WO2013045729A1 - Cyclodextrin nanogels - Google Patents

Cyclodextrin nanogels Download PDF

Info

Publication number
WO2013045729A1
WO2013045729A1 PCT/ES2012/070638 ES2012070638W WO2013045729A1 WO 2013045729 A1 WO2013045729 A1 WO 2013045729A1 ES 2012070638 W ES2012070638 W ES 2012070638W WO 2013045729 A1 WO2013045729 A1 WO 2013045729A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
cyclodextrins
nanogels
cyclodextrin
water
Prior art date
Application number
PCT/ES2012/070638
Other languages
Spanish (es)
French (fr)
Inventor
Carmen Alvarez Lorenzo
Angel Concheiro Nine
Maria Dolores MOYA ORTEGA
Thorstein LOFTSSON
Original Assignee
Universidade De Santiago De Compostela
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidade De Santiago De Compostela filed Critical Universidade De Santiago De Compostela
Publication of WO2013045729A1 publication Critical patent/WO2013045729A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/40Cyclodextrins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0048Eye, e.g. artificial tears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/06Ointments; Bases therefor; Other semi-solid forms, e.g. creams, sticks, gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/16Cyclodextrin; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2305/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
    • C08J2305/16Cyclodextrin; Derivatives thereof

Definitions

  • the present invention relates to the development of hydrogels, more specifically it relates to the development of cyclodextrin hydrogels of nanometric size.
  • Cyclodextrins are cyclic oligomers consisting of units of ⁇ -D-glucose in a variable number, generally 6 (a-), 7 ( ⁇ -), or 8 ( ⁇ -cyclodextrin). Cyclodextrins have a toroidal structure with a hydrophobic internal surface and a hydrophilic external face (Düchene and Wouessidjewe, Pharm. Technol. 14: 22-30, 1990). This conformation gives them the ability to form complexes with substances of diverse nature (Uekama, Chem. Pharm. Bull. 52: 900-915, 2004). Complex formation has been used for decades to modify the solubility, stability and volatility of active drugs and molecules.
  • hydrogels that are characterized by their ability to incorporate water.
  • hydrogels constituted by cyclodextrins are known for the preparation of which have been carried out procedures that involve a) the previous formation of an aerobic or vinyl derivative of cyclodextrin capable of reacting with other acrylic or vinyl monomers (Siemoneit, U., Schmitt, C, Alvarez-Lorenzo, C, Luzardo, A., Otero-Espinar, F., Concheiro, A., Blanco-Méndez, J. Acrylic / cyclodextrin hydrogels with enhanced drug loading and sustained relée capability. Int. J. Pharm.
  • Patent application WO2006 / 089993 A2 describes a process for obtaining hydrogels of cyclodextrins or their derivatives and water-soluble cellulose ethers or their water-soluble derivatives, or cyclodextrins or their derivatives and guar gums or their derivatives, using as crosslinking molecules that They contain two or more glycidyl ether groups in their structure.
  • hydrogels as drug carriers are only possible if they are presented as multiparticulate systems consisting of nanogels smaller than 200 nm in size (Raemdonck, K; Demeester, J; De Smedt, S. Advanced nanogel engineering for drug delivery, SoftMatter 5, 707-715, 2009; JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels / nanogels for drug delivery applications. Polym. Sci. 33 (2008) 448-477).
  • the nanogels could be obtained from monolithic structures, by spraying or crushing, but this procedure ("top-bottom” approach) is difficult to implement in practice and the resulting particles have irregular shapes and their size dispersion is wide.
  • the procedures that allow the formation of nanogels directly from their constituents (“bottom-up” approach) are more suitable for nanogels of controlled size and mainly spherical shape (JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels / nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448-477).
  • a recently published procedure refers to the synthesis of nanogels by polymerization-precipitation of vinyl cyclodextrin monomers together with other acrylic or vinyl comonomers in water at 70 ° C and ultrafiltration (Markus J. Kettel, Fiete Dierkes, Karola Schaefer, Martin Moeller, Andrij Pich. Aqueous nanogels modified with cyclodextrin. Polymer 52 (2011) 1917-1924).
  • This procedure requires in a first stage the previous preparation of cyclodextrin vinyl derivatives, followed, in a second stage, of the copolymerization with other acrylic or vinyl monomers.
  • the authors of the invention have developed nanometric size gels, which solve the limitations of the corresponding monolithic hydrogels, since they are useful for applications for which the monolithic ones cannot be used.
  • the invention provides nanometric gels that possess well differentiated properties from the corresponding monolithic hydrogels.
  • the size of the gels of the invention provides a high specific surface which facilitates the exchanges of matter with the medium in which they are located and makes it possible for them to pass through cell membranes by endocytosis and elude recognition by the mononuclear phagocytic system.
  • the invention is directed to a hydrogel characterized by an average hydrodynamic diameter of less than 1 micrometer, comprising a matrix of cyclodextrins, where the cyclodextrins are linked together through a spacer to which they are joined by an ether group. or amino.
  • a particular embodiment of the invention relates to a hydrogel as defined above which additionally comprises a water-soluble polymer.
  • the cyclodextrins that constitute the hydrogel of the invention confer a high capacity for the incorporation of drugs, active substances and biological or toxic molecules with very diverse structures and physicochemical properties.
  • the hydrogel as defined above may further comprise an active ingredient, a biological molecule, or a toxic molecule.
  • the invention is directed to a pharmaceutical composition
  • a pharmaceutical composition comprising the hydrogel as defined above and at least one pharmaceutically acceptable excipient.
  • the invention is directed to a cosmetic composition
  • a cosmetic composition comprising the hydrogel as defined above.
  • the invention is directed to a phytosanitary composition
  • a phytosanitary composition comprising the hydrogel as defined above.
  • the invention also provides a suitable process for the preparation of the nanogels of the invention that is based on an approximation from the materials that constitute them, and not on crushing the corresponding monolithic hydrogels. This procedure has the advantage of preparing the nanogels in a single step, integrating the cross-linking and emulsification phase, and also allows the control of the structure and morphology of the nanogels.
  • the invention relates to a process for the preparation of the hydrogel as defined above comprising: a) preparing an aqueous solution comprising one or more cyclodextrins, a crosslinking agent having two or more functional groups which are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups, and an acidic or basic substance, and optionally a water-soluble polymer,
  • step d) mix the emulsion obtained in step c) with water.
  • the process further comprises adding an active ingredient or a biological molecule.
  • the invention relates to the use of the hydrogel as defined above to prepare a medicament.
  • the invention relates to the use of the hydrogel as defined above, in systems capable of sequestering toxic substances, molecules produced by living organisms, pollutants or liquid waste.
  • Figure 1 Microscopy micrograph of electron transmission of ⁇ -cyclodextrin nanogels before undergoing the lyophilization process.
  • Figure 2 Microscopy micrograph of electron transmission of ⁇ -cyclodextrin and hydroxypropylmethylcellulose nanogels before undergoing the lyophilization process.
  • Figure 3. Infrared spectra of of yCO (1), HPpCD (2), HPMC (3), agar-agar (4), YCDo, o.5 (5), YCD-HPMC 2 , I (6), HPpCD 0 , or. 5 (7) and HPpCD-agari > 0 . 5 (8) in the region 1600-800 cm "1.
  • Figure 4 Diffusion profiles of 3-MBA from a solution without nanogels or available in ⁇ -cyclodextrin or ⁇ -cyclodextrin and hydroxypropylmethylcellulose ogels.
  • FIGS. 5A, 5B and 5C Dexamethasone assignment profiles obtained from a dexamethasone solution (Dex code), a dexamethasone solution to which free ⁇ -cyclodextrin (yCD code) was incorporated, and ⁇ -cyclodextrin and FIPMC nanogels prepared with different proportions of Span 80 in the organic phase (0%, code and CD-HPMC 2 , or; 0.5%, code and CD-HPMC 2 , 0 5 ; 1.0%, code and CD-HPMC 2>1 ; 2.0%, code and CD-HPMC 2; 2 ).
  • Dex code dexamethasone solution
  • yCD code free ⁇ -cyclodextrin
  • FIPMC nanogels prepared with different proportions of Span 80 in the organic phase (0%, code and CD-HPMC 2 , or; 0.5%, code and CD-HPMC 2 , 0 5 ; 1.0%, code and CD-HPMC 2>1 ; 2.0%, code and CD
  • hydrogel refers to a network of hydrophilic polymer chains, which can be crosslinked by different methods, and which contains a high proportion of water. Hydrogels can be presented macroscopically or confined in smaller dimensions. Nanogel is understood as a submicron size hydrogel (Jung Kwon Oha, Ray Drumright, Daniel J. Siegwart, Krzysztof Matyj aszewski. The development of microgels / nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448- 477).
  • the present invention is directed to a hydrogel characterized by an average hydrodynamic diameter of less than 1 micrometer, comprising a matrix of cyclodextrins, where the cyclodextrins are linked together through a spacer to which they are joined by a group ether or amino.
  • the nanogels of the invention are capable of incorporating high proportions of water without dissolving.
  • One of the objectives of the invention is to provide nanogels useful in the transport and release of drugs and which are also capable of targeting specific tissues or cells.
  • the hydrogel as described above has an average hydrodynamic diameter between 1 nm and 400 nm.
  • the nanogel of the invention has an average hydrodynamic diameter between 1 nm and 200 nm.
  • Nanoparticles are solid particles between 1 and 1000 nm in size (Encyclopedia of Pharmaceutical Technology, J. Swarbrick and JC Boylan. Vol. 10. Marcel Dekker Inc., New York, p. 165) which, depending on their internal structure, differ in two groups: nanocapsules and nanospheres.
  • the nanocapsules consist of a cavity surrounded by a polymer layer; and the nanospheres are continuous matrix systems (F. Rocha Formiga, E. Ansorena, A. Estella-Hermoso De Mendoza, E. Imbuluzqueta, D.
  • cyclodextrins in the present invention refers to natural cyclodextrins, synthetic and semi-synthetic cyclodextrins, such that this term includes for example, without this being a limitation, cyclodextrins of 6, 7, and 8 members (known as alpha , beta, and gamma, respectively), cyclodextrins with more than 8 members (known as large cyclodextrins) and cyclodextrin derivatives. Cyclodextrin derivatives are understood as cyclodextrins substituted in some of their hydroxyl groups by functional groups, for example those listed in the following table:
  • Cyclodextrin derivatives also include their pharmaceutically acceptable salts.
  • the amino derivatives of cyclodextrins can be obtained by the procedure described in Nature Protocols, 2008, 3, 691-697.
  • the cyclodextrins are crosslinked, so that a cyclodextrin is linked to one or more spacers to which other cyclodextrins are in turn, thus forming a matrix.
  • the cyclodextrins and the spacer are covalently linked through an ether or amino group.
  • the spacer comprises a carbon skeleton that is selected from linear, branched, optionally substituted alkyl, aryl, aryl, and polyether chains.
  • the spacer is a polyether.
  • Alkyl refers to a linear or branched, cyclic or acyclic hydrocarbon chain consisting of carbon and hydrogen atoms, without unsaturation, from 1 to 12, preferably from one to eight, more preferably from one to four carbon atoms , optionally substituted.
  • Aryl refers to an aromatic hydrocarbon of 6 to 10 carbon atoms, such as phenyl or naphthyl, optionally substituted by an alkyl or oxyalkyl group, which may in turn be substituted.
  • Arylalkyl refers to one or more aryl groups attached to the rest of the molecule by an alkyl radical, for example, benzyl, 3- (phenyl) -propyl, etc.
  • Polyether refers to a chain with one or more ether groups.
  • the polyether is an unsaturated alkyl, or an arylalkyl, in which one or more ether groups are intercalated in the alkyl chain, and which is optionally substituted by a functional group selected from hydroxyl, C1-C6 alkyl, C1-C6 hydroxyalkyl, C 1-C6 alkyloxy, and OR 3 , where R 3 is a C 1-C 4 alkyl optionally substituted by hydroxyl, C 1-C 6 alkyl, C 1-C 6 hydroxyalkyl or glycidyl ether.
  • the polyether has the formula - (CHRi-CHR 2 0) n-, where n has a value between 1 and 100, preferably between 1 and 50, more preferably between 1 and 10, Ri and R 2 can be the same or different and are selected from the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, hydroxyalkyl C1-C6, alkyloxy C1-C6 alkyl, and OR 3 , where R 3 is a C1-C4 alkyl optionally substituted by hydroxyl , C1-C6 alkyl, C1-C6 hydroxyalkyl or glycidyl ether.
  • the nanogel spacers of the invention come from crosslinking agents that possess two or more functional groups that are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups.
  • Said functional groups are known to the person skilled in the art and some examples, without being limited to them, are the following: 1,2-epoxyethane group, glycidyl ether, primary alkyl halide, primary alkyl tosylate, etc.
  • the group capable of reacting with the hydroxyl or amino groups of the cyclodextrins is a glycidyl ether group.
  • the crosslinking agent comprises an optionally substituted polyether, and two or more glycidyl ether groups.
  • Glycidyl ethers have the advantage that they have a very low toxicity. Their wide safety margins, together with the absence of repoductive and endocrine effects and of carcinogenic effects, make them suitable as components of containers that are kept in prolonged contact with food (Poole et al, Food Additives & Contaminants 21: 905- 919, 2004).
  • the RETI culantes agents with glycidyl ether groups also known as epoxides, oxirane or alkene oxides;...
  • the crosslinking agents are selected from among diglycidylether, ethylene glycol glycidylether, di eti 1 engl ic ol di gl i ci di 1 ether, p oli eti 1 engl i col di gl i ciledter, polyglycerol polyglycidyl ether, propylene glycol glycidyl ether, glyceroldiglycidylether, glyceroltriglycidylether, or bisphenol A diglycidyl ether.
  • the dry weight ratio of cyclodextrin is between 1 and 95%, and the dry weight ratio of the crosslinking agent is between 99% and 5% of the total dry hydrogel weight of the invention. as described above. In a more particular embodiment, the dry weight ratio of cyclodextrin is between 4 and 70%, and the dry weight ratio of the crosslinking agent is between 96% and 30% of the total weight of the dried hydrogel.
  • the nanogels of the invention can incorporate water soluble polymers.
  • water-soluble polymer is meant any natural, semi-synthetic or synthetic macromolecule that can be dispersed in aqueous medium forming colloidal solutions or systems.
  • water-soluble polysaccharides are suitable for modulating the affinity of nanogels for drugs and for modulating transfer profiles.
  • the polysaccharides are constituted by carbohydrates that have reactive hydroxyl groups similar to those of cyclodextrins, so comparatively to other polymers, they have the advantage of being able to react with the crosslinking agent in a similar way as cyclodextrins do, which facilitates obtaining homogeneous frameworks.
  • the water-soluble polymer is a water-soluble polysaccharide or its derivatives.
  • a water-soluble polysaccharide or its derivatives.
  • the water-soluble polysaccharide is selected from the group consisting of dextrans, alginates, starch, glycogen, chitosan, guar gums, agar-agar, water-soluble cellulose gums and cellulose ethers, and their pharmaceutically acceptable salts.
  • the water soluble cellulose ethers are selected from methyl cellulose (MC), hydroxyethylmethyl cellulose (HEMC), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), ethylhydroxyethyl cellulose (EHC) N-cellulose ), quaternary ammonium salts of hydroxyethylcellulose with trimethylammonium substituent (Polyquaternium 10), and copolymers of hydroxyethyl cellulose and dimethyl diallyl ammonium chloride (Polyquaternium 4).
  • MC methyl cellulose
  • HEMC hydroxyethylmethyl cellulose
  • HPC hydroxypropyl cellulose
  • HPMC hydroxypropylmethyl cellulose
  • HEC hydroxyethyl cellulose
  • EHC ethylhydroxyethyl cellulose N-cellulose
  • guar derivatives For example, s gom a guar derivatives, their hydroxypropylated or carboxyhydroxypropylated esters, their cationic derivatives (Ecopol) and the products resulting from depolymerization of guar gums.
  • Ecopol cationic derivatives
  • the water-soluble polymer is a neutral or ionizable acrylic polymer with the condition of being soluble in aqueous medium.
  • the acrylic polymer is interpenetrated in cyclodextrin intermingling, it is not covalently bound to cyclodextrins or spacers.
  • the water-soluble acrylic polymer is selected from the group consisting of polyacrylic acid, poly-N-isopropylacrylamide, methacrylic acid and ethyl acrylate copolymers, methacrylic acid copolymers, methyl acrylate and methyl methacrylate, and copolymers. of dimethylaminoethyl methacrylate, butyl methacrylate and methyl methacrylate.
  • the dry weight ratio of cyclodextrin is between 1% and 95%; the dry weight ratio of water-soluble polymer is between 0.05% and 95%; and the dry weight ratio of the crosslinking agent is between 98.95% and 4% of the total dry hydrogel weight of the invention as described above.
  • the dry weight ratio of cyclodextrin is between 4 and 70%, the dry weight ratio of water soluble polymer is between 0.1% and 20%; and the dry weight ratio of the crosslinking agent is between 96% and 30%) of the total weight of the dried hydrogel.
  • the invention relates to a hydrogel as described above, selected from the group of the following hydrogels consisting of:
  • the nanogels object of the present invention are suitable for associating active ingredients or biological molecules regardless of their solubility characteristics. The ability to associate will depend on the corresponding molecule.
  • active ingredient refers to any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals, as well as that compound that is intended to destroy, prevent action, counteract or neutralize, any harmful organism, or any substance that is used as cosmetic or hygiene, as well as that compound that is intended to regenerate tissues or tissue engineering.
  • biological molecules any molecule synthesized in a living organism, such as, for example, proteins, carbohydrates, lipids, nucleic acids, amino acids, etc.
  • the biological molecule is selected from peptides, proteins, lipid compounds. or lipophilic, saccharide compounds, nucleic acid or nucleotide compounds such as oligonucleotides, polynucleotides or combinations of the aforementioned molecules.
  • the active ingredient or the biological molecule possesses antifungal, antiseptic or anti-inflammatory activity, or is a molecule of interest in tissue engineering, regenerative, cosmetic or hygiene medicine.
  • the active ingredient is an anti-inflammatory.
  • the active ingredient is a steroidal anti-inflammatory.
  • the proportion of active ingredient or biological molecule incorporated will depend in each case on the nature of the active ingredient or biological molecule to be incorporated, the indication for which it is used and the efficiency of administration.
  • the nanogel of the invention is in lyophilized form.
  • the nanogels of the invention are suitable as active ingredient release systems or biological molecules for ophthalmic treatments.
