WO2013038926A1 - 樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法 - Google Patents

樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法 Download PDF

Info

Publication number
WO2013038926A1
WO2013038926A1 PCT/JP2012/072184 JP2012072184W WO2013038926A1 WO 2013038926 A1 WO2013038926 A1 WO 2013038926A1 JP 2012072184 W JP2012072184 W JP 2012072184W WO 2013038926 A1 WO2013038926 A1 WO 2013038926A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
composite material
producing
nano
based composite
Prior art date
Application number
PCT/JP2012/072184
Other languages
English (en)
French (fr)
Inventor
誠 中林
Original Assignee
住友電工ファインポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ファインポリマー株式会社 filed Critical 住友電工ファインポリマー株式会社
Priority to US14/232,023 priority Critical patent/US20140171561A1/en
Publication of WO2013038926A1 publication Critical patent/WO2013038926A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/2053Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the additives only being premixed with a liquid phase
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • C08K5/34924Triazines containing cyanurate groups; Tautomers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention provides a method for producing a resin-based composite material by uniformly dispersing fillers (nanofillers), which are nanoparticles having a particle size much smaller than 1 ⁇ m, in a crosslinkable thermoplastic resin, and obtained.
  • the present invention relates to a method for producing a crosslinked resin molded body using a resin composite material.
  • Non-Patent Document 1 states that excellent flame retardancy and high thermal conductivity can be imparted with a small amount of dispersion compared to the case of using a filler having a larger particle size by uniform dispersion of nanofillers. (Non-patent Document 1, page 58). It is also described that a functional material having a high elastic modulus and a low linear expansion coefficient can be obtained while maintaining transparency by uniformly dispersing nanofillers (Non-Patent Document 1, page 59).
  • Patent Document 1 discloses a method of compounding and molding a molding material containing a thermoplastic resin and crosslinking the thermoplastic resin, and a transparent resin molded product obtained by this method.
  • heat resistance, reflow heat resistance, and light resistance are improved, and mechanical strength such as excellent rigidity, excellent creep resistance, and wear resistance is easily obtained.
  • the present inventor prepared a dispersion in which nanofillers were uniformly dispersed as fine particles in a liquid dispersant, and the dispersion was used as a crosslinkable thermoplastic resin. By mixing, it was found that a nano filler can be easily dispersed as fine particles in the resin (nano dispersion), and a resin composite material having an excellent function can be obtained, and the present invention has been completed.
  • a resin composite comprising a step of uniformly mixing a dispersion prepared by nano-dispersing a nanofiller in a liquid dispersant with a crosslinkable thermoplastic resin. It is a manufacturing method of material.
  • nano-dispersion means that the dispersed particles are uniformly dispersed in the dispersion medium so that the (average) diameter is 400 nm or less. That is, a dispersion state in which primary particles are dispersed without aggregation (average) particle diameter of 400 nm or less and secondary particles (aggregation particles) are not formed, or (average) diameter of aggregates (aggregation particles) of primary particles Refers to a dispersion state in which is 400 nm or less. Therefore, the nanofiller used in the present invention is a particle having an (average) particle diameter of 400 nm or less.
  • the average particle size is dispersion of a filler having a particle size of 400 nm or less, it is not nano-dispersion when the filler is aggregated to produce an aggregate having a diameter exceeding 400 nm.
  • the (average) particle diameter is a value measured with an electron microscope (SEM or the like).
  • a dispersion liquid in which nano fillers are nano-dispersed in a liquid dispersant is prepared.
  • the liquid dispersant is a dispersant that is liquid at the temperature at which the dispersion and the resin are mixed, and can nano-disperse the nanofiller therein.
  • the dispersion liquid and the resin are mixed at a temperature higher by 50 ° C. or more than the glass transition point of the resin, and may be liquid at a temperature 50 ° C. higher than the glass transition point of the resin.
  • the dispersion prepared as described above is mixed with a crosslinkable thermoplastic resin (matrix resin) to produce a resin-based composite material in which nanofillers are nano-dispersed in the crosslinkable thermoplastic resin.
  • matrix resin crosslinkable thermoplastic resin
  • crosslinkable thermoplastic resin examples include thermoplastic resins and elastomers that can crosslink between the polymers constituting the resin by heating, irradiation with ionizing radiation, or the like.
  • specific examples include various thermoplastic resins such as polyolefin, fluororesin, polyamide, polyester, vinyl chloride, and polystyrene, and various elastomers such as polyolefin elastomer, fluoroelastomer, polyamide elastomer, and polyester elastomer.
  • the nanofiller can be easily nano-dispersed in the matrix resin by the method of the present invention. That is, when the nanofiller is directly mixed in the matrix resin without being dispersed in the liquid dispersant, the nanofiller tends to form secondary particles. In addition, since the viscosity of the matrix resin is high, there is a limit to improvement in dispersibility.
  • the nano filler is nano-dispersed in the matrix resin by a method in which the nano filler is nano-dispersed in the liquid dispersant and then mixed with the resin.
  • the nanofiller is dispersed in the matrix resin without using a liquid dispersant, the fluidity of the obtained resin composite material is lowered.
  • a liquid dispersant since a liquid dispersant is used, the fluidity of the obtained resin-based composite material is improved, and injection is performed when a molded body is manufactured using this material. Excellent effects such as easy molding can be obtained.
  • various excellent functions can be imparted to the resin by nano-dispersing the nano filler with excellent dispersibility in the matrix resin.
  • Functions that can be imparted to the resin by the method for producing a resin-based composite material of the present invention include a decrease in water absorption rate, a decrease in expansion coefficient, an improvement in thermal conductivity, an improvement in refractive index, and an improvement in conductivity (electromagnetic wave shield) Improvement of the property), provision of flame retardancy, and the like.
  • the dispersing agent is in a liquid state at a temperature 50 ° C. higher than the glass transition point of the crosslinkable thermoplastic resin (matrix resin).
  • a method for producing a resin-based composite material according to the first aspect of the present invention which is a monomer that is polymerized by irradiation with radiation (hereinafter referred to as UV / EB monomer).
  • the resin-based composite material can contain other components for imparting and improving various functions and physical properties as long as the gist of the invention is not impaired.
  • Other components include a crosslinking aid, a plasticizer, and a UV / EB monomer.
  • a crosslinking aid when the resin is crosslinked, it is preferable to add a crosslinking aid in order to promote crosslinking.
  • the nanofiller is nanodispersed. It can be used as a dispersant for preparing the dispersion.
  • the components preferably used for improving various physical properties of the resin-based composite material can be used as a dispersant as they are, and it is preferable because components not required for improving the physical properties are not added.
  • TAIC triallyl isocyanurate
  • TAIC has a melting point of about 23 ° C. and tends to be liquid.
  • TAIC is trifunctional, it has excellent crosslinkability, and by incorporating TAIC, the heat resistance and reflow heat resistance of the resin can be easily improved by ionizing radiation irradiation.
  • it is preferable also in terms of relatively little discoloration due to irradiation or heat, low toxicity to the human body, and the like.
  • TAIC is preferable because it is excellent in compatibility with the transparent resin.
  • TAIC has excellent compatibility with a transparent polyamide resin (particularly, a condensation polymer of 1,10-decanedicarboxylic acid and 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane). It can be dissolved to a high concentration of about wt%. Therefore, a large amount of nanofillers can be easily nano-dispersed in the transparent polyamide resin, and as a result, a more excellent function can be imparted.
  • a third aspect of the present invention corresponds to this preferred aspect, and the method for producing a resin-based composite material according to the second aspect of the present invention is characterized in that the dispersant is TAIC.
  • the resin-based composite material produced by the above-described method is usually molded, and is preferably subjected to crosslinking by heating or irradiation with ionizing radiation to become a molded product having excellent physical properties and functions.
  • it is formed by molding a resin composite material in which a thermally conductive filler is nano-dispersed in a transparent resin, and is suitably applied to the production of an optical lens having excellent transparency and light resistance.
  • an optical lens as an application example of the method of the present invention will be described.
  • Optical lenses using transparent resins such as transparent polyamide resin and fluororesin are lighter, less damaged and easier to mold than optical lenses made of inorganic glass. Widely used in equipment.
  • the resin optical lens is required to have a high transparency comparable to that of a glass optical lens and a property that does not change color due to light irradiation during use (light resistance).
