WO2013042504A1 - Substrate having buffer layer structure for growing nitride semiconductor layer - Google Patents

Substrate having buffer layer structure for growing nitride semiconductor layer Download PDF

Info

Publication number
WO2013042504A1
WO2013042504A1 PCT/JP2012/071170 JP2012071170W WO2013042504A1 WO 2013042504 A1 WO2013042504 A1 WO 2013042504A1 JP 2012071170 W JP2012071170 W JP 2012071170W WO 2013042504 A1 WO2013042504 A1 WO 2013042504A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
buffer layer
aln
nitride semiconductor
Prior art date
Application number
PCT/JP2012/071170
Other languages
French (fr)
Japanese (ja)
Inventor
伸之 伊藤
信明 寺口
大輔 本田
暢行 布袋田
雅和 松林
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013042504A1 publication Critical patent/WO2013042504A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • H01L21/02661In-situ cleaning

Definitions

  • the present invention relates to improvement of a substrate having a buffer layer structure for growing a nitride semiconductor layer, and more particularly to improvement of a buffer layer structure of the substrate.
  • An epitaxial wafer including a plurality of nitride semiconductor layers stacked on such an improved substrate can be preferably used for manufacturing a nitride semiconductor device such as a heterojunction field effect transistor.
  • a GaN substrate is expensive, so that it is on a substrate of a different material such as sapphire, SiC, or Si Conventionally, these nitride semiconductor layers have been crystal-grown.
  • a nitride semiconductor layer is grown by MOCVD (Metal Organic Vapor Deposition) on a substrate of a different material, strain based on the difference in crystal structure, lattice mismatch, thermal expansion coefficient, etc. between the substrate and the semiconductor layer Various buffer layer structures are used for relaxation.
  • MOCVD Metal Organic Vapor Deposition
  • Japanese Patent Laid-Open No. 2-229476 of Patent Document 1 teaches that an AlN layer is deposited as a buffer layer on a sapphire substrate at a relatively low substrate temperature of 400 ° C. or higher and 900 ° C. or lower.
  • Such a buffer layer deposited at a relatively low temperature is also called a low-temperature buffer layer.
  • the low-temperature buffer layer contains microcrystals and polycrystals in the amorphous matrix. Therefore, when the substrate temperature is increased to about 1000 ° C. or higher in order to grow a nitride semiconductor layer for a semiconductor device on the low-temperature buffer layer, the amorphous parent phase in the buffer layer is polycrystallized. It will contain a relatively large amount of dislocations inside. In the nitride semiconductor multilayer structure for devices grown on the buffer layer, a large amount of dislocations are introduced, the crystal quality varies, and cracks tend to occur.
  • Japanese Patent Application Laid-Open No. 2002-367917 of Patent Document 2 teaches that an AlN crystal layer is deposited on a sapphire substrate as a buffer layer at a relatively high substrate temperature of 1100 ° C. or more and 1250 ° C. or less.
  • a buffer layer deposited at a relatively high temperature is also referred to as a high temperature buffer layer.
  • Patent Document 3 also states that if the thickness of the buffer layer is increased, the substrate is likely to warp due to the difference in lattice constant between the substrate and the buffer layer, and the deposition temperature of the AlN buffer layer is further increased. It also states that if the height is increased, the surface of the buffer layer is more likely to become cloudy. In view of such a problem, Patent Document 3 discloses that the temperature during the deposition of the high-temperature AlN buffer layer in order to suppress the occurrence of white turbidity even if the high-temperature AlN buffer layer is formed thin on the sapphire substrate, It teaches changing at least one of the MOCVD conditions such as pressure and source gas flow rate.
  • Patent Document 4 points out problems in growing a nitride semiconductor crystal layer on a single crystal silicon substrate. Specifically, when a nitride semiconductor crystal layer is grown after depositing a nitride low-temperature buffer layer on a silicon substrate, amorphous silicon nitride is formed on random regions of the silicon substrate surface during the deposition of the nitride low-temperature buffer layer. It has been pointed out that this causes deterioration in the flatness of the interface between the substrate and the nitride semiconductor crystal layer, or causes defects in the nitride semiconductor crystal layer. In order to improve this problem, Patent Document 4 proposes that the silicon substrate surface is covered with a silicon nitride layer having a uniform thickness by nitriding before the nitride low-temperature buffer layer is deposited.
  • JP-A-2-229476 Japanese Patent Laid-Open No. 2002-367917 JP 2007-59850 A JP 2009-152627 A
  • An AlN crystal having a hexagonal wurtzite structure is a polar crystal in which Al atoms and N atoms are arranged asymmetrically along the c-axis.
  • Al polarity group III element polarity
  • N polarity in which N atoms exist stably Grows in any orientation of (group V element polarity).
  • This difference in polarity appears characteristically in the morphology of the crystal growth surface, while the Al polar surface is a highly flat surface, whereas the N polar surface is a remarkably uneven surface having hexagonal facets. Tend to be.
  • the AlN crystal layer is grown as a buffer layer without considering the polar face as in Patent Document 3, the surface of the AlN crystal layer in which the Al polar face and the N polar face are mixed is generated, and high surface flatness is obtained. I can't get it.
  • the mixture of the Al polar face and the N polar face is inherited into the nitride semiconductor multilayer structure for devices grown on the AlN buffer layer, and further deteriorates the surface flatness of the semiconductor multilayer structure.
  • the main object of the present invention is to provide a substrate having an improved buffer layer structure for growing a semiconductor laminated structure for a nitride semiconductor device.
  • the present inventors have not formed a high-temperature AlN buffer layer directly on the surface of the silicon nitride layer formed on the silicon substrate, but rather a conventional high-temperature by interposing an Al layer. It has been found that a novel buffer layer structure with a significantly improved surface flatness compared to the AlN buffer layer can be obtained.
  • a substrate having a buffer layer structure for growing a nitride semiconductor layer has a silicon nitride layer formed on the (111) main surface of the Si single crystal substrate, and on the silicon nitride layer. It has an Al layer and an AlN crystal layer or an AlGaN crystal layer that are sequentially stacked, and the surface of the AlN crystal layer or the AlGaN crystal layer has a (0001) plane orientation and a group III element polar surface. It is a feature.
  • the substrate according to the present invention may further include an additional AlGaN crystal layer stacked on the AlN crystal layer or the AlGaN layer.
  • the additional AlGaN crystal layer may include a plurality of sub-layers in which the Al composition ratio is sequentially reduced.
  • the AlN or AlGaN crystal buffer layer is uniformly formed on the silicon nitride layer before the AlN or AlGaN crystal buffer layer is grown.
  • a family polar face is obtained. That is, the surface of the AlN or AlGaN crystal buffer layer substantially includes only the group III polar surface, and thus has high flatness.
  • FIG. 5 is a Nomarski optical micrograph for showing the surface state of a nitride semiconductor device wafer produced using a substrate according to the production method of the present invention in comparison with FIG. 4.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of heterojunction field effect transistors that can be manufactured using a substrate according to the present invention.
  • a Si substrate having a (111) main surface is used as the substrate 1.
  • the substrate is set in a nitrogen atmosphere chamber of an MOCVD (metal organic chemical vapor deposition) apparatus.
  • MOCVD metal organic chemical vapor deposition
  • a silicon nitride layer 1 a is formed on the surface of the Si substrate 1.
  • An Al 0.7 Ga 0.3 N layer 3 is deposited to a thickness of 400 nm.
  • the deposition pressure is low, carbon contained in TMG is easily doped into the GaN layer, and when the deposition pressure is high, carbon tends to be hardly doped from TMG into the GaN layer.
  • the pressure is again increased to 13.3 kPa, and the AlN characteristic improving layer 8 (1 nm thickness), the Al 0.2 Ga 0.8 N barrier layer 9 (25 nm thickness), and the GaN cap.
  • An electron supply layer including layer 10 (1 nm thick) is deposited.
  • the Al composition ratio of the AlGaN layers 3, 4 and 5 was changed in the order of 0.7, 0.4 and 0.1.
  • the combination of composition ratios is not limited to this combination.
  • the number of AlGaN layers included in the composition gradient buffer layer structure and having different Al composition ratios is not limited to three, and can be any number. What is important is that the Al composition ratio gradually decreases from the lower surface to the upper surface of the composition gradient buffer layer structure.
  • a substrate as a comparative example was fabricated using the prior art.
  • the substrate of this comparative example has the AlN crystal buffer layer 2b and the composition gradient buffer layer structure 3-5 on the silicon nitride layer 1a of the Si substrate 1 in FIG. 1, but does not have the Al layer 2a. .
  • the AlN crystal buffer layer 2a is formed on the silicon nitride layer 1a obtained by nitriding the surface of the Si substrate 1 as in the above-described embodiment.
  • a plurality of nitride semiconductor layers 3-10 were stacked on the AlN crystal buffer layer 2a in the same manner as in the above-described embodiment, thereby obtaining an epitaxial wafer for nitride semiconductor devices.
  • FIG. 2 shows a Nomarski optical microscope photograph on the top surface of the epitaxial wafer of the comparative example thus obtained.
  • the white line segment in this micrograph has shown the scale of 200 micrometers.
  • the surface of the epitaxial wafer manufactured using the substrate of the comparative example includes many fine convex defects.
  • an epitaxial wafer including a substrate according to an embodiment of the present invention includes an Al layer 2a and an AlN crystal buffer layer on the silicon nitride layer 1a of the Si substrate 1 as described with reference to FIG. 2b was produced.
  • FIG. 3 shows a Nomarski optical micrograph on the top surface of the epitaxial wafer of the example obtained in this way.
  • the white line segment in this micrograph also shows a scale of 200 ⁇ m.
  • FIG. 3 shows the surface of the epitaxial wafer for nitride semiconductor devices manufactured using the substrate of the present invention, convex defects as observed in FIG. It turns out that it has disappeared. That is, it is understood that the surface of the epitaxial wafer for nitride semiconductor devices manufactured using the substrate of the present invention has significantly improved flatness and can be preferably used for manufacturing semiconductor devices.
  • the surface of the epitaxial wafer for nitride semiconductor devices manufactured using the substrate of the present invention has significantly improved flatness and can be preferably used for manufacturing semiconductor devices.
  • FIG. 4 is a Nomarski optical micrograph showing a magnified part of the region other than the convex defect in FIG. 2, and the white line segment in this photo shows a scale of 10 ⁇ m. Although it is a little difficult to see in the photograph of FIG. 4 attached here, a rough surface background like an orange peel can be observed in the original photograph.
  • FIG. 5 is an enlarged micrograph showing a partial region of FIG. 3, and the white line segment in this photograph also shows a scale of 10 ⁇ m as in FIG.
  • FIG. 5 it can be seen that even when the image of FIG. 3 is enlarged, the contrast indicating the orange peel-like rough surface as in FIG. 4 is not observed, and the surface is extremely smooth.
  • the surface smoothness of the AlN crystal buffer layer is remarkably improved by covering the silicon nitride layer with the Al layer before growing the AlN crystal buffer layer on the silicon nitride layer on the Si substrate surface.
  • the smoothness of the surface of the nitride semiconductor layer grown on the AlN crystal buffer layer can also be improved.
  • the reason for this is that the silicon nitride layer is covered with an Al layer, so that the AlN crystal buffer layer grown thereon has a uniform Al polar face, thereby improving the surface flatness. It is thought that.
  • the example in which the AlN crystal buffer layer is deposited on the Al layer has been described. However, the same effect can be obtained by depositing the AlGaN crystal buffer layer instead of the AlN crystal buffer layer. It is done.
  • the example in which the silicon nitride layer 1a is formed by nitriding the silicon substrate 1 has been described. However, in some cases, the silicon nitride layer is utilized by using another method such as MOCVD or sputtering. It is also possible to form 1a.
  • the AlN or AlGaN crystal buffer layer is grown on the silicon nitride layer formed on the Si substrate by covering the silicon nitride layer with the Al layer, thereby forming the AlN layer.
  • the smoothness of the surface of the AlGaN crystal buffer layer can be remarkably improved, and as a result, the smoothness of the surface of the nitride semiconductor layer grown on the AlN or AlGaN crystal buffer layer can also be improved. .

