WO2013038883A1 - Stereoscopic image display device, and drive method of stereoscopic image display device - Google Patents

Stereoscopic image display device, and drive method of stereoscopic image display device Download PDF

Info

Publication number
WO2013038883A1
WO2013038883A1 PCT/JP2012/071234 JP2012071234W WO2013038883A1 WO 2013038883 A1 WO2013038883 A1 WO 2013038883A1 JP 2012071234 W JP2012071234 W JP 2012071234W WO 2013038883 A1 WO2013038883 A1 WO 2013038883A1
Authority
WO
WIPO (PCT)
Prior art keywords
eye
shutter
liquid crystal
display device
image
Prior art date
Application number
PCT/JP2012/071234
Other languages
French (fr)
Japanese (ja)
Inventor
暎 冨吉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038883A1 publication Critical patent/WO2013038883A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/001Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
    • G09G3/003Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background to produce spatial visual effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/144Processing image signals for flicker reduction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/341Displays for viewing with the aid of special glasses or head-mounted displays [HMD] using temporal multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/398Synchronisation thereof; Control thereof

Definitions

  • the present invention relates to a stereoscopic image display device and a driving method of the stereoscopic image display device.
  • an active shutter method is generally used.
  • the transmission state of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter of the stereoscopic (3D) glasses that is, ON (on) ) State and OFF (off) state are sequentially switched.
  • the user can appreciate a stereoscopic image by the parallax between the right eye and the left eye.
  • FIG. 7 is a diagram for explaining opening and closing timings of the liquid crystal shutter for the right eye and the liquid crystal shutter for the left eye of general 3D glasses.
  • the left-eye image is incident only on the user's left eye
  • the right-eye image is incident only on the user's right eye.
  • the user can visually recognize the stereoscopic image.
  • the cycle of opening / closing the 3D glasses is also increased.
  • the frequency is about 60 Hz, and the flicker is easy to see.
  • Patent Documents 1 and 2 disclose a stereoscopic video reproduction system that controls opening and closing of a liquid crystal shutter using a blanking period.
  • FIG. 8 is a diagram showing a state of driving the stereoscopic video reproduction system of Patent Document 1.
  • each liquid crystal shutter is temporarily closed even if the scanning period, which is the blanking period, is a transmission period of the right-eye and left-eye liquid crystal shutters.
  • Patent Document 3 discloses a display system provided with a blinking cycle detecting means for detecting a blinking cycle of illumination light that is external light blinking at a cycle of a commercial power supply frequency.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 64-86694 (published on March 31, 1989)” Japanese Patent Publication “JP 9-138384 A (published May 27, 1997)” International Patent Publication “WO2008 / 056753 Publication (May 15, 2008 International Publication)”
  • the present invention has been made to solve the above-described problems, and an object thereof is to prevent an increase in manufacturing cost and reliably reduce flicker without depending on the blanking period. .
  • a stereoscopic image display device includes a display device that displays one stereoscopic image by sequentially displaying a first-eye image and a second-eye image; A first eye shutter that is in a transmissive state when the display device displays the first eye image, and a second eye shutter that is in a transmissive state when the display device displays the second eye image; A shutter control unit that generates a shutter drive signal for driving the first and second shutters, and controls the driving of the first and second shutters according to the generated shutter drive signal, Of the shutter driving signals, the frequency representing the period of information indicating that the first or second shutter is switched from the transmission state to the light shielding state is a light shielding frequency M, and the first eye image and the second eye image are displayed.
  • N (2x + 1) ⁇ N.
  • a driving method of a stereoscopic image display device is a display device that displays one stereoscopic image by sequentially displaying a first eye image and a second eye image.
  • a first eye shutter that is in a transmissive state when the display device displays the first eye image
  • a second eye that is in a transmissive state when the display device displays the second eye image.
  • a stereoscopic image display device comprising: a shutter frequency M, a frequency representing a cycle of switching the first or second shutter for shutter from a transmission state to a light shielding state as a light shielding frequency M, and the first eye
