WO2013045849A1 - Composant electronique de puissance bobine comportant un support de drainage thermique - Google Patents

Composant electronique de puissance bobine comportant un support de drainage thermique Download PDF

Info

Publication number
WO2013045849A1
WO2013045849A1 PCT/FR2012/052190 FR2012052190W WO2013045849A1 WO 2013045849 A1 WO2013045849 A1 WO 2013045849A1 FR 2012052190 W FR2012052190 W FR 2012052190W WO 2013045849 A1 WO2013045849 A1 WO 2013045849A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
turns
wound
magnetic core
base
Prior art date
Application number
PCT/FR2012/052190
Other languages
English (en)
Inventor
Nicolas DELALANDRE
Alain Guerber
Jacques SALAT
Jean-Jacques Simon
Original Assignee
Hispano Suiza
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hispano Suiza filed Critical Hispano Suiza
Priority to CN201280046395.8A priority Critical patent/CN103827994A/zh
Priority to RU2014111157/07A priority patent/RU2014111157A/ru
Priority to EP12775778.9A priority patent/EP2761631A1/fr
Priority to CA2849048A priority patent/CA2849048A1/fr
Priority to US14/345,546 priority patent/US20150042432A1/en
Priority to BR112014006072A priority patent/BR112014006072A2/pt
Publication of WO2013045849A1 publication Critical patent/WO2013045849A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/22Cooling by heat conduction through solid or powdered fillings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/06Mounting, supporting or suspending transformers, reactors or choke coils not being of the signal type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00