  • the resin optical lens is likely to be discolored, deformed or aged. Furthermore, in recent strobes, it is desired to increase the amount of light and shorten the light emission interval, and in order to cope with the built-in strobe and the miniaturization, it is desired that the light source and the lens be close to each other. Accordingly, there is a demand for a resinous optical lens having excellent light resistance that does not cause foaming or discoloration even when it is irradiated many times with a larger amount of light.
  • transparent polyamide resins and fluororesins disclosed in JP-A-9-137057, particularly 1,10 disclosed in WO2009 / 084690 -Transparent polyamide resin of a condensation polymer of decanedicarboxylic acid and 3,3'-dimethyl-4,4'-diaminodicyclohexylmethane.
  • an optical lens having excellent light resistance that satisfies the above-described recent demands can be obtained by nano-dispersing a thermally conductive filler in these transparent resins to improve heat dissipation. Therefore, the production method of the present invention is suitably applied to the case where an optical lens satisfying recent demands is produced by nano-dispersing a thermally conductive filler in a transparent resin. Aspect is an aspect suitably applied when manufacturing an optical lens.
  • the crosslinkable thermoplastic resin is a transparent polyamide resin. It is a manufacturing method of material.
  • the transparent resin used in the production of the optical lens examples include transparent resins made of acrylic resin, polycarbonate, polyolefin, fluororesin, polyamide, silicone, epoxy, polyimide, polystyrene, polyester, and the like. Among these, a transparent polyamide resin is preferable.
  • the method for producing a resin-based composite material according to the first aspect of the present invention is applied when the resin is a transparent polyamide resin.
  • the nanofiller is a thermally conductive filler. Is the method.
  • the heat dissipation of the molded body (transparent resin molded body) made of the obtained resin composite material can be improved by dispersing the thermally conductive filler in the resin.
  • the heat conductive filler can be dispersed in the transparent resin at a high concentration with excellent dispersibility, so that the heat dissipation can be further improved.
  • the obtained optical lens is excellent in heat dissipation.
  • a molded article optical lens having excellent light resistance that can suppress temperature rise and hardly discolor and foam even when being irradiated many times with a larger amount of light.
  • a step of obtaining a resin-based composite material by uniformly mixing a dispersion prepared by nano-dispersing a nanofiller in a liquid dispersant with a crosslinkable thermoplastic resin. It is a manufacturing method of the resin molding characterized by having the process of shape
  • a resin molded product having an excellent function by nano-dispersion of nanofillers can be obtained.
  • a resin molded body having functions such as a decrease in water absorption, a decrease in expansion rate, an improvement in thermal conductivity, an improvement in refractive index, an improvement in conductivity (an improvement in electromagnetic shielding properties), and flame retardancy is obtained.
  • Excellent dimensional stability due to a decrease in water absorption rate, excellent physical properties and dimensional stability due to a decrease in coefficient of linear expansion, excellent stability against environmental changes, and excellent adhesion to metal inserts Can be produced.
  • a resin composite material obtained by uniformly mixing a dispersion prepared by nano-dispersing a nanofiller in a liquid dispersant with a crosslinkable thermoplastic resin is molded. Then, a method for producing a crosslinked resin molded product, wherein the resin is crosslinked.
  • the resin-based composite material manufactured by the method for manufacturing a resin-based composite material according to the present invention is molded, and the matrix resin is cross-linked, thereby having an excellent function by nano-dispersion of nanofillers, heat resistance, reflow heat resistance, A molded article having excellent rigidity at high temperatures can be produced.
  • liquid bleed-out can be prevented by crosslinking. That is, when a liquid such as a dispersant is contained in the resin composite material, there is a problem that the liquid bleeds out during use of the molded body obtained from the resin composite material, but the matrix resin is cross-linked. This suppresses this bleed out. Therefore, in the production of resin-based composite materials, a larger amount of dispersant (liquid) can be mixed, the concentration of nanofillers nanodispersed in the matrix resin can be increased, and as a result, the desired function can be further improved. Can do.
  • the molding of the resin-based composite material is preferably performed before the resin is crosslinked. Molding is easy because the rigidity of the resin-based composite material is small before crosslinking. And since heat resistance and rigidity can be improved by bridge
  • a nano-filler can be easily nano-dispersed in a cross-linkable thermoplastic resin, and as a result, a resin-based composite material having an excellent function can be easily obtained.
  • Can do According to the method for producing a resin molded body or a crosslinked resin molded body of the present invention, a molded body having an excellent function imparted by nano-dispersion of nanofillers and excellent in dimensional stability, heat resistance, rigidity, etc. Can do.
  • liquid dispersant used in the production method of the present invention examples include a crosslinking aid, a plasticizer, and a UV / EB monomer.
  • crosslinking aids that can be used as liquid dispersants include oximes such as p-quinone dioxime and p, p′-dibenzoylquinone dioxime; ethylene dimethacrylate, polyethylene glycol dimethacrylate, Acrylates or methacrylates such as trimethylolpropane trimethacrylate, cyclohexyl methacrylate, acrylic acid / zinc oxide mixture, allyl methacrylate, trimethacrylic isocyanurate; vinyl monomers such as divinylbenzene, vinyltoluene, vinylpyridine; hexamethylene diallyl nadiimide, Allyl compounds such as diallyl itaconate, diallyl phthalate, diallyl isophthalate, diallyl monoglycidyl is
  • the amount of TAIC used is preferably less than 25 parts by weight, more preferably 1 to 100 parts by weight based on 100 parts by weight of the transparent polyamide. 20 parts by weight.
  • UV / EB monomers examples include acrylate monomers, methacrylate monomers, imide monomers, silicone monomers, urethane monomers, isocyanate monomers, and epoxy monomers.
  • Examples of the transparent polyamide resin used when the method of the present invention is applied to the production of an optical lens include those exemplified in WO2009 / 084690. Among them, a transparent polyamide resin that is amorphous and has a high glass transition point as described and exemplified in WO2009 / 084690 is preferable.
  • transparent polyamide resins examples include those obtained by condensing a specific diamine and a specific dicarboxylic acid, and those obtained by ring-opening polymerization of lactam or condensation of ⁇ -aminocarboxylic acid. .
  • those having an aromatic ring, an alicyclic ring, and the like are preferable, and in particular, a condensation polymer of 1,10-decanedicarboxylic acid and 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane exhibits discoloration and deformation. It is preferable because it does not easily occur.
  • the transparent polyamide resin as long as the blend itself is transparent, it may be a blend of many different polyamides and may contain a crystalline one. Further, the transparent polyamide may be produced by carrying out the synthesis reaction (polymerization) in the presence of a stabilizer, a reinforcing material and the like described later together with the raw material monomer.
  • a polyamide comprising a condensation polymer of 1,10-decanedicarboxylic acid and 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane is commercially available under a trade name such as Grillamide TR-90 (Ms Chemie Japan). Has been.
  • transparent polyamide used in the present invention examples include Trogamide CX7323, Trogamide T, Trogamide CX9701 (trade name, Daicel Degussa), Grillamide TR-155, Grivory G21, Grillamide TR-55LX , Grilon TR-27 (above, EMS Chemie Japan Co., Ltd.), Crystamide MS1100, Crystamide MS1700 (above, Arkema), Sealer 3030E, Sealer PA-V2031, Isoamide PA-7030 (above, DuPont) .
  • the thermally conductive filler suitably used as a nanofiller refers to a filler having a thermal conductivity of 1 W / m ⁇ K or more, preferably thermal conductivity.
  • nano fillers with a thermal conductivity of less than 1 W / m ⁇ K excellent light resistance cannot be obtained even when blended in large amounts with transparent resin, and with a large amount of light from xenon lamps, LEDs, (blue-violet) lasers, etc. When being irradiated many times, foaming and discoloration occur.
  • Thermally conductive fillers include alumina, (crystalline) silica, aluminum nitride, boron nitride, silicon nitride, zinc oxide, tin oxide, magnesium oxide, silicon carbide, carbon black, carbon fibers, carbon nanotubes and other carbon materials, synthetic A magnesite etc. can be mentioned.
  • the shape of the heat conductive filler is not necessarily spherical, and may be a rod shape, a plate shape, or a pulverized filler.
  • these thermally conductive fillers may be subjected to surface treatment with a surfactant or the like in order to facilitate nano-dispersion thereof.
  • the amount of the thermally conductive filler is preferably 1% by weight or more based on the weight of the transparent polyamide resin.
  • the blending amount is less than 1% by weight, the improvement of heat dissipation is insufficient and an optical lens having excellent light resistance cannot be obtained, and irradiation with a large amount of light by a xenon lamp, LED, laser or the like is performed many times. If done, foaming and discoloration will occur.
  • the blending amount exceeds 50% by weight, the transparency may decrease, so 50% by weight or less is preferable, and in order to obtain more excellent transparency, it is 20% by weight or less.
