WO2013045230A1 - Procédé de fabrication d'une pile à combustible à électrolyte solide - Google Patents

Procédé de fabrication d'une pile à combustible à électrolyte solide Download PDF

Info

Publication number
WO2013045230A1
WO2013045230A1 PCT/EP2012/067207 EP2012067207W WO2013045230A1 WO 2013045230 A1 WO2013045230 A1 WO 2013045230A1 EP 2012067207 W EP2012067207 W EP 2012067207W WO 2013045230 A1 WO2013045230 A1 WO 2013045230A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
aerosol
solid electrolyte
aerosol deposition
fuel cell
Prior art date
Application number
PCT/EP2012/067207
Other languages
German (de)
English (en)
Inventor
Carsten Schuh
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013045230A1 publication Critical patent/WO2013045230A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a method for producing a solid electrolyte fuel cell according to the preamble of An ⁇ claim 1.
  • Generic solid electrolyte fuel cells are from the
  • SOFC Solid Oxide Fuel Cell
  • a gaseous fuel supplied to an anode oxidizes, resulting in a release of electrons that flow through the external load and reduce oxygen at a cathode.
  • the charge flow in the external circuit is compensated by an ion transport in the electrolyte.
  • oxygen is dissociated from the air at the cathode and converted into oxygen ions which migrate through the electrolyte and react with the fuel at the interface between the anode and the electrolyte.
  • a oxidke ⁇ ramische fuel cell operates with an operating temperature above 500 ° C, at which a coming therein for use solid electrolyte has a sufficient ionic conductivity for oxygen ions.
  • solid electrolyte batteries and solid electrolyte fuel cells have some similarities. Therefore, in addition, the term solid electrolyte fuel cell both a solid electrolyte fuel cell ⁇ material itself and the rechargeable concept is understood egg ner solid electrolyte battery.
  • Contact and protective layers is currently a layered structure
  • Deposition by means of aerosol deposition can avoid these disadvantages of a high process temperature.
  • the deposition by means of aerosol deposition for producing a Fuel cell for example from scripture "Anode Supported SOFC with GDC Barrier Layer Deposited by Aerosol Deposition Method, Proceedings of the ASME 2010, 8th Interna ⁇ tional Fuel Cell Science, Engineering and Technology Confer- ence, S.351-357", as well as from
  • the layers described in this prior art are due to their composition and tightness unge ⁇ is, the migration of atomic chromium from the alloy of the interconnector plate countries ⁇ to verhin in the fuel cell.
  • the present invention is therefore based on the object of specifying a method for producing a solid electrolyte fuel cell, with which the layer structures can be produced at lower process temperatures, at the same time the formation of a suitable chromium vapor barrier layer is to be made possible.
  • This object is achieved by a manufacturing method having the features of patent claim 1.
  • a method for producing a solid electrolyte fuel cell is provided to generate at least a component for Bil ⁇ dung of the solid electrolyte fuel cell by layering on a respective substrate.
  • an aerosol deposition method is used for layer formation, wherein aerosol particles adapted to the respective layer are used and wherein an optional tempering takes place for setting a respective microstructure of the layer.
  • an aerosol deposition takes place without subsequent heat treatment, ceramics in a spinel structure being used as aerosol particles.
  • the spinel structures deposited by an aerosol deposition process prove to be sufficiently dense to inhibit migration of chromium atoms through the layer.
  • an additional use of an aerosol deposition method for layer formation is provided for different layers of a preferably planar solid electrolyte fuel cell.
  • the method provides for a very low process and substrate temperature, for example at room temperature or to only about 300 ° C before.
  • the aerosol deposition process has been significantly developed by the Japanese Research Institute AIST (National Institute of Advanced Industrial Science and Technology) and is also known by the acronym ADM (Aerosol Deposition Method).
  • the aerosol deposition method used sub-ym-powder particles, of which first dispersed in a carrier gas such as 0 2, N 2, Ar, He, air, etc. to form an aerosol ⁇ the.
  • the aerosol is finally transported via a nozzle into a Un ⁇ tertikhunt and thereby via a Druckdiffe- highly accelerated to eventually strike a substrate.
  • a carrier gas such as 0 2, N 2, Ar, He, air, etc.
  • both high-density and porous ceramic layers or metallic layers with thicknesses between approximately 1 and 500 ⁇ m can be deposited on different substrates.
  • This optional process step of annealing thus offers a spectrum for the layer formation of high-density, fine to coarse-grained layers up to highly porous, multi-phase composite structures.
  • the method according to the invention makes it possible to produce both porous and high-density layer structures at low process temperatures with the desired microstructure in a cost-efficient manner on the respective substrates.
  • Another advantage of using the aerosol deposition method for film formation at a Festelekt ⁇ rolyt fuel cell is given by the possibility of a non-sinterable processability and wetting in itself by decomposition, chemical reactions to high sintering temperatures, etc., incompatible starting materials. By contrast, only comparable material compositions would be difficult to prepare in comparable alternative processes.
  • Another advantage is the ability to coat arbitrarily shaped layers, not just planar contours and surfaces.
  • a particular advantage of using the aerosol deposition method for film formation in the solid oxide fuel cell electric ⁇ lyt is given by the possibility of circuit provide an optional annealing step in the presence, with the grain coarsening of the nanocrystalline structure in the initial state is enabled. Depending on whether this anneal is a ⁇ set or not, thus the possibility of nanoscale high-density layer or microcrystalline to decor with dark ⁇ th yields.
  • Layer thickness to obtain a gas-tight layer resulting in more advantageous before ⁇ manner, for example, to an additional reduction of the lowering ⁇ passage resistance for oxygen ions in the case of the electrolyte.
  • the high-density configuration of the layers also advantageously leads to an additional reduction of a respective surface resistance of the layers.
  • the aerosol deposition method has particular advantages for the
  • FIG. shows a schematic cross-sectional view of a
  • the illustrated solid electrolyte fuel cell includes a plurality of layers which are subsequently laminated in the direction from the cathode shown in the drawing above to the anode shown in the drawing below.
  • a cathode-side interconnector plate 5 is shown in the upper part of the drawing. While in the Vergangen ⁇ uniform due to high operating temperatures of 800 - 1000 ° C exclusively ceramic interconnector plates 5 on the basis of doped lanthanum chromites (lacros) were used, may be prepared by the usual today operating temperatures of an SOFC in regions between 600-800 ° C meanwhile me ⁇ tallische materials are used. Chromia forming Le ⁇ alloys, for example, ferritic steels are preferred since gradually materials for metallic Interkonnektorplat ⁇ th. Chromia-forming alloys are characterized in that, in contrast to other metal oxides they have a sufficiently high electrical conductivity.
  • chromium evaporation volatile chromium compounds
  • chromium evaporation volatile chromium compounds
  • a chromium vapor barrier layer 10 which is applied over the entire area on the cathode-side interconnector plate 5 in the direction of an electrolyte 50 of the fuel cell.
  • this chromium vapor barrier layer 10 is applied in a highly dense manner by means of the aerosol deposition process while setting a layer thickness of preferably less than 10 ⁇ m.
  • an aerosol ⁇ particulate ceramics according to an embodiment of the invention employed in a spinel structure used in particular CoMn- spinel.
  • the structure of the interconnector plate 5 is determined through the air channels in which the oxygen of the cathode is supplied.
  • the interconnector plates 5 have gas channels formed therein.
  • planar-shaped solid electrolyte fuel cells are manufactured individually and then stacked on top of each other and optionally sealed with a high-temperature sealing material.
  • Deposition method applied contact layer 20 is preferably made of a LaCuCo oxide. To ensure a deformable contact with the cathode layer 25 of the cell, a porous structure is set. The preferred
  • Layer thickness is 10 ym and more.
  • the cathode layer 25 forms a substrate and an electrical ⁇ specific contact layer for the cathode functional layer 30th
  • LSM compounds based on (La, Sr) MnÜ 3 and / or LSCF compounds based on (La, Sr) (Co, Fe) 03 are used as the cathode functional layer 30 .
  • Said compounds are referred to according to an embodiment in conjunction with ceramic mikbas striving electrolyte materials such as yttrium-stabilized zirconia (YSZ), even YSZ used, before ⁇ preferably in a direction indicated as 8YSZ composition having a concentration of 8 mol% Y 2 O 3 in ZrÜ 2 .
  • YSZ yttrium-stabilized zirconia
  • an admixture of another elec- rolyttechnikstoffs such as cerium-based Composition ⁇ gen, especially cerium gadolinium oxide, also called CGO be seen ⁇ .
  • cerium-based Composition ⁇ gen especially cerium gadolinium oxide, also called CGO be seen ⁇ .
  • the applied according to an embodiment of the invention by the aerosol deposition method Katho ⁇ the function layer 30 is gebil- det as a highly porous structure.
  • the preferred layer thickness is 20 ym and Darun ⁇ ter.
  • a diffusion proves to 30 spilled strontium between the cathode functional layer 30 and electric ⁇ lyt 50th of from LSCF- compounds of the cathode functional layer as a problem to avoid these Sr-diffusion according to one embodiment of the invention, a diffusion barrier layer 40 to prevent Sr diffusion to the YSZ electrolyte when using LSCF on the cathode side.
  • diffusion barrier layer 40 is formed as a highly dense layer having a very small layer ⁇ thickness of preferably less than 1 ym.
  • a thin one Diffusion barrier layer 40 proves to be favorable for the electrical resistance of the fuel cell.
  • anode As carriers for the above-mentioned ceramic layers either the anode is used, here, an anode layer shown in the drawings 70. Such a cell is then ⁇ be characterized as anodenge ⁇ assisted cell or as ASC (Anode Supported Cell). In an alternative variant serves as a carrier, the YSZ electrolyte layer itself, which is why this structure is referred to as ESC (Electrolyte Supported Cell).
  • MSC Metal Supported Cell
  • the actual electrolyte layer 50 is located in the middle of the cell.
  • This electrolyte layer 50 is also formed according to an embodiment of the invention by means of the aerosol deposition process.
  • the electrolyte material used is yttrium-stabilized zirconium dioxide, YSZ, preferably in a composition also designated 8YSZ with a concentration of 8 mol% Y 2 O 3 in ZrO 2 .
  • YSZ yttrium-stabilized zirconium dioxide
  • 8YSZ preferably in a composition also designated 8YSZ with a concentration of 8 mol% Y 2 O 3 in ZrO 2 .
  • an admixture of a further electrolyte material in particular cerium-gadolinium oxide, CGO, may be provided.
  • the entire electrolyte layer 50 may be formed of ceria and / or doped ceria.
  • ⁇ electrolyte layer 50 is formed as a highly dense structure.
  • the preferred layer thickness is 50 ym and below, ideally 10 ym and below.
  • the demands on the underneath of the electrolyte 50 is ⁇ arranged anode functional layer 60 is a high open poro ⁇ intensity to ensure a gas transport to an electrochemical three-phase boundary area, and high electrical see conductivity to the released during oxidation of fuel gas electron unimpeded in the direction of the anode-side Interkonnektorplatte 90 derive.
  • This anode radio ⁇ tion layer 60 is formed according to an embodiment of the invention also overall by the aerosol deposition method.
  • the anode material used is a composite of 8YSZ or 3YSZ and / or CGO with nickel particles.
  • the required high open porosity is in addition to a Gehegevergrö- berung also supported so that Adiabatic bare particles, for example of plastic or organic material incorporated ⁇ introduced in the course of aerosol deposition in the structure by means of a process executed by the aerosol deposition anneal which burn out at said annealing step or at subsequent operating temperatures.
  • the preferred layer thickness is 20 ym and below.
  • a arranged beneath the anode layer 70 forms a sub ⁇ strat and an electrical contact layer for the anode functional layer 60.
  • a contact network 80 based on nickel is used a IMPROVE ⁇ tion of the contact between the anode layer 70 and the anode-side interconnector plate 90th

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une pile à combustible à électrolyte solide, selon lequel au moins un constituant destiné à la formation de la pile à combustible à électrolyte solide est généré par formation de couches sur un substrat. Un procédé de dépôt de particules sous forme d'aérosol est utilisé pour la formation de couches, des particules sous forme d'aérosol adaptées étant utilisées pour chaque couche. Ensuite, des particules sous forme d'aérosol sont déposées sans trempe subséquente pour former une couche barrière d'évaporation de chrome sur une plaque d'interconnexion côté cathode, des céramiques à structure de spinelle étant utilisées en tant que particules sous forme d'aérosol.
PCT/EP2012/067207 2011-09-27 2012-09-04 Procédé de fabrication d'une pile à combustible à électrolyte solide WO2013045230A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011083504.0 2011-09-27
DE102011083504 2011-09-27

Publications (1)

Publication Number Publication Date
WO2013045230A1 true WO2013045230A1 (fr) 2013-04-04

Family

ID=47002826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/067207 WO2013045230A1 (fr) 2011-09-27 2012-09-04 Procédé de fabrication d'une pile à combustible à électrolyte solide

Country Status (1)

Country Link
WO (1) WO2013045230A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200594A1 (de) * 2013-01-16 2014-07-31 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten
WO2016001400A1 (fr) * 2014-07-03 2016-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé de fabrication d'une plaque bipolaire recouverte, plaque bipolaire recouverte pour cellule électrochimique et cellule électrochimique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109821A2 (fr) * 2003-06-06 2004-12-16 Nanogram Corporation Depot reactif pour la production de cellules electrochimiques
US20070180689A1 (en) * 2006-02-08 2007-08-09 Day Michael J Nonazeotropic terpineol-based spray suspensions for the deposition of electrolytes and electrodes and electrochemical cells including the same
EP1850412A1 (fr) * 2006-04-26 2007-10-31 Technical University of Denmark Un retêvement multicouche
KR20090129665A (ko) * 2008-06-13 2009-12-17 한국기계연구원 치밀한 구조를 갖는 스피넬계 전도성 박막, 이의 제조방법및 이를 이용한 금속 접속자
WO2010061585A1 (fr) * 2008-11-26 2010-06-03 日立金属株式会社 Élément pour pile à combustible électrolytique à oxyde solide
WO2011019455A1 (fr) 2009-08-10 2011-02-17 Siemens Energy, Inc. Dispositif de stockage électrique comprenant un bloc d'élément de cellule de batterie ion-oxyde et configurations de module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004109821A2 (fr) * 2003-06-06 2004-12-16 Nanogram Corporation Depot reactif pour la production de cellules electrochimiques
US20070180689A1 (en) * 2006-02-08 2007-08-09 Day Michael J Nonazeotropic terpineol-based spray suspensions for the deposition of electrolytes and electrodes and electrochemical cells including the same
EP1850412A1 (fr) * 2006-04-26 2007-10-31 Technical University of Denmark Un retêvement multicouche
KR20090129665A (ko) * 2008-06-13 2009-12-17 한국기계연구원 치밀한 구조를 갖는 스피넬계 전도성 박막, 이의 제조방법및 이를 이용한 금속 접속자
WO2010061585A1 (fr) * 2008-11-26 2010-06-03 日立金属株式会社 Élément pour pile à combustible électrolytique à oxyde solide
WO2011019455A1 (fr) 2009-08-10 2011-02-17 Siemens Energy, Inc. Dispositif de stockage électrique comprenant un bloc d'élément de cellule de batterie ion-oxyde et configurations de module

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF EUROPEAN CERAMIC SOCIETY, vol. 32, 2012, pages 115 - 121

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013200594A1 (de) * 2013-01-16 2014-07-31 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten
WO2016001400A1 (fr) * 2014-07-03 2016-01-07 Deutsches Zentrum für Luft- und Raumfahrt e.V. Procédé de fabrication d'une plaque bipolaire recouverte, plaque bipolaire recouverte pour cellule électrochimique et cellule électrochimique

Similar Documents

Publication Publication Date Title
EP2676318B1 (fr) Structure à empilement et son utilisation pour former une structure à empilement en ceramique entre un interconnecteur et une cathode d'une pile a combustible haute temperature
EP2031684B1 (fr) Pile à combustible d'oxyde solide à support métallique
DE102005015755A1 (de) Verfahren zur Herstellung einer Chromverdampfungsschutzschicht für chromoxidbildende Metallsubstrate
DE102006045086A1 (de) Elektrochemische Zellenstrukturen und Verfahren zu ihrer Herstellung
DE102006030393A1 (de) Keramische Werkstoffkombination für eine Anode für eine Hochtemperatur-Brennstoffzelle
EP2502296B1 (fr) Agencement pour une cellula à combustible ainsi que son procédé de fabrication
US20140287341A1 (en) Modified anode/electrolyte structure for a solid oxide electrochemical cell and a method for making said structure
EP3000149B1 (fr) Ensemble multicouche pour électrolyte solide
EP2654115B1 (fr) Procédé de fabrication d'un substrat de support, substrat de support et dispositif électrochimique
EP1497884A2 (fr) Pile a combustible a electrolyte solide a haute temperature, comprenant un composite constitue d'electrodes en couche mince nanoporeuses et d'un electrolyte structure
DE102013007637B4 (de) Kathoden-Elektrolyt-Anodeneinheit von Hochtemperatur-Brennstoffzellen
WO2012062263A1 (fr) Procédé pour la fabrication de piles à combustible à oxyde solide comportant une unité cathode-électrolyte-anode portée par un substrat métallique, ainsi que l'utilisation desdites piles à combustible à oxyde solide
EP2669984B1 (fr) Système de couches d'anode pour applications electrochimiques et son procédé de fabrication
EP2156499B1 (fr) Procédé de réalisation d'une couche d'électrolyte solide étanche aux gaz et couche d'électrolyte solide correspondante
WO2013045230A1 (fr) Procédé de fabrication d'une pile à combustible à électrolyte solide
EP2335314A1 (fr) Pile à combustible plane à haute température
WO2008119321A1 (fr) Système de couches destiné à un électrolyte d'une pile à combustible haute température, et son procédé de réalisation
EP3697944B1 (fr) Électrode à gaz combustible ainsi que procédé de fabrication d'une électrode à gaz combustible
DE10339613A1 (de) Festoxidbrennstoffzelle und Verfahren zu ihrer Herstellung
EP3327848B1 (fr) Méthode de fabrication d'une pile à combustible
DE102012217309A1 (de) Schichtverbund für eine Batterie-Zelle
McCoppin Fabrication and Analysis of Compositionally Graded Functional Layers for Solid Oxide Fuel Cells
DE102011083501A1 (de) Komposit-Anode für Batterie-Zelle
WO2008145660A2 (fr) Procédé de fabrication d'une couche céramique étanche aux gaz, et couche céramique
WO2005112153A1 (fr) Anode pour pile a combustible haute temperature, et procede de realisation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12769610

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12769610

Country of ref document: EP

Kind code of ref document: A1