  • the nanogel of the invention is used in the preparation of a medicament for the treatment of ophthalmic diseases.
  • the ophthalmic diseases to which the invention is directed are those that affect the ocular surface, as well as those that affect the internal structures of the eye.
  • An example of ophthalmic diseases to which the invention is directed, but not limited to them, are severe, acute and chronic allergies, inflammatory processes involving the eyes such as ophthalmic herpes zoster, ulceris, iridocyclitis, chorioretinitis, posterior diffuse uveitis and chorioiditis, optic neuritis, sympathetic ophthalmia, inflammation of the anterior segment, allergic conjunctivitis, keratitis, corneal and marginal allergic ulcers, bacterial infections, viral infections, degenerations such as macular degeneration, blepharitis, conjunctivitis, glaucoma, benign or malignant tumors, retinopathies, etc.
  • the invention is directed to a sterile aqueous solution comprising a hydrogel as described above.
  • the sterile aqueous solution comprises between 2 mg / mL and 100 mg / mL of the hydrogel.
  • the invention is directed to a method for treating ophthalmic diseases which comprises administering to the mammal in need an effective amount of the pharmaceutical composition as described above or the sterile aqueous solution as described above.
  • the invention relates to a method for treating any of the ophthalmic diseases described above which comprises administering to the mammal in need an effective amount of the pharmaceutical composition as described above or the accused solution as described above.
  • the nanogels of the invention, with or without active ingredient or biological molecules incorporated, can be used as such or as base components of pharmaceutical forms, medicaments and sanitary products for the treatment of pathological or physiological conditions in humans, animals and plants.
  • compositions according to the invention are suitable for transdermal, oral, oral, rectal, ocular, nasal, otic, vaginal, or parenteral implant administration.
  • They can also be used as sequestering agents for biological or toxic substances in living organisms, for example cholesterol, glucose or bile acids, or in the environment.
  • the nanogels of the invention are also very suitable for controlling the release of drugs or active substances, incorporated into the nanogels.
  • the compositions provide different transfer rates depending on their qualitative and quatitative composition, and the physicochemical properties of the drug, especially its water solubility and its affinity for the cyclodextrin cavity.
  • They can also serve to direct drugs to specific areas in living beings, through changes associated with environmental conditions, in the degree of swelling of the nanogel or in the affinity of the drug for the components of the nanogel.
  • the process of the invention takes place under mild conditions, high temperatures and drastic conditions are avoided, and so that it is possible to incorporate active ingredients or biological molecules without damaging their integrity and without danger of degradation.
  • the process of the invention has the advantage that it does not require prior modification of the structure of the cyclodextrin or of the water-soluble polymer, nor the use of a mold to form the nanogel.
  • the process of the invention allows the size and shape of the nanogel to be modulated by controlling the emulsion droplet formation process of step c) and by the proportion of system components.
  • the invention also relates to a process for the preparation of the hydrogel as defined above comprising: a) preparing an aqueous solution comprising one or more cyclodextrins, a crosslinking agent having two or more functional groups that they are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups, and an acidic or basic substance, and optionally a water-soluble polymer,
  • step d) mix the emulsion obtained in step c) with water.
  • step a) The preparation of the aqueous solution of step a) is possible in several ways without variations in the result obtained.
  • the addition of said polymer to the water can be done before or after dissolving the cyclodextrin.
  • the crosslinking agent in solid, liquid or aqueous solution.
  • the acidic substance may be an organic or inorganic acid, for example triluoroacetic acid, p-toluenesulfonic acid, camforsulfonic acid, acetic acid, ionic acid exchange resin, Lewis acid, etc.
  • the basic substance includes organic and inorganic bases for example potassium or sodium carbonate, cyanides, hydrides, primary, secondary amines, sodium or potassium methoxide, sodium or potassium ethoxide, etc.
  • the aqueous solution prepared in step a) is incubated for a period of between 1 and 60 minutes, more preferably between 5 and 45 minutes. In a particular embodiment, the incubation of the aqueous solution prepared in step a) is carried out at a controlled temperature between 5 ° C and 80 ° C, more preferably between 20 ° C and 60 ° C.
  • step a) the crosslinking is initiated but without giving rise to an increase in viscosity that prevents subsequent emulsification with the organic phase.
  • an organic solution is prepared.
  • organic phases are, although the invention is not limited to these, chlorobenzene, chloroform, cyclohexane, dichloromethane, hexane, tetrahydrofuran, toluene, octanol, heptanol.
  • a surface active agent refers to a molecule composed of a hydrophobic part and a hydrophilic moiety. These molecules therefore have amphiphilic properties, which means that in an organic water / solvent mixture, they migrate to the surface between the water and the organic solvent. Thus, the hydrophilic head is maintained in the aqueous phase and the hydrophobic tail interacts with the organic solvent by altering the surface properties of the water / solvent interface and allowing the formation of an emulsion, as well as its stabilization.
  • the surface active agent is selected from the group consisting of long chain hydroxylic derivatives of 8 to 18 carbon atoms (fatty alcohols), ethoxylated carboxylic acids, ethoxylated amides, ethoxylated glycerides, glycol esters and derivatives, monoglycerides , polyglyceryl esters, esters and ethers of polyalcohols, sorbitan / sorbitol esters, phosphoric acid esters, ethoxylated derivatives of fatty alcohols and polyethylene glycol ethers.
  • the surfactant is a sorbitan ester.
  • the sorbitan ester is selected from the group consisting of sorbitan mono-, di-, tri- or sesqui-oleate, mono-, di-, tri- or sesqui-sorbitan sorbitan, mono-, sorbitan di-, tri- or sesqui-palmitate, sorbitan mono-, di-, tri- or sesqui-stearate and sorbitan mono-, di-, tri- or sesqui-isostearate, as well as combinations of the foregoing.
  • the weight ratio of surface active agent added in step b) is between 0% and 5%, preferably between 0% and 3%.
  • step c) the mixture is homogenized for a time between 1 second and 2 minutes, preferably between 30 and 60 seconds.
  • This homogenization can be carried out by vigorous stirring, for example, using a high performance homogenizing stirrer.
  • the volume of the organic phase of stage b) is equal to or greater than the volume of aqueous phase resulting from stage a).
  • the mixture of step c) is stirred for a period of time between 5 minutes and 5 hours, preferably between 10 minutes and 50 minutes.
  • said stirring is carried out at a controlled temperature between 5 ° C and 80 ° C, preferably between 40 ° C and 70 ° C.
  • stage d) the emulsion obtained in stage c) is diluted with a volume of water between an equal volume and up to 10 times greater than that of the mixture of stage a).
  • the dilution mixture is incubated for 10 minutes to 10 hours, preferably 1 hour to 5 hours.
  • said incubation is performed under a controlled temperature between 5 ° C and 80 ° C. Through this process the crosslinking ends and it is possible to evaporate the organic solvent.
  • the method further comprises a stage e) after stage d) comprising the dialysis of the mixture.
  • the process further comprises a step f) after step e) comprising lyophilization of the mixture
  • the process further comprises a stage g) after stage f) comprising rehydration of the nanogels.
  • the process further comprises adding an active ingredient or a biological molecule.
  • the incorporation of the active ingredient or biological molecule can be carried out by one of the following processes: i) direct immersion of a hydrogel of the invention, as described above, in a solution or in a suspension of the active ingredient or of the biological molecule, at a temperature between 0 and 100 ° C and at atmospheric pressure, optionally using ultrasound, ii) in an autoclave at a temperature between 100 and 130 ° C, or, iii) addition of active ingredient or from the biological molecule to the aqueous phase a).
  • the invention relates to a nanogel obtainable by the method described above.
  • nanogel obtainable by the procedure described above becomes relevant in the tests carried out as set forth in the examples herein.
  • These nanogels have a high capacity to incorporate drugs, active substances, biological or toxic molecules with very diverse structures and physical-chemical properties that form inclusion complexes with cyclodextrins of The nanogels
  • the nanogels form stable colloidal systems: dispersed in aqueous medium, have high physical stability, resisting centrifugation at 5000 rpm for 10 min without precipitating.
  • the size and shape of the nanogels can be modulated by controlling the formation process of the emulsion droplets.
  • the shape of the nanogels of the invention is spherical and the size distribution of the nanogels in the colloidal system is narrow. All these characteristics can be modulated through an adequate selection of the variety and / or the proportion of cyclodextrin / s and of the water-soluble polymers or their derivatives that accompany it / s.
  • compositions can be used as components of pharmaceutical forms, cosmetic preparations or "trap" systems to capture molecules of living organisms or of the environment, without raising problems of biocompatibility or environmental impact.
  • ⁇ -Cyclodextrin (yCD, W8) and 2-hydroxypropyl-p-cyclodextrin (HPpCD, W7 HP, Mw 1309.24 Da) were from Wacker (Barcelona, Spain), 2-hydroxypropyl-y-cyclodextrin (HPyCD, W8 HP, Mw 1576 Da) was from PURAC biochem BV (Gorinchem, The Netherlands), hydroxypropyl methylcellulose (HPMC, Methocel K4M Premium EP) from Colorcon Ibérica SL (Barcelona, Spain), Guinama agar (Valencia, Spain), ethylene glycol diglycidyl ether (EGDE, 50% w / w in water) from Fluka (St.
  • EGDE ethylene glycol diglycidyl ether
  • Example 1 Procedure for obtaining nanogels based on ⁇ -cyclodextrin or HPPCD.
  • a solution of 20% (w / w) ⁇ -cyclodextrin or HPpCD was prepared in 0.2M NaOH. Then, 10 mL of a 50% (w / w) ethylene glycol glycidyl ether solution in water was added to 10 mL of solution, so that the final concentration of crosslinking agent was 14.28%. The solution was stirred for 25 minutes at 60 ° C to start the crosslinking reaction.
  • the organic phase consisting of a solution of 2% Span 80 (w / w) in dichloromethane at 20 ° C was prepared separately.
  • the aqueous solution of cyclodextrin-ethylene glycol glycidyl ether was added to 20 ml of the organic phase and the whole was subjected to the action of a high performance homogenizing stirrer (8000 rev./min; Ultra-Turrax T25, Janke & Kunkel, INK-Labortechnik , Germany) for 30 seconds. Then, the emulsion was kept under stirring (magnetic stirrer 300 rev./min) for 30 min in a thermostatic bath at 60 ° C.
  • the emulsion was poured into 100 ml of distilled water and kept under stirring (magnetic stirrer 300 rev./min) for 210 min in a thermostated bath at 60 ° C, to complete the formation of the nanogels.
  • the colloidal system containing the nanogels were taken and dialyzed for 72 hours using 12-14 kDa dialysis tubes. After dialysis, the colloidal system containing the nanogels was dried by lyophilization (VirTis Genesis freeze-dryer, USA). Once lyophilized, the nanogels were easily redispersed in water resulting in a colloidal system with a particle size similar to that recorded before lyophilization (40-500 nm).
  • Figure 1 shows the electron transmission microscopy photomicrograph (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) of the nanogels before undergoing the lyophilization process.
  • the sizes of the nanogels were determined using dynamic light scattering equipment using an ALV-5000 F optical system equipped with a Nd: YAG laser (400 mW) connected to a CW diode pump (400 mW) operated at 532 nm ( Coherent Inc., Santa Clara, CA, USA). The average size was 151.36 nm.
  • Example 2 Procedure for obtaining nanogels based on ⁇ -cyclodextrin and a water-soluble polymer.
  • a solution of 1% (w / w) or 2% (w / w) K4M HPMC in 0.2M NaOH or 1% (w / w) or 2% (w / w) agar in 0.2 NaOH will be prepared M. Then, 10 grams of ⁇ -cyclodextrin or HPpCD were added to 10 mL of this solution and, after homogenization, 4 mL of a 50% (w / w) solution of ethylene glycol glycidyl ether in water. The solution was stirred for 25 minutes at 60 ° C to start the crosslinking reaction.
  • the aqueous solution of HPMC-cyclodextrin-ethylene glycol glycidyl ether was added to 20 ml of the organic phase and the whole was subjected to the action of a high performance homogenizing agitator (8000 rev./min; Ultra-Turrax T25, Janke & Kunkel, INK-Labortechnik, Germany)) for 30 seconds. Then, the emulsion was kept under stirring (magnetic stirrer 300 rev./min) for 30 min in a thermostatic bath at 60 ° C.
  • the emulsion was poured into 100 ml of distilled water and kept under stirring (magnetic stirrer 300 rev./min) for 210 min in a thermostated bath at 60 ° C, to complete the formation of the nanogels.
  • the colloidal system containing the nanogels were taken and dialyzed for 72 hours using 12-14 kDa dialysis tubes. After dialysis, the colloidal system containing the nanogels was dried by lyophilization. Once lyophilized, the nanogels were easily redispersed in water resulting in a colloidal system with a particle size similar to that recorded before lyophilization (40-500 nm).
  • Figure 2 shows the electron transmission microscopy photomicrograph (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) of the nanogels before undergoing the lyophilization process.
  • the sizes of the nanogels were determined using dynamic light scattering equipment using an ALV-5000 F optical system equipped with a Nd: YAG laser (400 mW) connected to a CW diode pump (400 mW) operated at 532 nm ( Coherent Inc., Santa Clara, CA, USA). The average size was 93.68 nm.
  • nanogels were obtained as shown in Table 1.
  • the nanogel formulations obtained are identified using the code cyclodextrin-polysaccharide xj where the cyclodextrin is ⁇ -CD or HPpCD, the polysaccharide is HPMC or agar, "x" is the concentration of HPMC or agar (0%, 1% or 2 %) in the aqueous phase and "y” is the concentration of Span 80 in the organic phase (0%, 0.5% or 2%) as used in the preparation of the hydrogel as described in examples 1 and 2.
  • Table 1 The data of the surfactant concentration, preparation process performance (Rto), results of the dynamic light scattering (DLS) analysis of the nanogels suspension, area of each peak, hydrodynamic radius, and distribution of data are collected. mass.
  • the stability of the nanogels obtained as aqueous dispersions was also studied, after centrifugation at 5000 rpm. for 10 minutes or 10,000 r.p.m. for 30 minutes to assess the tendency of nanogels to precipitate, thus simulating an aging process during storage. It was observed that centrifugation at 5000 rpm. for 10 minutes it did not cause precipitation of the nanogels. While centrifugation at 10,000 rpm. for 30 minutes it led to small precipitated amounts that were more intense in the nanogels to which FIPMC was incorporated than in the case of the nanogels constituted solely by cyclodextrins. In all cases, after stirring the precipitate, it was redispersed again.
  • Infrared spectra or ⁇ -CD nanogels were taken in a range between 400 and 4000 cm “1 , on a Brucker IFS 66V FT-IR spectrophotometer (using the potassium bromide technique). These spectra are shown in the figure 3. The formation of ether groups between the crosslinking agent and cyclodextrins is evidenced in the infrared (IR) spectra when comparing the starting species against the cross-linked cyclodextrins.
  • the prepared hydrogels capture water in a proportion of between 200% and 1000%) by weight of water with respect to the dry weight of the hydrogel.
  • Example 3 Control of the cession of 3-methylbenzoic acid (3-MBA) from ⁇ -cyclodextrin nanogels and d e n a n o g e l e s d e ⁇ -cyclodextrin and hydroxypropyl methylcellulose.
  • Lyophilized nanogels were dispersed in 3-MBA solutions (0.08 mg / ml) to obtain a dispersion of 2% w / v nanogels, which was maintained at 20 ° C for 60 hours.
  • the assignment of 3-MBA from nanogel dispersions was evaluated using vertical diffusion cells, using cellophane membrane (MWCO 3500, 0.785 was 2 ) as a separation barrier between the donor compartment and the receptor compartment. The tests were carried out at 37 ° C using 2 ml of nanogel dispersion and 5.5 ml of purified water, subjected to magnetic stirring at 300 rpm, as the receiving medium.
  • a solution of 3-MBA (0.08 mg / ml) without nanogels was also tested under the same conditions.
  • Example 4 Control of the transfer of dexamethasone from ⁇ -cyclodextrin nanogels and ⁇ -cyclodextrin and hydroxypropylmethylcellulose nanogels.
  • Example 4.1 Dexamethasone loading.
  • Lyophilized nanogels were dispersed in saturated dexamethasone solutions (0.14-0.16 mg / ml) to obtain a dispersion of 2% w / v nanogels, which was maintained at 20 ° C for 16 hours or 7 days.
  • dexamethasone from nanogel dispersions was evaluated using vertical diffusion cells, using cellophane membrane (MWCO 12-14 kDa, 1.77 was 2 ) as a separation barrier between the donor compartment and the receptor compartment. The tests were carried out at 37 ° C using 2 ml of nanogel dispersion and 12 ml of pH 7.4 phosphate buffer as a receptor medium, which was kept under magnetic stirring at 300 rpm. The saturated dexamethasone solution without nanogels was also tested under the same conditions. At pre-established time intervals, 150 ⁇ samples were taken from the receiving medium and replaced by fresh medium The concentration of dexamethasone in the receptor medium was determined by HPLC.
  • Example 5 Formulation of a dexamethasone eye drops based on cyclodextrin nanogels
  • Nanogels YCD-HPMCi were incorporated! (up to 4% w / v) to an aqueous hydroalcoholic solution (ethanol: water 50:50 v / v) of saturated dexamethasone and kept in an ultrasonic bath at 25 ° C for 60 minutes (Cole-Parmer Instrument Company 8892E -DTH, Niles, Illinois). Then the solvent medium is rotovapped (RII, Buchi, Switzerland) to obtain dry nanogels YCD-HPMCi,! loaded with dexamethasone.
  • Nanogels YCD-HPMCi,! loaded with dexamethasone were added (up to 4% w / v) to a 1.5% aqueous solution of dexamethasone (w / v) in 10% HPyCD (w / v), ethylenediamine tetraacetic acid (EDTA) 0.1% (w / v), 0.02% (w / v) benzalkonium chloride, 0.1% (w / v) HPMC K4M and 0.6% (w / w) sodium chloride and the pH was adjusted to 7.40 ⁇ 0.05.
  • the formulation was autoclaved at 121 ° C for 20 min and allowed to equilibrate for 5 days at room temperature under constant stirring.
  • the total dexamethasone concentration in the dexamethasone / HPyCD / nanogels formulation was 25.7 ⁇ 2.6 mg / ml, the osmolarity 299 ⁇ 31 mOsm / kg and the viscosity 31.4 ⁇ 3.9 cP.
  • Example 6 In vivo studies
  • Example 6.2 Study in vitreous humor.
  • rabbits were sacrificed by intravenous administration of T61 0.3 ml kg "1 (Intervet Germany). Approximately 0.05 ml of aqueous humor were taken using a syringe with a 30 gauge needle and inserting it into the anterior chamber in the limbus. The samples were kept frozen at -70 ° C until analysis.

