WO2013042865A1 - 소형 카메라모듈의 수직 와이어 완충구조 - Google Patents

소형 카메라모듈의 수직 와이어 완충구조 Download PDF

Info

Publication number
WO2013042865A1
WO2013042865A1 PCT/KR2012/005741 KR2012005741W WO2013042865A1 WO 2013042865 A1 WO2013042865 A1 WO 2013042865A1 KR 2012005741 W KR2012005741 W KR 2012005741W WO 2013042865 A1 WO2013042865 A1 WO 2013042865A1
Authority
WO
WIPO (PCT)
Prior art keywords
spacer
camera module
lens holder
buffer
wire spring
Prior art date
Application number
PCT/KR2012/005741
Other languages
English (en)
French (fr)
Inventor
박창욱
Original Assignee
(주)하이소닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110096071A external-priority patent/KR101185730B1/ko
Priority claimed from KR1020110096068A external-priority patent/KR101245146B1/ko
Priority claimed from KR1020120004430A external-priority patent/KR101239685B1/ko
Application filed by (주)하이소닉 filed Critical (주)하이소닉
Priority to US14/402,502 priority Critical patent/US9360734B2/en
Publication of WO2013042865A1 publication Critical patent/WO2013042865A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B3/00Focusing arrangements of general interest for cameras, projectors or printers
    • G03B3/02Focusing arrangements of general interest for cameras, projectors or printers moving lens along baseboard
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices

Definitions

  • the present invention relates to a vertical wire buffer structure of a small camera module, the vertical wire buffer structure of the small camera module that can absorb the shock received by the wire spring connected to the camera lens when a shake occurs in the camera module.
  • the small camera module shifts the position of the lens holder in which the lens is mounted to correct an image shake due to the shaking of the user when the subject is captured or to automatically focus the lens.
  • FIG. 1 is a vertical cross-sectional view of a conventional small camera module.
  • the conventional small camera module includes a lens holder 120, a spacer 130, a circuit board 160, a wire spring 140, and a driver.
  • the camera lens is mounted inside the lens holder 120.
  • the spacer 130 is disposed on the lens holder 120.
  • the circuit board 160 is mounted on the spacer 130.
  • the wire spring 140 has an upper end coupled to the spacer 130 and connected to the circuit board 160, and a lower end mounted on the lens holder 120.
  • the driving unit receives power through the wire spring 140 to move the lens holder 120 in a horizontal direction, thereby correcting the shaking of an image of a subject photographed by a camera.
  • the lens holder is moved for a long time to adjust the focus while the shock is transmitted to the wire spring and concentrated, thereby damaging the connection portion between the circuit board and the wire spring. Can be separated.
  • the present invention is to solve the above-described problems, the impact occurs in the circuit board and the wire spring connected to the lens holder in the event of severe shake in the camera or the flow of the lens holder to correct the shake or to automatically adjust the focus
  • the object is to provide a vertical wire buffer structure of a small camera module that can prevent the wire spring coupled to the circuit board and the lens holder is separated.
  • the vertical wire buffer structure of the small camera module of the present invention includes a lens holder to which a camera lens is mounted; A spacer disposed on the lens holder; A flexible circuit board disposed on the spacer; A wire spring for coupling the lens holder to the spacer such that the lens holder flows in a horizontal direction with respect to the spacer; A buffer disposed above or below the spacer; It is made, including, the cushioning material absorbs the shock received by the wire spring.
  • the buffer member is disposed between the spacer and the flexible circuit board, and the wire spring has one end connected to the flexible circuit board through the spacer and the buffer member, and the other end is fixedly mounted to the lens holder. And a coupling hole in which one end of the wire spring is inserted and inserted into the flexible circuit board.
  • An insertion groove is formed at an upper portion of the spacer to communicate with the coupling hole, and the buffer member is inserted into the insertion groove.
  • the flexible circuit board is provided with a metal terminal portion in contact with the wire spring inserted into the coupling hole, the maximum distance between the center of the coupling hole and the metal terminal portion is shorter than the minimum distance between the center of the coupling hole and the insertion groove.
  • the thickness of the buffer member is greater than or equal to the depth of the insertion groove.
  • the cushioning material is made of polyurethane foam material.
  • the spacer has a spaced portion concentric with the coupling hole and having a diameter larger than the diameter of the coupling hole.
  • An elastic part is elastically deformed up and down in the circumference of the coupling hole in the cushioning material, and the spacer is formed under the elastic part, and the elastic part is spaced apart from the spacer.
  • the elastic portion is composed of a plurality of spaced apart from each other about the coupling hole.
  • the flexible circuit board is provided with a metal terminal portion in contact with the wire spring inserted into the coupling hole, the maximum distance between the center of the coupling hole and the metal terminal portion is shorter than the maximum distance between the center of the coupling hole and the elastic portion.
  • a coil is mounted on a side of the lens holder, and the cushioning material is mounted to the lower portion of the lens holder, and is formed in plural and spaced apart from each other.
  • the wire spring has one end connected to the flexible circuit board and the other end of the buffer material. Is connected to, the buffer member is made of an electrode plate and electrically connected to the lens holder, the other end of the wire spring is coupled to the elastic portion that absorbs the shock received by the wire spring is formed.
  • An elastic hole in which the elastic part is disposed is formed in the cushioning material, and the elastic part comprises: a coupling piece having a fixing hole disposed in the elastic hole and having the wire spring inserted into and fixed to a central portion thereof; At least one elastic piece protruding from the coupling piece and connected to the buffer member; Is done.
  • the wire spring has one end connected to the circuit board through the spacer and the other end connected to the buffer member through the lens holder, wherein the lens holder has a concave separation groove formed on a surface facing the elastic part.
  • the elastic part absorbs the shock received by the wire spring while elastically deforming in the direction of the separation groove.
  • the cushioning material is disposed to be spaced apart from each other by a connecting bar, a cut is formed between the buffer and the connecting bar is formed integrally, the buffer is mounted on the lens holder and the cut is cut and separated from the connecting bar.
  • the connecting bar has a plurality of branch wires, the buffer material is connected to each end, respectively, the cutting portion becomes narrower gradually toward the buffer material.
  • the vertical wire buffer structure of the small camera module according to the present invention has the following effects.
  • the shock absorbing material is disposed between the spacer and the circuit board to absorb the shock applied to the lens holder on which the camera lens is mounted and the wire spring that couples the spacer when the camera shakes, thereby preventing the connection portion of the wire spring from being damaged and separated. have.
  • the insertion groove is formed in the spacer is inserted into the buffer material, it is possible to reduce the thickness of the camera module while absorbing the shock received by the wire spring when the shake occurs in the camera.
  • the maximum distance between the center of the coupling hole and the metal terminal portion is formed to be shorter than the minimum distance of the center of the coupling hole and the insertion groove, the circuit board outside the metal terminal portion is folded in the upper portion of the buffer portion and elastically deformed in the vertical direction, the wire spring This shock can be effectively transmitted to the shock absorber.
  • the thickness of the buffer material is greater than or equal to the depth of the insertion groove, it is possible to absorb and attenuate the shock received by the wire spring by the circuit board elastically up and down.
  • a plurality of elastic parts are formed in the shock absorbing material, and the elastic parts are elastically deformed in the vertical direction in contact with the circuit board, thereby effectively transmitting the shock received by the wire spring to the shock absorbing material.
  • the circuit board outside the metal terminal portion is folded in the upper portion of the elastic portion and elastically deformed in the vertical direction while the wire The shock the spring receives can be effectively transmitted to the cushioning material.
  • the lower portion of the lens holder is formed in the upper space of the elastic concave spaced apart in the upper direction, thereby forming a space in the upper portion of the elastic portion is easy to elastically deform in the vertical direction.
  • the plurality of shock absorbing materials are integrally formed by the connecting bar, so that the respective shock absorbing materials are easily attached to the lower portion of the lens holder.
  • the cutting portion is formed between the buffer member and the connecting bar is formed integrally, the width of the cut portion becomes narrower gradually toward the buffer material, it is easy to cut the cut portion at the portion adjacent to the buffer material after mounting the buffer material in the lower portion of the lens holder. It is easy to separate the buffer and connecting bar.
  • FIG. 1 is a vertical cross-sectional view showing the internal structure of a conventional camera module
  • Figure 2 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module according to the first embodiment of the present invention
  • FIG. 3 is a plan view of a spacer according to Embodiment 1 of the present invention.
  • FIG. 4 is a plan view of a circuit board according to Embodiment 1 of the present invention.
  • FIG. 5 is an enlarged view illustrating an enlarged portion A of FIG. 2;
  • Figure 6 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module according to the second embodiment of the present invention.
  • FIG. 7 is a plan view of a spacer according to Embodiment 2 of the present invention.
  • FIG. 8 is an enlarged view illustrating an enlarged portion B of FIG. 6;
  • FIG. 9 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module according to the third embodiment of the present invention.
  • FIG. 10 is a plan view of a spacer according to Embodiment 3 of the present invention.
  • FIG. 11 is a plan view of a circuit board according to Embodiment 3 of the present invention.
  • FIG. 12 is a plan view of a shock absorbing material according to a third embodiment of the present invention.
  • FIG. 13 is an enlarged view illustrating an enlarged portion C of FIG. 9;
  • FIG. 14 is a perspective view of a compact camera module according to Embodiment 4 of the present invention.
  • FIG. 15 is an exploded perspective view of a small camera module according to Embodiment 4 of the present invention.
  • 16 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module taken by the line D-D of FIG.
  • FIG. 17 is a view showing various shapes of an elastic part according to Embodiment 4 of the present invention.
  • FIG. 18 is a view showing a buffer formed integrally with the connecting bar according to the fourth embodiment of the present invention.
  • FIG. 2 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module according to the first embodiment of the present invention
  • Figure 3 is a plan view of a spacer according to a first embodiment of the present invention
  • Figure 4 is a first embodiment of the present invention 5 (a) is an enlarged view showing an enlarged portion A of FIG. 2, and
  • FIG. 5 (b) shows that the wire spring is lowered due to shaking in the camera in FIG. 5 (a). It is a figure which shows the state.
  • the vertical wire buffer structure of the small camera module includes a lens holder 10, a spacer 20, a flexible printed circuit board (FPCB) 30, and a buffer member. 40 and a wire spring 50.
  • FPCB flexible printed circuit board
  • a camera lens (not shown) is mounted on the lens holder 10 and is disposed below the spacer 20.
  • the lens holder 10 is horizontally coupled to the spacer 20 by the wire spring 50.
  • the lens holder 10 is horizontally moved by a driving unit (not shown) mounted to the camera module to correct the shake of the subject image photographed on the lens.
  • the spacer 20 is fixedly disposed on the lens holder 10.
  • the flexible circuit board 30 is disposed on the spacer 20, and the buffer 40 is disposed between the spacer 20 and the flexible circuit board 30.
  • one end of the wire spring 50 ie, an upper end thereof, is inserted into the spacer 20, the buffer 40, and the flexible circuit board 30. ) Is formed.
  • the flexible circuit board 30 is disposed above the spacer 20, and the buffer material 40 is disposed below.
  • the flexible circuit board 30 may be deformed by an external force.
  • the flexible circuit board 30 has a metal terminal 31 formed around the coupling hole 60 as shown in FIG. 4.
  • the metal terminal part 31 is in contact with the upper end of the wire spring 50 inserted into the coupling hole 60, the current to the coil (not shown) mounted on the lens holder 10 through the wire spring 50 Let it flow.
  • the current is supplied to the coil so that the lens holder 10 is horizontally moved by the driving unit including the coil.
  • the buffer member 40 is disposed between the spacer 20 and the flexible printed circuit board 30.
  • the buffer member 40 is made of a polyurethane foam material to absorb the impact of the wire spring 50 to move up and down.
  • the cushioning material 40 may use a PORON material, and in addition to this, various materials of an elastic material may absorb an external shock.
  • the wire spring 50 is connected to the flexible circuit board 30 through the spacer 20 and the buffer 40, and the lower end is fixedly mounted to the lens holder 10. And the lens holder 10 is coupled to the spacer 20 to move horizontally.
  • the upper end of the wire spring 50 is inserted into the coupling hole 60 and fixed in contact with the metal terminal 31, and the lower end is fixed to the lens holder 10.
  • the wire spring 50 is fixed to the metal terminal part 31 by soldering.
  • the lens holder 10 not only moves horizontally to correct an image captured by the lens. The shaking in the up and down direction occurs.
  • the flexible circuit board 30 connected to the wire spring 50 is deformed in the vertical direction to disperse the impact concentrated on the upper end of the wire spring 50.
  • the buffer member 40 is disposed under the flexible circuit board 30 to absorb the shock concentrated on the upper end of the wire spring 50 through the flexible circuit board 30.
  • the shock absorbing material 40 is disposed between the spacer 20 and the flexible circuit board 30 so that the lens holder 10 and the spacer 20 are coupled to the wire spring 50 when the camera shakes.
  • the shock absorber can prevent the connection between the metal terminal 31 and the wire spring 50 from being damaged and separated.
  • FIG. 6 is a vertical cross-sectional view of the vertical wire buffer structure of the small camera module according to the second embodiment of the present invention
  • Figure 7 is a plan view of a spacer according to a second embodiment of the present invention
  • Figure 8 (a) is a B of FIG. 8 (b) is a view showing a state in which the wire spring is lowered due to shaking in the camera in FIG. 8 (a).
  • the vertical wire buffer structure of the small camera module according to the second embodiment of the present invention includes a lens holder 10, a spacer 20, a flexible circuit board 30, and a buffer material 40. And a wire spring 50.
  • the lens holder 10 is the same as the first embodiment, so detailed description thereof will be omitted.
  • the spacer 20 is fixedly disposed on the lens holder 10.
  • the flexible circuit board 30 is disposed on the spacer 20, and the buffer 40 is disposed between the spacer 20 and the flexible circuit board 30.
  • the spacer 20, the buffer 40, and the flexible printed circuit board 30 are provided with coupling holes 60 through which one end of the wire spring 50, that is, an upper end thereof, is inserted.
  • an insertion groove 21 communicating with the coupling hole 60 is formed at an upper portion of the spacer 20.
  • the buffer member 40 is inserted into the insertion groove 21, so that the wire spring 50 is formed by using the buffer member 40 without increasing the thickness between the spacer 20 and the flexible printed circuit board 30. This shock can be absorbed and damped.
  • the flexible circuit board 30 is mounted on the spacer 20 and is the same as the first embodiment.
  • the flexible circuit board 30 has a metal terminal 31 formed around the coupling hole 60.
  • the maximum distance (L1) between the) is formed to be shorter than the minimum distance (L2) between the center of the coupling hole 60 and the insertion groove (21).
  • the flexible circuit board 30 outside the metal terminal part 31 is folded in the upper portion of the buffer member 40 and elastically deformed in the up and down direction, thereby effectively impacting the shock from the wire spring 50 on the buffer member 40. I can deliver it.
  • the metal terminal part 31 completely covers the buffer material 40 inserted into the insertion groove 21, and the flexible circuit board 30 outside the metal terminal part 31 has an upper surface of the spacer 20. It cannot touch up and down.