  • the thermally conductive filler is nano-dispersed in a transparent resin
  • the degree of filler nano-dispersion and the transparency have a strong correlation. Therefore, the degree of nano-dispersion of the filler can be represented by the transparency (total light transmittance) of the obtained resin-based composite material or molding material.
  • the thermally conductive filler can be nano-dispersed so that the total light transmittance is 30% or more when the thickness of the molded body is 2 mm. it can.
  • examples of a method of nano-dispersing nanofillers in the dispersant include a method of dispersing using a ball mill, a three-roller, or a stirring propeller.
  • a method of mixing a dispersion obtained by nano-dispersing nanofillers with a crosslinkable thermoplastic resin a known method adopted for mixing a resin and a liquid is used.
  • the dispersion liquid, the matrix resin, and other components added as necessary may be mixed with a known mixer such as a single screw extruder, a twin screw extruder, or a pressure kneader.
  • the method of polymerizing the monomer by mixing the dispersion, the monomer constituting the resin and the polymerization initiator, and other components described later that are added as necessary is also a cross-linkability with the dispersion as one step of the present invention. It is included in the mixing of thermoplastic resins.
  • a twin screw extruder is preferable when applied to the production of an optical lens, and when a thermally conductive filler is dispersed in a transparent polyamide resin, a mixing temperature of about 230 ° C. to 300 ° C., 2 In general, a mixing time of about 15 to 15 minutes is preferably employed.
  • liquid dispersant In addition to the nanofiller, the liquid dispersant, and the matrix resin, other components may be added to the resin-based composite material produced according to the present invention, if necessary, within a range that does not impair the spirit of the present invention.
  • stabilizers, copper damage inhibitors, flame retardants, lubricants, conductive agents, plating imparting agents, and the like can be blended.
  • a stabilizer in the case of a resin-based composite material in which a heat conductive filler is dispersed in a transparent polyamide resin for forming an optical lens, it is preferable to contain a stabilizer.
  • the stabilizer include a hindered amine light stabilizer, an ultraviolet absorber, a phosphorus stabilizer, a hindered phenol antioxidant, a hydroquinone antioxidant, and the like.
  • the function as a stabilizer may be improved and a more excellent effect may be obtained.
  • the hindered amine light stabilizer is ADK STAB LA68, LA62 (trade name, Asahi Denka Co., Ltd.)
  • the ultraviolet absorber is ADK STAB LA36 (trade name, Asahi Denka Co., Ltd.), etc.
  • the phosphorus stabilizer is Irgafos 168 (trade name, BASF), etc.
  • hindered phenolic antioxidants are commercially available as Irganox 245, Irganox 1010 (trade name, BASF), etc.
  • hydroquinone antioxidants are commercially available as methoquinone (trade name: Seiko Chemical Co., Ltd.). These can be used.
  • the molding method in the molding step in the method for producing the resin molded body or cross-linked resin molded body of the present invention is not particularly limited, and examples thereof include an injection molding method, an injection compression molding method, a press molding method, an extrusion molding method, and a blow molding method.
  • the injection molding method is preferable from the viewpoint of ease of molding and molding accuracy.
  • the resin is crosslinked by heating the resin, irradiating the resin with ionizing radiation, or the like.
  • the method of irradiating with ionizing radiation is preferable in terms of easy control.
  • an electron beam is preferable from the viewpoint of safety, availability of the apparatus, and the like.
  • the rigidity of the resin can be improved by crosslinking the resin.
  • the storage elastic modulus at 270 ° C. of the molded body is 0.1 MPa or more by crosslinking.
  • the storage elastic modulus is a term (real number term) constituting a complex elastic modulus representing a relationship between stress and strain when a sinusoidal vibration strain is applied to a viscoelastic body, and a viscoelasticity measuring instrument ( It is a value measured by DMS). More specifically, it is a value measured at a rate of temperature increase of 10 ° C./min from room temperature (25 ° C.) using a viscoelasticity measuring device by DVA-200 manufactured by IT Measurement & Control Co., Ltd.
  • Example A resin composition having the composition shown in Table 1 was obtained as follows. That is, TAIC (liquid) and a thermally conductive filler are mixed with an alumina ball mill to obtain a dispersion in which the thermally conductive filler is nano-dispersed in TAIC. This dispersion was side-fed to a twin-screw mixer (Toshiba Machine TEM58BS) and mixed with the transparent polyamide to obtain a resin composite material of the present invention.
  • TAIC liquid
  • a thermally conductive filler are mixed with an alumina ball mill to obtain a dispersion in which the thermally conductive filler is nano-dispersed in TAIC.
  • This dispersion was side-fed to a twin-screw mixer (Toshiba Machine TEM58BS) and mixed with the transparent polyamide to obtain a resin composite material of the present invention.
  • twin-screw mixer Toshiba Machine TEM58BS
  • the resin-based composite material thus obtained SE-18 (manufactured by Sumitomo Heavy Industries Co., Ltd., electric injection molding machine) was injection molded to produce a molded body sample of 40 mm ⁇ 40 mm ⁇ 2 mm (thickness). Injection molding was performed under conditions of a resin temperature of 280 ° C., a mold temperature of 80 ° C., and a cycle of 30 seconds.
  • the obtained molded product sample was irradiated with a 300 kGy electron beam for crosslinking to obtain a crosslinked resin molded product of the present invention.
  • the external appearance after a total light transmittance and a light resistance test was measured by the following method. These results are shown in Table 1.
  • Comparative Example 1 With the composition shown in Table 1, TAIC was side-fed to a biaxial mixer (Toshiba Machine TEM58BS) and mixed with the transparent polyamide. Thereafter, injection molding was carried out under the same conditions as in the example using SE-18 (manufactured by Sumitomo Heavy Industries, Ltd., electric injection molding machine) to produce a molded body sample of 40 mm ⁇ 40 mm ⁇ 2 mm (thickness). Furthermore, under the same conditions as in the examples, the obtained molded product sample was irradiated with an electron beam for crosslinking to obtain a crosslinked resin molded product. About the molded object after irradiation, the external appearance after a total light transmittance and a light resistance test was measured by the following method.
  • SE-18 manufactured by Sumitomo Heavy Industries, Ltd., electric injection molding machine
  • Comparative Example 2 With the composition shown in Table 1, TAIC, the thermally conductive filler and the transparent polyamide were fed from the top of a biaxial mixer (Toshiba Machine TEM58BS) and mixed. Thereafter, injection molding was carried out under the same conditions as in the example using SE-18 (manufactured by Sumitomo Heavy Industries, Ltd., electric injection molding machine) to produce a molded body sample of 40 mm ⁇ 40 mm ⁇ 2 mm (thickness). Furthermore, under the same conditions as in the Examples, the obtained molded product sample was crosslinked by irradiating an electron beam to obtain a crosslinked resin molded product. About the molded object after irradiation, the external appearance after a total light transmittance and a light resistance test was measured by the following method. These results are shown in Table 1.
  • Total light transmittance The measurement was performed according to JIS K 7361. The ratio between the amount of incident light T 1 in the visible light range (wavelength range of 400 to 800 nm) and the total amount of light T 2 that has passed through the test piece is shown as a percentage.
  • the lens discoloration after 200 cycles was evaluated, and the evaluation results are shown in Table 1 as ⁇ when no discoloration was observed in the lens and x when the center portion of the lens was discolored.
  • Example 1 in which a thermal conductive filler was nano-dispersed in TAIC and this dispersion was mixed with a transparent polyamide resin, the total light transmittance was 80%. It is shown that the thermally conductive filler is nano-dispersed in the transparent polyamide resin. Also, the appearance after the light resistance test when the flash is once every 2 seconds is good. This is probably because the heat conductive filler is nano-dispersed and the heat dissipation is improved.
  • Comparative Example 1 in which the thermally conductive filler was not dispersed, the appearance after the light resistance test when the flash was once every 2 seconds was poor. This is probably because the heat dissipation was not improved, and the temperature rise due to many flashes was large.
  • Comparative Example 2 in which the thermally conductive filler was dispersed but the dispersion was not prepared and the thermally conductive filler was directly mixed with the TAIC in the matrix resin, the total light transmittance was 20%. It is shown that the dispersibility of the heat conductive filler is low. Also, the appearance after the light resistance test when the flash is once every 2 seconds is poor. This is probably because the heat dissipating property is not improved because the dispersibility of the heat conductive filler is low, and the temperature rise due to many flashes is large.
  • the present invention can be used for producing a crosslinked resin having improved various physical properties and a molded body thereof by nano-dispersing a nanofiller in a crosslinkable thermoplastic resin.
  • it can be used to produce an optical lens that is suitably used for applications such as a strobe lens (for example, a strobe Fresnel lens).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

架橋性の熱可塑性樹脂中にナノフィラーを容易に均一分散することができ、その結果優れた機能を付与することができる樹脂系複合材料の製造方法、及びその樹脂系複合材料を用いることを特徴とする架橋樹脂成形体の製造方法を提供する。 ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合する工程を有することを特徴とする樹脂系複合材料の製造方法、及び、ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合して得られた樹脂系複合材料を成形した後、樹脂を架橋することを特徴とする架橋樹脂成形体の製造方法。

Description

樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法
 本発明は、粒径が1μmよりはるかに小さいナノ粒子であるフィラー(ナノフィラー)を、架橋性の熱可塑性樹脂中に均一に分散させて樹脂系複合材料を製造する方法、及び、得られた樹脂系複合材料を用い架橋樹脂成形体を製造する方法に関する。
 近年、樹脂中にナノフィラーを均一分散させ種々の機能を付与した機能性材料の開発が検討されている。例えば、非特許文献1には、ナノフィラーの均一分散により、粒径のより大きいフィラーを用いた場合と比べて少ない分散量で、優れた難燃性や高い熱伝導率を付与できることが述べられている(非特許文献1第58頁)。又、ナノフィラーの均一分散により、透明性を維持しつつ高弾性率、低線膨張率の機能性材料が得られることも記載されている(非特許文献1第59頁)。
 一方、樹脂を架橋することにより、樹脂の機械的強度、耐熱性や剛性等を向上させる方法も知られている。例えば、特許文献1には、熱可塑性樹脂を含有する成形材料を、コンパウンド化し成形するとともに前記熱可塑性樹脂を架橋する方法、及びこの方法により得られる透明樹脂成形体が開示されている。そして、樹脂を架橋することにより耐熱性、リフロー耐熱性、耐光性が向上するとともに、優れた剛性や優れた耐クリープ性、耐摩耗性等の機械的強度も得やすくなることが記載されている。
 そこで、架橋性の樹脂(架橋できる樹脂)にナノフィラーを均一に分散させて所望の機能を付与するとともに樹脂を架橋して、種々の優れた物性を有する樹脂系複合材料の製造方法の開発が期待されている。
特開2010-037475号公報
プラスチックスエージ 2011年4月号、58-59頁
 ナノフィラーの分散により所望の機能を付与するためには、ベースの樹脂中へナノフィラーを、微小粒子として分散することが望まれる。そこで、樹脂中にナノフィラーを微小粒子として分散できる分散方法が望まれていた。本発明は、架橋性の熱可塑性樹脂中にナノフィラーを容易に微小粒子として分散することができその結果優れた機能を付与することができる樹脂系複合材料の製造方法を提供することを課題とする。
 本発明者は、上記の課題を解決するために鋭意検討の結果、ナノフィラーを液状の分散剤中に微小粒子として均一分散した分散液を作製し、この分散液を架橋性の熱可塑性樹脂と混合することにより、樹脂中にナノフィラーを容易に微小粒子として分散(ナノ分散)でき、優れた機能が付与された樹脂系複合材料が得られることを見出し、本発明を完成した。
 本発明の第1の態様は、液状の分散剤中にナノフィラーをナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合する工程を有することを特徴とする樹脂系複合材料の製造方法である。
 本発明においてナノ分散とは、分散されている粒子の(平均)径が400nm以下となるように、分散媒中に均一に分散されていることを意味する。すなわち、(平均)粒子径が400nm以下の一次粒子が凝集せずに分散され二次粒子(凝集粒子)が形成されていない分散状態、又は一次粒子の凝集物(凝集粒子)の(平均)径が400nm以下となる分散状態を言う。従って、本発明に使用されるナノフィラーは、(平均)粒子径が400nm以下の粒子である。(平均)粒子径が400nm以下のフィラーの分散であっても、フィラーが凝集し径が400nmを超える凝集物が生成する場合は、ナノ分散ではない。なお、(平均)粒子径は、電子顕微鏡(SEM等)により測定した値である。
 この製造方法では、先ず、ナノフィラーが液状の分散剤中にナノ分散された分散液が作製される。液状の分散剤とは、分散液と樹脂を混合する際の温度で液状であり、ナノフィラーをその中にナノ分散させることができる分散剤である。通常、分散液と樹脂との混合は、樹脂のガラス転移点より50℃以上高い温度で行われるので、樹脂のガラス転移点より50℃高い温度において液状であればよい。
 上記のようにして作製された分散液は、架橋性の熱可塑性樹脂(マトリックス樹脂)と混合され、架橋性の熱可塑性樹脂中にナノフィラーがナノ分散された樹脂系複合材料が製造される。
 架橋性の熱可塑性樹脂(マトリックス樹脂)としては、加熱や電離放射線の照射等により樹脂を構成する高分子間を架橋させることができる熱可塑性樹脂、エラストマーを挙げることができる。具体的には、ポリオレフィン、フッ素樹脂、ポリアミド、ポリエステル、塩化ビニル、ポリスチレン等の各種熱可塑性樹脂、ポリオレフィンエラストマー、フッ素エラストマー、ポリアミドエラストマー、ポリエステルエラストマー等の各種エラストマー等を挙げることができる。
 本発明の方法によりナノフィラーをマトリックス樹脂中に容易にナノ分散することができる。すなわち、ナノフィラーを液状の分散剤に分散せずに直接マトリックス樹脂中に混合すると、ナノフィラーが二次粒子を形成しやすい。またマトリックス樹脂の粘度が高いため、分散性の向上に限界があった。液状の分散剤中にナノフィラーをナノ分散させた後、樹脂と混合する方法により、ナノフィラーがマトリックス樹脂中に良好にナノ分散される。
 又、液状の分散剤を用いずにナノフィラーをマトリックス樹脂中に分散すると、得られた樹脂系複合材料の流動性が低下する。しかし、本発明の樹脂系複合材料の製造方法では、液状の分散剤を用いるので、得られた樹脂系複合材料の流動性が向上し、この材料を使用して成形体を製造する際に射出成形がし易くなる等の優れた効果も得られる。
 このようにして、ナノフィラーをマトリックス樹脂中に優れた分散性でナノ分散することにより、樹脂に各種の優れた機能を付与することができる。本発明の樹脂系複合材料の製造方法により樹脂に付与することができる機能としては、吸水率の低下、膨張率の低下、熱伝導率の向上、屈折率の向上、導電性の向上(電磁波シールド性の向上)、難燃性の付与等を挙げることができる。
 本発明の第2の態様は、前記分散剤が、前記架橋性の熱可塑性樹脂(マトリックス樹脂)のガラス転移点より50℃高い温度において液状である、架橋助剤、可塑剤、又は紫外線若しくは電子線照射により重合するモノマー(以下、UV・EBモノマーと言う。)であることを特徴とする本発明の第1の態様に記載の樹脂系複合材料の製造方法である。
 樹脂系複合材料には、発明の趣旨を損ねない範囲で、種々の機能や物性を付与、向上させるための他の成分を含有させることができる。この他の成分としては、架橋助剤、可塑剤、及びUV・EBモノマー等が含まれる。例えば、樹脂を架橋する場合には、架橋を促進するため架橋助剤を添加することが好ましい。
 そして、架橋助剤、可塑剤及びUV・EBモノマーが、マトリックス樹脂のガラス転移点より50℃高い温度において液状であり、ナノフィラーをナノ分散できる場合は、これらを、ナノフィラーをナノ分散して前記分散液を作製するための分散剤として用いることができる。この場合は、樹脂系複合材料の種々の物性向上のために好ましく用いられる成分を、そのまま分散剤として利用することができ、物性の向上に必要でない成分を加えるわけでないので好ましい。
 分散剤となる架橋助剤としては、トリアリルイソシアヌレート(以下、TAICとする。)が好ましい。TAICは融点23℃程度であり液体となりやすい。又、TAICは、三官能のため架橋性に優れ、TAICを含有させることにより樹脂の耐熱性やリフロー耐熱性を電離放射線照射等により容易に向上できる。さらに、放射線照射や熱による変色が比較的少ない、人体に対する毒性が低い、等の点でも好ましい。
 特に、マトリックス樹脂が後述するような透明樹脂の場合、TAICは、透明樹脂との相溶性に優れるので好ましい。例えばTAICは、透明ポリアミド樹脂(特に、1,10-デカンジカルボン酸及び3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタンの縮合重合体)との相溶性に優れ透明ポリアミドに対して50重量%程度の高濃度まで溶解させることができる。従って、多量のナノフィラーを透明ポリアミド樹脂中にナノ分散しやすく、その結果より優れた機能を付与することができる。本発明の第3の態様は、この好ましい態様に該当し、前記分散剤が、TAICであることを特徴とする本発明の第2の態様に記載の樹脂系複合材料の製造方法である。
 上記の方法により製造された樹脂系複合材料は、通常成形され、好ましくは、加熱又は電離放射線の照射等による架橋が施されて優れた物性と機能を有する成形品となる。特に、透明樹脂に熱伝導性フィラーをナノ分散させた樹脂系複合材料を成形してなり、優れた透明性、耐光性を有する光学レンズの製造に好適に適用される。以下、本発明の方法の適用例としての、光学レンズの製造について説明する。
 透明ポリアミド樹脂やフッ素樹脂等の透明樹脂を用いた光学レンズは、無機ガラスからなる光学レンズと比べて、軽量であり、破損しにくく、又成形が容易であるとの特徴を有するので各種の光学機器に広く用いられている。この樹脂製光学レンズには、ガラス製光学レンズに匹敵する高い透明性とともに、使用時の光照射により変色しない性質(耐光性)が求められる。
 特に、キセノンランプ、LED、青紫レーザー等を光源とし光の照射量が高い所謂ストロボ等の発光装置に用いられる場合は、樹脂製光学レンズに、変色、変形、老化等を生じやすい。さらに、近年のストロボにおいては、光量の増大、発光間隔の短縮が望まれており、又ストロボの内蔵化、小型化に対応するために光源とレンズ間の近接化が望まれている。従って、より大きな光量で多数回の照射がされた場合でも、発泡や変色が生じないような優れた耐光性を有する樹脂性の光学レンズが望まれている。
 優れた透明性と優れた耐光性を有する光学レンズを与える樹脂材料として、特開平9-137057号公報に開示された透明ポリアミド樹脂やフッ素樹脂、特に、WO2009/084690公報に開示された1,10-デカンジカルボン酸及び3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタンの縮合重合体の透明ポリアミド樹脂等を挙げることができる。
 そして、これらの透明樹脂に、熱伝導性フィラーをナノ分散させて放熱性を向上させることにより上記のような近年の要請を充足する優れた耐光性を有する光学レンズを得ることができる。従って、本発明の製造方法は、透明樹脂に熱伝導性フィラーをナノ分散させて、近年の要請を充足する光学レンズを製造する場合に好適に適用され、下記の本発明の第4又は5の態様は、光学レンズを製造する場合に好適に適用される態様である。
 本発明の第4の態様は、前記架橋性の熱可塑性樹脂が透明ポリアミド樹脂であることを特徴とする本発明の第1の態様ないし第3の態様のいずれかの態様に記載の樹脂系複合材料の製造方法である。
 光学レンズの製造に用いられる透明樹脂としては、アクリル樹脂、ポリカーボネート、ポリオレフィン、フッ素樹脂、ポリアミド、シリコーン、エポキシ、ポリイミド、ポリスチレン、ポリエステル等からなる透明な樹脂を挙げることができる。中でも、透明ポリアミド樹脂が好ましい。本発明の第4の態様は、本発明の第1の態様の樹脂系複合材料の製造方法を、樹脂が透明ポリアミド樹脂である場合に適用したものである。
 本発明の第5の態様は、前記ナノフィラーが熱伝導性フィラーであることを特徴とする本発明の第1の態様ないし第4の態様のいずれかの態様に記載の樹脂系複合材料の製造方法である。
 熱伝導性フィラーを樹脂中に分散させることにより、得られた樹脂系複合材料からなる成形体(透明樹脂成形体)の放熱性を向上させることができる。本発明の製造方法によれば、熱伝導性フィラーを透明樹脂中に優れた分散性で高濃度に分散させることができるので、放熱性をより向上させることができる。
 従って、この製造方法を光学レンズの製造に適用した場合、得られた光学レンズは放熱性に優れている。その結果、より大きな光量で多数回の照射がされた場合でも温度上昇を抑制でき、変色や発泡しにくい優れた耐光性を有する成形体(光学レンズ)を得ることができる。
 本発明の第6の態様は、ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合して樹脂系複合材料を得る工程、及び得られた樹脂系複合材料を成形する工程を有することを特徴とする樹脂成形体の製造方法である。
 本発明の樹脂系複合材料の製造方法により製造された樹脂系複合材料を成形することにより、ナノフィラーのナノ分散による優れた機能を有する樹脂成形体を得ることができる。例えば、吸水率の低下、膨張率の低下、熱伝導率の向上、屈折率の向上、導電性の向上(電磁波シールド性の向上)、難燃性等の機能が付与された樹脂成形体を得ることができる。そして、吸水率の低下により優れた寸法安定性、線膨張率の低下により物性や寸法の優れた安定性、環境変化に対する優れた安定性が得られるとともに、金属のインサート品との密着性に優れた成形体を製造することができる。
 本発明の第7の態様は、ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合して得られた樹脂系複合材料を成形した後、樹脂を架橋することを特徴とする架橋樹脂成形体の製造方法である。
 本発明の樹脂系複合材料の製造方法により製造された樹脂系複合材料を成形し、マトリックス樹脂を架橋することにより、ナノフィラーのナノ分散による優れた機能を有するとともに、耐熱性、リフロー耐熱性や高温時の剛性に優れた成形体を製造することができる。
 さらに、架橋により液体のブリードアウトを防ぐことができる。すなわち、樹脂系複合材料に分散剤等の液体が含まれている場合は、その樹脂系複合材料から得られた成形体の使用中に液体がブリードアウトする問題があるが、マトリックス樹脂を架橋することによりこのブリードアウトが抑制される。従って、樹脂系複合材料の製造において、より大量の分散剤(液体)を混合でき、マトリックス樹脂中にナノ分散されるナノフィラーの濃度を高めることができ、その結果所望の機能をより向上させることができる。
 なお、樹脂系複合材料の成形は、好ましくは樹脂の架橋前に行われる。架橋前は樹脂系複合材料の剛性が小さいので成形が容易である。そして、架橋により耐熱性や剛性を向上させることができるので、耐熱性や高温での剛性に優れた成形体が得られる。
 本発明の樹脂系複合材料の製造方法により、架橋性の熱可塑性樹脂中にナノフィラーを容易にナノ分散することができ、その結果優れた機能が付与された樹脂系複合材料を容易に得ることができる。本発明の樹脂成形体或いは架橋樹脂成形体の製造方法により、ナノフィラーのナノ分散により付与された優れた機能を有するとともに、寸法安定性或いは耐熱性や剛性等に優れた成形体を製造することができる。
 次に、本発明を実施するための具体的な形態を説明する。なお、本発明は、ここに述べる形態に限定されるものではない。
 本発明の製造方法に使用される液状の分散剤としては、架橋助剤、可塑剤、UV・EBモノマー等を挙げることができる。又、液状の分散剤として使用できる架橋助剤としては、TAIC以外にも、p-キノンジオキシム、p,p’-ジベンゾイルキノンジオキシム等のオキシム類;エチレンジメタクリレート、ポリエチレングリコールジメタクリレート、トリメチロールプロパントリメタクリレート、シクロヘキシルメタクリレート、アクリル酸/酸化亜鉛混合物、アリルメタクリレート、トリメタクリルイソシアヌレート等のアクリレート又はメタクリレート類;ジビニルベンゼン、ビニルトルエン、ビニルピリジン等のビニルモノマー類;ヘキサメチレンジアリルナジイミド、ジアリルイタコネート、ジアリルフタレート、ジアリルイソフタレート、ジアリルモノグリシジルイソシアヌレート、トリアリルシアヌレート等のアリル化合物類;N,N’-m-フェニレンビスマレイミド、N,N’-(4,4’-メチレンジフェニレン)ジマレイミド等のマレイミド化合物類等を挙げることができる。TAIC及びこれらの架橋助剤は単独で用いてもよいし、組み合わせて使用することもできる。
 架橋性の熱可塑性樹脂として透明ポリアミドを用い、架橋助剤のTAICを分散剤として用いる場合、TAICの使用量は、透明ポリアミド100重量部に対して25重量部未満が好ましく、より好ましくは1~20重量部である。TAICの使用量が多い程、架橋を促進しリフロー耐熱性等を向上させる効果が大きいが、その使用量が前記の範囲以上となると、成形の際の固化が遅くなりすぎて成形性が低下し、成形品の良い外観が得にくくなる場合がある。
 液状の分散剤として使用できる可塑剤としては、シリコーン、エステル油等、樹脂の既知の可塑剤を挙げることができる。
 液状の分散剤として使用できるUV・EBモノマーとしては、アクリレート系モノマー、メタクリレート系モノマー、イミド系モノマー、シリコーン系モノマー、ウレタン系モノマー、イソシアネート系モノマー、エポキシ系モノマー等を挙げることができる。
 本発明の方法を光学レンズの製造に適用する場合用いられる透明ポリアミド樹脂としては、WO2009/084690公報等に例示されているもの等を挙げることができる。中でも、WO2009/084690公報で説明、例示されているような非晶性でかつガラス転位点の高い透明ポリアミド樹脂が好適である。
 このような透明ポリアミド樹脂としては、例えば、特定のジアミンと特定のジカルボン酸とを縮合して得たもの、ラクタムの開環重合やω-アミノカルボン酸の縮合により得たものを挙げることができる。中でも、芳香環、脂環等を有するものが好ましく、特に、1,10-デカンジカルボン酸及び3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタンの縮合重合体は、変色や変形等を生じにくいので好ましい。
 透明ポリアミド樹脂としては、配合物自体が透明であれば、多数の異なるポリアミドの配合物であってよく、結晶性のものが含まれていてもよい。さらに、透明ポリアミドとしては、その合成反応(重合)を、原料モノマーとともに後述する安定剤、補強材等の存在下行って製造したものでもよい。
 透明ポリアミドとしては市販品を用いることもできる。例えば、1,10-デカンジカルボン酸及び3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタンの縮合重合体からなるポリアミドは、グリルアミドTR-90(エムスケミー・ジャパン社)等の商品名で市販されている。
 その他、本発明に使用される透明ポリアミドの具体的商品例としては、トロガミドCX7323、トロガミドT、トロガミドCX9701(商品名、以上、ダイセル・デグサ社)、グリルアミドTR-155、グリボリーG21、グリルアミドTR-55LX、グリロンTR-27(以上、エムスケミー・ジャパン社)、クリスタミドMS1100、クリスタミドMS1700(以上、アルケマ社)、シーラー3030E、シーラーPA-V2031、イソアミドPA-7030(以上、デュポン社)等を挙げることができる。
 本発明の方法を光学レンズの製造に適用する場合に、ナノフィラーとして好適に用いられる熱伝導性フィラーとは、熱伝導率が1W/m・K以上であるフィラーを言い、好ましくは、熱伝導率が20W/m・K以上のフィラーであり、より好ましくは、熱伝導率が50W/m・K以上のフィラーである。熱伝導率が1W/m・K未満のナノフィラーの場合は、透明樹脂に対し多量に配合しても優れた耐光性が得られず、キセノンランプ、LED、(青紫)レーザー等による大きな光量での多数回の照射がされると、発泡や変色が生じる。
 熱伝導性フィラーとしては、アルミナ、(結晶性)シリカ、窒化アルミニウム、窒化硼素、窒化ケイ素、酸化亜鉛、酸化スズ、酸化マグネシウム、炭化ケイ素、カーボンブラック、カーボンファイバー、カーボンナノチューブ等のカーボン材料、合成マグネサイト等を挙げることができる。熱伝導性フィラーの形状は、必ずしも球状である必要は無く、棒状、板状、粉砕フィラーであってもよい。さらにこれらの熱伝導性フィラーは、そのナノ分散を容易にするために、界面活性剤等による表面処理等が施されたものでもよい。
 光学レンズを形成する樹脂系複合材料を製造する場合、熱伝導性フィラーの配合量は、透明ポリアミド樹脂の重量に対して1重量%以上が好ましい。配合量が1重量%未満の場合は、放熱性の向上が不十分であり優れた耐光性を有する光学レンズが得られず、キセノンランプ、LED、レーザー等による大きな光量での多数回の照射がされると、発泡や変色が生じる。一方、配合量が50重量%を超える場合は透明性が低下する場合があるので50重量%以下が好ましく、より優れた透明性を得るためには20重量%以下である。
 透明樹脂に熱伝導性フィラーをナノ分散する場合、フィラーのナノ分散の程度と透明性は強い相関がある。そこで、フィラーのナノ分散の程度は、得られた樹脂系複合材料や成形材料の透明度(全光線透過率)により表わすことができる。そして、マトリックス樹脂として透明ポリアミド樹脂を用いた場合、本発明により、成形体の厚さを2mmとしたときの全光線透過率が30%以上となるように熱伝導性フィラーをナノ分散させることができる。
 本発明の樹脂系複合材料の製造方法において、ナノフィラーを前記の分散剤にナノ分散する方法としては、ボールミル、三本ロール又は撹拌プロペラを用いて分散する方法等を挙げることができる。
 本発明の樹脂系複合材料の製造方法において、ナノフィラーをナノ分散してなる分散液を架橋性の熱可塑性樹脂に混合する方法としては、樹脂と液体の混合に採用されている公知の方法を挙げることができる。例えば、分散液、マトリックス樹脂及び必要により加えられる後述の他の成分を、単軸押出機、二軸押出機、加圧ニーダー等の公知の混合機により混合する方法を挙げることができる。又、分散液と、樹脂を構成するモノマー及び重合開始剤、並びに必要により加えられる後述の他の成分を混合し、モノマーを重合する方法も、本発明の一工程としての、分散液と架橋性の熱可塑性樹脂の混合に含まれる。
 前記の混合機の中では、光学レンズの製造に適用する場合は、二軸押出機が好ましく、透明ポリアミド樹脂に熱伝導性フィラーを分散させる場合は、230℃~300℃程度の混合温度、2秒~15分程度の混合時間が一般に好ましく採用される。
 本発明により製造される樹脂系複合材料には、ナノフィラー、液状の分散剤、マトリックス樹脂の他に、必要により本発明の趣旨を損ねない範囲で他の成分を加えてもよい。例えば、安定剤、銅害防止剤、難燃剤、滑剤、導電剤、メッキ付与剤等を配合することができる。
 特に、光学レンズを形成するための透明ポリアミド樹脂に熱伝導性フィラーを分散させてなる樹脂系複合材料の場合は、安定剤を含有することが好ましい。安定剤を含有することにより、光学レンズの変色をより効率的に抑制することができる。安定剤として具体的には、ヒンダードアミン光安定剤、紫外線吸収剤、リン系安定剤、ヒンダードフェノール系酸化防止剤、ヒドロキノン系酸化防止剤等を挙げることができる。2種以上の安定剤を併用すると、安定剤としての機能が向上しより優れた効果が得られる場合がある。
 安定剤としては、市販されているものを用いることができる。例えば、ヒンダードアミン光安定剤はアデカスタブLA68、LA62(商品名、旭電化社)等として、紫外線吸収剤はアデカスタブLA36(商品名、旭電化社)等として、リン系安定剤はイルガフォス168(商品名、BASF社)等として、ヒンダードフェノール系酸化防止剤はイルガノックス245、イルガノックス1010(商品名、BASF社)等として、ヒドロキノン系酸化防止剤は、メトキノン(商品名:精工化学社)等として市販されており、これらを用いることができる。
 本発明の樹脂成形体或いは架橋樹脂成形体の製造方法における、成形工程での成形方法は特に制限されず、例えば、射出成形法、射出圧縮成形法、プレス成形法、押出成形法、ブロー成形法、真空成形法等が挙げられるが、成形の容易さ及び成形の精度の観点から射出成形法が好ましい。
 本発明の架橋樹脂成形体の製造方法における、樹脂の架橋は、樹脂の加熱や樹脂に電離放射線を照射する方法等により行われる。中でも電離放射線を照射する方法は、制御が容易な点で好ましい。又、電離放射線としては、安全性や装置の入手し易さ等から電子線が好ましい。
 前記のように、樹脂の架橋により、樹脂の剛性を向上させることができる。架橋樹脂成形体を光学レンズとして用いる場合は、架橋により成形体の270℃での貯蔵弾性率を0.1MPa以上とすることが好ましい。270℃での貯蔵弾性率を0.1MPa以上とすることにより、室温から高温まで満足する剛性が得られ、光学レンズを、鉛フリー半田を用いた半田付けや半田リフローにより実装する場合、及び光学レンズの使用環境が高温になる場合でも、熱変形の問題を生じにくく、所謂リフロー耐熱性が高いので好ましい。
 ここで、貯蔵弾性率とは、粘弾性体に正弦的振動ひずみを与えたときの応力と、ひずみの関係を表わす複素弾性率を構成する一項(実数項)であり、粘弾性測定器(DMS)により測定した値である。より具体的には、アイティー計測制御社製DVA-200による粘弾性測定器により、室温(25℃)よりの10℃/分の昇温速度にて測定される値である。
 次に、本発明を実施例に基づき説明する。なお、本発明は、ここに述べる実施例に限定されるものではなく、本発明の趣旨を損なわない限り他の形態への変更も可能である。先ず、実施例及び比較例で使用した原料について述べる。
[透明ポリアミド] 1,10-デカンジカルボン酸及び3,3′-ジメチル-4,4′-ジアミノジシクロヘキシルメタンの縮合重合体(商品名:グリルアミドTR-90、エムスケミー・ジャパン社製)
[架橋助剤] トリアリルイソシアヌレート(TAIC:日本化成社製)
[熱伝導性フィラー] 酸化チタン(商品名:TTO-51A、石原産業社製)
実施例
 表1に示す組成の樹脂組成物を次に示すようにして得た。すなわち、TAIC(液状)と熱伝導性フィラーをアルミナのボールミルで混合して、熱伝導性フィラーがTAIC中にナノ分散した分散液を得る。この分散液を、二軸混合機(東芝機械TEM58BS)にサイドフィードして前記透明ポリアミドと混合し、本発明の樹脂系複合材料を得た。
 このようにして得られた樹脂系複合材料、SE-18(住友重機社製、電動射出成形機)により射出成形をして、40mm×40mm×2mm(厚さ)の成形体試料を作製した。射出成形は、樹脂温度280℃、金型温度80℃、サイクル30秒の条件で行った。
 得られた成形体試料に300kGyの電子線を照射し架橋を行い、本発明の架橋樹脂成形体を得た。照射後の成形体について、下記の方法で、全光線透過率、耐光テスト後の外観を測定した。これらの結果を表1に示す。
比較例1
 表1に示す組成で、TAICを二軸混合機(東芝機械TEM58BS)にサイドフィードして前記透明ポリアミドと混合した。その後、SE-18(住友重機社製、電動射出成形機)により、実施例と同じ条件にて射出成形をして、40mm×40mm×2mm(厚さ)の成形体試料を作製した。さらに、実施例と同じ条件にて、得られた成形体試料に電子線を照射して架橋を行い架橋樹脂成形体を得た。照射後の成形体について、下記の方法で、全光線透過率、耐光テスト後の外観を測定した。
比較例2
 表1に示す組成で、TAIC、熱伝導性フィラー及び前記透明ポリアミドを、二軸混合機(東芝機械TEM58BS)のトップからフィードして混合した。その後、SE-18(住友重機社製、電動射出成形機)により、実施例と同じ条件にて射出成形をして、40mm×40mm×2mm(厚さ)の成形体試料を作製した。さらに、実施例と同じ条件にて、得られた成形体試料に電子線を照射して架橋を行い、架橋樹脂成形体を得た。照射後の成形体について、下記の方法で、全光線透過率、耐光テスト後の外観を測定した。これらの結果を表1に示す。
[全光線透過率]
 JIS K 7361に準拠して測定した。可視光線の範囲(波長400~800nmの範囲)における入射光量Tと試験片を通った全光量Tとの比を百分率で示す。
[耐光テスト後の外観]
 市販の外付ストロボ(ニコン社製)を用い、架橋樹脂成形体の表面と光源(キセノンランプ)との距離を2mmとし、次に示す条件の閃光を、10秒に1回又は2秒に1回のサイクルで200サイクル繰返した。
 閃光時間:(1/800)秒、色温度:5600K
 200サイクル後のレンズの変色を評価し、その評価結果を、レンズに変色が見られないものを○、レンズの中央部が変色したものを×として表1に示した。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より明らかなように、熱伝導性フィラーをTAICにナノ分散させた分散液を作製し、この分散液を透明ポリアミド樹脂に混合した実施例1では、全光線透過率は80%であり、熱伝導性フィラーが透明ポリアミド樹脂中にナノ分散されていることが示されている。又、閃光が2秒に1回の場合の耐光テスト後の外観も良好である。熱伝導性フィラーがナノ分散されているので放熱性が向上したためと考えられる。
 一方、熱伝導性フィラーを分散しなかった比較例1では、閃光が2秒に1回の場合の耐光テスト後の外観は不良である。放熱性が向上していないので、多数回の閃光による温度上昇が大きかったためと考えられる。又、熱伝導性フィラーを分散しているものの、分散液を作製せずに、熱伝導性フィラーを、TAICとともに、直接マトリックス樹脂中に混合した比較例2では、全光線透過率は20%であり、熱伝導性フィラーの分散性が低いことが示されている。又、閃光が2秒に1回の場合の耐光テスト後の外観は不良である。熱伝導性フィラーの分散性が低いため放熱性が向上せず、多数回の閃光による温度上昇が大きかったためと考えられる。
 本発明は、架橋性の熱可塑性樹脂中にナノフィラーをナノ分散させて、種々の物性が向上された架橋樹脂及びその成形体を製造するために利用できる。特に、ストロボ用レンズ(例えば、ストロボ用フレネルレンズ)等の用途に好適に用いられる光学レンズを製造するために利用できる。

Claims (7)

  1.  ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合する工程を有することを特徴とする樹脂系複合材料の製造方法。
  2.  前記分散剤が、前記架橋性の熱可塑性樹脂のガラス転移点より50℃高い温度において液状である、架橋助剤、可塑剤、又は紫外線若しくは電子線照射により重合するモノマーであることを特徴とする請求項1に記載の樹脂系複合材料の製造方法。
  3.  前記分散剤が、トリアリルイソシアヌレートであることを特徴とする請求項2に記載の樹脂系複合材料の製造方法。
  4.  前記架橋性の熱可塑性樹脂が透明ポリアミド樹脂であることを特徴とする請求項1ないし請求項3のいずれか1項に記載の樹脂系複合材料の製造方法。
  5.  前記ナノフィラーが熱伝導性フィラーであることを特徴とする請求項1ないし請求項4のいずれか1項に記載の樹脂系複合材料の製造方法。
  6.  ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合して樹脂系複合材料を得る工程、及び得られた樹脂系複合材料を成形する工程を有することを特徴とする樹脂成形体の製造方法。
  7.  ナノフィラーを液状の分散剤中にナノ分散して作製した分散液を、架橋性の熱可塑性樹脂と均一に混合して得られた樹脂系複合材料を成形した後、樹脂を架橋することを特徴とする架橋樹脂成形体の製造方法。
PCT/JP2012/072184 2011-09-12 2012-08-31 樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法 WO2013038926A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/232,023 US20140171561A1 (en) 2011-09-12 2012-08-31 Method for producing resin-based composite material and method for producing crosslinked resin molded product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011198123A JP2013060482A (ja) 2011-09-12 2011-09-12 樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法
JP2011-198123 2011-09-12

Publications (1)

Publication Number Publication Date
WO2013038926A1 true WO2013038926A1 (ja) 2013-03-21

Family

ID=47883159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072184 WO2013038926A1 (ja) 2011-09-12 2012-08-31 樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法

Country Status (3)

Country Link
US (1) US20140171561A1 (ja)
JP (1) JP2013060482A (ja)
WO (1) WO2013038926A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129100A1 (ja) * 2014-02-25 2015-09-03 住友電気工業株式会社 透明ポリアミド樹脂組成物、透明ポリアミド樹脂架橋成形体
JP2018035242A (ja) * 2016-08-30 2018-03-08 住友電工ファインポリマー株式会社 摺動部材及び摺動部材の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3351852B1 (en) * 2017-01-24 2019-10-30 OSRAM GmbH A lighting device and corresponding manufacturing method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527108A (ja) * 1997-12-19 2001-12-25 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. 隔離して分散させられているナノ・スケールの固形物粒子を含有するポリマー、このようなポリマーの製造法並びにその用途
JP2004149682A (ja) * 2002-10-31 2004-05-27 Tokai Rubber Ind Ltd 低動倍率ゴム組成物
JP2006111750A (ja) * 2004-10-15 2006-04-27 Ihi Aerospace Co Ltd インシュレーション材及びその製造方法
JP2006117760A (ja) * 2004-10-20 2006-05-11 Teijin Ltd ポリエステル系樹脂組成物およびその製造法
JP2007016189A (ja) * 2005-07-11 2007-01-25 Nissan Motor Co Ltd 透明複合材およびその製造方法
JP2009040850A (ja) * 2007-08-08 2009-02-26 Sumitomo Bakelite Co Ltd 透明樹脂組成物および透明樹脂組成物の製造方法
WO2010092013A1 (de) * 2009-02-12 2010-08-19 Basf Se Polymerzusammensetzungen enthaltend nanopartikuläre ir-absorber

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008064750A2 (en) * 2007-10-24 2008-06-05 Polytech & Net Gmbh Antimicrobial resin materials and method of manufacturing the same
US8854733B2 (en) * 2007-12-28 2014-10-07 Sumitomo Electric Fine Polymer, Inc. Optical lens
DE102010028541A1 (de) * 2010-05-04 2011-11-10 Evonik Degussa Gmbh Verbund aus einer Polyamidformmasse und vulkanisiertem Elastomer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001527108A (ja) * 1997-12-19 2001-12-25 フラウンホッファー−ゲゼルシャフト ツール フェルデルング デル アンゲヴァンテン フォールシュング イー.ヴィ. 隔離して分散させられているナノ・スケールの固形物粒子を含有するポリマー、このようなポリマーの製造法並びにその用途
JP2004149682A (ja) * 2002-10-31 2004-05-27 Tokai Rubber Ind Ltd 低動倍率ゴム組成物
JP2006111750A (ja) * 2004-10-15 2006-04-27 Ihi Aerospace Co Ltd インシュレーション材及びその製造方法
JP2006117760A (ja) * 2004-10-20 2006-05-11 Teijin Ltd ポリエステル系樹脂組成物およびその製造法
JP2007016189A (ja) * 2005-07-11 2007-01-25 Nissan Motor Co Ltd 透明複合材およびその製造方法
JP2009040850A (ja) * 2007-08-08 2009-02-26 Sumitomo Bakelite Co Ltd 透明樹脂組成物および透明樹脂組成物の製造方法
WO2010092013A1 (de) * 2009-02-12 2010-08-19 Basf Se Polymerzusammensetzungen enthaltend nanopartikuläre ir-absorber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015129100A1 (ja) * 2014-02-25 2015-09-03 住友電気工業株式会社 透明ポリアミド樹脂組成物、透明ポリアミド樹脂架橋成形体
CN105143352A (zh) * 2014-02-25 2015-12-09 住友电气工业株式会社 透明聚酰胺树脂组合物和交联的透明聚酰胺树脂成型体
US9562147B2 (en) 2014-02-25 2017-02-07 Sumitomo Electric Industries, Ltd. Transparent polyamide resin composition and crosslinked transparent polyamide resin molded body
JP2018035242A (ja) * 2016-08-30 2018-03-08 住友電工ファインポリマー株式会社 摺動部材及び摺動部材の製造方法

Also Published As

Publication number Publication date
JP2013060482A (ja) 2013-04-04
US20140171561A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
JP6197933B2 (ja) 電子線硬化性樹脂組成物、リフレクター用樹脂フレーム、リフレクター、半導体発光装置、及び成形体の製造方法
JP5909534B2 (ja) ポリエステル樹脂組成物およびそれを含むカメラモジュール
JP5884250B2 (ja) 光学レンズの製造方法
JP4913051B2 (ja) 反射板用樹脂組成物および反射板
JP5587869B2 (ja) 硬化性組成物及びその硬化物
US20070161741A1 (en) Resin composition for reflector plate and reflector plate
JP5416629B2 (ja) 白色樹脂成形体及びled用リフレクタ
JP5731312B2 (ja) 反射材用熱可塑性樹脂および反射板
JP4681073B2 (ja) 光学レンズ
JP6145926B2 (ja) 光反射体用不飽和ポリエステル樹脂組成物、及び、発光素子用光反射体
JP6492078B2 (ja) 反射材用樹脂組成物およびそれを含む反射板
WO2013038926A1 (ja) 樹脂系複合材料の製造方法及び架橋樹脂成形体の製造方法
JP2005194513A (ja) 反射板用樹脂組成物および反射板
JP2018059044A (ja) ポリエステル樹脂組成物、反射板の製造方法および発光ダイオード(led)素子の製造方法
JP2010037475A (ja) 透明樹脂成形体及び光学レンズ
JP6382677B2 (ja) 透明ポリアミド樹脂組成物及び透明ポリアミド樹脂架橋成型体
JP6042271B2 (ja) 反射材用ポリエステル樹脂組成物および反射板
JP5886647B2 (ja) 光学レンズの製造方法
KR20170008779A (ko) 반사재용 폴리에스테르 수지 조성물 및 그것을 포함하는 반사판
JP2012229293A (ja) 透明ポリアミド樹脂成形体及びその製造方法
JP2016147962A (ja) カメラモジュール用ポリエステル樹脂組成物、及びカメラモジュール
JP2006169449A (ja) 耐紫外線用樹脂成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832435

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232023

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832435

Country of ref document: EP

Kind code of ref document: A1