Definitions

  • the present invention relates to the field of thermal regulation of electronic power components for an aeronautical application.
  • An aircraft conventionally comprises a large number of electronic power components, in particular, for the actuation of flight controls or the filtering of electrical signals.
  • the power electronic components for aeronautical applications are adapted to develop powers of the order of several tens of kilowatts.
  • the electronic power components are used transiently for periods of the order of a few seconds which generates a small amount of heat Joule effect; this heat is absorbed by the mass of the electronic component.
  • the temperature of the electronic power component increases only slightly which does not affect its operation.
  • a wound-up electronic power component 1 hereinafter referred to as the wound component 1
  • the wound component 1 comprises a toroidal-shaped magnetic core 1 1, hereinafter designated torus 1 1, around which metal turns 12 are wound, preferably copper.
  • torus 1 a toroidal-shaped magnetic core 1 1, hereinafter designated torus 1 1, around which metal turns 12 are wound, preferably copper.
  • the magnetic properties of the torus January 1 are degraded and the operation of the wound component 1 is no longer optimal.
  • the wound component 1 conventionally comprises fastening lugs 13 connecting turns 12 of the wound component 1 to a base 2 on which the wound component 1 is mounted.
  • the temperature of the base 2 is lower than that of the wound component 1 during its operation.
  • the base 2 forms, from a thermal point of view, a cold source.
  • the core 1 1 and the turns 12 of the coiled component 1 heat up.
  • only the turns 12 are in contact with the fastening tabs 13, which makes it possible to drain the calories of the turns 12 into the base 2.
  • the calories generated by the Joule effect in the torus 1 1 are not drained satisfactorily. Indeed, to drain the calories torus 1 1 in the fastening lugs 13, they must flow through the turns 12.
  • a first solution consists in increasing the diameter of the wound component in order to limit losses by Joule effect. Such a solution increases the mass and bulk of the wound component and is undesirable.
  • a second solution is to use a rotating fan to generate a flow of air to cool the wound component. The integration of a rotating fan in an aeronautical application has drawbacks in terms of reliability. This solution is also excluded.
  • a third solution would be to use resins, for example of the epoxy type, in which the wound components would be embedded. In practice, such resins do not sufficiently limit heating of a wound component.
  • the object of the invention is to form a wound electronic power component whose operating temperature is regulated while ensuring a mechanical strength compatible with an aeronautical application in which the component is subjected to vibrations, accelerations and at outside temperatures. varying between -50 ° C and +1 10 ° C.
  • Another object of the invention is to form coiled components of reduced mass and size.
  • the invention relates to a wound power electronic component intended to be mounted on a base, the component comprising an axially extending magnetic core, on which is wound a plurality of turns so as to form a magnetic coil, and at least one mounting bracket to said base, the mounting bracket having a first drainage surface in thermal contact with the magnetic core and a second drainage surface in thermal contact with the plurality of turns so as to drain the core calories. magnetic and the plurality of turns to the base during operation of the component.
  • the thermal drainage surfaces of the mounting bracket directly drain the calories of the magnetic core and turns which improves the thermal regulation of the electronic power component.
  • the presence of drainage surfaces does not increase the mass nor the size of the wound electronic power component.
  • the heat generated by the magnetic core does not circulate in the turns but is directly drained by the mounting bracket.
  • the first drainage surface is substantially equal to the axial section of the magnetic core.
  • thermal drainage capacity large drainage area
  • mass and bulk reduced drainage area
  • the turns are wound on the magnetic core and the fixing support which makes it possible to put the fixing support in contact with the turns and the magnetic core.
  • the winding of the turns advantageously makes it possible to hold the fixing support together with the magnetic core.
  • the second drainage surface is at least partially curved so as to limit the risk of injury of the turns wound on the mounting bracket.
  • the fixing support comprises an axially extending thermal contact ring, the first and second transverse faces of the ring respectively forming the first drainage surface and a portion of the second drainage surface.
  • one face of the ring is in contact with a transverse face of the magnetic core while the other face of the ring is in contact with the turns.
  • the thermal contact ring has an axial surface connected to the second transverse face by a rounded edge.
  • a rounded edge makes it possible to limit the risk of injury of the turns which are wound on the second transverse face and the axial surfaces of the ring which together form the second drainage surface.
  • a rounded stop also called leave, improves the contact between the turns and the second drainage surface.
  • a thermal interface preferably a thermal grease, is placed between the first drainage surface and the magnetic core. Such a thermal interface makes it possible to improve the capacity of drainage of the calories of the magnetic core.
  • the attachment support is attached to one end of the magnetic core. Fixing at one end of the magnetic core does not affect the magnetic performance of the core.
  • the mounting bracket has at least one bracket to the base.
  • the fixing lug makes it possible, on the one hand, to drive the heat taken up by the drainage surfaces towards the base and, on the other hand, to withstand the mechanical stresses associated with the operation of the aircraft on which the component is fixed. .
  • the component having two mounting brackets the mounting brackets are attached to the ends of the magnetic core.
  • the presence of two supports makes it possible to effectively secure the wound component in an environment subject to vibrations and accelerations while limiting its mass and its size.
  • the fixing support is non-magnetic so as not to heat up by induction.
  • the fixing support has an equivalent thermal conductivity greater than 400 Wm ⁇ .K ⁇ 1 , preferably greater than 600 Wm " .K " 1 .
  • the value of the thermal conductivity is defined according to the main direction of the fixing support so as to drive the calories from the hot source to the cold source.
  • an equivalent high thermal conductivity attachment support effectively drain the calories of the wound component while allowing for vibration resistance.
  • the thermal conductivity of the material of the single element corresponds to the equivalent thermal conductivity.
  • the fixing support comprises several elements (for example a fixing lug and a thermal drainage device), the equivalent thermal conductivity corresponds to the thermal conductivity of all of said elements.
  • the fixing support consists of a composite material.
  • Such a material has the advantage of being passive and has a high resistance to vibrations.
  • the composite material is loaded with particles of high thermal conductivity chosen from: carbon nanotubes, carbon fibers, diamond particles and graphite particles.
  • Such materials exhibit high thermal conductivities and are compatible for aeronautical application in which the coiled component is subjected to vibrations, accelerations and external temperatures ranging from -50 ° C to +110 ° C.
  • the fixing support comprises a two-phase thermal drainage device so as to increase the thermal conductivity and thus boost the drainage of calories.
  • the two-phase thermal drainage device is a heat pipe.
  • the two-phase thermal drainage device is an oscillating heat pipe.
  • the two-phase thermal drainage device is a known vapor chamber or "vapor chamber”.
  • the fixing support having at least one attachment lug to the base
  • the two-phase thermal drain device is mounted on the bracket or integrated in said bracket.
  • Figure 1 is a sectional representation of a power electronic component wound according to the prior art (already commented);
  • Figure 2 is a schematic representation of an electronic power component wound according to the invention in a horizontal position, only a few turns being shown;
  • FIG. 3 is a representation in axial section of the wound power electronic component of FIG. 2;
  • Figure 4 is a schematic representation of an electronic power component wound according to the invention in a vertical position, only a few turns being shown.
  • FIG. 2 represents a first embodiment of a wound electronic power component 3 according to the invention for an aeronautical application in which the wound component 3 is subjected to vibrations, accelerations and at external temperatures varying between -50.degree. C and +1 10 ° C.
  • the wound component 3 comprises a toroid-shaped magnetic core 31, hereinafter torus 31, on which is wound a plurality of turns 32 so as to form a coil.
  • the torus 31 is in the form of a longitudinal cylinder of axis X and circular section.
  • the core 31 is made of a magnetic material such as ferrite.
  • a plurality of turns 32 preferably of copper, is wound in a conventional manner around the torus 31 so as to form a magnetic coil as shown in FIG. 2.
  • Such a coil is adapted to generate currents by induction in order to achieve, by for example, operations for filtering electrical signals.
