WO2013040772A1 - 一种基于信道估计的定位方法及装置 - Google Patents

一种基于信道估计的定位方法及装置 Download PDF

Info

Publication number
WO2013040772A1
WO2013040772A1 PCT/CN2011/079969 CN2011079969W WO2013040772A1 WO 2013040772 A1 WO2013040772 A1 WO 2013040772A1 CN 2011079969 W CN2011079969 W CN 2011079969W WO 2013040772 A1 WO2013040772 A1 WO 2013040772A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel estimation
prs
cell
rstd
prs subframe
Prior art date
Application number
PCT/CN2011/079969
Other languages
English (en)
French (fr)
Inventor
李双喜
胡艳辉
李焱
姚慧娟
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to PCT/CN2011/079969 priority Critical patent/WO2013040772A1/zh
Publication of WO2013040772A1 publication Critical patent/WO2013040772A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0205Details
    • G01S5/0221Receivers
    • G01S5/02213Receivers arranged in a network for determining the position of a transmitter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a positioning method and apparatus based on channel estimation. Background technique
  • the LTE Release 9 protocol proposes several LTE-based UE positioning services, one of which is the LTE Positioning Reference Signal (PRS) UE positioning method: Observed Time Difference of Arrival (OTDoA).
  • OTDoA is a triangulation method used in the Universal Mobile Telecommunications System Terrestrial Radio Access Network (UTRAN) system.
  • the principle is that the UE measures signals of different eNodeBs according to the downlink positioning reference signal of the eNodeB. Observed time difference of reaching the UE; According to the UE measurement result, combined with the coordinates of the eNodeB, and using a suitable position estimation method, the location of the UE can be estimated.
  • the location estimation method needs to consider at least multiple eNodeBs, such as 3 or more eNodeBs.
  • eNodeBs such as 3 or more eNodeBs.
  • Figure 1 shows the case where three eNodeBs are located.
  • RSTD Reference Signal Time Difference
  • Ding ⁇ is! ⁇ Received the time at which the start of a certain subframe of the measurement cell j (neighbor); D ⁇ ! ⁇ , for! ⁇ The time at which the corresponding subframe of the cell i (reference cell) is received, where the relative deviation of the two moments is within ⁇ 1/2 subframes.
  • RSTD measurement results range from ⁇ 1/2 The length of the sub-frame, ie [-0.5ms, +0.5ms]. For a schematic diagram of the RSTD definition, refer to FIG. 2 .
  • the traditional system timing method usually relates the received signal to the local sequence, and determines the moment when the signal appears by the position of the correlation peak. This makes it possible to make full use of the information of the transmitted signal, and the result is easy to process, but the calculation amount is large and consumed. There are many hardware resources.
  • the time domain detection performance of the weak cell is not ideal when the power of the multi-cell signal is very different. Summary of the invention
  • a positioning method based on channel estimation comprising:
  • the PRS subframe data is extracted according to the windowing position, channel estimation is performed, and a reception time difference RSTD is obtained according to the obtained channel estimation result.
  • the determining, by the measurement, the starting time of the PRS subframe of the measurement cell is:
  • the received data is segmented according to a predetermined windowing step within the range:
  • the received data is segmented according to the number of samples included in the windowing step. Further, extracting the PRS subframe data from the data obtained by the segmentation and performing channel estimation: the PRS signal in the extracted PRS subframe data is fast-Fourier-transformed by the symbol and multiplied by the local PRS sequence. Obtaining a frequency domain channel estimate of the OFDM symbol;
  • the searching for the peak value of the channel estimation is: searching for a maximum value in the obtained channel estimation value according to a preset search window width;
  • the windowing position of the obtained PRS is: when the peak position i is greater than C/?"/ 2 , the window opening position WinPos is expectedRSTD - RSTDUncertainty + k N FFT - CIRLen + i;
  • the window opening position VtP ⁇ is expectedRSTD - RSTDUncertainty + kx N FFT + i;
  • CIRLm is the channel estimation length
  • expectedRSTD is the expected value of the reference cell RSTD
  • RSTDUncertainty is the uncertainty of the expected value
  • the reception time difference RSTD is: The search window width, the peak position pushed forward ⁇ 2 sample points, the sample point by a first radial position of the search, when the search When the first sample is larger than the preset noise threshold and the peak threshold, the search is stopped, and the position of the first path FirstPathlndex is determined;
  • RSTD WinPos cell j - WinPos cell ⁇ FirstPathlndex ⁇ j - FirstPathIndex cell i i ⁇ Calculate the value of the RSTD;
  • >7/3 ⁇ 4 kau. is to measure the window opening position of the cell; , is the window opening position of the reference cell; FirstPathIndex ceU j is the first path position of the measurement cell; FirstPathlndex cell i is the reference 'J, the first path of the area position.
  • the determining the location of the first path is: When the position FirstPathlndex' of the sample which is greater than the preset noise threshold and the peak threshold is greater than CIRLenl l, the position FirstPathlndex of the first path is FirstPathlndex '- CIRLen .
  • the position of the first path FirstPathlndex is FirstPathlndex '.
  • a channel estimation based positioning device comprising: a PRS subframe extraction location determining module, a PRS subframe data processing module, and an RSTD computing module;
  • the PRS subframe extraction location determining module is configured to determine a range of a measurement cell positioning reference signal PRS subframe start time, a segment sequence number corresponding to the peak value searched by the PRS subframe data processing module, and the segment Position in, get the window position of the PRS
  • the PRS sub-frame data processing module is configured to segment the received data according to a predetermined windowing step within the determined range, and use the PRS sub-frame data to extract the data obtained by the segmentation.
  • Channel estimation searching for the peak value of the channel estimation module channel estimation; and extracting PRS subframe data according to the windowing position determined by the PRS subframe extraction location determining module, and performing channel estimation;
  • the RSTD calculation module is configured to obtain an RSTD according to a channel estimation result of the PRS subframe data extracted by the channel estimation module for the windowing position.
  • the PRS subframe extraction location determining module is specifically configured to: according to the expected value of the reference cell RSTD and the uncertainty of the expected value t, and the primary cell PRS start time t Q , the measured cell PRS
  • the range of the frame start time is determined as [t Q + t d _ t u , t 0 + t d + t u ].
  • the PRS subframe data processing module is specifically configured to segment the received data according to the number of samples included in the windowing step.
  • the PRS sub-frame data processing module is specifically configured to multiply the PRS signal in the extracted PRS sub-frame data by a fast Fourier transform FFT and then conjugate with the local PRS sequence. Frequency domain channel estimation to the OFDM symbol; performing time domain linear interpolation on the OFDM symbol according to the CP mode, and calculating a frequency domain channel estimation value of the PRS subframe; performing fast fast according to the frequency domain channel estimation result After the inverse transform IFFT, the time domain channel estimation value of the PRS subframe is obtained.
  • the PRS subframe data processing module is specifically configured to search for a maximum value in the obtained channel estimation value according to a preset search window width.