  • the metal terminal portion 31 is elastically deformed up and down, the shock concentrated on the upper end of the wire spring 50 should be transmitted to the buffer member 40, but the metal terminal portion 31 is small in elasticity and thus the buffer member 40 Since there is a problem that does not effectively transmit a shock to the), the maximum distance (L1) between the center of the coupling hole 60 and the metal terminal portion 31 is between the center of the coupling hole 60 and the insertion groove 21. It is formed to be shorter than the minimum distance (L2) of the flexible circuit board 30 is elastically deformed up and down so that the shock received by the wire spring 50 can be effectively transmitted to the buffer material (40).
  • the buffer member 40 is inserted into the insertion groove 21 and disposed between the spacer 20 and the flexible circuit board 30.
  • the thickness of the buffer member 40 is greater than or equal to the depth of the insertion groove (21).
  • the wire spring is formed by the flexible circuit board 30 which is elastically deformed up and down as shown in FIG. 8B by forming the thickness of the buffer member 40 to be equal to or greater than the depth of the insertion groove 21.
  • the shock received by (50) can be absorbed and damped.
  • the insertion groove 21 is formed in the spacer 20 to insert the shock absorbing material 40, thereby reducing the thickness of the camera module while absorbing the shock received by the wire spring 50 when the camera shakes. Can be.
  • FIG. 9 is a vertical cross-sectional view of a vertical wire buffer structure of a small camera module according to a third embodiment of the present invention
  • FIG. 10 is a plan view of a spacer according to a third embodiment of the present invention
  • FIG. 11 is a third embodiment of the present invention.
  • 12 is a plan view of a flexible circuit board according to an embodiment of the present invention
  • FIG. 12 is a one-side view of a buffer member according to Embodiment 3 of the present invention
  • FIG. 13 (a) is an enlarged view showing a portion C of FIG. 9 and FIG. Figure 13 (a) is a view showing a state that the wire spring is lowered because the shaking occurs in the camera.
  • a camera lens (not shown) is mounted on the lens holder 100 and is disposed below the spacer 200.
  • the lens holder 100 is horizontally coupled to the spacer 200 by the wire spring 500.
  • the lens holder 100 is horizontally moved by a driving unit (not shown) mounted to the camera module to correct the shake of the subject image photographed on the lens.
  • the spacer 200 is fixedly disposed on the lens holder 100.
  • the flexible circuit board 300 is disposed on the spacer 200, and the buffer 400 is disposed between the spacer 200 and the flexible circuit board 300.
  • one end of the wire spring 500 that is, an upper end thereof, is inserted into the spacer 200, the buffer 400, and the flexible circuit board 300. ) Is formed.
  • the spacer 200 is concentric with the coupling hole 600 and the separation portion 210 having a diameter larger than the diameter of the coupling hole 600 is formed.
  • the spacer 210 becomes smaller in diameter toward the bottom.
  • the spacer 210 is formed in the spacer 200 as described above, a space in which the elastic portion 410 formed in the shock absorbing material 400 is elastically deformed is formed.
  • the spaced portion 210 as described above may be formed in various shapes such that the elastic portion 410 formed in the shock absorbing material 400 is elastically deformed downward.
  • the flexible circuit board 300 is disposed above the spacer 200 and the buffer 400 is disposed below.
  • the flexible circuit board 300 has a metal terminal 310 formed around the coupling hole 600.
  • the metal terminal 310 is in contact with the upper end of the wire spring 500 inserted into the coupling hole 600, the current to the coil (not shown) mounted to the lens holder 100 through the wire spring 500 Let it flow.
  • the current is supplied to the coil so that the lens holder 100 is horizontally moved by a driver (not shown) including the coil.
  • the buffer material 400 is made of an elastic plastic material, and is disposed between the spacer 200 and the flexible circuit board 300.
  • an elastic portion 410 is elastically deformed up and down in the circumference of the coupling hole 600 in the buffer material 400.
  • the elastic portion 410 is composed of a plurality of spaced apart from each other with respect to the coupling hole 600.
  • the elastic portion 410 may be formed integrally, but is made of a plurality of as shown in the present embodiment, it is easy to be elastically deformed up and down by being spaced apart from each other.
  • An upper surface of the elastic portion 410 is in contact with the flexible circuit board 300 and a lower surface of the elastic portion 410 is spaced apart from the spacer 200 by the spacer 210.
  • the elastic portion 410 is elastically deformed downward together with the flexible circuit board 300.
  • the maximum distance L3 between the center of the coupling hole 600 and the metal terminal portion 310 is configured to be shorter than the maximum distance L4 between the center of the coupling hole 600 and the elastic portion 410.
  • the flexible circuit board 300 outside the metal terminal 310 is folded in the upper portion of the elastic portion 410 and elastically deformed in the up and down direction, so that the shock received by the wire spring 500 is applied to the shock absorbing material 400. You can deliver effectively.
  • the metal terminal 310 while the metal terminal 310 is elastically deformed up and down with the elastic portion 410 to damp the impact concentrated on the upper end of the wire spring 500, the metal terminal 310 has a small elasticity to the buffer material Since there is a problem that does not effectively cancel the impact with 400, the maximum distance (L3) between the center of the coupling hole 600 and the metal terminal portion 310 is the center of the coupling hole 600 and the elastic portion ( It is formed to be shorter than the minimum distance (L4) between the 410 so that the flexible circuit board 300 is elastically deformed up and down with the elastic portion 410 to cancel the shock received by the wire spring 500. .
  • the wire spring 500 has an upper end connected to the flexible circuit board 300 through the spacer 200 and the buffer 400, and a lower end fixedly mounted to the lens holder 100 so that the lens holder 100 is provided. Is coupled to the spacer 200 to move horizontally.
  • the wire spring 500 the upper end is inserted into the coupling hole 600 and fixed in contact with the metal terminal 310, the lower end is fixed to the lens holder 100.
  • the lens holder 100 is coupled to the spacer 200 so that the lens holder 100 is horizontally moved by the wire spring 500.
  • the wire spring 500 is fixed to the metal terminal 310 by soldering.
  • the lens holder 100 moves horizontally to correct a subject image photographed on the lens. Rather, the shaking in the vertical direction occurs.
  • the flexible circuit board 300 connected to the wire spring 500 is elastically deformed in the up and down direction together with the elastic portion 410 of the wire spring 500. Absorbs and attenuates the shock concentrated at the top.
  • the buffer member 400 is disposed between the spacer 200 and the flexible circuit board 300 to the wire spring 500 that couples the lens holder 100 and the spacer 200 when the camera shakes.
  • the wire spring 500 couples the lens holder 100 and the spacer 200 when the camera shakes.
  • the flexible circuit board 300 is bent together with the elastic portion 410 and then restored to cancel the vertical shock.
  • FIG. 14 is a perspective view of a small camera module according to Embodiment 4 of the present invention
  • FIG. 15 is an exploded perspective view of the small camera module according to Embodiment 4 of the present invention
  • FIG. 16 is a sectional view taken along line DD of FIG. 14, and
  • FIG. 17 Is a view showing a variety of shapes of the elastic portion according to the fourth embodiment of the present invention
  • Figure 18 is a view showing a buffer material formed integrally with the connecting bar according to the fourth embodiment of the present invention.
  • the wire spring buffer structure of the small camera module includes a spacer 1200, a flexible circuit board 1300, a cover 1400, and a lens holder 1500. And a cushioning material 1600 and a wire spring 1700.
  • the spacer 1200 is mounted on a terminal on which the camera module is mounted, and is disposed on an upper portion of the lens holder 1500 to space the lens holder 1500 from the terminal.
  • the spacer 1200 is formed in a hexahedral shape, and magnets 1201 are mounted on four sides thereof to form a magnetic field around the coil 1501 mounted on the lens holder 1500. do.
  • the spacer 1200 is divided into an upper part and a lower part, and the magnet 1201 is mounted therebetween.
  • the flexible circuit board 1300 is disposed on the spacer 1200.
  • the flexible circuit board 1300 is attached to the upper portion of the spacer 1200 by a thermosetting bond.
  • the cover 1400 is coupled to an upper portion of the spacer 1200 to cover the flexible circuit board 1300.
  • the lens holder 1500 is equipped with a camera lens (not shown), the coil 1501 is mounted on the side.
  • the lens holder 1500 is disposed below the spacer 1200 and spaced apart from the terminal on which the camera module is mounted.
  • the lens holder 1500 is coupled to the lower portion of the spacer 1200 by the wire spring 1700 and spaced apart from the terminal as illustrated in FIG. 16.
  • a spaced groove 1510 is formed in the lower portion of the lens holder 1500.
  • the spaced groove 1510 is formed to be concave upward, and an elastic portion 1610 formed in the buffer material 1600 is disposed below.
  • the buffer member 1600 is mounted to the lower portion of the lens holder 1500, and is made of an electrode plate of a metal material and electrically connected to the coil 1501.
  • the buffer member 1600 is formed of a plurality of spaced apart from each other, each of the buffer member 1600 is formed with an elastic portion 1610, the lower end of the wire spring 1700 is coupled to the elastic portion 1610 Absorbs the shock received by the wire spring 1700.
  • the wire spring 1700 couples the lens holder 1500 to the lower portion of the spacer 1200 so that the lens holder 1500 is horizontally moved away from the terminal on which the camera module is mounted. When the external shock occurs, the lens holder 1500 is shaken to concentrate the impact on the wire spring 1700.
  • the shock absorbing material 1600 is formed with an elastic hole 1601 in which the elastic part 1610 is disposed, as shown in FIG. 17A.
  • the elastic part 1610 is disposed below the separation groove 1510 and includes a coupling piece 1611 and an elastic piece 1613.
  • the coupling piece 1611 is disposed in the elastic hole 1601, and a fixing hole 1612 is formed to insert and fix the wire spring 1700 in a central portion thereof.
  • the elastic piece 1613 protrudes from the coupling piece 1611 and is connected to the buffer member 1600.
  • the elastic piece 1613 is elastically deformed when a vertical shock occurs in the camera module.
  • the elastic portion 1610 absorbs the vertical shock received by the wire spring 1700 while elastically deforming in the vertical direction in the spaced groove 1510.
  • the elastic part 1610 is formed in various shapes to elastically deform in up and down directions to absorb the up and down shocks received by the wire spring 1700. Can be.
  • the buffer member 1600 is spaced apart from each other by the connection bar 1620 before being mounted to the lens holder 1500, and is integrally formed with the connection bar 1620.
  • a cutting portion 1621 is formed between the buffer member 1600 and the connection bar 1620.
  • the connecting bar 1620 is branched into a plurality of the buffer material 1600 is connected to each end, respectively, the cutting portion 1621 is gradually narrower in the width (W) toward the buffer material 1600 direction.
  • the cutout portion 1621 is easily cut to a portion connected to the buffer member 1600 so that the buffer member 1600 is mounted under the lens holder 1500 and then the buffer member 1600 and the connection bar 1620. Can be easily removed.
  • the plurality of shock absorbing materials 1600 are integrally formed by the connection bar 1620, and thus, the shock absorbing materials 1600 may be easily assembled to each position in the lower portion of the lens holder 1500.
  • the plurality of shock absorbers 1600 are integrally formed by the connection bar 1620, the plurality of shock absorbers 1600 may be easily disposed under the lens holder 1500 at a time.
  • the shock absorber 1600 is disposed below the lens holder 1500 and mounted to the lower part of the lens holder 1500, the shock absorber 1600 is cut by cutting the cut portion 1621 connected to the shock absorber 1600. ) And the connecting bar 1620.
  • the cut part 1621 can be easily cut and separated from a portion adjacent to the buffer material 1600.
  • the wire spring 1700 has an upper end penetrating the upper portion of the spacer 1200 to be connected to the flexible circuit board 1300, and a lower end penetrating the lower portion of the lens holder 1500. It is connected to the buffer 1600.
  • the wire spring 1700 couples the lens holder 1500 horizontally with respect to the spacer 1200.
  • both ends of the wire spring 1700 are soldered to the flexible circuit board 1300 and the buffer material 1600 to electrically connect the flexible circuit board 1300 and the buffer material 1600.
  • the flexible circuit board 1300 applies current to the coil 1501 through the wire spring 1700 and the buffer member 1600, thereby causing the lens holder ( By correcting the position of the 1500, it is possible to minimize the shaking of the lens mounted on the lens holder 1500.
  • the elastic part 1610 is elastically deformed in the vertical direction in the spaced groove 1510, thereby absorbing and dispersing the vertical shock received by the wire spring 1700.
  • Both ends of the wire spring 1700 are fixed to the flexible circuit board 1300 and the buffer member 1600 by soldering to couple the lens holder 1500 to the spacer 1200, thereby impacting the camera module vertically.
  • the impact occurs, the impact is concentrated at both ends of the wire spring 1700, and if the impact is repeated for a long time, the connection part of the wire spring 1700 connected to the flexible circuit board 1300 and the buffer member 1600 may be damaged and separated. Can be.
  • the lower end of the wire spring 1700 is fixedly coupled to the elastic part 1610 so that the elastic part 1610 is elastically deformed up and down when an impact occurs on the camera module, thereby receiving the wire spring 1700.
  • the shock By absorbing the shock, it is possible to further improve the durability of the camera module by dispersing the impact concentrated on both ends of the wire spring 1700.
  • the upper end of the wire spring 1700 is also not directly connected to and fixed to the flexible circuit board 1300, but a buffer material is formed therebetween, and the upper end of the wire spring 1700 is fixed to an elastic part formed in the buffer material. It may be combined to absorb the up and down impact.
  • the spacer and the lens holder are horizontally disposed in the lateral direction, and one end of the wire spring is connected to the circuit board mounted on the spacer, and the other end is mounted on the lens holder.
  • the lens holder may be connected to a buffer to adjust the focus of the lens while flowing.
  • the shock is transmitted to the wire spring, so that the elastic portion formed in the buffer member absorbs the shock concentrated at both ends of the wire spring, thereby improving durability of the camera module. have.
  • the vertical wire shock absorbing structure of the miniature camera module of the present invention is not limited to the above-described embodiment, and may be variously modified within the scope of the technical idea of the present invention.
  • the vertical wire buffer structure of the small camera module of the present invention is a camera module mounted on a mobile terminal such as a mobile phone or tablet PC to compensate for the shaking of the image or to automatically focus the lens due to the shock that may occur when using the mobile terminal. It can prevent damage.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Studio Devices (AREA)
  • Camera Bodies And Camera Details Or Accessories (AREA)
  • Lens Barrels (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