  • the wound component 3 is mounted to a structural base 2 that performs a cold source function, the latter being preferably secured to the aircraft.
  • the base 2 is a horizontal flat plate, but it goes without saying that the base 2 can be in various forms.
  • the axis X of the torus 31 of the wound component 3 extends horizontally with respect to the base 2. It is said that the wound component 3 is mounted in horizontal position on the base 2.
  • the wound component 3 comprises two identical fixing brackets 4 and mounted at the lateral ends of the torus 31 of the wound component 3 as shown in FIGS. 2 and 3 in order to be able to hold it securely when the latter is subjected to vibrations and accelerations.
  • Each fixing support 4 comprises a circular ring 41 extending axially along the axis X and having a first drainage surface S1 in thermal contact with the torus 31 and a second drainage surface S2 in thermal contact with the plurality of turns 32. so as to drain in parallel the calories of the torus 31 and the plurality of turns 32 towards the base 2.
  • Each fixing support 4 further comprises a fixing lug 42 secured to the circular ring 41, which is adapted to be mounted on the base 2.
  • the dimensions of the fixing lug 42 are determined to ensure the mechanical strength of the wound component 3 in case of vibrations and accelerations.
  • the mounting bracket 4 is in the form of a single piece to improve the thermal drainage but it goes without saying that the mounting bracket 4 could be modular.
  • the fixing support 4 consists of a non-magnetic material, preferably aluminum, so as not to disturb the induction phenomena between the turns 32 and the core 31.
  • the car -Heating generated by induction is negligible for a non-magnetic material.
  • Aluminum advantageously has a high thermal conductivity as well as a density compatible with an aeronautical application.
  • the fixing support 4 is made of a material whose thermal conductivity can be greater than 600 Wm " .K " 1 in order to effectively regulate the temperature of the wound component 3 while allowing to withstand vibration.
  • the fixing support is non-magnetic in order to limit heating of the support by magnetic induction.
  • the fixing support consists of a composite material loaded with particles of high thermal conductivity chosen from: diamond particles, carbon nanotubes, carbon fibers and graphite particles. The choice of particles results from a compromise between their thermal conductivity and their price, the latter being a function of their thermal conductivity.
  • Such a composite material is passive and thus has a high resistance to vibrations.
  • a two-phase thermal drainage device is mounted on the mounting bracket and allows, due to the phase change, to achieve equivalent thermal conductivities of the order of 5000 Wm ".K" 1 thereby regulate optimally the temperature of the wound component 3.
  • the two-phase thermal drainage device is a heat pipe whose operation is controlled, which ensures high reliability, and the cost is low.
  • the heat pipe is connected on the one hand to the fixing lug 42 and on the other hand to the base 2.
  • the two-phase thermal drain device is an oscillating heat pipe known as the "Pulsating Heat Pipe”, which has higher performance and cost, or a steam chamber, more known as the “vapor chamber”, which performs better than a heat pipe for configurations in which the ratios of the cold source / hot source surfaces are high, the cost of a steam chamber being higher than that of a heat pipe. of a heat pipe.
  • the Pulsating Heat Pipe which has higher performance and cost
  • a steam chamber more known as the "vapor chamber”
  • the cost of a steam chamber being higher than that of a heat pipe. of a heat pipe.
  • the circular ring 41 has a first transverse surface, forming the first drainage surface S1, which is in contact with a lateral surface of the torus 31.
  • the calories accumulated by the torus 31 during its operation are transmitted directly to the fixing support 4 via the first transverse surface of the circular ring 41.
  • the circular ring 41 has an axial section substantially equal to that of the torus 31. It goes without saying that the section of the circular ring 41 could also be smaller than that of the core 31.
  • the thickness of the ring 41 is defined to allow effective thermal drainage while limiting the mass of the wound component 3. A ring thickness 41 of the order of 2 to 3 mm ensures a good compromise.
  • the circular ring 41 has a second transverse face, opposite to the first transverse face, the two transverse faces of the ring 41 state connected by an inner axial surface SI and by an outer axial surface SE as represented in FIG. with reference to FIG. 2, the torus 31 and the circular rings 41 of the fixing supports 4 form an axial cylinder on which the turns 32 are wound as shown in FIGS. 2 and 3, the turns 32 being, on the one hand, in contact with the axial surfaces of the torus 31 and, secondly, with the second transverse surface and the axial surfaces SI, SE of the circular rings 41 to drain the calories of the turns 32.
  • the second transverse surface and the inner axial surfaces SI and outer SE together form the second thermal drainage surface S2 of each fixing support 4.
  • the second transverse surface of the The ring 41 is connected to the inner axial surface S1 by an inner edge 61 and to the outer axial surface SE by an outer edge 62.
  • the edges 61, 62 are rounded so as to limit the risk of wounding the turns. 32 when wound around the rings 41. It goes without saying that only one of the edges 61, 62 could be rounded.
  • the second drainage surface S2, bringing the fixing support 4 into contact with the turns 32 is curved so as to limit the risk of wounding the turns 32 and to improve the thermal contact between the fixing support 4 and the turns 32.
  • the fixing lug 42 of the fixing support 4 preferably comprises securing means to the base 2, preferably fixing holes 5 adapted to receive fastening screws to the base 2 as shown in FIG. 2
  • the torus 31 and the rings 41 of the fixing supports 4 are held together by the winding of the turns 32.
  • the fixing brackets 4 comprise holding means (not shown) adapted to hold together the torus 31 and the two fixing brackets 4 in order to allow the windings 32 to be wound around the torus 31 and the rings 41 of the fixing supports 4.
  • a longitudinal threaded rod is screwed between the two fixing supports 4 for adjust the axial distance separating them, which makes it possible to retain the torus 31 and the winding of the turns 32.
  • a fastening tab 42 has a longitudinal thread 6 for allow the screwing of a threaded rod.
  • each mounting bracket 4 has a bracket 42 but it goes without saying that it could include several.
  • the mounting bracket 4 could contain a bracket 42 connected to a cold source other than the base 2.
  • a bracket 42 could include fins to improve the heat transfer with Ambiant air.
  • a thermal interface preferably a thermal grease of the Berquist Gap Filler 1500 type, is placed between the first drainage surface S1 (in this example, the first transverse face of the ring 41) and the torus 31 to improve the thermal drainage of the torus 31 to the ring 41.
  • the torus 31 conventionally has a surface condition which is not satisfactory to allow a homogeneous pressure with the fixing support 4.
  • the addition of a thermal interface makes it possible to improve the surface state of the torus 31 which ensures efficient thermal drainage.
  • a thermal interface may be applied between the bracket 42 and the base 2 to facilitate the transfer of calories to the base 2.
  • the fixing brackets 4 are mounted at the ends of the magnetic ring 31 of toric shape, the first transverse face of each ring 41 coming into contact with a transverse end face of the core 31.
  • a Thermal grease is applied to the interface.
  • a copper wire is wound on the cylindrical assembly formed by the rings 41 and the torus 31 so as to form turns 32.
  • the wound component 3 is fixed to the base 2 by screwing its fixing feet 42 via the orifices 5.
  • the turns 32 are connected to other power electronic components in order to implement, for example, a filtering operation for a power converter.
  • the wound component 3 can be impregnated with resin.
  • FIG. 4 A second embodiment of a wound component 3 'according to the invention is shown in FIG. 4.
  • the wound component 3' comprises a toroidal magnetic core 31 'on which are wound coils 32 '.
  • the axis X of the core 31' extends orthogonally to the base 2 as shown in FIG. 4. It is said that the wound component 3 'is mounted in a vertical position on the base 2.
  • the wound component 3 has two mounting brackets 8, 9 which are different.
  • the wound component 3 comprises an upper fixing support 8 comprising a circular ring 81, similar to the ring of the first embodiment, as well as two upper attachment tabs 82 connecting the ring 81 to the base 2 which are diametrically opposite.
  • the wound component 3 'furthermore comprises a lower fixing support 9 comprising a circular ring 91, similar to the ring of the first embodiment, as well as two lower fixing tabs 92 connecting the ring 91 to the base 2
  • the upper fastening tabs 82 are, in this example, bent to allow the base 2 to be connected without disturbing the winding of the turns 32.
  • the lower fastening tabs 92 are, in this example, only bearing on the base 2 and do not comprise fastening means, the fixing of the upper fastening tabs 82 ensuring the maintenance of the wound component on the base 2.
  • a wound component 3, 3 'according to the invention can be mounted vertically or horizontally on a base 2 which is very advantageous in terms of space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Transformer Cooling (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