Abstract

The invention relates to cyclodextrin nanogels and to a method for obtaining nanogels by cross-linking/emulsifying/evaporating the organic phase of cyclodextrins or the derivatives thereof, or cyclodextrins or the derivatives thereof and hydrosoluble polymers or the derivatives thereof, using molecules containing at least two glycidyl ether groups in the structure thereof as a cross-linking agent. The invention also relates to the compositions thus obtained, which can include active substances and pharmaceuticals and which form inclusion complexes with cyclodextrins. The invention further relates to the use of same as components of controlled-release devices, such as transdermal pharmaceutical forms, buccal, oral, rectal, ocular, otic or vaginal transmucosal forms and parenteral implants, which are designed to administer active substances or pharmaceuticals to humans, animals or plants, or as components of cosmetic formulations. In addition, the invention relates to the use of said compositions as chelating agents in the extraction of biological or toxic molecules from living organisms or contaminating substances from water.

Description

Nanogeles de ciclodextrinas  Cyclodextrin Nanogels
Sector de la técnica Technical sector
La presente invención se refiere al desarrollo de hidrogeles, más en concreto se refiere al desarrollo de hidrogeles de ciclodextrina de tamaño nanométrico.  The present invention relates to the development of hydrogels, more specifically it relates to the development of cyclodextrin hydrogels of nanometric size.
Estado de la técnica State of the art
Las ciclodextrinas son oligómeros cíclicos constituidos por unidades de α-D-glucosa en un número variable, en general 6 (a-), 7 (β-), ó 8 (γ-ciclodextrina). Las ciclodextrinas tienen una estructura toroidal con una superficie interna hidrofóbica y una cara externa hidrofílica (Düchene y Wouessidjewe, Pharm. Technol. 14 : 22-30, 1990). Esta conformación las dota de capacidad para formar complejos con sustancias de naturaleza diversa (Uekama, Chem. Pharm. Bull. 52: 900-915, 2004). La formación de complejos se viene utilizando desde hace décadas para modificar la solubilidad, la estabilidad y la volatilidad de fármacos y moléculas activas. Más recientemente la capacidad de las ciclodextrinas para formar complejos se ha utilizado en la preparación de hidrogeles con capacidad de carga y control de la cesión de moléculas activas mejoradas (Frank van de Manakker, Tina Vermonden, Cornelus F . van Nostrum, and Wim E. Hennink, Biomacromolecules 10: 3157-3175, 2009).  Cyclodextrins are cyclic oligomers consisting of units of α-D-glucose in a variable number, generally 6 (a-), 7 (β-), or 8 (γ-cyclodextrin). Cyclodextrins have a toroidal structure with a hydrophobic internal surface and a hydrophilic external face (Düchene and Wouessidjewe, Pharm. Technol. 14: 22-30, 1990). This conformation gives them the ability to form complexes with substances of diverse nature (Uekama, Chem. Pharm. Bull. 52: 900-915, 2004). Complex formation has been used for decades to modify the solubility, stability and volatility of active drugs and molecules. More recently, the ability of cyclodextrins to form complexes has been used in the preparation of hydrogels with loading capacity and control of the transfer of improved active molecules (Frank van de Manakker, Tina Vermonden, Cornelus F. van Nostrum, and Wim E. Hennink, Biomacromolecules 10: 3157-3175, 2009).
Esta capacidad para incorporar moléculas activas y controlar su cesión, hace que las ciclodextrinas sean un material de interés en la preparación de sistemas de liberación de fármacos. Dentro de estos sistemas se encuentran los hidrogeles que se caracterizan por su capacidad para incorporar agua.  This ability to incorporate active molecules and control their transfer makes cyclodextrins a material of interest in the preparation of drug delivery systems. Within these systems are hydrogels that are characterized by their ability to incorporate water.
En el estado del arte son conocidos hidrogeles constituidos por ciclodextrinas para cuya preparación se han puesto a punto procedimientos que implican a) la formación previa de un derivado aerifico o vinílico de ciclodextrina susceptible de reaccionar con otros monómeros acrílicos o vinílicos (Siemoneit, U., Schmitt, C, Alvarez-Lorenzo, C, Luzardo, A., Otero-Espinar, F., Concheiro, A., Blanco-Méndez, J. Acrylic/cyclodextrin hydrogels with enhanced drug loading and sustained reléase capability. Int. J. Pharm. 312, 66-74, 2006); o b) la reticulación directa de las ciclodextrinas utilizando moléculas capaces de reaccionar simultáneamente con grupos hidroxilo de varias ciclodextrinas (Rodriguez-Tenreiro, C, Alvarez-Lorenzo, C, Rodriguez-Perez, A., Concheiro, A., Torres-Labandeira, J.J. Estradiol sustained reléase from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm. 66, 55-62, 2007). Con el fin de implementar procedimientos sencillos y compatibles con el medio ambiente, se ha propuesto la reticulación directa de ciclodextrinas, en medio acuoso y condiciones suaves, utilizando como agentes reticulantes moléculas que contienen dos o más grupos glicidiléter en su estructura. En la solicitud de patente WO2006/089993 A2 se describe un procedimiento de obtención de hidrogeles de ciclodextrinas o sus derivados y éteres de celulosa hidrosolubles o sus derivados hidrosolubles, o ciclodextrinas o sus derivados y gomas guar o sus derivados, utilizando como agente reticulante moléculas que contienen dos o más grupos glicidiléter en su estructura. En el procedimiento según la solicitud de patente WO2006/089993 A2, la disolución de ciclodextrina con el agente reticulante "se transfiere a un molde adecuado" y tras la reticulación, "los hidrogeles se dividen en porciones de forma y tamaño adecuados y se utilizan tal como se encuentran al extraerlos del líquido de lavado o después de someterlos a desecación". In the state of the art, hydrogels constituted by cyclodextrins are known for the preparation of which have been carried out procedures that involve a) the previous formation of an aerobic or vinyl derivative of cyclodextrin capable of reacting with other acrylic or vinyl monomers (Siemoneit, U., Schmitt, C, Alvarez-Lorenzo, C, Luzardo, A., Otero-Espinar, F., Concheiro, A., Blanco-Méndez, J. Acrylic / cyclodextrin hydrogels with enhanced drug loading and sustained relée capability. Int. J. Pharm. 312, 66-74, 2006); or b) direct cross-linking of cyclodextrins using molecules capable of reacting simultaneously with hydroxyl groups of several cyclodextrins (Rodriguez-Tenreiro, C, Alvarez-Lorenzo, C, Rodriguez-Perez, A., Concheiro, A., Torres-Labandeira, JJ Estradiol sustained relée from high affinity cyclodextrin hydrogels. Eur. J. Pharm. Biopharm. 66, 55-62, 2007). In order to implement simple and environmentally compatible procedures, direct cross-linking of cyclodextrins, in aqueous medium and mild conditions, has been proposed using molecules that contain two or more glycidyl ether groups in their structure as crosslinking agents. Patent application WO2006 / 089993 A2 describes a process for obtaining hydrogels of cyclodextrins or their derivatives and water-soluble cellulose ethers or their water-soluble derivatives, or cyclodextrins or their derivatives and guar gums or their derivatives, using as crosslinking molecules that They contain two or more glycidyl ether groups in their structure. In the process according to patent application WO2006 / 089993 A2, the solution of cyclodextrin with the crosslinking agent "is transferred to a suitable mold" and after crosslinking, "the hydrogels are divided into portions of suitable shape and size and such are used. as they are when removed from the washing liquid or after being dried. "
Para ciertas aplicaciones farmacéuticas y en particular cuando se requiere una vectorización hacia tejidos o células concretas, la utilización de los hidrogeles como vehículos de fármacos sólo es posible si se presentan como sistemas multiparticulares constituidos por nanogeles de tamaño inferior a 200 nm (Raemdonck, K; Demeester, J; De Smedt, S. Advanced nanogel engineering for drug delivery, SoftMatter 5, 707-715, 2009; JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448-477). Los nanogeles se podrían obtener a partir de estructuras monolíticas, por pulverización o trituración, pero este procedimiento ("top-bottom" approach) es difícil de implementar en la práctica y las partículas resultantes presentan formas irregulares y su dispersión de tamaños es amplia. Los procedimientos que permiten formar los nanogeles directamente a partir de sus contituyentes ("bottom-up" approach) resultan más adecuados para nanogeles de tamaño controlado y forma principalmente esférica (JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448-477).  For certain pharmaceutical applications and in particular when a vectorization to specific tissues or cells is required, the use of hydrogels as drug carriers is only possible if they are presented as multiparticulate systems consisting of nanogels smaller than 200 nm in size (Raemdonck, K; Demeester, J; De Smedt, S. Advanced nanogel engineering for drug delivery, SoftMatter 5, 707-715, 2009; JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels / nanogels for drug delivery applications. Polym. Sci. 33 (2008) 448-477). The nanogels could be obtained from monolithic structures, by spraying or crushing, but this procedure ("top-bottom" approach) is difficult to implement in practice and the resulting particles have irregular shapes and their size dispersion is wide. The procedures that allow the formation of nanogels directly from their constituents ("bottom-up" approach) are more suitable for nanogels of controlled size and mainly spherical shape (JungKwon Oha, Ray Drumright, Daniel J. Siegwart, KrzysztofMatyjaszewski. The development of microgels / nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448-477).
Un procedimiento recientemente publicado se refiere a la síntesis de nanogeles mediante polimerización-precipitación de monómeros vinílicos de ciclodextrina junto con otros comonómeros acrílicos o vinílicos en agua a 70°C y ultrafiltración (Markus J. Kettel, Fíete Dierkes, Karola Schaefer, Martin Moeller, Andrij Pich. Aqueous nanogels modified with cyclodextrin. Polymer 52 (2011) 1917-1924). Este procedimiento requiere en una primera etapa la preparación previa de derivados vinílicos de ciclodextrina, seguida, en una segunda etapa, de la copolimerización con otros monómeros acrílicos o vinílicos. A recently published procedure refers to the synthesis of nanogels by polymerization-precipitation of vinyl cyclodextrin monomers together with other acrylic or vinyl comonomers in water at 70 ° C and ultrafiltration (Markus J. Kettel, Fiete Dierkes, Karola Schaefer, Martin Moeller, Andrij Pich. Aqueous nanogels modified with cyclodextrin. Polymer 52 (2011) 1917-1924). This procedure requires in a first stage the previous preparation of cyclodextrin vinyl derivatives, followed, in a second stage, of the copolymerization with other acrylic or vinyl monomers.
Descripción de la invención Los autores de la invención han desarrollado geles de tamaño nanométrico, que solucionan las limitaciones de los correspondientes hidrogeles monolíticos, ya que son útiles para aplicaciones para las que los monolíticos no se pueden emplear. De este modo, la invención proporciona geles nanométricos que poseen propiedades bien diferenciadas de los correspondientes hidrogeles monolíticos. El tamaño de los geles de la invención proporciona una superficie específica elevada lo que facilita los intercambios de materia con el medio en el que se encuentren y hace posible que atraviesen membranas celulares por endocitosis y que eludan el reconocimiento por el sistema fagocítico mononuclear. Description of the invention The authors of the invention have developed nanometric size gels, which solve the limitations of the corresponding monolithic hydrogels, since they are useful for applications for which the monolithic ones cannot be used. Thus, the invention provides nanometric gels that possess well differentiated properties from the corresponding monolithic hydrogels. The size of the gels of the invention provides a high specific surface which facilitates the exchanges of matter with the medium in which they are located and makes it possible for them to pass through cell membranes by endocytosis and elude recognition by the mononuclear phagocytic system.
Así, en un aspecto la invención se dirige a un hidrogel caracterizado por un diámetro hidrodinámico medio inferior a 1 micrómetro, que comprende una matriz de ciclodextrinas, donde las ciclodextrinas están unidas entre sí a través de un espaciador al que se unen mediante un grupo éter o amino. Thus, in one aspect the invention is directed to a hydrogel characterized by an average hydrodynamic diameter of less than 1 micrometer, comprising a matrix of cyclodextrins, where the cyclodextrins are linked together through a spacer to which they are joined by an ether group. or amino.
Una realización particular de la invención se refiere a un hidrogel como se ha definido anteriormente que adicionalmente comprende un polímero hidrosoluble. A particular embodiment of the invention relates to a hydrogel as defined above which additionally comprises a water-soluble polymer.
Las ciclodextrinas que constituyen el hidrogel de la invención les confieren una alta capacidad de incorporación de fármacos, sustancias activas y moléculas biológicas o tóxicas con estructuras y propiedades físico-químicas muy diversas. Así, el hidrogel como se ha definido anteriormente puede comprender además un ingrediente activo, una molécula biológica, o una molécula tóxica. The cyclodextrins that constitute the hydrogel of the invention confer a high capacity for the incorporation of drugs, active substances and biological or toxic molecules with very diverse structures and physicochemical properties. Thus, the hydrogel as defined above may further comprise an active ingredient, a biological molecule, or a toxic molecule.
En otro aspecto la invención se dirige a una composición farmacéutica que comprende el hidrogel como se ha definido anteriormente y al menos un excipiente farmacéuticamente aceptable. In another aspect the invention is directed to a pharmaceutical composition comprising the hydrogel as defined above and at least one pharmaceutically acceptable excipient.
En otro aspecto la invención se dirige a una composición cosmética que comprende el hidrogel como se ha definido anteriormente. In another aspect the invention is directed to a cosmetic composition comprising the hydrogel as defined above.
En otro aspecto la invención se dirige a una composición fitosanitaria que comprende el hidrogel como se ha definido anteriormente. La invención además proporciona un procedimiento adecuado para la preparación de los nanogeles de la invención que se basa en una aproximación a partir de los materiales que los constituyen, y no en una trituración de los hidrogeles monolíticos correspondientes. Este procedimiento presenta la ventaja de preparar los nanogeles en un único paso, integrando la fase de reticulación y emulsificación, y además permite el control de la estructura y morfología de los nanogeles. In another aspect the invention is directed to a phytosanitary composition comprising the hydrogel as defined above. The invention also provides a suitable process for the preparation of the nanogels of the invention that is based on an approximation from the materials that constitute them, and not on crushing the corresponding monolithic hydrogels. This procedure has the advantage of preparing the nanogels in a single step, integrating the cross-linking and emulsification phase, and also allows the control of the structure and morphology of the nanogels.
Por lo que en otro aspecto, la invención se refiere a un procedimiento para la preparación del hidrogel como se ha definido anteriormente que comprende: a) preparar una disolución acuosa que comprende una o varias ciclodextrinas, un agente reticulante que poseen dos ó más grupos funcionales que son capaces de reaccionar con los grupos hidroxilo de las ciclodextrinas para formar grupos éter o bien con grupos amino de las ciclodextrinas para formar grupos amino, y una sustancia de carácter ácido o básico, y opcionalmente un polímero hidrosoluble, As for another aspect, the invention relates to a process for the preparation of the hydrogel as defined above comprising: a) preparing an aqueous solution comprising one or more cyclodextrins, a crosslinking agent having two or more functional groups which are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups, and an acidic or basic substance, and optionally a water-soluble polymer,
b) preparar una disolución orgánica que comprende un di solvente orgánico, y opcionalmente un agente tensioactivo, b) preparing an organic solution comprising an organic solvent, and optionally a surfactant,
c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), c) mix under stirring the solutions prepared in steps a) and b),
d) mezclar la emulsión obtenida en la etapa c) con agua. d) mix the emulsion obtained in step c) with water.
En una realización particular, el procedimiento comprende además añadir un ingrediente activo o una molécula biológica. En otro aspecto, la invención se refiere al uso del hidrogel como se ha definido anteriormente para preparar un medicamento. In a particular embodiment, the process further comprises adding an active ingredient or a biological molecule. In another aspect, the invention relates to the use of the hydrogel as defined above to prepare a medicament.
En otro aspecto, la invención se refiere al uso del hidrogel como se ha definido anteriormente, en sistemas capaces de secuestrar sustancias tóxicas, moléculas producidas por organismos vivos, agentes contaminantes o residuos líquidos. In another aspect, the invention relates to the use of the hydrogel as defined above, in systems capable of sequestering toxic substances, molecules produced by living organisms, pollutants or liquid waste.
Descripción de las figuras Description of the figures
Figura 1. Microfotografía de microscopía de transmisión electrónica de nanogeles de γ- ciclodextrina antes de someterse al proceso de liofilización.  Figure 1. Microscopy micrograph of electron transmission of γ-cyclodextrin nanogels before undergoing the lyophilization process.
Figura 2. Microfotografía de microscopía de transmisión electrónica de nanogeles de γ- ciclodextrina e hidroxipropilmetilcelulosa antes de someterse al proceso de liofilización. Figura 3. Espectros de infrarrojo de of yCO (1), HPpCD (2), HPMC (3), agar-agar (4), YCDo,o.5 (5), YCD-HPMC2,I (6), HPpCD0,o.5 (7) y HPpCD-agari>0.5 (8) en la región 1600- 800 cm"1. Figura 4. Perfiles de difusión de 3-MBA a partir de una disolución sin nanogeles o de disp e r s i o n e s d e n an o g e l e s d e γ-ciclodextrina o de γ-ciclodextrina e hidroxipropilmetilcelulosa. Figure 2. Microscopy micrograph of electron transmission of γ-cyclodextrin and hydroxypropylmethylcellulose nanogels before undergoing the lyophilization process. Figure 3. Infrared spectra of of yCO (1), HPpCD (2), HPMC (3), agar-agar (4), YCDo, o.5 (5), YCD-HPMC 2 , I (6), HPpCD 0 , or. 5 (7) and HPpCD-agari > 0 . 5 (8) in the region 1600-800 cm "1. Figure 4. Diffusion profiles of 3-MBA from a solution without nanogels or available in γ-cyclodextrin or γ-cyclodextrin and hydroxypropylmethylcellulose ogels.
Figuras 5A, 5B y 5C. Perfiles de cesión de dexametasona obtenidos a partir de una disolución de dexametasona (código Dex), de una disolución de dexametasona a la que se le incorporó γ-ciclodextrina libre (código yCD), y de nanogeles de γ-ciclodextrina y FIPMC preparados con distintas proporciones de Span 80 en la fase orgánica (0%, código yCD-HPMC2,o; 0.5%, código yCD-HPMC2,0 5; 1.0%, código yCD-HPMC2>1; 2.0%, código yCD-HPMC2;2). Figures 5A, 5B and 5C. Dexamethasone assignment profiles obtained from a dexamethasone solution (Dex code), a dexamethasone solution to which free γ-cyclodextrin (yCD code) was incorporated, and γ-cyclodextrin and FIPMC nanogels prepared with different proportions of Span 80 in the organic phase (0%, code and CD-HPMC 2 , or; 0.5%, code and CD-HPMC 2 , 0 5 ; 1.0%, code and CD-HPMC 2>1; 2.0%, code and CD-HPMC 2; 2 ).
Figura 6. Concentración de dexametasona ^g/ml) en el humor acuoso tras la aplicación tópica de una gota de Maxidex® (·) o de una gota de formulación de nanogeles de ciclodextrina (o) en ojos de conejos. La concentración de dexametasona alcanzada fue significativamente mayor tras la aplicación de la formulación de nanogeles (P<0.04, t test pareado). Descripción detallada de la invención  Figure 6. Concentration of dexamethasone ^ g / ml) in the aqueous humor after topical application of a drop of Maxidex® (·) or a drop of cyclodextrin (or) nanogels formulation in rabbit eyes. The dexamethasone concentration achieved was significantly higher after the application of the nanogels formulation (P <0.04, t-test matched). Detailed description of the invention