  • the first eye shutter is in the transmissive state when the first eye image is displayed by the shutter drive signal generated by the shutter control unit, and the second eye is displayed when the second eye image is displayed.
  • the shutter is in a transmissive state. Accordingly, the first eye image can be incident on the first eye of the user and the second eye image can be incident on the second eye of the user, so that the user can visually recognize the stereoscopic image.
  • the frequency representing the period of information for switching the first or second eye shutter from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye.
  • M (2x + 1) ⁇ N where the frame frequency is N when the images for the image are combined and the natural number is x.
  • the shading frequency M is larger than the frame frequency N.
  • each of the first and second shutters is repeatedly opened and closed faster than the frame rate.
  • flicker caused by a frequency component lower than the frame rate can be suppressed.
  • flicker caused by high frequency components in outside light is generally difficult for human eyes to feel.
  • flicker can be reduced.
  • M is larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
  • the first eye shutter is sequentially transmitted to cause the first eye image to enter the user's first eye, and the second eye shutter is transmitted.
  • the second eye image can be incident on the user's second eye.
  • the stereoscopic image display device sequentially displays a first eye image and a second eye image, thereby displaying one stereoscopic image, and the display device includes the first eye image.
  • a first eye shutter that is in a transmissive state when displaying the image
  • a second eye shutter that is in a transmissive state when the display device displays the second eye image
  • the first and second eye shutters A shutter control unit configured to generate a shutter drive signal for driving the shutter, and to control driving of the first and second shutters according to the generated shutter drive signal;
  • the frequency representing the period of information indicating that the second shutter is switched from the transmission state to the light shielding state is the light shielding frequency M and the first eye image and the second eye image are combined into one frame.
  • the first eye image and the second eye image are sequentially displayed to display one stereoscopic image, and the display device includes the first image.
  • a stereoscopic apparatus including a first eye shutter that is in a transmissive state when displaying an eye image, and a second shutter that is in a transmissive state when the display device displays the second eye image.
  • a driving method of the image display device wherein a frequency representing a cycle of switching the first or second eye shutter from a transmission state to a light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye image.
  • FIG. 2 is a schematic diagram showing the configuration of the stereoscopic image display device 1 of the present invention.
  • the stereoscopic image display device 1 includes a liquid crystal display device (display device) 2 and 3D glasses 20.
  • the liquid crystal display device 2 includes a liquid crystal panel LCP, a backlight BL, and a drive control unit 10.
  • the drive control unit 10 acquires a video signal from the outside, and performs drive control of each of the liquid crystal panel LCP, the backlight BL, and the 3D glasses 20 based on the acquired video signal.
  • the liquid crystal panel LCP is a liquid crystal panel capable of displaying a stereoscopic (3D) image or a planar (2D) image.
  • the liquid crystal panel LCP includes an image display area 3, a gate driver GD, and a source driver SD.
  • a plurality of gate wirings Gi arranged in parallel to each other and a plurality of source wirings Sj arranged in parallel to each other are arranged so as to intersect each other.
  • a region partitioned by the gate wiring Gi and the source wiring Sj is a pixel P.
  • the pixels P are arranged in a matrix in the image display area 3.
  • the gate driver GD is arranged along the left side of the image display area 3.
  • the gate driver GD drives each gate line Gi based on the gate driver drive signal GS output from the drive control unit 10.
  • the source driver SD is arranged along the upper side of the image display area 3.
  • the source driver SD drives each source line Sj based on the source driver drive signal SS from the drive control unit 10.
  • an active substrate on which a TFT element and a pixel electrode as a switching element are arranged for each pixel P, and a counter substrate on which a color filter and a common electrode are arranged are opposed to each other through a liquid crystal. Configured.
  • the gate driver GD and the source driver SD sequentially scan the pixels to apply a voltage corresponding to a necessary gradation to the pixel electrode of each pixel P.
  • the liquid crystal in each pixel P is driven, and the transmission state of each pixel P is controlled, so that a desired image is displayed (written).