Un composant électronique de puissance bobiné (3) destiné à être monté sur une embase (2), le composant (3) comportant un noyau magnétique (31) s'étendant axialement sur lequel est enroulée une pluralité de spires (32), de manière à former une bobine magnétique, et au moins un support de fixation (4) à ladite embase (2), le support de fixation (4) comportant une première surface de drainage (S1) en contact thermique avec le noyau magnétique (31) et une deuxième surface de drainage (S2) en contact thermique avec la pluralité de spires (32) de manière à drainer les calories du noyau magnétique (31) et de la pluralité de spires (32) vers l'embase (2) lors du fonctionnement du composant (3).

Description

COMPOSANT ELECTRONIQUE DE PUISSANCE BOBINE COMPORTANT UN SUPPORT DE
DRAINAGE THERMIQUE La présente invention concerne le domaine de la régulation thermique de composants électroniques de puissance destinés à une application aéronautique.
Un aéronef comporte de manière classique un grand nombre de composants électroniques de puissance, en particulier, pour l'actionnement de commandes de vol ou le filtrage de signaux électriques. Les composants électroniques de puissance pour des applications aéronautiques sont adaptés pour développer des puissances de l'ordre de plusieurs dizaines de kilowatts. Traditionnellement, les composants électroniques de puissance sont utilisés de manière transitoire pendant des durées de l'ordre de quelques secondes ce qui génère une faible quantité de chaleur par effet Joule ; cette chaleur est absorbée par la masse du composant électronique. La température du composant électronique de puissance n'augmente que faiblement ce qui ne porte pas préjudice à son fonctionnement.
Afin de répondre à de nouveaux besoins des avionneurs, il a été proposé d'utiliser les composants électroniques de puissance de manière permanente pendant des durées de l'ordre de quelques minutes. En pratique, après quelques minutes d'utilisation, la température du composant électronique de puissance commence à s'élever jusqu'à atteindre une température limite à partir de laquelle le fonctionnement du composant électronique n'est plus optimal.
Parmi les composants électroniques de puissance, les composants électroniques bobinés, utilisés en particulier pour le filtrage de signaux, sont affectés par l'élévation de température. En référence à la figure 1 , un composant électronique de puissance bobiné 1 , désigné par la suite composant bobiné 1 , comporte un noyau magnétique 1 1 de forme torique, désigné par la suite tore 1 1 , autour duquel sont enroulées des spires métalliques 12, de préférence en cuivre. En pratique, à partir de 1 10°C, les propriétés magnétiques du tore 1 1 sont dégradées et le fonctionnement du composant bobiné 1 n'est plus optimal.
Le composant bobiné 1 comporte classiquement des pattes de fixation 13 reliant des spires 12 du composant bobiné 1 à une embase 2 sur lequel est monté le composant bobiné 1. La température de l'embase 2 est plus faible que celle du composant bobiné 1 lors de son fonctionnement. L'embase 2 forme, d'un point de vue thermique, une source froide. En fonctionnement, le tore 1 1 et les spires 12 du composant bobiné 1 s'échauffent. Comme représenté sur la figure 1 , seules les spires 12 sont en contact avec les pattes de fixation 13 ce qui permet de drainer les calories des spires 12 dans l'embase 2. Au contraire, les calories générées par effet Joule dans le tore 1 1 ne sont pas drainées de manière satisfaisante. En effet, pour drainer les calories du tore 1 1 dans les pattes de fixation 13, celles-ci doivent circuler par les spires 12. La résistance thermique induite par cet assemblage est très élevée. La température du composant bobiné 1 demeure alors élevée ce qui empêche son fonctionnement optimal. Pour éliminer ces inconvénients, une première solution consiste à augmenter le diamètre du composant bobiné afin de limiter les pertes par effet Joule. Une telle solution augmente la masse et l'encombrement du composant bobiné et n'est pas souhaitable. Une deuxième solution consiste à utiliser un ventilateur tournant pour générer un flux d'air pour refroidir le composant bobiné. L'intégration d'un ventilateur tournant dans une application aéronautique présente des inconvénients sur le plan de la fiabilité. Cette solution est donc également exclue. Une troisième solution serait de recourir à des résines, par exemple du type époxy, dans lesquelles seraient noyés les composants bobinés. En pratique, de telles résines ne permettent pas de limiter de manière suffisante réchauffement d'un composant bobiné.
Le but de l'invention est de former un composant électronique de puissance bobiné dont la température en fonctionnement est régulée tout en assurant une tenue mécanique compatible avec une application aéronautique dans laquelle le composant est soumis à des vibrations, des accélérations et à des températures extérieures variant entre -50°C et +1 10°C. Un autre but de l'invention est de former des composants bobinés de masse et d'encombrement réduits.
A cet effet, l'invention concerne un composant électronique de puissance bobiné destiné à être monté sur une embase, le composant comportant un noyau magnétique, s'étendant axialement, sur lequel est enroulée une pluralité de spires de manière à former une bobine magnétique, et au moins un support de fixation à ladite embase, le support de fixation comportant une première surface de drainage en contact thermique avec le noyau magnétique et une deuxième surface de drainage en contact thermique avec la pluralité de spires de manière à drainer les calories du noyau magnétique et de la pluralité de spires vers l'embase lors du fonctionnement du composant.
Les surfaces de drainage thermique du support de fixation permettent de drainer directement les calories du noyau magnétique et des spires ce qui améliore la régulation thermique du composant électronique de puissance. De manière avantageuse, la présence de surfaces de drainage n'augmente pas la masse ni l'encombrement du composant électronique de puissance bobiné. Ainsi, la chaleur générée par le noyau magnétique ne circule pas dans les spires mais est directement drainée par le support de fixation.
De préférence, la première surface de drainage est sensiblement égale à la section axiale du noyau magnétique. Ainsi, on assure un compromis entre la capacité de drainage thermique (surface large de drainage) et une limitation de la masse et de l'encombrement (surface réduite de drainage).
De manière préférée, les spires sont enroulées sur le noyau magnétique et le support de fixation ce qui permet de mettre en contact le support de fixation avec les spires et le noyau magnétique. En outre, l'enroulement des spires permet avantageusement de maintenir ensemble le support de fixation avec le noyau magnétique.
De préférence encore, la deuxième surface de drainage est au moins partiellement incurvée de manière à limiter le risque de blessure des spires enroulées sur le support de fixation.
Selon un aspect de l'invention, le support de fixation comporte un anneau de contact thermique s'étendant axialement, les première et deuxième faces transversales de l'anneau formant respectivement la première surface de drainage et une partie de la deuxième surface de drainage. Ainsi, une face de l'anneau est en contact avec une face transversale du noyau magnétique tandis que l'autre face de l'anneau est en contact avec les spires.
De manière préférée, l'anneau de contact thermique comporte une surface axiale reliée à la deuxième face transversale par une arête arrondie. Une arête arrondie permet de limiter le risque de blessure des spires qui sont enroulées sur la deuxième face transversale et les surfaces axiales de l'anneau qui forment ensemble la deuxième surface de drainage. En outre, une arrête arrondie, appelée également congé, permet d'améliorer le contact entre les spires et la deuxième surface de drainage. Selon un autre aspect de l'invention, une interface thermique, de préférence une graisse thermique, est placée entre la première surface de drainage et le noyau magnétique. Une telle interface thermique permet d'améliorer la capacité de drainage des calories du noyau magnétique.
De préférence, le support de fixation est fixé à une extrémité du noyau magnétique. La fixation à une extrémité du noyau magnétique permet de ne pas affecter les performances magnétiques du noyau.