Para los fines de la presente invención el término "hidrogel" hace referencia a un entramado de cadenas de polímeros hidrofílicos, que pueden estar reticuladas por distintos métodos, y que contiene una elevada proporción de agua. Los hidrogeles se pueden presentar en forma macroscópica o confinados en dimensiones más pequeñas. Se entiende por nanogel, un hidrogel de tamaño submicrométrico (Jung Kwon Oha, Ray Drumright, Daniel J. Siegwart, Krzysztof Matyj aszewski . The development of microgels/nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448-477). Como se describió anteriormente, la presente invención se dirige a un hidrogel caracterizado por un diámetro hidrodinámico medio inferior a 1 micrómetro, que comprende una matriz de ciclodextrinas, donde las ciclodextrinas están unidas entre sí a través de un espaciador al que se unen mediante un grupo éter o amino. Los nanogeles de la invención son capaces de incorporar elevadas proporciones de agua sin disolverse. Uno de los objetivos de la invención es proporcionar nanogeles útiles en el transporte y liberación de fármacos y que además sean capaces de dirigirse hacia tejidos o células concretas. Así, en una realización particular, el hidrogel como se ha descrito anteriormente presenta un diámetro hidrodinámico medio comprendido entre 1 nm y 400 nm. En una realización más particular, el nanogel de la invención posee un diámetro hidrodinámico medio comprendido entre 1 nm y 200 nm. For the purposes of the present invention the term "hydrogel" refers to a network of hydrophilic polymer chains, which can be crosslinked by different methods, and which contains a high proportion of water. Hydrogels can be presented macroscopically or confined in smaller dimensions. Nanogel is understood as a submicron size hydrogel (Jung Kwon Oha, Ray Drumright, Daniel J. Siegwart, Krzysztof Matyj aszewski. The development of microgels / nanogels for drug delivery applications. Prog. Polym. Sci. 33 (2008) 448- 477). As described above, the present invention is directed to a hydrogel characterized by an average hydrodynamic diameter of less than 1 micrometer, comprising a matrix of cyclodextrins, where the cyclodextrins are linked together through a spacer to which they are joined by a group ether or amino. The nanogels of the invention are capable of incorporating high proportions of water without dissolving. One of the objectives of the invention is to provide nanogels useful in the transport and release of drugs and which are also capable of targeting specific tissues or cells. Thus, in a particular embodiment, the hydrogel as described above has an average hydrodynamic diameter between 1 nm and 400 nm. In a more particular embodiment, the nanogel of the invention has an average hydrodynamic diameter between 1 nm and 200 nm.
Para la mejor comprensión de la invención es importante diferenciar los hidrogeles de tamaño nanométrico de otros sistemas de tamaño nanométrico como pueden ser las nanopartículas. Las nanopartículas son partículas sólidas de tamaño comprendido entre 1 y 1000 nm (Encyclopedia of Pharmaceutical Technology, J. Swarbrick y J.C. Boylan. Vol. 10. Marcel Dekker Inc., New York, p. 165) que dependiendo de su estructura interna se diferencian en dos grupos: nanocápsulas y nanoesferas. Las nanocápsulas constan de una cavidad rodeada por una capa de polímero; y las nanoesferas son sistemas matriciales continuos (F . Rocha Formiga, E. Ansorena, A. Estella-Hermoso De Mendoza, E. Imbuluzqueta, D. González, M. J. Blanco Prieto. Nanosistemas a base de poliésteres. Monografía XXVIII de la Real Academia Nacional de Farmacia, Madrid 2009, p.41). En comparación a los liposomas y las nanocápsulas, los nanogeles son físicamente más estables; y las nanopartículas no poseen la capacidad de incorporar elevadas cantidades de agua sin disgregarse, característica de los geles.  For the best understanding of the invention, it is important to differentiate nanometer-sized hydrogels from other nanometric-sized systems such as nanoparticles. Nanoparticles are solid particles between 1 and 1000 nm in size (Encyclopedia of Pharmaceutical Technology, J. Swarbrick and JC Boylan. Vol. 10. Marcel Dekker Inc., New York, p. 165) which, depending on their internal structure, differ in two groups: nanocapsules and nanospheres. The nanocapsules consist of a cavity surrounded by a polymer layer; and the nanospheres are continuous matrix systems (F. Rocha Formiga, E. Ansorena, A. Estella-Hermoso De Mendoza, E. Imbuluzqueta, D. González, MJ Blanco Prieto. Polyester-based nanosystems. Monograph XXVIII of the Royal National Academy de Farmacia, Madrid 2009, p.41). In comparison to liposomes and nanocapsules, nanogels are physically more stable; and the nanoparticles do not have the ability to incorporate high amounts of water without disintegrating, characteristic of gels.
Ciclodextrinas reticuladas Cross-linked cyclodextrins
El término "ciclodextrinas" en la presente invención se refiere a ciclodextrinas naturales, ciclodextrinas sintéticas y semisintéticas, de manera que este término incluye por ej emplo, sin que esto suponga una limitación, ciclodextrinas de 6, 7, y 8 miembros (conocidas como alfa, beta, y gamma, respectivamente), ciclodextrinas de más de 8 miembros (conocidas como grandes ciclodextrinas) y derivados de ciclodextrinas. Se entiende por derivados de ciclodextrinas, las ciclodextrinas sustituidas en algunos de sus grupos hidroxilo por grupos funcionales, por ejemplo los que se recogen en la siguiente tabla:  The term "cyclodextrins" in the present invention refers to natural cyclodextrins, synthetic and semi-synthetic cyclodextrins, such that this term includes for example, without this being a limitation, cyclodextrins of 6, 7, and 8 members (known as alpha , beta, and gamma, respectively), cyclodextrins with more than 8 members (known as large cyclodextrins) and cyclodextrin derivatives. Cyclodextrin derivatives are understood as cyclodextrins substituted in some of their hydroxyl groups by functional groups, for example those listed in the following table:
Tipo de derivado a-Ciclodextrina β-Ciclodextrina γ-CiclodextrinaType of derivative a-Cyclodextrin β-Cyclodextrin γ-Cyclodextrin
Alquilado Metil- Metil- Metil-Rented Methyl- Methyl- Methyl-
Butil- Etil- Butil-Butyl- Ethyl- Butyl-
Butil- Pentil-Butyl- Pentil-
Amino Mono-6-amino-6-deoxi- Mono-6-amino-6- Mono-6-amino-6- deoxi- deoxi-Amino Mono-6-amino-6-deoxy- Mono-6-amino-6- Mono-6-amino-6- deoxy deoxy
Hidroxialquilado 2-hidroxipropil- Hidroxietil- Hidroxietil-Hydroxyalkylated 2-hydroxypropyl- Hydroxyethyl- Hydroxyethyl-
2-hidroxipropil- 2-hidroxipropil-2-hydroxypropyl- 2-hydroxypropyl-
2-hidroxibutil-2-hydroxybutyl-
Esterificado Acetil- Acetil- Acetil-Esterified Acetyl-Acetyl-Acetyl
Succinil- Propionil- Succinil-Succinil- Propionil- Succinil-
Butiril-Butiril-
Succinil-Succinil-
Benzoil-Benzoil-
Palmitil-Palmitil-
Toluensulfonil-Toluensulfonyl-
Esterificado y Acetil metil- alquilado Acetil butil-Esterified and Acetyl methyl-alkylated Acetyl butyl-
Ramificado Glucosil- Glucosil- Glucosil-Branched Glucosil- Glucosil- Glucosil-
Maltosil- Maltosil- Maltosil-Maltosil- Maltosil- Maltosil-
Iónico Carboximetil eter- Carboximetil eter- Carboximetil eter-Ionic Carboxymethyl ether- Carboxymethyl ether- Carboxymethyl ether-
Fosfato éster- Carboximetil etil- Fosfato éster- Fosfato éster- 3-trimetilamoniun- 2-hidroxipropil eter- Sulfobutil éter-Phosphate ester- Carboxymethyl ethyl- Phosphate ester- Phosphate ester- 3-trimethylammoniun- 2-hydroxypropyl ether- Sulfobutyl ether-
Polimerizado Polímeros simples Polímeros simples Polímeros simples Polymerized Simple polymers Simple polymers Simple polymers
Carboximetil- Carboximetil- Carboximetil-  Carboxymethyl- Carboxymethyl- Carboxymethyl-
Los derivados de ciclodextrina también incluyen sus sales farmacéuticamente aceptables. Los derivados amino de ciclodextrinas pueden obtenerse mediante el procedimiento descrito en Nature Protocols, 2008, 3, 691-697. Cyclodextrin derivatives also include their pharmaceutically acceptable salts. The amino derivatives of cyclodextrins can be obtained by the procedure described in Nature Protocols, 2008, 3, 691-697.
En el nanogel de la invención las ciclodextrinas se encuentran reticuladas, de manera que una ciclodextrina está unida a uno o más espaciadores a los que a su vez están unidas otras ciclodextrinas, formando así una matriz. Las ciclodextrinas y el espaciador están unidos covalentemente a través de un grupo éter o amino. In the nanogel of the invention the cyclodextrins are crosslinked, so that a cyclodextrin is linked to one or more spacers to which other cyclodextrins are in turn, thus forming a matrix. The cyclodextrins and the spacer are covalently linked through an ether or amino group.
En una realización particular, el espaciador comprende una estructura carbonada que se selecciona de entre cadenas de alquilo, arilo, arilal quilo y poliéter, lineales o ramificadas, opcionalmente sustituidas. En una realización particular, el espaciador es un poliéter. "Alquilo" se refiere a una cadena hidrocarbonada lineal o ramificada, cíclica o acíclica formada por átomos de carb ono e hi drógeno, sin insaturaci ones, de 1 a 12, preferiblemente de uno a ocho, más preferiblemente de uno a cuatro átomos de carbono, opcionalmente sustituida.  In a particular embodiment, the spacer comprises a carbon skeleton that is selected from linear, branched, optionally substituted alkyl, aryl, aryl, and polyether chains. In a particular embodiment, the spacer is a polyether. "Alkyl" refers to a linear or branched, cyclic or acyclic hydrocarbon chain consisting of carbon and hydrogen atoms, without unsaturation, from 1 to 12, preferably from one to eight, more preferably from one to four carbon atoms , optionally substituted.
"Arilo" se refiere a un hidrocarburo aromático de 6 a 10 átomos de carbono, tal como fenilo o naftilo, opcionalmente sustituido por un grupo alquilo u oxialquilo, que pueden estar a su vez sustuidos. "Arilalquilo" se refiere a uno o varios grupos arilo unidos al resto de la molécula mediante un radical alquilo, por ejemplo, bencil, 3-(fenil)-propil, etc. "Aryl" refers to an aromatic hydrocarbon of 6 to 10 carbon atoms, such as phenyl or naphthyl, optionally substituted by an alkyl or oxyalkyl group, which may in turn be substituted. "Arylalkyl" refers to one or more aryl groups attached to the rest of the molecule by an alkyl radical, for example, benzyl, 3- (phenyl) -propyl, etc.
"Poliéter" se refiere a una cadena con uno o más grupos éter. En una realización particular, el poliéter es un alquilo sin insaturaciones, o un arilalquilo, en el que se intercalan uno o más grupos éter en la cadena alquílica, y que está opcionalmente sustituido por un grupo funcional seleccionado entre hidroxilo, alquilo C1-C6, hidroxialquilo C1-C6, alquiloxi alquilo C 1-C6, y OR3, donde R3 es un alquilo C 1-C4 opcionalmente sustituido por hidroxilo, alquilo C 1-C6, hidroxialquilo C 1-C6 o glicidiléter. "Polyether" refers to a chain with one or more ether groups. In a particular embodiment, the polyether is an unsaturated alkyl, or an arylalkyl, in which one or more ether groups are intercalated in the alkyl chain, and which is optionally substituted by a functional group selected from hydroxyl, C1-C6 alkyl, C1-C6 hydroxyalkyl, C 1-C6 alkyloxy, and OR 3 , where R 3 is a C 1-C 4 alkyl optionally substituted by hydroxyl, C 1-C 6 alkyl, C 1-C 6 hydroxyalkyl or glycidyl ether.
En una realización particular, el poliéter presenta la fórmula -(CHRi-CHR20)n-, donde n tiene un valor de entre 1 y 100, preferiblemente entre 1 y 50, más preferiblemente entre 1 y 10, Ri y R2 pueden ser iguales o diferentes y se seleccionan de entre el grupo constituido por hidrógeno, hidroxilo, alquilo C1-C6, hidroxialquilo C1-C6, alquiloxi alquilo C1-C6, y OR3, donde R3 es un alquilo C1-C4 opcionalmente sustituido por hidroxilo, alquilo C1-C6, hidroxialquilo C1-C6 o glicidiléter. In a particular embodiment, the polyether has the formula - (CHRi-CHR 2 0) n-, where n has a value between 1 and 100, preferably between 1 and 50, more preferably between 1 and 10, Ri and R 2 can be the same or different and are selected from the group consisting of hydrogen, hydroxyl, C1-C6 alkyl, hydroxyalkyl C1-C6, alkyloxy C1-C6 alkyl, and OR 3 , where R 3 is a C1-C4 alkyl optionally substituted by hydroxyl , C1-C6 alkyl, C1-C6 hydroxyalkyl or glycidyl ether.
Los espaciadores del nanogel de la invención, como se ha descrito anteriormente, proceden de agentes retí culantes que poseen dos ó más grupos funcionales que son capaces de reaccionar con los grupos hidroxilo de las ciclodextrinas para formar grupos éter o bien con grupos amino de las ciclodextrinas para formar grupos amino. Dichos grupos funcionales son conocidos por el experto en la materia y algunos ejemplos, sin limitarse a ellos, son los siguientes: grupo 1,2-epoxietano, glicidiléter, haluro de alquilo primario, tosilato de alquilo primario, etc. En una realización más particular, el grupo capaz de reaccionar con los grupos hidroxilo o amino de las ciclodextrinas es un grupo glicidiléter.  The nanogel spacers of the invention, as described above, come from crosslinking agents that possess two or more functional groups that are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups. Said functional groups are known to the person skilled in the art and some examples, without being limited to them, are the following: 1,2-epoxyethane group, glycidyl ether, primary alkyl halide, primary alkyl tosylate, etc. In a more particular embodiment, the group capable of reacting with the hydroxyl or amino groups of the cyclodextrins is a glycidyl ether group.
En una realización particular, el agente reticulante comprende un poliéter, opcionalmente sustituido, y dos o más grupos glicidiléter. In a particular embodiment, the crosslinking agent comprises an optionally substituted polyether, and two or more glycidyl ether groups.
Los glicidiléteres cuentan con la ventaja de que presentan una toxicidad muy baja. Sus amplios márgenes de seguridad, junto con la ausencia de efectos a nivel repoductivo y endocrino y de efectos carcinogénicos, los hacen adecuados como componentes de envases que se mantiene en contacto prolongado con alimentos (Poole et al, Food Additives & Contaminants 21 : 905-919, 2004). Los agentes retí culantes con grupos glicidiléter (conocidos también por epóxidos, oxiranos u óxidos de alqueno; Allinger et al., Química Orgánica, 2a Ed. Reverté SA, Barcelona, 1988, p. 639), permiten además obtener hidrogeles de polisacáridos hidrosolubles sin necesidad de formar previamente derivados de estos polímeros para introducir grupos polimerizables ni de modificar previamente su estructura (Rodríguez et al, op. cited 2003). Glycidyl ethers have the advantage that they have a very low toxicity. Their wide safety margins, together with the absence of repoductive and endocrine effects and of carcinogenic effects, make them suitable as components of containers that are kept in prolonged contact with food (Poole et al, Food Additives & Contaminants 21: 905- 919, 2004). The RETI culantes agents with glycidyl ether groups (also known as epoxides, oxirane or alkene oxides;... Allinger et al, Organic Chemistry, 2 Ed Reverté SA, Barcelona, 1988, p 639), also allow obtain hydrogels of water-soluble polysaccharides without the need to form derivatives of these polymers beforehand to introduce polymerizable groups or to modify their structure previously (Rodríguez et al, op. cited 2003).
En una realización más particular, los agentes reticulantes se seleccionan de entre diglicidileter, etilenglicoldiglicidileter, di eti 1 engl i c ol di gl i ci di 1 éter, p oli eti 1 engl i col di gl i ci- dileter, poliglicerolpoliglicidil eter, propilenglicoldiglicidileter, gliceroldiglicidileter, gliceroltriglicidileter, o bisfenol A diglicidileter. In a more particular embodiment, the crosslinking agents are selected from among diglycidylether, ethylene glycol glycidylether, di eti 1 engl ic ol di gl i ci di 1 ether, p oli eti 1 engl i col di gl i ciledter, polyglycerol polyglycidyl ether, propylene glycol glycidyl ether, glyceroldiglycidylether, glyceroltriglycidylether, or bisphenol A diglycidyl ether.
En una realización particular, la proporción en peso seco de ciclodextrina está comprendida entre el 1 y el 95%, y la proporción en peso seco del agente reticulante está comprendida entre el 99% y el 5% del peso total del hidrogel seco de la invención como se ha descrito anteriormente. En una realización más particular, la proporción en peso seco de ciclodextrina está comprendida entre el 4 y el 70%, y la proporción en peso seco del agente reticulante está comprendida entre el 96% y el 30% del peso total del hidrogel seco. In a particular embodiment, the dry weight ratio of cyclodextrin is between 1 and 95%, and the dry weight ratio of the crosslinking agent is between 99% and 5% of the total dry hydrogel weight of the invention. as described above. In a more particular embodiment, the dry weight ratio of cyclodextrin is between 4 and 70%, and the dry weight ratio of the crosslinking agent is between 96% and 30% of the total weight of the dried hydrogel.
Figure imgf000012_0001
Diglicidiléter
Figure imgf000012_0001
Diglycidyl ether
Propilenglicol diglicidiléter  Propylene Glycol Diglycidyl Ether
Etilenglicol diglicidiléter
Figure imgf000012_0002
Ethylene glycol diglycidyl ether
Figure imgf000012_0002
Glicerol diglicidiléter  Glycerol diglycidyl ether
Dietilenglicol diglicidiléter  Diethylene Glycol Diglycidyl Ether
Figure imgf000012_0003
Polietilenglicol diglicidiléter
Figure imgf000012_0003
Polyethylene glycol diglycidyl ether
Glicerol triglicidiléter  Glycerol triglycidyl ether
Figure imgf000012_0004
Figure imgf000012_0004
Poliglicerol poliglicidiléter  Polyglycerol Polyglycidyl Ether
Bisfenol A diglicidiléter  Bisphenol A diglycidyl ether
Polímero hidrosoluble Water soluble polymer
Como se ha descrito anteriormente, los nanogeles de la invención pueden incorporar polímeros hidrosolubles. Por "polímero hidrosoluble" se entiende cualquier macromolécula natural, semisintética o sintética que se pueda dispersar en medio acuoso formando disoluciones o sistemas coloidales.  As described above, the nanogels of the invention can incorporate water soluble polymers. By "water-soluble polymer" is meant any natural, semi-synthetic or synthetic macromolecule that can be dispersed in aqueous medium forming colloidal solutions or systems.
Con el fin de modular las propiedades de los hidrogeles de la invención los autores encontraron que los polisacáridos hidrosolubles son adecuados para modular la afinidad de los nanogeles por los fármacos y para modular los perfiles de cesión. Los polisacáridos están constituidos por glúcidos que presentan grupos hidroxilo reactivos similares a los de las ciclodextrinas, por lo que comparativamente a otros polímeros, tienen la ventaja de poder reaccionar con el agente reticulante de manera similar a como lo hacen las ciclodextrinas, lo que facilita la obtención de entramados homogéneos. In order to modulate the properties of the hydrogels of the invention, the authors found that water-soluble polysaccharides are suitable for modulating the affinity of nanogels for drugs and for modulating transfer profiles. The polysaccharides are constituted by carbohydrates that have reactive hydroxyl groups similar to those of cyclodextrins, so comparatively to other polymers, they have the advantage of being able to react with the crosslinking agent in a similar way as cyclodextrins do, which facilitates obtaining homogeneous frameworks.
En una realización particular, el polímero hidrosoluble es un polisacárido hidrosoluble o sus derivados. Se entiende por derivados de un polisacárido hidrosoluble, sus sales farmacéuticamente aceptadas, y los polisacáridos hidrosolubles resultantes de la sustitución en algunos de sus grupos hidroxilo con grupos funcionales, como por ejemplo, alquilo, arilo, arilalquilo, alquilcarbonilo, alcoxicarbonilo, etc. In a particular embodiment, the water-soluble polymer is a water-soluble polysaccharide or its derivatives. Derivatives of a water-soluble polysaccharide, its pharmaceutically accepted salts, and water-soluble polysaccharides resulting from the substitution in some of its hydroxyl groups with functional groups, such as, for example, alkyl, aryl, arylalkyl, alkylcarbonyl, alkoxycarbonyl, etc.
En una realización más particular, el polisacárido hidrosoluble se selecciona de entre el grupo constituido por dextranos, alginatos, almidón, glucógeno, quitosano, gomas guar, agar-agar, gomas garrafiña y éteres de celulosa solubles en agua, y sus sales farmacéuticamente aceptables.  In a more particular embodiment, the water-soluble polysaccharide is selected from the group consisting of dextrans, alginates, starch, glycogen, chitosan, guar gums, agar-agar, water-soluble cellulose gums and cellulose ethers, and their pharmaceutically acceptable salts.
En una realización particular, los éteres de celulosa solubles en agua se seleccionan de entre metilcelulosa (MC), hidroxietilmetilcelulosa (HEMC), hidroxipropilcelulosa (HPC), hidroxipropilmetilcelulosa (HPMC), hidroxietilcelulosa (HEC), etilhidroxietilcelulosa (EHEC), carboximetilcelulosa sódica (CMCNa), sales de amonio cuaternario de hidroxietilcelulosa con sustituyente trimetilamonio (Polyquaternium 10), y copolímeros de hidroxietil celulosa y cloruro de dimetil dialil amonio (Polyquaternium 4).  In a particular embodiment, the water soluble cellulose ethers are selected from methyl cellulose (MC), hydroxyethylmethyl cellulose (HEMC), hydroxypropyl cellulose (HPC), hydroxypropylmethyl cellulose (HPMC), hydroxyethyl cellulose (HEC), ethylhydroxyethyl cellulose (EHC) N-cellulose ), quaternary ammonium salts of hydroxyethylcellulose with trimethylammonium substituent (Polyquaternium 10), and copolymers of hydroxyethyl cellulose and dimethyl diallyl ammonium chloride (Polyquaternium 4).