본 발명은 소형 카메라모듈의 수직 와이어 완충구조로써, 카메라모듈에 흔들림 발생시 카메라 렌즈와 연결된 와이어스프링이 받는 충격을 흡수할 수 있는 소형 카메라모듈의 수직 와이어 완충구조에 관한 것이다. 본 발명의 소형 카메라모듈의 수직 와이어 완충구조는, 스페이서의 상부 또는 하부에 완충재가 배치되어, 카메라에 심한 흔들림의 발생시 또는 이러한 흔들림을 보정하거나 자동으로 초점을 조절하기 위한 렌즈홀더의 유동시, 렌즈홀더와 스페이서를 결합시키는 와이어스프링이 받는 충격을 흡수한다.

Description

소형 카메라모듈의 수직 와이어 완충구조
본 발명은 소형 카메라모듈의 수직 와이어 완충구조로써, 카메라모듈에 흔들림 발생시 카메라 렌즈와 연결된 와이어스프링이 받는 충격을 흡수할 수 있는 소형 카메라모듈의 수직 와이어 완충구조에 관한 것이다.
소형 카메라모듈은 피사체의 촬영시 사용자의 손떨림으로 인해 영상이 흔들리는 것을 보정하거나 렌즈의 초점을 자동으로 맞추기 위하여 렌즈가 장착된 렌즈홀더의 위치를 이동시킨다.
이러한 소형 카메라모듈은 본 발명의 출원인이 출원하여 등록된 대한민국 등록특허공보 제10-0952620호에 그 구조가 잘 나타나 있다.
도 1은 종래의 소형 카메라모듈의 수직 단면도이다.
도 1에 도시된 바와 같이 종래의 소형 카메라모듈은, 렌즈홀더(120), 스페이서(130), 회로기판(160), 와이어스프링(140) 및 구동부를 포함하여 이루어진다.
상기 렌즈홀더(120)의 내부에는 카메라 렌즈가 장착된다.
그리고 상기 렌즈홀더(120)의 상부에는 상기 스페이서(130)가 배치된다.
상기 회로기판(160)은 상기 스페이서(130)의 상부에 장착된다.
상기 와이어스프링(140)은 상단이 상기 스페이서(130)에 결합되어 상기 회로기판(160)에 연결되고 하단이 상기 렌즈홀더(120)에 장착된다.
상기 구동부는 상기 와이어스프링(140)을 통해 전원을 공급받아 상기 렌즈홀더(120)를 수평방향으로 이동시킴으로써, 카메라에 촬영되는 피사체의 영상이 흔들리는 것을 보정한다.
그러나 종래의 카메라모듈에서는 카메라가 심하게 흔들려 상기 와이어스프링(140)의 수직방향으로 충격이 발생하게 될 경우, 상기 와이어스프링(140)의 끝단에 충격이 그대로 전달되어 장시간 이용시 상기 회로기판(160)과 와이어스프링(140)의 연결부위가 손상되어 분리될 가능성이 존재한다.
이 외에도 종래의 카메라모듈에 자동 초점 조절기능을 구현하기 위한 구조를 포함하게 되면 초점을 조절하기 위하여 렌즈홀더가 장시간 유동하면서 와이어스프링에 충격이 전달되어 집중되면서 회로기판과 와이어스프링의 연결부위가 손상되어 분리될 수 있다.
본 발명은 전술한 문제점을 해결하기 위한 것으로서, 카메라에 심한 흔들림의 발생시 또는 이러한 흔들림을 보정하거나 자동으로 초점을 조절하기 위한 렌즈홀더의 유동시, 회로기판 및 렌즈홀더에 연결된 와이어스프링에 충격이 발생하여 양단에 집중되는 것을 최소화함으로써, 회로기판 및 렌즈홀더에 결합된 와이어스프링이 분리되는 것을 방지할 수 있는 소형 카메라모듈의 수직 와이어 완충구조를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명의 소형 카메라모듈의 수직 와이어 완충구조는, 카메라 렌즈가 장착되는 렌즈홀더와; 상기 렌즈홀더의 상부에 배치되는 스페이서와; 상기 스페이서의 상부에 배치되는 연성회로기판과; 상기 렌즈홀더가 상기 스페이서에 대해 수평방향으로 유동하도록 상기 렌즈홀더를 상기 스페이서에 결합시키는 와이어스프링과; 상기 스페이서의 상부 또는 하부에 배치되는 완충재; 를 포함하여 이루어지되, 상기 완충재는 상기 와이어스프링이 받는 충격을 흡수한다.
상기 완충재는 상기 스페이서와 연성회로기판 사이에 배치되고, 상기 와이어스프링은, 일단이 상기 스페이서와 완충재를 관통하여 상기 연성회로기판에 연결되고, 타단이 상기 렌즈홀더에 고정 장착되되, 상기 스페이서, 완충재 및 연성회로기판에는 상기 와이어스프링의 일단이 관통하여 삽입 배치되는 결합공이 형성되어 있다.
상기 스페이서의 상부에는 상기 결합공과 연통되는 삽입홈이 형성되고, 상기 완충재는 상기 삽입홈에 삽입 배치된다.
상기 연성회로기판에는 상기 결합공에 삽입된 상기 와이어스프링과 접하는 금속단자부가 형성되되, 상기 결합공의 중심과 금속단자부 사이의 최대 거리는, 상기 결합공의 중심과 상기 삽입홈 사이의 최소 거리보다 짧다.
상기 완충재의 두께는 상기 삽입홈의 깊이보다 크거나 같다.
상기 완충재는 폴리우레탄 폼 소재로 이루어진다.
상기 스페이서에는 상기 결합공과 동심을 이루며 상기 결합공의 지름보다 큰 지름을 갖는 이격부가 형성되어 있다.
상기 완충재에서 상기 결합공의 둘레에는 상하로 탄성변형되는 탄성부가 형성되고, 상기 이격부는 상기 탄성부의 하부에 형성되어, 상기 탄성부는 상기 스페이서와 이격된다.
상기 탄성부는 다수개로 이루어져 상기 결합공을 중심으로 상호 이격 배치된다.
상기 연성회로기판에는 상기 결합공에 삽입된 상기 와이어스프링과 접하는 금속단자부가 형성되되, 상기 결합공의 중심과 금속단자부 사이의 최대 거리는, 상기 결합공의 중심과 탄성부 사이의 최대 거리보다 짧다.
상기 렌즈홀더의 측면에는 코일이 장착되고, 상기 완충재는 상기 렌즈홀더의 하부에 장착되며, 다수개로 이루어져 상호 이격 배치되고, 상기 와이어스프링은, 일단이 상기 연성회로기판에 연결되며, 타단이 상기 완충재에 연결되되, 상기 완충재는 전극판으로 이루어져 상기 렌즈홀더와 전기적으로 연결되고, 상기 와이어스프링의 타단이 결합되어 상기 와이어스프링이 받는 충격을 흡수하는 탄성부가 형성되어 있다.
상기 완충재에는 상기 탄성부가 배치되는 탄성홀이 형성되고, 상기 탄성부는, 상기 탄성홀에 배치되고 중심부에 상기 와이어스프링이 삽입되어 고정되는 고정홀이 형성된 결합편과; 상기 결합편에서 돌출 형성되어 상기 완충재에 연결되는 하나 이상의 탄성편; 으로 이루어진다.
상기 와이어스프링은, 일단이 상기 스페이서를 관통하여 상기 회로기판에 연결되고, 타단이 상기 렌즈홀더를 관통하여 상기 완충재에 연결되되, 상기 렌즈홀더에는 상기 탄성부와 마주보는 면에 오목한 이격홈이 형성되고, 상기 탄성부는 상기 이격홈 방향으로 탄성변형되면서 상기 와이어스프링이 받는 충격을 흡수한다.
상기 완충재는 연결바에 의해 상호 이격 배치되되, 상기 완충재와 연결바 사이에는 절단부가 형성되어 일체로 이루어지고, 상기 완충재는 상기 렌즈홀더에 장착된 후 상기 절단부가 절단되어 상기 연결바와 분리된다.
상기 연결바는 다수개로 분기와어 각 끝단에 상기 완충재가 각각 연결되되, 상기 절단부는 상기 완충재 방향으로 갈수록 그 폭이 점점 좁아진다.
본 발명에 따른 소형 카메라모듈의 수직 와이어 완충구조는 다음과 같은 효과가 있다.
스페이서와 회로기판 사이에 완충재가 배치됨으로써, 카메라에 흔들림 발생시 카메라 렌즈가 장착된 렌즈홀더와 스페이서를 결합시키는 와이어스프링에 가해지는 충격을 흡수하여 와이어스프링의 연결부위가 손상되어 분리되는 것을 방지할 수 있다.
또한, 스페이서에 삽입홈이 형성되어 완충재가 삽입 배치됨으로써, 카메라에 흔들림 발생시 와이어스프링이 받는 충격을 흡수하면서 카메라모듈의 두께를 얇게 할 수 있다.
또한, 결합공의 중심과 금속단자부 사이의 최대 거리가 결합공의 중심과 삽입홈의 최소 거리보다 짧게 형성됨으로써, 금속단자부 외측의 회로기판이 완충부의 상부에서 접철되어 상하 방향으로 탄성변형되면서 와이어스프링이 받는 충격을 완충재에 효과적으로 전달할 수 있다.
또한, 완충재의 두께가 삽입홈의 깊이보다 크거나 같게 형성됨으로써, 상하로 탄성변형되는 회로기판에 의해 와이어스프링이 받는 충격을 흡수하여 감쇠시킬 수 있다.
또한, 상기 완충재에는 다수개의 탄성부가 형성되고, 탄성부는 회로기판에 접하여 상하방향으로 탄성변형됨으로써, 와이어스프링이 받는 충격을 완충재에 효과적으로 전달할 수 있다.
또한, 결합공의 중심과 금속단자부 사이의 최대 거리가 결합공의 중심과 탄성부 사이의 최소 거리보다 짧게 형성됨으로써, 금속단자부 외측의 회로기판이 탄성부의 상부에서 접철되어 상하 방향으로 탄성변형되면서 와이어스프링이 받는 충격을 완충재에 효과적으로 전달할 수 있다.
또한, 렌즈홀더의 하부에는 탄성부의 상부에 상방향으로 오목한 이격홈이 형성됨으로써, 탄성부의 상부에 공간을 형성하여 탄성부가 상하방향으로 탄성변형되기 용이하다.
또한, 다수개의 완충재는 연결바에 의해 일체로 형성됨으로써, 각각의 완충재를 렌즈홀더의 하부에 장착하기 용이하다.
또한, 완충재와 연결바 사이에 절단부가 형성되어 일체로 형성되고, 절단부는 완충재 방향으로 갈수록 그 폭이 점점 좁아짐으로써, 완충재를 렌즈홀더의 하부에 장착한 후 완충재에 인접한 부위에서 절단부를 쉽게 절단할 수 있기 때문에 완충재와 연결바를 분리하기 용이하다.
도 1은 종래의 카메라모듈의 내부 구조를 나타낸 수직단면도,
도 2는 본 발명의 실시예 1에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직단면도,
도 3은 본 발명의 실시예 1에 따른 스페이서의 평면도,
도 4는 본 발명의 실시예 1에 따른 회로기판의 평면도,
도 5는 도 2의 A부분을 확대하여 나타낸 확대도,
도 6은 본 발명의 실시예 2에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직단면도,
도 7은 본 발명의 실시예 2에 따른 스페이서의 평면도,
도 8은 도 6의 B부분을 확대하여 나타낸 확대도,
도 9는 본 발명의 실시예 3에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직단면도,
도 10은 본 발명의 실시예 3에 따른 스페이서의 평면도,
도 11은 본 발명의 실시예 3에 따른 회로기판의 평면도,
도 12는 본 발명의 실시예 3에 따른 완충재의 평면도,
도 13은 도 9의 C부분을 확대하여 나타낸 확대도,
도 14는 본 발명의 실시예 4에 따른 소형 카메라모듈의 사시도,
도 15는 본 발명의 실시예 4에 따른 소형 카메라모듈의 분해사시도,
도 16은 도 14의 D-D선을 취하여 본 소형 카메라모듈의 수직 와이어 완충구조의 수직단면도,
도 17은 본 발명의 실시예 4에 따른 탄성부의 다양한 형상을 나타낸 도면,
도 18은 본 발명의 실시예 4에 따른 연결바와 일체로 형성된 완충재를 나타낸 도면,
이하, 첨부된 도면을 참고하여 본 발명을 각 실시예에 따라 상세히 설명하도록 한다.
<실시예 1>
도 2는 본 발명의 실시예 1에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직단면도이고, 도 3은 본 발명의 실시예 1에 따른 스페이서의 평면도이며, 도 4는 본 발명의 실시예 1에 따른 연성회로기판의 평면도이고, 도 5(a)는 도 2의 A 부분을 확대하여 나타낸 확대도이며, 도 5(b)는 도 5(a)에서 카메라에 흔들림이 발생하여 와이어스프링이 하강한 상태를 나타낸 도면이다.
본 발명의 실시예 1에 따른 소형 카메라모듈의 수직 와이어 완충구조는 도 2 내지 도 5에 도시된 바와 같이, 렌즈홀더(10), 스페이서(20), 연성회로기판(FPCB)(30), 완충재(40) 및 와이어스프링(50)으로 이루어진다.
상기 렌즈홀더(10)에는 카메라 렌즈(미도시)가 장착되고, 상기 스페이서(20)의 하부에 배치된다.
상기 렌즈홀더(10)는 도 2에 도시된 바와 같이 상기 와이어스프링(50)에 의해 상기 스페이서(20)에 수평 이동되도록 결합된다.
이에 따라 카메라에 흔들림 발생시 카메라모듈에 장착된 구동부(미도시)에 의해 상기 렌즈홀더(10)가 수평 이동되면서 렌즈에 촬영되는 피사체 영상의 흔들림을 보정한다.
상기 스페이서(20)는 상기 렌즈홀더(10)의 상부에 고정 배치된다.
그리고 상기 스페이서(20)의 상부에는 상기 연성회로기판(30)이 배치되고, 상기 스페이서(20)와 연성회로기판(30) 사이에 상기 완충재(40)가 배치된다.
이러한 상기 스페이서(20), 완충재(40) 및 연성회로기판(30)에는 도 2 내지 도 4에 도시된 바와 같이 상기 와이어스프링(50)의 일단 즉, 상단이 관통하여 삽입 배치되는 결합공(60)이 형성된다.
상기 연성회로기판(30)은 상기 스페이서(20)의 상부에 배치되고, 하부에 상기 완충재(40)가 배치된다.
상기 연성회로기판(30)은 외력에 의한 형상의 변형이 가능하다.
그리고 상기 연성회로기판(30)에는 도 4에 도시된 바와 같이 상기 결합공(60)의 둘레에 금속단자부(31)가 형성된다.
