A glass substrate was produced and evaluated in the same manner as in Example 4 except for the configuration.
 〔比較例1〕
 比較例1では、実施例1の化学強化処理工程において、化学強化工程中はガラス基板は動かさず、化学強化液中の移動も行わなかった以外は、実施例1と同様にガラス基板を製造し、評価を行った。
[Comparative Example 1]
In Comparative Example 1, a glass substrate was manufactured in the same manner as in Example 1 except that the glass substrate was not moved during the chemical strengthening step and moved in the chemical strengthening solution in the chemical strengthening process of Example 1. And evaluated.
 〔比較例2〕
 比較例2では、実施例1の化学強化処理工程において、化学強化工程中はガラス基板は動かさず、化学強化液中の移動も行わなかったが、化学強化槽中に撹拌装置を設けて、一定の流速で化学強化液が循環するようにした以外は実施例1と同様の方法でガラス基板を製造し、評価を行った。
[Comparative Example 2]
In Comparative Example 2, in the chemical strengthening treatment process of Example 1, the glass substrate was not moved during the chemical strengthening process and was not moved in the chemical strengthening liquid. A glass substrate was produced and evaluated in the same manner as in Example 1 except that the chemical strengthening solution was circulated at a flow rate of.
 〔比較例3〕
 比較例3では、化学強化工程中は保持治具を揺動させたが、化学強化液中の移動は行わなかった以外は実施例3と同様の方法でガラス基板を製造し、評価を行った。
[Comparative Example 3]
In Comparative Example 3, the glass substrate was manufactured and evaluated in the same manner as in Example 3 except that the holding jig was swung during the chemical strengthening step, but the movement in the chemical strengthening solution was not performed. .
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、化学強化工程中に、ガラス基板表面で規則的な流速を発生せずに均一な温度条件となるようにしたことで、位相差(リタデーション)の最大値を4nm以下とし、且つ位相差の最大値と最小値の差を0.5nm以下とすることが可能であり、結果として、ヒートショックを施した後においても形状変形が発生せず、非常に記録密度が高い630Gb/平方インチ以上のHDDに用いられた場合においても、リードライトエラーの発生率を抑制できるガラス基板を提供することができることが分かった。 From Table 1, the maximum value of the retardation (retardation) is set to 4 nm or less by making the temperature uniform during the chemical strengthening process without generating a regular flow rate on the glass substrate surface. The difference between the maximum value and the minimum value of the phase difference can be 0.5 nm or less, and as a result, no shape deformation occurs even after the heat shock is applied, and the recording density is very high, 630 Gb / square inch. It has been found that even when used in the above HDD, a glass substrate capable of suppressing the occurrence rate of read / write errors can be provided.
 更に、位相差の最大値を3.0nm未満とし、位相差の最大値と最小値の差を0.4nm未満とすることで、本発明の効果が顕著に得られることがわかる。また、圧縮応力層が10μm以上の場合(例えば15μmの場合)においては、位相差の最大値を3.0nm未満とし、位相差の最大値と最小値の差を0.3nm未満とすることが好ましいことが分かった。 Furthermore, it can be seen that the effect of the present invention can be remarkably obtained by setting the maximum value of the phase difference to less than 3.0 nm and the difference between the maximum value and the minimum value of the phase difference to less than 0.4 nm. When the compressive stress layer is 10 μm or more (for example, 15 μm), the maximum value of the phase difference may be less than 3.0 nm, and the difference between the maximum value and the minimum value of the phase difference may be less than 0.3 nm. It turned out to be preferable.
 一方、比較例1では、化学強化処理中において、ガラス基板表面が対流の影響により規則的な流速に晒され、且つ温度の均一性が十分ではなかったため、位相差の最大値、位相差の最大値と最小値の差が本発明の範囲を超過しており、結果として、リードライトエラーが多発することがわかった。比較例2では、撹拌装置を設けることで温度は比較的均一とすることができた為、位相差の最大値と最小値の差は小さくすることができたが、撹拌により発生した規則的な流れにより位相差の最大値が大きくなり、本発明の範囲を超えており、結果としてヒートショックによる形状変形が発生し、リードライトエラーが多くなり十分な性能は得られなかった。 On the other hand, in Comparative Example 1, during the chemical strengthening treatment, the glass substrate surface was exposed to a regular flow rate due to the influence of convection, and the temperature uniformity was not sufficient. It has been found that the difference between the value and the minimum value exceeds the range of the present invention, and as a result, read / write errors frequently occur. In Comparative Example 2, since the temperature could be made relatively uniform by providing the stirring device, the difference between the maximum value and the minimum value of the phase difference could be reduced. The maximum value of the phase difference is increased by the flow and exceeds the range of the present invention. As a result, shape deformation occurs due to heat shock, read / write errors increase, and sufficient performance cannot be obtained.
 比較例3では、ガラス基板を揺動させることで、ガラス基板表面における規則的な流速の発生をある程度抑制することで、位相差の最大値はある程度低減できたものの、温度条件の均一性が十分ではなかった為、位相差の最大値と最小値の差が本発明の範囲を超えており、結果としてヒートショックによる形状変形が発生し、リードライトエラーが多くなり十分な性能は得られなかった。 In Comparative Example 3, the maximum value of the phase difference can be reduced to some extent by suppressing the generation of regular flow velocity on the glass substrate surface to some extent by swinging the glass substrate, but the uniformity of temperature conditions is sufficient. Therefore, the difference between the maximum value and the minimum value of the phase difference exceeds the range of the present invention. As a result, shape deformation occurs due to heat shock, read / write errors increase, and sufficient performance cannot be obtained. .
 本発明によれば、高密度である面記録密度が630Gb/平方インチ以上のHDD装置に搭載した場合において、過酷な環境下で長時間使用された場合においても形状変化が十分に抑制され、読み取りエラーの発生を抑制できるHDD用ガラス基板が提供される。 According to the present invention, when mounted on an HDD device having a high surface recording density of 630 Gb / square inch or more, the shape change is sufficiently suppressed even when used for a long time in a harsh environment. Provided is a glass substrate for HDD that can suppress the occurrence of errors.