  • the PRS subframe extraction location determining module is specifically configured to: when the peak position i is greater than CIRLen ll, the windowing position WinPos is expectedRSTD - RSTDUncertainty + k N FFT - CIRLen + i; when the peak position i is less than or equal to CIRLen Ll, the window position WinPos is expectedRSTD _ RSTDUncertainty + N FFT + i; where CIRLm is the channel estimation length; expectedRSTD is the reference ' ⁇ , the expected value of the area RSTD; RSTDUncertainty is the uncertainty of the expected value.
  • the calculating module RSTD particularly according to search window width, a push ⁇ 2 said peak samples in a forward position, by searching for the first sample point of the radial position, at the same time when a search is greater than the first pre- When setting the noise threshold and the peak threshold, stop searching and determine the position of the first path FirstPathlndex;
  • RSTD WinPos cell j - WinPos cell ⁇ FirstPathlndex ⁇ , "FirstPathlndex cell i i ⁇ ⁇ 'J ff The value of RSTD; where, . is the measurement window opening position; WinP OScd! t is the window opening position of the reference cell; FirstPathlndex ⁇ is to measure the first path position of the cell ; FirstPathlndex cell t is the first path position of the reference cell.
  • the RSTD calculation module is specifically configured to: when the position FirstPathlndex ' of the sample that is greater than the preset noise threshold and the peak threshold is greater than CIRLm ll, the first path of the first path is FirstPathlndex '- CIRLen When the position of the sample which is greater than the preset noise threshold and the peak threshold is less than or equal to ⁇ 6" / 2 , the bit of the first path
  • the invention adopts the channel estimation instead of the time domain correlation method to perform the RSTD measurement, which can reduce the calculation amount and improve the detection performance under the condition of low SINR; the window opening module and the window processing module have the same process, and the hardware multiplexing degree is high; The FFT/IFFT operation structure is adopted, and the design is simple and the operation efficiency is high. Compared with the prior art, the invention has small calculation amount, high speed, high multiplexing rate, convenient hardware integration and implementation, and reduced hardware implementation cost.
  • Figure 1 is a schematic diagram of OTDoA positioning
  • Figure 2 is a schematic diagram of the definition of RSTD
  • FIG. 3 is a schematic flowchart of an implementation process of a channel estimation based positioning method according to the present invention.
  • FIG. 4 is a schematic diagram showing segmentation of received data according to the present invention.
  • FIG. 5 is a schematic structural diagram of a positioning apparatus based on channel estimation according to the present invention.
  • Figure 6 is a measurement error distribution diagram using a time domain direct correlation and channel estimation based positioning method. detailed description
  • the PRS sequence in the LTE system uses the same pseudo-random sequence as the Cell RS sequence, and its mapping pattern in the frequency domain is related to the number of PBCH antennas and the Cyclic Prefix (CP) mode.
  • the UE can also receive auxiliary information about the timing from the upper layer, mainly including the timing information of the reference cell, measuring the expected (RSTED) of the cell and the reference cell RSTD and the uncertainty of the expected value ( RSTD Uncertainty).
  • the basic idea of the present invention is: determining the range of the start time of the measurement cell PRS subframe, and segmenting the received data according to a predetermined windowing step within the determined range, and extracting the PRS for the data obtained by the segmentation.
  • Sub-frame data performing channel estimation; searching for the peak value of the channel estimation, obtaining a windowing position of the PRS according to the segment number corresponding to the peak and the position in the segment; extracting the PRS according to the windowing position
  • Subframe data, channel estimation, and based on The obtained channel estimation result is obtained by RSTD.
  • FIG. 3 shows an implementation flow of a channel estimation based positioning method according to the present invention. As shown in FIG. 3, the method includes the following steps:
  • Step 301 Determine a range of measurement start time of a cell positioning reference signal PRS subframe, and segment the received data according to a predetermined window opening step within the determined range, and extract a PRS sub-segment for the data obtained by the segmentation.
  • Frame data performing channel estimation;
  • the determining, by the measurement cell, the starting time of the PRS subframe is: according to the expected value of the reference cell RSTD and the uncertainty of the expected value, and the primary cell PRS starting time t Q , the measured cell PRS
  • the range of the frame start time is determined as [ta + ⁇ Ua + + tJ , for convenience of explanation, the time interval is expressed as [tl, t2];
  • the segmentation of the received data according to a predetermined windowing step within the determined range is: segmenting the received data according to the number of samples included in the windowing step; specifically, when the time interval The number of received data samples between [tl, t2] is N, and the number of data samples included in the specified windowing step is N FFT , then the data between [tl, t2] needs to be divided into "N/N FFT ].
  • N FFT the number of received data samples between [tl, t2] needs to be divided into "N/N FFT ].
  • the PRS subframe data is extracted from the data obtained by the segmentation, and the channel estimation is performed: the PRS signal in the extracted PRS subframe data is fast-Full-transformed (FFT) by symbol, and then conjugated with the local PRS sequence to obtain OFDM. Frequency domain channel estimation of symbols;
  • Step 302 searching for the peak value of the channel estimation, according to the segmentation order corresponding to the peak The number and the position in the segment, the window opening position of the PRS is obtained;
  • the searching for the peak value of the channel estimation is: searching for a maximum value in the obtained channel estimation value according to a preset search window width;
  • the windowing position of the obtained PRS is: when the peak position i is greater than C/?"/ 2 , the window opening position WinPos is expectedRSTD - RSTDUncertainty + k N FFT - CIRLen + i;
  • the window opening position > ⁇ is expectedRSTD - RSTDUncertainty + kx N FFT + i;
  • CIRLm is the channel estimation length
  • expectedRSTD is the expected value of the reference cell RSTD
  • RSTDUncertainty is the uncertainty of the expected value
  • Step 303 Extract PRS subframe data according to the windowing position, perform channel estimation, and obtain an RSTD according to the obtained channel estimation result;
  • the RSTD is obtained as follows:
  • the search window width the peak position pushed forward ⁇ 2 sample points, the sample point by a first radial position of the search, when the first search simultaneously greater than a preset noise threshold and the peak threshold sample point , stop searching, determine the position of the first path FirstPathlndex;
  • RSTD WinPos cell j - WinPos cell ⁇ FirstPathlndex ⁇ , j - FirstPathIndex cell i i ⁇ Calculate the value of the RSTD;
  • >7/3 ⁇ 4cho is the measurement window opening position of the cell; , is the window opening position of the reference cell; FirstPathIndex ceU j is the first path position of the measurement cell; FirstPathlndex cell i is the reference 'J, the first path position of the area .
  • the determining the location of the first path is:
  • the position of the first path is FirstPathlndex '- CIRLen .
  • FIG. 5 shows a structure of a channel estimation based positioning apparatus according to the present invention.
  • the apparatus includes: a PRS subframe extraction position determining module, a PRS subframe data processing module, and an RSTD calculation module;