S on ej empl o s de derivado s de gom a guar, su s étere s hi droxipropilados o carboxihidroxipropilados, sus derivados catiónicos (Ecopol) y los productos resultantes de la depolimerización de las gomas guar. For example, s gom a guar derivatives, their hydroxypropylated or carboxyhydroxypropylated esters, their cationic derivatives (Ecopol) and the products resulting from depolymerization of guar gums.
En una realización particular, el polímero hidrosoluble es un polímero acrílico de carácter neutro o ionizable con la condición de ser soluble en medio acuoso. El polímero acrílico queda interpenetrado en el entremado de ciclodextrinas, no está unido covalentemente a las ciclodextrinas ni a los espaciadores.  In a particular embodiment, the water-soluble polymer is a neutral or ionizable acrylic polymer with the condition of being soluble in aqueous medium. The acrylic polymer is interpenetrated in cyclodextrin intermingling, it is not covalently bound to cyclodextrins or spacers.
En una realización más particular, el polímero acrílico soluble en agua se selecciona de entre el grupo constituido por ácido poliacrílico, poli-N-isopropilacrilamida, copolímeros de ácido metacrílico y etil acrilato, copolímeros de ácido metacrílico, metil acrilato y metil metacrilato, y copolímeros de dimetilaminoetil metacrilato, butil metacrilato y metil metacrilato. En una realización particular, la proporción en peso seco de ciclodextrina está comprendida entre el 1% y el 95%; la proporción en peso seco de polímero hidrosoluble está comprendida entre el 0.05% y el 95%; y la proporción en peso seco del agente reticulante está comprendida entre 98.95% y el 4% del peso total del hidrogel seco de la invención como se ha descrito anteriormente. En una realización más particular, la proporción en peso seco de ciclodextrina está comprendida entre el 4 y el 70%, la proporción en peso seco de polímero hidrosoluble está comprendida entre el 0.1% y el 20%; y la proporción en peso seco del agente reticulante está comprendida entre el 96% y el 30%) del peso total del hidrogel seco. In a more particular embodiment, the water-soluble acrylic polymer is selected from the group consisting of polyacrylic acid, poly-N-isopropylacrylamide, methacrylic acid and ethyl acrylate copolymers, methacrylic acid copolymers, methyl acrylate and methyl methacrylate, and copolymers. of dimethylaminoethyl methacrylate, butyl methacrylate and methyl methacrylate. In a particular embodiment, the dry weight ratio of cyclodextrin is between 1% and 95%; the dry weight ratio of water-soluble polymer is between 0.05% and 95%; and the dry weight ratio of the crosslinking agent is between 98.95% and 4% of the total dry hydrogel weight of the invention as described above. In a more particular embodiment, the dry weight ratio of cyclodextrin is between 4 and 70%, the dry weight ratio of water soluble polymer is between 0.1% and 20%; and the dry weight ratio of the crosslinking agent is between 96% and 30%) of the total weight of the dried hydrogel.
En una realización particular la invención se refiere a un hidrogel según se describió anteriormente, seleccionado de entre el grupo de los siguientes hidrogeles constituidos por: In a particular embodiment the invention relates to a hydrogel as described above, selected from the group of the following hydrogels consisting of:
a) gamma-ciclodextrina y etilenglicoldiglicidileter,  a) gamma-cyclodextrin and ethylene glycol glycidyl ether,
b) gamma-ciclodextrina, etilenglicoldiglicidileter e hidroxipropilmetilcelulosa, c) gamma-ciclodextrina, etilenglicoldiglicidileter y agar  b) gamma-cyclodextrin, ethylene glycol glycidyl ether and hydroxypropyl methylcellulose, c) gamma cyclodextrin, ethylene glycol glycidyl ether and agar
d) hidroxipropil-beta-ciclodextrina, etilenglicoldiglicidileter e hidroxipropilmetilcelulosa,  d) hydroxypropyl-beta-cyclodextrin, ethylene glycol glycidyl ether and hydroxypropyl methylcellulose,
e) hidroxipropil-beta-ciclodextrina, etilenglicoldiglicidileter y agar Ingrediente activo y moléculas biológicas  e) hydroxypropyl-beta-cyclodextrin, ethylene glycol glycidyl ether and agar Active ingredient and biological molecules
Los nanogeles objeto de la presente invención son adecuados para asociar ingredientes activos o moléculas biológicas independientemente de las características de solubilidad de los mismos. La capacidad de asociación dependerá de la molécula correspondiente.  The nanogels object of the present invention are suitable for associating active ingredients or biological molecules regardless of their solubility characteristics. The ability to associate will depend on the corresponding molecule.
El término "ingrediente activo" se refiere a cualquier sustancia que se utiliza en el tratamiento, cura, prevención o diagnóstico de una enfermedad o que se utiliza para mejorar el bienestar físico y mental de seres humanos y animales, así como aquel compuesto que se destina a destruir, impedir la acción, contrarrestar o neutralizar, cualquier organismo nocivo, o bien cualquier sustancia que se utiliza como cosmético o de higiene, así como aquel compuesto que se destina a regenerar tejidos o en ingeniería de tejidos. The term "active ingredient" refers to any substance that is used in the treatment, cure, prevention or diagnosis of a disease or that is used to improve the physical and mental well-being of humans and animals, as well as that compound that is intended to destroy, prevent action, counteract or neutralize, any harmful organism, or any substance that is used as cosmetic or hygiene, as well as that compound that is intended to regenerate tissues or tissue engineering.
Por "moléculas biológicas" se entiende cualquier molécula sintetizada en un organismo vivo, como por ejemplo, proteínas, carbohidratos, lípidos, ácidos nucléicos, aminoácidos, etc.. En una realización particular, la molécula biológica se selecciona entre péptidos, proteínas, compuestos lipidíeos o lipofílicos, compuestos sacarídicos, compuestos de ácidos nucleicos o nucleótidos como oligonucleótidos, polinucleótidos o bien combinaciones de las moléculas citadas. En una realización particular de la invención, el ingrediente activo o la molécula biológica poseen actividad antifúngica, antiséptica o antinflamatoria, o bien es una molécula de interés en ingeniería de tejidos, medicina regenerativa, cosmética o de higiene. En una realización particular, el ingrediente activo es un antiinflamatorio. En una realización más particular el ingrediente activo es un antiinflamatorio esteroideo. By "biological molecules" is meant any molecule synthesized in a living organism, such as, for example, proteins, carbohydrates, lipids, nucleic acids, amino acids, etc. In a particular embodiment, the biological molecule is selected from peptides, proteins, lipid compounds. or lipophilic, saccharide compounds, nucleic acid or nucleotide compounds such as oligonucleotides, polynucleotides or combinations of the aforementioned molecules. In a particular embodiment of the invention, the active ingredient or the biological molecule possesses antifungal, antiseptic or anti-inflammatory activity, or is a molecule of interest in tissue engineering, regenerative, cosmetic or hygiene medicine. In a particular embodiment, the active ingredient is an anti-inflammatory. In a more particular embodiment, the active ingredient is a steroidal anti-inflammatory.
La proporción de ingrediente activo o molécula biológica incorporado dependerá en cada caso de la naturaleza del ingrediente activo o molécula biológica que va a incorporarse, la indicación para la que se utiliza y la eficiencia de administración.  The proportion of active ingredient or biological molecule incorporated will depend in each case on the nature of the active ingredient or biological molecule to be incorporated, the indication for which it is used and the efficiency of administration.
Según otra realización particular, el nanogel de la invención se encuentra en forma liofilizada.  According to another particular embodiment, the nanogel of the invention is in lyophilized form.
Dadas las características de las ciclodextrinas, que presentan compatibilidad ocular, los nanogeles de la invención son adecuados como sistemas de liberación de ingredientes activos o moléculas biológicas para tratamientos oftálmicos.  Given the characteristics of cyclodextrins, which have ocular compatibility, the nanogels of the invention are suitable as active ingredient release systems or biological molecules for ophthalmic treatments.
En una realización particular, el nanogel de la invención se usa en la preparación de un medicamento para el tratamiento de enfermedades oftálmicas.  In a particular embodiment, the nanogel of the invention is used in the preparation of a medicament for the treatment of ophthalmic diseases.
La enfermedades oftálmicas a las que se dirige la invención son tanto las que afectan a la superficie ocular, como las que afectan a las estructuras internas del ojo. Un ejemplo de enfermedades oftálmicas a las que se dirige la invención, pero sin limitarse a las mismas, son alergias severas, agudas y crónicas, procesos inflamatorios que involucre a los ojos como herpes zoster oftálmico, iritis, iridociclitis, coriorretinitis, uveítis difusa posterior y corioiditis, neuritis óptica, oftalmía simpática, inflamación del segmento anterior, conjuntivitis alérgica, queratitis, úlceras alérgicas corneales y marginales, infecciones bacterianas, infecciones virales, degeneraciones como degeneración macular, blefaritis, conjuntivitis, glaucoma, tumores benignos o malignos, retinopatías, etc. En otro aspecto la invención se dirige a una solución acuosa estéril que comprende un hidrogel según se ha anteriormente. En una realización particular la solución acuosa estéril comprende entre 2 mg/mL y 100 mg/mL del hidrogel.  The ophthalmic diseases to which the invention is directed are those that affect the ocular surface, as well as those that affect the internal structures of the eye. An example of ophthalmic diseases to which the invention is directed, but not limited to them, are severe, acute and chronic allergies, inflammatory processes involving the eyes such as ophthalmic herpes zoster, iritis, iridocyclitis, chorioretinitis, posterior diffuse uveitis and chorioiditis, optic neuritis, sympathetic ophthalmia, inflammation of the anterior segment, allergic conjunctivitis, keratitis, corneal and marginal allergic ulcers, bacterial infections, viral infections, degenerations such as macular degeneration, blepharitis, conjunctivitis, glaucoma, benign or malignant tumors, retinopathies, etc. In another aspect the invention is directed to a sterile aqueous solution comprising a hydrogel as described above. In a particular embodiment, the sterile aqueous solution comprises between 2 mg / mL and 100 mg / mL of the hydrogel.
En otro aspecto la invención se dirige a un método para tratar enfermedades oftálmicas que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito anteriomente o la solución acusosa estéril como se ha descrito anteriormente. En una realización particular la invención se refiere a un método para tratar cualquiera de las enfermedades oftálmicas descritas anteriormente que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito anteriomente o la solución acusosa como se ha descrito anteriomente. Los nanogeles de la invención, con o sin ingrediente activo o moléculas biológicas incorporadas, se pueden usar como tales o como componentes base de formas farmacéuticas, medicamentos y productos fito sanitarios para el tratamiento de estados patológicos o fisiológicos en humanos, animales y plantas. In another aspect the invention is directed to a method for treating ophthalmic diseases which comprises administering to the mammal in need an effective amount of the pharmaceutical composition as described above or the sterile aqueous solution as described above. In a particular embodiment the invention relates to a method for treating any of the ophthalmic diseases described above which comprises administering to the mammal in need an effective amount of the pharmaceutical composition as described above or the accused solution as described above. The nanogels of the invention, with or without active ingredient or biological molecules incorporated, can be used as such or as base components of pharmaceutical forms, medicaments and sanitary products for the treatment of pathological or physiological conditions in humans, animals and plants.
En una realización particular, las composiciones farmacéuticas según la invención son adecuadas para la administración transdérmica, bucal, oral, rectal, ocular, nasal, ótica, vaginal, o implante parenteral.  In a particular embodiment, the pharmaceutical compositions according to the invention are suitable for transdermal, oral, oral, rectal, ocular, nasal, otic, vaginal, or parenteral implant administration.
También se pueden utilizar como agentes secuestrantes de sustancias biológicas o tóxicas en organismos vivos, por ejemplo colesterol, glucosa o ácidos biliares, o en el medio ambiente.  They can also be used as sequestering agents for biological or toxic substances in living organisms, for example cholesterol, glucose or bile acids, or in the environment.
Los nanogeles de la invención son también muy adecuados para controlar la cesión de fármacos o de sustancias activas, incorporadas a los nanogeles. Las composiciones proporcionan diferentes velocidades de cesión dependiendo de su composición cuali- y cuatitativa, y de las propiedades fisicoquímicas del fármaco, especialmente de su hidrosolubilidad y de su afinidad por la cavidad de la ciclodextrina. The nanogels of the invention are also very suitable for controlling the release of drugs or active substances, incorporated into the nanogels. The compositions provide different transfer rates depending on their qualitative and quatitative composition, and the physicochemical properties of the drug, especially its water solubility and its affinity for the cyclodextrin cavity.
También pueden servir para dirigir fármacos hacia zonas específicas en seres vivos, mediante cambios asociados a las condiciones del entorno, en el grado de hinchamiento del nanogel o en la afinidad del fármaco por los componentes del nanogel. They can also serve to direct drugs to specific areas in living beings, through changes associated with environmental conditions, in the degree of swelling of the nanogel or in the affinity of the drug for the components of the nanogel.
Procedimiento de preparación Preparation Procedure
El procedimiento de la invención transcurre en condiciones suaves, se evitan temperaturas elevadas y condiciones drásticas, y de manera que es posible incorporar ingredientes activos o moléculas biológicas sin dañar su integridad y sin peligro de degradación. The process of the invention takes place under mild conditions, high temperatures and drastic conditions are avoided, and so that it is possible to incorporate active ingredients or biological molecules without damaging their integrity and without danger of degradation.
El procedimiento de la invención tiene la ventaja de que no requiere la modificación previa de la estructura de la ciclodextrina ni del polímero hidrosoluble, ni la utilización de un molde para formar el nanogel. Además, el procedimiento de la invención permite modular el tamaño y forma del nanogel mediante el control del proceso de formación de las gotículas de la emulsión de la etapa c) y mediante la proporción de componentes del sistema. Como se describió anteriormente, la invención también se refiere a un procedimiento para la preparación del hidrogel como se ha definido anteriormente que comprende: a) preparar una disolución acuosa que comprende una o varias ciclodextrinas, un agente reticulante que posee dos ó más grupos funcionales que son capaces de reaccionar con los grupos hidroxilo de las ciclodextrinas para formar grupos éter o bien con grupos amino de las ciclodextrinas para formar grupos amino, y una sustancia de carácter ácido o básico, y opcionalmente un polímero hidrosoluble, The process of the invention has the advantage that it does not require prior modification of the structure of the cyclodextrin or of the water-soluble polymer, nor the use of a mold to form the nanogel. In addition, the process of the invention allows the size and shape of the nanogel to be modulated by controlling the emulsion droplet formation process of step c) and by the proportion of system components. As described above, the invention also relates to a process for the preparation of the hydrogel as defined above comprising: a) preparing an aqueous solution comprising one or more cyclodextrins, a crosslinking agent having two or more functional groups that they are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of the cyclodextrins to form amino groups, and an acidic or basic substance, and optionally a water-soluble polymer,
b) preparar una disolución orgánica que comprende un di solvente orgánico, y opcionalmente un agente tensioactivo, b) preparing an organic solution comprising an organic solvent, and optionally a surfactant,
c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), c) mix under stirring the solutions prepared in steps a) and b),
d) mezclar la emulsión obtenida en la etapa c) con agua. d) mix the emulsion obtained in step c) with water.
La preparación de la disolución acuosa de la etapa a) es posible llevarla a cabo de varias maneras sin que existan variaciones en el resultado obtenido. Así es posible añadir en primer lugar, la ciclodextrina en agua y después una sustancia de carácter ácido o básico con el fin de modificar el pH para ajustado para que transcurra la reticulación, o disolver la ciclodextrina directamente en un medio con el pH adecuado. En los casos en los que se incorpora un polímero hidrosoluble, la adición de dicho polímero al agua se puede hacer antes o después de disolver la ciclodextrina. Y por último, a la disolución resultante se le añade el agente reticulante en estado sólido, líquido o en disolución acuosa.  The preparation of the aqueous solution of step a) is possible in several ways without variations in the result obtained. Thus, it is possible to first add the cyclodextrin in water and then an acidic or basic substance in order to modify the pH to adjust for the crosslinking, or to dissolve the cyclodextrin directly in a medium with the appropriate pH. In cases where a water-soluble polymer is incorporated, the addition of said polymer to the water can be done before or after dissolving the cyclodextrin. And finally, to the resulting solution is added the crosslinking agent in solid, liquid or aqueous solution.
La sustancia de carácter ácido puede ser un ácido orgánico o inorgánico, por ejemplo ácido triluoroacético, ácido p-toluensulfónico, ácido camforsulfónico, ácido acético, resina ácida de intercambio iónico, ácido de Lewis, etc. La sustancia de carácter básico incluye bases orgánicas e inorgánicas por ejemplo carbonato potásico o sódico, cianuros, hidruros, aminas primarias, secundarias, metóxido sódico o potásico, etóxido sódico o potásico, etc. The acidic substance may be an organic or inorganic acid, for example triluoroacetic acid, p-toluenesulfonic acid, camforsulfonic acid, acetic acid, ionic acid exchange resin, Lewis acid, etc. The basic substance includes organic and inorganic bases for example potassium or sodium carbonate, cyanides, hydrides, primary, secondary amines, sodium or potassium methoxide, sodium or potassium ethoxide, etc.
En una realización particular, la disolución acuosa preparada en la etapa a) se incuba durante un periodo de tiempo de entre 1 y 60 minutos, más preferiblemente entre 5 y 45 minutos. En una realización particular, la incubación de la disolución acuosa preparada en la etapa a) se lleva a cabo a una temperatura controlada comprendida entre 5°C y 80°C, más preferiblemente entre 20°C y 60°C. En la etapa a) se inicia la reticulación pero sin dar lugar a un incremento de viscosidad que impida la emulsificación posterior con la fase orgánica. En la etapa b) se prepara una disolución orgánica. Son ej emplos de fases orgánicas, aunque la invención no se limita a éstas, el clorobenceno, cloroformo, ciclohexano, diclorometano, hexano, tetrahidrofurano, tolueno, octanol, heptanol. In a particular embodiment, the aqueous solution prepared in step a) is incubated for a period of between 1 and 60 minutes, more preferably between 5 and 45 minutes. In a particular embodiment, the incubation of the aqueous solution prepared in step a) is carried out at a controlled temperature between 5 ° C and 80 ° C, more preferably between 20 ° C and 60 ° C. In step a) the crosslinking is initiated but without giving rise to an increase in viscosity that prevents subsequent emulsification with the organic phase. In step b) an organic solution is prepared. Examples of organic phases are, although the invention is not limited to these, chlorobenzene, chloroform, cyclohexane, dichloromethane, hexane, tetrahydrofuran, toluene, octanol, heptanol.
Opcionalmente es posible añadir un agente tensoactivo a la disolución orgánica. El término "agente tensoactivo" se refiere a molécula compuesta de una parte hidrófoba y un resto hidrófilo. Estas moléculas presentan, por tanto, propiedades anfifílicas, lo que hace que en una mezcla agua/disolvente orgánico, éstas migren hacia la superficie entre el agua y el disolvente orgánico. Así, la cabeza hidrofílica se mantiene en la fase acuosa y la cola hidrófoba interacciona con el disolvente orgánico alterando las propiedades superficiales de la interfaz agua/di solvente y permitiendo la formación de una emulsión, así como su estabilización. Optionally it is possible to add a surface active agent to the organic solution. The term "surface active agent" refers to a molecule composed of a hydrophobic part and a hydrophilic moiety. These molecules therefore have amphiphilic properties, which means that in an organic water / solvent mixture, they migrate to the surface between the water and the organic solvent. Thus, the hydrophilic head is maintained in the aqueous phase and the hydrophobic tail interacts with the organic solvent by altering the surface properties of the water / solvent interface and allowing the formation of an emulsion, as well as its stabilization.