Abstract

This substrate having a buffer structure for growing a nitride semiconductor layer has a silicon nitride layer (1a) formed on the (111) main surface of an Si single-crystal substrate (1) and further has both an Al layer (2a) and an AlN or AlGaN crystal layer (2b) which are successively laminated on the silicon nitride layer (1a), said AlN or AlGaN crystal layer (2b) having a (0001) group III element polar surface.

Description

窒化物半導体層を成長させるためのバッファ層構造を有する基板Substrate having a buffer layer structure for growing a nitride semiconductor layer
 本発明は、窒化物半導体層を成長させるためのバッファ層構造を有する基板の改善に関し、特にその基板が有するバッファ層構造の改善に関する。そのように改善された基板上に積層された複数の窒化物半導体層を含むエピタキシャルウエハは、例えばヘテロ接合電界効果トランジスタのような窒化物半導体デバイスの作製に好ましく利用され得るものである。 The present invention relates to improvement of a substrate having a buffer layer structure for growing a nitride semiconductor layer, and more particularly to improvement of a buffer layer structure of the substrate. An epitaxial wafer including a plurality of nitride semiconductor layers stacked on such an improved substrate can be preferably used for manufacturing a nitride semiconductor device such as a heterojunction field effect transistor.
 ヘテロ接合電界効果トランジスタに必要な例えばGaNチャネル層とAlGaN障壁層との積層構造を含むエピタキシャルウエハを作製する場合、GaN基板が高価であることから、サファイア、SiC、Siなどの異種材料の基板上にそれらの窒化物半導体層を結晶成長させることが従来から行なわれている。 When an epitaxial wafer including a laminated structure of, for example, a GaN channel layer and an AlGaN barrier layer required for a heterojunction field effect transistor is manufactured, a GaN substrate is expensive, so that it is on a substrate of a different material such as sapphire, SiC, or Si Conventionally, these nitride semiconductor layers have been crystal-grown.
 異種材料の基板上に窒化物半導体層をMOCVD(有機金属気相堆積)で成長させる場合、基板と半導体層との間における結晶構造の相違、格子不整合、熱膨張係数差などに基づく歪を緩和するために、種々のバッファ層構造が用いられている。 When a nitride semiconductor layer is grown by MOCVD (Metal Organic Vapor Deposition) on a substrate of a different material, strain based on the difference in crystal structure, lattice mismatch, thermal expansion coefficient, etc. between the substrate and the semiconductor layer Various buffer layer structures are used for relaxation.
 例えば特許文献1の特開平2-229476号公報は、サファイア基材上に400℃以上900℃以下の比較的低い基板温度でAlN層をバッファ層として堆積させることを教示している。このように比較的低温で堆積されたバッファ層は、低温バッファ層とも呼ばれる。 For example, Japanese Patent Laid-Open No. 2-229476 of Patent Document 1 teaches that an AlN layer is deposited as a buffer layer on a sapphire substrate at a relatively low substrate temperature of 400 ° C. or higher and 900 ° C. or lower. Such a buffer layer deposited at a relatively low temperature is also called a low-temperature buffer layer.
 しかし、低温バッファ層は、非晶質の母相中に微結晶や多結晶を含んでいる。したがって、半導体デバイス用の窒化物半導体層を低温バッファ層上に結晶成長させるために基板温度を1000℃程度以上まで上昇させたとき、そのバッファ層内の非晶質の母相が多結晶化して内部に比較的多量の転位を含むことになる。そして、そのバッファ層上に成長させたデバイス用の窒化物半導体積層構造において、多量の転位が導入されると共に、結晶品質がばらついて、クラックが入りやすくなる傾向がある。 However, the low-temperature buffer layer contains microcrystals and polycrystals in the amorphous matrix. Therefore, when the substrate temperature is increased to about 1000 ° C. or higher in order to grow a nitride semiconductor layer for a semiconductor device on the low-temperature buffer layer, the amorphous parent phase in the buffer layer is polycrystallized. It will contain a relatively large amount of dislocations inside. In the nitride semiconductor multilayer structure for devices grown on the buffer layer, a large amount of dislocations are introduced, the crystal quality varies, and cracks tend to occur.
 他方、例えば特許文献2の特開2002-367917号公報は、サファイア基板上に1100℃以上1250℃以下の比較的高い基板温度でAlN結晶層をバッファ層として堆積させることを教示している。このように比較的高温で堆積されたバッファ層は、高温バッファ層とも呼ばれる。 On the other hand, for example, Japanese Patent Application Laid-Open No. 2002-367917 of Patent Document 2 teaches that an AlN crystal layer is deposited on a sapphire substrate as a buffer layer at a relatively high substrate temperature of 1100 ° C. or more and 1250 ° C. or less. Such a buffer layer deposited at a relatively high temperature is also referred to as a high temperature buffer layer.
 しかし、特許文献3の特開2007-59850号公報は、高温バッファ層上に成長させた窒化物半導体積層構造においてはクラックが発生しにくくなるが、そのバッファ層の表面において原子レベルでの平坦性を確保するためには、バッファ層の厚さを大きくしなければならないと述べている。実際に、特許文献2は、その発明の実施例において高温AlNバッファ層をかなり大きな2μmの厚さに堆積することを教示している。特許文献3はまた、バッファ層の厚さを大きくすれば基板とバッファ層との格子定数差に起因して基板に反りが発生しやすくなることも述べており、さらにAlNバッファ層の堆積温度を高くすればそのバッファ層の表面に白濁が発生しやすくなることも述べている。このような問題に鑑み、特許文献3は、サファイア基板上に高温AlNバッファ層を薄く形成してもその表面に白濁が生じることを抑制するために、高温AlNバッファ層の堆積の途中で温度、圧力、原料ガス流量などのMOCVD条件の少なくともいずれかを変化させることを教示している。 However, in Japanese Patent Application Laid-Open No. 2007-59850 of Patent Document 3, cracks are less likely to occur in a nitride semiconductor multilayer structure grown on a high-temperature buffer layer, but flatness at the atomic level on the surface of the buffer layer. In order to ensure this, it is stated that the thickness of the buffer layer must be increased. In fact, U.S. Patent No. 6,057,031 teaches that in the embodiment of the invention, a high temperature AlN buffer layer is deposited to a fairly large 2 .mu.m thickness. Patent Document 3 also states that if the thickness of the buffer layer is increased, the substrate is likely to warp due to the difference in lattice constant between the substrate and the buffer layer, and the deposition temperature of the AlN buffer layer is further increased. It also states that if the height is increased, the surface of the buffer layer is more likely to become cloudy. In view of such a problem, Patent Document 3 discloses that the temperature during the deposition of the high-temperature AlN buffer layer in order to suppress the occurrence of white turbidity even if the high-temperature AlN buffer layer is formed thin on the sapphire substrate, It teaches changing at least one of the MOCVD conditions such as pressure and source gas flow rate.