  • the PRS subframe extraction location determining module is configured to determine a range of a measurement cell positioning reference signal PRS subframe start time, a segment sequence number corresponding to the peak value searched by the PRS subframe data processing module, and the segment Position in, get the window position of the PRS
  • the PRS sub-frame data processing module is configured to segment the received data according to a predetermined windowing step within the determined range, and use the PRS sub-frame data to extract the data obtained by the segmentation.
  • Channel estimation searching for the peak value of the channel estimation module channel estimation; and extracting PRS subframe data according to the windowing position determined by the PRS subframe extraction location determining module, and performing channel estimation;
  • the RSTD calculation module is configured to obtain an RSTD according to a channel estimation result of the PRS subframe data extracted by the channel estimation module for the windowing position.
  • the PRS subframe extraction location determining module is specifically configured to: according to the expected value t of the reference cell RSTD and the uncertainty of the expected value t, and the primary cell PRS start time t Q , the measurement cell PRS
  • the range of the start time of the subframe is determined as [t Q + t - t u , t 0 + t d + t u ].
  • the PRS subframe data processing module is specifically configured to segment the received data according to the number of samples included in the windowing step.
  • the PRS sub-frame data processing module is specifically configured to: perform a fast Fourier transform FFT on the extracted PRS sub-frame data and multiply the conjugate by the local PRS sequence to obtain a frequency domain channel of the OFDM symbol. Estimating; performing time domain linear interpolation on the OFDM symbol according to the CP mode, and calculating a frequency domain channel estimation value of the PRS subframe; and performing fast Fourier transform IFFT according to the frequency domain channel estimation result Time domain signal of the PRS subframe Road estimate.
  • the PRS subframe data processing module is specifically configured to search for a maximum value in the obtained channel estimation value according to a preset search window width;
  • the PRS subframe extraction location determining module is specifically configured to: when the peak position i is greater than CIRLen ll, the windowing position WinPos is expectedRSTD - RSTDUncertainty + k N FFT - CIRLen + i; when the peak position i is less than or equal to CIRLen Ll, the window position WinPos is expectedRSTD _ RSTDUncertainty + N FFT + i; where CIRLm is the channel estimation length; expectedRSTD is the reference ' ⁇ , the expected value of the area RSTD; RSTDUncertainty is the uncertainty of the expected value.
  • the RSTD calculation module is specifically configured to push N w ⁇ 2 sample points forward at the peak position according to a search window width, and perform a first path position search by a sample point, when searching for the first At the same time, when the sample is larger than the preset noise threshold and the peak threshold, the search is stopped, and the position of the first path is determined FirstPathlndex;
  • RSTD WinPos cell j - WinPos cell ⁇ FirstPathlndex ⁇ , "FirstPathlndex cell i i ⁇ ⁇ 'J ff The value of RSTD; where, to measure the windowing position of the cell; WinP OScd! t is the windowing position of the reference cell; FirstPathlndex ⁇ , to measure the first path position of the cell;
  • the FirstPathlndex cell is the first path position of the reference cell.
  • the RSTD calculation module is specifically configured to: when the position of the sample that is greater than the preset noise threshold and the peak threshold is greater than ⁇ / 2 , the first path
  • the position FirstPathlndex is FirstPathlndex '- CIRLen; when the position of the sample that is greater than the noise threshold and the peak threshold of the sub-set is FirstPathlndex 'less than or equal to CIRL ll, the position FirstPathlndex of the first path is FirstPathlndex '.
  • the channel estimation based positioning method proposed by the present invention can be applied to a similar system structure of an LTE baseband chip system, that is, a positioning system having a special positioning reference signal and performing positioning based on a time difference of received signals.
  • LTE baseband chip system that is, a positioning system having a special positioning reference signal and performing positioning based on a time difference of received signals.
  • a set of typical parameters in the PRS OTDoA calculation process in the LTE baseband chip is taken as an example, and the above positioning method is further applied to the LTE system.
  • the CP is in the normal mode
  • the number of PBCH antennas is one
  • the system bandwidth is 10M
  • the number of PRS subframes is 1
  • the number of measurement cells is 2
  • the expected RSTD of the high-level configuration parameters is -300Ts
  • the RSTD Uncertainty is 600Ts.
  • the prescribed windowing step is 512Ts, that is, the spacing between each segment is 256 receiving sampling samples, and the number of segments is 3.
  • PRS sub-frames are extracted from the Buffer according to the PRS transmission parameters.
  • the corresponding Buffer starting position is -450
  • the extracted data length is 15360
  • the channel estimation is performed, and the channel estimation value of 1024 points is obtained.
  • the second extraction start position is -194, the third is 62, and the loop is repeated until the channel estimates for all PRS segments are processed.
  • the peak threshold is obtained by multiplying the 0th sample of the CIRcellO by the coefficient k2, and the position of the first path of the reference cell is obtained, and the result is assumed to be the 1023th sample; the same method calculates the first path of the neighboring cell. Position, here assumes that the first path position is 1015; wherein the values of kl and k2 and the noise threshold and the peak threshold can be specifically determined based on the simulation results.
  • RSTD WinPos cell ⁇ - WinPos ceII + FirstPathIndex ceII ⁇ - FirstPathIndex ceII
  • FirstPathlndex is FirstPathlndex '- CIRLen.
  • the measurement time difference is 74 received sample points, that is, 148Ts, and the error with the actual time difference of 150Ts is 2Ts, that is, the measurement result is that the time difference between the received signals of the two cells is 148Ts and the error is 2Ts.
  • the channel estimation based positioning method can reduce the complex multiplication operation by 96.25%. 92.5% of the addition operation.
  • the present invention adopts FFT/IFFT technology based on channel estimation, which reduces the computational complexity and improves system performance. It saves system overhead and improves system operation efficiency. It can be used in LTE baseband chips, saving resources consumed by modules and improving overall chip efficiency.
  • FIG. 6 shows that under the ETU5 channel condition, the SINR of the three cells is 6/-13/-13 dB, and the Cell ID is 0/6/12.
  • the curves marked with "+” and “ ⁇ ” are respectively the Cell ID is 6 using the time domain direct correlation and the channel estimation method of the present invention measures the error distribution of the RSTD; " ⁇ " and “ ⁇ ,, the labeled curves are respectively Cell
  • the ID is 12 using the time domain direct correlation and the channel estimation method of the present invention to measure the error distribution of the RSTD; as can be seen from the figure, the error of calculating the RSTD by the channel estimation method has a significant performance gain compared with the direct correlation method for calculating the RSTD error.
  • the abscissa indicates the RSTD measurement error, and the ordinate indicates the probability that the measurement error is smaller than the number of samples shown on the abscissa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种基于信道估计的定位方法及装置,所述方法包括:确定测量小区PRS子帧起始时刻的范围,并在确定的范围内按照预先规定的开窗步距对接收到的数据进行分段,对分段得到的数据提取PRS子帧数据,进行信道估计;搜索得到所述信道估计的峰值,根据所述峰值对应的分段序号以及在该分段中的位置,得到PRS的开窗位置;根据所述开窗位置提取PRS子帧数据,进行信道估计,并根据得到的信道估计结果,得到RSTD。本发明采用FFT/IFFT技术,减少了运算量的同时提升了***性能,节约了***开销,提高了***运行效率,节约模块所耗资源。