En una realización particular, el agente tensoactivo se selecciona de entre el grupo consistente en derivados hidroxílicos de cadena larga de 8 a 18 átomos de carbono (alcoholes grasos), ácidos carboxílicos etoxilados, amidas etoxiladas, glicéridos etoxilados, ésteres de glicol y derivados, monoglicéridos, poligliceril ésteres, ésteres y éteres de polialcoholes, ésteres de sorbitán/sorbitol, triésteres del ácido fosfórico, derivados etoxilados de los alcoholes grasos y éteres de polietilenglicol. En una realización más particular, el agente tensoactivo es un éster de sorbitan. En una realización particular, el éster de sorbitan se selecciona de entre el grupo consistente en mono-, di-, tri- o sesqui-oleato de sorbitán, mono-, di-, tri- o sesqui-laurato de sorbitán, mono-, di-, tri- o sesqui-palmitato de sorbitán, mono-, di-, tri- o sesqui-estearato de sorbitán y mono-, di-, tri- o sesqui-isoestearato de sorbitán, así como, combinaciones de los anteriores.  In a particular embodiment, the surface active agent is selected from the group consisting of long chain hydroxylic derivatives of 8 to 18 carbon atoms (fatty alcohols), ethoxylated carboxylic acids, ethoxylated amides, ethoxylated glycerides, glycol esters and derivatives, monoglycerides , polyglyceryl esters, esters and ethers of polyalcohols, sorbitan / sorbitol esters, phosphoric acid esters, ethoxylated derivatives of fatty alcohols and polyethylene glycol ethers. In a more particular embodiment, the surfactant is a sorbitan ester. In a particular embodiment, the sorbitan ester is selected from the group consisting of sorbitan mono-, di-, tri- or sesqui-oleate, mono-, di-, tri- or sesqui-sorbitan sorbitan, mono-, sorbitan di-, tri- or sesqui-palmitate, sorbitan mono-, di-, tri- or sesqui-stearate and sorbitan mono-, di-, tri- or sesqui-isostearate, as well as combinations of the foregoing.
En una realización particular, la proporción en peso de agente tensoactivo que se añade en la etapa b) está comprendido entre 0% y 5%, preferiblemente entre 0% y 3%.  In a particular embodiment, the weight ratio of surface active agent added in step b) is between 0% and 5%, preferably between 0% and 3%.
En una realización particular, en la etapa c) la mezcla se homogeneiza durante un tiempo comprendido entre 1 segundo y 2 minutos, preferiblemente entre 30 y 60 segundos. Esta homogeneización puede realizarse mediante agitación enérgica, por ejemplo, empleando un agitador homogeneizador de alto rendimiento.  In a particular embodiment, in step c) the mixture is homogenized for a time between 1 second and 2 minutes, preferably between 30 and 60 seconds. This homogenization can be carried out by vigorous stirring, for example, using a high performance homogenizing stirrer.
En una realización particular, el volumen de la fase orgánica de la etapa b) es igual o mayor al volumen de fase acuosa resultante de la etapa a). In a particular embodiment, the volume of the organic phase of stage b) is equal to or greater than the volume of aqueous phase resulting from stage a).
En una realización particular, la mezcla de la etapa c) se agita durante un periodo de tiempo de entre 5 minutos y 5 horas, preferiblemente entre 10 minutos y 50 minutos. En una realización particular, dicha agitación se realiza a una temperatura controlada de entre 5°C y 80°C, preferiblemente de entre 40°C y 70°C. In a particular embodiment, the mixture of step c) is stirred for a period of time between 5 minutes and 5 hours, preferably between 10 minutes and 50 minutes. In In a particular embodiment, said stirring is carried out at a controlled temperature between 5 ° C and 80 ° C, preferably between 40 ° C and 70 ° C.
En una realización particular, en la etapa d) la emulsión obtenida en la etapa c) se diluye con un volumen de agua comprendido entre un volumen igual y hasta 10 veces mayor que el de la mezcla de la etapa a). En una realización particular, la mezcla de la dilución se incuba de entre 10 minutos a 10 horas, preferiblemente de entre 1 hora a 5 horas. En una realización particular, dicha incubación se realiza bajo temperatura controlada de entre 5°C y 80°C. Mediante este proceso finaliza la reticulación y es posible evaporar el disolvente orgánico. En una realización más particular, el procedimiento comprende además una etapa e) posterior a la etapa d) que comprende la dialización de la mezcla.  In a particular embodiment, in stage d) the emulsion obtained in stage c) is diluted with a volume of water between an equal volume and up to 10 times greater than that of the mixture of stage a). In a particular embodiment, the dilution mixture is incubated for 10 minutes to 10 hours, preferably 1 hour to 5 hours. In a particular embodiment, said incubation is performed under a controlled temperature between 5 ° C and 80 ° C. Through this process the crosslinking ends and it is possible to evaporate the organic solvent. In a more particular embodiment, the method further comprises a stage e) after stage d) comprising the dialysis of the mixture.
En una realización más particular, el procedimiento comprende además una etapa f) posterior a la etapa e) que comprende la liofilización de la mezcla In a more particular embodiment, the process further comprises a step f) after step e) comprising lyophilization of the mixture
En una realización más particular, el procedimiento comprende además una etapa g) posterior a la etapa f) que comprende la rehidratación de los nanogeles. In a more particular embodiment, the process further comprises a stage g) after stage f) comprising rehydration of the nanogels.
En una realización particular, el procedimiento comprende además añadir un ingrediente activo o una molécula biológica. In a particular embodiment, the process further comprises adding an active ingredient or a biological molecule.
En una realización particular de la invención, la incorporación del ingrediente activo o de la molécula biológica se puede llevar a cabo mediante uno de los siguientes procesos: i) inmersión directa de un hidrogel de la invención, según se describió anteriormente, en una disolución o en una suspensión del ingrediente activo o de la molécula biológica, a una temperatura comprendida entre 0 y 100°C y a presión atmosférica, opcionalmente empleando ultrasonidos, ii) en autoclave a temperatura comprendida entre 100 y 130°C, o, iii) adición del ingrediente activo o de la molécula biológica a la fase acuosa a).  In a particular embodiment of the invention, the incorporation of the active ingredient or biological molecule can be carried out by one of the following processes: i) direct immersion of a hydrogel of the invention, as described above, in a solution or in a suspension of the active ingredient or of the biological molecule, at a temperature between 0 and 100 ° C and at atmospheric pressure, optionally using ultrasound, ii) in an autoclave at a temperature between 100 and 130 ° C, or, iii) addition of active ingredient or from the biological molecule to the aqueous phase a).
En otro aspecto, la invención se refiere a un nanogel obtenible mediante el procedimiento descrito anteriormente. In another aspect, the invention relates to a nanogel obtainable by the method described above.
La estructura del nanogel obtenible mediante el procedimiento descrito anteriormente, se pone de relevancia en las pruebas realizadas como se recoge en los ej emplos de la presente memoria. Estos nanogeles presentan una alta capacidad de incorporación de fármacos, sustancias activas, moléculas biológicas o tóxicas con estructuras y propiedades físico-químicas muy diversas que forman complejos de inclusión con las ciclodextrinas de los nanogeles. Los nanogeles forman sistemas coloidales estables: dispersos en medio acuoso, presentan una elevada estabilidad física, resitiendo la centrifugación a 5000 rpm durante 10 min sin precipitar. The structure of the nanogel obtainable by the procedure described above becomes relevant in the tests carried out as set forth in the examples herein. These nanogels have a high capacity to incorporate drugs, active substances, biological or toxic molecules with very diverse structures and physical-chemical properties that form inclusion complexes with cyclodextrins of The nanogels The nanogels form stable colloidal systems: dispersed in aqueous medium, have high physical stability, resisting centrifugation at 5000 rpm for 10 min without precipitating.
El tamaño y la forma de los nanogeles se pueden modular controlando el proceso de formación de las gotículas de la emulsión. La forma de los nanogeles de la invención es esférica y la distribución de tamaños de los nanogeles en el sistema coloidal es estrecha. Todas estas características se pueden modular a través de una adecuada selección de la variedad y/o de la proporción de ciclodextrina/s y de los polímeros hidrosolubles o sus derivados que la/s acompañe/n. La baja o nula toxicidad de las ciclodextrinas, los polímeros hidrosolubles y sus derivados, y los agentes reticulantes glicidiléter hacen que las composiciones resultantes puedan ser utilizadas como componentes de formas farmacéuticas, de preparados cosméticos o sistemas "trampa" para captar moléculas de organismos vivos o del ambiente, sin plantear problemas de biocompatibilidad o de impacto ambiental.  The size and shape of the nanogels can be modulated by controlling the formation process of the emulsion droplets. The shape of the nanogels of the invention is spherical and the size distribution of the nanogels in the colloidal system is narrow. All these characteristics can be modulated through an adequate selection of the variety and / or the proportion of cyclodextrin / s and of the water-soluble polymers or their derivatives that accompany it / s. The low or no toxicity of cyclodextrins, water-soluble polymers and their derivatives, and glycidyl ether crosslinking agents make the resulting compositions can be used as components of pharmaceutical forms, cosmetic preparations or "trap" systems to capture molecules of living organisms or of the environment, without raising problems of biocompatibility or environmental impact.
Ejemplos de la invención Examples of the invention
A continuación, se incluyen algunos ejemplos que muestran la obtención de nanogeles utilizando ciclodextrinas o sus derivados, o ciclodextrinas o sus derivados y polímeros hidrosolubles. También se incluyen ejemplos de la preparación de composiciones que incorporan sustancias activas y controlan su cesión.  Below are some examples that show the obtaining of nanogels using cyclodextrins or their derivatives, or cyclodextrins or their derivatives and water-soluble polymers. Examples of the preparation of compositions that incorporate active substances and control their transfer are also included.
Materiales y métodos. Materials and methods.
γ-Ciclodextrina (yCD, W8) y 2-hidroxipropil-p-ciclodextrina (HPpCD, W7 HP, Mw 1309.24 Da) fueron de Wacker (Barcelona, España), 2-hidroxipropil-y-ciclodextrina (HPyCD, W8 HP, Mw 1576 Da) fue de PURAC biochem BV (Gorinchem, Holanda), hidroxipropil metilcelulosa (HPMC, Methocel K4M Premium EP) de Colorcon Ibérica S.L. (Barcelona, España), agar-agar de Guinama (Valencia, España), etilenglicol diglicidil éter (EGDE, 50% p/p en agua) de Fluka (St. Louis, IL, USA), diclorometano de Normasolv, Scharlau, S.A. (Barcelona, España), monooleato sorbitan (Span 80) de Fluka (Schnelldorf, Alemania), ácido 3-metil benzoico (3-MBA) de Merck (Darmstadt, Alemania). Agua purificada por osmosis inversa (MilliQ®, Millipore, España). Los restantes reactivos fueron de calidad analítica. El pH de las dispersiones de los nanogeles en agua se determinó a temperatura ambiente utilizando un Thermo Orion Star™ Series pH meter (USA). La osmolaridad se midió utilizando un osmómetro de presión de vapor Knauer K-700 (Knauer, Alemania). La viscosidad se registró en un viscosímetro Brookfield modelo DV-I+ (USA). γ-Cyclodextrin (yCD, W8) and 2-hydroxypropyl-p-cyclodextrin (HPpCD, W7 HP, Mw 1309.24 Da) were from Wacker (Barcelona, Spain), 2-hydroxypropyl-y-cyclodextrin (HPyCD, W8 HP, Mw 1576 Da) was from PURAC biochem BV (Gorinchem, The Netherlands), hydroxypropyl methylcellulose (HPMC, Methocel K4M Premium EP) from Colorcon Ibérica SL (Barcelona, Spain), Guinama agar (Valencia, Spain), ethylene glycol diglycidyl ether (EGDE, 50% w / w in water) from Fluka (St. Louis, IL, USA), dichloromethane from Normaolv, Scharlau, SA (Barcelona, Spain), sorbitan monooleate (Span 80) from Fluka (Schnelldorf, Germany), acid 3- methyl benzoic (3-MBA) from Merck (Darmstadt, Germany). Water purified by reverse osmosis (MilliQ®, Millipore, Spain). The remaining reagents were of analytical quality. The pH of nanogel dispersions in water was determined at room temperature using a Thermo Orion Star ™ Series pH meter (USA). Osmolarity was measured using a vapor pressure osmometer. Knauer K-700 (Knauer, Germany). The viscosity was recorded on a Brookfield viscometer model DV-I + (USA).
Ejemplo 1. Procedimiento de obtención de nanogeles a base de γ-ciclodextrina o de HPPCD.  Example 1. Procedure for obtaining nanogels based on γ-cyclodextrin or HPPCD.
Se preparó una disolución de γ-ciclodextrina o HPpCD, al 20% (p/p), en NaOH 0.2M. A continuación, a 10 mL de disolución se le adicionaron 4 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua, de manera que la concentración final de agente reticulante fue del 14.28%. La disolución se sometió a agitación durante 25 minutos a 60°C para iniciar la reacción de reticulación. A solution of 20% (w / w) γ-cyclodextrin or HPpCD was prepared in 0.2M NaOH. Then, 10 mL of a 50% (w / w) ethylene glycol glycidyl ether solution in water was added to 10 mL of solution, so that the final concentration of crosslinking agent was 14.28%. The solution was stirred for 25 minutes at 60 ° C to start the crosslinking reaction.
Separadamente se preparó la fase orgánica consistente en una disolución de Span 80 al 2% (p/p) en diclorometano a 20°C. The organic phase consisting of a solution of 2% Span 80 (w / w) in dichloromethane at 20 ° C was prepared separately.
La disolución acuosa de ciclodextrina- etilenglicoldiglicidileter se adicionó a 20 mi de la fase orgánica y el conjunto se sometió a la acción de un agitador homogeneizador de alto rendimiento (8000 rev./min; Ultra-Turrax T25, Janke & Kunkel, INK-Labortechnik, Alemania) durante 30 segundos. A continuación, la emulsión se mantuvo en agitación (agitador magnético 300 rev./min) durante 30 min en un baño termo statizado a 60°C. Seguidamente, la emulsión se vertió en 100 mi de agua destilada y se mantuvo en agitación (agitador magnético 300 rev./min) durante 210 min en un baño termostatizado a 60°C, para completar la formación de los nanogeles.  The aqueous solution of cyclodextrin-ethylene glycol glycidyl ether was added to 20 ml of the organic phase and the whole was subjected to the action of a high performance homogenizing stirrer (8000 rev./min; Ultra-Turrax T25, Janke & Kunkel, INK-Labortechnik , Germany) for 30 seconds. Then, the emulsion was kept under stirring (magnetic stirrer 300 rev./min) for 30 min in a thermostatic bath at 60 ° C. Then, the emulsion was poured into 100 ml of distilled water and kept under stirring (magnetic stirrer 300 rev./min) for 210 min in a thermostated bath at 60 ° C, to complete the formation of the nanogels.
Se tomaron 50 mi del sistema coloidal conteniendo los nanogeles y se dializaron durante 72 horas utilizando tubos de diálisis de 12-14 kDa. Tras la diálisis, el sistema coloidal conteniendo los nanogeles se desecó por liofilización (VirTis Génesis freeze-dryer, USA). Una vez liofilizados, los nanogeles se redispersaron con facilidad en agua dando lugar a un sistema coloidal con tamaño de partícula similar al registrado antes de la liofilización (40-500 nm). 50 ml of the colloidal system containing the nanogels were taken and dialyzed for 72 hours using 12-14 kDa dialysis tubes. After dialysis, the colloidal system containing the nanogels was dried by lyophilization (VirTis Genesis freeze-dryer, USA). Once lyophilized, the nanogels were easily redispersed in water resulting in a colloidal system with a particle size similar to that recorded before lyophilization (40-500 nm).
La figura 1 muestra la microfotografía de microscopía de transmisión electrónica (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) de los nanogeles antes de someterse al proceso de liofilización. Los tamaños de los nanogeles se determinaron utilizando un equipo de dynamic light scattering usando un sistema óptico ALV-5000 F equipado con un láser de Nd:YAG (400 mW) conectado a una bomba de diodo CW (400 mW) operado a 532 nm (Coherent Inc., Santa Clara, CA, USA). El tamaño medio resultó ser de 151.36 nm. Ejemplo 2. Procedimiento de obtención de nanogeles a base de γ-ciclodextrina y un polímero hidrosoluble. Figure 1 shows the electron transmission microscopy photomicrograph (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) of the nanogels before undergoing the lyophilization process. The sizes of the nanogels were determined using dynamic light scattering equipment using an ALV-5000 F optical system equipped with a Nd: YAG laser (400 mW) connected to a CW diode pump (400 mW) operated at 532 nm ( Coherent Inc., Santa Clara, CA, USA). The average size was 151.36 nm. Example 2. Procedure for obtaining nanogels based on γ-cyclodextrin and a water-soluble polymer.
Se prepararé una disolución de HPMC K4M al 1% (p/p) o al 2% (p/p) en NaOH 0.2M o agar al 1% (p/p) o al 2% (p/p) en NaOH 0.2M. A continuación, a 10 mL de esta disolución se le adicionaron 2 gramos de γ-ciclodextrina o HPpCD y, tras homogeneización, 4 mL de una disolución de etilenglicoldiglicidileter al 50% (p/p) en agua. La disolución se sometió a agitación durante 25 minutos a 60°C para iniciar la reacción de reticulación.  A solution of 1% (w / w) or 2% (w / w) K4M HPMC in 0.2M NaOH or 1% (w / w) or 2% (w / w) agar in 0.2 NaOH will be prepared M. Then, 10 grams of γ-cyclodextrin or HPpCD were added to 10 mL of this solution and, after homogenization, 4 mL of a 50% (w / w) solution of ethylene glycol glycidyl ether in water. The solution was stirred for 25 minutes at 60 ° C to start the crosslinking reaction.
Separadamente se preparó la fase orgánica consistente en una disolución de Span 80 al 1% (p/p) en diclorometano a 20°C.  Separately, the organic phase consisting of a solution of 1% Span 80 (w / w) in dichloromethane at 20 ° C was prepared.
La disolución acuosa de HPMC-ciclodextrina-etilenglicoldiglicidileter se adicionó a 20 mi de la fase orgánica y el conj unto se sometió a la acción de un agitador homogeneizador de alto rendimiento (8000 rev./min; Ultra- Turrax T25, Janke & Kunkel, INK-Labortechnik, Alemania)) durante 30 segundos. A continuación, la emulsión se mantuvo en agitación (agitador magnético 300 rev./min) durante 30 min en un baño termo statizado a 60°C. Seguidamente, la emulsión se vertió en 100 mi de agua destilada y se mantuvo en agitación (agitador magnético 300 rev./min) durante 210 min en un baño termostatizado a 60°C, para completar la formación de los nanogeles.  The aqueous solution of HPMC-cyclodextrin-ethylene glycol glycidyl ether was added to 20 ml of the organic phase and the whole was subjected to the action of a high performance homogenizing agitator (8000 rev./min; Ultra-Turrax T25, Janke & Kunkel, INK-Labortechnik, Germany)) for 30 seconds. Then, the emulsion was kept under stirring (magnetic stirrer 300 rev./min) for 30 min in a thermostatic bath at 60 ° C. Then, the emulsion was poured into 100 ml of distilled water and kept under stirring (magnetic stirrer 300 rev./min) for 210 min in a thermostated bath at 60 ° C, to complete the formation of the nanogels.
Se tomaron 50 mi del sistema coloidal conteniendo los nanogeles y se dializaron durante 72 horas utilizando tubos de diálisis de 12-14 kDa. Tras la diálisis, el sistema coloidal conteniendo los nanogeles se desecó por liofilización. Una vez liofilizados, los nanogeles se redispersaron con facilidad en agua dando lugar a un sistema coloidal con tamaño de partícula similar al registrado antes de la liofilización (40-500 nm). 50 ml of the colloidal system containing the nanogels were taken and dialyzed for 72 hours using 12-14 kDa dialysis tubes. After dialysis, the colloidal system containing the nanogels was dried by lyophilization. Once lyophilized, the nanogels were easily redispersed in water resulting in a colloidal system with a particle size similar to that recorded before lyophilization (40-500 nm).
La figura 2 muestra la microfotografía de microscopía de transmisión electrónica (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) de los nanogeles antes de someterse al proceso de liofilización. Los tamaños de los nanogeles se determinaron utilizando un equipo de dynamic light scattering usando un sistema óptico ALV-5000 F equipado con un láser de Nd:YAG (400 mW) conectado a una bomba de diodo CW (400 mW) operado a 532 nm (Coherent Inc., Santa Clara, CA, USA). El tamaño medio resultó ser de 93.68 nm. Figure 2 shows the electron transmission microscopy photomicrograph (Philips CM-12 TEM apparatus, FEI Company, The Netherlands) of the nanogels before undergoing the lyophilization process. The sizes of the nanogels were determined using dynamic light scattering equipment using an ALV-5000 F optical system equipped with a Nd: YAG laser (400 mW) connected to a CW diode pump (400 mW) operated at 532 nm ( Coherent Inc., Santa Clara, CA, USA). The average size was 93.68 nm.