 一方、特許文献4の特開2009-152627号公報は、単結晶シリコン基板上に窒化物半導体結晶層を成長させる場合の問題点を指摘している。具体的には、シリコン基板上に窒化物低温バッファ層を堆積してから窒化物半導体結晶層を成長させる場合、窒化物低温バッファ層の堆積時にシリコン基板表面のランダムな領域に非晶質窒化ケイ素を生じ、これが基板と窒化物半導体結晶層との界面の平坦度を悪化させたり、窒化物半導体結晶層に欠陥を生じさせる原因となると指摘している。そして、この問題を改善するために、特許文献4は窒化物低温バッファ層の堆積前にシリコン基板表面を窒化処理によって均一厚さの窒化ケイ素層で覆うことを提案している。 On the other hand, Japanese Patent Application Laid-Open No. 2009-152627 of Patent Document 4 points out problems in growing a nitride semiconductor crystal layer on a single crystal silicon substrate. Specifically, when a nitride semiconductor crystal layer is grown after depositing a nitride low-temperature buffer layer on a silicon substrate, amorphous silicon nitride is formed on random regions of the silicon substrate surface during the deposition of the nitride low-temperature buffer layer. It has been pointed out that this causes deterioration in the flatness of the interface between the substrate and the nitride semiconductor crystal layer, or causes defects in the nitride semiconductor crystal layer. In order to improve this problem, Patent Document 4 proposes that the silicon substrate surface is covered with a silicon nitride layer having a uniform thickness by nitriding before the nitride low-temperature buffer layer is deposited.
特開平2-229476号公報JP-A-2-229476 特開2002-367917号公報Japanese Patent Laid-Open No. 2002-367917 特開2007-59850号公報JP 2007-59850 A 特開2009-152627号公報JP 2009-152627 A
 六方晶系のウルツ鉱型構造を有するAlN結晶は、c軸に沿ってAl原子とN原子が非対称に配列した極性結晶である。無極性の基板上にAlN結晶層の厚さをc軸方向に成長させる場合、表面にAl原子が安定して存在するAl極性(III族元素極性)とN原子が安定して存在するN極性(V族元素極性)のいずれかの方位で成長する。このような極性の相違は結晶成長表面のモフォロジーに特徴的に表れ、Al極性面は平坦性の高い表面であるのに対して、N極性面は六角形状のファセットを有する凹凸の顕著な表面になる傾向にある。 An AlN crystal having a hexagonal wurtzite structure is a polar crystal in which Al atoms and N atoms are arranged asymmetrically along the c-axis. When the thickness of the AlN crystal layer is grown in the c-axis direction on a nonpolar substrate, Al polarity (group III element polarity) in which Al atoms exist stably on the surface and N polarity in which N atoms exist stably Grows in any orientation of (group V element polarity). This difference in polarity appears characteristically in the morphology of the crystal growth surface, while the Al polar surface is a highly flat surface, whereas the N polar surface is a remarkably uneven surface having hexagonal facets. Tend to be.
 したがって、特許文献3におけるように極性面を考慮せずにAlN結晶層をバッファ層として成長させれば、Al極性面とN極性面が混在したAlN結晶層の表面を生じ、高い表面平坦性が得られない。そして、そのAl極性面とN極性面の混在は、AlNバッファ層上に成長させられるデバイス用窒化物半導体積層構造内まで引き継がれ、半導体積層構造のさらなる表面平坦性の悪化を招く。 Therefore, if the AlN crystal layer is grown as a buffer layer without considering the polar face as in Patent Document 3, the surface of the AlN crystal layer in which the Al polar face and the N polar face are mixed is generated, and high surface flatness is obtained. I can't get it. The mixture of the Al polar face and the N polar face is inherited into the nitride semiconductor multilayer structure for devices grown on the AlN buffer layer, and further deteriorates the surface flatness of the semiconductor multilayer structure.
 また、特許文献4におけるようにSi基板表面を窒化処理した窒化ケイ素層上にAlN結晶バッファ層を成長させる場合にも、Al極性面とN極性面の混在したAlN結晶バッファ層が成長しやすい傾向にある。 In addition, when an AlN crystal buffer layer is grown on a silicon nitride layer obtained by nitriding the Si substrate surface as in Patent Document 4, an AlN crystal buffer layer having a mixture of Al polar faces and N polar faces tends to grow. It is in.
 上述のような課題に鑑み、本願発明は、窒化物半導体デバイス用の半導体積層構造を成長させるために改善されたバッファ層構造を有する基板を提供することを主要な目的としている。 In view of the problems as described above, the main object of the present invention is to provide a substrate having an improved buffer layer structure for growing a semiconductor laminated structure for a nitride semiconductor device.
 本発明者達は、鋭意検討を重ねた結果、シリコン基板に形成された窒化ケイ素層の表面上に直接に高温AlNバッファ層を形成するのではなくて、Al層を介在させることによって従来の高温AlNバッファ層に比べて表面平坦性が顕著に改善された新規なバッファ層構造が得られることを見出すに至った。 As a result of extensive studies, the present inventors have not formed a high-temperature AlN buffer layer directly on the surface of the silicon nitride layer formed on the silicon substrate, but rather a conventional high-temperature by interposing an Al layer. It has been found that a novel buffer layer structure with a significantly improved surface flatness compared to the AlN buffer layer can be obtained.
 本発明によれば、窒化物半導体層を成長させるためのバッファ層構造を有する基板は、Si単結晶基板の(111)主面に形成された窒化ケイ素層を有し、この窒化ケイ素層上に順次積層されたAl層とAlN結晶層またはAlGaN結晶層とを有し、このAlN結晶層またはAlGaN結晶層の表面は(0001)の面方位とIII族元素極性の表面を有していることを特徴としている。 According to the present invention, a substrate having a buffer layer structure for growing a nitride semiconductor layer has a silicon nitride layer formed on the (111) main surface of the Si single crystal substrate, and on the silicon nitride layer. It has an Al layer and an AlN crystal layer or an AlGaN crystal layer that are sequentially stacked, and the surface of the AlN crystal layer or the AlGaN crystal layer has a (0001) plane orientation and a group III element polar surface. It is a feature.