상기 금속단자부(31)는 상기 결합공(60)에 삽입된 상기 와이어스프링(50)의 상단과 접하여 상기 와이어스프링(50)을 통해 상기 렌즈홀더(10)에 장착된 코일(미도시)에 전류를 흘려보낸다.
이와 같이 상기 코일에 전류가 공급되어 상기 코일을 포함하는 구동부에 의해 상기 렌즈홀더(10)가 수평 이동하게 된다.
상기 완충재(40)는 상기 스페이서(20)와 연성회로기판(30) 사이에 배치된다.
이러한 상기 완충재(40)는 폴리우레탄 폼 소재로 이루어져 상하 이동하는 상기 와이어스프링(50)의 충격을 흡수한다.
대표적으로 상기 완충재(40)는 PORON 소재를 사용할 수 있으며, 이 외에 외부 충격을 흡수할 수 있는 탄성재질의 다양한 소재를 이용할 수 있다.
상기 와이어스프링(50)은 도 2에 도시된 바와 같이 상단이 상기 스페이서(20)와 완충재(40)를 관통하여 상기 연성회로기판(30)에 연결되고 하단이 상기 렌즈홀더(10)에 고정 장착되어 상기 렌즈홀더(10)를 수평 이동되도록 상기 스페이서(20)에 결합시킨다.
즉, 상기 와이어스프링(50)은 상단이 상기 결합공(60)에 삽입되고 상기 금속단자부(31)에 접하여 고정되며 하단이 상기 렌즈홀더(10)에 고정된다.
일반적으로 상기 와이어스프링(50)은 상기 금속단자부(31)에 납땜 방식으로 고정되는데, 카메라에 충격이나 흔들림 발생시 상기 렌즈홀더(10)는 렌즈에 촬영되는 영상의 보정을 위해 수평방향으로 이동할 뿐만 아니라 상하방향으로의 흔들림이 발생하게 된다.
이때, 카메라모듈 내부에서 상하방향의 충격 및 흔들림을 상쇄 시키지 못하면 상기 금속단자부(31)에 연결된 상기 와이어스프링(50)의 상단에 충격이 집중되어 상기 금속단자부(31)와의 접촉이 끊어지게 된다.
이에 따라 도 5(b)에 도시된 바와 같이, 상기 와이어스프링(50)과 연결된 상기 연성회로기판(30)이 상하방향으로 변형되면서 상기 와이어스프링(50)의 상단에 집중되는 충격을 분산시키고, 상기 완충재(40)는 상기 연성회로기판(30)의 하부에 배치되어 상기 와이어스프링(50)의 상단에 집중된 충격을 상기 연성회로기판(30)을 통해 흡수한다.
이와 같이 상기 스페이서(20)와 연성회로기판(30) 사이에 완충재(40)가 배치됨으로써, 카메라에 흔들림 발생시 상기 렌즈홀더(10)와 스페이서(20)를 결합시키는 상기 와이어스프링(50)에 가해지는 충격을 흡수하여 상기 금속단자부(31)와 와이어스프링(50)의 연결부위가 손상되어 분리되는 것을 방지할 수 있다.
또한, 이러한 충격에 대비하기 위해서 상기 금속단자부(31)와 와이어스프링(50)의 결합력을 강화하기 위한 별도의 추가적인 보강 수단이 필요하지 않은 이점이 있다.
구체적으로 카메라가 흔들려 상기 와이어스프링(50)의 수직방향으로 충격이 발생하게 되면, 도 5(b)에 도시된 바와 같이 상기 연성회로기판(30)의 상기 금속단자부(31) 외측부분이 하방향으로 절곡되면서 상기 완충재(40)를 압축하게 되고, 상기 완충재(40)는 압축되었다가 도 5(a)에 도시된 바와 같이 다시 복원되면서 수직방향의 충격을 흡수한다.
이러한 상기 완충재(40)의 압축 및 팽창이 반복되면서 수직방향의 충격을 상쇄 시킨다.
<실시예 2>
도 6은 본 발명의 실시예 2에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직 단면도이고, 도 7은 본 발명의 실시예 2에 따른 스페이서의 평면도이며, 도 8(a)는 도 6의 B 부분을 확대하여 나타낸 확대도이고, 도 8(b)는 도 8(a)에서 카메라에 흔들림이 발생하여 와이어스프링이 하강한 상태를 나타낸 도면이다.
본 발명의 실시예 2에 따른 소형 카메라모듈의 수직 와이어 완충구조는 도 6 내지 도 8에 도시된 바와 같이, 렌즈홀더(10), 스페이서(20), 연성회로기판(30), 완충재(40) 및 와이어스프링(50)으로 이루어진다.
상기 렌즈홀더(10)는 실시예 1과 동일한바 자세한 설명은 생략하도록 한다.
상기 스페이서(20)는 상기 렌즈홀더(10)의 상부에 고정 배치된다.
그리고 상기 스페이서(20)의 상부에는 상기 연성회로기판(30)이 배치되고, 상기 스페이서(20)와 연성회로기판(30) 사이에 상기 완충재(40)가 배치된다.
이러한 상기 스페이서(20), 완충재(40) 및 연성회로기판(30)에는 상기 와이어스프링(50)의 일단 즉, 상단이 관통하여 삽입 배치되는 결합공(60)이 형성된다.
그리고 도 7에 도시된 바와 같이, 상기 스페이서(20)의 상부에는 상기 결합공(60)과 연통되는 삽입홈(21)이 형성된다.
상기 삽입홈(21)에는 상기 완충재(40)가 삽입 배치됨으로써, 상기 스페이서(20)와 연성회로기판(30) 사이의 두께를 증가시키지 않고 상기 완충재(40)를 이용하여 상기 와이어스프링(50)이 받는 충격을 흡수하여 감쇠시킬 수 있다.
상기 연성회로기판(30)은 상기 스페이서(20)의 상부에 장착되며 실시예 1과 동일하다.
그리고 상기 연성회로기판(30)에는 상기 결합공(60)의 둘레에 금속단자부(31)가 형성된다.
상기 금속단자부(31)에는 상기 결합공(60)에 삽입된 상기 와이어스프링(50)의 상단이 접하며, 도 8(a)에 도시된 바와 같이 상기 결합공(60)의 중심과 금속단자부(31) 사이의 최대 거리(L1)가 상기 결합공(60)의 중심과 삽입홈(21) 사이의 최소 거리(L2)보다 짧도록 형성된다.
이에 따라 상기 금속단자부(31) 외측의 연성회로기판(30)이 상기 완충재(40)의 상부에서 접철되어 상하 방향으로 탄성변형되면서 상기 와이어스프링(50)이 받는 충격을 상기 완충재(40)에 효과적으로 전달할 수 있다.
한편, 상기 결합공(60)의 중심과 금속단자부(31) 사이의 최대 거리(L1)가 상기 결합공(60)의 중심과 삽입홈(21) 사이의 최소 거리(L2)보다 길거나 같게 되면, 상기 금속단자부(31)가 상기 삽입홈(21)에 삽입 배치된 상기 완충재(40)를 완전히 덮게 되고, 상기 금속단자부(31) 외측의 연성회로기판(30)은 상기 스페이서(20)의 상면과 접하여 상하방향으로 변형되지 못한다.
따라서 상기 금속단자부(31)가 상하로 탄성변형되면서 상기 와이어스프링(50)의 상단에 집중되는 충격을 상기 완충재(40)로 전달해야 하지만, 상기 금속단자부(31)는 탄성이 작아서 상기 완충재(40)로 충격을 효과적으로 전달하지 못하는 문제점이 있기 때문에, 상기 결합공(60)의 중심과 금속단자부(31) 사이의 최대 거리(L1)는 상기 결합공(60)의 중심과 삽입홈(21) 사이의 최소 거리(L2)보다 짧게 형성되도록 하여 상기 연성회로기판(30)이 상하로 탄성변형되면서 상기 와이어스프링(50)이 받는 충격을 상기 완충재(40)에 효과적으로 전달할 수 있도록 하였다.
상기 완충재(40)는 상기 삽입홈(21)에 삽입 배치되어 상기 스페이서(20)와 연성회로기판(30) 사이에 배치된다.
그리고 상기 완충재(40)의 두께는 상기 삽입홈(21)의 깊이보다 크거나 같다.
상기 완충재(40)의 두께를 상기 삽입홈(21)의 깊이보다 크거나 같게 형성함으로써, 도 8(b)에 도시된 바와 같이 상하로 탄성변형되는 상기 연성회로기판(30)에 의해 상기 와이어스프링(50)이 받는 충격을 흡수하여 감쇠시킬 수 있다.
실시예 1과 같이 카메라가 흔들려 상기 와이어스프링(50)의 수직방향으로 충격이 발생하게 되면, 도 8에 도시된 바와 같이 상기 완충재(40)가 압축 및 팽창을 반복하면서 수직방향의 충격을 상쇄 시킨다.
이와 같이 상기 스페이서(20)에 상기 삽입홈(21)이 형성되어 상기 완충재(40)가 삽입 배치됨으로써, 카메라에 흔들림 발생시 상기 와이어스프링(50)이 받는 충격을 흡수하면서 카메라모듈의 두께를 얇게 할 수 있다.
상술한 사항 이외에는 실시예 1과 동일한바 자세한 설명은 생략한다.
<실시예 3>
도 9는 본 발명의 실시예 3에 따른 소형 카메라모듈의 수직 와이어 완충구조의 수직 단면도이고, 도 10은 본 발명의 실시예 3에 따른 스페이서의 평면도이며, 도 11은 본 발명의 실시예 3에 따른 연성회로기판의 평면도이고, 도 12는 본 발명의 실시예 3에 따른 완충재의 편면도, 도 13(a)는 도 9의 C 부분을 확대하여 나타낸 확대도이며, 도 13(b)는 도 13(a)에서 카메라에 흔들림이 발생하여 와이어스프링이 하강한 상태를 나타낸 도면이다.
본 발명의 실시예에 따른 소형 카메라모듈의 수직 와이어 완충구조는 도 9 내지 도 13에 도시된 바와 같이, 렌즈홀더(100), 스페이서(200), 연성회로기판(300), 완충재(400) 및 와이어스프링(500)으로 이루어진다.
상기 렌즈홀더(100)에는 카메라 렌즈(미도시)가 장착되고, 상기 스페이서(200)의 하부에 배치된다.
상기 렌즈홀더(100)는 도 9에 도시된 바와 같이 상기 와이어스프링(500)에 의해 상기 스페이서(200)에 수평 이동되도록 결합된다.
이에 따라 카메라에 흔들림 발생시 카메라모듈에 장착된 구동부(미도시)에 의해 상기 렌즈홀더(100)가 수평 이동되면서 렌즈에 촬영되는 피사체 영상의 흔들림을 보정한다.
상기 스페이서(200)는 상기 렌즈홀더(100)의 상부에 고정 배치된다.
그리고 상기 스페이서(200)의 상부에는 상기 연성회로기판(300)이 배치되고, 상기 스페이서(200)와 연성회로기판(300) 사이에 상기 완충재(400)가 배치된다.
이러한 상기 스페이서(200), 완충재(400) 및 연성회로기판(300)에는 도 9 내지 도 12에 도시된 바와 같이 상기 와이어스프링(500)의 일단 즉, 상단이 관통하여 삽입 배치되는 결합공(600)이 형성된다.
그리고 도 13(a)에 도시된 바와 같이, 상기 스페이서(200)에는 상기 결합공(600)과 동심을 이루며 상기 결합공(600)의 지름보다 큰 지름을 갖는 이격부(210)가 형성된다.
상기 이격부(210)는 하부로 갈수록 지름이 점점 작아진다.
이와 같이 상기 스페이서(200)에 상기 이격부(210)가 형성됨으로써, 상기 완충재(400)에 형성된 탄성부(410)가 하부로 탄성변형될 수 있는 공간이 생기게 된다.
전술한 바와 같은 이격부(210)는 상기 완충재(400)에 형성된 탄성부(410)가 하부로 탄성변형되도록 그 형상을 다양하게 형성할 수도 있다.
상기 연성회로기판(300)은 상기 스페이서(200)의 상부에 배치되고, 하부에 상기 완충재(400)가 배치된다.
그리고 도 11에 도시된 바와 같이, 상기 연성회로기판(300)에는 상기 결합공(600)의 둘레에 금속단자부(310)가 형성된다.
상기 금속단자부(310)는 상기 결합공(600)에 삽입된 상기 와이어스프링(500)의 상단과 접하여 상기 와이어스프링(500)을 통해 상기 렌즈홀더(100)에 장착된 코일(미도시)에 전류를 흘려보낸다.
이와 같이 상기 코일에 전류가 공급되어 상기 코일을 포함하는 구동부(미도시)에 의해 상기 렌즈홀더(100)가 수평 이동하게 된다.
상기 완충재(400)는 탄성재질의 플라스틱 소재로 이루어지고, 상기 스페이서(200)와 연성회로기판(300) 사이에 배치된다.
그리고 도 12에 도시된 바와 같이, 상기 완충재(400)에서 상기 결합공(600)의 둘레에는 상하로 탄성변형되는 탄성부(410)가 형성된다.
상기 탄성부(410)는 다수개로 이루어져 상기 결합공(600)을 중심으로 상호 이격 배치된다.
상기 탄성부(410)는 일체로 형성될 수도 있지만, 본 실시예와 같이 다수개로 이루어져 상호 이격 배치됨으로써 상하로 탄성변형되기 용이하다.
이러한 상기 탄성부(410)는 상면이 상기 연성회로기판(300)과 접하고 하면은 상기 이격부(210)에 의해 상기 스페이서(200)와 이격된다.
이에 따라 상기 탄성부(410)는 상기 연성회로기판(300)과 함께 하부로 탄성변형된다.
그리고 상기 결합공(600)의 중심과 금속단자부(310) 사이의 최대 거리(L3)는 상기 결합공(600)의 중심과 탄성부(410) 사이의 최대 거리(L4)보다 짧도록 구성된다.
이에 따라 상기 금속단자부(310) 외측의 연성회로기판(300)이 상기 탄성부(410)의 상부에서 접철되어 상하 방향으로 탄성변형되면서 상기 와이어스프링(500)이 받는 충격을 상기 완충재(400)에 효과적으로 전달할 수 있다.
한편, 상기 결합공(600)의 중심과 금속단자부(310) 사이의 최대 거리(L3)가 상기 결합공(600)의 중심과 탄성부(410) 사이의 최소 거리(L4)보다 길거나 같게 되면, 상기 금속단자부(310)가 상기 탄성부(410)를 완전히 덮게 되고, 상기 금속단자부(310) 외측의 연성회로기판(300)은 상기 완충재(400)의 상면과 접하여 상하방향으로 변형되지 못한다.