Description

一种基于信道估计的定位方法及装置 技术领域 本发明涉及无线通信技术领域, 尤其涉及一种基于信道估计的定位方 法及装置。 背景技术
LTE Release9协议中提出了若干种基于 LTE***的 UE定位业务, 其 中一种 于 LTE定位参考信号 ( Positioning Reference Signal, PRS ) 的 UE定位方法: 观察时间差 ( Observed Time Difference of Arrival, OTDoA ) 法。 OTDoA 是在通用移动通信***陆地无线接入网 (Universal Mobile Telecommunications System Terrestrial Radio Access Network, UTRAN )*** 中使用的一种三角定位方法,原理是 UE根据 eNodeB的下行定位参考信号, 测量不同 eNodeB的信号到达 UE的观察时间差; 根据 UE测量结果, 结合 eNodeB的坐标, 并采用合适的位置估算方法, 能够估计出 UE的位置。
一般的, 位置估算方法需要至少考虑多个 eNodeB, 如 3个或 3个以上 eNodeB定位的情况。 UE测量的 eNodeB的数据越多, 测量精度越高, 定位 性能的改善也越明显。 简要的定位示意图可参考图 1, 这里图 1示出的为 3 个 eNodeB定位的情况。
小区间的 PRS接收时间差用 RSTD ( Reference Signal Time Difference ) 表示, 其中 RSTD定义为:
RSTD― TsubframeRX,j― TsubframeRX,i
其中: 丁^^^^^为!^接收到测量小区 j (邻区) 的某个子帧起始的时刻; 丁^^^!^,为!^接收到小区 i (参考小区) 的相应子帧起始的时刻, 这里, 二个时刻的相对偏差在 ± 1/2 子帧以内。 RSTD 测量结果取值范围是 ± 1/2 子帧长度, 即 [-0.5ms,+0.5ms]。 RSTD定义示意图具体可参考图 2。
传统的***定时方法通常是将接收信号和本地序列进行相关, 通过相 关峰的位置来确定信号出现的时刻, 这样虽然可以充分利用发送信号的信 息, 且结果便于处理, 但是运算量大, 消耗的硬件资源较多, 此外由于各 小区时域信号混叠, 在多小区信号功率相差悬殊的情况下弱小区的时域检 测性能不理想。 发明内容
有鉴于此, 本发明的主要目的在于提供一种基于信道估计的定位方法 及装置, 能够高效率地实现定位。
为达到上述目的, 本发明的技术方案是这样实现的:
一种基于信道估计的定位方法, 所述方法包括:
确定测量小区定位参考信号 PRS子帧起始时刻的范围, 并在确定的范 围内按照预先规定的开窗步距对接收到的数据进行分段, 对分段得到的数 据提取 PRS子帧数据, 进行信道估计;
搜索得到所述信道估计的峰值, 根据所述峰值对应的分段序号以及在 该分段中的位置, 得到 PRS的开窗位置;
根据所述开窗位置提取 PRS子帧数据, 进行信道估计, 并根据得到的 信道估计结果, 得到接收时间差 RSTD。
其中, 所述确定测量小区 PRS子帧起始时刻的范围为:
根据参考小区 RSTD的期望值 ^及所述期望值的不确定度 t„,以及主小 区 PRS 起始时刻 tQ, 将所述测量小区 PRS 子帧起始时刻的范围确定为 其中, 所述在确定的范围内按照预先规定的开窗步距对接收到的数据 进行分段为:
按照开窗步距包含的样点数, 对接收到的数据进行分段。 进一步地, 所述对分段得到的数据提取 PRS子帧数据,进行信道估计: 将提取的 PRS子帧数据中的 PRS信号按符号做快速傅氏变换 FFT后与 本地 PRS序列共轭相乘, 得到 OFDM符号的频域信道估计;
根据 CP模式的不同, 对 OFDM符号进行时域线性插值, 计算得到所 述 PRS子帧的频域信道估计值;
根据所述频域信道估计结果, 进行快速傅氏反变换 IFFT后, 得到所 述 PRS子帧的时域信道估计值。
进一步地, 所述搜索得到所述信道估计的峰值为: 按照预设的搜索窗 宽度, 在得到的信道估计值中搜索最大值;
所述得到 PRS的开窗位置为: 当所述峰值位置 i大于 C/? "/2时, 开 窗位置 WinPos为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i;
当所述峰值位置 i 小于等于 C/? ^/2时, 开窗位置 VtP^为 expectedRSTD - RSTDUncertainty + kx NFFT + i;
其中, CIRLm为信道估计长度; expectedRSTD为参考小区 RSTD的期望 值; RSTDUncertainty为所述期望值的不确定度。
进一步地, 所述根据得到的信道估计结果, 得到接收时间差 RSTD为: 根据搜索窗宽度, 在所述峰值位置向前推 ∞2个样点, 逐样点进行第 一径位置的搜索, 当搜索到第一个同时大于预设的噪声门限和峰值门限的 样点时, 停止搜索, 确定第一径的位置 FirstPathlndex;
^ RSTD = WinPos cell j - WinPos cell ^ FirstPathlndex^ j - FirstPathIndexcell i i† 算得到所述 RSTD的值;
其中, >7/¾ „ .为测量小区的开窗位置; ,为参考小区的开窗 位置; FirstPathIndexceU j为测量小区的第一径位置; FirstPathlndex cell i为参考 'J、 区的第一径位置。
其中, 所述确定第一径的位置为: 当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex'大于 CIRLenl l 时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '- CIRLen .
当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex'小于等于 CIRLen II时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '。
一种基于信道估计的定位装置, 所述装置包括: PRS 子帧提取位置确 定模块、 PRS子帧数据处理模块、 RSTD计算模块; 其中,
所述 PRS 子帧提取位置确定模块, 用于确定测量小区定位参考信号 PRS子帧起始时刻的范围, 根据所述 PRS子帧数据处理模块搜索到的峰值 对应的分段序号以及在该分段中的位置, 得到 PRS的开窗位置
所述 PRS子帧数据处理模块, 用于在所述确定的范围内按照预先规定 的开窗步距对接收到的数据进行分段, 用于对分段得到的数据提取 PRS子 帧数据, 进行信道估计; 搜索得到所述信道估计模块信道估计的峰值; 并 根据所述 PRS子帧提取位置确定模块确定的开窗位置提取 PRS子帧数据, 进行信道估计;
所述 RSTD计算模块, 用于根据所述信道估计模块对所述开窗位置提 取的 PRS子帧数据的信道估计结果, 得到 RSTD。
其中,所述 PRS子帧提取位置确定模块,具体用于根据参考小区 RSTD 的期望值 ^及所述期望值的不确定度 t„, 以及主小区 PRS起始时刻 tQ, 将所 述测量小区 PRS子帧起始时刻的范围确定为 [tQ + td _ tu,t0 + td + tu]。
其中, 所述 PRS子帧数据处理模块, 具体用于按照开窗步距包含的样 点数, 对接收到的数据进行分段。
其中, 所述 PRS子帧数据处理模块, 具体用于将提取的 PRS子帧数据 中的 PRS信号按符号做快速傅氏变换 FFT后与本地 PRS序列共轭相乘,得 到 OFDM符号的频域信道估计; 根据 CP模式的不同, 对 OFDM符号进行 时域线性插值, 计算得到所述 PRS子帧的频域信道估计值; 根据所述频域 信道估计结果,进行快速傅氏反变换 IFFT后,得到所述 PRS子帧的时域信 道估计值。
其中, 所述 PRS子帧数据处理模块, 具体用于按照预设的搜索窗宽度, 在得到的信道估计值中搜索最大值;
所述 PRS 子帧提取位置确定模块, 具体用于当所述峰值位置 i 大于 CIRLen l l 时 , 开 窗 位 置 WinPos 为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i; 当所述峰值位置 i小于等 于 CIRLen l l时, 开窗位置 WinPos为 expectedRSTD _ RSTDUncertainty + N FFT + i; 其中, CIRLm为信道估计长度; expectedRSTD为参考 '〗、区 RSTD的期望值; RSTDUncertainty为所述期望值的不确定度。