Siguiendo los procedimientos de los ejemplos 1 y 2 y variando las proporciones de agente tensioactivo y la proporción de polisacárido se obtuvieron diferentes nanogeles según se recoge en la tabla 1. Las formulaciones de los nanogeles obtenidos se identifican usando el código ciclodextrina-polisacáridoxj donde la ciclodextrina es γ-CD o HPpCD, el polisacárido es HPMC o agar, "x" es la concentración de HPMC o agar (0%, 1% ó 2%) en la fase acuosa y "y" es la concentración de Span 80 en la fase orgánica (0%, 0.5% ó 2%) según se emplearon en la preparación del hidrogel como se describió en los ejemplos 1 y 2. Following the procedures of Examples 1 and 2 and varying the proportions of surfactant and the proportion of polysaccharide, different nanogels were obtained as shown in Table 1. The nanogel formulations obtained are identified using the code cyclodextrin-polysaccharide xj where the cyclodextrin is γ-CD or HPpCD, the polysaccharide is HPMC or agar, "x" is the concentration of HPMC or agar (0%, 1% or 2 %) in the aqueous phase and "y" is the concentration of Span 80 in the organic phase (0%, 0.5% or 2%) as used in the preparation of the hydrogel as described in examples 1 and 2.
Tabla 1. Se recogen los datos de la concentración del surfactante, rendimiento del proceso de preparación (Rto), resultados del análisis de dynamic light scattering (DLS) de la suspensión de los nanogeles, área de cada pico, radio hidrodinámico, y distribución de masa.  Table 1. The data of the surfactant concentration, preparation process performance (Rto), results of the dynamic light scattering (DLS) analysis of the nanogels suspension, area of each peak, hydrodynamic radius, and distribution of data are collected. mass.
Figure imgf000023_0001
1 0.19 10.82 59.82
Figure imgf000023_0001
1 0.19 10.82 59.82
YCD-HPMC2,2 2 28.6 YCD-HPMC 2 , 2 2 28.6
2 171.78 1 19.08 40.18 2 171.78 1 19.08 40.18
1 1.67 2.02 99.771 1.67 2.02 99.77
HPpCD0>o.5 0.5 35.7 HPpCD 0> o.5 0.5 35.7
2 90.76 57.99 0.23 2 90.76 57.99 0.23
1 0.07 2.57 89.391 0.07 2.57 89.39
2 0.53 10.82 9.052 0.53 10.82 9.05
HPpCD0,i 1 30.4 HPpCD 0, i 1 30.4
3 5.90 55.62 1.34 3 5.90 55.62 1.34
4 144.03 244.53 0.214 144.03 244.53 0.21
1 6.10 3.26 99.851 6.10 3.26 99.85
HPpCD- Agarro s 0.5 26.5 HPpCD- Grip s 0.5 26.5
2 124.55 73.71 0.15 2 124.55 73.71 0.15
1 1.81 3.26 99.631 1.81 3.26 99.63
HPpCD-Agari,i 1 1 1.7 HPpCD-Agari , i 1 1 1.7
2 330.67 1 19.08 0.37  2 330.67 1 19.08 0.37
Mediante cromatografía de gases (Finnigan Trace GC ultra Thermo, USA)-mass spectrometry (Finnigan Trace DSQ Thermo, USA) se determinó la cantidad residual de cloruro de metileno de los nanogeles liofilizados, que fue en todos los casos cercana al límite de cuantificación: 1 ppm. By gas chromatography (Finnigan Trace GC ultra Thermo, USA) -mass spectrometry (Finnigan Trace DSQ Thermo, USA) the residual amount of methylene chloride of lyophilized nanogels was determined, which was in all cases close to the quantification limit: 1 ppm
También se estudió la estabilidad de los nanogeles obtenidos como dispersiones acuosas, tras centrifugación a 5000 r.p.m. durante 10 minutos ó 10000 r.p.m. durante 30 minutos para evaluar la tendencia de los nanogeles a precipitar, simulando así un proceso de envejecimiento durante el almacenamiento. Se observó que la centrifugación a 5000 r.p.m. durante 10 minutos no causó precipitación de los nanogeles. Mientras que la centrifugación a 10000 r.p.m. durante 30 minutos condujo a pequeñas cantidades precipitadas que fueron más intensas en los nanogeles a los que se les incorporó FIPMC que en el caso de los nanogeles constituidos únicamente por ciclodextrinas. En todos los casos, tras agitar el precipitado, éste se redispersó de nuevo.  The stability of the nanogels obtained as aqueous dispersions was also studied, after centrifugation at 5000 rpm. for 10 minutes or 10,000 r.p.m. for 30 minutes to assess the tendency of nanogels to precipitate, thus simulating an aging process during storage. It was observed that centrifugation at 5000 rpm. for 10 minutes it did not cause precipitation of the nanogels. While centrifugation at 10,000 rpm. for 30 minutes it led to small precipitated amounts that were more intense in the nanogels to which FIPMC was incorporated than in the case of the nanogels constituted solely by cyclodextrins. In all cases, after stirring the precipitate, it was redispersed again.
Se tomaron espectros de infrarroj o de los nanogeles de γ-CD en una rango de entre 400 y 4000 cm"1, en un espectofotómetro Brucker IFS 66V FT-IR (empleando la técnica de bromuro potásico). Estos espectros se muestran en la figura 3. La formación de grupos éter entre el agente reticulante y las ciclodextrinas se pone en evidencia en los espectros de infrarroj o (IR) al comparar las especies de partida frente a las ciclodextrinas reticuladas. Los hidrogeles preparados capturan agua en una proporción de entre 200% y 1000%) en peso de agua respecto al peso seco del hidrogel. Infrared spectra or γ-CD nanogels were taken in a range between 400 and 4000 cm "1 , on a Brucker IFS 66V FT-IR spectrophotometer (using the potassium bromide technique). These spectra are shown in the figure 3. The formation of ether groups between the crosslinking agent and cyclodextrins is evidenced in the infrared (IR) spectra when comparing the starting species against the cross-linked cyclodextrins. The prepared hydrogels capture water in a proportion of between 200% and 1000%) by weight of water with respect to the dry weight of the hydrogel.
Ejemplo 3. Control de la cesión del ácido 3-metilbenzoico (3-MBA) a partir de nanogeles de γ-ciclodextrina y d e n a n o g e l e s d e γ-ciclodextrina e hidroxipropilmetilcelulosa. Example 3. Control of the cession of 3-methylbenzoic acid (3-MBA) from γ-cyclodextrin nanogels and d e n a n o g e l e s d e γ-cyclodextrin and hydroxypropyl methylcellulose.
Nanogeles liofilizados se dispersaron en disoluciones de 3-MBA (0.08 mg/ml) para obtener una dispersión de nanogeles al 2% p/v, que se mantuvo a 20°C durante 60 horas. La cesión de 3-MBA a partir de las dispersiones de nanogeles se evaluó utilizando células de difusión verticales, utilizando membrana de celofán (MWCO 3500, 0.785 era2) como barrera de separación entre el compartimento dador y el compartimento receptor. Los ensayos se llevaron a cabo a 37°C utilizando 2 mi de dispersión de nanogeles y 5.5 mi de agua purificada, sometida a agitación magnética a 300 rpm, como medio receptor. También se ensayó, en las mismas condiciones, una disolución de 3-MBA (0.08 mg/ml) sin nanogeles. A intervalos de tiempo preestablecidos se tomaron muestras de 750 μΐ del medio receptor y se reemplazaron por medio fresco. La concentración de 3-MBA en el medio receptor se determinó por espectrofotometría UV a 281 nm. En la Figura 4 se muestran los perfiles de cesión obtenidos. Ejemplo 4. Control de la cesión de dexametasona a partir de nanogeles de γ- ciclodextrina y de nanogeles de γ-ciclodextrina e hidroxipropilmetilcelulosa. Lyophilized nanogels were dispersed in 3-MBA solutions (0.08 mg / ml) to obtain a dispersion of 2% w / v nanogels, which was maintained at 20 ° C for 60 hours. The assignment of 3-MBA from nanogel dispersions was evaluated using vertical diffusion cells, using cellophane membrane (MWCO 3500, 0.785 was 2 ) as a separation barrier between the donor compartment and the receptor compartment. The tests were carried out at 37 ° C using 2 ml of nanogel dispersion and 5.5 ml of purified water, subjected to magnetic stirring at 300 rpm, as the receiving medium. A solution of 3-MBA (0.08 mg / ml) without nanogels was also tested under the same conditions. At pre-established time intervals, 750 μΐ samples were taken from the receiving medium and replaced with fresh medium. The concentration of 3-MBA in the receptor medium was determined by UV spectrophotometry at 281 nm. The assignment profiles obtained are shown in Figure 4. Example 4. Control of the transfer of dexamethasone from γ-cyclodextrin nanogels and γ-cyclodextrin and hydroxypropylmethylcellulose nanogels.
Ejemplo 4.1. Carga de dexametasona.  Example 4.1 Dexamethasone loading.
Nanogeles liofilizados se dispersaron en disoluciones saturadas de dexametasona (0.14- 0.16 mg/ml) para obtener una dispersión de nanogeles al 2% p/v, que se mantuvo a 20°C durante 16 horas o 7 días.  Lyophilized nanogels were dispersed in saturated dexamethasone solutions (0.14-0.16 mg / ml) to obtain a dispersion of 2% w / v nanogels, which was maintained at 20 ° C for 16 hours or 7 days.
Ejemplo 4.2. Cesión de dexametasona  Example 4.2. Dexamethasone Assignment
La cesión de dexametasona a partir de las dispersiones de nanogeles se evaluó utilizando células de difusión verticales, utilizando membrana de celofán (MWCO 12-14 kDa, 1.77 era2) como barrera de separación entre el compartimento dador y el compartimento receptor. Los ensayos se llevaron a cabo a 37°C utilizando 2 mi de dispersión de nanogeles y 12 mi de tampón fosfato pH 7.4 como medio receptor, que se mantuvo bajo agitación magnética a 300 rpm. También se ensayó, en las mismas condiciones, la disolución saturada de dexametasona sin nanogeles . A interval os de tiempo preestablecidos se tomaron muestras de 150 μΐ del medio receptor y se reemplazaron por medio fresco. La concentración de dexametasona en el medio receptor se determinó por HPLC. En la Figura 5 se muestran los perfiles de cesión obtenidos a partir de la disolución de dexametasona (código Dex), de una disolución de dexametasona a la que se le incorporó γ-ciclodextrina libre (código yCD), o de nanogeles de γ-ciclodextrina y FIPMC preparados con distintas proporciones de Span 80 en la fase orgánica (0%, código yCD-HPMC2,o; 0.5%, código yCD-HPMC2,o 5; 1.0%, código yCD-HPMC2,i; 2.0%, código yCD-HPMC2;2). The transfer of dexamethasone from nanogel dispersions was evaluated using vertical diffusion cells, using cellophane membrane (MWCO 12-14 kDa, 1.77 was 2 ) as a separation barrier between the donor compartment and the receptor compartment. The tests were carried out at 37 ° C using 2 ml of nanogel dispersion and 12 ml of pH 7.4 phosphate buffer as a receptor medium, which was kept under magnetic stirring at 300 rpm. The saturated dexamethasone solution without nanogels was also tested under the same conditions. At pre-established time intervals, 150 μΐ samples were taken from the receiving medium and replaced by fresh medium The concentration of dexamethasone in the receptor medium was determined by HPLC. The transfer profiles obtained from the dexamethasone solution (Dex code), from a dexamethasone solution to which free γ-cyclodextrin (code and CD), or from γ-cyclodextrin nanogels are shown in Figure 5 and FIPMC prepared with different proportions of Span 80 in the organic phase (0%, code and CD-HPMC 2 , or; 0.5%, code and CD-HPMC 2 , or 5 ; 1.0%, code and CD-HPMC 2 , i; 2.0% , code yCD-HPMC 2; 2 ).
Los perfiles de cesión se ajustaron al modelo de Higuchi (R.G. Stehle, W.L Higuchi, J Pharm Sci 56 (1967) 1367) (Tabla 2) y no se observaron diferencias significativas en los valores de las constantes de velocidad de cesión en los nanogeles cargados de dexametasona durante 16 horas o 7 días. Sin embargo, sí se puso de manifiesto la capacidad de los nanogeles para retardar la cesión de dexametasona, reduciendo en hasta más del 50% la velocidad de cesión del fármaco con respecto a las disoluciones de fármaco solo o con ciclodextrinas libres (es decir, no formando nanogeles).  The transfer profiles were adjusted to the Higuchi model (RG Stehle, WL Higuchi, J Pharm Sci 56 (1967) 1367) (Table 2) and no significant differences were observed in the values of the transfer rate constants in the charged nanogels of dexamethasone for 16 hours or 7 days. However, the ability of nanogels to delay the transfer of dexamethasone was revealed, reducing the rate of cession of the drug by up to more than 50% with respect to drug solutions alone or with free cyclodextrins (i.e. no forming nanogels).
Tabla 2. Valores de la constante de velocidad {KH) y del coeficiente de correlación (r2) obtenidos en el ajuste de los perfiles de cesión de dexametasona al modelo de Higuchi. Table 2. Values of the velocity constant {K H ) and the correlation coefficient (r 2 ) obtained in the adjustment of the dexamethasone assignment profiles to the Higuchi model.
16 h 7 días 16 h 7 days
KH(h"1/2) r2 KH(h"1/2) r2 K H (h "1/2 ) r 2 K H (h " 1/2 ) r 2
Dex 12.4 0.994 10.9 0.986 yCD 14.1 0.985 14.0 0.985 Dex 12.4 0.994 10.9 0.986 yCD 14.1 0.985 14.0 0.985
YCD0;0 9.9 0.994 9.2 0.981 YCD 0; 0 9.9 0.994 9.2 0.981
YCD0,O.5 10.3 0.989 6.5 0.970 YCD 0 , O.5 10.3 0.989 6.5 0.970
YCD-HPMCI,0 5 4.4 0.955 2.8 0.805 YCD-HPMCI, 0 5 4.4 0.955 2.8 0.805
YCD-HPMCU 10.2 0.993 8.9 0.985YCD-HPMC U 10.2 0.993 8.9 0.985
YCD-HPMCI,2 10.1 0.995 9.9 0.991 YCD-HPMCI, 2 10.1 0.995 9.9 0.991
YCD-HPMC2,0 8.6 0.994 8.7 0.975 YCD-HPMC 2 , 0 8.6 0.994 8.7 0.975
YCD-HPMC2,0 5 6.5 0.998 7.9 0.986YCD-HPMC 2 , 0 5 6.5 0.998 7.9 0.986
YCD-HPMC2,I 8.7 0.997 8.7 0.997 YCD-HPMC2,2 7.1 0.965 6.4 0.971YCD-HPMC 2 , I 8.7 0.997 8.7 0.997 YCD-HPMC 2 , 2 7.1 0.965 6.4 0.971
HPpCD 12.5 0.996 12.5 0.996 HPpCD 12.5 0.996 12.5 0.996
HPpCD0>o.5 4.9 0.981 9.0 0.930 HPpCD 0> o.5 4.9 0.981 9.0 0.930
Ejemplo 5. Formulación de un colirio de dexametasona basado en los nanogeles de ciclodextrina Example 5. Formulation of a dexamethasone eye drops based on cyclodextrin nanogels
Se incorporaron nanogeles de yCD-HPMCi,! (hasta un 4% p/v) a una disolución acuosa hidroalcohólica (etanol:agua 50:50 v/v) de dexametasona saturada y se mantuvieron en un baño de ultrasonidos a 25°C durante 60 minutos (Cole-Parmer Instrument Company 8892E-DTH, Niles, Illinois). A continuación, el medio disolvente se eliminó en un rotavapor (RII, Buchi, Switzerland) para obtener nanogeles secos de yCD-HPMCi,! cargados con dexametasona. Nanogels YCD-HPMCi were incorporated! (up to 4% w / v) to an aqueous hydroalcoholic solution (ethanol: water 50:50 v / v) of saturated dexamethasone and kept in an ultrasonic bath at 25 ° C for 60 minutes (Cole-Parmer Instrument Company 8892E -DTH, Niles, Illinois). Then the solvent medium is rotovapped (RII, Buchi, Switzerland) to obtain dry nanogels YCD-HPMCi,! loaded with dexamethasone.
Finalmente, los nanogeles yCD-HPMCi,! cargados con dexametasona se adicionaron (hasta un 4% p/v) a una disolución acuosa de dexametasona al 1.5% (p/v) en HPyCD al 10 % (p/v), ácido etilenodiamino tetraacético (EDTA) 0.1% (p/v), cloruro de benzalconio al 0.02 % (p/v), HPMC K4M al 0.1% (p/v) y cloruro sódico al 0.6 % (p/p) y se ajustó el pH a 7.40±0.05. La formulación se autoclavo a 121°C durante 20 min y se dejó equilibrar durante 5 días a temperatura ambiente bajo agitación constante. Finally, Nanogels YCD-HPMCi,! loaded with dexamethasone were added (up to 4% w / v) to a 1.5% aqueous solution of dexamethasone (w / v) in 10% HPyCD (w / v), ethylenediamine tetraacetic acid (EDTA) 0.1% (w / v), 0.02% (w / v) benzalkonium chloride, 0.1% (w / v) HPMC K4M and 0.6% (w / w) sodium chloride and the pH was adjusted to 7.40 ± 0.05. The formulation was autoclaved at 121 ° C for 20 min and allowed to equilibrate for 5 days at room temperature under constant stirring.
La concentración total de dexametasona en la fomulación dexametasona/HPyCD/nanogeles fue de 25.7 ± 2.6 mg/ml, la osmolaridad 299 ± 31 mOsm/kg y la viscosidad 31.4 ± 3.9 cP. Ejemplo 6. Estudios in vivo  The total dexamethasone concentration in the dexamethasone / HPyCD / nanogels formulation was 25.7 ± 2.6 mg / ml, the osmolarity 299 ± 31 mOsm / kg and the viscosity 31.4 ± 3.9 cP. Example 6. In vivo studies
Se llevó a cabo un estudio en 12-14 conejos siguiendo las normas de la Association for Research in Vision and Ophtalmology (ARVO) y contando con la aprobación del Icelandic National Animal Research Committee (Tilraunadyranefnd). Cada conejo se mantuvo en una caja individualizada sometido a una dieta convencional. Con ayuda de una micropipeta se depositaron 50 μΐ de la formulación de dexametasona en HPyCD/nanogeles de yCD-HPMC1;1, preparada según el ej emplo 5, en el centro de la parte inferior del cul-de-sac de ambos oj os de cada conejo. En otro grupo de conej os, se depositaron 50 μΐ de colirio comercial de dexametasona en suspensión al 0. 1 % (Maxidex®). Ejemplo 6.1. Estudio en fluido lacrimal. A study was conducted in 12-14 rabbits following the standards of the Association for Research in Vision and Ophtalmology (ARVO) and with the approval of the Icelandic National Animal Research Committee (Tilraunadyranefnd). Each rabbit was kept in an individualized box under a conventional diet. With the help of a micropipette, 50 μΐ of the dexamethasone formulation was deposited in HPyCD / nanogels of yCD-HPMC 1; 1 , prepared according to example 5, in the center of the lower part of the cul-de-sac of both eyes of each rabbit. In another group of rabbits, 50 μΐ of commercial dexamethasone eye drops in 0.1% suspension (Maxidex®) were deposited. Example 6.1 Study in tear fluid.
A tiempos determinados tras la administración de las formulaciones de dexametasona, se tomaron muestras de fluido lacrimal utilizando un sterile Schirmer test strip. La concentración de dexametasona en el fluido lacrimal tras la administración de la formulación de dexametasona en HPyCD/nanogeles de yCD-HPMCi i se mantuvo constante durante las primeras 6 horas, con una media de 295 μg/ml (desviación standard 59 μg/ml), mientras que la concentración de dexametasona en el fluido lacrimal tras la administración de Maxidex® disminuyó rápidamente desde 9.72 μg/ml (desviación standard 3.45 μ§/ιη1) una hora tras la administración a 3.76 μg/ml (desviación standard 3.26μ§/ιη1) al cabo de dos horas desde la aplicación (Tabla 3). At certain times after administration of dexamethasone formulations, samples of tear fluid were taken using a sterile Schirmer test strip. The concentration of dexamethasone in the tear fluid after administration of the dexamethasone formulation in HPyCD / nanogels of yCD-HPMCi i remained constant during the first 6 hours, with an average of 295 μg / ml (standard deviation 59 μg / ml) , while the concentration of dexamethasone in the tear fluid after administration of Maxidex ® rapidly decreased from 9.72 μg / ml (standard deviation 3.45 μ§ / ιη1) one hour after administration to 3.76 μg / ml (standard deviation 3.26μ§ / ιη1) after two hours from the application (Table 3).
Tabla 3. Concentración de dexametasona ^g/ml) en film lacrimal de conejos tras la aplicación de una gota de Maxidex® (suspensión de dexametasona, 1 mg/ml) o de una gota formulación de dexametasona en HPyCD/nanogeles de yCD-HPMCi i (-25 mg/ml). La concentración de dexametasona presente en la superficie del ojo fué significativamente mayor en el caso de la aplicación de las gotas que contienen nanogeles (P< 002; t test no pareado). Valores medios y desviación estándar. Table 3. Concentration of dexamethasone ^ g / ml) in rabbit tear film after application of a drop of Maxidex ® (dexamethasone suspension, 1 mg / ml) or of a drop formulation of dexamethasone in HPyCD / nanogels of yCD-HPMCi i (-25 mg / ml). The concentration of dexamethasone present on the surface of the eye was significantly higher in the case of the application of the drops containing nanogels (P <002; t unpaired test). Mean values and standard deviation.
Figure imgf000028_0001
Figure imgf000028_0001
Ejemplo 6.2. Estudio en humor vitreo. Example 6.2. Study in vitreous humor.
A tiempos determinados (1, 2 y 3 horas) tras la administración de las formulaciones de dexametasona, los conejos se sacrificaron mediante administración intravenosa de T61 0.3 mi kg"1 (Intervet Deutschland GmbH, Alemania). Se tomaron aproximadamente 0.05 mi de humor acuoso utilizando una jeringa con aguja de 30 gauge e insertándola en la cámara anterior en el limbus. Las muestras se mantuvieron congeladas a -70°C hasta su análisis. At certain times (1, 2 and 3 hours) after administration of dexamethasone formulations, rabbits were sacrificed by intravenous administration of T61 0.3 ml kg "1 (Intervet Deutschland GmbH, Germany). Approximately 0.05 ml of aqueous humor were taken using a syringe with a 30 gauge needle and inserting it into the anterior chamber in the limbus. The samples were kept frozen at -70 ° C until analysis.
Los conejos tratados con la formulación de dexametasona en HPyCD/nanogeles de yCD- HPMCi;i presentaron valores máximos de concentración de dexametasona en humor acusoso al cabo de 2 horas, de 136 ± 24 ng/ml, mientras que los tratados con Maxidex® alcanzaron valores de sólo 44.4±7.8 ng/ml (Figura 6). Estos resultados confirman que los nanogeles de ciclodextrina proporcionan niveles de dexametasona más altos y más sostenidos tanto en la superficie ocular como en las estructuras internas del ojo. Rabbits treated with the formulation of dexamethasone in HPyCD / nanogels of yCD-HPMCi ; i had maximum dexamethasone concentration values in the accusative mood after 2 hours, of 136 ± 24 ng / ml, while those treated with Maxidex ® reached values of only 44.4 ± 7.8 ng / ml (Figure 6). These results confirm that cyclodextrin nanogels provide higher and more sustained levels of dexamethasone both in the ocular surface and in the internal structures of the eye.