De préférence toujours, le support de fixation comporte au moins une patte de fixation à l'embase. La patte de fixation permet, d'une part, de conduire les calories prélevées par les surfaces de drainage vers l'embase et, d'autre part, de résister aux sollicitations mécaniques liées au fonctionnement de l'aéronef sur lequel est fixé le composant.
De préférence encore, le composant comportant deux supports de fixation, les supports de fixation sont fixés aux extrémités du noyau magnétique. La présence de deux supports permet de sécuriser de manière efficace le composant bobiné dans un environnement soumis à des vibrations et des accélérations tout en limitant sa masse et son encombrement.
Selon un aspect de l'invention, le support de fixation est amagnétique de manière à ne pas s'échauffer par induction. De manière préférée, le support de fixation possède une conductivité thermique équivalente supérieure à 400 W.m~ .K~1 , de préférence, supérieure à 600 W.m" .K"1.
La valeur de la conductivité thermique est définie selon la direction principale du support de fixation de manière à conduire les calories de la source chaude vers la source froide.
Un support de fixation de forte conductivité thermique équivalente permet de drainer de manière efficace les calories du composant bobiné tout en permettant de résister aux vibrations. Lorsque le support de fixation est constitué uniquement d'un élément, la conductivité thermique du matériau de l'unique élément correspond à la conductivité thermique équivalente. Lorsque le support de fixation comporte plusieurs éléments (par exemple une patte de fixation et un dispositif de drainage thermique), la conductivité thermique équivalente correspond à la conductivité thermique de l'ensemble desdits éléments. De préférence encore, le support de fixation est constitué d'un matériau composite. Un tel matériau présente l'avantage d'être passif et présente une grande résistance aux vibrations. Par ailleurs, il est possible d'obtenir un support de fixation de forme choisie, un matériau composite pouvant être facilement travaillé. De préférence, le matériau composite est chargé en particules à haute conductivité thermique choisies parmi : des nanotubes de carbone, des fibres de carbone, des particules de diamant et des particules de graphite. De tels matériaux présentent des hautes conductivités thermiques et sont compatibles pour une application aéronautique dans laquelle le composant bobiné est soumis à des vibrations, des accélérations et à des températures extérieures variant entre -50°C et +1 10°C.
De préférence encore, le support de fixation comporte un dispositif de drainage thermique diphasique de manière à augmenter la conductivité thermique et ainsi doper le drainage de calories.
De préférence, le dispositif de drainage thermique diphasique est un caloduc.
Selon un premier aspect de l'invention, le dispositif de drainage thermique diphasique est un caloduc oscillant.
Selon un autre aspect de l'invention, le dispositif de drainage thermique diphasique est une chambre de vapeur connue ou « vapor chamber ». De préférence, le support de fixation comportant au moins une patte de fixation à l'embase, le dispositif de drainage thermique diphasique est monté sur la patte de fixation ou intégré à ladite patte de fixation. L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et se référant aux dessins annexés sur lesquels :
la figure 1 est une représentation en coupe d'un composant électronique de puissance bobiné selon l'art antérieur (déjà commenté) ;
la figure 2 est une représentation schématique d'un composant électronique de puissance bobiné selon l'invention en position horizontale, seules quelques spires étant représentées ;
la figure 3 est une représentation en coupe axiale du composant électronique de puissance bobiné de la figure 2 ; et
la figure 4 est une représentation schématique d'un composant électronique de puissance bobiné selon l'invention en position verticale, seules quelques spires étant représentées.
Il faut noter que les figures exposent l'invention de manière détaillée pour mettre en œuvre l'invention, lesdites figures pouvant bien entendu servir à mieux définir l'invention le cas échéant. La figure 2 représente une première forme de réalisation d'un composant électronique de puissance bobiné 3 selon l'invention pour une application aéronautique dans laquelle le composant bobiné 3 est soumis à des vibrations, des accélérations et à des températures extérieures variant entre -50°C et +1 10°C. Le composant bobiné 3 comporte un noyau magnétique 31 de forme torique, appelé par la suite tore 31 , sur lequel est enroulée une pluralité de spires 32 de manière à former une bobine. Dans cet exemple, le tore 31 se présente sous la forme d'un cylindre longitudinal d'axe X et de section circulaire. Le tore 31 est constitué d'un matériau magnétique tel que de la ferrite. Une pluralité de spires 32, de préférence en cuivre, est enroulée de manière classique autour du tore 31 de manière à former une bobine magnétique comme représenté sur la figure 2. Une telle bobine est adaptée pour générer des courants par induction afin de réaliser, par exemple, des opérations de filtrage de signaux électriques.
Le composant bobiné 3 est monté à une embase structurale 2 remplissant une fonction de source froide, cette dernière étant de préférence solidaire de l'aéronef. En référence aux figures 2 à 3, l'embase 2 est une plaque plane horizontale mais il va de soi que l'embase 2 peut se présenter sous diverses formes. En référence aux figures 2 et 3, dans cette première forme de réalisation de l'invention, l'axe X du tore 31 du composant bobiné 3 s'étend horizontalement par rapport à l'embase 2. On dit que le composant bobiné 3 est monté en position horizontale sur l'embase 2. Dans cet exemple, le composant bobiné 3 comporte deux supports de fixation 4 identique et montés aux extrémités latérales du tore 31 du composant bobiné 3 comme représenté sur les figures 2 et 3 afin de pouvoir le maintenir de manière sécurisée lorsque celui-ci est soumis à des vibrations et des accélérations.
Chaque support de fixation 4 comporte un anneau circulaire 41 s'étendant axialement selon l'axe X et comportant une première surface de drainage S1 en contact thermique avec le tore 31 et une deuxième surface de drainage S2 en contact thermique avec la pluralité de spires 32 de manière à drainer en parallèle les calories du tore 31 et de la pluralité de spires 32 vers l'embase 2.
Chaque support de fixation 4 comporte en outre une patte de fixation 42, solidaire de l'anneau circulaire 41 , qui est adaptée pour être montée à l'embase 2. Les dimensions de la patte de fixation 42 sont déterminées pour assurer la tenue mécanique du composant bobiné 3 en cas de vibrations et d'accélérations. Dans cet exemple, le support de fixation 4 se présente sous la forme d'une pièce monobloc afin d'améliorer le drainage thermique mais il va de soi que le support de fixation 4 pourrait être modulaire.
De manière préférée, le support de fixation 4 est constitué en un matériau amagnétique, de préférence, de l'aluminium, afin de ne pas perturber les phénomènes d'induction entre les spires 32 et le tore 31. De manière avantageuse, l'auto-échauffement généré par induction est négligeable pour un matériau amagnétique. L'aluminium présente avantageusement une conductivité thermique élevée ainsi qu'une densité compatible à une application aéronautique.
De manière plus générale, le support de fixation 4 est constitué en un matériau dont la conductivité thermique peut être supérieure à 600 W.m" .K"1 afin de permettre de réguler de manière efficace la température du composant bobiné 3 tout en permettant de résister aux vibrations. De préférence, le support de fixation est amagnétique afin de limiter réchauffement du support par induction magnétique. Selon un premier aspect, le support de fixation est constitué d'un matériau composite chargé en particules à haute conductivité thermique choisies parmi : des particules de diamant, des nanotubes de carbone, des fibres de carbone et des particules de graphite. Le choix des particules résulte d'un compromis entre leur conductivité thermique et leur prix, ce dernier étant fonction de leur conductivité thermique. Un tel matériau composite est passif et présente ainsi une grande résistance aux vibrations. Par ailleurs, il est possible d'obtenir un support de fixation de forme choisie, un matériau composite pouvant être facilement travaillé.