其中, 所述 RSTD计算模块, 具体用于根据搜索窗宽度, 在所述峰值 位置向前推 ∞2个样点, 逐样点进行第一径位置的搜索, 当搜索到第一个 同时大于预设的噪声门限和峰值门限的样点时, 停止搜索, 确定第一径的 位 置 FirstPathlndex ; 根 据
RSTD = WinPoscell j - WinPoscell ^ FirstPathlndex^,「 FirstPathlndex cell i i† ^'J ff 述 RSTD的值; 其中, .为测量小区的开窗位置; WinPOScd! t为参考 小区的开窗位置; FirstPathlndex^ .为测量小区的第一径位置; FirstPathlndex cell t为参考小区的第一径位置。
其中, 所述 RSTD计算模块, 具体用于当所述同时大于预设的噪声门 限和峰值门限的样点的位置 FirstPathlndex '大于 CIRLm l l时, 所述第一径的位 1 FirstPathlndex为 FirstPathlndex '- CIRLen; 当所述同时大于预设的噪声门限和 峰值门限的样点的位置 小于等于^6" / 2时, 所述第一径的位 本发明采用采用信道估计而非时域相关的方法进行 RSTD的测量, 可 以减少运算量,提升低 SINR条件下的检测性能; 开窗模块和开窗后处理模 块流程一致, 硬件复用程度高; 并且采用 FFT/IFFT运算结构, 设计简单, 运算效率高; 与现有技术相比, 本发明运算量小, 速度快, 复用率高, 便 于硬件集成与实现, 降低了硬件实现成本。 附图说明
图 1为 OTDoA定位示意图;
图 2为 RSTD定义示意图;
图 3为本发明基于信道估计的定位方法的实现流程示意图;
图 4为本发明对接收到的数据的分段示意图;
图 5为本发明基于信道估计的定位装置的结构示意图;
图 6为采用时域直接相关和基于信道估计的定位方法的测量误差分布 图。 具体实施方式
LTE***中的 PRS序列采用的是和 Cell RS序列相同的伪随机序列, 其在频域的映射图样与 PBCH天线数目, 循环前缀 ( Cyclic Prefix, CP )模 式有关。 UE在接收到 PRS信号的同时,也能收到来自高层的关于定时的辅 助信息, 主要包括参考小区的定时信息, 测量小区与参考小区 RSTD的期 望( Expected RSTD )与该期望值的不确定度 ( RSTD Uncertainty )。
本发明的基本思想为: 确定测量小区 PRS子帧起始时刻的范围, 并在 确定的范围内按照预先规定的开窗步距对接收到的数据进行分段, 对分段 得到的数据提取 PRS子帧数据, 进行信道估计; 搜索得到所述信道估计的 峰值, 根据所述峰值对应的分段序号以及在该分段中的位置, 得到 PRS的 开窗位置; 根据所述开窗位置提取 PRS子帧数据, 进行信道估计, 并根据 得到的信道估计结果, 得到 RSTD。
为使本发明的目的、 技术方案和优点更加清楚明白, 以下举实施例并 参照附图, 对本发明进一步详细说明。
图 3示出了本发明基于信道估计的定位方法的实现流程, 如图 3所示, 所述方法包括下述步骤:
步骤 301, 确定测量小区定位参考信号 PRS子帧起始时刻的范围, 并 在确定的范围内按照预先规定的开窗步距对接收到的数据进行分段, 对分 段得到的数据提取 PRS子帧数据, 进行信道估计;
其中,确定测量小区 PRS子帧起始时刻的范围为:根据参考小区 RSTD 的期望值 ^及所述期望值的不确定度 t„, 以及主小区 PRS起始时刻 tQ, 将所 述测量小区 PRS 子帧起始时刻的范围确定为 [ta +^ Ua + + tJ , 为了便于 说明, 将该时间区间表示为 [tl, t2];
所述在确定的范围内按照预先规定的开窗步距对接收到的数据进行分 段为: 按照开窗步距包含的样点数, 对接收到的数据进行分段; 具体地, 当时间区间 [tl, t2]之间对应的接收数据样点数为 N, 规定的开窗步距包括 的数据样点数为 NFFT, 则需要将 [tl, t2]间的数据分为「N/ NFFT ]个数据段, 具体可以参考图 4。
对分段得到的数据提取 PRS子帧数据,进行信道估计为:将提取的 PRS 子帧数据中的 PRS信号按符号做快速傅氏变换 ( FFT )后与本地 PRS序列 共轭相乘, 得到 OFDM符号的频域信道估计;
根据 CP模式的不同, 对 OFDM符号进行时域线性插值, 计算得到所 述 PRS子帧的频域信道估计值;
根据所述频域信道估计结果, 进行快速傅氏反变换(IFFT )后, 得到 所述 PRS子帧的时域信道估计值。
步骤 302,搜索得到所述信道估计的峰值,根据所述峰值对应的分段序 号以及在该分段中的位置, 得到 PRS的开窗位置;
这里, 所述搜索得到所述信道估计的峰值为: 按照预设的搜索窗宽度, 在得到的信道估计值中搜索最大值;
所述得到 PRS的开窗位置为: 当所述峰值位置 i大于 C/? "/2时, 开 窗位置 WinPos为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i;
当所述峰值位置 i 小于等于 C/^e"/2时, 开窗位置 >^ 为 expectedRSTD - RSTDUncertainty + kx NFFT + i;
其中, CIRLm为信道估计长度; expectedRSTD为参考小区 RSTD的期望 值; RSTDUncertainty为所述期望值的不确定度。
步骤 303, 根据所述开窗位置提取 PRS子帧数据, 进行信道估计, 并 根据得到的信道估计结果, 得到 RSTD;
这里, 所述根据得到的信道估计结果, 得到 RSTD为:
根据搜索窗宽度, 在所述峰值位置向前推 ∞2个样点, 逐样点进行第 一径位置的搜索, 当搜索到第一个同时大于预设的噪声门限和峰值门限的 样点时, 停止搜索, 确定第一径的位置 FirstPathlndex;
^ RSTD = WinPos cell j - WinPos cell ^ FirstPathlndex^, j - FirstPathIndexcell i i† 算得到所述 RSTD的值;
其中, >7/¾ „ 为测量小区的开窗位置; ,为参考小区的开窗 位置; FirstPathIndexceU j为测量小区的第一径位置; FirstPathlndex cell i为参考 'J、 区的第一径位置。
其中, 所述确定第一径的位置为:
当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex '大于 CIRLen I I 时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '- CIRLen .
当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex '小于等于 IRLen / 2时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '。
图 5示出了本发明基于信道估计的定位装置的结构, 如图 5所示, 所 述装置包括: PRS子帧提取位置确定模块、 PRS子帧数据处理模块、 RSTD 计算模块; 其中,
所述 PRS 子帧提取位置确定模块, 用于确定测量小区定位参考信号 PRS子帧起始时刻的范围, 根据所述 PRS子帧数据处理模块搜索到的峰值 对应的分段序号以及在该分段中的位置, 得到 PRS的开窗位置
所述 PRS子帧数据处理模块, 用于在所述确定的范围内按照预先规定 的开窗步距对接收到的数据进行分段, 用于对分段得到的数据提取 PRS子 帧数据, 进行信道估计; 搜索得到所述信道估计模块信道估计的峰值; 并 根据所述 PRS子帧提取位置确定模块确定的开窗位置提取 PRS子帧数据, 进行信道估计;
所述 RSTD计算模块, 用于根据所述信道估计模块对所述开窗位置提 取的 PRS子帧数据的信道估计结果, 得到 RSTD。
进一步地, 所述 PRS子帧提取位置确定模块, 具体用于根据参考小区 RSTD的期望值 t及所述期望值的不确定度 t„,以及主小区 PRS起始时刻 tQ, 将所述测量小区 PRS子帧起始时刻的范围确定为 [tQ + t - tu , t0 + td + tu ]。