따라서 상기 금속단자부(310)가 상기 탄성부(410)와 함께 상하로 탄성변형되면서 상기 와이어스프링(500)의 상단에 집중되는 충격을 감쇠시켜야 하지만, 상기 금속단자부(310)는 탄성이 작아서 상기 완충재(400)와 함께 충격을 효과적으로 상쇠 시키지 못하는 문제점이 있기 때문에, 상기 결합공(600)의 중심과 금속단자부(310) 사이의 최대 거리(L3)는 상기 결합공(600)의 중심과 탄성부(410) 사이의 최소 거리(L4)보다 짧게 형성되도록 하여 상기 연성회로기판(300)이 상기 탄성부(410)와 함께 상하로 탄성변형되면서 상기 와이어스프링(500)이 받는 충격을 상쇠 시킬 수 있도록 하였다.
상기 와이어스프링(500)은 상단이 상기 스페이서(200)와 완충재(400)를 관통하여 상기 연성회로기판(300)에 연결되고 하단이 상기 렌즈홀더(100)에 고정 장착되어 상기 렌즈홀더(100)를 수평 이동되도록 상기 스페이서(200)에 결합시킨다.
즉, 상기 와이어스프링(500)은, 상단이 상기 결합공(600)에 삽입되고 상기 금속단자부(310)에 접하여 고정되며, 하단이 상기 렌즈홀더(100)에 고정된다.
이에 따라 상기 와이어스프링(500)에 의해 상기 렌즈홀더(100)가 수평 이동되도록 상기 스페이서(200)에 결합된다.
일반적으로 상기 와이어스프링(500)은 상기 금속단자부(310)에 납땜 방식으로 고정되는데, 카메라에 충격이나 흔들림 발생시 상기 렌즈홀더(100)는 렌즈에 촬영되는 피사체 영상의 보정을 위해 수평방향으로 이동할 뿐만 아니라 상하방향으로의 흔들림이 발생하게 된다.
이때, 카메라모듈 내부에서 상하방향의 충격 및 흔들림을 상쇄 시키지 못하면 상기 금속단자부(310)에 연결된 상기 와이어스프링(500)의 상단에 충격이 집중되어 상기 금속단자부(310)와의 접촉이 끊어지게 된다.
이에 따라 도 13(b)에 도시된 바와 같이, 상기 와이어스프링(500)과 연결된 상기 연성회로기판(300)이 상기 탄성부(410)와 함께 상하방향으로 탄성변형되면서 상기 와이어스프링(500)의 상단에 집중된 충격을 흡수하여 감쇠시킨다.
이와 같이 상기 스페이서(200)와 연성회로기판(300) 사이에 상기 완충재(400)가 배치됨으로써, 카메라에 흔들림 발생시 상기 렌즈홀더(100)와 스페이서(200)를 결합시키는 상기 와이어스프링(500)에 가해지는 충격을 흡수하여 상기 연성회로기판(300)과 와이어스프링(500)의 연결부위가 손상되어 분리되는 것을 방지할 수 있다.
구체적으로 카메라가 흔들려 상기 와이어스프링(500)의 수직방향으로 충격이 발생하게 되면, 도 13(b)에 도시된 바와 같이 상기 연성회로기판(300)의 상기 금속단자부(310) 외측부분이 상기 탄성부(410)와 함께 하방향으로 절곡되고, 도 13(a)에 도시된 바와 같이 상기 탄성부(410)의 탄성복원력에 의해 다시 복원되면서 수직방향의 충격을 흡수한다.
이와 같이 상기 연성회로기판(300)이 상기 탄성부(410)와 함께 절곡되었다가 복원되는 것을 반복하면서 수직방향의 충격을 상쇄 시킨다.
또한, 이러한 충격에 대비하기 위해서 상기 금속단자부(310)와 와이어스프링(500)의 결합력을 강화하기 위한 별도의 추가적인 보강 수단이 필요하지 않은 이점이 있다.
<실시예 4>
도 14는 본 발명의 실시예 4에 따른 소형 카메라모듈의 사시도, 도 15는 본 발명의 실시예 4에 따른 소형 카메라모듈의 분해사시도, 도 16은 도 14의 D-D선을 취하여 본 단면도, 도 17은 본 발명의 실시예 4에 따른 탄성부의 다양한 형상을 나타낸 도면, 도 18은 본 발명의 실시예 4에 따른 연결바와 일체로 형성된 완충재를 나타낸 도면이다.
본 발명의 실시예 4에 따른 소형 카메라모듈의 와이어스프링 완충구조는 도 14 내지 도 18에 도시된 바와 같이, 스페이서(1200), 연성회로기판(1300), 커버(1400), 렌즈홀더(1500), 완충재(1600) 및 와이어스프링(1700)을 포함하여 이루어진다.
상기 스페이서(1200)는 카메라모듈이 장착되는 단말기에 장착되고, 상기 렌즈홀더(1500)의 상부에 배치되어 상기 렌즈홀더(1500)를 상기 단말기로부터 이격시킨다.
그리고 상기 스페이서(1200)는 도 14 및 15에 도시된 바와 같이 육면체 형상으로 형성되고 네 측면에 각각 마그네트(1201)가 장착되어 상기 렌즈홀더(1500)에 장착된 코일(1501) 주위에 자기장을 형성한다.
상기 스페이서(1200)는 상부와 하부로 분리되어 그 사이에 상기 마그네트(1201)가 장착된다.
상기 연성회로기판(1300)은 상기 스페이서(1200)의 상부에 배치된다.
상기 연성회로기판(1300)은 상기 스페이서(1200)의 상부에 열경화성본드로 부착된다.
상기 커버(1400)는 상기 스페이서(1200)의 상부에 결합되어 상기 연성회로기판(1300)을 덮는다.
상기 렌즈홀더(1500)는 카메라 렌즈(미도시)가 장착되고, 측면에 코일(1501)이 장착된다.
그리고 상기 렌즈홀더(1500)는 전술한 바와 같이 상기 스페이서(1200)의 하부에 배치되어 카메라모듈이 장착되는 단말기로부터 이격된다.
구체적으로 상기 렌즈홀더(1500)는 도 16에 도시된 바와 같이 상기 와이어스프링(1700)에 의해 상기 스페이서(1200)의 하부에 결합되어 상기 단말기로부터 이격된다.
그리고 상기 렌즈홀더(1500)의 하부에는 이격홈(1510)이 형성된다.
상기 이격홈(1510)은 상방향으로 오목하게 형성되어 하부에 상기 완충재(1600)에 형성된 탄성부(1610)가 배치된다.
상기 완충재(1600)는 상기 렌즈홀더(1500)의 하부에 장착되고, 금속재질의 전극판으로 이루어져 상기 코일(1501)과 전기적으로 연결된다.
이러한 상기 완충재(1600)는 다수개로 이루어져 상호 이격 배치되고, 각각의 상기 완충재(1600)에는 탄성부(1610)가 형성되며, 상기 탄성부(1610)에 상기 와이어스프링(1700)의 하단이 결합되어 상기 와이어스프링(1700)이 받는 충격을 흡수한다.
상기 와이어스프링(1700)은 상기 렌즈홀더(1500)가 카메라모듈이 장착된 단말기로부터 이격되어 수평 이동되도록 상기 렌즈홀더(1500)를 상기 스페이서(1200)의 하부에 결합시키기 때문에, 카메라모듈에 흔들림 등의 외부충격이 발생하게 되면 상기 렌즈홀더(1500)가 흔들리면서 상기 와이어스프링(1700)에 충격이 집중되게 된다.
구체적으로 상기 완충재(1600)에는 도 17(a)에 도시된 바와 같이 상기 탄성부(1610)가 배치되는 탄성홀(1601)이 형성된다.
상기 탄성부(1610)는 상기 이격홈(1510)의 하부에 배치되고, 결합편(1611)과 탄성편(1613)으로 이루어진다.
상기 결합편(1611)은 상기 탄성홀(1601)에 배치되고 중심부에 상기 와이어스프링(1700)이 삽입되어 고정되는 고정홀(1612)이 형성된다.
상기 탄성편(1613)은 상기 결합편(1611)에서 돌출 형성되어 상기 완충재(1600)에 연결된다.
그리고 상기 탄성편(1613)은 상기 카메라모듈에 상하방향 충격 발생시 탄성변형된다.
이에 따라 상기 탄성부(1610)는 상기 이격홈(1510)에서 상하방향으로 탄성변형되면서 상기 와이어스프링(1700)이 받는 상하방향 충격을 흡수한다.
도 17(b) 및 도 17(c)에 도시된 바와 같이, 상기 탄성부(1610)는 다양한 형상으로 형성되어 상하방향으로 탄성변형되면서 상기 와이어스프링(1700)이 받는 상하방향의 충격을 흡수할 수 있다.
한편, 상기 완충재(1600)는 도 18에 도시된 바와 같이 상기 렌즈홀더(1500)에 장착되기 이전에 연결바(1620)에 의해 상호 이격 배치되어 상기 연결바(1620)와 함께 일체로 형성된다.
그리고 상기 완충재(1600)와 연결바(1620) 사이에는 절단부(1621)가 형성된다.
구체적으로 상기 연결바(1620)는 다수개로 분기되어 각 끝단에 상기 완충재(1600)가 각각 연결되고, 상기 절단부(1621)는 상기 완충재(1600) 방향으로 갈수록 그 폭(W)이 점점 좁아진다.
이에 따라 상기 절단부(1621)는 상기 완충재(1600)와 연결된 부분이 절단되기 용이하여 상기 완충재(1600)를 상기 렌즈홀더(1500)의 하부에 장착한 후 상기 완충재(1600)와 연결바(1620)를 쉽게 분리할 수 있다.
이와 같이 다수개의 상기 완충재(1600)는 상기 연결바(1620)에 의해 일체로 형성됨으로써, 상기 렌즈홀더(1500)의 하부에서 각 위치에 맞게 조립하기 용이하다.
즉, 다수개의 상기 완충재(1600)는 상기 연결바(1620)에 의해 일체로 형성되어 있기 때문에 한 번에 다수개의 상기 완충재(1600)를 상기 렌즈홀더(1500)의 하부에 쉽게 배치시킬 수 있다.
이렇게 상기 완충재(1600)를 상기 렌즈홀더(1500)의 하부에 배치시켜 상기 렌즈홀더(1500)의 하부에 장착시킨 후에는 상기 완충재(1600)와 연결된 상기 절단부(1621)를 절단하여 상기 완충재(1600)와 연결바(1620)를 분리시킨다.
전술한 바와 같이 상기 절단부(1621)는 상기 완충재(1600) 방향으로 갈수록 그 폭이 점점 좁아지기 때문에 상기 완충재(1600)와 인접한 부위에서 쉽게 절단하여 분리할 수 있다.
상기 와이어스프링(1700)은 도 16에 도시된 바와 같이 상단이 상기 스페이서(1200)의 상부를 관통하여 상기 연성회로기판(1300)에 연결되고, 하단이 상기 렌즈홀더(1500)의 하부를 관통하여 상기 완충재(1600)에 연결된다.
그리고 상기 와이어스프링(1700)은 상기 렌즈홀더(1500)를 상기 스페이서(1200)에 대해 수평 이동되도록 결합시킨다.
구체적으로 상기 와이어스프링(1700)은 양단이 상기 연성회로기판(1300)과 완충재(1600)에 각각 납땜으로 결합되어 상기 연성회로기판(1300)과 완충재(1600)를 전기적으로 연결시킨다.
이에 따라 카메라모듈에 흔들림이 발생하면 상기 연성회로기판(1300)에서 상기 와이어스프링(1700) 및 완충재(1600)를 통해 상기 코일(1501)에 전류를 인가하여 카메라모듈의 흔들림에 따라 상기 렌즈홀더(1500)의 위치를 보정함으로써, 상기 렌즈홀더(1500)에 장착된 렌즈의 흔들림을 최소화할 수 있다.
또한, 카메라모듈에 상하방향으로 충격발생시 상기 탄성부(1610)가 상기 이격홈(1510)에서 상하방향으로 탄성변형됨으로써, 상기 와이어스프링(1700)이 받는 상하방향 충격을 흡수하여 분산시킨다.
상기 와이어스프링(1700)은 양단이 상기 연성회로기판(1300) 및 완충재(1600)에 각각 납땜으로 고정되어 상기 렌즈홀더(1500)를 상기 스페이서(1200)에 결합시키기 때문에 카메라모듈에 상하방향으로 충격 발생시 충격이 상기 와이어스프링(1700)의 양단에 집중되게 되고, 이러한 충격이 장시간 반복되면 상기 연성회로기판(1300) 및 완충재(1600)에 연결된 상기 와이어스프링(1700)의 연결부위가 손상되어 분리될 수 있다.
이에 따라 상술한 바와 같이 상기 와이어스프링(1700)의 하단을 상기 탄성부(1610)에 고정 결합시켜 카메라모듈에 충격발생시 상기 탄성부(1610)가 상하로 탄성변형되면서 상기 와이어스프링(1700)이 받는 충격을 흡수하도록 함으로써, 상기 와이어스프링(1700)의 양단에 집중되는 충격을 분산시켜 카메라모듈의 내구성을 더욱 향상시킬 수 있다.
경우에 따라 상기 와이어스프링(1700)의 상단도 상기 연성회로기판(1300)에 직접 연결하여 고정하지 않고, 그 사이에 완충재를 형성하고 완충재에 형성된 탄성부에 상기 와이어스프링(1700)의 상단을 고정 결합하여 상하방향 충격을 흡수하도록 할 수도 있다.
전술한 바와 같은 소형 카메라모듈의 와이어스프링 완충구조 외에도 스페이서와 렌즈홀더를 상호 측방향에 수평으로 배치하고 상기 와이어스프링의 일단을 상기 스페이서에 장착된 회로기판에 연결하며 타단을 상기 렌즈홀더에 장착된 완충재에 연결하여 상기 렌즈홀더가 유동하면서 렌즈의 초점을 조절하도록 할 수 있다.
이때에도 상기 렌즈홀더가 렌즈의 초점을 조절하기 위하여 유동하면서 상기 와이어스프링에 충격이 전달되어 상기 와이어스프링의 양단에 집중되는 충격을 상기 완충재에 형성된 탄성부가 흡수하도록 하여 카메라모듈의 내구성을 향상시킬 수 있다.
본 발명인 소형 카메라모듈의 수직 와이어 완충구조는 전술한 실시예에 국한되지 않고 본 발명의 기술사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.
본 발명의 소형 카메라모듈의 수직 와이어 완충구조는 영상이 흔들리는 것을 보정하거나 렌즈의 초점을 자동으로 맞추기 위해 휴대폰이나 태블릿PC와 같은 휴대단말기 등에 장착된 카메라모듈이 휴대단말기의 사용시 발생할 수 있는 충격에 의해 파손되는 것을 방지할 수 있다.