De manière préférée, un dispositif de drainage thermique diphasique est monté sur le support de fixation et permet, du fait du changement de phase, d'atteindre des conductivités thermiques équivalentes de l'ordre de 5000 W.m" .K"1 ce qui permet de réguler de manière optimale la température du composant bobiné 3. De manière préférée, le dispositif de drainage thermique diphasique est un caloduc dont le fonctionnement est maîtrisé, ce qui assure une grande fiabilité, et dont le coût est faible. De préférence, le caloduc est relié d'une part à la patte de fixation 42 et d'autre part à l'embase 2.
De manière préférée, pour atteindre des performances de conductivité thermique élevée, le dispositif de drainage thermique diphasique est un caloduc oscillant connu sous sa désignation anglaise « Pulsating Heat Pipe », qui présente des performances et un coût supérieurs, ou une chambre de vapeur, plus connue sous la désignation « vapor chamber », dont les performances sont supérieures à celles d'un caloduc pour des configurations dans lesquelles les rapports des surfaces de source froide/source chaude sont élevés, le coût d'une chambre de vapeur étant supérieur à celle d'un caloduc.
Dans cet exemple, l'anneau circulaire 41 comporte une première surface transversale, formant la première surface de drainage S1 , qui est en contact avec une surface latéral du tore 31. Ainsi, les calories accumulées par le tore 31 au cours de son fonctionnement sont transmises de manière directe au support de fixation 4 via la première surface transversale de l'anneau circulaire 41. Pour optimiser le drainage thermique, l'anneau circulaire 41 possède une section axiale sensiblement égale à celle du tore 31. Il va de soi que la section de l'anneau circulaire 41 pourrait également être inférieure à celle du tore 31. L'épaisseur de l'anneau 41 est définie pour permettre un drainage thermique efficace tout en limitant la masse du composant bobiné 3. Une épaisseur d'anneau 41 de l'ordre de 2 à 3 mm permet d'assurer un bon compromis.
L'anneau circulaire 41 comporte une deuxième face transversale, opposée à la première face transversale, les deux faces transversales de l'anneau 41 état reliées par une surface axiale intérieure SI et par une surface axiale extérieure SE comme représenté sur la figure 2. Toujours en référence à la figure 2, le tore 31 et les anneaux circulaires 41 des supports de fixation 4 forment un cylindre axial sur lesquels les spires 32 sont enroulées comme représenté sur les figures 2 et 3, les spires 32 étant, d'une part, en contact avec les surfaces axiales du tore 31 et, d'autre part, avec la deuxième surface transversale et les surfaces axiales SI, SE des anneaux circulaires 41 afin de drainer les calories des spires 32. La deuxième surface transversale et les surfaces axiales intérieure SI et extérieure SE forment ensemble la deuxième surface de drainage thermique S2 de chaque support de fixation 4. En référence à la figure 3, la deuxième surface transversale de l'anneau 41 est reliée à la surface axiale intérieure SI par une arête intérieure 61 et à la surface axiale extérieure SE par une arête extérieure 62. De manière préférée, les arêtes 61 , 62 sont arrondies de manière à limiter le risque de blessure des spires 32 lors de leur enroulement autour des anneaux 41. Il va de soi qu'uniquement une des arêtes 61 , 62 pourrait être arrondie. De manière plus générale, la deuxième surface de drainage S2, mettant en contact le support de fixation 4 et les spires 32, est incurvée de manière à limiter le risque de blessure des spires 32 et à améliorer le contact thermique entre le support de fixation 4 et les spires 32.
La patte de fixation 42 du support de fixation 4 comporte de manière préférée des moyens de solidarisation à l'embase 2, de préférence, des orifices de fixations 5 adaptés pour recevoir des vis de fixation à l'embase 2 comme représenté sur la figure 2. Dans cet exemple, le tore 31 et les anneaux 41 des supports de fixation 4 sont maintenus ensemble par l'enroulement des spires 32. De manière préférée, les supports de fixation 4 comportent des moyens de maintien (non représentés) adaptés pour maintenir ensemble le tore 31 et les deux supports de fixation 4 afin de permettre l'enroulement des spires 32 autour du tore 31 et des anneaux 41 des supports de fixation 4. De préférence, une tige longitudinale filetée est vissée entre les deux supports de fixation 4 pour régler la distance axiale les séparant ce qui permet de retenir le tore 31 et l'enroulement des spires 32. En référence à la figure 2, une patte de fixation 42 comporte un taraudage longitudinal 6 pour permettre le vissage d'une tige filetée.
Dans cet exemple, chaque support de fixation 4 comporte une patte de fixation 42 mais il va de soi qu'il pourrait en comporter plusieurs. A titre d'exemple, le support de fixation 4 pourrait contenir une patte de fixation 42 reliée à une autre source froide que l'embase 2. De même, une patte de fixation 42 pourrait comprendre des ailettes afin d'améliorer le transfert thermique avec l'air ambiant.
De manière préférée, une interface thermique, de préférence une graisse thermique du type Berquist Gap Filler 1500, est placée entre la première surface de drainage S1 (dans cet exemple, la première face transversale de l'anneau 41 ) et le tore 31 pour améliorer le drainage thermique du tore 31 à l'anneau 41. En effet, le tore 31 présente de manière classique un état de surface qui n'est pas satisfaisant pour permettre une pression homogène avec le support de fixation 4. L'ajout d'une interface thermique permet d'améliorer l'état de surface du tore 31 ce qui assure un drainage thermique performant. De manière similaire, une interface thermique peut être appliquée entre la patte de fixation 42 et l'embase 2 pour faciliter le transfert de calories vers l'embase 2.
Au cours de sa fabrication, les supports de fixation 4 sont montés aux extrémités du noyau magnétique 31 de forme torique, la première face transversale de chaque anneau 41 venant en contact avec une face transversale d'extrémité du tore 31. De manière préférée, une graisse thermique est appliquée à l'interface. Ensuite, un fil de cuivre est enroulé sur l'ensemble cylindrique formé par les anneaux 41 et le tore 31 de manière à former des spires 32. Lors de son montage sur un aéronef, le composant bobiné 3 est fixé à l'embase 2 par vissage de ses pieds de fixation 42 via les orifices 5. Ensuite, les spires 32 sont reliées à d'autres composants électroniques de puissance afin de mettre en œuvre, par exemple, une opération de filtrage pour un convertisseur de puissance. Lors de son fonctionnement en régime permanent, des calories sont générées par effet Joule dans le tore 31 et les spires 32 et sont directement drainées par l'anneau 41 du support de fixation 4 afin d'être transférées dans le pied de fixation 42 pour être ensuite conduites à l'embase 2 formant la source froide ce qui permet de réguler la température du composant bobiné 3 au cours de son fonctionnement.
Pour assurer une bonne tenue mécanique de l'assemblage, le composant bobiné 3 peut être imprégné de résine. Une deuxième forme de réalisation d'un composant bobiné 3' selon l'invention est représentée à la figure 4. De manière similaire à la première forme de réalisation, le composant bobiné 3' comporte un noyau magnétique de forme torique 31 ' sur lequel sont enroulées des spires 32'. Dans cette deuxième forme de réalisation du composant bobiné 3', l'axe X du tore 31 ' s'étend orthogonalement à l'embase 2 comme représenté sur la figure 4. On dit que le composant bobiné 3' est monté en position verticale sur l'embase 2.
Contrairement à la première forme de réalisation, le composant bobiné 3' comporte deux supports de fixation 8, 9 qui sont différents. Le composant bobiné 3' comporte un support de fixation supérieure 8 comportant un anneau circulaire 81 , similaire à l'anneau de la première forme de réalisation, ainsi que deux pattes de fixation supérieures 82 reliant l'anneau 81 à l'embase 2 qui sont diamétralement opposées. Le composant bobiné 3' comporte en outre un support de fixation inférieure 9 comportant un anneau circulaire 91 , similaire à l'anneau de la première forme de réalisation, ainsi que deux pattes de fixation inférieures 92 reliant l'anneau 91 à l'embase 2. Les pattes de fixation supérieures 82 sont, dans cet exemple, coudées pour permettre de relier l'embase 2 sans perturber l'enroulement des spires 32. Les pattes de fixation inférieures 92 sont, dans cet exemple, uniquement en appui sur l'embase 2 et ne comportent pas de moyens de fixation, la fixation des pattes de fixation supérieures 82 assurant le maintien du composant bobiné sur l'embase 2.
Un composant bobiné 3, 3' selon l'invention peut être monté verticalement ou horizontalement sur une embase 2 ce qui est très avantageux en termes d'encombrement.