 なお、本発明による基板は、AlN結晶層またはAlGaN層上に積層された付加的なAlGaN結晶層をさらに有してもよい。この付加的なAlGaN結晶層は、Al組成比が順次低減された複数のサブ層を含むこともできる。 The substrate according to the present invention may further include an additional AlGaN crystal layer stacked on the AlN crystal layer or the AlGaN layer. The additional AlGaN crystal layer may include a plurality of sub-layers in which the Al composition ratio is sequentially reduced.
 上記のような本発明によれば、AlNまたはAlGaNの結晶バッファ層を成長させる前に窒化ケイ素層上にAl層を均一に形成することによって、AlNまたはAlGaNの結晶バッファ層の表面に良質なIII族極性面が得られる。すなわち、そのAlNまたはAlGaNの結晶バッファ層の表面は、実質的にIII族極性面のみを含んでいるので、高い平坦性を有している。 According to the present invention as described above, the AlN or AlGaN crystal buffer layer is uniformly formed on the silicon nitride layer before the AlN or AlGaN crystal buffer layer is grown. A family polar face is obtained. That is, the surface of the AlN or AlGaN crystal buffer layer substantially includes only the group III polar surface, and thus has high flatness.
本発明による基板を用いて作製し得るヘテロ接合電界効果トランジスタの積層構造の一例を示す模式的断面図である。It is typical sectional drawing which shows an example of the laminated structure of the heterojunction field effect transistor which can be produced using the board | substrate by this invention. 従来技術を利用して形成された基板を用いて作製された窒化物半導体デバイス用ウエハの表面における微小な凸状欠陥の分布を示すノマルスキー光学顕微鏡写真である。It is a Nomarski optical microscope photograph which shows distribution of the micro convex defect in the surface of the wafer for nitride semiconductor devices produced using the board | substrate formed using the prior art. 本発明の製造方法による基板を用いて作製された窒化物半導体デバイス用ウエハの表面状態を示すノマルスキー光学顕微鏡写真である。It is a Nomarski optical microscope photograph which shows the surface state of the wafer for nitride semiconductor devices produced using the board | substrate by the manufacturing method of this invention. 従来技術を利用して形成された基板を用いて作製された窒化物半導体デバイス用ウエハの表面における凸状欠陥以外の領域の状態を拡大して示すノマルスキー光学顕微鏡写真である。It is a Nomarski optical micrograph which expands and shows the state of the area | regions other than a convex defect in the surface of the wafer for nitride semiconductor devices produced using the board | substrate formed using the prior art. 本発明の製造方法による基板を用いて作製された窒化物半導体デバイス用ウエハの表面状態を図4と対比して示すためのノマルスキー光学顕微鏡写真である。FIG. 5 is a Nomarski optical micrograph for showing the surface state of a nitride semiconductor device wafer produced using a substrate according to the production method of the present invention in comparison with FIG. 4.
 (実施形態)
 図1は、本発明による基板を用いて作製し得るヘテロ接合電界効果トランジスタの積層構造の一例を模式的断面図で示している。このようなヘテロ接合電界効果トランジスタの積層構造の作製方法の一例が、以下において説明される。基板1としては、(111)主面を有するSi基板が用いられる。まず、フッ酸系のエッチャントでSi基板1の表面酸化膜を除去した後に、MOCVD(有機金属気相堆積)装置の窒素雰囲気のチャンバ内にその基板がセットされる。
(Embodiment)
FIG. 1 is a schematic cross-sectional view showing an example of a laminated structure of heterojunction field effect transistors that can be manufactured using a substrate according to the present invention. An example of a method for manufacturing such a stacked structure of heterojunction field effect transistors will be described below. As the substrate 1, a Si substrate having a (111) main surface is used. First, after removing the surface oxide film of the Si substrate 1 with a hydrofluoric acid-based etchant, the substrate is set in a nitrogen atmosphere chamber of an MOCVD (metal organic chemical vapor deposition) apparatus.
 基板1がセットされた後には、チャンバ内の窒素雰囲気が水素雰囲気に入れ替えられる。そして、チャンバ内圧力13.3kPaの下で、H流量=50slmと基板温度1100℃の条件にてSi基板1の表面の熱クリーニングが行なわれる。 After the substrate 1 is set, the nitrogen atmosphere in the chamber is replaced with a hydrogen atmosphere. Then, thermal cleaning of the surface of the Si substrate 1 is performed under the conditions of an H 2 flow rate = 50 slm and a substrate temperature of 1100 ° C. under a chamber internal pressure of 13.3 kPa.
 その後、チャンバ内圧力と基板温度を維持したまま、NH流量=12.5slmとH流量=37.5slmの条件下でSi基板1の表面が40秒間窒化処理される。これによって、Si基板1の表面に窒化ケイ素層1aが形成される。 Thereafter, the surface of the Si substrate 1 is nitrided for 40 seconds under the conditions of NH 3 flow rate = 12.5 slm and H 2 flow rate = 37.5 slm while maintaining the chamber pressure and the substrate temperature. As a result, a silicon nitride layer 1 a is formed on the surface of the Si substrate 1.
 引続いて、NHの供給を停止し、H流量=50slmとTMA(トリメチルアルミニウム)流量=54sccmの条件下でAl層を6秒間堆積させる。これによって、Si基板1の窒化ケイ素層1aの表面が、Al層2aによって覆われる。 Subsequently, the supply of NH 3 is stopped, and an Al layer is deposited for 6 seconds under the conditions of H 2 flow rate = 50 slm and TMA (trimethylaluminum) flow rate = 54 sccm. Thereby, the surface of the silicon nitride layer 1a of the Si substrate 1 is covered with the Al layer 2a.
 さらに、TMA流量=108.5sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で、Al層2a上に厚さ200nmのAlN層2bを堆積させる。 Furthermore, an AlN layer 2b having a thickness of 200 nm is deposited on the Al layer 2a under the conditions of a TMA flow rate = 108.5 sccm, an NH 3 flow rate = 12.5 slm, and an H 2 flow rate = 37.5 slm.