Claims (15)

  1. 카메라 렌즈가 장착되는 렌즈홀더와;
    상기 렌즈홀더의 상부에 배치되는 스페이서와;
    상기 스페이서의 상부에 배치되는 연성회로기판과;
    상기 렌즈홀더가 상기 스페이서에 대해 수평방향으로 유동하도록 상기 렌즈홀더를 상기 스페이서에 결합시키는 와이어스프링과;
    상기 스페이서의 상부 또는 하부에 배치되는 완충재; 를 포함하여 이루어지되,
    상기 완충재는 상기 와이어스프링이 받는 충격을 흡수하는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  2. 청구항 1에 있어서,
    상기 완충재는 상기 스페이서와 연성회로기판 사이에 배치되고,
    상기 와이어스프링은, 일단이 상기 스페이서와 완충재를 관통하여 상기 연성회로기판에 연결되고, 타단이 상기 렌즈홀더에 고정 장착되되,
    상기 스페이서, 완충재 및 연성회로기판에는 상기 와이어스프링의 일단이 관통하여 삽입 배치되는 결합공이 형성되어 있는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  3. 청구항 2에 있어서,
    상기 스페이서의 상부에는 상기 결합공과 연통되는 삽입홈이 형성되고,
    상기 완충재는 상기 삽입홈에 삽입 배치되는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  4. 청구항 3에 있어서,
    상기 연성회로기판에는 상기 결합공에 삽입된 상기 와이어스프링과 접하는 금속단자부가 형성되되,
    상기 결합공의 중심과 금속단자부 사이의 최대 거리(L1)는, 상기 결합공의 중심과 상기 삽입홈 사이의 최소 거리(L2)보다 짧은 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  5. 청구항 3에 있어서,
    상기 완충재의 두께는 상기 삽입홈의 깊이보다 크거나 같은 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  6. 청구항 1 내지 청구항 5 중 어느 한 항에 있어서,
    상기 완충재는 폴리우레탄 폼 소재로 이루어진 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  7. 청구항 2에 있어서,
    상기 스페이서에는 상기 결합공과 동심을 이루며 상기 결합공의 지름보다 큰 지름을 갖는 이격부가 형성되어 있는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  8. 청구항 7에 있어서,
    상기 완충재에서 상기 결합공의 둘레에는 상하로 탄성변형되는 탄성부가 형성되고, 상기 이격부는 상기 탄성부의 하부에 형성되어,
    상기 탄성부는 상기 스페이서와 이격되는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  9. 청구항 8에 있어서,
    상기 탄성부는 다수개로 이루어져 상기 결합공을 중심으로 상호 이격 배치되는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  10. 청구항 8 또는 청구항 9에 있어서,
    상기 연성회로기판에는 상기 결합공에 삽입된 상기 와이어스프링과 접하는 금속단자부가 형성되되,
    상기 결합공의 중심과 금속단자부 사이의 최대 거리(L3)는, 상기 결합공의 중심과 탄성부 사이의 최대 거리(L4)보다 짧은 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  11. 청구항 1에 있어서,
    상기 렌즈홀더의 측면에는 코일이 장착되고,
    상기 완충재는 상기 렌즈홀더의 하부에 장착되며, 다수개로 이루어져 상호 이격 배치되고,
    상기 와이어스프링은, 일단이 상기 연성회로기판에 연결되며, 타단이 상기 완충재에 연결되되,
    상기 완충재는 전극판으로 이루어져 상기 렌즈홀더와 전기적으로 연결되고, 상기 와이어스프링의 타단이 결합되어 상기 와이어스프링이 받는 충격을 흡수하는 탄성부가 형성되어 있는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  12. 청구항 11에 있어서,
    상기 완충재에는 상기 탄성부가 배치되는 탄성홀이 형성되고,
    상기 탄성부는,
    상기 탄성홀에 배치되고 중심부에 상기 와이어스프링이 삽입되어 고정되는 고정홀이 형성된 결합편과;
    상기 결합편에서 돌출 형성되어 상기 완충재에 연결되는 하나 이상의 탄성편; 으로 이루어진 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  13. 청구항 11에 있어서,
    상기 와이어스프링은, 일단이 상기 스페이서를 관통하여 상기 연성회로기판에 연결되고, 타단이 상기 렌즈홀더를 관통하여 상기 완충재에 연결되되,
    상기 렌즈홀더에는 상기 탄성부와 마주보는 면에 오목한 이격홈이 형성되고,
    상기 탄성부는 상기 이격홈 방향으로 탄성변형되면서 상기 와이어스프링이 받는 충격을 흡수하는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  14. 청구항 11에 있어서,
    상기 완충재는 연결바에 의해 상호 이격 배치되되,
    상기 완충재와 연결바 사이에는 절단부가 형성되어 일체로 이루어지고,
    상기 완충재는 상기 렌즈홀더에 장착된 후 상기 절단부가 절단되어 상기 연결바와 분리되는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
  15. 청구항 14에 있어서,
    상기 연결바는 다수개로 분기와어 각 끝단에 상기 완충재가 각각 연결되되,
    상기 절단부는 상기 완충재 방향으로 갈수록 그 폭이 점점 좁아지는 것을 특징으로 하는 소형 카메라모듈의 수직 와이어 완충구조.
PCT/KR2012/005741 2011-09-23 2012-07-18 소형 카메라모듈의 수직 와이어 완충구조 WO2013042865A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/402,502 US9360734B2 (en) 2011-09-23 2012-07-18 Vertical wire absorbing structure of compact camera module