Claims

REIVINDICACIONES
1. Hidrogel caracterizado por un diámetro hidrodinámico medio inferior a 1 micrómetro, que comprende una matriz de ciclodextrinas, donde las ciclodextrinas están unidas entre sí a través de un espaciador al que se unen mediante un grupo éter o amino. 1. Hydrogel characterized by an average hydrodynamic diameter of less than 1 micrometer, comprising a matrix of cyclodextrins, where the cyclodextrins are linked together through a spacer to which they are joined by an ether or amino group.
2. Hidrogel según la reivindicación 1 , donde el diámetro hidrodinámico medio está comprendido entre 1 nm y 400 nm. 2. Hydrogel according to claim 1, wherein the average hydrodynamic diameter is between 1 nm and 400 nm.
3. Hidrogel según la reivindicación 2, donde el diámetro hidrodinámico medio está comprendido entre 1 nm y 200 nm. 3. Hydrogel according to claim 2, wherein the average hydrodynamic diameter is between 1 nm and 200 nm.
4. Hidrogel según la reivindicación 1 , donde el espaciador comprende una estructura carbonada que se selecciona de entre cadenas de alquilo, arilo, arilalquilo y poliéter, lineales o ramificadas, opcionalmente sustituidas. 4. Hydrogel according to claim 1, wherein the spacer comprises a carbon skeleton that is selected from linear, branched, optionally substituted alkyl, aryl, arylalkyl and polyether chains.
5. Hidrogel según según cualquiera de las reivindicaciones 1 a 5, donde el espaciador procede de un agente reticulante que posee dos ó más grupos funcionales que son capaces de reaccionar con los grupos hidroxilo de las ciclodextrinas para formar grupos éter o bien con grupos amino de las ciclodextrinas para formar grupos amino. 5. Hydrogel according to any one of claims 1 to 5, wherein the spacer is derived from a crosslinking agent that has two or more functional groups that are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of cyclodextrins to form amino groups.
6. Hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 5, que además comprende un polímero hidrosoluble. 6. Hydrogel as defined according to any one of claims 1 to 5, further comprising a water-soluble polymer.
7. Hidrogel según la reivindicación 6, donde el polímero hidrosoluble es un polisacárido hidrosoluble o sus derivados. 7. Hydrogel according to claim 6, wherein the water-soluble polymer is a water-soluble polysaccharide or its derivatives.
8. Hidrogel según la reivindicación 6, donde el polímero hidrosoluble es un polímero acrílico de carácter neutro o ionizable con la condición de ser soluble en medio acuoso.8. Hydrogel according to claim 6, wherein the water-soluble polymer is a neutral or ionizable acrylic polymer with the condition of being soluble in aqueous medium.
9. Hidrogel según cualquiera de las reivindicaciones 1 a 8 seleccionado de entre el grupo de los siguientes hidrogeles constituidos por: 9. Hydrogel according to any one of claims 1 to 8 selected from the group of the following hydrogels consisting of:
a) gamma-ciclodextrina y etilenglicoldiglicidileter,  a) gamma-cyclodextrin and ethylene glycol glycidyl ether,
b) gamma-ciclodextrina, etilenglicoldiglicidileter e hidroxipropilmetilcelulosa, c) gamma-ciclodextrina, etilenglicoldiglicidileter y agar  b) gamma-cyclodextrin, ethylene glycol glycidyl ether and hydroxypropyl methylcellulose, c) gamma cyclodextrin, ethylene glycol glycidyl ether and agar
d) hidroxipropil-beta-ciclodextrina, etilenglicoldiglicidileter e hidroxipropilmetilcelulosa,  d) hydroxypropyl-beta-cyclodextrin, ethylene glycol glycidyl ether and hydroxypropyl methylcellulose,
e) hidroxipropil-beta-ciclodextrina, etilenglicoldiglicidileter y agar e) hydroxypropyl-beta-cyclodextrin, ethylene glycol glycidyl ether and agar
10. Hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 9, que además comprende un ingrediente activo, una molécula biológica, o una molécula tóxica. 10. Hydrogel as defined according to any one of claims 1 to 9, further comprising an active ingredient, a biological molecule, or a toxic molecule.
11. Hidrogel según la reivindicación 10, donde el ingrediente activo o la molécula biológica poseen actividad antifúngica, antiséptica o antinflamatoria, o bien es una molécula de interés en ingeniería de tejidos, medicina regenerativa, cosmética o de higiene. 11. Hydrogel according to claim 10, wherein the active ingredient or the biological molecule has antifungal, antiseptic or anti-inflammatory activity, or is a molecule of interest in tissue engineering, regenerative, cosmetic or hygiene medicine.
12. Hidrogel según la reivindicación 1 1, donde el ingrediente activo es un antiinflamatorio esteroideo. 12. Hydrogel according to claim 1, wherein the active ingredient is a steroidal anti-inflammatory.
13. Hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 12, donde el hidrogel se encuentra en forma liofilizada. 13. Hydrogel as defined according to any of claims 1 to 12, wherein the hydrogel is in lyophilized form.
14. Composición farmacéutica que comprende el hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13, y al menos un excipiente farmacéuticamente aceptable. 14. Pharmaceutical composition comprising the hydrogel as defined according to any one of claims 1 to 13, and at least one pharmaceutically acceptable excipient.
15. Composición farmacéutica según la reivindicación 14, para la administración transdérmica, bucal, oral, rectal, ocular, nasal, ótica, vaginal, o implante parenteral. 15. Pharmaceutical composition according to claim 14, for transdermal, oral, oral, rectal, ocular, nasal, otic, vaginal, or parenteral implant administration.
16. Solución acuosa estéril que comprende un hidrogel según se ha definido en cualquiera de las reivindicaciones de 1 a 13. 16. Sterile aqueous solution comprising a hydrogel as defined in any one of claims 1 to 13.
17. Solución acuosa estéril según la reivindicación 16 que comprende entre 2 mg/mL y 100 mg/mL del hidrogel. 17. Sterile aqueous solution according to claim 16 comprising between 2 mg / mL and 100 mg / mL of the hydrogel.
18. Composición cosmética que comprende el hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13. 18. Cosmetic composition comprising the hydrogel as defined according to any of claims 1 to 13.
19. Composición fitosanitaria que comprende el hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13. 19. Phytosanitary composition comprising the hydrogel as defined according to any of claims 1 to 13.
20. Procedimiento para la preparación del hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13, que comprende: a) preparar una disolución acuosa que comprende una o varias ciclodextrinas, un agente reticulante que posee dos ó más grupos funcionales que son capaces de reaccionar con los grupos hidroxilo de las ciclodextrinas para formar grupos éter o bien con grupos amino de las ciclodextrinas para formar grupos amino, y una sustancia de carácter ácido o básico, y opcionalmente un polímero hidrosoluble, 20. A process for preparing the hydrogel as defined according to any one of claims 1 to 13, comprising: a) preparing an aqueous solution comprising one or more cyclodextrins, a crosslinking agent having two or more functional groups that are capable of reacting with the hydroxyl groups of the cyclodextrins to form ether groups or with amino groups of cyclodextrins to form amino groups, and an acidic or basic substance, and optionally a water-soluble polymer,
b) preparar una disolución orgánica que comprende un disolvente orgánico, y opcionalmente un agente tensioactivo, b) preparing an organic solution comprising an organic solvent, and optionally a surfactant,
c) mezclar bajo agitación las disoluciones preparadas en las etapas a) y b), d) mezclar la emulsión obtenida en la etapa c) con agua. c) mix under stirring the solutions prepared in steps a) and b), d) mix the emulsion obtained in step c) with water.
21. Procedimiento según la reivindicación 20, donde el agente tensoactivo se selecciona de entre el grupo consistente en derivados hidroxílicos de cadena larga de 8 a 18 átomos de carbono (alcoholes grasos), ácidos carboxílicos etoxilados, amidas etoxiladas, glicéridos etoxilados, ésteres de glicol y derivados, monoglicéridos, poligliceril ésteres, ésteres y éteres de polialcoholes, ésteres de sorbitán/sorbitol, triésteres del ácido fosfórico, derivados etoxilados de los alcoholes grasos y éteres de polietilenglicol. 21. The method according to claim 20, wherein the surface active agent is selected from the group consisting of long chain hydroxylic derivatives of 8 to 18 carbon atoms (fatty alcohols), ethoxylated carboxylic acids, ethoxylated amides, ethoxylated glycerides, glycol esters and derivatives, monoglycerides, polyglyceryl esters, esters and ethers of polyalcohols, sorbitan / sorbitol esters, phosphoric acid esters, ethoxylated derivatives of fatty alcohols and polyethylene glycol ethers.
22. Procedimiento según la reivindicación 21, donde el agente tensoactivo es un éster de sorbitan. 22. Method according to claim 21, wherein the surface active agent is a sorbitan ester.
23. Procedimiento según cualquiera de las reivindicaciones 20 a 22, que comprende además una etapa e) posterior a la etapa d) que comprende la dialización de la mezcla. 23. The method according to any of claims 20 to 22, further comprising a stage e) after stage d) comprising the dialysate of the mixture.
24. Procedimiento según la reivindicación 23, que comprende además una etapa f) posterior a la etapa e) que comprende la liofilización de la mezcla. 24. The method of claim 23, further comprising a step f) after step e) comprising lyophilization of the mixture.
25. Procedimiento según la reivindicación 24, que comprende además una etapa g) posterior a la etapa f) que comprende la rehidratación de los nanogeles. 25. The method according to claim 24, further comprising a step g) after step f) comprising rehydration of the nanogels.
26. Procedimiento según cualquiera de las reivindicaciones 20 a 25 que comprende además añadir un ingrediente activo o una molécula biológica. 26. A method according to any one of claims 20 to 25, further comprising adding an active ingredient or a biological molecule.
27. Procedimiento según la reivindicación 26, donde la incorporación del ingrediente activo o de la molécula biológica se lleva a cabo mediante uno de los siguientes procesos: i) inmersión directa de un hidrogel según se ha descrito en cualquiera de las reivindicaciones 1 a 12, en una disolución o en una suspensión del ingrediente activo o de la molécula biológica, a una temperatura comprendida entre 0 y 100°C y a presión atmosférica, opcionalmente empleando ultrasonidos, ii) en autoclave a temperatura comprendida entre 100 y 130°C, o, iii) adición del ingrediente activo o de la molécula biológica a la fase acuosa a). 27. A method according to claim 26, wherein the incorporation of the active ingredient or biological molecule is carried out by one of the following processes: i) direct immersion of a hydrogel as described in any of claims 1 to 12, in a solution or in a suspension of the active ingredient or of the biological molecule, at a temperature between 0 and 100 ° C and at atmospheric pressure, optionally using ultrasound, ii) in an autoclave at a temperature between 100 and 130 ° C, or, iii) addition of the active ingredient or of the biological molecule to the aqueous phase a).
28. Uso del hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13, para preparar un medicamento. 28. Use of the hydrogel as defined according to any one of claims 1 to 13, to prepare a medicament.
29. Uso del hidrogel según la reivindicación 28, donde el medicamento es para el tratamiento de enfermedades oftálmicas. 29. Use of the hydrogel according to claim 28, wherein the medicament is for the treatment of ophthalmic diseases.
30. Uso del hidrogel según la reivindicación 29, donde la enfermedad oftálmica se selecciona de entre alergias severas, agudas y crónicas, procesos inflamatorios que involucre a los ojos como herpes zoster oftálmico, iritis, iridociclitis, coriorretinitis, uveítis difusa posterior y corioiditis, neuritis óptica, oftalmía simpática, inflamación del segmento anterior, conjuntivitis alérgica, queratitis, úlceras alérgicas corneales y marginales, infecciones bacterianas, infecciones virales, degeneraciones como degeneración macular, blefaritis, conjuntivitis, glaucoma, tumores benignos o malignos y, retinopatías. 30. Use of the hydrogel according to claim 29, wherein the ophthalmic disease is selected from severe, acute and chronic allergies, inflammatory processes involving the eyes such as ophthalmic herpes zoster, iritis, iridocyclitis, chorioretinitis, posterior diffuse uveitis and chorioiditis, neuritis optic, sympathetic ophthalmia, inflammation of the anterior segment, allergic conjunctivitis, keratitis, corneal and marginal allergic ulcers, bacterial infections, viral infections, degenerations such as macular degeneration, blepharitis, conjunctivitis, glaucoma, benign or malignant tumors and, retinopathies.
31. Uso del hidrogel como se ha definido según cualquiera de las reivindicaciones 1 a 13, en sistemas capaces de secuestrar sustancias tóxicas, moléculas producidas por organismos vivos, agentes contaminantes o residuos líquidos. 31. Use of the hydrogel as defined according to any of claims 1 to 13, in systems capable of sequestering toxic substances, molecules produced by living organisms, pollutants or liquid waste.
32. Un método para tratar enfermedades oftálmicas que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 32. A method of treating ophthalmic diseases comprising administering to the mammal in need thereof an effective amount of the pharmaceutical composition as described in claim 14 or the accused solution as described in claim 16.
33. Un método para tratar alergias severas, agudas o crónicas que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 33. A method for treating severe, acute or chronic allergies comprising administering to the mammal in need an effective amount of the pharmaceutical composition as described in claim 14 or the harsh solution as described in claim 16.
34. Un método para tratar procesos inflamatorios que involucre a los ojos que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 34. A method of treating inflammatory processes involving the eyes which comprises administering to the mammal in need an effective amount of the pharmaceutical composition as described in claim 14 or the hazy solution as described in claim 16.
35. Un método para tratar infecciones bacterianas o infecciones virales oculares que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 35. A method of treating bacterial infections or ocular viral infections comprising administering to the mammal in need an effective amount of the pharmaceutical composition as described in claim 14 or the harsh solution as described in claim 16.
36. Un método para tratar degeneraciones oculares que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 36. A method of treating ocular degenerations comprising administering to the mammal in need an effective amount of the pharmaceutical composition as described in claim 14 or the hazy solution as described in claim 16.
37. Un método para tratar glaucoma que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 37. A method of treating glaucoma comprising administering to the mammal in need an effective amount of the pharmaceutical composition as described in claim 14 or the hazy solution as described in claim 16.
38. Un método para tratar retinopatía que comprende administrar al mamífero que lo necesite una cantidad efectiva de la composición farmacéutica como se ha descrito en la reivindicación 14 o la solución acusosa como se ha descrito en la reivindicación 16. 38. A method of treating retinopathy comprising administering to the mammal in need thereof an effective amount of the pharmaceutical composition as described in claim 14 or the accused solution as described in claim 16.
PCT/ES2012/070638 2011-09-29 2012-08-31 Cyclodextrin nanogels WO2013045729A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201131575A ES2371898B2 (en) 2011-09-29 2011-09-29 CYCLODEXTRINE NANOGELS.
ESP201131575 2011-09-29

Publications (1)

Publication Number Publication Date
WO2013045729A1 true WO2013045729A1 (en) 2013-04-04

Family

ID=45374460

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/070638 WO2013045729A1 (en) 2011-09-29 2012-08-31 Cyclodextrin nanogels

Country Status (2)

Country Link
ES (1) ES2371898B2 (en)
WO (1) WO2013045729A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2740287C1 (en) * 2019-08-30 2021-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) 3d-matrix structure for drug delivery
WO2021006845A3 (en) * 2019-07-09 2021-03-11 Akdeniz Universitesi Smart temperature-sensitive hydrogels with antifungal property that perform controlled drug release

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535152A (en) * 1983-02-14 1985-08-13 Chinoin, Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Water soluble cyclodextrin polymers substituted by ionic groups and process for the preparation thereof
US4596795A (en) * 1984-04-25 1986-06-24 The United States Of America As Represented By The Secretary, Dept. Of Health & Human Services Administration of sex hormones in the form of hydrophilic cyclodextrin derivatives
US6048736A (en) * 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
ES2310948A1 (en) * 2005-02-25 2009-01-16 Universidade De Santiago De Compostela Method of obtaining hydrogels of cyclodextrins with glycidyl ethers, compositions thus obtained and applications thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4535152A (en) * 1983-02-14 1985-08-13 Chinoin, Gyogyszer Es Vegyeszeti Termekek Gyara Rt. Water soluble cyclodextrin polymers substituted by ionic groups and process for the preparation thereof
US4596795A (en) * 1984-04-25 1986-06-24 The United States Of America As Represented By The Secretary, Dept. Of Health & Human Services Administration of sex hormones in the form of hydrophilic cyclodextrin derivatives
US6048736A (en) * 1998-04-29 2000-04-11 Kosak; Kenneth M. Cyclodextrin polymers for carrying and releasing drugs
ES2310948A1 (en) * 2005-02-25 2009-01-16 Universidade De Santiago De Compostela Method of obtaining hydrogels of cyclodextrins with glycidyl ethers, compositions thus obtained and applications thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RODRIGUEZ-TENREIRO, C. ET AL.: "Estradiol sustained release from high affinity cyclodextrin hydrogels", EUROPEAN JOURNAL OF PHARMACEUTICS AND BIOPHARMACEUTICS, vol. 66, 2007, pages 55 - 62, XP005938637, DOI: doi:10.1016/j.ejpb.2006.09.003 *
RODRIGUEZ-TENREIRO, CARMEN ET AL.: "New cyclodextrin hydrogels cross-linked with diglycidylethers with a high drug loading and controlled release ability", PHARMACEUTICAL RESEARCH, vol. 23, no. 1, January 2006 (2006-01-01), pages 121 - 130, XP019370956, DOI: doi:10.1007/s11095-005-8924-y *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021006845A3 (en) * 2019-07-09 2021-03-11 Akdeniz Universitesi Smart temperature-sensitive hydrogels with antifungal property that perform controlled drug release
RU2740287C1 (en) * 2019-08-30 2021-01-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) 3d-matrix structure for drug delivery

Also Published As

Publication number Publication date
ES2371898B2 (en) 2012-06-13
ES2371898A1 (en) 2012-01-11

Similar Documents

Publication Publication Date Title
Di Colo et al. Effect of chitosan and of N-carboxymethylchitosan on intraocular penetration of topically applied ofloxacin
Barclay et al. Review of polysaccharide particle-based functional drug delivery
Prasher et al. Current-status and applications of polysaccharides in drug delivery systems
Mourya et al. Trimethyl chitosan and its applications in drug delivery
JP5469458B2 (en) Polymeric micellar clusters and their use in drugs
US8759322B2 (en) Hyaluronic acid derivative and pharmaceutical composition thereof
Nurunnabi et al. Polysaccharide based nano/microformulation: An effective and versatile oral drug delivery system
Dmour et al. Natural and semisynthetic polymers in pharmaceutical nanotechnology
WO2008136536A1 (en) Hybrid gel comprising chemically cross-linked hyaluronic acid derivative, and pharmaceutical composition using the same
Alhaique et al. Polysaccharide-based self-assembling nanohydrogels: An overview on 25-years research on pullulan
Bongiovì et al. Imatinib-loaded micelles of hyaluronic acid derivatives for potential treatment of neovascular ocular diseases
JP2014129408A (en) Novel biomaterials for ocular drug delivery and method for making and using the same
Khare et al. Mucoadhesive polymers for enhancing retention in ocular drug delivery: a critical review
Imran et al. Application and use of Inulin as a tool for therapeutic drug delivery
EP3890732A1 (en) Injectable formulations
ZA200102918B (en) Formulations of fexofenadine.
US20080008755A1 (en) Pharmaceutical formulation of cholanic acid-chitosan complex incorporated with hydrophobic anticancer drugs and preparation method thereof
Sahni et al. Potential prospects of chitosan derivative trimethyl chitosan chloride (TMC) as a polymeric absorption enhancer: synthesis, characterization and applications
Limiti et al. Hyaluronic acid–polyethyleneimine nanogels for controlled drug delivery in cancer treatment
Khvostov et al. Application of natural polysaccharides in pharmaceutics
WO2013045729A1 (en) Cyclodextrin nanogels
Kumar et al. Polysaccharide nanoconjugates for drug solubilization and targeted delivery
AU743204B2 (en) Controlled release of ophthalmic compositions
JP2013523748A (en) Drug delivery formulation for injection
US20230102859A1 (en) Natural origin stabilizer for oil in water emulsions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12835115

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12835115

Country of ref document: EP

Kind code of ref document: A1