Claims

REVENDICATIONS
1 . Composant électronique de puissance bobiné (3, 3') destiné à être monté sur une embase
(2), le composant (3, 3') comportant un noyau magnétique (31 , 31 ') s'étendant axialement sur lequel est enroulée une pluralité de spires (32, 32'), de manière à former une bobine magnétique, et au moins un support de fixation (4, 8, 9) à ladite embase (2), composant (3, 3') caractérisé en ce que le support de fixation (4, 8, 9) comporte au moins une patte de fixation (42, 82, 92) à l'embase (2) qui comprend une première surface de drainage (S1 ) en contact thermique avec le noyau magnétique (31 , 31 ') et une deuxième surface de drainage (S2) en contact thermique avec la pluralité de spires (32, 32') de manière à drainer les calories du noyau magnétique (31 , 31 ') et de la pluralité de spires (32, 32') vers l'embase (2) lors du fonctionnement du composant (3, 3').
2. Composant selon la revendication 1 , dans lequel, la première surface de drainage (S1 ) est sensiblement égale à la section axiale du noyau magnétique (31 , 31 ').
3. Composant selon l'une des revendications 1 à 2, dans lequel, les spires (32) sont enroulées sur le noyau magnétique (31 , 31 ') et le support de fixation (4, 8, 9).
4. Composant selon l'une des revendications 1 à 3, dans lequel, la deuxième surface de drainage (S2) est au moins partiellement incurvée.
5. Composant selon l'une des revendications 1 à 4, dans lequel, le support de fixation (4, 8,
9) comporte un anneau de contact thermique (41 , 81 , 91 ) s'étendant axialement, les première et deuxième faces transversales de l'anneau (41 , 81 , 91 ) formant respectivement la première surface de drainage (S1 ) et une partie de la deuxième surface de drainage (S2).
6. Composant selon la revendication 5, dans lequel, l'anneau de contact thermique (41 , 81 , 91 ) comporte une surface axiale (SI, SE) reliée à la deuxième face transversale (S2) par une arête intérieure arrondie (61 , 62).
7. Composant selon l'une des revendications 1 à 6, dans lequel, une interface thermique, de préférence une graisse thermique, est placée entre la première surface de drainage (S1 ) et le noyau magnétique (31 , 31 ').
8. Composant selon l'une des revendications 1 à 7, dans lequel, le support de fixation (4, 8, 9) est fixé à une extrémité du noyau magnétique (31 , 31 ').
9. Composant selon l'une des revendications 1 à 8, dans lequel, le support de fixation (4, 8, 9) est amagnétique.
PCT/FR2012/052190 2011-09-28 2012-09-27 Composant electronique de puissance bobine comportant un support de drainage thermique WO2013045849A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201280046395.8A CN103827994A (zh) 2011-09-28 2012-09-27 包括散热支撑体的线圈式电子功率部件
RU2014111157/07A RU2014111157A (ru) 2011-09-28 2012-09-27 Катушечный силовой электронный компонент, содержащий опору теплового отвода
EP12775778.9A EP2761631A1 (fr) 2011-09-28 2012-09-27 Composant electronique de puissance bobine comportant un support de drainage thermique
CA2849048A CA2849048A1 (fr) 2011-09-28 2012-09-27 Composant electronique de puissance bobine comportant un support de drainage thermique
US14/345,546 US20150042432A1 (en) 2011-09-28 2012-09-27 Coiled electronic power component comprising a heat sinking support
BR112014006072A BR112014006072A2 (pt) 2011-09-28 2012-09-27 componente eletrônico de potência bobinado compreendendo um suporte de dissipação de calor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1158672 2011-09-28
FR1158672A FR2980626B1 (fr) 2011-09-28 2011-09-28 Composant electronique de puissance bobine comportant un support de drainage thermique