 その後、基板温度を1150℃に上昇させ、TMA流量=90.0sccm、TMG(トリメチルガリウム)流量=12.7sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で、Al0.7Ga0.3N層3が400nmの厚さに堆積される。続いて、TMA流量=50.9sccm、TMG流量=22.1sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で、Al0.4Ga0.6N層4が400nmの厚さに堆積され、さらにTMA流量=16.4sccm、TMG流量=30.4、NH流量=12.5slm、およびH流量=37.5slmの条件下で、Al0.1Ga0.9N層5が400nmの厚さに堆積される。これによって、組成傾斜バッファ層構造3-5が形成される。 Thereafter, the substrate temperature is raised to 1150 ° C., under the conditions of TMA flow rate = 90.0 sccm, TMG (trimethylgallium) flow rate = 12.7 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm, An Al 0.7 Ga 0.3 N layer 3 is deposited to a thickness of 400 nm. Subsequently, the Al 0.4 Ga 0.6 N layer 4 was formed under the conditions of TMA flow rate = 50.9 sccm, TMG flow rate = 22.1 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm. Al 0.1 Ga 0 deposited at a thickness of 400 nm and further under conditions of TMA flow rate = 16.4 sccm, TMG flow rate = 30.4, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm. .9 N layer 5 is deposited to a thickness of 400 nm. Thereby, the composition gradient buffer layer structure 3-5 is formed.
 その後、13.3kPaの圧力と1150℃の基板温度を維持したままで、TMG流量=49.8sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で、GaN層6が300nmの厚さに堆積される。続いて、GaN層6の堆積条件から圧力のみが90kPaに下げられ、GaN層7が700nmの厚さに堆積される。ここで、堆積圧力が低い場合にはTMGに含まれるカーボンがGaN層内にドープされやすく、堆積圧力が高い場合にはTMGからGaN層内にカーボンがドープされにくい傾向にある。 Thereafter, while maintaining the pressure of 13.3 kPa and the substrate temperature of 1150 ° C., the GaN layer 6 under the conditions of TMG flow rate = 49.8 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm. Is deposited to a thickness of 300 nm. Subsequently, only the pressure is lowered to 90 kPa from the deposition condition of the GaN layer 6, and the GaN layer 7 is deposited to a thickness of 700 nm. Here, when the deposition pressure is low, carbon contained in TMG is easily doped into the GaN layer, and when the deposition pressure is high, carbon tends to be hardly doped from TMG into the GaN layer.
 そして、GaN層7の堆積後には、圧力が再度13.3kPaに上げられて、AlN特性改善層8(1nm厚)、Al0.2Ga0.8N障壁層9(25nm厚)およびGaNキャップ層10(1nm厚)を含む電子供給層が堆積される。このとき、AlN層8はTMA流量=47sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で堆積され、AlGaN層9はTMG流量=10.2sccm、TMA流量=6.2sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で堆積され、そしてGaN層10はTMG流量=13sccm、NH流量=12.5slm、およびH流量=37.5slmの条件下で堆積され得る。 After the GaN layer 7 is deposited, the pressure is again increased to 13.3 kPa, and the AlN characteristic improving layer 8 (1 nm thickness), the Al 0.2 Ga 0.8 N barrier layer 9 (25 nm thickness), and the GaN cap. An electron supply layer including layer 10 (1 nm thick) is deposited. At this time, the AlN layer 8 is deposited under the conditions of TMA flow rate = 47 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm, and the AlGaN layer 9 is TMG flow rate = 10.2 sccm, TMA flow rate = 6. .2 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37.5 slm, and the GaN layer 10 is TMG flow rate = 13 sccm, NH 3 flow rate = 12.5 slm, and H 2 flow rate = 37. Can be deposited under conditions of .5 slm.
 なお、以上の実施形態ではAlGaN層3、4および5のAl組成比が0.7、0.4および0.1の順に変化させられたが、組成傾斜バッファ層構造に含まれるAlGaN層におけるAl組成比の組合せはこの組合せに限定されるものではない。また、組成傾斜バッファ層構造に含まれて異なるAl組成比を有するAlGaN層の数も3層に限定されず、任意の数とすることができる。重要なことは、組成傾斜バッファ層構造の下面から上面に向かうにしたがってAl組成比が徐々に減少していくことである。 In the above embodiment, the Al composition ratio of the AlGaN layers 3, 4 and 5 was changed in the order of 0.7, 0.4 and 0.1. The combination of composition ratios is not limited to this combination. Also, the number of AlGaN layers included in the composition gradient buffer layer structure and having different Al composition ratios is not limited to three, and can be any number. What is important is that the Al composition ratio gradually decreases from the lower surface to the upper surface of the composition gradient buffer layer structure.
 (比較例と実施例)
 本発明の基板による改善効果を調べるために、従来技術を利用して比較例としての基板が作製された。この比較例の基板は、図1におけるSi基板1の窒化ケイ素層1a上に、AlN結晶バッファ層2bおよび組成傾斜バッファ層構造3-5を有しているが、Al層2aを有していない。
(Comparative examples and examples)
In order to investigate the improvement effect of the substrate of the present invention, a substrate as a comparative example was fabricated using the prior art. The substrate of this comparative example has the AlN crystal buffer layer 2b and the composition gradient buffer layer structure 3-5 on the silicon nitride layer 1a of the Si substrate 1 in FIG. 1, but does not have the Al layer 2a. .
 すなわち、比較例においては、上述の実施形態と同様にSi基板1の表面が窒化処理されたことによる窒化ケイ素層1a上に、AlN結晶バッファ層2aが、1100℃の基板温度、13.3kPaの圧力、108.5sccmのTMA流量、12.5slmのNH、およびH流量=37.5slmのMOCVD条件下で200nmの厚さに成長させられた。その後、AlN結晶バッファ層2a上に上述の実施形態と同様に複数の窒化物半導体層3-10が積層され、これによって窒化物半導体デバイス用のエピタキシャルウエハを得た。 That is, in the comparative example, the AlN crystal buffer layer 2a is formed on the silicon nitride layer 1a obtained by nitriding the surface of the Si substrate 1 as in the above-described embodiment. The film was grown to a thickness of 200 nm under MOCVD conditions of pressure, 108.5 sccm TMA flow rate, 12.5 slm NH 3 , and H 2 flow rate = 37.5 slm. Thereafter, a plurality of nitride semiconductor layers 3-10 were stacked on the AlN crystal buffer layer 2a in the same manner as in the above-described embodiment, thereby obtaining an epitaxial wafer for nitride semiconductor devices.
 図2は、こうして得られた比較例のエピタキシャルウエハの最上面におけるノマルスキー光学顕微鏡写真を示している。なお、この顕微鏡写真中の白い線分は、200μmのスケールを示している。図2の写真から明らかなように、比較例の基板を利用して作製されたエピタキシャルウエハの表面は多くの微細な凸状欠陥を含んでいることが分かる。 FIG. 2 shows a Nomarski optical microscope photograph on the top surface of the epitaxial wafer of the comparative example thus obtained. In addition, the white line segment in this micrograph has shown the scale of 200 micrometers. As is apparent from the photograph of FIG. 2, it can be seen that the surface of the epitaxial wafer manufactured using the substrate of the comparative example includes many fine convex defects.
 他方、本発明の実施例による基板を含むエピタキシャルウエハは、上述の実施形態において図1を参照して説明されたように、Si基板1の窒化ケイ素層1a上のAl層2aおよびAlN結晶バッファ層2bを含んで作製された。 On the other hand, an epitaxial wafer including a substrate according to an embodiment of the present invention includes an Al layer 2a and an AlN crystal buffer layer on the silicon nitride layer 1a of the Si substrate 1 as described with reference to FIG. 2b was produced.
 図3は、こうして得られた実施例のエピタキシャルウエハの最上面におけるノマルスキー光学顕微鏡写真を示している。この顕微鏡写真中の白い線分も、200μmのスケールを示している。図2と対比から明らかなように、本発明の基板を利用して作製された窒化物半導体デバイス用のエピタキシャルウエハの表面を示す図3においては、図2において観察されるような凸状欠陥が消失していることが分かる。すなわち、本発明の基板を利用して作製された窒化物半導体デバイス用のエピタキシャルウエハの表面は顕著に改善された平坦性を有しており、半導体デバイスの作製に好ましく用いられ得ることが理解されよう。 FIG. 3 shows a Nomarski optical micrograph on the top surface of the epitaxial wafer of the example obtained in this way. The white line segment in this micrograph also shows a scale of 200 μm. As is clear from comparison with FIG. 2, in FIG. 3 showing the surface of the epitaxial wafer for nitride semiconductor devices manufactured using the substrate of the present invention, convex defects as observed in FIG. It turns out that it has disappeared. That is, it is understood that the surface of the epitaxial wafer for nitride semiconductor devices manufactured using the substrate of the present invention has significantly improved flatness and can be preferably used for manufacturing semiconductor devices. Like.
 図4は図2における凸状欠陥以外の一部領域を拡大して示すノマルスキー光学顕微鏡写真であり、この写真中の白い線分は10μmのスケールを示している。ここに添付の図4の写真では少し見づらいが、原写真ではオレンジピールのように荒れた表面地肌が観察され得る。 FIG. 4 is a Nomarski optical micrograph showing a magnified part of the region other than the convex defect in FIG. 2, and the white line segment in this photo shows a scale of 10 μm. Although it is a little difficult to see in the photograph of FIG. 4 attached here, a rough surface background like an orange peel can be observed in the original photograph.
 他方、図5は図3一部領域を拡大して示す顕微鏡写真であり、この写真中の白い線分も図4と同様に10μmのスケールを示している。図5においては、図3を拡大して観察しても図4におけるようなオレンジピール状の肌荒れ表面を示すコントラストが観察されず、極めて平滑な表面を示していることが分かる。 On the other hand, FIG. 5 is an enlarged micrograph showing a partial region of FIG. 3, and the white line segment in this photograph also shows a scale of 10 μm as in FIG. In FIG. 5, it can be seen that even when the image of FIG. 3 is enlarged, the contrast indicating the orange peel-like rough surface as in FIG. 4 is not observed, and the surface is extremely smooth.
 以上のように、Si基板表面の窒化ケイ素層上にAlN結晶バッファ層を成長させる前に窒化ケイ素層をAl層で覆うことによって、そのAlN結晶バッファ層の表面の平滑性を顕著に改善することができ、その結果としてAlN結晶バッファ層上に成長する窒化物半導体層の表面の平滑性をも改善することができる。この理由としては、窒化ケイ素層がAl層で覆われたことによって、その上に成長するAlN結晶バッファ層が均一なAl極性面を有することとなって、それによって改善された表面平坦性が得られると考えられる。 As described above, the surface smoothness of the AlN crystal buffer layer is remarkably improved by covering the silicon nitride layer with the Al layer before growing the AlN crystal buffer layer on the silicon nitride layer on the Si substrate surface. As a result, the smoothness of the surface of the nitride semiconductor layer grown on the AlN crystal buffer layer can also be improved. The reason for this is that the silicon nitride layer is covered with an Al layer, so that the AlN crystal buffer layer grown thereon has a uniform Al polar face, thereby improving the surface flatness. It is thought that.
 なお、上述の実施形態および実施例においてはAl層上にAlN結晶バッファ層を堆積する例について説明されたが、AlN結晶バッファ層の代わりにAlGaN結晶バッファ層を堆積しても同様な効果が得られる。また、上述の実施形態および実施例では窒化ケイ素層1aがシリコン基板1の窒化処理で形成される例が説明されたが、場合によってはMOCVDまたはスパッタリングなどの他の方法を利用して窒化ケイ素層1aを形成することも可能である。 In the above-described embodiments and examples, the example in which the AlN crystal buffer layer is deposited on the Al layer has been described. However, the same effect can be obtained by depositing the AlGaN crystal buffer layer instead of the AlN crystal buffer layer. It is done. In the above-described embodiments and examples, the example in which the silicon nitride layer 1a is formed by nitriding the silicon substrate 1 has been described. However, in some cases, the silicon nitride layer is utilized by using another method such as MOCVD or sputtering. It is also possible to form 1a.
 以上から明らかなように、本発明によれば、Si基板上に形成された窒化ケイ素層上にAlNまたはAlGaNの結晶バッファ層を成長させる前に窒化ケイ素層をAl層で覆うことによって、そのAlNまたはAlGaNの結晶バッファ層の表面の平滑性を顕著に改善することができ、その結果としてAlNまたはAlGaNの結晶バッファ層上に成長する窒化物半導体層の表面の平滑性をも改善することができる。 As is apparent from the above, according to the present invention, the AlN or AlGaN crystal buffer layer is grown on the silicon nitride layer formed on the Si substrate by covering the silicon nitride layer with the Al layer, thereby forming the AlN layer. Alternatively, the smoothness of the surface of the AlGaN crystal buffer layer can be remarkably improved, and as a result, the smoothness of the surface of the nitride semiconductor layer grown on the AlN or AlGaN crystal buffer layer can also be improved. .
 そして、そのように改善された表面平滑性を有する基板を利用することによって、その基板上に改善された特性を有する種々の窒化物半導体デバイスを作製することができる。 Then, by using a substrate having such improved surface smoothness, various nitride semiconductor devices having improved characteristics can be fabricated on the substrate.
 1 Si基板、1a 窒化ケイ素層、2a Al層、2b AlN結晶層、3 Al0.7Ga0.3N層、4 Al0.4Ga0.6N層、5 Al0.1Ga0.9N層、6 カーボンドープGaN層、7 アンドープGaNチャネル層、8 AlN特性改善層、9 Al0.2Ga0.8N障壁層、10 GaNキャップ層。 1 Si substrate, 1a silicon nitride layer, 2a Al layer, 2b AlN crystal layer, 3 Al 0.7 Ga 0.3 N layer, 4 Al 0.4 Ga 0.6 N layer, 5 Al 0.1 Ga 0. 9 N layer, 6 carbon-doped GaN layer, 7 undoped GaN channel layer, 8 AlN characteristic improving layer, 9 Al 0.2 Ga 0.8 N barrier layer, 10 GaN cap layer.

Claims (3)

  1.  窒化物半導体層を成長させるためのバッファ層構造を有する基板であって、
     Si単結晶基板(1)の(111)主面に形成された窒化ケイ素層(1a)を有し、
     前記窒化ケイ素層上に順次積層されたAl層(2a)とAlN結晶層またはAlGaN結晶層(2b)とを有し、
     前記AlN結晶層またはAlGaN結晶層の表面は(0001)の面方位とIII族元素極性の表面を有していることを特徴とする基板。
    A substrate having a buffer layer structure for growing a nitride semiconductor layer,
    Having a silicon nitride layer (1a) formed on the (111) main surface of the Si single crystal substrate (1);
    An Al layer (2a) and an AlN crystal layer or an AlGaN crystal layer (2b) sequentially stacked on the silicon nitride layer;
    The substrate characterized in that the surface of the AlN crystal layer or AlGaN crystal layer has a surface of (0001) plane orientation and a group III element polarity.
  2.  前記AlN結晶層またはAlGaN結晶層(2b)上に積層された付加的なAlGaN結晶層(3-5)をさらに有することを特徴とする請求項1に記載の基板。 The substrate according to claim 1, further comprising an additional AlGaN crystal layer (3-5) laminated on the AlN crystal layer or the AlGaN crystal layer (2b).
  3.  前記付加的なAlGaN結晶層はAl組成比が順次低減された複数のサブ層(3、4、5)を含むことを特徴とする請求項2に記載の基板。 The substrate according to claim 2, wherein the additional AlGaN crystal layer includes a plurality of sub-layers (3, 4, 5) in which the Al composition ratio is sequentially reduced.
PCT/JP2012/071170 2011-09-22 2012-08-22 Substrate having buffer layer structure for growing nitride semiconductor layer WO2013042504A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-207497 2011-09-22
JP2011207497A JP5139567B1 (en) 2011-09-22 2011-09-22 Substrate having a buffer layer structure for growing a nitride semiconductor layer