Claims (5)

  1.  面記録密度が630Gb/平方インチ以上のHDD装置に用いられるHDD用ガラス基板であって、
     表層に圧縮応力層を有し、
     前記HDD用ガラス基板の径方向において、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であり、
     前記位相差の最大値と最小値との差が0.5nm未満であることを特徴とするHDD用ガラス基板。
    A glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more,
    Has a compressive stress layer on the surface,
    In the radial direction of the glass substrate for HDD, from the position of 0.5 mm outward from the radial end of the circular hole provided in the central portion of the glass substrate, inward from the outer radial end of the HDD glass substrate The maximum value of the phase difference up to a position of 0.5 mm is less than 4.0 nm,
    A glass substrate for HDD, wherein a difference between a maximum value and a minimum value of the phase difference is less than 0.5 nm.
  2.  前記位相差の最大値が3.0nm未満であり、
     前記位相差の最大値と最小値との差が0.4nm未満であることを特徴とする請求項1に記載のHDD用ガラス基板。
    The maximum value of the phase difference is less than 3.0 nm,
    The HDD glass substrate according to claim 1, wherein a difference between a maximum value and a minimum value of the phase difference is less than 0.4 nm.
  3.  前記圧縮応力層の厚さが10~50μmであり、
     前記位相差の最大値が3.0nm未満であり、
     前記位相差の最大値と最小値との差が0.3nm未満であることを特徴とする請求項1又は2に記載のHDD用ガラス基板。
    The compressive stress layer has a thickness of 10 to 50 μm;
    The maximum value of the phase difference is less than 3.0 nm,
    The glass substrate for HDD according to claim 1 or 2, wherein a difference between the maximum value and the minimum value of the phase difference is less than 0.3 nm.
  4.  面記録密度が630Gb/平方インチ以上であるHDD装置に用いられるHDD用ガラス基板の製造方法であって、
     表層に圧縮応力層を形成する化学強化工程を備え、
     前記化学強化工程を経て得られた前記HDD用ガラス基板は、当該ガラス基板の中央部に設けられた円孔の径端より外方に0.5mmである位置から、前記HDD用ガラス基板の外径端より内方に0.5mmである位置までの位相差の最大値が4.0nm未満であることを特徴とするHDD用ガラス基板の製造方法。
    A method for producing a glass substrate for HDD used in an HDD apparatus having a surface recording density of 630 Gb / square inch or more,
    Provided with a chemical strengthening step to form a compressive stress layer on the surface layer,
    The glass substrate for HDD obtained through the chemical strengthening step is placed on the outside of the glass substrate for HDD from a position that is 0.5 mm outward from the diameter end of the circular hole provided in the central portion of the glass substrate. A method for producing a glass substrate for HDD, wherein the maximum value of the phase difference from the radial end to the position 0.5 mm inward is less than 4.0 nm.
  5.  請求項1~3の何れか1項に記載のHDD用ガラス基板に磁性層を設けることを特徴とするHDD用情報記録媒体の製造方法。 A method for producing an information recording medium for HDD, comprising providing a magnetic layer on the glass substrate for HDD according to any one of claims 1 to 3.
PCT/JP2012/005870 2011-09-28 2012-09-14 Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium WO2013046583A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011212666 2011-09-28
JP2011-212666 2011-09-28

Publications (1)

Publication Number Publication Date
WO2013046583A1 true WO2013046583A1 (en) 2013-04-04

Family

ID=47994672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005870 WO2013046583A1 (en) 2011-09-28 2012-09-14 Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium

Country Status (1)

Country Link
WO (1) WO2013046583A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094785A (en) * 2013-11-08 2015-05-18 旭硝子株式会社 Optical element
JP2016091582A (en) * 2014-11-07 2016-05-23 旭硝子株式会社 Glass substrate for magnetic disk and magnetic disk
JP6015876B1 (en) * 2016-07-05 2016-10-26 旭硝子株式会社 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
US9851827B2 (en) 2014-05-28 2017-12-26 Corning Incorporated Touch-screen assembly with rigid interface between cover sheet and frame
WO2023027140A1 (en) * 2021-08-26 2023-03-02 古河電気工業株式会社 Magnetic disk substrate and method for manufacturing same, and magnetic disk