Publications (1)

Publication Number Publication Date
WO2013045849A1 true WO2013045849A1 (fr) 2013-04-04

Family

ID=47071363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2012/052190 WO2013045849A1 (fr) 2011-09-28 2012-09-27 Composant electronique de puissance bobine comportant un support de drainage thermique

Country Status (9)

Country Link
US (1) US20150042432A1 (fr)
EP (1) EP2761631A1 (fr)
JP (1) JP2014530505A (fr)
CN (1) CN103827994A (fr)
BR (1) BR112014006072A2 (fr)
CA (1) CA2849048A1 (fr)
FR (1) FR2980626B1 (fr)
RU (1) RU2014111157A (fr)
WO (1) WO2013045849A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6397714B2 (ja) * 2014-10-03 2018-09-26 Fdk株式会社 コイル装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006113A1 (fr) * 1996-08-01 1998-02-12 Philips Electronics N.V. Bobine d'amortissement
JP2009231495A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp リアクトル
JP2010171209A (ja) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd リアクトル
US20100209314A1 (en) * 2007-06-12 2010-08-19 Toyota Jidosha Kabushiki Kaisha Reactor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547054Y2 (fr) * 1975-08-15 1980-11-05
JP4052436B2 (ja) * 2002-03-19 2008-02-27 株式会社ダイフク 複合コア非線形リアクトルおよび誘導受電回路
JP4386697B2 (ja) * 2003-09-19 2009-12-16 株式会社ダイフク 複合コアリアクトルおよび誘導受電回路
US7129808B2 (en) * 2004-09-01 2006-10-31 Rockwell Automation Technologies, Inc. Core cooling for electrical components
US7573362B2 (en) * 2005-10-11 2009-08-11 Hamilton Sunstrand Corporation High current, multiple air gap, conduction cooled, stacked lamination inductor
JP4905470B2 (ja) * 2009-01-14 2012-03-28 ダイキン工業株式会社 トロイダルコイルおよび空気調和機のコントローラ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998006113A1 (fr) * 1996-08-01 1998-02-12 Philips Electronics N.V. Bobine d'amortissement
US20100209314A1 (en) * 2007-06-12 2010-08-19 Toyota Jidosha Kabushiki Kaisha Reactor
JP2009231495A (ja) * 2008-03-21 2009-10-08 Toyota Motor Corp リアクトル
JP2010171209A (ja) * 2009-01-22 2010-08-05 Sumitomo Electric Ind Ltd リアクトル

Also Published As

Publication number Publication date
EP2761631A1 (fr) 2014-08-06
CN103827994A (zh) 2014-05-28
RU2014111157A (ru) 2015-11-10
BR112014006072A2 (pt) 2017-04-11
FR2980626A1 (fr) 2013-03-29
US20150042432A1 (en) 2015-02-12
JP2014530505A (ja) 2014-11-17
FR2980626B1 (fr) 2014-05-16
CA2849048A1 (fr) 2013-04-04

Similar Documents

Publication Publication Date Title
FR2726362A1 (fr) Detecteur de position destine en particulier a mesurer la position d'un arbre supporte par des paliers magnetiques actifs
CA2416012C (fr) Dispositif d'amortissement de vibrations
FR2768271A1 (fr) Procede de fabrication d'un rotor pour machine electrique rotative, rotor et machine concernes
FR2853378A1 (fr) Plaquettes de frein a disque ventilees
FR2825769A1 (fr) Dispositif d'amortissement de vibrations
FR3086121A1 (fr) Rotor pour machine electrique asynchrone a arbre non traversant
WO2013045850A1 (fr) Composant électronique de puissance bobine comportant un support de drainage thermique
FR2955891A1 (fr) Secteur d'anneau de turbine de turbomachine
CA2891076C (fr) Support de tube d'evacuation d'air dans une turbomachine
FR2554883A1 (fr) Systeme de palier pour le montage d'un arbre dans l'alesage d'un carter
EP3811498A1 (fr) Rotor pour moteur ou génératrice électromagnétique avec branches effilées
CA2687070A1 (fr) Actionneur electromagnetique a reluctance variable
WO2013045849A1 (fr) Composant electronique de puissance bobine comportant un support de drainage thermique
FR2931317A1 (fr) Rotor d'une machine electrique synchrone multipolaire a poles saillants
FR2835091A1 (fr) Capacite variable, filtre et sonde rmn comportant une telle capacite
FR2805937A1 (fr) Dispositif de freinage a courants de foucault et echangeur de chaleur pour dispositif de freinage a courants de foucault
FR2927389A1 (fr) Disque de frein en tole
FR2773598A1 (fr) Disque d'embrayage a montage en pivotement
EP2893622B1 (fr) Rotor de ralentisseur électromagnétique pour véhicule, ralentisseur comprenant un tel rotor et véhicule muni d'un tel ralentisseur
FR3051850A1 (fr) Element thermostatique
EP1963705B1 (fr) Dispositif d'amortissement
FR2995004A1 (fr) Aube de turbomachine en materiau composite et son attache sur un disque de rotor
EP2548293A2 (fr) Moteur électrique à aimants permanents comportant un stator fractionné
EP1609234B1 (fr) Ralentisseur electromagnetique d'un vehicule
FR2629881A1 (fr) Embrayage a limiteur de course, notamment pour vehicules automobiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12775778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2849048

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14345546

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2012775778

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012775778

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014532454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014111157

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014006072

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014006072

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140314