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR1020110096071A KR101185730B1 (ko) 2011-09-23 2011-09-23 소형 카메라모듈의 수직 와이어 완충구조
KR10-2011-0096071 2011-09-23
KR1020110096068A KR101245146B1 (ko) 2011-09-23 2011-09-23 소형 카메라모듈의 수직 와이어 완충구조
KR10-2011-0096068 2011-09-23
KR10-2012-0004430 2012-01-13
KR1020120004430A KR101239685B1 (ko) 2012-01-13 2012-01-13 소형 카메라모듈의 와이어스프링 완충구조

Publications (1)

Publication Number Publication Date
WO2013042865A1 true WO2013042865A1 (ko) 2013-03-28

Family

ID=47914594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005741 WO2013042865A1 (ko) 2011-09-23 2012-07-18 소형 카메라모듈의 수직 와이어 완충구조

Country Status (2)

Country Link
US (1) US9360734B2 (ko)
WO (1) WO2013042865A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2587307A3 (en) * 2011-10-28 2015-09-30 LG Innotek Co., Ltd. Camera module having an optical image stabilizer
CN105022203A (zh) * 2014-04-24 2015-11-04 Lg伊诺特有限公司 镜头移动装置
CN106300864A (zh) * 2015-05-28 2017-01-04 鸿富锦精密工业(深圳)有限公司 弹片及应用该弹片的音圈马达、电子装置
CN107077045A (zh) * 2014-11-28 2017-08-18 日本电产科宝株式会社 透镜驱动装置
US11980228B2 (en) 2016-07-25 2024-05-14 Altria Client Services Llc Manufacturing a fluid permeable heater assembly with cap

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104216199B (zh) * 2013-05-29 2019-04-16 Lg伊诺特有限公司 镜头驱动装置
JP6501542B2 (ja) * 2015-02-06 2019-04-17 惠州市大亜湾永昶電子工業有限公司 手振れ補正機能付レンズ駆動装置
CN105988181B (zh) 2015-03-19 2021-07-23 Lg伊诺特有限公司 透镜驱动装置、摄像头模块和光学设备
KR102338925B1 (ko) 2017-06-27 2021-12-13 엘지이노텍 주식회사 카메라 모듈
CN109581610B (zh) * 2018-12-29 2021-01-15 中国科学院长春光学精密机械与物理研究所 调焦机构
JP6982147B1 (ja) * 2020-08-18 2021-12-17 東京特殊電線株式会社 レンズ支持装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973111A (ja) * 1995-09-06 1997-03-18 Nikon Corp 像ブレ補正装置
JP2002207148A (ja) * 2001-01-09 2002-07-26 Nikon Corp 撮影装置
KR100952620B1 (ko) * 2008-10-15 2010-04-15 주식회사 하이소닉 카메라용 손떨림 보정장치
KR101058679B1 (ko) * 2009-02-16 2011-08-22 삼성전자주식회사 카메라 렌즈 어셈블리

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5717960A (en) 1995-09-06 1998-02-10 Nikon Corporation Image vibration correcting device
JP3869907B2 (ja) * 1997-04-18 2007-01-17 キヤノン株式会社 レンズ鏡筒およびこれを備えた撮像装置
US7702233B2 (en) * 2003-12-19 2010-04-20 Hysonic Co., Ltd. Image photographing apparatus
US20060219862A1 (en) * 2005-03-31 2006-10-05 Kai-Kuang Ho Compact camera module with reduced thickness
US8681227B2 (en) * 2008-05-14 2014-03-25 Hysonic. Co., Ltd. Photography device having anti-shake function

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973111A (ja) * 1995-09-06 1997-03-18 Nikon Corp 像ブレ補正装置
JP2002207148A (ja) * 2001-01-09 2002-07-26 Nikon Corp 撮影装置
KR100952620B1 (ko) * 2008-10-15 2010-04-15 주식회사 하이소닉 카메라용 손떨림 보정장치
KR101058679B1 (ko) * 2009-02-16 2011-08-22 삼성전자주식회사 카메라 렌즈 어셈블리

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10606097B2 (en) 2011-10-28 2020-03-31 Lg Innotek Co., Ltd. Camera module having a buffer unit
US11675210B2 (en) 2011-10-28 2023-06-13 Lg Innotek Co., Ltd. Camera module having a buffer unit
US11175515B2 (en) 2011-10-28 2021-11-16 Lg Innotek Co., Ltd. Camera module having a buffer unit
EP2587307A3 (en) * 2011-10-28 2015-09-30 LG Innotek Co., Ltd. Camera module having an optical image stabilizer
US10067356B2 (en) 2011-10-28 2018-09-04 Lg Innotek Co., Ltd. Camera module including a wire for OIS function
CN110579923B (zh) * 2014-04-24 2021-09-21 Lg伊诺特有限公司 镜头移动装置
CN110579923A (zh) * 2014-04-24 2019-12-17 Lg伊诺特有限公司 镜头移动装置
CN105022203B (zh) * 2014-04-24 2019-09-17 Lg伊诺特有限公司 镜头移动装置
US10663689B2 (en) 2014-04-24 2020-05-26 Lg Innotek Co., Ltd. Lens moving apparatus
US11598931B2 (en) 2014-04-24 2023-03-07 Lg Innotek Co., Ltd. Lens moving apparatus
CN105022203A (zh) * 2014-04-24 2015-11-04 Lg伊诺特有限公司 镜头移动装置
US11867972B2 (en) 2014-04-24 2024-01-09 Lg Innotek Co., Ltd. Lens moving apparatus
CN107077045A (zh) * 2014-11-28 2017-08-18 日本电产科宝株式会社 透镜驱动装置
CN106300864A (zh) * 2015-05-28 2017-01-04 鸿富锦精密工业(深圳)有限公司 弹片及应用该弹片的音圈马达、电子装置
US11980228B2 (en) 2016-07-25 2024-05-14 Altria Client Services Llc Manufacturing a fluid permeable heater assembly with cap

Also Published As

Publication number Publication date
US20150286109A1 (en) 2015-10-08
US9360734B2 (en) 2016-06-07

Similar Documents

Publication Publication Date Title
WO2013042865A1 (ko) 소형 카메라모듈의 수직 와이어 완충구조
WO2017188781A1 (ko) 카메라 모듈 및 이를 포함하는 휴대용 디바이스
WO2015005711A1 (ko) 카메라 모듈
WO2021040397A1 (ko) 센서 구동 장치
WO2012067377A2 (en) Camera module and method for manufacturing the same
WO2017122993A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2017043849A1 (ko) 듀얼 카메라 모듈 및 광학기기
WO2018182203A1 (ko) 렌즈 구동 장치 및 카메라 모듈
WO2017078364A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2018212616A1 (ko) 카메라 모듈
WO2013065961A1 (en) Camera module
WO2011155809A2 (ko) 소형 카메라 엑츄에이터 및 소형 입체영상 촬영장치
WO2018182239A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2019182307A1 (ko) 카메라 모듈 및 이를 포함하는 광학 기기
WO2017090940A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017010745A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2015080533A1 (ko) 광 송수신 장치
WO2017039292A1 (ko) 렌즈 구동 유닛, 카메라 모듈 및 광학기기
WO2017119760A1 (ko) 렌즈 구동 장치, 카메라 모듈 및 광학기기
WO2017196100A2 (ko) 기판 커넥터
WO2017188771A1 (ko) 렌즈 구동 장치, 카메라 모듈, 및 광학기기
WO2017078392A1 (ko) 카메라 모듈
WO2017003199A1 (ko) 렌즈 구동장치, 및 이를 포함하는 카메라 모듈 및 휴대용 디바이스
WO2020162688A1 (ko) 이미지 센서용 기판
WO2020004975A1 (ko) 카메라 장치 및 광학기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833240

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14402502

Country of ref document: US