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190743A (en) * 1987-01-30 1988-08-08 Ohara Inc Treatment of ion exchange of molded glass form
JP2003146705A (en) * 2001-11-09 2003-05-21 Nippon Sheet Glass Co Ltd Method for chemically strengthened glass substrate for information recording medium
JP2007012247A (en) * 2005-06-03 2007-01-18 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2010118090A (en) * 2008-11-11 2010-05-27 Konica Minolta Opto Inc Holding tool, method of manufacturing glass substrate for recording medium, and method of manufacturing recording medium
JP2011181123A (en) * 2010-02-26 2011-09-15 Fuji Electric Device Technology Co Ltd Method of manufacturing magnetic recording medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63190743A (en) * 1987-01-30 1988-08-08 Ohara Inc Treatment of ion exchange of molded glass form
JP2003146705A (en) * 2001-11-09 2003-05-21 Nippon Sheet Glass Co Ltd Method for chemically strengthened glass substrate for information recording medium
JP2007012247A (en) * 2005-06-03 2007-01-18 Hoya Corp Method of manufacturing glass substrate for magnetic disk and method of manufacturing magnetic disk
JP2010118090A (en) * 2008-11-11 2010-05-27 Konica Minolta Opto Inc Holding tool, method of manufacturing glass substrate for recording medium, and method of manufacturing recording medium
JP2011181123A (en) * 2010-02-26 2011-09-15 Fuji Electric Device Technology Co Ltd Method of manufacturing magnetic recording medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015094785A (en) * 2013-11-08 2015-05-18 旭硝子株式会社 Optical element
US9851827B2 (en) 2014-05-28 2017-12-26 Corning Incorporated Touch-screen assembly with rigid interface between cover sheet and frame
US10095344B2 (en) 2014-05-28 2018-10-09 Corning Incorporated Touch-screen assembly with rigid interface between cover sheet and frame
JP2016091582A (en) * 2014-11-07 2016-05-23 旭硝子株式会社 Glass substrate for magnetic disk and magnetic disk
JP6015876B1 (en) * 2016-07-05 2016-10-26 旭硝子株式会社 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
WO2018008161A1 (en) * 2016-07-05 2018-01-11 旭硝子株式会社 Glass substrate for magnetic recording medium and method for manufacturing magnetic recording medium
WO2023027140A1 (en) * 2021-08-26 2023-03-02 古河電気工業株式会社 Magnetic disk substrate and method for manufacturing same, and magnetic disk

Similar Documents

Publication Publication Date Title
US9012047B2 (en) Substrate for magnetic disk and magnetic disk
JP5860195B1 (en) Glass substrate for magnetic disk
JP2011000704A (en) Method of manufacturing glass substrate for magnetic disk, and method for manufacturing the magnetic disk
WO2013046583A1 (en) Hdd glass substrate, production method for hdd glass substrate, and production method for hdd information recording medium
JP6577501B2 (en) Glass substrate for magnetic disk, magnetic disk, glass substrate intermediate, and method for producing glass substrate for magnetic disk
JP5661950B2 (en) Manufacturing method of glass substrate for magnetic disk
US20100081013A1 (en) Magnetic disk substrate and magnetic disk
JP5905765B2 (en) Method for producing plate glass material for magnetic disk, method for producing glass substrate for magnetic disk
JP5339010B1 (en) Manufacturing method of glass substrate for HDD
JP2014188668A (en) Method of manufacturing glass substrate
JP5755952B2 (en) Inspection and sorting method for HDD glass substrate, manufacturing method of HDD information recording medium, and HDD glass substrate
WO2013001722A1 (en) Method for producing hdd glass substrate
JP5671148B2 (en) Manufacturing method of HDD glass blanks and manufacturing method of HDD glass substrate
WO2012090755A1 (en) Method for producing glass substrate for recording medium
JP5859757B2 (en) Manufacturing method of glass substrate for HDD
JP4484162B2 (en) Glass substrate for magnetic disk, magnetic disk, and method for manufacturing glass substrate for magnetic disk
JP5036323B2 (en) Method for manufacturing glass substrate for magnetic disk, method for manufacturing magnetic disk, and glass substrate holder
US20130192304A1 (en) Manufacturing Method for Glass Substrate for Information Recording Medium
JP5722618B2 (en) Method for manufacturing glass substrate for magnetic information recording medium
JP6209615B2 (en) Glass substrate for magnetic disk, method for manufacturing glass substrate for magnetic disk, and magnetic disk
JP5719030B2 (en) Polishing pad and glass substrate manufacturing method using the polishing pad
WO2013099083A1 (en) Method for manufacturing glass substrate for hdd
JP2013077353A (en) Glass substrate for hdd and method of manufacturing the glass substrate for hdd
WO2012090597A1 (en) Method for producing glass substrate for recording medium
WO2014103982A1 (en) Method for manufacturing glass substrate for information recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12836306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12836306

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP