WO2013042348A1 - Reading device - Google Patents

Reading device Download PDF

Info

Publication number
WO2013042348A1
WO2013042348A1 PCT/JP2012/005927 JP2012005927W WO2013042348A1 WO 2013042348 A1 WO2013042348 A1 WO 2013042348A1 JP 2012005927 W JP2012005927 W JP 2012005927W WO 2013042348 A1 WO2013042348 A1 WO 2013042348A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light emitting
light guide
emitting element
reading
Prior art date
Application number
PCT/JP2012/005927
Other languages
French (fr)
Japanese (ja)
Inventor
崇史 真田
伸浩 土橋
川野 裕三
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011206046A external-priority patent/JP2013069484A/en
Priority claimed from JP2011220047A external-priority patent/JP2013081074A/en
Priority claimed from JP2011220052A external-priority patent/JP2013081075A/en
Priority claimed from JP2011220044A external-priority patent/JP2013081073A/en
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013042348A1 publication Critical patent/WO2013042348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/0285Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array in combination with at least one reflector which is in fixed relation to the light source
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02855Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array in combination with a light guide, e.g. optical fibre, glass plate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/02815Means for illuminating the original, not specific to a particular type of pick-up head
    • H04N1/02845Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array
    • H04N1/02865Means for illuminating the original, not specific to a particular type of pick-up head using an elongated light source, e.g. tubular lamp, LED array using an array of light sources or a combination of such arrays, e.g. an LED bar
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/0301Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array using a bent optical path between the scanned line and the photodetector array, e.g. a folded optical path
    • H04N1/0303Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array using a bent optical path between the scanned line and the photodetector array, e.g. a folded optical path with the scanned line and the photodetector array lying in non-parallel planes

Definitions

  • the present invention relates to a reading apparatus using an imaging apparatus that images a surface to be read illuminated by an illumination apparatus including a light emitting element and a light guide.
  • a reading device such as a copying machine or a scanner
  • an object to be read is placed on a platen made of a glass plate or the like, and an image pickup device (camera) is irradiated by illuminating the surface to be read from below the platen with a lighting device.
  • an illumination device of such a reading device there is one that uses an LED as a light source.
  • an LED is provided at one end in a longitudinal direction of a rod-shaped light guide and a light reflecting portion that extends in the longitudinal direction of the light guide
  • a linear light source that guides the light from the LED into the light guide and emits it in a direction perpendicular to the longitudinal direction by the light reflecting portion, there is one that irradiates the surface to be read (for example, see Patent Document 1). ).
  • the conventional reading apparatus uses a so-called line sensor as an image reading means, and linear light is emitted from the light guide correspondingly.
  • the reading target is the longitudinal direction of the linear light source (mainly The image is moved in a direction (sub-scanning direction) orthogonal to the (scanning direction).
  • a reading device in which the entire surface of the document table is imaged by a camera (imaging device) at a time.
  • a reading apparatus it is necessary to irradiate the entire surface of the document table.
  • the illumination device in the conventional reading device a plurality of light reflecting portions as light sources are provided apart from each other in the sub-scanning direction in order to widen the irradiation range in the sub-scanning direction.
  • the irradiation range with respect to the sub-scanning direction is narrow.
  • a large number of light guides are arranged side by side, which increases the size of the entire illumination device.
  • the layout of the built-in parts including the imaging device will be restricted if the illumination device becomes large.
  • the light emitted from the light guide is reflected on the back side of the document table made of glass or the like (the surface opposite to the surface on which the object to be read is placed) It may be reflected by a mirror installed for compactness to become stray light, and the stray light may directly enter the imaging apparatus.
  • stray light enters the image pickup device directly, there is a problem that the accumulated charge is saturated in each pixel of the image pickup device (image sensor), and a whiteout phenomenon occurs in an image.
  • the present invention has been devised to solve such problems of the prior art, and the main object of the present invention is to provide an imaging device in a reading apparatus having an illumination device having a light guide from the light guide.
  • An object of the present invention is to provide a reading apparatus configured so that light does not enter directly.
  • the reading device of the present invention includes a transparent reading object mounting unit on which a reading object is mounted, an illumination device that illuminates the reading object mounted on the reading object mounting unit, and the illumination
  • a reading apparatus comprising: an imaging device that images the reading object illuminated by the apparatus, wherein the lighting device guides light from the light emitting element and the light emitting element toward the reading object placing unit.
  • a light guide having a rod shape, the light guide having an emission surface on a side facing the reading object mounting portion, and an optical axis of the light emitting element when the light guide is viewed from the longitudinal direction.
  • the outer shape line serving as the emission surface is asymmetric with respect to the optical axis.
  • the outline forming the curved emission surface is formed asymmetrically, and the emission direction of light from the emission surface is taken as the optical axis of the light emitting element. It can be asymmetrical.
  • the exit surface is a cylindrical lens, there is a possibility that light that is reflected by the reflector and becomes stray light in the light emitted from the light guide body is generated. Since the radius of the exit surface is reduced and refracted greatly, the light traveling from the exit surface of the light guide toward the reflector can be removed from the reflector, so stray light enters the imaging device and the image It is possible to prevent the occurrence of overexposure.
  • FIG. 1 is an overall perspective view of a reading apparatus to which the present invention is applied.
  • Side view showing the main part inside the reader (A) is a principal part perspective view of an upper light guide, (b) is a principal part perspective view of a lower light guide.
  • Front view of illumination board showing the arrangement of LED elements Explanatory drawing corresponding to FIG.
  • a transparent reading object placing unit on which a reading object is placed, and the reading object placed on the reading object placing unit.
  • a reading device comprising: an illuminating device that illuminates; and an imaging device that images the reading object illuminated by the illuminating device, wherein the illuminating device includes a light emitting element and light from the light emitting element to be read.
  • a rod-shaped light guide that guides toward the object placement unit, the light guide has an emission surface on a side facing the reading object placement unit, and the light guide is viewed from the longitudinal direction.
  • the outline serving as the emission surface is asymmetric with respect to the optical axis.
  • the outer shape line forming the curved emission surface is formed asymmetrically, and the emission direction of the light from the emission surface is set with respect to the optical axis of the light emitting element.
  • the exit surface is a cylindrical lens, there is a possibility that light that is reflected by the reflector and becomes stray light in the light emitted from the light guide body is generated. Since the radius of the exit surface is reduced and refracted greatly, the light traveling from the exit surface of the light guide to the reflecting mirror can be removed from the reflecting mirror, so that stray light enters the imaging device directly. It is possible to prevent overexposure in the video.
  • a reflecting mirror is provided for reflecting an image of the reading object placed on the reading object placing portion toward the imaging device. The configuration.
  • the image of the reading object placed on the reading object placing portion can be folded back by the reflecting mirror and photographed by the imaging device, and the reading device can be made compact.
  • the illuminating device and the imaging device are disposed on the opposite side of the reflecting mirror, and the outline of the emission surface is formed by combining a plurality of arcs.
  • the radius of each of the plurality of arcs closer to the reflecting mirror is relatively small.
  • the emitted light when the emitted light is emitted from the illuminating device in a fan shape, the light emitted from the portion near the reflecting mirror on the emitting surface of the light guide is reflected by the reflecting mirror toward the reading object mounting portion.
  • the light is reflected by the reading object placement unit and directly travels to the imaging device via the reflecting mirror.
  • the radius of the arc on the reflecting mirror side of the exit surface is reduced, the light traveling to the reflecting mirror is generated. Can be bent toward the reading object mounting portion side, so that the outgoing light from the light guide toward the reflecting mirror can be eliminated, and the light from the illuminating device passes through the reflecting mirror and the imaging device Can be prevented from entering directly.
  • the light emitting element and the light guide are disposed at least at two positions that are far from the reading object placing portion,
  • An average radius of the plurality of arcs forming the outline of the light guide is configured to be smaller than an average radius of the plurality of arcs forming the outline of the light guide at the close position.
  • the light emitting element and the light guide are disposed at two positions that are far from the reading object placing unit, and the average radius of the light guide at a position far from the reading object placing unit is set.
  • the diameter By making the diameter small, it is possible to narrow the light emitted from the light guide at a distant position, and it is possible to prevent the irradiation range from being excessively widened at the reading object placing portion, and it is arranged at two near and far positions. It is possible to perform substantially uniform irradiation with each light guide provided.
  • the light emitting element includes a plurality of light emitting elements arranged side by side, and the light guide transmits light from the light emitting elements to the reading object.
  • the plurality of light emitting elements further includes a first light emitting element and a second light emitting element having a light distribution different from that of the first light distributing element.
  • the light guide has a refractive index that diffuses the light from the first light emitting element with a substantially uniform illuminance over the entire area of the reading object mounting portion corresponding to the light distribution of the first light emitting element.
  • the second light emitting element is formed so as to be displaced in a direction perpendicular to the optical axis of the light emitting element with respect to the first light emitting element when viewed from the longitudinal direction of the light guide.
  • the second light emitting element having a light distribution different from that of the first light emitting element is In the case of the same position as the first light emitting element when viewed from the longitudinal direction of the light guide, the light distribution of the second light emitting element is not diffused with substantially uniform illuminance, but the second light emitting element is By being disposed in a shifted manner, the light from the second light emitting element passes through a different part of the light guide from the first light emitting element, and can be diffused differently from the light of the first light emitting element. . Accordingly, by appropriately setting the position of the second light emitting element to be shifted according to the light distribution, the second light emitting element can be irradiated with substantially uniform illuminance.
  • the light exit surface of the light guide is formed with a portion having a large radius and a small radius when viewed from the longitudinal direction of the light guide.
  • the second light emitting element has a light distribution that is wider than the light distribution of the first light emitting element, and the first light emitting element is seen from the longitudinal direction of the light guide.
  • it is set as the structure which has shifted
  • the light from the second light emitting element is emitted from the small radius portion of the light emitting surface of the light guide, so Of the emitted light can be suppressed.
  • the wavelength of the second light emitting element is longer than the wavelength of the first light emitting element.
  • the wavelength of the light of the second light emitting element is longer than that of the first light emitting element, the light from the second light emitting element is difficult to be refracted, but the light from the second light emitting element is refracted by the refractive index of the light guide. Since the light can be largely refracted by being emitted through a large portion, the occurrence of uneven illuminance can be suppressed by the arrangement according to the refractive index.
  • the illumination device has a light source in which a plurality of the light emitting elements are arranged in a straight line, and the light from the light source is incident on the light guide.
  • the light guide has an entrance surface and an exit surface that emits light incident on the entrance surface, and is formed in an elongated shape so as to extend in the direction in which the plurality of light emitting elements are arranged. At least one end in the longitudinal direction of the shape has a light emission direction changing portion that changes the light from the light emitting element in a direction different from the optical axis perpendicular to the incident surface.
  • a long light guide is formed in the direction in which the plurality of light emitting elements are arranged, and light is emitted from the light emitting elements disposed in the vicinity of the one end at least at one end in the longitudinal direction of the light guide. Since the light emission direction changing unit for changing the direction is provided, a part of the emitted light from the light guide can be emitted in different directions.
  • the second emission surface for emitting the light whose direction has been changed is inclined rearwardly with respect to the emission surface in the light emission direction changing portion. It is set as the structure provided in.
  • the emitted light whose direction has been changed by the light emitting direction changing unit with respect to the range irradiated by the emitted light emitted from the emitting surface other than the light emitting direction changing unit of the light guide is the second emitting surface. Since the light is emitted from and irradiated, a single light guide can obtain an emission state in different directions.
  • a tenth aspect of the invention is the light guide according to the ninth aspect of the invention, wherein the light emitting direction changing portion changes the direction of light incident from the incident surface to a direction of emitting from the second emitting surface. It is set as the structure which has a reflective surface which consists of a longitudinal direction end surface.
  • the direction of light incident from the incident surface near one end can be changed with a simple structure in which a reflecting surface is formed on the end surface in the longitudinal direction of the light guide.
  • the eleventh aspect of the invention is the ninth or tenth aspect of the invention, wherein the exit surface is formed on a cylindrical lens.
  • the emitted light emitted from the emission surface by the cylindrical lens can be made substantially uniform in the short direction of the light guide.
  • the light traveling from the light emitting element toward the outer side in the longitudinal direction of the light from the light emitting element is moved closer to the center.
  • a prism surface for changing the direction is provided.
  • the outgoing light is emitted with a spread with respect to the optical axis at the center of the light emitting element
  • the direction of the light traveling outward in the longitudinal direction of the light guide to the center of the light guide is changed by the prism surface.
  • the light emitted from the light exit surface of the light guide can be irradiated substantially uniformly in the longitudinal direction of the light guide.
  • a thirteenth aspect of the present invention is the method according to any one of the eighth to twelfth aspects, further comprising control means for controlling light emission of the plurality of light emitting elements, wherein the control means is disposed in the vicinity of the one end.
  • control means for controlling light emission of the plurality of light emitting elements, wherein the control means is disposed in the vicinity of the one end.
  • the emission direction due to light emission in each mode changes by controlling the light emission by switching the mode
  • the direction is changed when determining what changes in appearance due to the difference in the angle of light hitting. It is possible to cope with this by simply switching the mode on the lighting device side.
  • the light source and the light guide are arranged in a plurality of parallel rows, and the plurality of rows of the light guides.
  • Each of the light emission direction changing sections is configured such that the emission directions of the emitted lights emitted from the respective light emission direction changing sections are different in each of the plurality of rows.
  • the whole light can be irradiated by changing the emission direction by the emission direction changing unit of each of the plurality of light guides to compensate for the portions that cannot be irradiated by each. Can do.
  • the plurality of light emitting elements include any one of a white light element, an ultraviolet light element, and an infrared light element. To do.
  • the transparent object placing unit irradiated with the illumination device from below and on which the reading object is placed, and the read object And an imaging device that images the surface.
  • the illumination device when the object to be read is visually determined to be provided on the surface to be read depending on the irradiation angle, the illumination device according to each of the inventions described above is used for the object placement unit.
  • the illumination device By imaging the surface to be read of the placed reading object with an imaging device and projecting it on the screen, it is possible to easily irradiate the surface to be read with the irradiation angle changed, and the captured image is displayed on the screen. Easy to judge.
  • a transparent reading object mounting unit on which a reading object is mounted, an illumination device that illuminates the reading object mounted on the reading object mounting unit,
  • a reading device comprising: an imaging device that images the reading object illuminated by an illuminating device, wherein the lighting device directs light from the light emitting element and the light from the light emitting element toward the reading object mounting portion.
  • a rod-shaped light guide for guiding, and the light guide has a light emitting direction from the light emitting element toward an end side of the read target object placement part, at a central portion of the read target object placement part. The optical path refracting part is refracted on the side.
  • the light path refraction that refracts light from the light emitting element toward the portion near the end of the reading object placing portion toward the center side. Since the portion is provided on the light guide, it is possible to irradiate the portion closer to the end of the reading object placing portion with higher illuminance. As a result, the peripheral portion is irradiated with high illuminance in response to a decrease in the amount of light in the peripheral portion of the image screen due to the influence of the lens, so that the entire surface of the reading object placing portion is imaged to have substantially uniform brightness. be able to.
  • an eighteenth aspect of the invention is that in the seventeenth aspect of the invention, the optical path refracting portion is formed by an inclined surface that is concave or convex on the incident surface of the light guide.
  • the light incident on the light path refracting part can be refracted by the light path refracting part provided on the incident surface of the light guide, the light can be directed in any direction by simply changing the form of the light path refracting part. Can be refracted.
  • At least two rows of the light guide and the light emitting element are provided at positions that are in a perspective relationship with respect to the reading object placing portion.
  • a refractive index of the optical path refracting portion provided in the light guide in a row close to the reading object placement portion is configured to be larger than that in a far row.
  • the refractive index of the optical path refracting part provided on the light guide near the reading object mounting part is increased, the emitted light can be spread widely with a large refractive index. Since it is close to the portion, it is possible to prevent the irradiation range of the light emitted from the light guide from becoming narrow.
  • the light guide emits light from the light emitting element toward the central portion of the reading object placing portion. And a second optical path refracting portion to be diffused.
  • FIG. 1 is an overall perspective view showing an example of a reading apparatus according to the present invention.
  • the reading device 1 has a substantially rectangular parallelepiped housing 2 having a hollow inside and is used on a desk or the like. In the following description, the vertical direction is assumed to be in a state where the reader 1 is placed on a desk.
  • FIG. 2 is a side view showing an essential part inside the reading apparatus according to the present invention.
  • a glass plate 3 as a reading object placing portion is provided on the upper surface of the housing 2 over substantially the entire surface.
  • a passport 4 as an object to be read is placed on the upper surface of the glass plate 3 with the read surface 4 a facing the glass plate 3.
  • a main substrate 5 is disposed in the vicinity of the bottom surface of the housing 2 below the glass plate 3.
  • the main board 5 is provided with a control circuit, a drive circuit, and the like (not shown) of the reading device 1.
  • An illuminating substrate 6 is disposed at an upper position on one end side of the main substrate 5 and is inclined upward so as to face the back surface of the glass plate 3.
  • the support structure for fixing the substrates 5 and 6 to the housing 2 may be a known screwing structure and is not shown.
  • the LED board 7 in which a plurality of LED elements as light emitting elements are arranged is arranged in the upper and lower rows on the illumination board 6, and as shown in FIG. 3, each LED row 7 is arranged.
  • Each of the rod-shaped light guides (upper light guide 8 and lower light guide 9. These are collectively referred to as “light guides 8 and 9” hereinafter so as to cover the emission surfaces of the respective LED elements.
  • the lighting device is configured in this manner.
  • resin spacers 16 each having an opening corresponding to each LED element of the LED array 7 arranged on the illumination board 6 are arranged. ing.
  • the wall surface of the opening provided in the spacer 16 has a tapered shape spreading in the light emitting direction of the LED element, and the light emitted from the LED element is reflected by this wall surface and efficiently guided into the light guides 8 and 9. It is burned.
  • FIG. 3A is a perspective view of a main part of the upper light guide 8, and FIG. 3B is a perspective view of a main part of the lower light guide 9.
  • the upper light guide 8 has a shape in which the left and right sides thereof are line-symmetrical at the central portion in the longitudinal direction.
  • 3 (b) showing the front view of the lower light guide 9 as well, which is screwed to the illumination board 6 with the spacers 16 sandwiched between the mounting holes 8a provided at the locations.
  • the illumination board 6 has a shape that is line symmetric as shown in FIG. 5 and has spacers 16 sandwiched between the mounting holes 9a provided at three locations in the longitudinal center and both ends. (Each screw is not shown).
  • the light guides 8 and 9 are each configured as a single body.
  • the LED array 7 is disposed at a position corresponding to the central portion in the longitudinal direction of each light guide 8 and 9 on the illumination board 6.
  • the light guides 8 and 9 may be divided at the central portion in the longitudinal direction. In this way, electrical components can be arranged on the illumination board 6 corresponding to the divided portion, so that the mounting efficiency of the illumination board 6 is improved.
  • an image of the surface to be read 4 a of the passport 4 placed on the upper surface of the glass plate 3 is imaged at the center in the longitudinal direction of the upper light guide 8 and on the upper side thereof.
  • a camera 13 as an imaging device is provided, and a reflecting mirror 14 for bending the optical path of the image of the read surface 4 a toward the camera 13 is provided at a position facing the camera 13. The reason for bending the optical path in this manner is effective for making the reading device 1 compact.
  • FIG. 4 is a front view of an illumination board showing the arrangement of LED elements according to the present invention.
  • FIG. 4 shows the arrangement of the LED elements of each LED row 7 arranged on the illumination board 6.
  • two ultraviolet LED elements UV 1 and UV 2 for ultraviolet rays, infrared rays are provided from the center to the right side along the upper reference line L 1 in the longitudinal direction of the upper light guide 8.
  • Infrared LED element IR1, white LED element WL1 for visible light, two ultraviolet LED elements UV3 and UV4, infrared LED element IR2, and white LED element WL2 are arranged in this order.
  • each LED element of the LED row 7 of the left side part from the center part of the figure of the upper side light guide 8 is arrange
  • UV6 / UV7 / UV8, infrared LED element IR3, white LED element WL3, ultraviolet LED element UV9, and white LED element WL4 are arranged in this order. Further, the LED elements of the LED row 7 in the left part from the center of the lower light guide 9 in the figure are also arranged symmetrically with respect to the right side.
  • the glass plate 3 is formed by white LED elements WL1 and WL3 on the center side. It is desirable to illuminate the entire (original surface) as uniformly as possible. In this case, unevenness can be reduced if the light emitted from the white LED elements WL1 and WL3 is sufficiently diffused by the light guides 8 and 9.
  • FIG. 5 is an explanatory view corresponding to FIG. 2 showing the optical path of the outgoing light
  • FIG. 6A is a cross-sectional view showing the outer shape of the outgoing face of the upper light guide 8 in the present invention
  • FIG. 3 is a cross-sectional view showing an outer shape of an emission surface of the light body 9.
  • the diffusion range can be simply increased by adjusting the curvature of the exit surfaces 8d and 9d of the light guides 8 and 9,
  • the diffusion becomes excessive that is, when the outgoing direction of the outgoing light from the outgoing faces 8d and 9d is excessively widened, as shown by the broken line arrow Lm1 and the two-dot chain line arrow Lm2 in FIG.
  • Part of the emitted light travels toward the reflecting mirror 14, and light that is reflected by the reflecting mirror 14 and then travels toward the glass plate 3 is generated.
  • Such light Lm1 and Lm2 may be reflected by the lower surface 3a of the glass plate 3 and reflected by the reflecting mirror 14 to be directed to the camera 13 in some cases.
  • the stray light due to the reflection may be avoided by adjusting the positional relationship among the light guides 8 and 9, the camera 13, and the reflecting mirror 14.
  • the design of the positional relationship is complicated.
  • the present invention corresponds by the shape of the exit surfaces 8d and 9d of the light guides 8 and 9.
  • the outline forming the exit surface 8d in the cross section viewed from the longitudinal direction of the upper light guide 8 is formed by an arc having a radius Ra in the range A on the reflecting mirror 14 side.
  • an arc having a radius Rb is formed in the range B on the glass plate 3 side.
  • the radius Ra is smaller than the radius Rb and is asymmetric with respect to the optical axis CL of the white LED element WL1.
  • the outer shape forming the exit surface 9d in the cross section viewed from the longitudinal direction of the lower light guide 9 is an arc having a radius Rc in the range C on the reflecting mirror 14 side, as shown in FIG. 6B.
  • an arc having a radius Rd is formed in the range D on the glass plate 3 side.
  • the radius Rc is smaller than the radius Rd and is asymmetric with respect to the optical axis CL of the white LED element WL3.
  • the emission directions of the light Lw1 and Lw2 (solid arrows in FIG. 5) that are closest to the reflecting mirror 14 of the emitted light emitted from the ranges A and C of the emission surfaces 8d and 9d of the light guides 8 and 9 Can be tilted and emitted so as to return to the light Lm1 and Lm2 by angles ⁇ 1 and ⁇ 2, respectively, inside the light guides 8 and 9.
  • the sizes of the angles ⁇ 1 and ⁇ 2 can be arbitrarily changed according to the sizes of the radii Ra and Rc, and the emission directions of the lights Lw1 and Lw2 can be further away from the reflecting mirror 14 by making the diameters smaller. . In this way, it is possible to eliminate the light that enters the camera 13 due to the reflection as described above, and it is possible to prevent the image of the camera 13 from being overexposed.
  • the radius Ra / Rc is set so as to secure the emission angle to be the light Lw1 / Lw2, and the ranges A / C and the radii Rb / Rd and the radii Rb / Rd and the glass plate 3 have uniform illuminance.
  • Each range B and D is set. In this way, by combining arc surfaces having different curvatures, the light (Lm1 and Lm2) that directly hits the reflecting mirror 14 after being emitted from the exit surfaces 8d and 9d of the light guides 8 and 9 is eliminated. 3 can ensure a uniform illuminance distribution.
  • the exit surface 8d (9d) is formed with two different radii Ra ⁇ Rb (Rc ⁇ Rd).
  • the exit surface 8d (9d) is a combination of three or more different radii, that is, a non-single arc surface.
  • the surface 8d (9d) may be formed. In any case, it is preferable to form a curved surface that smoothly changes from one radius to the other at the boundary between different radii.
  • each of the exit surfaces 8d and 9d for example, when the respective average radii are obtained from the weighted average of the radii Ra and Rb (Rc and Rd) using the ratio A: B (C: D) of each range,
  • the average radius of the exit surface 9d of the lower light guide 9 is made smaller than the average radius of the exit surface 8d of the upper light guide 8. Since the lower light guide 9 is farther than the glass plate 3 than the upper light guide 8, the irradiation range from the lower light guide 9 is further expanded in the case of the same radius, as described above.
  • the irradiation range can be narrowed, and even if there is a difference in perspective with respect to the glass plate 3 between the light guides 8 and 9, the illuminance It is possible to prevent non-uniform illuminance distribution due to the spread of the range.
  • a shift is made in a direction orthogonal to the reference lines L 1 and L 2 on the surface of the illumination substrate 6.
  • the reference line L1 is orthogonal to the optical axis CL of the white LED element WL1 as the first light emitting element
  • the reference line L2 is orthogonal to the optical axis CL of the white LED element WL2 as the first light emitting element.
  • the extending direction of the reference line L1 (L2) as the arrangement direction of the LED elements WL, IR, and UV is the X direction, and the reference line L1 (L2) is viewed from the arrangement direction of the LED elements WL, IR, and UV.
  • a direction perpendicular to the surface and along the surface of the illumination substrate 6 is defined as a Y direction.
  • d is an arbitrary shift amount.
  • the white LED element WL1 on the center side is positioned on the line, and the infrared LED element IR1 as the second light emitting element provided next to the white LED element WL1 is shifted downward ( ⁇ d in FIG. 4), The infrared LED element IR2 is positioned on the line.
  • the four ultraviolet LED elements UV1 to UV4 are shifted in different sizes on the lower side.
  • the white LED element WL3 on the center side is positioned on the line, and the adjacent infrared LED element IR3 is also Located on the line.
  • the five ultraviolet LED elements UV5 to UV9 are shifted in different sizes on the lower side.
  • the LED elements are arranged in this way even when white light, infrared light, and ultraviolet light having different light distribution characteristics are used by using the same light guides 8 and 9 (emission surfaces 8d and 9d). This is to enable the glass plate 3 to be irradiated with a substantially uniform illuminance distribution, and each shift amount is set to an appropriate value so as to obtain a substantially uniform illuminance distribution.
  • the outermost white LED elements WL2 and WL4 are arranged in correspondence with the protrusions 11 and 12 provided at both ends in the longitudinal direction of the light guides 8 and 9, as shown in FIG. ing.
  • the protrusions 11 and 12 are provided with rear surface portions 11a and 12a on the outer side in the longitudinal direction of the light guides 8 and 9, and the second emission surfaces 11b and 12b in a rearward inclined state on the inner side in the longitudinal direction of the light guides 8 and 9. Is provided.
  • the light is emitted obliquely toward. Accordingly, it is possible to cope with authenticity determination of a passport or the like to which OVI (Optically Variable Ink) whose color changes according to the difference in irradiation angle is applied.
  • OVI Optically Variable Ink
  • the white LED elements WL1 and WL3 are arranged so that the illuminance distribution of white light on the glass plate 3 is substantially uniform.
  • the light guides 8 and 9 have a kamaboko-shaped cross section extending along the reference lines L1 and L2, and the illuminance distribution is uniformized with respect to the bending direction (Y direction) of the exit surfaces 8a and 9a as described above.
  • the illuminance distribution in the extending direction of the reference lines L1 and L2 cannot be adjusted by the curvature of the exit surfaces 8d and 9d. Therefore, according to the difference in the spread of the emitted light depending on the distance of the light guides 8 and 9 with respect to the glass plate 3, in the present embodiment, the white LED element WL1 corresponding to the upper light guide 8 as shown in FIG. Is arranged closer to the center of the glass plate 3, and the white LED element WL3 corresponding to the lower light guide 9 is arranged outside the white LED element WL1.
  • FIG. 7 is a characteristic diagram showing the light distribution of the white LED element and the infrared LED element of the present invention in a graph.
  • the light distribution characteristic of the infrared LED element IR is narrower than the light distribution characteristic (two-dot chain line) of the white LED element WL as shown by the solid line in FIG. 7, and the wavelength of the infrared light is visible light (white light). Therefore, infrared light is less likely to be refracted at the medium boundary than white light. Therefore, when the same lens (prism) is used, infrared light can be irradiated only in a narrow range with respect to white light.
  • both the curved direction and the linear direction (longitudinal direction of the light guides 8 and 9) of the output surfaces 8d and 9d of the light guides 8 and 9 are targets.
  • the exit surfaces 8d and 9d of the light guides 8 and 9 are formed in a shape that prioritizes the uniform illumination distribution by the white LED elements WL, and each of the light guides 8 and 9 is used.
  • the arrangement of the infrared LED elements IR1 to IR3 will be described below.
  • the infrared LED element IR is arranged next to the white LED element WL so as to be basically at the same position as the white LED element WL.
  • the center side of the glass plate 3 is irradiated by the infrared LED element IR1 inside the light guide 8 in the longitudinal direction, and the side edge side of the glass plate 3 is irradiated by the infrared LED element IR2 outside the longitudinal direction of the light guide 8. Irradiate.
  • the outer infrared LED element IR2 of the upper light guide 8 is disposed on the reference line L1, but the inner infrared LED element IR1 is located below the reference line L1. A fixed amount is shifted.
  • FIG. 8 is an explanatory view showing a state in which the position of the infrared LED element is shifted.
  • the emission direction of the emitted light from the upper light guide 8 by the infrared LED elements IR1 and IR2 arranged in a shifted manner is shown in FIG.
  • the solid line indicates the inner infrared LED element IR1 shifted downward from the reference line L1 (that is, the side where the radius of the emission surface 8d is small), and the two-dot chain line indicates the outer side located on the reference line L1.
  • the infrared LED element IR2 is shown, and each outgoing light is indicated by an arrow.
  • the upper side of the emitted light from both infrared LED elements IR1 and IR2 is emitted in substantially the same direction, but the lower side of each emitted light is the infrared LED element IR2 arranged on the reference line L1. Is spread out downward and emitted.
  • the radius In the upper range (radius Rb) of the exit surface 8d, the radius is larger than the lower range (Rb> Ra) and faces the glass plate 3 as described above.
  • the change in the emission direction at 8d is not so great.
  • the two infrared LED elements IR1 and IR2 are in a relative translational relationship with respect to the incident surface 8b, and the optical axes of the emitted lights from the infrared LED elements IR1 and IR2 are parallel to each other.
  • FIG. 9 is an explanatory diagram showing the distribution of the irradiation range by the infrared LED element.
  • the irradiation ranges S1 and S2 on the glass plate 3 by the infrared LED elements IR1 and IR2 will be described with reference to FIG.
  • an irradiation range is demonstrated using the vertical and horizontal direction in the figure of the glass plate 3.
  • the irradiation range S2 by the infrared LED element IR2 arranged on the reference line L1 becomes a vertically long as shown in the figure because it becomes a diffused emission as described above.
  • the irradiation range S1 by the infrared LED element IR1 arranged to be shifted downward from the reference line L1 is narrowed to the upper side as described above, the light guide 8 of the glass plate 3 as shown in the figure. It becomes the range shortened in the vertical direction.
  • the infrared LED element IR1 is arranged near the center of the light guide 8 in the longitudinal direction, and the irradiation range S1 is the central portion in the horizontal direction of the glass plate 3, so that the infrared LED element IR1 alone is the glass plate 3. Illuminance decreases for the vicinity of the side edge in the horizontal direction.
  • the vicinity of the side edge of the glass plate 3 is irradiated by the outer infrared LED element IR2.
  • the outer infrared LED element IR2 is arranged on the reference line L1, and the emission light emitted from the emission surface 8d spreads downward as shown in FIG. 8, so that the irradiation range is as shown in FIG.
  • the vicinity of the side edge of the glass plate 3 can be irradiated over the entire length in the vertical direction.
  • the infrared LED element IR1 arranged corresponding to the upper light guide 8 irradiates the front side (near the upper light guide 8) of the glass plate 3, the rear side (upper guide) of the glass plate 3 is irradiated. The illuminance on the side far from the light body 8 is reduced. Therefore, the rear side of the glass plate 3 is irradiated by the infrared LED element IR3 arranged corresponding to the lower light guide 9 as shown in S3 of FIG.
  • the boundaries indicating the irradiation ranges S1 to S3 in FIG. 9 are illustrated so that the entire surface of the glass plate 3 is not partitioned, only the general ranges of the irradiation ranges S1 to S3 are shown.
  • the illuminance does not drop sharply outside the boundary, and the necessary illuminance is obtained even at the outer part of the boundary.
  • sufficient illuminance is obtained because the portions where the illuminances are reduced overlap.
  • the entire surface of the glass plate 3 could be irradiated with sufficient illuminance and substantially uniformly by the irradiation ranges S1 to S3 by the infrared LED elements IR1 to IR3.
  • the ultraviolet LED element UV Since the wavelength of the ultraviolet light is shorter than that of the white light, the ultraviolet light is more easily refracted than the white light, and when the same lens (prism) is used, the ultraviolet light is slightly condensed with respect to the white light.
  • the light distribution characteristic of the UV LED element UV which is generally easily available, is considerably wider than the light distribution characteristic of the white LED element WL, and the emission range of the ultraviolet light emitted from the emission surfaces 8d and 9d of the light guides 8 and 9 is large. Since UV light is wider than white light, UV light is diffused more than white light in both the curved direction of the exit surfaces 8d and 9d and the linear direction (longitudinal direction of the light guides 8 and 9).
  • FIG. 10 is an explanatory view showing a state in which the position of the ultraviolet LED element is shifted. Thereafter, using FIG. 10, similarly to the infrared LED element IR, the emission surfaces 8d and 9d of the light guides 8 and 9 are formed in a shape that prioritizes the uniform illumination distribution by the white LED elements WL, The arrangement of the ultraviolet LED elements UV1 to UV9 when the light guides 8 and 9 are used will be described below.
  • the ultraviolet LED element UV when the ultraviolet LED element UV is disposed on the reference line L 1, the light distribution characteristics of the ultraviolet light as described above, from the emission surface 8 d as shown by the two-dot chain line in FIG. The emitted light is greatly spread and emitted, resulting in a problem that the illuminance decreases. Further, if there is light that is greatly refracted toward the lower side of the light guide 8 due to the wide light distribution of the ultraviolet LED element UV and the refractive index of the ultraviolet light, the reflecting mirror 14 is caused by the light. May be directly irradiated. Even in the case of ultraviolet light, if there is light directly illuminating the reflecting mirror 14, the reflected light may become stray light and enter the camera 13.
  • the emitted light from the exit surface 8d is on the reference line L1.
  • the upper side is substantially the same direction, but the lower side is directed upward.
  • each of the ultraviolet LED elements UV1 to UV4 arranged corresponding to the light guide 8 is arranged so as to be shifted downward (that is, on the side where the radius of the emission surface 8d is small) with respect to the reference line L1, as described above. ing. Further, the adjacent ultraviolet LED elements UV1 and UV2 are arranged so as to be shifted relative to the reference line L1 in the Y direction. This is because when the adjacent objects are the same in the Y direction, the irradiation position in the Y direction is the same. Therefore, when there is uneven illuminance in each Y direction, it is emphasized and unevenness is prevented from occurring. Because. Similarly, the adjacent ultraviolet LED elements UV3 and UV4 are also relatively displaced in the Y direction. The amount of deviation is as large as possible within a range where the irradiation range does not change greatly. In this way, mutual interference due to the light distribution between adjacent ones can be reduced as much as possible.
  • each of the ultraviolet LED elements UV5 to UV9 is shifted downward with respect to the reference line L2, and is also shifted in the Y direction between adjacent ones.
  • Each of the ultraviolet LED elements UV1 to UV9 is arranged more than the other LED elements because the output of the generally easily available ultraviolet LED elements is relatively low.
  • the reader 1 of this embodiment functions as an OCR (Optical Character Reader).
  • OCR Optical Character Reader
  • OCR for reading passports and licenses may be used for authenticity determination.
  • white light is used for illumination when reading as OCR.
  • FIG. 11 is an explanatory diagram showing the illuminance distribution in the image due to the influence of the camera lens.
  • an image captured by the camera 13 has a problem that the peripheral light amount on the screen decreases due to the influence of so-called vignetting and the cosine fourth power law.
  • a sufficient amount of light can be obtained in the circle of the broken line in FIG. 11, for example, which is the central portion Sc collected by the lens of the camera 13 with the object of the imaging range as the entire surface of the glass plate 3, but the periphery outside the range Sc
  • the amount of light decreases in the portion Ss.
  • FIG. 12 (a) is an explanatory view showing a prism provided on the upper light guide
  • FIG. 12 (b) is an explanatory view showing a prism provided on the lower light guide.
  • the adjustment of the illuminance distribution includes two configurations: a configuration corresponding to the above-described decrease in the amount of peripheral light, and a configuration that prevents a decrease in illuminance at the central portion of the document surface due to the structure of the reading apparatus according to the present invention.
  • the camera 13 is positioned on the right side of the drawings in FIGS.
  • the portion facing the white LED element WL1 on the incident surface 8b of the upper light guide 8 is constituted by an inclined surface formed to be concave with respect to the incident surface 8b, as shown in FIG. 12 (a).
  • the first prism 21 serving as the optical path refracting section and the second prism 22 serving as the second optical path refracting section configured by a plurality of similarly inclined slopes are provided.
  • the light emitting element is not disposed at a position corresponding to the central portion in the longitudinal direction of the light guides 8 and 9 (see FIGS.
  • the document surface facing the central portion in the longitudinal direction is Although it is disadvantageous in terms of illuminance, the first prism 21 is formed of a slope that is recessed on the side edge side of the glass plate (original surface) 3 with respect to the white LED element WL1, and the above-described white LED element WL1
  • the light Lw3 emitted toward the side edge is refracted toward the center. Thereby, the light which leaks to the outer side of the glass plate 3 can be condensed on the peripheral part inner side part of the glass plate 3, and the illumination intensity of the part can be raised.
  • the second prism 22 is composed of a plurality of small slopes recessed continuously on the central side of the glass plate 3 with respect to the first prism 21, and each slope is provided with pitches p1 to p4. It is formed in a sawtooth shape.
  • the second prism 22 disperses and refracts the light Lw4 emitted from the white LED element WL1 toward the central portion. Since the upper light guide 8 is close to the glass plate 3 and has a short light traveling distance, the light does not sufficiently strike the center of the glass plate 3 when the second prism 22 is not provided, and the illuminance directly above the camera 13 is high. Extremely low.
  • the second prism 22 having a larger inclination angle ⁇ 2 with respect to the incident surface 8b than the first prism 21 is refracted toward the center of the glass plate 3 to prevent a decrease in illuminance at the center of the glass plate 3.
  • the reason why the second prism is provided at a narrower pitch than that of the first prism is a measure for imparting a relatively large tilt angle ⁇ 2 to the second prism while the size of the light guide is limited.
  • a third prism 23 is provided as an optical path refracting section constituted by The third prism 23 is provided in the same manner as the first prism 21, and concentrates the light Lw5 leaking outside the glass plate 3 on the inner peripheral portion of the glass plate 3 to increase the illuminance of that portion. Can do.
  • the lower light guide 9 is a flat surface on which the incident surface 9b is formed on the center side of the glass plate 3 opposite to the third prism 23. This is because, since the lower light guide 9 is far from the glass plate 3, the white LED element WL ⁇ b> 2 is directed toward the center of the glass plate 3 even if it is flat without providing an optical path refracting portion like the second prism 22. This is because the light Lw6 emitted in this way can reach the center of the glass plate 3.
  • FIG. 13 is an explanatory diagram showing the distribution of the range in which the illuminance is increased by the white LED elements, and shows the illuminance distribution by the white LED elements WL1 and WL2 due to the provision of the prisms 21-23.
  • the strong illuminance range S4 by the left and right white LED elements WL1 of the upper light guide 8 is substantially the upper half in the figure on the upper light guide 8 side of the glass plate 3, as shown in FIG.
  • the light beam that illuminates the portion directly above the camera 13 is a light beam that can avoid the camera 13, resulting in a significant decrease in illuminance.
  • the second prism 22 irradiates the light directly distributed over the range of the portion directly above the camera 13, but the intensity of illumination is suppressed.
  • the position of the white LED element WL1 in the X direction and the shapes of the first and second prisms 21 and 22 are set so as to obtain such an illuminance distribution.
  • the shape of the prism optical path refracting portion
  • the inclination angle ⁇ of the inclined surface with respect to the incident surface 8b, the length L of the inclined surface, the pitches p1 to p4 when a plurality of inclined portions are continuously provided, and the like (FIG. 12A)
  • the inclination angle ⁇ corresponds to ⁇ 1 and ⁇ 2 in FIG.
  • the strong illuminance range S5 by the left and right white LED elements WL3 of the lower light guide 9 is a substantially lower half in the figure on the side farther from the lower light guide 9 of the glass plate 3, as shown in FIG. Across the entire surface. Since this portion corresponds to the peripheral portion Ss in FIG. 11, the illuminance should be increased over the entire region. Therefore, the same applies to the portion closer to the center of the glass plate 3 as in the range S4 in FIG.
  • the position of the white LED element WL3 in the X direction and the shape of the third prism surface 23 are set so as to irradiate to the extent.
  • the lower light guide 9 is not provided with a plurality of short sloped prisms (second prisms 22) on the center side of the glass plate 3, but the specification of the reading device and the glass plate 3 are not included.
  • the second prism 22 may be provided with a prism composed of a plurality of slopes in which the length and pitch of each slope are changed.
  • the optical path refracting portion is constituted by a slope that is inclined with respect to a plane orthogonal to the incident optical axis, but is called a prism, but the optical path refracting portion has a function of bending the optical path.
  • Any optical device may be used, and the present invention is not limited to a sloped shape that is concave or convex with respect to the incident surfaces 8b and 9b.
  • the light guides 8 and 9 arranged in two rows have been described. However, the light guides 8 and 9 may be arranged in three rows or more, or in a single row when the application is limited. There may be.
  • LEDs 7 as a plurality of light-emitting elements are arranged in a straight line in the longitudinal direction in two rows (see FIG. 4 and the like), and the emission surfaces of the LEDs 7 in each row
  • Each of the rod-shaped light guides 8 and 9 is arranged for each row so as to cover each.
  • a resin spacer 16 provided with an opening corresponding to the LED 7 portion arranged on the illumination board 6 is provided between the illumination board 6 and each light guide 8, 9.
  • the wall surface of the opening provided in the spacer 16 has a tapered shape that spreads in the light emission direction, and the light emitted from the LED 7 is reflected by this wall surface and efficiently guided into the light guides 8 and 9.
  • FIG. 14 is an overall view of the light guide of the reading apparatus according to the present invention.
  • the upper light guide 8 has a shape in which the left and right sides thereof are axisymmetric at the center in the longitudinal direction.
  • the lower light guide 9 is also screwed to the illumination board 6 using the mounting holes 8a provided at three positions with both ends. It has a shape that is line symmetric and is screwed to the illumination board 6 using the respective mounting holes 9a provided at three locations in the longitudinal center and both ends (each screw is not shown).
  • the light guides 8 and 9 are each configured as a single body, but the LED 7 is not disposed at the position corresponding to the central portion in the longitudinal direction of each of the light guides 8 and 9 on the illumination board 6. Since the portion does not have an optical function, the light guides 8 and 9 may be divided at the central portion in the longitudinal direction. In this way, electrical components can be arranged on the illumination board 6 corresponding to the divided portion, so that the mounting efficiency of the illumination board 6 is improved.
  • an image of the surface to be read 4 a of the passport 4 placed on the upper surface of the glass plate 3 is imaged at the center in the longitudinal direction of the upper light guide 8 and on the upper side thereof.
  • a camera 13 as an imaging device is provided, and a reflecting mirror 14 for bending the optical path of the image of the read surface 4 a toward the camera 13 is provided at a position facing the camera 13. The reason for bending the optical path in this manner is effective for making the reading device 1 compact.
  • FIG. 15 is a cross-sectional side view of the main part of the light guide of the reading apparatus according to the present invention.
  • FIGS. 3, 15 and 16 show one side as a representative.
  • a white LED 7a for visible light and a red for infrared light are provided in a direction from one end side which is the right side of the drawing to the central portion which is the left side of the drawing.
  • An outer LED 7b, three ultraviolet LEDs 7c for ultraviolet rays, a white LED 7a, an infrared LED 7b, and an ultraviolet LED 7c are arranged in this order.
  • the incident surfaces 8b and 9b facing the LED 7 of the light guides 8 and 9 are formed on a plane orthogonal to the optical axis of the emitted light of the LED 7, but are partially on the incident surfaces 8b and 9b.
  • Recessed prism surfaces 8c and 9c are provided in a plurality of different shapes (the prism surfaces are inclined surfaces facing one end side or the center of the light guides 8 and 9). Further, on the side opposite to the incident surfaces 8b and 9b of the light guides 8 and 9, an arc is formed around the axis along the longitudinal direction of the light guides 8 and 9, and linearly extends in the longitudinal direction.
  • Outgoing surfaces 8d and 9d made of curved surfaces are provided.
  • the emission surfaces 8d and 9d may be formed by a cylindrical surface of a cylindrical lens, for example.
  • the LED 7 is considered as a point light source, and the emitted light is generally emitted radially around the optical axis that is the maximum light quantity (some light quantities on the optical axis are designed to be slightly lower).
  • the white LED 7a disposed as a light guide 9 in the approximate center of the range illustrated will be described as a representative.
  • the direction of the optical axis Cw The light L1 emitted to the light enters the light incident surface 9b perpendicularly to the light guide 9, and travels straight from the light emission surface 9c in the direction of the optical axis Cw.
  • the light L2 emitted obliquely with respect to the optical axis Cw from the white LED 7a toward the central portion of the light guide 9 is incident obliquely on the incident surface 9b and is inclined at an inclined angle from the output surface 9b. The light is emitted toward the center of the light guide 9.
  • the light L3 incident on the prism surface 9c with light emitted obliquely with respect to the optical axis Cw from the white LED 7a toward the outer side opposite to the central portion of the light guide 9 is refracted by the prism surface 9c.
  • the prism surface 9c is formed as an inclined surface having an angle for refracting the light L3 so as to be emitted substantially parallel to the optical axis Cw.
  • the light L3 emitted toward the outside from the white LED 7a in the illustrated example can be caused to travel straight in the direction of the optical axis Cw, and the light can be efficiently diffused by preventing unnecessary diffusion of light.
  • the inclined surfaces of the prism surfaces 8c and 9c are set corresponding to the LEDs 7 so that the light emitted toward the outside is refracted toward the center of the light guides 8 and 9 according to the respective positions. Yes.
  • FIG. 3 is a perspective view of the main part of the light guide of the reading apparatus according to the present invention.
  • protrusions 11 and 12 serving as emission direction changing portions protrude at the opposite ends in the longitudinal direction of the light guides 8 and 9 in a square shape with respect to the emission surfaces 8 d and 9 d. are integrally formed.
  • FIG. 3 is a perspective view of the main part of the light guide of the reading apparatus according to the present invention.
  • protrusions 11 and 12 serving as emission direction changing portions protrude at the opposite ends in the longitudinal direction of the light guides 8 and 9 in a square shape with respect to the emission surfaces 8 d and 9 d. are integrally formed.
  • each light guide 8 * 9 may be formed by the acrylic resin represented by PMMA, for example as a transparent material.
  • a white LED 7a is disposed immediately below each of the protrusions 11 and 12, and the light emitted from the white LED 7a is reflected by the back surface portions 11a and 12a as shown by L4 in the figure, and is emitted from the second emission surface. It is emitted from 11b and 12b.
  • the outgoing light undergoes angle conversion mainly in the longitudinal direction of the light guides 8 and 9, but the light guides 8 and 9 are three-dimensional objects, and the light emitted from the light guides is
  • the light emitted from the second emission surfaces 11 b and 12 b is actually the diagonal direction of the glass plate 3 that is the target object mounting portion as a whole characteristic.
  • the angle conversion is applied to.
  • the degree of this angle conversion is determined by designing the inclination (curvature) of the rear surfaces 11a and 12a and the upward angle of the second emission surfaces 11b and 12b to arbitrary values, thereby changing the emission direction from the second emission surfaces 11b and 12b. It can be set freely, and the irradiation angle to the glass plate 3 can be arbitrarily set.
  • FIG. 16 is an enlarged view of a main part showing the shape of the protrusion of the light guide of the reading apparatus according to the present invention.
  • the left and right adjacent sides of the glass plate 3 are irradiated with the light emitted from the protrusions 11 of the upper light guide 8, and the lower light guide 9 is located near the center of the glass plate 3 with respect to the irradiation position. It is made to share so that it may irradiate with the emitted light from the protrusion 12 of this.
  • the curvatures of the rear surfaces 11a and 12a forming the reflective surfaces inside the protrusions 11 and 12 are partially changed.
  • a curved surface having a radius R2 that is convex to the outside (concave outward), a curved surface having a radius R3 that is convex inward, and a curved surface having a radius R4 that is convex outward until reaching the exit surface 8d are continuously formed.
  • the magnitude relationship between the radii is R1 ⁇ R4, R2> R3, but is not limited to this, and may be appropriately changed according to the emission direction of the emitted light from the second emission surface 11b.
  • the emission angle of light reflected at that portion (the angle with respect to the optical axis Cw) can be reduced, and from the second emission surface 11b.
  • the emission angle is also reduced.
  • the radius R1 remains large, the emission direction of the light reflected on the surface will be concentrated. Therefore, the curved surfaces of the radii R2 and R3 which are convex inside the intermediate portion are provided and reflected on the back surface 11a. It is diffused slightly by changing the outgoing angle. Thus, the emission angle from the second emission surface 11b (the angle with respect to the optical axis Cw) can be reduced.
  • the curved shape of the back surface 12a remains convex outward, but on the top side of the protrusion 12, the curved surface has a radius R5, and on the white LED 7a side, the radius The curved surface is R6 ( ⁇ R5). In addition, it is made to change smoothly in the switching part of both radii R5 * R6.
  • the radius R6 on the incident surface 9b side smaller than the radius R5
  • the light reflected by the portion of the radius R6 has an emission angle of the light from the second emission surface 12b (second) than the light reflected by the portion of the radius R5.
  • the exit angle is expressed with respect to the exit surfaces (11b, 12b), it means the angle with respect to the optical axis of the LED 7a (the same applies hereinafter).
  • the irradiation range in the glass plate 3 can be designed to be an appropriate range by arbitrarily setting the curvature of the convex curved surfaces of the second emission surfaces 11b and 12b.
  • FIG. 17 shows a schematic block diagram of the control circuit 210 of the reading apparatus.
  • the control circuit 210 includes a main control unit 210a that performs overall control, an ISP control unit 210b that is an image processing unit connected to the main control unit 210a, an IC chip reading control unit 210c, and antenna control.
  • 210d upper LED control unit 210e, lower LED control unit 210f, and camera control unit 210g connected to ISP control unit 210b, which are driven by, for example, a reading switch (not shown).
  • the camera 13 is connected to the camera control unit 210g, and the LEDs 7a, 7b, 7c disposed corresponding to the upper light guide 8 are connected to the upper LED control unit 210e, and the lower LED control unit Each LED 7a, 7b, 7c arranged corresponding to the lower light guide 9 is connected to 210f.
  • the reading process of the passport 4 placed on the glass plate 3 is executed by a program.
  • the camera control unit 210g performs shooting control of the camera 13 and capture of an image signal, the image signal is subjected to image processing by the ISP control unit 210b, and the image processed data is sent to an external monitor (not shown) via the main control unit 210a.
  • the IC chip reading control unit 210c and the antenna control unit 210d perform authentication by wireless connection with the IC chip embedded in the passport 4, and the main control unit 210a determines whether the code signal is legitimate, for example. judge.
  • the main control unit 210a prepares four modes of left side irradiation, right side irradiation, left and right irradiation, and full surface irradiation, and irradiates the read surface 4a from various directions.
  • the main controller 210a selectively drives the LEDs 7 to be lit according to each mode with respect to the upper and lower LED controllers 210e and 210f.
  • FIG. 18 is a plan view showing an irradiation procedure in the left side irradiation mode
  • FIG. 19 is a plan view showing an irradiation procedure in the right side irradiation mode
  • FIG. 20 is a plan view showing an irradiation procedure in the left and right irradiation mode
  • FIG. It is a top view which shows the irradiation point by.
  • the white LED 7a disposed at a position corresponding to the left protrusions 11 and 12 in FIG. 14 is turned on, and white light is emitted from the glass plate 3 as indicated by an arrow in FIG. Irradiate obliquely from the left to the center.
  • the white LED 7a disposed at the position corresponding to the right protrusions 11 and 12 in FIG. 14 is turned on, and white light is emitted from the glass plate 3 as indicated by the arrows in FIG. Irradiate obliquely from the right to the center.
  • the white LEDs 7a disposed at the positions corresponding to the left and right protrusions 11 and 12 are turned on, and white light is emitted from both the left and right sides of the glass plate 3 as indicated by arrows in FIG. Irradiate obliquely toward the center.
  • the white LED 7a disposed at a position corresponding to the space between the left and right protrusions 11 and 12 (the portion closer to the center of the emission surfaces 8b and 9b) in FIG. As shown by the arrows in FIG. 21, the entire glass plate 3 is irradiated with white light so as to be substantially equal in the left-right direction.
  • the light reflected from the portion having the smaller radius R6 has a larger light emission angle from the second emission surface 12b than the light reflected from the portion having the radius R5. Since a large change occurs in the exit angle from the two exit surfaces 12b, the possibility that the OVI is captured is increased and the inspection on the monitor is facilitated.
  • the emission range from the second emission surface 12b of the lower light guide 9 is set larger than the second emission surface 11b of the upper light guide 8, for example, the broken line A1 in FIG.
  • the central portion of the glass plate 3 can be widely irradiated diagonally, but an area where the illuminance decreases is formed on the left side in FIG. 18, particularly in the lower left corner.
  • the emission angle from the second emission surface 11b of the upper light guide 8 is reduced, the irradiation range is as shown by the broken line A2 in FIG. It can be covered enough.
  • the irradiation is performed in a reverse pattern symmetrical to that in FIG. 18, and it is possible to cope with OVI that changes in color according to the difference in irradiation angle. In this way, light from one direction can be strengthened by irradiation from either the left or right side, and OVI provided to change the color according to irradiation from that direction can be made even easier to see.
  • the left and right irradiation mode in FIG. 20 in the above example, one of the modes is performed in order. However, if it is confirmed that the OVI processing is performed by performing irradiation from the left and right at the same time, If the irradiation mode is performed in advance, and confirmation can be made in that mode, the left and right modes can be omitted.
  • the visibility of OVI may be inferior compared to the case of one at a time.
  • the visual recognition of OVI the image quality is not questioned and there may be some unevenness. Since it is only necessary to visually recognize the change, it can sufficiently cope with confirmation of the presence or absence of OVI.
  • each irradiation range from the projections 11 and 12 shows the case where the entire range of the glass plate 3 cannot be irradiated with sufficient illuminance. If the entire range of the glass plate 3 can be irradiated by one of the light guides 8 and 9 by improving the capability of the white LED 7a or the like, the light guides 8 and 9 may be irradiated separately. Thereby, a clear difference due to irradiation from different directions can be confirmed.
  • the passport 4 is targeted.
  • the subject in the illumination device and the reader provided with the illumination device is not limited to the passport 4, and may be applied to a license, securities, and the like.
  • a white LED 7a is provided for OVI for passport authenticity determination, an infrared LED 7b suitable for reading processing such as character recognition, and an ultraviolet LED 7c that makes it possible to visually check forgery prevention fluorescent ink.
  • an infrared light irradiation mode and an ultraviolet light irradiation mode are set, and each mode is automatically or sequentially executed by a selection switch operation. Confirmation can be easily performed.
  • the infrared LED 7b and the ultraviolet LED 7c may not be provided depending on the specification of the reading target.
  • only white LED 7a corresponding to each protrusion 11 * 12 of the both ends of the light guide 8 * 9 may be sufficient.
  • the reading apparatus according to the present invention can be applied to uses such as a copying machine and a scanner that require that the light reflected by the reading object placing unit be separated from the imaging apparatus.
  • Reading Device 3 Glass Plate (Reading Object Placement Unit) 4 Passport (object to be read) 4a Read surface 6 Illumination board (illumination device) 7 LED row (light emitting element / lighting device) 8 Upper light guides 8b and 9b Incident surfaces 8d and 9d Emission surface 9 Lower light guide 9b Incident surfaces 11 and 12 Projection (light emission direction changing portion) 11a, 12a Back (reflective surface) 11b and 12b Second exit surface 13 Camera (imaging device) 14 Reflecting mirror 16 Spacer 21 First prism 22 Second prism 23 Third prism IR1 to IR3 Red LED element (light emitting element) UV1 ⁇ UV9 UV LED element (light emitting element) WL1 to WL4 White LED elements (light emitting elements)

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Facsimile Scanning Arrangements (AREA)
  • Light Sources And Details Of Projection-Printing Devices (AREA)

Abstract

[Problem] In a reading device equipped with an illumination device having a light guide, to ensure that light from the light guide cannot directly enter an image pickup device. [Solution] In cross-section as seen from the longitudinal direction of light guides (8, 9), the outside lines defining the curved emission faces (8d, 9d) thereof are asymmetrically formed as continuations of the respective arcs, in which the arc radius on the side of a reflecting mirror (14) is made smaller than the arc radius on the opposite side. Thus, although there is a risk that stray light emitted from the light guides when the emission face thereof is for example a cylindrical lens might be reflected at the reflecting mirror (14), any such light coming towards the reflecting mirror from the emission face of a light guide avoids the reflecting mirror. This is because such light is more strongly refracted, since the radius of the emission face on the side of the reflecting mirror is smaller. Hence it is possible to prevent image glare produced by entry of such reflected light into the camera.

Description

読取装置Reader
 本発明は、発光素子及び導光体を備えた照明装置により照明された被読取面を撮像する撮像装置を用いた読取装置に関するものである。 The present invention relates to a reading apparatus using an imaging apparatus that images a surface to be read illuminated by an illumination apparatus including a light emitting element and a light guide.
 従来、複写機やスキャナ等の読取装置において、読取対象物をガラス板等からなる原稿台の上に載置し、その被読取面を原稿台の下から照明装置で照射して撮像装置(カメラ)で撮影するようにしたものがある。そのような読取装置の照明装置として、光源にLEDを用いたものがあり、例えばLEDを棒状の導光体の長手方向一端部に設けると共に導光体にその長手方向に延在する光反射部を設け、LEDからの光を導光体内に導いて光反射部により長手方向に直交する方向に出射する線状光源として、被読取面を照射するようにしたものがある(例えば特許文献1参照)。 2. Description of the Related Art Conventionally, in a reading device such as a copying machine or a scanner, an object to be read is placed on a platen made of a glass plate or the like, and an image pickup device (camera) is irradiated by illuminating the surface to be read from below the platen with a lighting device. ). As an illumination device of such a reading device, there is one that uses an LED as a light source. For example, an LED is provided at one end in a longitudinal direction of a rod-shaped light guide and a light reflecting portion that extends in the longitudinal direction of the light guide As a linear light source that guides the light from the LED into the light guide and emits it in a direction perpendicular to the longitudinal direction by the light reflecting portion, there is one that irradiates the surface to be read (for example, see Patent Document 1). ).
特開2010-146868号公報JP 2010-146868 A
 上記従来の読取装置は、画像読取り手段としていわゆるラインセンサを用い、これに対応して導光体からは線状の光が出射されるものであり、読取対象を線状光源の長手方向(主走査方向)に直交する方向(副走査方向)に移動させて撮像している。 The conventional reading apparatus uses a so-called line sensor as an image reading means, and linear light is emitted from the light guide correspondingly. The reading target is the longitudinal direction of the linear light source (mainly The image is moved in a direction (sub-scanning direction) orthogonal to the (scanning direction).
 それに対して、原稿台の全面を一度にカメラ(撮像装置)により撮像するようにした読取装置がある。そのような読取装置では、原稿台の全面を照射する必要がある。上記従来の読取装置における照明装置では、副走査方向に対する照射範囲を広くするために光源としての光反射部を副走査方向に離間して複数設けているが、線状光源として用いるものであり、副走査方向に対する照射範囲は狭い。そのような照明構造で原稿台の全面を照射しようとすると、多くの導光体を並べて配設することになるため、照明装置全体が大型化する。 On the other hand, there is a reading device in which the entire surface of the document table is imaged by a camera (imaging device) at a time. In such a reading apparatus, it is necessary to irradiate the entire surface of the document table. In the illumination device in the conventional reading device, a plurality of light reflecting portions as light sources are provided apart from each other in the sub-scanning direction in order to widen the irradiation range in the sub-scanning direction. The irradiation range with respect to the sub-scanning direction is narrow. When it is intended to irradiate the entire surface of the document table with such an illumination structure, a large number of light guides are arranged side by side, which increases the size of the entire illumination device.
 読取装置の全体の大きさをコンパクトに設定した場合には、照明装置が大型化すると撮像装置を含めて内蔵部品のレイアウトが制約される。そのような制約されたレイアウトでは、導光体から出射された光が、ガラス等で構成される原稿台の裏面(読取対象物の載置面とは相反する面)や、反射鏡(装置をコンパクト化するために設置された鏡)で反射して迷光となり、その迷光が撮像装置に直接入る場合が生じ得る。迷光が撮像装置に直接入った場合には撮像装置(イメージセンサ)の各画素において蓄積電荷が飽和し、映像に白とび現象が生じるという問題がある。 If the overall size of the reading device is set to be compact, the layout of the built-in parts including the imaging device will be restricted if the illumination device becomes large. In such a constrained layout, the light emitted from the light guide is reflected on the back side of the document table made of glass or the like (the surface opposite to the surface on which the object to be read is placed) It may be reflected by a mirror installed for compactness to become stray light, and the stray light may directly enter the imaging apparatus. When stray light enters the image pickup device directly, there is a problem that the accumulated charge is saturated in each pixel of the image pickup device (image sensor), and a whiteout phenomenon occurs in an image.
 本発明は、このような従来技術の問題点を解消するべく案出されたものであり、その主な目的は、導光体を有する照明装置を備える読取装置における撮像装置に導光体からの光が直接的に入らないように構成された読取装置を提供することにある。 The present invention has been devised to solve such problems of the prior art, and the main object of the present invention is to provide an imaging device in a reading apparatus having an illumination device having a light guide from the light guide. An object of the present invention is to provide a reading apparatus configured so that light does not enter directly.
 本発明の読取装置は、読取対象物が載置される透明な読取対象物載置部と、前記読取対象物載置部に載置された前記読取対象物を照明する照明装置と、前記照明装置により照明された前記読取対象物を撮像する撮像装置とを備える読取装置であって、前記照明装置は、発光素子と、前記発光素子からの光を前記読取対象物載置部に向けて導く棒状の導光体とを備え、前記導光体は、前記読取対象物載置部に対向する側に出射面を有し、前記導光体を長手方向から見た前記発光素子の光軸を含む断面において、前記出射面となる外形線が前記光軸に対して非対称である構成とする。 The reading device of the present invention includes a transparent reading object mounting unit on which a reading object is mounted, an illumination device that illuminates the reading object mounted on the reading object mounting unit, and the illumination A reading apparatus comprising: an imaging device that images the reading object illuminated by the apparatus, wherein the lighting device guides light from the light emitting element and the light emitting element toward the reading object placing unit. A light guide having a rod shape, the light guide having an emission surface on a side facing the reading object mounting portion, and an optical axis of the light emitting element when the light guide is viewed from the longitudinal direction. In an included cross section, the outer shape line serving as the emission surface is asymmetric with respect to the optical axis.
 本発明によれば、導光体の長手方向から見た断面で、湾曲状の出射面を形成する外形線を非対称に形成して、出射面からの光の出射方向を発光素子の光軸に対して非対称にすることができる。これにより、出射面がシリンドリカルレンズのような場合に導光体から出射される光の中で反射鏡で反射して迷光となるような光が生じる虞があるのに対して、反射鏡側の出射面の半径を小さくして大きく屈折させるようにしたことから、導光体の出射面から反射鏡に向かう光が反射鏡から外れるようにすることができるため、迷光が撮像装置に入って映像に白とびが生じることを防止することができる。 According to the present invention, in the cross section viewed from the longitudinal direction of the light guide, the outline forming the curved emission surface is formed asymmetrically, and the emission direction of light from the emission surface is taken as the optical axis of the light emitting element. It can be asymmetrical. As a result, in the case where the exit surface is a cylindrical lens, there is a possibility that light that is reflected by the reflector and becomes stray light in the light emitted from the light guide body is generated. Since the radius of the exit surface is reduced and refracted greatly, the light traveling from the exit surface of the light guide toward the reflector can be removed from the reflector, so stray light enters the imaging device and the image It is possible to prevent the occurrence of overexposure.
本発明が適用された読取装置の全体斜視図1 is an overall perspective view of a reading apparatus to which the present invention is applied. 読取装置の内部の要部を示す側面図Side view showing the main part inside the reader (a)は上側導光体の要部斜視図、(b)は下側導光体の要部斜視図(A) is a principal part perspective view of an upper light guide, (b) is a principal part perspective view of a lower light guide. LED素子の配置を示す照明基板の正面図Front view of illumination board showing the arrangement of LED elements 出射光の光路を示す図2に対応する説明図Explanatory drawing corresponding to FIG. 2 showing the optical path of the emitted light (a)は上側導光体の出射面の外形を示す断面図、(b)は下側導光体の出射面の外形を示す断面図(A) is sectional drawing which shows the external shape of the output surface of an upper light guide, (b) is sectional drawing which shows the external shape of the output surface of a lower light guide 白色LED素子と赤外LED素子との配光をグラフで示した特性図Characteristic diagram showing the light distribution of white LED elements and infrared LED elements in a graph 赤外LED素子の位置をずらした状態を示す説明図Explanatory drawing which shows the state which shifted the position of the infrared LED element 赤外LED素子による照射範囲の分布を示す説明図Explanatory drawing which shows distribution of irradiation range by infrared LED element 紫外LED素子の位置をずらした状態を示す説明図Explanatory drawing which shows the state which shifted the position of the ultraviolet LED element カメラのレンズの影響による画像における照度分布を示す説明図Explanatory diagram showing the illuminance distribution in the image due to the effect of the camera lens (a)は上側導光体に設けたプリズムを示す説明図、(b)は下側導光体に設けたプリズムを示す説明図(A) is explanatory drawing which shows the prism provided in the upper side light guide, (b) is explanatory drawing which shows the prism provided in the lower side light guide. 白色LED素子による照度を高めた範囲の分布を示す説明図Explanatory drawing which shows distribution of the range which raised the illumination intensity by a white LED element 図2の矢印XIV線から見た図であり、(a)は上側導光体の全体図、(b)は下側導光体の全体図It is the figure seen from the arrow XIV line | wire of FIG. 2, (a) is a whole figure of an upper side light guide, (b) is a whole figure of a lower side light guide. (a)は図14(a)の矢印XVa-XVa線に沿って見た上側導光体の要部側断面図、(b)は図14(b)の矢印XVb-XVb線に沿って見た下側導光体の要部側断面図(A) is a cross-sectional side view of the main part of the upper light guide viewed along the arrow XVa-XVa line of FIG. 14 (a), and (b) is viewed along the arrow XVb-XVb line of FIG. 14 (b). Side sectional view of the main part of the lower light guide (a)は上側導光体の突部の形状を示す要部拡大図、(b)は下側導光体の突部の形状を示す要部拡大図(A) is the principal part enlarged view which shows the shape of the protrusion of an upper side light guide, (b) is the principal part enlarged view which shows the shape of the protrusion of a lower side light guide. 読取装置の概略制御ブロック図Schematic control block diagram of the reader 左側方照射モードによる照射要領を示す平面図Plan view showing the irradiation procedure in the left side irradiation mode 右側方照射モードによる照射要領を示す平面図Plan view showing irradiation procedure in right side irradiation mode 左右照射モードによる照射要領を示す平面図Plan view showing irradiation procedure in left and right irradiation mode 全面照射モードによる照射要領を示す平面図Plan view showing the irradiation procedure in full irradiation mode
 前記課題を解決するためになされた第1の発明は、読取対象物が載置される透明な読取対象物載置部と、前記読取対象物載置部に載置された前記読取対象物を照明する照明装置と、前記照明装置により照明された前記読取対象物を撮像する撮像装置とを備える読取装置であって、前記照明装置は、発光素子と、前記発光素子からの光を前記読取対象物載置部に向けて導く棒状の導光体とを備え、前記導光体は、前記読取対象物載置部に対向する側に出射面を有し、前記導光体を長手方向から見た前記発光素子の光軸を含む断面において、前記出射面となる外形線が前記光軸に対して非対称である構成とする。 According to a first aspect of the present invention, there is provided a transparent reading object placing unit on which a reading object is placed, and the reading object placed on the reading object placing unit. A reading device comprising: an illuminating device that illuminates; and an imaging device that images the reading object illuminated by the illuminating device, wherein the illuminating device includes a light emitting element and light from the light emitting element to be read. A rod-shaped light guide that guides toward the object placement unit, the light guide has an emission surface on a side facing the reading object placement unit, and the light guide is viewed from the longitudinal direction. In addition, in the cross section including the optical axis of the light emitting element, the outline serving as the emission surface is asymmetric with respect to the optical axis.
 これによると、導光体の長手方向から見た断面で、湾曲状の出射面を形成する外形線を非対称に形成して、出射面からの光の出射方向を発光素子の光軸に対して非対称にすることができる。これにより、出射面がシリンドリカルレンズのような場合に導光体から出射される光の中で反射鏡で反射して迷光となるような光が生じる虞があるのに対して、反射鏡側の出射面の半径を小さくして大きく屈折させるようにしたことから、導光体の出射面から反射鏡に向かう光が反射鏡から外れるようにすることができるため、迷光が撮像装置に直接入って映像に白とびが生じることを防止することができる。 According to this, in the cross section viewed from the longitudinal direction of the light guide, the outer shape line forming the curved emission surface is formed asymmetrically, and the emission direction of the light from the emission surface is set with respect to the optical axis of the light emitting element. Can be asymmetric. As a result, in the case where the exit surface is a cylindrical lens, there is a possibility that light that is reflected by the reflector and becomes stray light in the light emitted from the light guide body is generated. Since the radius of the exit surface is reduced and refracted greatly, the light traveling from the exit surface of the light guide to the reflecting mirror can be removed from the reflecting mirror, so that stray light enters the imaging device directly. It is possible to prevent overexposure in the video.
 また、第2の発明は、前記第1の発明において、前記読取対象物載置部に載置された前記読取対象物の像を前記撮像装置に向けて反射させる反射鏡が配設されている構成とする。 In a second aspect based on the first aspect, a reflecting mirror is provided for reflecting an image of the reading object placed on the reading object placing portion toward the imaging device. The configuration.
 これによると、反射鏡を配置することにより、読取対象物載置部に載置された読取対象物の像を反射鏡で折り返して撮像装置により撮影することができ、読取装置をコンパクト化し得る。 According to this, by arranging the reflecting mirror, the image of the reading object placed on the reading object placing portion can be folded back by the reflecting mirror and photographed by the imaging device, and the reading device can be made compact.
 また、第3の発明は、前記第2の発明において、前記照明装置と前記撮像装置とが前記反射鏡の対面側に配設され、前記出射面の前記外形線が複数の円弧を組み合わせて形成されていると共に、前記複数の円弧の各半径の前記反射鏡に近い方が相対的に小さくされている構成とする。 In a third aspect based on the second aspect, the illuminating device and the imaging device are disposed on the opposite side of the reflecting mirror, and the outline of the emission surface is formed by combining a plurality of arcs. In addition, the radius of each of the plurality of arcs closer to the reflecting mirror is relatively small.
 これによると、照明装置から出射光が扇状に出射される場合に、導光体の出射面において反射鏡に近い部分から出射される光が反射鏡で反射して読取対象物載置部に向かい、その光が読取対象物載置部で反射して反射鏡を介して撮像装置に直接向かう場合が生じるが、出射面の反射鏡側の円弧の半径を小さくしたことから、反射鏡に向かう光の出射方向を読取対象物載置部側に曲げることができるため、導光体から反射鏡に向かう出射光を無くすことができるようになり、照明装置からの光が反射鏡を介して撮像装置に直接的に入ることを防止することができる。 According to this, when the emitted light is emitted from the illuminating device in a fan shape, the light emitted from the portion near the reflecting mirror on the emitting surface of the light guide is reflected by the reflecting mirror toward the reading object mounting portion. In some cases, the light is reflected by the reading object placement unit and directly travels to the imaging device via the reflecting mirror. However, since the radius of the arc on the reflecting mirror side of the exit surface is reduced, the light traveling to the reflecting mirror is generated. Can be bent toward the reading object mounting portion side, so that the outgoing light from the light guide toward the reflecting mirror can be eliminated, and the light from the illuminating device passes through the reflecting mirror and the imaging device Can be prevented from entering directly.
 また、第4の発明は、前記第3の発明において、前記発光素子および前記導光体が前記読取対象物載置部に対して遠近となる少なくとも2位置に配設され、前記遠い位置の前記導光体の前記外形線を形成する前記複数の円弧の平均半径が、前記近い位置の前記導光体の前記外形線を形成する前記複数の円弧の平均半径よりも小さい構成とする。 In a fourth aspect based on the third aspect, the light emitting element and the light guide are disposed at least at two positions that are far from the reading object placing portion, An average radius of the plurality of arcs forming the outline of the light guide is configured to be smaller than an average radius of the plurality of arcs forming the outline of the light guide at the close position.
 これによると、発光素子および導光体が読取対象物載置部に対して遠近となる2位置に配設されていると共に、読取対象物載置部まで遠い位置の導光体の平均半径を小径にしたことにより、遠い位置の導光体からの出射光を絞ることができ、読取対象物載置部にて照射範囲が広がり過ぎてしまうことを防止することができ、遠近2位置に配設した各導光体による略均等な照射を行うことができる。 According to this, the light emitting element and the light guide are disposed at two positions that are far from the reading object placing unit, and the average radius of the light guide at a position far from the reading object placing unit is set. By making the diameter small, it is possible to narrow the light emitted from the light guide at a distant position, and it is possible to prevent the irradiation range from being excessively widened at the reading object placing portion, and it is arranged at two near and far positions. It is possible to perform substantially uniform irradiation with each light guide provided.
 また、第5の発明は、前記第1の発明において、前記発光素子は、複数であって、横並びに配設されており、前記導光体は、前記発光素子からの光を前記読取対象物載置部に向けて導くための棒状であり、前記複数の発光素子は、さらに、第1発光素子と、前記第1の配光素子とは異なる配光分布を有する第2発光素子とを有し、前記導光体が、前記第1発光素子の配光分布に対応して前記第1発光素子からの光を前記読取対象物載置部の全域に略均一な照度で拡散させる屈折率をもって形成され、前記第2発光素子が、前記導光体の長手方向から見て前記第1発光素子に対して前記発光素子の光軸に直交する方向にずれて配設されている構成とする。 In a fifth aspect based on the first aspect, the light emitting element includes a plurality of light emitting elements arranged side by side, and the light guide transmits light from the light emitting elements to the reading object. The plurality of light emitting elements further includes a first light emitting element and a second light emitting element having a light distribution different from that of the first light distributing element. The light guide has a refractive index that diffuses the light from the first light emitting element with a substantially uniform illuminance over the entire area of the reading object mounting portion corresponding to the light distribution of the first light emitting element. The second light emitting element is formed so as to be displaced in a direction perpendicular to the optical axis of the light emitting element with respect to the first light emitting element when viewed from the longitudinal direction of the light guide.
 これによると、第1発光素子による配光分布が略均一な照度で拡散されるように導光体を形成した照明装置において、第1発光素子とは異なる配光分布となる第2発光素子が導光体の長手方向から見て第1発光素子と同じ位置の場合には第2発光素子の配光分布が略均一な照度で拡散されないが、第2発光素子が第1発光素子に対してずれて配設されることにより、第2発光素子による光が導光体の第1発光素子とは異なる部分を通ることになり、第1発光素子の光とは異なるように拡散させることができる。これにより、第2発光素子のずらす位置を配光分布に応じて適宜設定することにより、第2発光素子においても略均一な照度で照射させることができる。 According to this, in the illumination device in which the light guide is formed so that the light distribution by the first light emitting element is diffused with substantially uniform illuminance, the second light emitting element having a light distribution different from that of the first light emitting element is In the case of the same position as the first light emitting element when viewed from the longitudinal direction of the light guide, the light distribution of the second light emitting element is not diffused with substantially uniform illuminance, but the second light emitting element is By being disposed in a shifted manner, the light from the second light emitting element passes through a different part of the light guide from the first light emitting element, and can be diffused differently from the light of the first light emitting element. . Accordingly, by appropriately setting the position of the second light emitting element to be shifted according to the light distribution, the second light emitting element can be irradiated with substantially uniform illuminance.
 また、第6の発明は、前記第5の発明において、前記導光体の前記出射面が、前記導光体の長手方向から見て大きな半径で形成されている部分と小さな半径で形成されている部分とを有し、前記第2発光素子が、前記第1発光素子の配光分布よりも広い配光分布を有し、かつ前記導光体の長手方向から見て前記第1発光素子に対して前記出射面の前記小さな半径で形成されている部分側にずれて配設されている構成とする。 According to a sixth invention, in the fifth invention, the light exit surface of the light guide is formed with a portion having a large radius and a small radius when viewed from the longitudinal direction of the light guide. The second light emitting element has a light distribution that is wider than the light distribution of the first light emitting element, and the first light emitting element is seen from the longitudinal direction of the light guide. On the other hand, it is set as the structure which has shifted | deviated and arrange | positioned to the part side formed with the said small radius of the said output surface.
 これによると、第2発光素子の配光分布が第1発光素子よりも広い場合でも、第2発光素子による光を導光体の出射面の小さな半径の部分から出射させることにより、出射面からの出射光の拡散を抑制することができる。 According to this, even when the light distribution of the second light emitting element is wider than that of the first light emitting element, the light from the second light emitting element is emitted from the small radius portion of the light emitting surface of the light guide, so Of the emitted light can be suppressed.
 また、第7の発明は、前記第5または前記第6の発明において、前記第2発光素子の波長が、前記第1発光素子の波長よりも長い構成とする。 In addition, in a seventh aspect based on the fifth or sixth aspect, the wavelength of the second light emitting element is longer than the wavelength of the first light emitting element.
 これによると、第2発光素子の光の波長が第1発光素子のものよりも長い場合に、第2発光素子による光が屈折し難いが、第2発光素子による光を導光体の屈折率の大きな部分を介して出射させることにより、大きく屈折させることができるため、屈折率の大きさに合わせた配置により照度のむらの発生を抑制し得る。 According to this, when the wavelength of the light of the second light emitting element is longer than that of the first light emitting element, the light from the second light emitting element is difficult to be refracted, but the light from the second light emitting element is refracted by the refractive index of the light guide. Since the light can be largely refracted by being emitted through a large portion, the occurrence of uneven illuminance can be suppressed by the arrangement according to the refractive index.
 また、第8の発明は、前記第1の発明において、前記照明装置は、複数の前記発光素子を直線状に並べた光源を有し、前記導光体は、前記光源からの光が入射する入射面および当該入射面に入射した光を出射させる出射面を有しかつ前記複数の発光素子の並び方向に延在するように長尺形状に形成され、前記導光体はさらに、前記長尺形状の長手方向の少なくとも一方の端部に、前記発光素子からの光を前記入射面に直交する光軸とは異なる方向に変える光出射方向変更部を有する構成とする。 In an eighth aspect based on the first aspect, the illumination device has a light source in which a plurality of the light emitting elements are arranged in a straight line, and the light from the light source is incident on the light guide. The light guide has an entrance surface and an exit surface that emits light incident on the entrance surface, and is formed in an elongated shape so as to extend in the direction in which the plurality of light emitting elements are arranged. At least one end in the longitudinal direction of the shape has a light emission direction changing portion that changes the light from the light emitting element in a direction different from the optical axis perpendicular to the incident surface.
 これによると、複数の発光素子の並び方向に長尺の導光体を形成し、導光体の長手方向の少なくとも一端部に、その一端部近傍に配置されている発光素子からの光の出射方向を変えるための光出射方向変更部を設けたことから、導光体からの出射光の一部を異なる方向に出射させることができる。 According to this, a long light guide is formed in the direction in which the plurality of light emitting elements are arranged, and light is emitted from the light emitting elements disposed in the vicinity of the one end at least at one end in the longitudinal direction of the light guide. Since the light emission direction changing unit for changing the direction is provided, a part of the emitted light from the light guide can be emitted in different directions.
 また、第9の発明は、前記第8の発明において、前記光出射方向変更部に、前記向きを変えられた光を出射するための第2出射面が前記出射面に対して後傾するように設けられている構成とする。 In a ninth aspect based on the eighth aspect, the second emission surface for emitting the light whose direction has been changed is inclined rearwardly with respect to the emission surface in the light emission direction changing portion. It is set as the structure provided in.
 これによると、導光体の光出射方向変更部以外の出射面から出射される出射光により照射される範囲に対して、光出射方向変更部により向きを変えられた出射光を第2出射面から出射させて照射することから、1つの導光体で異なる向きの出射状態が得られる。 According to this, the emitted light whose direction has been changed by the light emitting direction changing unit with respect to the range irradiated by the emitted light emitted from the emitting surface other than the light emitting direction changing unit of the light guide is the second emitting surface. Since the light is emitted from and irradiated, a single light guide can obtain an emission state in different directions.
 さらに、第10の発明は、前記第9の発明において、前記光出射方向変更部が、前記入射面から入射する光の方向を前記第2出射面から出射させる方向に変えるべく前記導光体の長手方向端面からなる反射面を有する構成とする。 Furthermore, a tenth aspect of the invention is the light guide according to the ninth aspect of the invention, wherein the light emitting direction changing portion changes the direction of light incident from the incident surface to a direction of emitting from the second emitting surface. It is set as the structure which has a reflective surface which consists of a longitudinal direction end surface.
 これによると、導光体の長手方向端面に反射面を形成するという簡単な構造で、一方の端部近傍の入射面から入射する光の方向を変えることができる。 According to this, the direction of light incident from the incident surface near one end can be changed with a simple structure in which a reflecting surface is formed on the end surface in the longitudinal direction of the light guide.
 また、第11の発明は、前記第9または第10の発明において、前記出射面がシリンドリカルレンズに形成されている構成とする。 The eleventh aspect of the invention is the ninth or tenth aspect of the invention, wherein the exit surface is formed on a cylindrical lens.
 これによると、シリンドリカルレンズにより出射面から出射される出射光を導光体の短手方向において、略均等にすることができる。 According to this, the emitted light emitted from the emission surface by the cylindrical lens can be made substantially uniform in the short direction of the light guide.
 また、第12の発明は、前記第8乃至第11のいずれかの発明において、前記入射面に、前記発光素子からの光の中で前記導光体の長手方向外側に向かう光を中央寄りに向きを変えるためのプリズム面が設けられている構成とする。 In a twelfth aspect of the invention according to any one of the eighth to eleventh aspects of the invention, the light traveling from the light emitting element toward the outer side in the longitudinal direction of the light from the light emitting element is moved closer to the center. A prism surface for changing the direction is provided.
 これによると、発光素子の中央の光軸に対して出射光が拡がりをもって出射される場合に、導光体の長手方向外側に向かう光をプリズム面により導光体の中央寄りに向きを変えることにより、導光体の出射面から出射される出射光を導光体の長手方向において略均等な照射を行うことができる。 According to this, when the outgoing light is emitted with a spread with respect to the optical axis at the center of the light emitting element, the direction of the light traveling outward in the longitudinal direction of the light guide to the center of the light guide is changed by the prism surface. Thus, the light emitted from the light exit surface of the light guide can be irradiated substantially uniformly in the longitudinal direction of the light guide.
 また、第13の発明は、前記第8乃至第12のいずれかの発明において、前記複数の発光素子の発光を制御する制御手段を有し、前記制御手段は、前記一方の端部近傍に配置された前記発光素子のみを発光させる第1モードと、前記複数の発光素子の中で前記第1モードで発光されるもの以外を発光させる第2モードとを有する構成とする。 A thirteenth aspect of the present invention is the method according to any one of the eighth to twelfth aspects, further comprising control means for controlling light emission of the plurality of light emitting elements, wherein the control means is disposed in the vicinity of the one end. A first mode in which only the emitted light emitting element emits light, and a second mode in which the light emitting elements other than those emitting light in the first mode are emitted.
 これによると、モードを切り換えて発光制御することにより、それぞれのモードでの発光による出射方向が変化するため、光の当たる角度の違いで見え方が変わるものを判定する場合に、その向きを変えることなく、照明装置側のモードの切り換えのみで対応できる。 According to this, since the emission direction due to light emission in each mode changes by controlling the light emission by switching the mode, the direction is changed when determining what changes in appearance due to the difference in the angle of light hitting. It is possible to cope with this by simply switching the mode on the lighting device side.
 また、第14の発明は、前記第8乃至第13のいずれかの発明において、前記光源および前記導光体からなる列が互いに平行な複数列に配設され、前記複数列の前記導光体の各前記光出射方向変更部は、当該各光出射方向変更部から出射される各出射光の出射方向が前記複数列の各列で異なるようにされている構成とする。 According to a fourteenth aspect of the present invention, in any one of the eighth to thirteenth aspects, the light source and the light guide are arranged in a plurality of parallel rows, and the plurality of rows of the light guides. Each of the light emission direction changing sections is configured such that the emission directions of the emitted lights emitted from the respective light emission direction changing sections are different in each of the plurality of rows.
 これによると、複数の導光体のそれぞれの出射方向変更部による出射方向を変えることにより、1つの導光体による照射範囲が狭い場合でも、それぞれで照射できない部分を補って全体を照射することができる。 According to this, even when the irradiation range by one light guide is narrow, the whole light can be irradiated by changing the emission direction by the emission direction changing unit of each of the plurality of light guides to compensate for the portions that cannot be irradiated by each. Can do.
 また、第15の発明は、前記第8乃至第14のいずれかの発明において、前記複数の発光素子は、白色光用素子と紫外光用素子と赤外光用素子のいずれかを含む構成とする。 According to a fifteenth aspect of the present invention, in any one of the eighth to fourteenth aspects, the plurality of light emitting elements include any one of a white light element, an ultraviolet light element, and an infrared light element. To do.
 これによると、各色発光素子による発光を選択的に切り換えることにより、1つの導光体からの出射光でそれぞれの光に応じて見え方が変わるものを判別することができる。 According to this, by selectively switching the light emission by each color light emitting element, it is possible to discriminate one of the light emitted from one light guide that changes its appearance in accordance with each light.
 また、第16の発明は、前記第8乃至第15のいずれかの発明において、前記照明装置により下方から照射されかつ読取対象物が載置される透明な対象物載置部と、前記被読取面を撮像する撮像装置とを備える構成とする。 According to a sixteenth aspect of the present invention, in any one of the eighth to fifteenth aspects, the transparent object placing unit irradiated with the illumination device from below and on which the reading object is placed, and the read object And an imaging device that images the surface.
 これによると、被読取面に照射角度に応じて見え方が変わるものが設けられている読取対象物を目視により判断する場合に、上記各発明による照明装置を用いて、対象物載置部に載置した読取対象物の被読取面を撮像装置により撮像して画面に映し出すことで、被読取面に対して照射角度を変えた照射を容易に行うことができ、撮像された画像を画面で容易に判定できる。 According to this, when the object to be read is visually determined to be provided on the surface to be read depending on the irradiation angle, the illumination device according to each of the inventions described above is used for the object placement unit. By imaging the surface to be read of the placed reading object with an imaging device and projecting it on the screen, it is possible to easily irradiate the surface to be read with the irradiation angle changed, and the captured image is displayed on the screen. Easy to judge.
 また、第17の発明は、読取対象物が載置される透明な読取対象物載置部と、前記読取対象物載置部に載置された前記読取対象物を照明する照明装置と、前記照明装置により照明された前記読取対象物を撮像する撮像装置とを備える読取装置であって、前記照明装置は、発光素子と、前記発光素子からの光を前記読取対象物載置部に向けて導くための棒状の導光体とを備え、前記導光体は、前記発光素子から前記読取対象物載置部の端部側に向かう光の出射方向を前記読取対象物載置部の中央部側に屈折させる光路屈折部を有する構成とする。 According to a seventeenth aspect of the present invention, there is provided a transparent reading object mounting unit on which a reading object is mounted, an illumination device that illuminates the reading object mounted on the reading object mounting unit, A reading device comprising: an imaging device that images the reading object illuminated by an illuminating device, wherein the lighting device directs light from the light emitting element and the light from the light emitting element toward the reading object mounting portion. A rod-shaped light guide for guiding, and the light guide has a light emitting direction from the light emitting element toward an end side of the read target object placement part, at a central portion of the read target object placement part. The optical path refracting part is refracted on the side.
 これによると、発光素子を読取対象物載置部の端部寄りに配置した場合など、その発光素子から読取対象物載置部の端部寄り部分に向かう光を中央部側に屈折させる光路屈折部を導光体に設けたことから、読取対象物載置部の端部寄り部分をより一層高い照度で照射することができる。これにより、レンズの影響による映像の画面における周辺部の光量低下に対して、周辺部を高い照度で照射することから、読取対象物載置部の全面を略均一な明るさとなるように撮像することができる。 According to this, when the light emitting element is arranged near the end of the reading object placing portion, the light path refraction that refracts light from the light emitting element toward the portion near the end of the reading object placing portion toward the center side. Since the portion is provided on the light guide, it is possible to irradiate the portion closer to the end of the reading object placing portion with higher illuminance. As a result, the peripheral portion is irradiated with high illuminance in response to a decrease in the amount of light in the peripheral portion of the image screen due to the influence of the lens, so that the entire surface of the reading object placing portion is imaged to have substantially uniform brightness. be able to.
 また、第18の発明は、前記第17の発明において、前記光路屈折部は、前記導光体の入射面に凹設または凸設された斜面により形成されている構成とする。 Also, an eighteenth aspect of the invention is that in the seventeenth aspect of the invention, the optical path refracting portion is formed by an inclined surface that is concave or convex on the incident surface of the light guide.
 これによると、導光体の入射面に設けた光路屈折部により、光路屈折部に入射する光を屈折させることができるため、光路屈折部の形態を変えるという簡単な変更で任意の方向に光を屈折させることができる。 According to this, since the light incident on the light path refracting part can be refracted by the light path refracting part provided on the incident surface of the light guide, the light can be directed in any direction by simply changing the form of the light path refracting part. Can be refracted.
 また、第19の発明は、前記第17または第18の発明において、前記導光体及び前記発光素子は、前記読取対象物載置部に対して遠近関係となる位置に少なくとも2列設けられ、前記読取対象物載置部に近い列の前記導光体に設けられた前記光路屈折部の屈折率は、遠い列におけるものよりも大きい構成とする。 Further, in a nineteenth aspect based on the seventeenth or eighteenth aspect, at least two rows of the light guide and the light emitting element are provided at positions that are in a perspective relationship with respect to the reading object placing portion. A refractive index of the optical path refracting portion provided in the light guide in a row close to the reading object placement portion is configured to be larger than that in a far row.
 これによると、読取対象物載置部に近い導光体に設けた光路屈折部の屈折率を大きくしたことから、大きな屈折率により出射光を大きく広がらせることができるため、読取対象物載置部に近いために導光体からの出射光の照射範囲が狭くなることを防止し得る。 According to this, since the refractive index of the optical path refracting part provided on the light guide near the reading object mounting part is increased, the emitted light can be spread widely with a large refractive index. Since it is close to the portion, it is possible to prevent the irradiation range of the light emitted from the light guide from becoming narrow.
 また、第20の発明は、前記第17乃至第19のいずれかの発明において、前記導光体は、前記発光素子から前記読取対象物載置部の中央部側に向かう光を当該中央部側に拡散させる第2光路屈折部を有する構成とする。 In a twentieth invention according to any one of the seventeenth to nineteenth inventions, the light guide emits light from the light emitting element toward the central portion of the reading object placing portion. And a second optical path refracting portion to be diffused.
 これによると、導光体の長手方向における中央部分に対応して撮像装置が配設されている場合に、読取対象物載置部の中央部側に向かう光を中央部側に分散させることから、撮像装置に近いところに対する集光の偏りを防止して、撮像装置の直上部分の照度低下を防止し得る。
(第1の実施の形態)
According to this, when the imaging device is disposed corresponding to the central portion in the longitudinal direction of the light guide, the light traveling toward the central portion side of the reading object placing portion is dispersed to the central portion side. In addition, it is possible to prevent the light from being biased near the imaging device and to prevent a decrease in illuminance in the portion directly above the imaging device.
(First embodiment)
 以下、本発明の実施の形態を、図面を参照しながら説明する。図1は、本発明による読取装置の例を示す全体斜視図である。読取装置1は、内部が空洞の略直方体のハウジング2を有し、机上等に置いて使用される。なお、以下の説明での上下方向は、読取装置1を机上に置いた状態におけるものとする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is an overall perspective view showing an example of a reading apparatus according to the present invention. The reading device 1 has a substantially rectangular parallelepiped housing 2 having a hollow inside and is used on a desk or the like. In the following description, the vertical direction is assumed to be in a state where the reader 1 is placed on a desk.
 図2は、本発明による読取装置の内部の要部を示す側面図である。図2に併せて示されるように、ハウジング2の上面には、その概ね全面に亘って読取対象物載置部としてのガラス板3が設けられている。そのガラス板3の上面に読取対象物としての例えばパスポート4がその被読取面4aをガラス板3に向けて載置される。 FIG. 2 is a side view showing an essential part inside the reading apparatus according to the present invention. As shown in FIG. 2, a glass plate 3 as a reading object placing portion is provided on the upper surface of the housing 2 over substantially the entire surface. For example, a passport 4 as an object to be read is placed on the upper surface of the glass plate 3 with the read surface 4 a facing the glass plate 3.
 ハウジング2の内部にはガラス板3の下方となるハウジング2の底面近傍にメイン基板5が配設されている。メイン基板5には読取装置1の制御回路やドライブ回路等(図示省略)が設けられている。メイン基板5の一端側の上方位置にはガラス板3の裏面に臨むように斜め上向きにされた照明基板6が配設されている。なお、これら基板5・6をハウジング2に対して固定するための支持構造は、公知のねじ止め構造であってよく、図示省略している。 Inside the housing 2, a main substrate 5 is disposed in the vicinity of the bottom surface of the housing 2 below the glass plate 3. The main board 5 is provided with a control circuit, a drive circuit, and the like (not shown) of the reading device 1. An illuminating substrate 6 is disposed at an upper position on one end side of the main substrate 5 and is inclined upward so as to face the back surface of the glass plate 3. The support structure for fixing the substrates 5 and 6 to the housing 2 may be a known screwing structure and is not shown.
 図4に示されるように、照明基板6には、発光素子としてのLED素子を複数並べた各LED列7が上下2列に配設され、また図3に示されるように、各LED列7の各LED素子の出射面をそれぞれ覆うように棒状の各導光体(上側導光体8及び下側導光体9。以降、これらをまとめて「導光体8・9」と記載することがある)が配設されており、このようにして照明装置が構成されている。また、照明基板6と各導光体8・9の間には、照明基板6に配置されたLED列7の各LED素子にそれぞれ対応する開口部が設けられた樹脂製のスペーサー16が配置されている。スペーサー16に設けた開口部の壁面はLED素子の光出射方向に広がるテーパー形状を成しており、LED素子の出射光はこの壁面で反射されて効率よく導光体8・9の中に導かれる。 As shown in FIG. 4, the LED board 7 in which a plurality of LED elements as light emitting elements are arranged is arranged in the upper and lower rows on the illumination board 6, and as shown in FIG. 3, each LED row 7 is arranged. Each of the rod-shaped light guides (upper light guide 8 and lower light guide 9. These are collectively referred to as “light guides 8 and 9” hereinafter so as to cover the emission surfaces of the respective LED elements. And the lighting device is configured in this manner. Between the illumination board 6 and the light guides 8 and 9, resin spacers 16 each having an opening corresponding to each LED element of the LED array 7 arranged on the illumination board 6 are arranged. ing. The wall surface of the opening provided in the spacer 16 has a tapered shape spreading in the light emitting direction of the LED element, and the light emitted from the LED element is reflected by this wall surface and efficiently guided into the light guides 8 and 9. It is burned.
 図3(a)は上側導光体8の要部斜視図、同(b)は下側導光体9の要部斜視図である。上側導光体8は、図3(a)に示されるように、長手方向の中央部において、その左右が線対称となる形状を有しており、長手方向の中央部と両端部との3箇所に設けられた各取付孔8aを用いて、スペーサー16を間に挟んだ形で照明基板6にねじ止めされ、同様に下側導光体9も、その正面図を示す図3(b)に示されるように線対称となる形状を有し、長手方向の中央部と両端部との3箇所に設けられた各取付孔9aを用いて、スペーサー16を間に挟んだ形で照明基板6にねじ止めされている(各ねじは図示省略)。このように導光体8・9はそれぞれ一体物として構成されているが、照明基板6において、各導光体8・9の長手方向中央部に対応する位置にはLED列7が配置されておらず、当該部分は光学的な機能を持たないため、長手方向中央部にて各導光体8・9を分断する構成としてもよい。このようにすれば、分断部分に対応する照明基板6に電気部品を配置することができるので、照明基板6の実装効率が向上する。 3A is a perspective view of a main part of the upper light guide 8, and FIG. 3B is a perspective view of a main part of the lower light guide 9. FIG. As shown in FIG. 3A, the upper light guide 8 has a shape in which the left and right sides thereof are line-symmetrical at the central portion in the longitudinal direction. 3 (b) showing the front view of the lower light guide 9 as well, which is screwed to the illumination board 6 with the spacers 16 sandwiched between the mounting holes 8a provided at the locations. The illumination board 6 has a shape that is line symmetric as shown in FIG. 5 and has spacers 16 sandwiched between the mounting holes 9a provided at three locations in the longitudinal center and both ends. (Each screw is not shown). In this way, the light guides 8 and 9 are each configured as a single body. However, the LED array 7 is disposed at a position corresponding to the central portion in the longitudinal direction of each light guide 8 and 9 on the illumination board 6. In addition, since the portion does not have an optical function, the light guides 8 and 9 may be divided at the central portion in the longitudinal direction. In this way, electrical components can be arranged on the illumination board 6 corresponding to the divided portion, so that the mounting efficiency of the illumination board 6 is improved.
 図1・図2に示されているように、上側導光体8の長手方向中央かつその上側となる位置にはガラス板3の上面に載置されたパスポート4の被読取面4aを撮像する撮像装置としてのカメラ13が配設され、カメラ13に対向する位置に、被読取面4aの像の光路をカメラ13に向けて屈曲させるための反射鏡14が配設されている。このように光路を曲げるのは、読取装置1をコンパクト化するのに有効であるためである。 As shown in FIG. 1 and FIG. 2, an image of the surface to be read 4 a of the passport 4 placed on the upper surface of the glass plate 3 is imaged at the center in the longitudinal direction of the upper light guide 8 and on the upper side thereof. A camera 13 as an imaging device is provided, and a reflecting mirror 14 for bending the optical path of the image of the read surface 4 a toward the camera 13 is provided at a position facing the camera 13. The reason for bending the optical path in this manner is effective for making the reading device 1 compact.
 図4は、本発明による、LED素子の配置を示す照明基板の正面図である。図4には、照明基板6に配設された各LED列7のそれぞれのLED素子の配置が示されている。上側導光体8に対応する部分には、上側導光体8の長手方向となる上側基準線L1に沿って図の中央部から右側へ、紫外線用の2つの紫外LED素子UV1・UV2、赤外線用の赤外LED素子IR1、可視光用としての白色LED素子WL1、2つの紫外LED素子UV3・UV4、赤外LED素子IR2、白色LED素子WL2がこの順で配設されている。また、上側導光体8の図の中央部から左側部分のLED列7の各LED素子は上記右側に対して左右対称に配置されている。 FIG. 4 is a front view of an illumination board showing the arrangement of LED elements according to the present invention. FIG. 4 shows the arrangement of the LED elements of each LED row 7 arranged on the illumination board 6. In the portion corresponding to the upper light guide 8, two ultraviolet LED elements UV 1 and UV 2 for ultraviolet rays, infrared rays are provided from the center to the right side along the upper reference line L 1 in the longitudinal direction of the upper light guide 8. Infrared LED element IR1, white LED element WL1 for visible light, two ultraviolet LED elements UV3 and UV4, infrared LED element IR2, and white LED element WL2 are arranged in this order. Moreover, each LED element of the LED row 7 of the left side part from the center part of the figure of the upper side light guide 8 is arrange | positioned left-right symmetrically with respect to the said right side.
 同様に、下側導光体9に対応する部分には、下側導光体9の長手方向となる下側基準線L2に沿って図の中央部から右側へ、4つの紫外LED素子UV5・UV6・UV7・UV8、赤外LED素子IR3、白色LED素子WL3、紫外LED素子UV9、白色LED素子WL4がこの順で配設されている。また、下側導光体9の図の中央部から左側部分のLED列7の各LED素子も上記右側に対して左右対称に配置されている。 Similarly, in the portion corresponding to the lower light guide 9, four ultraviolet LED elements UV 5. UV6 / UV7 / UV8, infrared LED element IR3, white LED element WL3, ultraviolet LED element UV9, and white LED element WL4 are arranged in this order. Further, the LED elements of the LED row 7 in the left part from the center of the lower light guide 9 in the figure are also arranged symmetrically with respect to the right side.
 先ず、モニタでの操作者の目視による確認や、イメージスキャナのように被読取面の画像を取得するのに適する白色光を照射する場合には中央側の白色LED素子WL1・WL3によりガラス板3(原稿面)の全面に対してできるだけ均一に照明することが望まれる。この場合、白色LED素子WL1・WL3の出射光を導光体8・9により十分に拡散すればむらを少なくすることができる。 First, when irradiating with white light suitable for visual confirmation by an operator on a monitor or obtaining an image of a surface to be read like an image scanner, the glass plate 3 is formed by white LED elements WL1 and WL3 on the center side. It is desirable to illuminate the entire (original surface) as uniformly as possible. In this case, unevenness can be reduced if the light emitted from the white LED elements WL1 and WL3 is sufficiently diffused by the light guides 8 and 9.
 図5は、出射光の光路を示す図2に対応する説明図、図6(a)は本発明における上側導光体8の出射面の外形を示す断面図、同(b)は下側導光体9の出射面の外形を示す断面図である。以降、図5を用いて各導光体8・9から出射される光の経路、特に迷光の発生過程について説明し、図6を用いて迷光の発生を防止する構成について説明する。上述のように、均一照明を行う目的で光を拡散させようとする場合、導光体8・9の出射面8d・9dの曲率の加減により拡散範囲を単純に大きくすることができるが、その拡散が過度になる、すなわち出射面8d・9dからの出射光の出射方向が広がり過ぎると、図5の破線の矢印Lm1や二点鎖線の矢印Lm2に示されるように、出射面8d・9dから出射された光の一部が反射鏡14に向かって進行し、反射鏡14で反射してからガラス板3に向かう光が生じる。そのような光Lm1・Lm2は、ガラス板3の下面3aで反射して、再度反射鏡14で反射することによりカメラ13に向かう場合がある。 FIG. 5 is an explanatory view corresponding to FIG. 2 showing the optical path of the outgoing light, FIG. 6A is a cross-sectional view showing the outer shape of the outgoing face of the upper light guide 8 in the present invention, and FIG. 3 is a cross-sectional view showing an outer shape of an emission surface of the light body 9. FIG. Hereinafter, the path of light emitted from each of the light guides 8 and 9, particularly the stray light generation process, will be described with reference to FIG. 5, and the configuration for preventing stray light generation will be described with reference to FIG. 6. As described above, when diffusing light for the purpose of uniform illumination, the diffusion range can be simply increased by adjusting the curvature of the exit surfaces 8d and 9d of the light guides 8 and 9, When the diffusion becomes excessive, that is, when the outgoing direction of the outgoing light from the outgoing faces 8d and 9d is excessively widened, as shown by the broken line arrow Lm1 and the two-dot chain line arrow Lm2 in FIG. Part of the emitted light travels toward the reflecting mirror 14, and light that is reflected by the reflecting mirror 14 and then travels toward the glass plate 3 is generated. Such light Lm1 and Lm2 may be reflected by the lower surface 3a of the glass plate 3 and reflected by the reflecting mirror 14 to be directed to the camera 13 in some cases.
 上記反射による迷光は、導光体8・9、カメラ13、反射鏡14の位置関係を調節することにより回避し得る場合もあるが、コンパクト化によるレイアウトの制限下で、ガラス板3をむら無くできるだけ均一に照射させようとする場合には上記位置関係の設計が複雑化してしまう。 The stray light due to the reflection may be avoided by adjusting the positional relationship among the light guides 8 and 9, the camera 13, and the reflecting mirror 14. When the irradiation is to be performed as uniformly as possible, the design of the positional relationship is complicated.
 それに対して本発明では、導光体8・9の出射面8d・9dの形状により対応している。上側導光体8の長手方向から見た断面における出射面8dを形成する外形線は、図6(a)に示されるように、反射鏡14側の範囲Aでは半径Raの円弧で形成され、ガラス板3側の範囲Bでは半径Rbの円弧で形成され、半径Raは半径Rbよりも小径にされており、白色LED素子WL1の光軸CLに対して非対称である。同様に、下側導光体9の長手方向から見た断面における出射面9dを形成する外形は、図6(b)に示されるように、反射鏡14側の範囲Cでは半径Rcの円弧で形成され、ガラス板3側の範囲Dでは半径Rdの円弧で形成され、半径Rcは半径Rdよりも小径にされており、白色LED素子WL3の光軸CLに対して非対称である。 On the other hand, in the present invention, it corresponds by the shape of the exit surfaces 8d and 9d of the light guides 8 and 9. As shown in FIG. 6A, the outline forming the exit surface 8d in the cross section viewed from the longitudinal direction of the upper light guide 8 is formed by an arc having a radius Ra in the range A on the reflecting mirror 14 side. In the range B on the glass plate 3 side, an arc having a radius Rb is formed. The radius Ra is smaller than the radius Rb and is asymmetric with respect to the optical axis CL of the white LED element WL1. Similarly, the outer shape forming the exit surface 9d in the cross section viewed from the longitudinal direction of the lower light guide 9 is an arc having a radius Rc in the range C on the reflecting mirror 14 side, as shown in FIG. 6B. In the range D on the glass plate 3 side, an arc having a radius Rd is formed. The radius Rc is smaller than the radius Rd and is asymmetric with respect to the optical axis CL of the white LED element WL3.
 これにより、各導光体8・9の出射面8d・9dの範囲A・Cから出射される出射光の最も反射鏡14側となる光Lw1・Lw2(図5の実線の矢印)の出射方向を、上記光Lm1・Lm2に対して導光体8・9の内側にそれぞれ角度θ1・θ2だけ戻す向きに傾けて出射させることができる。各角度θ1・θ2の大きさは各半径Ra・Rcの大きさにより任意に変えることができ、より小径にすることにより各光Lw1・Lw2の出射方向を反射鏡14からより一層遠ざけることができる。このようにして、上記したような反射によりカメラ13に入ってしまう光を無くすことができ、カメラ13の映像に白とびが生じることを防止することができる。 Thereby, the emission directions of the light Lw1 and Lw2 (solid arrows in FIG. 5) that are closest to the reflecting mirror 14 of the emitted light emitted from the ranges A and C of the emission surfaces 8d and 9d of the light guides 8 and 9 Can be tilted and emitted so as to return to the light Lm1 and Lm2 by angles θ1 and θ2, respectively, inside the light guides 8 and 9. The sizes of the angles θ1 and θ2 can be arbitrarily changed according to the sizes of the radii Ra and Rc, and the emission directions of the lights Lw1 and Lw2 can be further away from the reflecting mirror 14 by making the diameters smaller. . In this way, it is possible to eliminate the light that enters the camera 13 due to the reflection as described above, and it is possible to prevent the image of the camera 13 from being overexposed.
 そして、上記光Lw1・Lw2となる出射角度を確保するように各半径Ra・Rcを設定すると共に、ガラス板3に均一な照度となるように、範囲A・Cと、各半径Rb・Rd及び各範囲B・Dとを設定する。このように、異なる曲率の円弧面の組合せにより、各導光体8・9の出射面8d・9dから出射された後に直接的に反射鏡14に当たる光(Lm1・Lm2)を無くしつつ、ガラス板3への均一な照度分布を確保することができる。 Then, the radius Ra / Rc is set so as to secure the emission angle to be the light Lw1 / Lw2, and the ranges A / C and the radii Rb / Rd and the radii Rb / Rd and the glass plate 3 have uniform illuminance. Each range B and D is set. In this way, by combining arc surfaces having different curvatures, the light (Lm1 and Lm2) that directly hits the reflecting mirror 14 after being emitted from the exit surfaces 8d and 9d of the light guides 8 and 9 is eliminated. 3 can ensure a uniform illuminance distribution.
 上記実施形態では互いに異なる2つの半径Ra・Rb(Rc・Rd)で出射面8d(9d)を形成したが、3つ以上の異なる半径の組合せ、すなわち非単一の円弧面となるように出射面8d(9d)を形成するようにしてもよい。いずれにしても、異なる半径同士の境界では一方の半径から他方の半径に滑らかに変化する曲面を形成するとよい。 In the above embodiment, the exit surface 8d (9d) is formed with two different radii Ra · Rb (Rc · Rd). However, the exit surface 8d (9d) is a combination of three or more different radii, that is, a non-single arc surface. The surface 8d (9d) may be formed. In any case, it is preferable to form a curved surface that smoothly changes from one radius to the other at the boundary between different radii.
 なお、各出射面8d・9dにおいて、例えば各範囲の比A:B(C:D)を用いて各半径Ra・Rb(Rc・Rd)の加重平均からそれぞれの平均半径を求めた場合に、上側導光体8の出射面8dの平均半径に対して、下側導光体9の出射面9dの平均半径の方が小さくされている。上側導光体8よりも下側導光体9の方がガラス板3よりも遠いため、同じ半径の場合には下側導光体9からの照射範囲がより広がることから、上記したように下側導光体9の出射面9dの平均半径を小径化することにより、照射範囲を絞ることができ、各導光体8・9間にガラス板3に対する遠近の違いがあっても、照度範囲の広がりによる照度分布の不均一化を防止し得る。 In each of the exit surfaces 8d and 9d, for example, when the respective average radii are obtained from the weighted average of the radii Ra and Rb (Rc and Rd) using the ratio A: B (C: D) of each range, The average radius of the exit surface 9d of the lower light guide 9 is made smaller than the average radius of the exit surface 8d of the upper light guide 8. Since the lower light guide 9 is farther than the glass plate 3 than the upper light guide 8, the irradiation range from the lower light guide 9 is further expanded in the case of the same radius, as described above. By reducing the average radius of the exit surface 9d of the lower light guide 9, the irradiation range can be narrowed, and even if there is a difference in perspective with respect to the glass plate 3 between the light guides 8 and 9, the illuminance It is possible to prevent non-uniform illuminance distribution due to the spread of the range.
 本実施形態では、上記図4に示されるように、各LED列7を構成する複数のLED素子の中で、照明基板6の面上で各基準線L1・L2に対して直交する方向にずれて配置されているものがある。ここで、基準線L1は第1発光素子としての白色LED素子WL1の光軸CLと直交し、基準線L2は第1発光素子としての白色LED素子WL2の光軸CLと直交するものとする。図4は一実施形態であるが、具体的な配置について以下に説明する。なお、各LED素子WL・IR・UVの並び方向としての基準線L1(L2)の延在方向をX方向とし、各LED素子WL・IR・UVの並び方向から見て基準線L1(L2)に直交しかつ照明基板6の面に沿う方向をY方向とする。 In the present embodiment, as shown in FIG. 4 above, among the plurality of LED elements constituting each LED row 7, a shift is made in a direction orthogonal to the reference lines L 1 and L 2 on the surface of the illumination substrate 6. Some are arranged. Here, the reference line L1 is orthogonal to the optical axis CL of the white LED element WL1 as the first light emitting element, and the reference line L2 is orthogonal to the optical axis CL of the white LED element WL2 as the first light emitting element. Although FIG. 4 shows an embodiment, a specific arrangement will be described below. The extending direction of the reference line L1 (L2) as the arrangement direction of the LED elements WL, IR, and UV is the X direction, and the reference line L1 (L2) is viewed from the arrangement direction of the LED elements WL, IR, and UV. A direction perpendicular to the surface and along the surface of the illumination substrate 6 is defined as a Y direction.
 先ず上側導光体8に対応する各LED素子の基準線L1に対するY方向下側(ガラス板3から遠ざかる方向)のずれ(図4に示される-d)を説明する。なお、dは任意のずれ量である。中央部側の白色LED素子WL1が線上に位置し、その白色LED素子WL1の隣に設けられた第2発光素子としての赤外LED素子IR1は下側(図4の-d)にずれ、外側の赤外LED素子IR2は線上に位置している。4つの紫外LED素子UV1~4は下側にそれぞれ異なる大きさでずれている。 First, the deviation (−d shown in FIG. 4) of the lower side in the Y direction (the direction away from the glass plate 3) with respect to the reference line L1 of each LED element corresponding to the upper light guide 8 will be described. Note that d is an arbitrary shift amount. The white LED element WL1 on the center side is positioned on the line, and the infrared LED element IR1 as the second light emitting element provided next to the white LED element WL1 is shifted downward (−d in FIG. 4), The infrared LED element IR2 is positioned on the line. The four ultraviolet LED elements UV1 to UV4 are shifted in different sizes on the lower side.
 下側導光体9に対応する各LED素子の基準線L2に対する図4におけるY方向のずれにおいては、中央部側の白色LED素子WL3が線上に位置し、その隣の赤外LED素子IR3も線上に位置している。5つの紫外LED素子UV5~9は下側にそれぞれ異なる大きさでずれている。 In the deviation in the Y direction in FIG. 4 with respect to the reference line L2 of each LED element corresponding to the lower light guide 9, the white LED element WL3 on the center side is positioned on the line, and the adjacent infrared LED element IR3 is also Located on the line. The five ultraviolet LED elements UV5 to UV9 are shifted in different sizes on the lower side.
 このように各LED素子を配置しているのは、互いに配光特性の異なる白色光・赤外光・紫外光を、同一の導光体8・9(出射面8d・9d)を用いても、それぞれ略均一の照度分布でガラス板3を照射可能にするためであり、各ずれ量は略均一の照度分布となるようにそれぞれ適切な値に設定されている。 The LED elements are arranged in this way even when white light, infrared light, and ultraviolet light having different light distribution characteristics are used by using the same light guides 8 and 9 (emission surfaces 8d and 9d). This is to enable the glass plate 3 to be irradiated with a substantially uniform illuminance distribution, and each shift amount is set to an appropriate value so as to obtain a substantially uniform illuminance distribution.
 なお、最も外側の各白色LED素子WL2・WL4は、図3に示されているように導光体8・9の長手方向両端部に設けられた各突部11・12に対応させて配置されている。突部11・12には、導光体8・9の長手方向外側に背面部11a・12aが設けられ、導光体8・9の長手方向内側に後傾状態の第2出射面11b・12bが設けられている。白色LED素子WL2・WL4の出射光は、突部11・12に入り、さらに背面部11a・12aの内面で反射して第2出射面11b・12bから導光体8・9の中央部側に向けて斜めに出射されるようになっている。これにより、照射角度の違いに応じて色変化するOVI(Optically Variable Ink)が施されているパスポート等の真贋判定に対応し得る。 The outermost white LED elements WL2 and WL4 are arranged in correspondence with the protrusions 11 and 12 provided at both ends in the longitudinal direction of the light guides 8 and 9, as shown in FIG. ing. The protrusions 11 and 12 are provided with rear surface portions 11a and 12a on the outer side in the longitudinal direction of the light guides 8 and 9, and the second emission surfaces 11b and 12b in a rearward inclined state on the inner side in the longitudinal direction of the light guides 8 and 9. Is provided. Light emitted from the white LED elements WL2 and WL4 enters the protrusions 11 and 12, and is further reflected by the inner surfaces of the back surface portions 11a and 12a, and is directed from the second light emitting surfaces 11b and 12b to the central portion side of the light guides 8 and 9. The light is emitted obliquely toward. Accordingly, it is possible to cope with authenticity determination of a passport or the like to which OVI (Optically Variable Ink) whose color changes according to the difference in irradiation angle is applied.
 上記白色LED素子WL2・WL4以外の各LED素子の配置について説明する。先ず、ガラス板3における白色光の照度分布が略均一になるように、各白色LED素子WL1・WL3を配置する。 The arrangement of the LED elements other than the white LED elements WL2 and WL4 will be described. First, the white LED elements WL1 and WL3 are arranged so that the illuminance distribution of white light on the glass plate 3 is substantially uniform.
 導光体8・9は基準線L1・L2に沿って延在するかまぼこ型断面を有する形状であり、出射面8a・9aの湾曲方向(Y方向)に対する照度分布の均一化は上記したように複数の半径の円弧面の組合せで容易に実現可能であるが、基準線L1・L2の延在方向の照度分布は広がりを出射面8d・9dの曲がりで調整することができない。そのため、ガラス板3に対する各導光体8・9の遠近による出射光の広がりの違いに応じて、本実施形態では、図4に示されるように上側導光体8に対応する白色LED素子WL1はガラス板3の中央寄りに配置され、下側導光体9に対応する白色LED素子WL3は白色LED素子WL1よりは外側に配置されている。 The light guides 8 and 9 have a kamaboko-shaped cross section extending along the reference lines L1 and L2, and the illuminance distribution is uniformized with respect to the bending direction (Y direction) of the exit surfaces 8a and 9a as described above. Although it can be easily realized by a combination of arc surfaces having a plurality of radii, the illuminance distribution in the extending direction of the reference lines L1 and L2 cannot be adjusted by the curvature of the exit surfaces 8d and 9d. Therefore, according to the difference in the spread of the emitted light depending on the distance of the light guides 8 and 9 with respect to the glass plate 3, in the present embodiment, the white LED element WL1 corresponding to the upper light guide 8 as shown in FIG. Is arranged closer to the center of the glass plate 3, and the white LED element WL3 corresponding to the lower light guide 9 is arranged outside the white LED element WL1.
 図7は、本発明の白色LED素子と赤外LED素子との配光をグラフで示した特性図である。以降、赤外LED素子IR1~3について説明する。赤外LED素子IRの配光特性は図7の実線で示されるように白色LED素子WLの配光特性(二点鎖線)に比べて狭く、さらに赤外光の波長は可視光(白色光)よりも長いため、赤外光は白色光よりも媒質境界で屈折し難い。そのため、同一レンズ(プリズム)を用いた場合に、赤外光は白色光に対して狭い範囲にしか照射できない。なお、照射範囲としては、導光体8・9の出射面8d・9dの湾曲方向及び直線方向(導光体8・9の長手方向)の両方が対象となる。 FIG. 7 is a characteristic diagram showing the light distribution of the white LED element and the infrared LED element of the present invention in a graph. Hereinafter, the infrared LED elements IR1 to IR3 will be described. The light distribution characteristic of the infrared LED element IR is narrower than the light distribution characteristic (two-dot chain line) of the white LED element WL as shown by the solid line in FIG. 7, and the wavelength of the infrared light is visible light (white light). Therefore, infrared light is less likely to be refracted at the medium boundary than white light. Therefore, when the same lens (prism) is used, infrared light can be irradiated only in a narrow range with respect to white light. In addition, as an irradiation range, both the curved direction and the linear direction (longitudinal direction of the light guides 8 and 9) of the output surfaces 8d and 9d of the light guides 8 and 9 are targets.
 上記したように導光体8・9の出射面8d・9dを、白色LED素子WLによる照度分布の均一化を優先させた形状に形成し、その導光体8・9を用いた場合の各赤外LED素子IR1~IR3の配置を以下に説明する。 As described above, the exit surfaces 8d and 9d of the light guides 8 and 9 are formed in a shape that prioritizes the uniform illumination distribution by the white LED elements WL, and each of the light guides 8 and 9 is used. The arrangement of the infrared LED elements IR1 to IR3 will be described below.
 上側導光体8において、赤外LED素子IRを、基本的に白色LED素子WLとなるべく同じ位置にするべく、白色LED素子WLの隣に配置する。これにより、導光体8の長手方向内側の赤外LED素子IR1によりガラス板3の中央側を照射し、導光体8の長手方向外側の赤外LED素子IR2によりガラス板3の側縁側を照射する。 In the upper light guide 8, the infrared LED element IR is arranged next to the white LED element WL so as to be basically at the same position as the white LED element WL. Thereby, the center side of the glass plate 3 is irradiated by the infrared LED element IR1 inside the light guide 8 in the longitudinal direction, and the side edge side of the glass plate 3 is irradiated by the infrared LED element IR2 outside the longitudinal direction of the light guide 8. Irradiate.
 そして、上記したように、上側導光体8の外側の赤外LED素子IR2は基準線L1上に配置されているが、内側の赤外LED素子IR1は基準線L1に対して下側に所定量ずらして配置されている。 As described above, the outer infrared LED element IR2 of the upper light guide 8 is disposed on the reference line L1, but the inner infrared LED element IR1 is located below the reference line L1. A fixed amount is shifted.
 図8は、赤外LED素子の位置をずらした状態を示す説明図である。上述のように、ずらして配置された各赤外LED素子IR1・IR2による上側導光体8からの出射光の出射方向を図8に示す。図8において、実線は基準線L1から下側(即ち、出射面8dの半径が小さい側)にずらした内側の赤外LED素子IR1を示し、二点鎖線は基準線L1上に位置する外側の赤外LED素子IR2を示し、それぞれの出射光を矢印で示している。図に示されるように、両赤外LED素子IR1・IR2による出射光の上側は略同一方向に出射されるが、各出射光の下側は基準線L1上に配置された赤外LED素子IR2の方が下側に広がって出射される。 FIG. 8 is an explanatory view showing a state in which the position of the infrared LED element is shifted. As described above, the emission direction of the emitted light from the upper light guide 8 by the infrared LED elements IR1 and IR2 arranged in a shifted manner is shown in FIG. In FIG. 8, the solid line indicates the inner infrared LED element IR1 shifted downward from the reference line L1 (that is, the side where the radius of the emission surface 8d is small), and the two-dot chain line indicates the outer side located on the reference line L1. The infrared LED element IR2 is shown, and each outgoing light is indicated by an arrow. As shown in the figure, the upper side of the emitted light from both infrared LED elements IR1 and IR2 is emitted in substantially the same direction, but the lower side of each emitted light is the infrared LED element IR2 arranged on the reference line L1. Is spread out downward and emitted.
 出射面8dの上側の範囲(半径Rb)では、上記したように下側の範囲よりも半径が大きく(Rb>Ra)かつガラス板3に向くようになるため、出射光位置のずれに対する出射面8dでの出射方向の変化はそれ程大きくならない。なお、両赤外LED素子IR1・IR2は入射面8bに対して相対的に平行移動関係にあり、各赤外LED素子IR1・IR2からの各出射光の光軸は互いに平行となっている。 In the upper range (radius Rb) of the exit surface 8d, the radius is larger than the lower range (Rb> Ra) and faces the glass plate 3 as described above. The change in the emission direction at 8d is not so great. The two infrared LED elements IR1 and IR2 are in a relative translational relationship with respect to the incident surface 8b, and the optical axes of the emitted lights from the infrared LED elements IR1 and IR2 are parallel to each other.
 図9は、赤外LED素子による照射範囲の分布を示す説明図である。以降、図9を用いて、各赤外LED素子IR1・IR2によるガラス板3における各照射範囲S1・S2について説明する。なお、ガラス板3の図における縦横方向を用いて照射範囲を説明する。 FIG. 9 is an explanatory diagram showing the distribution of the irradiation range by the infrared LED element. Hereinafter, the irradiation ranges S1 and S2 on the glass plate 3 by the infrared LED elements IR1 and IR2 will be described with reference to FIG. In addition, an irradiation range is demonstrated using the vertical and horizontal direction in the figure of the glass plate 3. FIG.
 基準線L1上に配置された赤外LED素子IR2による照射範囲S2は、上記したように拡散された出射となるため図に示されるように縦長となる。それに対して基準線L1から下側にずれて配置された赤外LED素子IR1による照射範囲S1は、上記したように上側に狭められるため、図に示されるようにガラス板3の導光体8寄りかつ縦方向に短縮された範囲となる。なお、赤外LED素子IR1は導光体8の長手方向中央寄りに配置されており、その照射範囲S1はガラス板3の横方向中央部分となるため、赤外LED素子IR1だけではガラス板3の横方向の側縁近傍に対しては照度が低下する。 The irradiation range S2 by the infrared LED element IR2 arranged on the reference line L1 becomes a vertically long as shown in the figure because it becomes a diffused emission as described above. On the other hand, since the irradiation range S1 by the infrared LED element IR1 arranged to be shifted downward from the reference line L1 is narrowed to the upper side as described above, the light guide 8 of the glass plate 3 as shown in the figure. It becomes the range shortened in the vertical direction. The infrared LED element IR1 is arranged near the center of the light guide 8 in the longitudinal direction, and the irradiation range S1 is the central portion in the horizontal direction of the glass plate 3, so that the infrared LED element IR1 alone is the glass plate 3. Illuminance decreases for the vicinity of the side edge in the horizontal direction.
 それを補うため、外側の赤外LED素子IR2によりガラス板3の側縁近傍を照射する。外側の赤外LED素子IR2は基準線L1上に配置されて、図8に示されるように出射面8dから出射される出射光は下側に広がるため、その照射範囲は図9に示されるように縦長となり、ガラス板3の側縁近傍が縦方向の全長に亘って照射され得る。 In order to compensate for this, the vicinity of the side edge of the glass plate 3 is irradiated by the outer infrared LED element IR2. The outer infrared LED element IR2 is arranged on the reference line L1, and the emission light emitted from the emission surface 8d spreads downward as shown in FIG. 8, so that the irradiation range is as shown in FIG. Thus, the vicinity of the side edge of the glass plate 3 can be irradiated over the entire length in the vertical direction.
 一方、上側導光体8に対応して配置された赤外LED素子IR1はガラス板3の手前側(上側導光体8寄り)部分を照射しているため、ガラス板3の奥(上側導光体8から遠い)側の照度が低下してしまう。そこで、下側導光体9に対応して配置された赤外LED素子IR3により、図9のS3に示されるようにガラス板3の奥側を照射する。 On the other hand, since the infrared LED element IR1 arranged corresponding to the upper light guide 8 irradiates the front side (near the upper light guide 8) of the glass plate 3, the rear side (upper guide) of the glass plate 3 is irradiated. The illuminance on the side far from the light body 8 is reduced. Therefore, the rear side of the glass plate 3 is irradiated by the infrared LED element IR3 arranged corresponding to the lower light guide 9 as shown in S3 of FIG.
 なお、図9の各照射範囲S1~S3を示す境界ではガラス板3の全面を照射仕切れていないように図示されているが、各照射範囲S1~S3の大体の範囲を示すだけであり、また境界の外側で急激に照度が低下するものではなく、境界の外側部分でも必要な照度が得られている。特に、照射範囲S1・S3の間の部分は、それぞれの照度の低下した部分が重なるため十分な照度が得られる。このようにして、図9に示されるように、各赤外LED素子IR1~IR3による各照射範囲S1~S3によりガラス板3の全面を十分な照度でかつ略均一に照射することができた。 Note that although the boundaries indicating the irradiation ranges S1 to S3 in FIG. 9 are illustrated so that the entire surface of the glass plate 3 is not partitioned, only the general ranges of the irradiation ranges S1 to S3 are shown. The illuminance does not drop sharply outside the boundary, and the necessary illuminance is obtained even at the outer part of the boundary. In particular, in the portion between the irradiation ranges S1 and S3, sufficient illuminance is obtained because the portions where the illuminances are reduced overlap. In this way, as shown in FIG. 9, the entire surface of the glass plate 3 could be irradiated with sufficient illuminance and substantially uniformly by the irradiation ranges S1 to S3 by the infrared LED elements IR1 to IR3.
 次に、紫外LED素子UVの配置要領について説明する。紫外光の波長は白色光よりも短いため、紫外光は白色光よりも屈折し易く、同一レンズ(プリズム)を用いた場合に紫外光は白色光に対してやや集光する。しかしながら、一般に入手容易な紫外LED素子UVの配光特性は白色LED素子WLの配光特性に比べてかなり広く、導光体8・9の出射面8d・9dから出射される紫外光の出射範囲は白色光よりも紫外光の方が広くなるため、紫外光は、出射面8d・9dの湾曲方向と直線方向(導光体8・9の長手方向)との両方向で白色光よりも拡散される。 Next, the arrangement procedure of the ultraviolet LED element UV will be described. Since the wavelength of the ultraviolet light is shorter than that of the white light, the ultraviolet light is more easily refracted than the white light, and when the same lens (prism) is used, the ultraviolet light is slightly condensed with respect to the white light. However, the light distribution characteristic of the UV LED element UV, which is generally easily available, is considerably wider than the light distribution characteristic of the white LED element WL, and the emission range of the ultraviolet light emitted from the emission surfaces 8d and 9d of the light guides 8 and 9 is large. Since UV light is wider than white light, UV light is diffused more than white light in both the curved direction of the exit surfaces 8d and 9d and the linear direction (longitudinal direction of the light guides 8 and 9). The
 図10は、紫外LED素子の位置をずらした状態を示す説明図である。以降、図10を用いて、赤外LED素子IRと同様に、導光体8・9の出射面8d・9dを、白色LED素子WLによる照度分布の均一化を優先させた形状に形成し、その導光体8・9を用いた場合の各紫外LED素子UV1~UV9の配置を以下に説明する。 FIG. 10 is an explanatory view showing a state in which the position of the ultraviolet LED element is shifted. Thereafter, using FIG. 10, similarly to the infrared LED element IR, the emission surfaces 8d and 9d of the light guides 8 and 9 are formed in a shape that prioritizes the uniform illumination distribution by the white LED elements WL, The arrangement of the ultraviolet LED elements UV1 to UV9 when the light guides 8 and 9 are used will be described below.
 上側導光体8において、紫外LED素子UVを基準線L1上に配置した場合には、上記したような紫外光の配光特性により、図10の二点鎖線で示されるように出射面8dからの出射光は大きく広がって出射されて、照度が低下するという問題が生じる。また、紫外LED素子UVの配光分布の広さと紫外光の屈折率の大きさとにより、導光体8の下側に向かうように大きく屈折して進む光があると、その光により反射鏡14を直接照射してしまう虞が生じる。紫外光の場合であっても、反射鏡14を直接照射する光があると、その反射光が迷光となり、カメラ13に入ってしまう場合がある。 In the upper light guide 8, when the ultraviolet LED element UV is disposed on the reference line L 1, the light distribution characteristics of the ultraviolet light as described above, from the emission surface 8 d as shown by the two-dot chain line in FIG. The emitted light is greatly spread and emitted, resulting in a problem that the illuminance decreases. Further, if there is light that is greatly refracted toward the lower side of the light guide 8 due to the wide light distribution of the ultraviolet LED element UV and the refractive index of the ultraviolet light, the reflecting mirror 14 is caused by the light. May be directly irradiated. Even in the case of ultraviolet light, if there is light directly illuminating the reflecting mirror 14, the reflected light may become stray light and enter the camera 13.
 それに対して、紫外LED素子UV1のように基準線L1に対して下側に所定量ずらしたものでは、図10の実線で示されるように、出射面8dからの出射光は、基準線L1上に配置された場合と比較して、上側では略同方向であるが、下側では上側に向かうようになる。これにより、紫外LED素子UV1によるガラス板3に対する照射範囲が狭められるため照度低下を防止し得ると共に、導光体8の下側の出射光の出射方向が上側に向かうため反射鏡14を直接照射してしまうことを防止し得る。 On the other hand, in the case of the ultraviolet LED element UV1 shifted by a predetermined amount with respect to the reference line L1, as shown by the solid line in FIG. 10, the emitted light from the exit surface 8d is on the reference line L1. Compared with the case of being arranged in the upper side, the upper side is substantially the same direction, but the lower side is directed upward. Thereby, since the irradiation range with respect to the glass plate 3 by the ultraviolet LED element UV1 is narrowed, the illuminance can be prevented from being lowered, and since the emission direction of the emitted light on the lower side of the light guide 8 is directed upward, the reflecting mirror 14 is directly irradiated. Can be prevented.
 したがって、導光体8に対応して配置する各紫外LED素子UV1~UV4は、上記したように基準線L1に対して下側(即ち、出射面8dの半径が小さい側)にずらして配置されている。さらに、隣り合う紫外LED素子UV1・UV2は、基準線L1に対してY方向に相対的にずれるように配置されている。これは、隣り合うもの同士がY方向に対して同じ場合にはY方向における照射位置が同じになるため、個々のY方向における照度むらがある場合に強調されてむらが発生することを防止するためである。同様に隣り合う紫外LED素子UV3・UV4もY方向に相対的にずれて配置されている。なお、ずれ量は、照射範囲が大きく変化しない範囲でできるだけ大きくなる程度である。このようにして、隣り合うもの同士の配光分布による相互干渉をできるだけ低減することができる。 Therefore, each of the ultraviolet LED elements UV1 to UV4 arranged corresponding to the light guide 8 is arranged so as to be shifted downward (that is, on the side where the radius of the emission surface 8d is small) with respect to the reference line L1, as described above. ing. Further, the adjacent ultraviolet LED elements UV1 and UV2 are arranged so as to be shifted relative to the reference line L1 in the Y direction. This is because when the adjacent objects are the same in the Y direction, the irradiation position in the Y direction is the same. Therefore, when there is uneven illuminance in each Y direction, it is emphasized and unevenness is prevented from occurring. Because. Similarly, the adjacent ultraviolet LED elements UV3 and UV4 are also relatively displaced in the Y direction. The amount of deviation is as large as possible within a range where the irradiation range does not change greatly. In this way, mutual interference due to the light distribution between adjacent ones can be reduced as much as possible.
 同様に、下側導光体9においても、各紫外LED素子UV5~UV9が基準線L2に対して下側にずらしてそれぞれ配置されていると共に、隣り合うもの同士の間でもY方向にずれるようにされている。なお、各紫外LED素子UV1~UV9は他のLED素子よりも多く配置されているが、それは、一般に入手容易な紫外LED素子の出力が相対的に低いことによる。 Similarly, in the lower light guide 9, each of the ultraviolet LED elements UV5 to UV9 is shifted downward with respect to the reference line L2, and is also shifted in the Y direction between adjacent ones. Has been. Each of the ultraviolet LED elements UV1 to UV9 is arranged more than the other LED elements because the output of the generally easily available ultraviolet LED elements is relatively low.
 また、本実施形態の読取装置1はOCR(Optical Character Reader)として機能する。パスポートや免許証等の読み取りにおけるOCRとしては真贋判定に用いる場合があり、その場合にはできるだけ高精度に読み取りするべく、ガラス板3の全面に対する照度分布をできるだけ均一にすることが望まれる。なお、OCRとして読み取りを行う場合の照明には白色光を用いる。 Also, the reader 1 of this embodiment functions as an OCR (Optical Character Reader). OCR for reading passports and licenses may be used for authenticity determination. In that case, it is desirable to make the illuminance distribution on the entire surface of the glass plate 3 as uniform as possible in order to read it as accurately as possible. Note that white light is used for illumination when reading as OCR.
 図11は、カメラのレンズの影響による画像における照度分布を示す説明図である。図11に示すように、一般的にカメラ13により撮像された映像は、いわゆる口径食やコサイン4乗則の影響を受けて画面における周辺光量が低下するという問題がある。撮像範囲の対象をガラス板3の全面として、カメラ13のレンズにより集光される中央部分Scとなる例えば図11の破線の円内では十分な光量が得られるが、その範囲Scの外側の周辺部分Ssでは光量が低下する。画面(ガラス板3)の全面で均一な光量となるようにするためには、周辺部分Ssの光量を例えば中央部分Scの光量よりも10~20%増量することが考えられる。 FIG. 11 is an explanatory diagram showing the illuminance distribution in the image due to the influence of the camera lens. As shown in FIG. 11, generally, an image captured by the camera 13 has a problem that the peripheral light amount on the screen decreases due to the influence of so-called vignetting and the cosine fourth power law. A sufficient amount of light can be obtained in the circle of the broken line in FIG. 11, for example, which is the central portion Sc collected by the lens of the camera 13 with the object of the imaging range as the entire surface of the glass plate 3, but the periphery outside the range Sc The amount of light decreases in the portion Ss. In order to obtain a uniform light amount on the entire surface of the screen (glass plate 3), it is conceivable to increase the light amount of the peripheral portion Ss by, for example, 10 to 20% more than the light amount of the central portion Sc.
 図12(a)は上側導光体に設けたプリズムを示す説明図、同(b)は下側導光体に設けたプリズムを示す説明図である。以降、図12(a),(b)を用いて原稿面の照度分布を調整する構成について説明する。なお、照度分布の調整には、上述の周辺光量の低下に対応する構成と、本発明に係る読取装置の構造に起因する原稿面中央部の照度低下を防止する構成の2つが含まれる。また、以降の説明では、図12(a),(b)において図面の右側にカメラ13が位置するものとする。先ず、上側導光体8の入射面8bの白色LED素子WL1に対向する部分には、図12(a)に示されるように、入射面8bに対して凹設して形成された斜面により構成される光路屈折部としての第1プリズム21と、同様に凹設された複数の斜面により構成される第2光路屈折部としての第2プリズム22とが設けられている。本実施形態では導光体8・9の長手方向の中央部に対応する位置に発光素子は配置されていないため(図1、図4を参照)、この長手方向中央部に対向する原稿面は照度の点では不利になるが、第1プリズム21は、白色LED素子WL1に対してガラス板(原稿面)3の側縁部側にて凹設された斜面からなり、白色LED素子WL1から上記側縁部側に向けて出射された光Lw3を中央部側に屈折させる。これにより、ガラス板3の外側に漏れる光をガラス板3の周縁部内側部分に集光させることができ、その部分の照度を高めることができる。 12 (a) is an explanatory view showing a prism provided on the upper light guide, and FIG. 12 (b) is an explanatory view showing a prism provided on the lower light guide. Hereinafter, a configuration for adjusting the illuminance distribution on the document surface will be described with reference to FIGS. The adjustment of the illuminance distribution includes two configurations: a configuration corresponding to the above-described decrease in the amount of peripheral light, and a configuration that prevents a decrease in illuminance at the central portion of the document surface due to the structure of the reading apparatus according to the present invention. In the following description, it is assumed that the camera 13 is positioned on the right side of the drawings in FIGS. First, the portion facing the white LED element WL1 on the incident surface 8b of the upper light guide 8 is constituted by an inclined surface formed to be concave with respect to the incident surface 8b, as shown in FIG. 12 (a). The first prism 21 serving as the optical path refracting section and the second prism 22 serving as the second optical path refracting section configured by a plurality of similarly inclined slopes are provided. In the present embodiment, since the light emitting element is not disposed at a position corresponding to the central portion in the longitudinal direction of the light guides 8 and 9 (see FIGS. 1 and 4), the document surface facing the central portion in the longitudinal direction is Although it is disadvantageous in terms of illuminance, the first prism 21 is formed of a slope that is recessed on the side edge side of the glass plate (original surface) 3 with respect to the white LED element WL1, and the above-described white LED element WL1 The light Lw3 emitted toward the side edge is refracted toward the center. Thereby, the light which leaks to the outer side of the glass plate 3 can be condensed on the peripheral part inner side part of the glass plate 3, and the illumination intensity of the part can be raised.
 一方、第2プリズム22は、第1プリズム21に対してガラス板3の中央部側にて連続的に凹設された複数の小さな斜面からなり、各斜面はピッチp1~p4で設けられ、全体として鋸歯状に形成されている。この第2プリズム22は、白色LED素子WL1から上記中央部側に向けて出射された光Lw4を分散させて屈折させる。上側導光体8はガラス板3に近く光の走行距離が短いため、第2プリズム22が無い場合にはガラス板3の中央部に光が十分に当たらず、カメラ13の直上部分の照度が極端に低下する。それに対して、第1プリズム21よりも入射面8bに対する傾斜角θ2が大きい第2プリズム22によりガラス板3の中央部寄りに屈折させることにより、ガラス板3の中央部の照度低下を防止することができる。なお、第2プリズムを第1のプリズムよりも狭ピッチで設けたのは、導光体のサイズに制約がある中で第2プリズムに比較的大きな傾斜角θ2を付与するための措置である。 On the other hand, the second prism 22 is composed of a plurality of small slopes recessed continuously on the central side of the glass plate 3 with respect to the first prism 21, and each slope is provided with pitches p1 to p4. It is formed in a sawtooth shape. The second prism 22 disperses and refracts the light Lw4 emitted from the white LED element WL1 toward the central portion. Since the upper light guide 8 is close to the glass plate 3 and has a short light traveling distance, the light does not sufficiently strike the center of the glass plate 3 when the second prism 22 is not provided, and the illuminance directly above the camera 13 is high. Extremely low. In contrast, the second prism 22 having a larger inclination angle θ2 with respect to the incident surface 8b than the first prism 21 is refracted toward the center of the glass plate 3 to prevent a decrease in illuminance at the center of the glass plate 3. Can do. The reason why the second prism is provided at a narrower pitch than that of the first prism is a measure for imparting a relatively large tilt angle θ2 to the second prism while the size of the light guide is limited.
 次に、下側導光体9の入射面9bの白色LED素子WL2に対向する部分には、図12(b)に示されるように、入射面9bに対して凹設して形成された斜面により構成される光路屈折部としての第3プリズム23が設けられている。第3プリズム23は、上記第1プリズム21と同様に設けられており、ガラス板3の外側に漏れる光Lw5をガラス板3の周縁部内側部分に集光させて、その部分の照度を高めることができる。 Next, as shown in FIG. 12B, a slope formed to be concave with respect to the incident surface 9b in the portion facing the white LED element WL2 of the incident surface 9b of the lower light guide 9. A third prism 23 is provided as an optical path refracting section constituted by The third prism 23 is provided in the same manner as the first prism 21, and concentrates the light Lw5 leaking outside the glass plate 3 on the inner peripheral portion of the glass plate 3 to increase the illuminance of that portion. Can do.
 一方、下側導光体9においては、第3プリズム23とは反対側のガラス板3の中央部側には入射面9bを形成する平面である。これは、下側導光体9はガラス板3から遠いため、第2プリズム22のような光路屈折部を設けずに平面のままでも、白色LED素子WL2からガラス板3の中央部側に向けて出射された光Lw6がガラス板3の中央部に届き得ることによる。 On the other hand, the lower light guide 9 is a flat surface on which the incident surface 9b is formed on the center side of the glass plate 3 opposite to the third prism 23. This is because, since the lower light guide 9 is far from the glass plate 3, the white LED element WL <b> 2 is directed toward the center of the glass plate 3 even if it is flat without providing an optical path refracting portion like the second prism 22. This is because the light Lw6 emitted in this way can reach the center of the glass plate 3.
 図13は、白色LED素子による照度を高めた範囲の分布を示す説明図であり、各プリズム21~23を設けたことによる各白色LED素子WL1・WL2による照度分布を示したものである。上側導光体8の左右の白色LED素子WL1による照度の強い範囲S4は、図13に示されるように、ガラス板3の上側導光体8側となる図における略上側半分である。通常、カメラ13の直上部分を照明する光線は、カメラ13をよけるような光線となるため、大幅な照度低下となる。しかしながら、上記したように第2プリズム22により、カメラ13の直上部分の範囲に対しては強い照度ではないが一様に分散された光が照射されるため、照度低下は抑制される。このような照度分布となるように、白色LED素子WL1のX方向の位置と第1及び第2プリズム21・22の形状が設定されている。プリズム(光路屈折部)の形状としては、入射面8bに対する斜面の傾斜角度θ、斜面の長さL、斜面部分を複数連続的に設けた場合のピッチp1~p4等(図12(a)を参照。ただし傾斜角度θについては、同図θ1,θ2が相当する)であり、それらを適宜設定する。 FIG. 13 is an explanatory diagram showing the distribution of the range in which the illuminance is increased by the white LED elements, and shows the illuminance distribution by the white LED elements WL1 and WL2 due to the provision of the prisms 21-23. The strong illuminance range S4 by the left and right white LED elements WL1 of the upper light guide 8 is substantially the upper half in the figure on the upper light guide 8 side of the glass plate 3, as shown in FIG. Usually, the light beam that illuminates the portion directly above the camera 13 is a light beam that can avoid the camera 13, resulting in a significant decrease in illuminance. However, as described above, the second prism 22 irradiates the light directly distributed over the range of the portion directly above the camera 13, but the intensity of illumination is suppressed. The position of the white LED element WL1 in the X direction and the shapes of the first and second prisms 21 and 22 are set so as to obtain such an illuminance distribution. As the shape of the prism (optical path refracting portion), the inclination angle θ of the inclined surface with respect to the incident surface 8b, the length L of the inclined surface, the pitches p1 to p4 when a plurality of inclined portions are continuously provided, and the like (FIG. 12A) However, the inclination angle θ corresponds to θ1 and θ2 in FIG.
 下側導光体9の左右の白色LED素子WL3による照度の強い範囲S5は、図13に示されるように、ガラス板3の下側導光体9から遠い側となる図における略下側半分の全面に亘っている。この部分は、上記図11における周辺部分Ssに該当することから、その全域に亘って照度を高くするとよいため、図13の範囲S4のようにガラス板3の中央寄りの部分に対しても同程度に照射するように、白色LED素子WL3のX方向の位置及び第3プリズム面23の形状(上記と同様に傾斜角度θ、斜面の長さL)が設定されている。 The strong illuminance range S5 by the left and right white LED elements WL3 of the lower light guide 9 is a substantially lower half in the figure on the side farther from the lower light guide 9 of the glass plate 3, as shown in FIG. Across the entire surface. Since this portion corresponds to the peripheral portion Ss in FIG. 11, the illuminance should be increased over the entire region. Therefore, the same applies to the portion closer to the center of the glass plate 3 as in the range S4 in FIG. The position of the white LED element WL3 in the X direction and the shape of the third prism surface 23 (slope angle θ and slope length L as described above) are set so as to irradiate to the extent.
 このようにして、両導光体8・9の各入射面8b・9bに第1~第3プリズム21~23を設けるという簡単な構造で、ガラス板3に対する所望の照度分布を実現することができる。特に、ガラス板3に対する遠近の違いに対して、各プリズム21~23の形状を変えて対応可能であることから、汎用性が高い。 In this way, a desired illuminance distribution on the glass plate 3 can be realized with a simple structure in which the first to third prisms 21 to 23 are provided on the incident surfaces 8b and 9b of the light guides 8 and 9, respectively. it can. In particular, since it is possible to cope with the difference in perspective with respect to the glass plate 3 by changing the shape of each prism 21 to 23, the versatility is high.
 なお上記図示例では、下側導光体9にはガラス板3の中央部側に複数の短い斜面からなるプリズム(第2プリズム22)を設けなかったが、読取装置の仕様やガラス板3への距離に応じて、第2プリズム22とは個々の斜面の長さやピッチを変えた複数の斜面からなるプリズムを設けてもよい。 In the illustrated example, the lower light guide 9 is not provided with a plurality of short sloped prisms (second prisms 22) on the center side of the glass plate 3, but the specification of the reading device and the glass plate 3 are not included. Depending on the distance, the second prism 22 may be provided with a prism composed of a plurality of slopes in which the length and pitch of each slope are changed.
 以上、本発明を、その好適形態実施例について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施例により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。 Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to such embodiments so that those skilled in the art can easily understand, and departs from the spirit of the present invention. It is possible to change appropriately within the range not to be. In addition, all the components shown in the above embodiment are not necessarily essential, and can be appropriately selected without departing from the gist of the present invention.
 例えば、上記実施形態では複数のLED素子を配設したものについて説明したが、用途が限定される場合にはいずれか1つのLED素子のみを設けたものであってもよい。 For example, in the above-described embodiment, the case where a plurality of LED elements are arranged has been described. However, when the application is limited, only one LED element may be provided.
 例えば、実施形態の説明では光路屈折部として、入射する光軸に直交する面に対して傾斜する斜面により構成したものをプリズムと称したが、光路屈折部としては、光路を屈せさせる機能を有する光学デバイスであればよく、入射面8b・9bに対して凹設または凸設した斜面形状に限られるものではない。また、上記実施形態では2列の導光体8・9を配設したものについて説明したが、3列以上配設したものであってもよく、または用途が限定される場合には1列であってもよい。 For example, in the description of the embodiment, the optical path refracting portion is constituted by a slope that is inclined with respect to a plane orthogonal to the incident optical axis, but is called a prism, but the optical path refracting portion has a function of bending the optical path. Any optical device may be used, and the present invention is not limited to a sloped shape that is concave or convex with respect to the incident surfaces 8b and 9b. In the above embodiment, the light guides 8 and 9 arranged in two rows have been described. However, the light guides 8 and 9 may be arranged in three rows or more, or in a single row when the application is limited. There may be.
 例えば、上記実施形態では2列の導光体8・9を配設したものについて説明したが、3列以上配設したものであってもよく、または用途が限定される場合には1列であってもよい。
(第2の実施の形態)
For example, in the above embodiment, a case where two rows of light guides 8 and 9 are provided has been described. However, three or more rows of light guides 8 and 9 may be provided, or one row may be used when the application is limited. There may be.
(Second Embodiment)
 この第2の実施の形態において、上記第1の実施の形態と同様の部分には同一の符合を付してその詳しい説明を省略する。 In the second embodiment, the same parts as those in the first embodiment are given the same reference numerals, and detailed description thereof is omitted.
 図2に示した照明基板6には、上下2列にそれぞれ複数の発光素子としてのLED7が、その長手方向に直線状に並べられ(図4等を参照)、かつ各列のLED7の出射面をそれぞれ覆うように棒状の各導光体8・9が列毎に配設されている。また図15に示されるように、照明基板6と各導光体8・9との間には、照明基板6に配置されたLED7部分に対応する開口部が設けられた樹脂製のスペーサー16が配置されている。スペーサー16に設けた開口部の壁面は光出射方向に広がるテーパー形状を成しており、LED7の出射光はこの壁面で反射されて効率よく導光体8・9の中に導かれる。 On the illumination board 6 shown in FIG. 2, LEDs 7 as a plurality of light-emitting elements are arranged in a straight line in the longitudinal direction in two rows (see FIG. 4 and the like), and the emission surfaces of the LEDs 7 in each row Each of the rod-shaped light guides 8 and 9 is arranged for each row so as to cover each. Further, as shown in FIG. 15, a resin spacer 16 provided with an opening corresponding to the LED 7 portion arranged on the illumination board 6 is provided between the illumination board 6 and each light guide 8, 9. Has been placed. The wall surface of the opening provided in the spacer 16 has a tapered shape that spreads in the light emission direction, and the light emitted from the LED 7 is reflected by this wall surface and efficiently guided into the light guides 8 and 9.
 図14は、本発明による読取装置の導光体の全体図である。上側導光体8は、その正面図を示す図14(a)に示されるように、長手方向の中央部において、その左右が線対称となる形状を有しており、長手方向の中央部と両端部との3箇所に設けられた各取付孔8aを用いて照明基板6にねじ止めされ、同様に下側導光体9も、その正面図を示す図14(b)に示されるように線対称となる形状を有し、長手方向の中央部と両端部との3箇所に設けられた各取付孔9aを用いて照明基板6にねじ止めされている(各ねじは図示省略)。このように導光体8・9はそれぞれ一体物として構成されているが、照明基板6において、各導光体8・9の長手方向中央部に対応する位置にはLED7が配置されておらず、当該部分は光学的な機能を持たないため、長手方向中央部にて各導光体8・9を分断する構成としてもよい。このようにすれば、分断部分に対応する照明基板6に電気部品を配置することができるので、照明基板6の実装効率が向上する。 FIG. 14 is an overall view of the light guide of the reading apparatus according to the present invention. As shown in FIG. 14 (a) showing the front view, the upper light guide 8 has a shape in which the left and right sides thereof are axisymmetric at the center in the longitudinal direction. As shown in FIG. 14 (b) showing the front view, the lower light guide 9 is also screwed to the illumination board 6 using the mounting holes 8a provided at three positions with both ends. It has a shape that is line symmetric and is screwed to the illumination board 6 using the respective mounting holes 9a provided at three locations in the longitudinal center and both ends (each screw is not shown). In this way, the light guides 8 and 9 are each configured as a single body, but the LED 7 is not disposed at the position corresponding to the central portion in the longitudinal direction of each of the light guides 8 and 9 on the illumination board 6. Since the portion does not have an optical function, the light guides 8 and 9 may be divided at the central portion in the longitudinal direction. In this way, electrical components can be arranged on the illumination board 6 corresponding to the divided portion, so that the mounting efficiency of the illumination board 6 is improved.
 図1・図2に示されているように、上側導光体8の長手方向中央かつその上側となる位置にはガラス板3の上面に載置されたパスポート4の被読取面4aを撮像する撮像装置としてのカメラ13が配設され、カメラ13に対向する位置に、被読取面4aの像の光路をカメラ13に向けて曲げるための反射鏡14が配設されている。このように光路を曲げるのは、読取装置1をコンパクト化するのに有効であるためである。 As shown in FIG. 1 and FIG. 2, an image of the surface to be read 4 a of the passport 4 placed on the upper surface of the glass plate 3 is imaged at the center in the longitudinal direction of the upper light guide 8 and on the upper side thereof. A camera 13 as an imaging device is provided, and a reflecting mirror 14 for bending the optical path of the image of the read surface 4 a toward the camera 13 is provided at a position facing the camera 13. The reason for bending the optical path in this manner is effective for making the reading device 1 compact.
 各導光体8・9に対応する各LED7の配置について図15を参照して説明する。図15は、本発明による読取装置の導光体の要部側断面図である。なお、導光体8は、その中央部で分けた両側で左右対称配置であってよいため、図3、図15、図16ではそれぞれ片側を代表して示している。 The arrangement of the LEDs 7 corresponding to the light guides 8 and 9 will be described with reference to FIG. FIG. 15 is a cross-sectional side view of the main part of the light guide of the reading apparatus according to the present invention. In addition, since the light guide 8 may be symmetrically arranged on both sides divided by the central portion, FIGS. 3, 15 and 16 show one side as a representative.
 上側導光体8では、図15(a)に示されるように、図の右側となる一端側から図の左側となる中央部に至る方向で、可視光用としての白色LED7a、赤外線用の赤外LED7b、紫外線用の3つの紫外LED7c、白色LED7a、赤外LED7b、紫外LED7cがこの順で配設されている。下側導光体9では、図15(b)に示されるように、上側導光体8と同様に一端側から中央部に至る方向で、白色LED7a、紫外LED7c、白色LED7a、赤外LED7b、4つの紫外LED7cがこの順で配設されている。 In the upper light guide 8, as shown in FIG. 15 (a), a white LED 7a for visible light and a red for infrared light are provided in a direction from one end side which is the right side of the drawing to the central portion which is the left side of the drawing. An outer LED 7b, three ultraviolet LEDs 7c for ultraviolet rays, a white LED 7a, an infrared LED 7b, and an ultraviolet LED 7c are arranged in this order. In the lower light guide 9, as shown in FIG. 15 (b), the white LED 7 a, the ultraviolet LED 7 c, the white LED 7 a, the infrared LED 7 b, in the direction from one end side to the center as in the upper light guide 8, Four ultraviolet LEDs 7c are arranged in this order.
 導光体8・9のLED7と対峙する入射面8b・9bは、LED7の出射光の光軸に対して直交する平面に形成されているが、入射面8b・9bの一部には部分的に凹ませた形状のプリズム面8c・9cが複数箇所にそれぞれ異なる形状(プリズム面が、導光体8・9の一端側あるいは中央部の方向を向く傾斜面)で設けられている。また、両導光体8・9の入射面8b・9bとは相反する側には、導光体8・9の長手方向に沿う軸線周りに弧状をなしかつその長手方向に直線状に延在する湾曲面からなる出射面8d・9dが設けられている。出射面8d・9dは、例えばシリンドリカルレンズの円筒面で形成されていてよい。 The incident surfaces 8b and 9b facing the LED 7 of the light guides 8 and 9 are formed on a plane orthogonal to the optical axis of the emitted light of the LED 7, but are partially on the incident surfaces 8b and 9b. Recessed prism surfaces 8c and 9c are provided in a plurality of different shapes (the prism surfaces are inclined surfaces facing one end side or the center of the light guides 8 and 9). Further, on the side opposite to the incident surfaces 8b and 9b of the light guides 8 and 9, an arc is formed around the axis along the longitudinal direction of the light guides 8 and 9, and linearly extends in the longitudinal direction. Outgoing surfaces 8d and 9d made of curved surfaces are provided. The emission surfaces 8d and 9d may be formed by a cylindrical surface of a cylindrical lens, for example.
 LED7は点光源として考えられ、その出射光は一般的には最大光量となる光軸を中心として放射状に出射される(光軸上の光量が若干低く設計されたものも存在する)。例えば図15(b)に示されるように、導光体9として図示する範囲の略中央に配置された白色LED7aを代表して説明すると、実線の矢印で示されるように、その光軸Cw方向に出射される光L1は導光体9の入射面9bに直交して入射し、出射面9cから光軸Cw方向に直進して出射される。また、白色LED7aから導光体9の中央部側に向けて光軸Cwに対して斜めに出射される光L2は、入射面9bに斜めに入射し、出射面9bからもその傾いた角度で導光体9の中央側に向けて出射される。 The LED 7 is considered as a point light source, and the emitted light is generally emitted radially around the optical axis that is the maximum light quantity (some light quantities on the optical axis are designed to be slightly lower). For example, as shown in FIG. 15B, the white LED 7a disposed as a light guide 9 in the approximate center of the range illustrated will be described as a representative. As indicated by a solid arrow, the direction of the optical axis Cw The light L1 emitted to the light enters the light incident surface 9b perpendicularly to the light guide 9, and travels straight from the light emission surface 9c in the direction of the optical axis Cw. Further, the light L2 emitted obliquely with respect to the optical axis Cw from the white LED 7a toward the central portion of the light guide 9 is incident obliquely on the incident surface 9b and is inclined at an inclined angle from the output surface 9b. The light is emitted toward the center of the light guide 9.
 一方、白色LED7aから導光体9の中央部側とは相反する外側に向けて光軸Cwに対して斜めに出射される光で上記プリズム面9cに入射した光L3は、プリズム面9cで屈折する。プリズム面9cは、光L3を光軸Cwと略平行に出射させるように屈折させる角度となる傾斜面で形成されている。これにより、図示例の白色LED7aから外側に向けて出射された光L3を光軸Cw方向に直進させることができ、光の必要以上の拡散を防止して、効率の良い照射を行うことができる。各プリズム面8c・9cの傾斜面は、外側に向けて出射される光をそれぞれの位置に応じて導光体8・9の中央側に屈折させるように各LED7に対応してそれぞれ設定されている。 On the other hand, the light L3 incident on the prism surface 9c with light emitted obliquely with respect to the optical axis Cw from the white LED 7a toward the outer side opposite to the central portion of the light guide 9 is refracted by the prism surface 9c. To do. The prism surface 9c is formed as an inclined surface having an angle for refracting the light L3 so as to be emitted substantially parallel to the optical axis Cw. Thereby, the light L3 emitted toward the outside from the white LED 7a in the illustrated example can be caused to travel straight in the direction of the optical axis Cw, and the light can be efficiently diffused by preventing unnecessary diffusion of light. . The inclined surfaces of the prism surfaces 8c and 9c are set corresponding to the LEDs 7 so that the light emitted toward the outside is refracted toward the center of the light guides 8 and 9 according to the respective positions. Yes.
 図3は、本発明による読取装置の導光体の要部斜視図である。図3及び図15に示されるように、導光体8・9の長手方向両端部には出射方向変更部としての突部11・12が出射面8d・9dに対して角状に突出するように一体に形成されている。突部11・12は、図15で、入射面8b・9bから立ち上がり、出射面8d・9dの上方に至るまで湾曲形状に形成された背面部11a・12aと、背面部11a・12aの頂部(出射面8d・9dの上方)から出射面8d・9dに至るように、出射面8d・9dに対し後傾するように斜め上向きの第2出射面11b・12bとを有する。また、第2出射面11b・12bは、図14に併せて示されるように、出射面8d・9dの最頂部(入射面8b・9bから最も高い部分)に対応する部分が最も膨出する凸型曲面に形成されている。なお、各導光体8・9は、透明な材質として例えばPMMAに代表されるアクリル樹脂により形成されていてよい。 FIG. 3 is a perspective view of the main part of the light guide of the reading apparatus according to the present invention. As shown in FIG. 3 and FIG. 15, protrusions 11 and 12 serving as emission direction changing portions protrude at the opposite ends in the longitudinal direction of the light guides 8 and 9 in a square shape with respect to the emission surfaces 8 d and 9 d. Are integrally formed. In FIG. 15, the protrusions 11 and 12 rise from the incident surfaces 8 b and 9 b and are curved in a shape extending up to the exit surfaces 8 d and 9 d, and the top portions of the rear portions 11 a and 12 a ( The second emission surfaces 11b and 12b that are obliquely upward so as to incline backward with respect to the emission surfaces 8d and 9d so as to reach the emission surfaces 8d and 9d from above the emission surfaces 8d and 9d. Further, as shown in FIG. 14, the second exit surfaces 11b and 12b are convex so that the portions corresponding to the topmost portions (the highest portions from the entrance surfaces 8b and 9b) of the exit surfaces 8d and 9d are most bulged. It is formed on a curved mold surface. In addition, each light guide 8 * 9 may be formed by the acrylic resin represented by PMMA, for example as a transparent material.
 各突部11・12の直下には白色LED7aが配設されており、その白色LED7aから出射された光は図のL4に示されるように、背面部11a・12aで反射して第2出射面11b・12bから出射される。このように出射光は、主に導光体8・9の長手方向に向けて角度変換が施されるが、導光体8・9は立体物であり、導光体から出射される光は例えば図15の紙面法線方向にも光量分布を有しているから、実際は第2出射面11b・12bから出射される光は、全体特性として対象物載置部であるガラス板3の対角線方向に角度変換が施されることになる。この角度変換の程度は、背面11a・12aの傾斜(曲率)と第2出射面11b・12bの上向き角度とを任意の値に設計することにより、第2出射面11b・12bからの出射方向を自由に設定でき、ガラス板3への照射角度を任意に設定することができる。 A white LED 7a is disposed immediately below each of the protrusions 11 and 12, and the light emitted from the white LED 7a is reflected by the back surface portions 11a and 12a as shown by L4 in the figure, and is emitted from the second emission surface. It is emitted from 11b and 12b. In this way, the outgoing light undergoes angle conversion mainly in the longitudinal direction of the light guides 8 and 9, but the light guides 8 and 9 are three-dimensional objects, and the light emitted from the light guides is For example, since the light quantity distribution is also present in the normal direction of the paper surface of FIG. 15, the light emitted from the second emission surfaces 11 b and 12 b is actually the diagonal direction of the glass plate 3 that is the target object mounting portion as a whole characteristic. The angle conversion is applied to. The degree of this angle conversion is determined by designing the inclination (curvature) of the rear surfaces 11a and 12a and the upward angle of the second emission surfaces 11b and 12b to arbitrary values, thereby changing the emission direction from the second emission surfaces 11b and 12b. It can be set freely, and the irradiation angle to the glass plate 3 can be arbitrarily set.
 図16は、本発明による読取装置の導光体の突部形状を示す要部拡大図である。本図示例では、上側導光体8の突部11からの出射光によりガラス板3の左右近傍側を照射し、その照射位置に対してガラス板3の中央寄り側を下側導光体9の突部12からの出射光により照射するように分担させている。そのために、図16に示されるように各突部11・12の内部の反射面を形成する各背面11a、12aの曲率を部分的に変えている。上側導光体8の突部11の背面11aには、図16(a)に示されように突部11の頂部側から背面11aの外側に凸となる半径R1の曲面と、それに対して内側に凸(外側に凹)となる半径R2の曲面と、続けて内側に凸となる半径R3の曲面と、出射面8dに至るまで外側に凸となる半径R4の曲面とが連続的に形成されている。各半径の大小関係は、R1<R4、R2>R3であるが、これに限られるものではなく、第2出射面11bからの出射光の出射方向に応じて適宜変更してよい。 FIG. 16 is an enlarged view of a main part showing the shape of the protrusion of the light guide of the reading apparatus according to the present invention. In the illustrated example, the left and right adjacent sides of the glass plate 3 are irradiated with the light emitted from the protrusions 11 of the upper light guide 8, and the lower light guide 9 is located near the center of the glass plate 3 with respect to the irradiation position. It is made to share so that it may irradiate with the emitted light from the protrusion 12 of this. For this purpose, as shown in FIG. 16, the curvatures of the rear surfaces 11a and 12a forming the reflective surfaces inside the protrusions 11 and 12 are partially changed. On the back surface 11a of the protrusion 11 of the upper light guide 8, as shown in FIG. 16 (a), a curved surface with a radius R1 that protrudes from the top side of the protrusion 11 to the outside of the back surface 11a, and the inside A curved surface having a radius R2 that is convex to the outside (concave outward), a curved surface having a radius R3 that is convex inward, and a curved surface having a radius R4 that is convex outward until reaching the exit surface 8d are continuously formed. ing. The magnitude relationship between the radii is R1 <R4, R2> R3, but is not limited to this, and may be appropriately changed according to the emission direction of the emitted light from the second emission surface 11b.
 突部11において、白色LED7aに近い側の半径R4を大きくしておくことにより、その部分で反射した光の出射角度(光軸Cwに対する角度)を小さくすることができ、第2出射面11bからの出射角度も小さくなる。また、大きな半径R1のままだとその面で反射した光の出射方向が集中するようになってしまうため、中間部の内側に凸となる半径R2・R3の各曲面を設けて背面11aで反射する出射角度を変えることによりやや拡散させている。このようにして、第2出射面11bからの出射角度(光軸Cwに対する角度)を小さくすることができる。 By increasing the radius R4 on the side close to the white LED 7a in the protrusion 11, the emission angle of light reflected at that portion (the angle with respect to the optical axis Cw) can be reduced, and from the second emission surface 11b. The emission angle is also reduced. Further, if the radius R1 remains large, the emission direction of the light reflected on the surface will be concentrated. Therefore, the curved surfaces of the radii R2 and R3 which are convex inside the intermediate portion are provided and reflected on the back surface 11a. It is diffused slightly by changing the outgoing angle. Thus, the emission angle from the second emission surface 11b (the angle with respect to the optical axis Cw) can be reduced.
 一方、突部12では、図16(b)に示されるように背面12aの曲面形状は外側に凸のままであるが、突部12の頂部側では半径R5の曲面とし、白色LED7a側では半径R6(<R5)の曲面としている。なお、両半径R5・R6の切り替わり部分では滑らかに変化するようにされている。入射面9b側の半径R6を半径R5よりも小さくすることにより、半径R6の部分で反射した光は半径R5の部分で反射した光よりも第2出射面12bからの光の出射角度(第2出射面(11b,12b)に関して「出射角度」と表記するときは、LED7aの光軸に対する角度を意味するものとする。以下同じ)が大きくなる。 On the other hand, in the protrusion 12, as shown in FIG. 16B, the curved shape of the back surface 12a remains convex outward, but on the top side of the protrusion 12, the curved surface has a radius R5, and on the white LED 7a side, the radius The curved surface is R6 (<R5). In addition, it is made to change smoothly in the switching part of both radii R5 * R6. By making the radius R6 on the incident surface 9b side smaller than the radius R5, the light reflected by the portion of the radius R6 has an emission angle of the light from the second emission surface 12b (second) than the light reflected by the portion of the radius R5. When the “exit angle” is expressed with respect to the exit surfaces (11b, 12b), it means the angle with respect to the optical axis of the LED 7a (the same applies hereinafter).
 なお、上記したように第2出射面11b・12bが凸型曲面状に形成されていることにより、第2出射面11・12bからの出射光は図18に示されるように上面視で扇形になり、ガラス板3の平面に対してある程度の拡がりをもって照射することができる。したがって、この第2出射面11b・12bの凸型曲面の曲率を任意に設定することにより、ガラス板3における照射範囲を適度な範囲となるように設計できる。 As described above, since the second emission surfaces 11b and 12b are formed in a convex curved surface, the light emitted from the second emission surfaces 11 and 12b is fan-shaped when viewed from above as shown in FIG. Thus, irradiation can be performed with a certain extent to the plane of the glass plate 3. Therefore, the irradiation range in the glass plate 3 can be designed to be an appropriate range by arbitrarily setting the curvature of the convex curved surfaces of the second emission surfaces 11b and 12b.
 このように構成された導光体8・9を用いた照射要領について以下に示す。 The irradiation procedure using the light guides 8 and 9 thus configured will be described below.
 先ず、図17に本読取装置の制御回路210の概略ブロック図を示す。制御回路210は、図に示されるように、全体の制御を行うメイン制御部210aと、メイン制御部210aに接続された画像処理部であるISP制御部210b・ICチップ読取制御部210c・アンテナ制御部210d・上側LED制御部210e・下側LED制御部210fと、ISP制御部210bに接続されたカメラ制御部210gとを有し、例えば読取スイッチ(図示省略)により駆動する。カメラ制御部210gにはカメラ13が接続され、上側LED制御部210eには上側導光体8に対応して配設された各LED7a・7b・7cが接続されていると共に、下側LED制御部210fには下側導光体9に対応して配設された各LED7a・7b・7cが接続されている。 First, FIG. 17 shows a schematic block diagram of the control circuit 210 of the reading apparatus. As shown in the figure, the control circuit 210 includes a main control unit 210a that performs overall control, an ISP control unit 210b that is an image processing unit connected to the main control unit 210a, an IC chip reading control unit 210c, and antenna control. 210d, upper LED control unit 210e, lower LED control unit 210f, and camera control unit 210g connected to ISP control unit 210b, which are driven by, for example, a reading switch (not shown). The camera 13 is connected to the camera control unit 210g, and the LEDs 7a, 7b, 7c disposed corresponding to the upper light guide 8 are connected to the upper LED control unit 210e, and the lower LED control unit Each LED 7a, 7b, 7c arranged corresponding to the lower light guide 9 is connected to 210f.
 メイン制御部210aでは、ガラス板3に載置されているパスポート4の読取処理をプログラムにより実行する。カメラ制御部210gではカメラ13の撮影制御及び画像信号の取り込みを行い、その画像信号をISP制御部210bにより画像処理し、画像処理したデータをメイン制御部210aを介して外部モニタ(図示省略)に出力する。ICチップ読取制御部210c及びアンテナ制御部210dは、パスポート4に埋め込まれているICチップとの無線接続による認証等を行い、例えばコード信号が正規のものであるか否かをメイン制御部210aで判定する。 In the main controller 210a, the reading process of the passport 4 placed on the glass plate 3 is executed by a program. The camera control unit 210g performs shooting control of the camera 13 and capture of an image signal, the image signal is subjected to image processing by the ISP control unit 210b, and the image processed data is sent to an external monitor (not shown) via the main control unit 210a. Output. The IC chip reading control unit 210c and the antenna control unit 210d perform authentication by wireless connection with the IC chip embedded in the passport 4, and the main control unit 210a determines whether the code signal is legitimate, for example. judge.
 上記したように、パスポート4には偽造防止のためにOVI処理したものがあり、OVIに対しては色が変化することにより偽造の有無を判断することができる。そこで、白色光の照射角度を変えるべく、メイン制御部210aにおいて、左側方照射、右側方照射、左右照射、全面照射の4つのモードを用意して様々な方向から被読取面4aを照射する。メイン制御部210aは、上側・下側LED制御部210e・210fに対して各モードに応じて点灯すべきLED7を選択的に駆動する。 As described above, some passports 4 have been subjected to OVI processing to prevent forgery, and the presence or absence of forgery can be determined by changing the color of OVI. Therefore, in order to change the irradiation angle of white light, the main control unit 210a prepares four modes of left side irradiation, right side irradiation, left and right irradiation, and full surface irradiation, and irradiates the read surface 4a from various directions. The main controller 210a selectively drives the LEDs 7 to be lit according to each mode with respect to the upper and lower LED controllers 210e and 210f.
 図18は左側方照射モードによる照射要領を示す平面図、図19は右側方照射モードによる照射要領を示す平面図、図20は左右照射モードによる照射要領を示す平面図、図21は全面照射モードによる照射要領を示す平面図である。左側方照射モードの場合には、図14における左側の突部11・12に対応する位置に配設された白色LED7aを点灯し、図18の矢印に示されるように白色光をガラス板3の左側から中央部に向けて斜めに照射する。右側方照射モードの場合には、図14における右側の突部11・12に対応する位置に配設された白色LED7aを点灯し、図19の矢印に示されるように白色光をガラス板3の右側から中央部に向けて斜めに照射する。左右照射モードの場合には、左右の両突部11・12に対応する位置に配設された白色LED7aを点灯し、図20の矢印に示されるように白色光をガラス板3の左右両側から中央部に向けてそれぞれ斜めに照射する。全面照射モードの場合には、図14における左右の突部11・12間(出射面8b・9bの中央寄り部分)に対応する位置に配設された白色LED7aを点灯し、出射面8b・9bから図21の矢印に示されるように白色光を左右方向で略均等になるようにしてガラス板3の全体を照射する。 18 is a plan view showing an irradiation procedure in the left side irradiation mode, FIG. 19 is a plan view showing an irradiation procedure in the right side irradiation mode, FIG. 20 is a plan view showing an irradiation procedure in the left and right irradiation mode, and FIG. It is a top view which shows the irradiation point by. In the case of the left side irradiation mode, the white LED 7a disposed at a position corresponding to the left protrusions 11 and 12 in FIG. 14 is turned on, and white light is emitted from the glass plate 3 as indicated by an arrow in FIG. Irradiate obliquely from the left to the center. In the right side irradiation mode, the white LED 7a disposed at the position corresponding to the right protrusions 11 and 12 in FIG. 14 is turned on, and white light is emitted from the glass plate 3 as indicated by the arrows in FIG. Irradiate obliquely from the right to the center. In the case of the left / right irradiation mode, the white LEDs 7a disposed at the positions corresponding to the left and right protrusions 11 and 12 are turned on, and white light is emitted from both the left and right sides of the glass plate 3 as indicated by arrows in FIG. Irradiate obliquely toward the center. In the case of the full-surface irradiation mode, the white LED 7a disposed at a position corresponding to the space between the left and right protrusions 11 and 12 (the portion closer to the center of the emission surfaces 8b and 9b) in FIG. As shown by the arrows in FIG. 21, the entire glass plate 3 is irradiated with white light so as to be substantially equal in the left-right direction.
 それぞれのモードにおけるモニタ画面での画像を視認することにより、文字や模様等の色変化を確認して偽造の有無を判断し得る。また、下側導光体9では、上記したようにより小さい半径R6の部分で反射した光は半径R5の部分で反射した光よりも第2出射面12bからの光の出射角度が大きくなるという第2出射面12bからの出射角度に大きな変化が生じるため、OVIの写る可能性が高くなり、モニタでの検査が容易となる。 By visually recognizing the image on the monitor screen in each mode, it is possible to check the color change of characters, patterns, etc. and determine the presence or absence of forgery. Further, in the lower light guide 9, as described above, the light reflected from the portion having the smaller radius R6 has a larger light emission angle from the second emission surface 12b than the light reflected from the portion having the radius R5. Since a large change occurs in the exit angle from the two exit surfaces 12b, the possibility that the OVI is captured is increased and the inspection on the monitor is facilitated.
 しかしながら、下側導光体9の第2出射面12bからの照射範囲を、上側導光体8の第2出射面11bよりも出射角度を大きくしていることから、例えば図18の破線A1に示されるようになり、ガラス板3の中央部分を対角線上に広く照射できるが、図18における左側、特に左下側の角の部分に照度が低下する領域ができるようになってしまう。それに対して、上側導光体8の第2出射面11bからの出射角度を小さくしていることから、その照射範囲は図18の破線A2で示されるようになり、上記照度低下となる範囲を十分カバーすることができるようになっている。このようにして、左側方照射モードにおいてガラス板3(被読取面4a)の略全面に対して照射することができ、OVIの位置が定かでないものに対しても確認可能な照射を行うことができる。 However, since the emission range from the second emission surface 12b of the lower light guide 9 is set larger than the second emission surface 11b of the upper light guide 8, for example, the broken line A1 in FIG. As shown in the figure, the central portion of the glass plate 3 can be widely irradiated diagonally, but an area where the illuminance decreases is formed on the left side in FIG. 18, particularly in the lower left corner. On the other hand, since the emission angle from the second emission surface 11b of the upper light guide 8 is reduced, the irradiation range is as shown by the broken line A2 in FIG. It can be covered enough. In this way, it is possible to irradiate substantially the entire surface of the glass plate 3 (read surface 4a) in the left-side irradiation mode, and to perform irradiation that can be confirmed even when the position of the OVI is not clear. it can.
 また、図19の右側方照射モードの場合には上記図18とは左右対称の逆パターンでの照射となり、照射角度の違いに応じて色変化するOVIに対して対応し得る。このように左右いずれかからの照射により一方向からの光を強くすることができ、その方向からの照射に応じて色を変えるように設けられたOVIをより一層視認し易くすることができる。 In the case of the right side irradiation mode in FIG. 19, the irradiation is performed in a reverse pattern symmetrical to that in FIG. 18, and it is possible to cope with OVI that changes in color according to the difference in irradiation angle. In this way, light from one direction can be strengthened by irradiation from either the left or right side, and OVI provided to change the color according to irradiation from that direction can be made even easier to see.
 また、図20の左右照射モードの場合には、上記例では順番に行うモードの1つとしたが、一度に左右からの照射を行ってOVIの処理が施されていることが確認できれば、この左右照射モードを先行して行い、そのモードで確認できれば左右別々のモードを省略するようにすることもできる。左右両方から一度に照射した場合には片方ずつの場合に比べてOVIの視認性が劣る可能性があるが、OVIの視認においては、画質は問われず、また若干むらがあってもよく、色変化が視認できればよいので、OVIの有無の確認に十分対応し得る。 In the case of the left and right irradiation mode in FIG. 20, in the above example, one of the modes is performed in order. However, if it is confirmed that the OVI processing is performed by performing irradiation from the left and right at the same time, If the irradiation mode is performed in advance, and confirmation can be made in that mode, the left and right modes can be omitted. When irradiating from both the left and right at the same time, the visibility of OVI may be inferior compared to the case of one at a time. However, in the visual recognition of OVI, the image quality is not questioned and there may be some unevenness. Since it is only necessary to visually recognize the change, it can sufficiently cope with confirmation of the presence or absence of OVI.
 そして、図21の全面照射モードの場合には、図21における略全範囲(破線A3)を照射し、かつ上記各モードでOVIが確認できなかった場合に導光体8・9の中央部分からの照射方向となることから、その角度で視認可能となるOVIの確認ができるようになる。さらに、ガラス板3の全面を略均一に照射することができ、これにより画質が向上することから、OCR(Optical Character Reader)を実施することができ、それによる真贋判定を行うことができる。このようにして、パスポート4を回転させることなく各方向からの照射を行ってOVIの確認を行うことができ、その作業が容易になる。 In the case of the entire surface irradiation mode in FIG. 21, when the substantially entire range (broken line A3) in FIG. 21 is irradiated and OVI cannot be confirmed in each of the above modes, from the central portion of the light guides 8 and 9 Therefore, the OVI that can be viewed at that angle can be confirmed. Furthermore, since the entire surface of the glass plate 3 can be irradiated substantially uniformly, thereby improving the image quality, OCR (Optical Character Reader) can be performed, and authenticity determination can be performed. In this way, the OVI can be confirmed by performing irradiation from each direction without rotating the passport 4, and the work becomes easy.
 また、上記実施形態では、各突部11・12からの各照射範囲(図18・図19の破線A1・A2)がガラス板3の全範囲を十分な照度で照射できない場合について示したが、白色LED7aの能力向上などにより導光体8・9の片方ずつでもガラス板3の全範囲を照射できる場合には、導光体8・9別に照射するようにしてもよい。それにより、異なる方向からの照射による明確な違いを確認することができる。 In the above embodiment, each irradiation range from the projections 11 and 12 (broken lines A1 and A2 in FIGS. 18 and 19) shows the case where the entire range of the glass plate 3 cannot be irradiated with sufficient illuminance. If the entire range of the glass plate 3 can be irradiated by one of the light guides 8 and 9 by improving the capability of the white LED 7a or the like, the light guides 8 and 9 may be irradiated separately. Thereby, a clear difference due to irradiation from different directions can be confirmed.
 なお、本実施形態ではパスポート4を対象としたが、本照明装置およびそれを備える読取装置における対象としてはパスポート4に限られるものではなく、免許証、有価証券等にも適用し得る。 In the present embodiment, the passport 4 is targeted. However, the subject in the illumination device and the reader provided with the illumination device is not limited to the passport 4, and may be applied to a license, securities, and the like.
 また、複数の発光素子として、パスポートの真贋判定としてOVI用に白色LED7aを設けると共に文字認識等の読取処理に適する赤外LED7bを設け、かつ偽造防止用の蛍光インクを目視可能にする紫外LED7cを設けており、上記白色光の4つのモードの他に赤外光照射モードと紫外光照射モードとを設定し、各モードを自動的にまたは選択スイッチ操作により順番に実行することにより、各光に応じた確認を容易に行うことができる。なお、読取対象の仕様によっては赤外LED7bや紫外LED7cを設けなくてもよい。また、照射方向を変えるだけの場合には、導光体8・9の両端部の各突部11・12に対応する白色LED7aだけでもよい。 Further, as a plurality of light emitting elements, a white LED 7a is provided for OVI for passport authenticity determination, an infrared LED 7b suitable for reading processing such as character recognition, and an ultraviolet LED 7c that makes it possible to visually check forgery prevention fluorescent ink. In addition to the four modes of white light described above, an infrared light irradiation mode and an ultraviolet light irradiation mode are set, and each mode is automatically or sequentially executed by a selection switch operation. Confirmation can be easily performed. Note that the infrared LED 7b and the ultraviolet LED 7c may not be provided depending on the specification of the reading target. Moreover, when only changing an irradiation direction, only white LED 7a corresponding to each protrusion 11 * 12 of the both ends of the light guide 8 * 9 may be sufficient.
 以上、本発明を、その好適形態実施例について説明したが、当業者であれば容易に理解できるように、本発明はこのような実施例により限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更可能である。また、上記実施形態に示した構成要素は必ずしも全てが必須なものではなく、本発明の趣旨を逸脱しない限りにおいて適宜取捨選択することが可能である。本出願のパリ条約に基づく優先権主張の基礎出願の全内容及び本出願中で引用された従来技術の全内容は、それに言及したことをもって本願明細書の一部とする。 Although the present invention has been described above with reference to preferred embodiments, the present invention is not limited to such embodiments so that those skilled in the art can easily understand, and departs from the spirit of the present invention. It is possible to change appropriately within the range not to be. In addition, all the components shown in the above embodiment are not necessarily essential, and can be appropriately selected without departing from the gist of the present invention. The entire contents of the priority application based on the Paris Convention of the present application and the prior art cited in the present application are incorporated herein by reference.
 本発明にかかる読取装置は、読取対象物載置部で反射した光が撮像装置から外れるようにすることが必要なコピー機やスキャナ等の用途にも適用できる。 The reading apparatus according to the present invention can be applied to uses such as a copying machine and a scanner that require that the light reflected by the reading object placing unit be separated from the imaging apparatus.
1 読取装置
3 ガラス板(読取対象物載置部)
4 パスポート(読取対象物)
4a 被読取面
6 照明基板(照明装置)
7 LED列(発光素子・照明装置)
8 上側導光体
8b・9b 入射面
8d・9d 出射面
9 下側導光体
9b 入射面
11・12 突部(光出射方向変更部)
11a・12a 背面部(反射面)
11b・12b 第2出射面
13 カメラ(撮像装置)
14 反射鏡
16 スペーサー
21 第1プリズム
22 第2プリズム
23 第3プリズム
IR1~IR3 赤色LED素子(発光素子)
UV1~UV9 紫外LED素子(発光素子)
WL1~WL4 白色LED素子(発光素子)
1 Reading Device 3 Glass Plate (Reading Object Placement Unit)
4 Passport (object to be read)
4a Read surface 6 Illumination board (illumination device)
7 LED row (light emitting element / lighting device)
8 Upper light guides 8b and 9b Incident surfaces 8d and 9d Emission surface 9 Lower light guide 9b Incident surfaces 11 and 12 Projection (light emission direction changing portion)
11a, 12a Back (reflective surface)
11b and 12b Second exit surface 13 Camera (imaging device)
14 Reflecting mirror 16 Spacer 21 First prism 22 Second prism 23 Third prism IR1 to IR3 Red LED element (light emitting element)
UV1 ~ UV9 UV LED element (light emitting element)
WL1 to WL4 White LED elements (light emitting elements)

Claims (20)

  1.  読取対象物が載置される透明な読取対象物載置部と、
     前記読取対象物載置部に載置された前記読取対象物を照明する照明装置と、
     前記照明装置により照明された前記読取対象物を撮像する撮像装置とを備える読取装置であって、
     前記照明装置は、発光素子と、前記発光素子からの光を前記読取対象物載置部に向けて導く棒状の導光体とを備え、
     前記導光体は、前記読取対象物載置部に対向する側に出射面を有し、
     前記導光体を長手方向から見た前記発光素子の光軸を含む断面において、前記出射面となる外形線が前記光軸に対して非対称であることを特徴とする読取装置。
    A transparent reading object placement unit on which the reading object is placed;
    An illumination device for illuminating the reading object placed on the reading object placing unit;
    A reading device comprising: an imaging device that images the reading object illuminated by the illumination device;
    The illumination device includes a light emitting element, and a rod-shaped light guide that guides light from the light emitting element toward the reading object placement unit,
    The light guide has an exit surface on a side facing the reading object placement unit,
    2. A reading apparatus according to claim 1, wherein a contour line serving as the light exit surface is asymmetric with respect to the optical axis in a cross section including the optical axis of the light emitting element as viewed from the longitudinal direction of the light guide.
  2.  前記読取対象物載置部に載置された前記読取対象物の像を前記撮像装置に向けて反射させる反射鏡が配設されていることを特徴とする請求項1に記載の読取装置。 The reading apparatus according to claim 1, further comprising a reflecting mirror that reflects an image of the reading object placed on the reading object placing unit toward the imaging device.
  3.  前記照明装置と前記撮像装置とが前記反射鏡の対面側に配設され、
     前記出射面の前記外形線が複数の円弧を組み合わせて形成されていると共に、
     前記複数の円弧の各半径の前記反射鏡に近い方が相対的に小さくされていることを特徴とする請求項2に記載の読取装置。
    The illumination device and the imaging device are disposed on the facing side of the reflecting mirror,
    The outline of the emission surface is formed by combining a plurality of arcs,
    The reading apparatus according to claim 2, wherein a radius of each of the plurality of arcs closer to the reflecting mirror is relatively small.
  4.  前記発光素子および前記導光体が前記読取対象物載置部に対して遠近となる少なくとも2位置に配設され、
     前記遠い位置の前記導光体の前記外形線を形成する前記複数の円弧の平均半径が、前記近い位置の前記導光体の前記外形線を形成する前記複数の円弧の平均半径よりも小さいことを特徴とする請求項3に記載の読取装置。
    The light emitting element and the light guide are disposed in at least two positions which are near to the reading object placement unit;
    An average radius of the plurality of arcs forming the outline of the light guide at the far position is smaller than an average radius of the arcs forming the outline of the light guide at the near position. The reading apparatus according to claim 3.
  5.  前記発光素子は、複数であって、横並びに配設されており、
     前記導光体は、前記発光素子からの光を前記読取対象物載置部に向けて導くための棒状であり、
     前記複数の発光素子は、さらに、第1発光素子と、前記第1の発光素子とは異なる配光分布を有する第2発光素子とを有し、
     前記導光体が、前記第1発光素子の配光分布に対応して前記第1発光素子からの光を前記読取対象物載置部の全域に略均一な照度で拡散させる屈折率をもって形成され、
     前記第2発光素子が、前記導光体の長手方向から見て前記第1発光素子に対して前記発光素子の光軸に直交する方向にずれて配設されていることを特徴とする請求項1に記載の読取装置。
    The light emitting elements are plural and arranged side by side,
    The light guide has a rod shape for guiding the light from the light emitting element toward the reading object placing portion,
    The plurality of light emitting elements further include a first light emitting element and a second light emitting element having a light distribution different from that of the first light emitting element.
    The light guide is formed with a refractive index that diffuses the light from the first light emitting element with a substantially uniform illuminance over the entire area of the reading object mounting portion corresponding to the light distribution of the first light emitting element. ,
    The second light emitting element is disposed so as to be shifted in a direction perpendicular to an optical axis of the light emitting element with respect to the first light emitting element when viewed from a longitudinal direction of the light guide. The reading device according to 1.
  6.  前記導光体の前記出射面が、前記導光体の長手方向から見て大きな半径で形成されている部分と小さな半径で形成されている部分とを有し、
     前記第2発光素子が、前記第1発光素子の配光分布よりも広い配光分布を有し、かつ前記導光体の長手方向から見て前記第1発光素子に対して前記出射面の前記小さな半径で形成されている部分側にずれて配設されていることを特徴とする請求項5に記載の読取装置。
    The exit surface of the light guide has a portion formed with a large radius and a portion formed with a small radius when viewed from the longitudinal direction of the light guide,
    The second light emitting element has a light distribution that is wider than the light distribution of the first light emitting element, and the emission surface of the second light emitting element with respect to the first light emitting element when viewed from the longitudinal direction of the light guide. The reading apparatus according to claim 5, wherein the reading apparatus is arranged so as to be shifted toward a portion formed with a small radius.
  7.  前記第2発光素子の波長が、前記第1発光素子の波長よりも長いことを特徴とする請求項5または請求項6に記載の読取装置。 The reading device according to claim 5 or 6, wherein a wavelength of the second light emitting element is longer than a wavelength of the first light emitting element.
  8.  前記照明装置は、複数の前記発光素子を直線状に並べた光源を有し、
     前記導光体は、前記光源からの光が入射する入射面および当該入射面に入射した光を出射させる出射面を有しかつ前記複数の発光素子の並び方向に延在するように長尺形状に形成され、
     前記導光体はさらに、前記長尺形状の長手方向の少なくとも一方の端部に、前記発光素子からの光を前記入射面に直交する光軸とは異なる方向に変える光出射方向変更部を有することを特徴とする請求項1に記載の読取装置。
    The illumination device has a light source in which a plurality of the light emitting elements are arranged in a straight line
    The light guide has an incident surface on which light from the light source is incident and an emission surface that emits light incident on the incident surface, and is elongated so as to extend in the arrangement direction of the plurality of light emitting elements. Formed into
    The light guide further includes a light emission direction changing unit that changes light from the light emitting element in a direction different from an optical axis orthogonal to the incident surface at at least one end in the longitudinal direction of the elongated shape. The reading apparatus according to claim 1.
  9.  前記光出射方向変更部は、前記導光体の長手方向端部に設けられ前記出射面に対して角状に突出する突部を備え、前記出射面から前記突部の頂点に向かって傾斜する第2出射面により前記光軸とは異なる方向に光を出射することを特徴とする請求項8に記載の読取装置。 The light emission direction changing portion includes a protrusion provided at an end portion in the longitudinal direction of the light guide and protruding in an angular shape with respect to the emission surface, and is inclined from the emission surface toward the apex of the protrusion. The reading apparatus according to claim 8, wherein light is emitted in a direction different from the optical axis by the second emission surface.
  10.  前記突部の長手方向端面に設けられ、前記入射面から入射する光を前記第2出射面に導く反射面を有することを特徴とする請求項9に記載の読取装置。 10. The reading apparatus according to claim 9, further comprising a reflection surface provided on an end surface in a longitudinal direction of the protrusion and guiding light incident from the incident surface to the second emission surface.
  11.  前記出射面がシリンドリカルレンズとして形成されていることを特徴とする請求項9または請求項10に記載の読取装置。 The reading device according to claim 9 or 10, wherein the emission surface is formed as a cylindrical lens.
  12.  前記入射面に、前記発光素子からの光の中で前記導光体の長手方向外側に向かう光を中央寄りに向きを変えるためのプリズム面が設けられていることを特徴とする請求項8乃至請求項11のいずれかに記載の読取装置。 9. The prism surface for changing the light which goes to the outer side of the light guide body in the longitudinal direction in the light from the light emitting element on the incident surface. The reading device according to claim 11.
  13.  前記複数の発光素子の発光を制御する制御手段を有し、
     前記制御手段は、前記一方の端部近傍に配置された前記発光素子のみを発光させる第1モードと、前記複数の発光素子の中で前記第1モードで発光されるもの以外を発光させる第2モードとを有することを特徴とする請求項8乃至請求項12のいずれかに記載の読取装置。
    Control means for controlling light emission of the plurality of light emitting elements;
    The control means emits light only from the light emitting element disposed near the one end and emits light other than light emitted from the plurality of light emitting elements in the first mode. The reading apparatus according to claim 8, further comprising a mode.
  14.  前記光源および前記導光体からなる列が互いに平行な複数列に配設され、
     前記複数列の前記導光体の各前記光出射方向変更部は、当該各光出射方向変更部から出射される各出射光の出射方向が前記複数列の各列で異なるようにされていることを特徴とする請求項8乃至請求項13のいずれかに記載の読取装置。
    The light source and the light guide are arranged in a plurality of parallel rows.
    Each of the light emission direction changing units of the plurality of rows of the light guides is configured such that an emission direction of each outgoing light emitted from each of the light emission direction changing units is different in each row of the plurality of rows. The reading device according to claim 8, wherein
  15.  前記複数の発光素子は、白色光用素子と紫外光用素子と赤外光用素子のいずれかを含むことを特徴とする請求項8乃至請求項14のいずれかに記載の読取装置。 15. The reading apparatus according to claim 8, wherein the plurality of light emitting elements include any one of a white light element, an ultraviolet light element, and an infrared light element.
  16.  請求項8乃至請求項15のいずれかに記載の照明装置と、
     前記照明装置により下方から照射されかつ読取対象物が載置される透明な対象物載置部と、
     前記被読取面を撮像する撮像装置とを備えることを特徴とする読取装置。
    An illumination device according to any one of claims 8 to 15,
    A transparent object placing portion that is irradiated from below by the illumination device and on which a reading object is placed;
    A reading apparatus comprising: an imaging device that images the surface to be read.
  17.  読取対象物が載置される透明な読取対象物載置部と、
     前記読取対象物載置部に載置された前記読取対象物を照明する照明装置と、
     前記照明装置により照明された前記読取対象物を撮像する撮像装置とを備える読取装置であって、
     前記照明装置は、発光素子と、前記発光素子からの光を前記読取対象物載置部に向けて導くための棒状の導光体とを備え、
     前記導光体は、前記発光素子から前記読取対象物載置部の端部側に向かう光の出射方向を前記読取対象物載置部の中央部側に屈折させる光路屈折部を有することを特徴とする読取装置。
    A transparent reading object placement unit on which the reading object is placed;
    An illumination device for illuminating the reading object placed on the reading object placing unit;
    A reading device comprising: an imaging device that images the reading object illuminated by the illumination device;
    The illumination device includes a light emitting element, and a rod-shaped light guide for guiding light from the light emitting element toward the reading object mounting portion,
    The light guide includes an optical path refracting unit that refracts an emission direction of light from the light emitting element toward an end side of the reading object mounting unit toward a central part of the reading object mounting unit. The reading device.
  18.  前記光路屈折部は、前記導光体の入射面に凹設または凸設された斜面により形成されていることを特徴とする請求項17に記載の読取装置。 18. The reading apparatus according to claim 17, wherein the optical path refracting portion is formed by an inclined surface that is concave or convex on an incident surface of the light guide.
  19.  前記導光体及び前記発光素子は、前記読取対象物載置部に対して遠近関係となる位置に少なくとも2列設けられ、
     前記読取対象物載置部に近い列の前記導光体に設けられた前記光路屈折部の屈折率は、遠い列におけるものよりも大きいことを特徴とする請求項17または請求項18に記載の読取装置。
    The light guides and the light emitting elements are provided in at least two rows at positions that are in perspective relation to the reading object placement unit,
    The refractive index of the optical path refracting unit provided in the light guide in a row close to the reading object placement unit is larger than that in a far row. Reader.
  20.  前記導光体は、前記発光素子から前記読取対象物載置部の中央部側に向かう光を当該中央部側に拡散させる第2光路屈折部を有することを特徴とする請求項17乃至請求項19のいずれかに記載の読取装置。 The light guide includes a second optical path refracting portion that diffuses light from the light emitting element toward the central portion of the reading object placing portion toward the central portion. The reading device according to any one of 19.
PCT/JP2012/005927 2011-09-21 2012-09-17 Reading device WO2013042348A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2011206046A JP2013069484A (en) 2011-09-21 2011-09-21 Lighting device and reading device equipped with the same
JP2011-206046 2011-09-21
JP2011220047A JP2013081074A (en) 2011-10-04 2011-10-04 Reading apparatus
JP2011-220052 2011-10-04
JP2011220052A JP2013081075A (en) 2011-10-04 2011-10-04 Reading apparatus
JP2011-220044 2011-10-04
JP2011220044A JP2013081073A (en) 2011-10-04 2011-10-04 Reading apparatus
JP2011-220047 2011-10-04

Publications (1)

Publication Number Publication Date
WO2013042348A1 true WO2013042348A1 (en) 2013-03-28

Family

ID=47914136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/005927 WO2013042348A1 (en) 2011-09-21 2012-09-17 Reading device

Country Status (1)

Country Link
WO (1) WO2013042348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124244A1 (en) * 2018-12-21 2020-06-25 Sita Information Networking Computing Canada Inc. Interactive kiosk having document reader

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199367A (en) * 1992-01-22 1993-08-06 Sharp Corp Light source device
US20090010020A1 (en) * 2006-03-13 2009-01-08 Canon Components, Inc. Linear lighting apparatus and image reader using the same
US20100195168A1 (en) * 2007-01-25 2010-08-05 Mark Eric Miller Image Illumination and Capture in a Scanning Device
US20100238666A1 (en) * 2009-03-23 2010-09-23 Brother Kogyo Kabushiki Kaisha Prism and lighting device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05199367A (en) * 1992-01-22 1993-08-06 Sharp Corp Light source device
US20090010020A1 (en) * 2006-03-13 2009-01-08 Canon Components, Inc. Linear lighting apparatus and image reader using the same
US20100195168A1 (en) * 2007-01-25 2010-08-05 Mark Eric Miller Image Illumination and Capture in a Scanning Device
US20100238666A1 (en) * 2009-03-23 2010-09-23 Brother Kogyo Kabushiki Kaisha Prism and lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020124244A1 (en) * 2018-12-21 2020-06-25 Sita Information Networking Computing Canada Inc. Interactive kiosk having document reader

Similar Documents

Publication Publication Date Title
JP4788577B2 (en) LIGHT GUIDE, LIGHT SOURCE DEVICE, AND ELECTRONIC DEVICE
JP6628753B2 (en) Lighting device and image sensor device
US7088905B1 (en) Light guide, line-illuminating device, and image-scanning device
JP6912824B2 (en) Optical inspection equipment
EP2495682B1 (en) Illumination optical system of image capturing device
KR101028623B1 (en) Image capturing system for the analysis of image data
US8371713B2 (en) Illumination device for pixelated illumination
JPH11284803A (en) Linear light source unit
US20090303732A1 (en) Rod-shaped light guide and image reading device
CN103907337A (en) Lighting unit and image scanner using the same
JP2009225414A (en) Illuminator and image reader
CN109540899B (en) Inspection apparatus and inspection method
JP2005123675A (en) Illumination optical system of image reader
JP2005252646A (en) Image reader
WO2013042348A1 (en) Reading device
JP2013137473A (en) Light guide, reader with the same, and metal mold for molding light guide
JP2010217881A (en) Device for illuminating document, method for illuminating document, and device for reading image
WO2012124172A1 (en) Light irradiation apparatus and image reading apparatus
JP2013081075A (en) Reading apparatus
JP2013081074A (en) Reading apparatus
KR20180040198A (en) Optical science device of headlamp
JP2013069484A (en) Lighting device and reading device equipped with the same
JP2007221361A (en) Linear light source unit
JP2013081073A (en) Reading apparatus
JP2009077005A (en) Illumination device and image reader provided with the illumination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833926

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833926

Country of ref document: EP

Kind code of ref document: A1