Publications (1)

Publication Number Publication Date
WO2013042504A1 true WO2013042504A1 (en) 2013-03-28

Family

ID=47789832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071170 WO2013042504A1 (en) 2011-09-22 2012-08-22 Substrate having buffer layer structure for growing nitride semiconductor layer

Country Status (2)

Country Link
JP (1) JP5139567B1 (en)
WO (1) WO2013042504A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156418A (en) * 2014-02-20 2015-08-27 株式会社ニューフレアテクノロジー vapor phase growth method
CN105023979A (en) * 2015-06-03 2015-11-04 华灿光电(苏州)有限公司 A GaN-based LED epitaxial wafer and a manufacturing method thereof
CN110024083A (en) * 2016-11-30 2019-07-16 住友化学株式会社 Semiconductor substrate
CN111048403A (en) * 2019-12-19 2020-04-21 马鞍山杰生半导体有限公司 Aluminum nitride film and preparation method and application thereof
CN114093753A (en) * 2021-11-12 2022-02-25 松山湖材料实验室 Surface treatment method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting diode

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007077666A1 (en) * 2005-12-28 2007-07-12 Nec Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
JP2008505834A (en) * 2004-07-07 2008-02-28 ニトロネックス コーポレイション Group III nitride materials with low dislocation density and methods related to the materials
WO2009001888A1 (en) * 2007-06-27 2008-12-31 Nec Corporation Field-effect transistor and multilayer epitaxial film for use in fabrication of the filed-effect transistor
JP2010205988A (en) * 2009-03-04 2010-09-16 Panasonic Corp Nitride semiconductor element and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1436448A1 (en) * 2001-10-16 2004-07-14 Arizona Board Of Regents, a Body corporate acting on behalf of Arizona State University Low temperature epitaxial growth of quaternary wide bandgap semiconductors
US20100072485A1 (en) * 2007-03-26 2010-03-25 Kyoto University Semiconductor device and semiconductor manufacturing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008505834A (en) * 2004-07-07 2008-02-28 ニトロネックス コーポレイション Group III nitride materials with low dislocation density and methods related to the materials
WO2007077666A1 (en) * 2005-12-28 2007-07-12 Nec Corporation Field effect transistor, and multilayered epitaxial film for use in preparation of field effect transistor
WO2009001888A1 (en) * 2007-06-27 2008-12-31 Nec Corporation Field-effect transistor and multilayer epitaxial film for use in fabrication of the filed-effect transistor
JP2010205988A (en) * 2009-03-04 2010-09-16 Panasonic Corp Nitride semiconductor element and method for manufacturing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015156418A (en) * 2014-02-20 2015-08-27 株式会社ニューフレアテクノロジー vapor phase growth method
CN105023979A (en) * 2015-06-03 2015-11-04 华灿光电(苏州)有限公司 A GaN-based LED epitaxial wafer and a manufacturing method thereof
CN105023979B (en) * 2015-06-03 2018-08-21 华灿光电(苏州)有限公司 A kind of GaN base LED epitaxial wafer and preparation method thereof
CN110024083A (en) * 2016-11-30 2019-07-16 住友化学株式会社 Semiconductor substrate
EP3550592A4 (en) * 2016-11-30 2020-08-05 Sumitomo Chemical Company, Limited Semiconductor substrate
US11011630B2 (en) 2016-11-30 2021-05-18 Sumitomo Chemical Company, Limited Semiconductor wafer
CN111048403A (en) * 2019-12-19 2020-04-21 马鞍山杰生半导体有限公司 Aluminum nitride film and preparation method and application thereof
CN114093753A (en) * 2021-11-12 2022-02-25 松山湖材料实验室 Surface treatment method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting diode
CN114093753B (en) * 2021-11-12 2022-10-25 松山湖材料实验室 Surface treatment method of aluminum nitride single crystal substrate and preparation method of ultraviolet light-emitting diode

Also Published As

Publication number Publication date
JP5139567B1 (en) 2013-02-06
JP2013069878A (en) 2013-04-18

Similar Documents

Publication Publication Date Title
JP4335187B2 (en) Nitride semiconductor device manufacturing method
JP5331868B2 (en) Optoelectronic or electronic device on nitride layer and method for manufacturing the same
JP5133927B2 (en) Compound semiconductor substrate
TWI524552B (en) Semiconductor wafer with a layer of alzga1-zn and process for producing it
US9012919B2 (en) III-V semiconductor structures and methods for forming the same
US9437688B2 (en) High-quality GaN high-voltage HFETs on silicon
JP5179635B1 (en) Method for manufacturing substrate having buffer layer structure for growing nitride semiconductor layer
JP5139567B1 (en) Substrate having a buffer layer structure for growing a nitride semiconductor layer
US20160168752A1 (en) Method for pretreatment of base substrate and method for manufacturing layered body using pretreated base substrate
JP2013093515A (en) Substrate having buffer layer structure for growing nitride semiconductor layer and manufacturing method therefor
KR20150133637A (en) Semiconductor substrate, semiconductor substrate manufacturing method and semiconductor device
JP2012174705A (en) Epitaxial wafer for nitride semiconductor device and manufacturing method of the same
KR101041659B1 (en) A Method Of Manfacturing GaN Epitaxial Layer Using ZnO Buffer Layer
JP2005518092A (en) Method for producing a layer of silicon carbide or group III element nitride on a suitable substrate
JP6527667B2 (en) Method of manufacturing nitride semiconductor substrate
WO2013038980A1 (en) Substrate having buffer layer structure for growing nitride semiconductor layer
US20130214282A1 (en) Iii-n on silicon using nano structured interface layer
KR101517808B1 (en) GROWTH METHOD OF GaN ON Si FOR REDUCING CRACKS
RU2750295C1 (en) Method for producing heteroepitaxial layers of iii-n compounds on monocrystalline silicon with 3c-sic layer
KR20160121424A (en) Vapor deposition method
KR101890750B1 (en) Method for growing nitride semiconductor
WO2010116596A1 (en) Method for manufacturing free-standing iii nitride semiconductor substrate, and substrate for growing iii nitride semiconductor layer
KR20120073045A (en) Method for growing thin film in semiconductor and the same grown by it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833636

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833636

Country of ref document: EP

Kind code of ref document: A1