进一步地, 所述 PRS子帧数据处理模块, 具体用于按照开窗步距包含 的样点数, 对接收到的数据进行分段。
其中, 所述 PRS子帧数据处理模块, 具体用于将提取的 PRS子帧数据 中的 PRS信号按符号做快速傅氏变换 FFT后与本地 PRS序列共轭相乘,得 到 OFDM符号的频域信道估计; 根据 CP模式的不同, 对 OFDM符号进行 时域线性插值, 计算得到所述 PRS子帧的频域信道估计值; 根据所述频域 信道估计结果,进行快速傅氏反变换 IFFT后,得到所述 PRS子帧的时域信 道估计值。
进一步地, 所述 PRS子帧数据处理模块, 具体用于按照预设的搜索窗 宽度, 在得到的信道估计值中搜索最大值;
所述 PRS 子帧提取位置确定模块, 具体用于当所述峰值位置 i 大于 CIRLen l l 时 , 开 窗 位 置 WinPos 为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i; 当所述峰值位置 i小于等 于 CIRLen l l时, 开窗位置 WinPos为 expectedRSTD _ RSTDUncertainty + N FFT + i; 其中, CIRLm为信道估计长度; expectedRSTD为参考 '〗、区 RSTD的期望值; RSTDUncertainty为所述期望值的不确定度。
进一步地, 所述 RSTD计算模块, 具体用于根据搜索窗宽度, 在所述 峰值位置向前推 Nw∞2个样点, 逐样点进行第一径位置的搜索, 当搜索到第 一个同时大于预设的噪声门限和峰值门限的样点时, 停止搜索, 确定第一 径 的 位 置 FirstPathlndex ; 根 据
RSTD = WinPoscell j - WinPoscell ^ FirstPathlndex^,「 FirstPathlndex cell i i† ^'J ff 述 RSTD的值; 其中, 为测量小区的开窗位置; WinPOScd! t为参考 小区的开窗位置; FirstPathlndex^ ,为测量小区的第一径位置;
FirstPathlndex cell 为参考小区的第一径位置。
进一步地, 所述 RSTD计算模块, 具体用于当所述同时大于预设的噪 声门限和峰值门限的样点的位置 ^^^^/^^'大于^^/2时, 所述第一径 的位置 FirstPathlndex为 FirstPathlndex '- CIRLen; 当所述同时大于子贞设的噪声门 限和峰值门限的样点的位置 FirstPathlndex '小于等于 CIRL l l时, 所述第一径 的位置 FirstPathlndex为 FirstPathlndex '。
本发明提出的基于信道估计的定位方法, 可以应用于 LTE基带芯片系 统类似的***结构中, 即有专门的定位参考信号, 且基于接收信号时间差 来进行定位的定位***。 下面以在 LTE基带芯片中 PRS OTDoA计算过程中的一组典型参数为 例, 对上述定位方法应用于 LTE***进行进一步地说明。
殳设该条件下 CP为正常模式, PBCH天线数为 1个,***带宽为 10M, PRS子帧数为 1, 测量小区数目为 2, 高层配置参数中 expected RSTD为 -300Ts, RSTD Uncertainty为 600Ts, 参考小区接收信号起始时刻为 0, 接 收机采样率为 15.36Mhz, 开窗步距为 512Ts, 搜索窗宽度为 200Ts, 接收小 区间的真实接收时间差为 150Ts, 其中 Ts = l/30720000s。
1 )、 根据参考小区定时与 expected RSTD值确定邻区 PRS子帧起始时 刻的范围, 即 [-900Ts, 300Ts ), 在接收机接收数据緩存(Buffer ) 中位置为 [-450, 150 ), 并在 PRS子帧起始时刻范围内按规定的开窗步距 512Ts, 即 每个分段之间的间距为 256个接收采样样点, 分段数目为 3。
2)、 按照 PRS发送参数从 Buffer中提取 PRS子帧, 第一次提取时对应 Buffer的起始位置为 -450, 提取数据长度为 15360, 然后进行信道估计, 得 到 1024点的道估计值。 第二次提取起始位置为 -194, 第三次为 62, 循环往 复, 直至处理完所有 PRS分段的信道估计。
3)、 搜索上述 3次信道估计最大值的位置, 这里假设最大值出现在第 3 次取数据的第 20个样点, 则开窗位置为 512+20+ ( -450 ) =82。
4)、 以 Buffer中第 0个接收样点为开窗位置, 取 15360个数据, 并进 行参考小区信道估计, 得到 1024点的信道估计值 CIRcellO; 以 Buffer中, 第 82个接收样点为开窗位置, 取 15360个数据, 进行邻区信道估计, 得到 1024点的信道估计值。
按照设定的搜索窗宽度 200Ts在 CIR样点的 [924,1023]以及 [0,99]中搜 索最大值, 并记录其位置; 这里假设 CIRcellO的最大位置在 0, CIRcelll的 最大位置在 1016,则将 CIRcellO的第 [925,1023]以及 0号样点与规定的噪声 门限与峰值门限比较,这里噪声门限通过取 1024个 CIRCellO值的平均数乘 以系数 kl获得,峰值门限为第 CIRcellO第 0个样值乘以系数 k2获得, 获得 参考小区第一径的位置, 这里假设结果为第 1023个样点; 同样的方法计算 邻区的第一径位置, 这里假设第一径位置为 1015; 其中, kl和 k2的值以 及噪声门限和峰值门限可以根据仿真结果进行具体确定。
5)、 计算 RSTD
RSTD = WinPoscell 』 - WinPosceII + FirstPathIndexceII 』 - FirstPathIndexceII
= 82 - 0 + ( 1015-1024 ) - ( 1023-1024 ) = 74
这里, 由于 1015 和 1023 均大于 CIRL / 2 =512, 所以第一径的位置
FirstPathlndex为 FirstPathlndex '- CIRLen。
从计算结果来看, 测量时间差是 74个接收采样样点, 即 148Ts, 与实 际时差 150Ts的误差为 2Ts, 即测量结果为两小区接收信号时差为 148Ts, 误差 2Ts。
若采用上述方法计算 RSTD的主要运算量为 36次 1024点的 FFT/IFFT, 共计 184320次复数乘, 368640次复加; 当采用时域相关法计算时, 每个 PRS子帧有 8192个复样点需要进行复数相差, 共需要输出 600个样点, 共 需进行 4915200次复乘, 4914600次复加, 由此可见, 本发明提供的基于信 道估计的定位方法可减少 96.25%的复乘运算, 92.5%的复加运算。
针对现有基于信道估计的 LTE定位业务运算量大, 占用硬件资源多, 运算效率低的问题,本发明基于信道估计的定位方法,采用 FFT/IFFT技术, 减少了运算量的同时提升了***性能, 节约了***开销, 提高了***运行 效率, 可以在 LTE基带芯片中使用, 节约模块所耗资源, 提高芯片整体效 率。
为了说明采用上述方法得到 RSTD性能上的优越性, 参照图 6, 图 6 给出了在 ETU5信道条件下, 三个小区的 SINR为 6/-13/-13dB, Cell ID为 0/6/12时, 当采用时域直接相关和本发明的信道估计法测量 RSTD时, 两个 测量小区 RSTD测量误差分布图。 其中, "+" 和 "◊" 标记的曲线分别为 Cell ID为 6利用时域直接相关和本发明的信道估计法测量 RSTD的误差分 布; "〇" 和 "※,, 标记的曲线分别为 Cell ID为 12利用时域直接相关和本 发明的信道估计法测量 RSTD的误差分布; 从图中可以看出, 采用信道估 计法计算 RSTD的误差比采用直接相关法计算 RSTD误差有明显性能增益。 其横坐标表示 RSTD测量误差, 纵坐标表示测量误差小于横坐标所示采样 点数的概率。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种基于信道估计的定位方法, 其特征在于, 所述方法包括: 确定测量小区定位参考信号 PRS子帧起始时刻的范围, 并在确定的范 围内按照预先规定的开窗步距对接收到的数据进行分段, 对分段得到的数 据提取 PRS子帧数据, 进行信道估计;
搜索得到所述信道估计的峰值, 根据所述峰值对应的分段序号以及在 该分段中的位置, 得到 PRS的开窗位置;
根据所述开窗位置提取 PRS子帧数据, 进行信道估计, 并根据得到的 信道估计结果, 得到接收时间差 RSTD。
2、 根据权利要求 1所述的方法, 其特征在于, 所述确定测量小区 PRS 子帧起始时刻的范围为:
根据参考小区 RSTD的期望值 t及所述期望值的不确定度 t„, 以及主小 区 PRS 起始时刻 tQ, 将所述测量小区 PRS 子帧起始时刻的范围确定为
3、 根据权利要求 1所述的方法, 其特征在于, 所述在确定的范围内按 照预先规定的开窗步距对接收到的数据进行分段为:
按照开窗步距包含的样点数, 对接收到的数据进行分段。
4、 根据权利要求 1所述的方法, 其特征在于, 所述对分段得到的数据 提取 PRS子帧数据, 进行信道估计:
将提取的 PRS子帧数据中的 PRS信号按符号做快速傅氏变换 FFT后与 本地 PRS序列共轭相乘, 得到 OFDM符号的频域信道估计;
根据 CP模式的不同, 对 OFDM符号进行时域线性插值, 计算得到所 述 PRS子帧的频域信道估计值;
根据所述频域信道估计结果, 进行快速傅氏反变换 IFFT后, 得到所 述 PRS子帧的时域信道估计值。
5、 根据权利要求 1所述的方法, 其特征在于, 所述搜索得到所述信道 估计的峰值为: 按照预设的搜索窗宽度, 在得到的信道估计值中搜索最大 值;
所述得到 PRS的开窗位置为: 当所述峰值位置 i大于 C/? "/2时, 开 窗位置 WinPos为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i;
当所述峰值位置 i 小于等于 C/^e"/2时, 开窗位置 >^ 为 expectedRSTD - RSTDUncertainty + kx NFFT + i;
其中, CIRLm为信道估计长度; expectedRSTD为参考小区 RSTD的期望 值; RSTDUncertainty为所述期望值的不确定度。
6、 根据权利要求 1所述的方法, 其特征在于, 所述根据得到的信道估 计结果, 得到接收时间差 RSTD为:
根据搜索窗宽度, 在所述峰值位置向前推 ∞2个样点, 逐样点进行第 一径位置的搜索, 当搜索到第一个同时大于预设的噪声门限和峰值门限的 样点时, 停止搜索, 确定第一径的位置 FirstPathlndex;
^ RSTD = WinPos cell j - WinPos cell ^ FirstPathlndex^, j - FirstPathIndexcell i i† 算得到所述 RSTD的值;
其中, >7/¾ „ 为测量小区的开窗位置; ,为参考小区的开窗 位置; FirstPathIndexceU j为测量小区的第一径位置; FirstPathlndex cell i为参考 'J、 区的第一径位置。
7、 根据权利要求 6所述的方法, 其特征在于, 所述确定第一径的位置 为:
当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex '大于 CIRLen I I 时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '- CIRLen .
当所述同时大于预设的噪声 门限和峰值门限的样点的位置 FirstPathlndex '小于等于 IRLen / 2时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '。
8、 一种基于信道估计的定位装置, 其特征在于, 所述装置包括: PRS 子帧提取位置确定模块、 PRS子帧数据处理模块、 RSTD计算模块; 其中, 所述 PRS 子帧提取位置确定模块, 用于确定测量小区定位参考信号 PRS子帧起始时刻的范围, 根据所述 PRS子帧数据处理模块搜索到的峰值 对应的分段序号以及在该分段中的位置, 得到 PRS的开窗位置
所述 PRS子帧数据处理模块, 用于在所述确定的范围内按照预先规定 的开窗步距对接收到的数据进行分段, 用于对分段得到的数据提取 PRS子 帧数据, 进行信道估计; 搜索得到所述信道估计模块信道估计的峰值; 并 根据所述 PRS子帧提取位置确定模块确定的开窗位置提取 PRS子帧数据, 进行信道估计;
所述 RSTD计算模块, 用于根据所述信道估计模块对所述开窗位置提 取的 PRS子帧数据的信道估计结果, 得到 RSTD。
9、 根据权利要求 8所述的装置, 其特征在于, 所述 PRS子帧提取位置 确定模块,具体用于根据参考小区 RSTD的期望值 t及所述期望值的不确定 度 t„, 以及主小区 PRS起始时刻 tQ, 将所述测量小区 PRS子帧起始时刻的 范围确定为 [tQ _ +U。
10、 根据权利要求 8所述的装置, 其特征在于, 所述 PRS子帧数据处 理模块, 具体用于按照开窗步距包含的样点数, 对接收到的数据进行分段。
11、 根据权利要求 8所述的装置, 其特征在于, 所述 PRS子帧数据处 理模块, 具体用于将提取的 PRS子帧数据中的 PRS信号按符号做快速傅氏 变换 FFT后与本地 PRS序列共轭相乘, 得到 OFDM符号的频域信道估计; 根据 CP模式的不同,对 OFDM符号进行时域线性插值,计算得到所述 PRS 子帧的频域信道估计值; 根据所述频域信道估计结果, 进行快速傅氏反变 换 IFFT后, 得到所述 PRS子帧的时域信道估计值。
12、 根据权利要求 8所述的装置, 其特征在于, 所述 PRS子帧数据处 理模块, 具体用于按照预设的搜索窗宽度, 在得到的信道估计值中搜索最 大值;
所述 PRS 子帧提取位置确定模块, 具体用于当所述峰值位置 i 大于 CIRLen l l 时 , 开 窗 位 置 WinPos 为 expectedRSTD - RSTDUncertainty + k NFFT - CIRLen + i; 当所述峰值位置 i小于等 于 CIRLen l l时, 开窗位置 WinPos为 expectedRSTD _ RSTDUncertainty + N FFT + i; 其中, CIRLm为信道估计长度; expectedRSTD为参考 '〗、区 RSTD的期望值; RSTDUncertainty为所述期望值的不确定度。
13、 根据权利要求 8所述的装置, 其特征在于, 所述 RSTD计算模块, 具体用于根据搜索窗宽度, 在所述峰值位置向前推 ∞2个样点, 逐样点进 行第一径位置的搜索, 当搜索到第一个同时大于预设的噪声门限和峰值门 限的样点时, 停止搜索, 确 第一径的位 1 FirstPathlndex; 根据 RSTD = WinPoscell j - WinPoscell t + FirstPathIndexcell j - FirstPathIndexcell i i† ^'J ff 述 RSTD的值; 其中, ·«/¾^„」为测量小区的开窗位置; WinPOScdl」为參考 小区的开窗位置; FirStPathIndeXceU ,为测量小区的第一径位置; FirstPathIndexcell 为参考小区的第一径位置。
14、 根据权利要求 8所述的装置, 其特征在于, 所述 RSTD计算模块, 具体用于当所述同时大于预设的噪声门限和峰值门限的样点的位置 FirstPathlndex '大于 CIRLen l l 时, 所述第一径的位置 FirstPathlndex为 FirstPathlndex '- CIRLen; 当所述同时大于预设的噪声门限和峰值门限的样点 的位置 FirstPathlndex '小于等于 IRLen / 2时, 所述第一径的位置 FirstPathlndex 为 FirstPathlndex '。
PCT/CN2011/079969 2011-09-21 2011-09-21 一种基于信道估计的定位方法及装置 WO2013040772A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079969 WO2013040772A1 (zh) 2011-09-21 2011-09-21 一种基于信道估计的定位方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079969 WO2013040772A1 (zh) 2011-09-21 2011-09-21 一种基于信道估计的定位方法及装置

Publications (1)

Publication Number Publication Date
WO2013040772A1 true WO2013040772A1 (zh) 2013-03-28

Family

ID=47913768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079969 WO2013040772A1 (zh) 2011-09-21 2011-09-21 一种基于信道估计的定位方法及装置

Country Status (1)

Country Link
WO (1) WO2013040772A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022523A (zh) * 2018-01-05 2019-07-16 华为技术有限公司 用于终端设备定位的方法、装置及***
CN111163029A (zh) * 2019-12-27 2020-05-15 重庆物奇科技有限公司 一种增强机器类通信e-MTC的定位参考信号搜索方法
CN114389785A (zh) * 2020-10-16 2022-04-22 维沃移动通信有限公司 参考信号的调整方法及装置、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821645A (zh) * 2007-12-10 2010-09-01 真实定位公司 无线定位***中的cdma信号的到达时间检测
WO2011021153A1 (en) * 2009-08-17 2011-02-24 Nokia Corporation Apparatus and method for positioning a wireless user equipment
CN102124770A (zh) * 2008-08-15 2011-07-13 真实定位公司 用于弱信号的定位的可变相干积分

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101821645A (zh) * 2007-12-10 2010-09-01 真实定位公司 无线定位***中的cdma信号的到达时间检测
CN102124770A (zh) * 2008-08-15 2011-07-13 真实定位公司 用于弱信号的定位的可变相干积分
WO2011021153A1 (en) * 2009-08-17 2011-02-24 Nokia Corporation Apparatus and method for positioning a wireless user equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ALCATEL-LUCENT: "Inter-frequency RSTD Measurements, R4-110906", 3GPP TSG-RAN WG4 MEETING#58, 25 February 2011 (2011-02-25) *
ERICSSON ET AL.: "Proposed link-level simulation assumptions for defining OTDOA RSTD requirements, R4-094533", 3GPP TSG-RAN WG4 MEETING#53, 13 September 2009 (2009-09-13) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110022523A (zh) * 2018-01-05 2019-07-16 华为技术有限公司 用于终端设备定位的方法、装置及***
CN111163029A (zh) * 2019-12-27 2020-05-15 重庆物奇科技有限公司 一种增强机器类通信e-MTC的定位参考信号搜索方法
CN111163029B (zh) * 2019-12-27 2022-04-22 重庆物奇科技有限公司 一种增强机器类通信e-MTC的定位参考信号搜索方法
CN114389785A (zh) * 2020-10-16 2022-04-22 维沃移动通信有限公司 参考信号的调整方法及装置、终端及网络侧设备

Similar Documents

Publication Publication Date Title
KR100865935B1 (ko) 하향링크 프리앰블 신호를 이용한 셀 탐색 장치 및 방법
US11695672B2 (en) Communication system determining time of arrival using matching pursuit
JP5250336B2 (ja) タイミング同期方法およびその装置、並びにプリアンブルおよびその生成方法と装置
CN102025671B (zh) 时间粗同步和频率精同步的时域联合估计方法
CN101997804B (zh) 一种同步定时偏差估计方法和装置
WO2011157134A2 (zh) 基站间干扰检测方法及基站
CN113438730B (zh) 一种基于gfdm信号的无线定位方法
KR20100124457A (ko) 직교주파수분할 방식 기반의 무선통신 시스템에서 초기 동기화를 위한 장치 및 방법
CN108989259B (zh) 无线综测仪窄带物理上行共享信道的时偏估计方法及***
CN101635598B (zh) 一种估计噪声功率的方法和装置
CN101374137B (zh) 一种单载波频域均衡***中的块同步方法
WO2013040772A1 (zh) 一种基于信道估计的定位方法及装置
CN101611606B (zh) 接收到的数字信号的符号同步方法以及利用该方法的数字信号接收器
CN101621493B (zh) Ofdm的频率偏移估计的判决方法
WO2021143644A1 (zh) 一种载波相位跟踪方法及装置
US20070217532A1 (en) Apparatus and method for acquiring frame synchronization in broadband wireless communication system
CN103297100B (zh) 一种用于ofdm***的多普勒变化率估计方法与***
CN102710562B (zh) 一种基于相位和信道冲击的联合时偏估计方法
CN106161324A (zh) 一种信噪比确定方法及装置
CN103532896B (zh) 可变带宽***的定时估计方法和装置
CN106357584B (zh) 基于块状导频的迭代相关符号定时估计方法
Chen et al. A multipath delay estimation model and algorithm in OFDM systems
JP5657733B2 (ja) 無線通信システムにおけるタイミング情報の獲得
Xie et al. FPGA implementation of frame synchronization and symbol timing synchronization based on OFDM system for IEEE 802.11 a
CN114422313B (zh) 一种帧检测方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11872823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11872823

Country of ref document: EP

Kind code of ref document: A1