  • the backlight BL illuminates the image display area 3 of the liquid crystal panel LCP from the back side. Since the liquid crystal is not a self-luminous element, it is necessary to use the backlight BL as a light source and illuminate the liquid crystal panel LCP from behind in order to make the user visually confirm the image.
  • the backlight BL is turned on or off based on the backlight drive signal BLS output from the drive control unit 10.
  • the light emitted from the backlight BL passes through each pixel P. Thereby, the user can visually recognize the image displayed in the image display area 3.
  • the backlight BL can be configured by arranging a plurality of LEDs, but is not particularly limited thereto.
  • the 3D glasses 20 are light shielding devices for shielding incident light to the user's right eye or left eye according to the 3D image displayed on the liquid crystal panel LCP. Thereby, the 3D glasses 20 can make the user stereoscopically view the 3D image displayed on the liquid crystal panel LCP.
  • the 3D glasses 20 include a right-eye liquid crystal shutter 21 (second eye shutter, first eye shutter) for blocking incident light on the user's right eye (second eye, first eye), and the user's left eye. And a left-eye liquid crystal shutter 22 (first-eye shutter, second-eye shutter) for blocking incident light on the first eye and the second eye.
  • a right-eye liquid crystal shutter 21 second eye shutter, first eye shutter
  • a left-eye liquid crystal shutter 22 first-eye shutter, second-eye shutter
  • the liquid crystal shutter 21 for the right eye and the liquid crystal shutter 22 for the left eye are switched between a transmission state (open state) and a light shielding state (closed state) in synchronization with the 3D image displayed on the liquid crystal panel LCP.
  • the 3D glasses 20 Based on the 3D glasses signal MS output from the drive control unit 10, the 3D glasses 20 sets each of the liquid crystal shutters 21 and 22 to a transmissive state (open state) or a light shielding state (closed state).
  • FIG. 3 is a block diagram showing the configuration of the stereoscopic image display apparatus 1.
  • the drive control unit 10 includes an image signal generation unit 11, a liquid crystal panel signal generation unit 12, a backlight signal generation unit 13, and a 3D glasses signal generation unit 14.
  • the 3D glasses signal generator 14 includes a shutter frequency setting unit 14a.
  • the 3D glasses 20 include a shutter control unit 23, shutter drive units 24 and 25, and liquid crystal shutters 21 and 22.
  • the image signal generator 11 receives a video signal for stereoscopic image display from the outside. Then, based on the received video signal such as a vertical synchronization signal, various synchronization signals for gray-scale image display, gradation signals, and an image to be displayed on the liquid crystal panel LCP are left-eye images (first-eye images). , Second-eye image) or right-eye image (second-eye image, first-eye image). Frame frequency information) and the like.
  • the image signal generator 11 outputs the generated signal to the liquid crystal panel signal generator 12, the backlight signal generator 13, and the 3D glasses signal generator 14.
  • one frame is an image for displaying one stereoscopic image. That is, the frame frequency is a period of a stereoscopic image.
  • One stereoscopic image includes a left-eye image and a right-eye image that are sequentially displayed.
  • the liquid crystal panel signal generation unit 12 is for controlling the driving of the liquid crystal panel LCP based on various signals acquired from the image signal generation unit 11.
  • the liquid crystal panel signal generation unit 12 When the liquid crystal panel signal generation unit 12 acquires various signals from the image signal generation unit 11, the liquid crystal panel signal generation unit 12 generates a source driver drive signal SS and a gate driver drive signal GS as image write signals. Then, the liquid crystal panel signal generator 12 outputs the generated source driver drive signal SS to the source driver SD, and outputs the gate driver drive signal GS to the gate driver GD. Thereby, the liquid crystal panel signal generation unit 12 controls the driving of the liquid crystal panel LCP.
  • the backlight signal generation unit 13 is based on various signals acquired from the image signal generation unit 11, information indicating a light shielding frequency (described later) acquired from the 3D glasses signal generation unit 14, and the like. This is for controlling the drive.
  • the backlight signal generation unit 13 acquires various signals from the image signal generation unit 11, and information indicating the light shielding frequency (described later) and information indicating the period of the transmission state from the 3D glasses signal generation unit 14. Upon acquisition, a backlight drive signal BLS, which is a drive signal for turning on and off the backlight BL, is generated and output to the backlight BL. Thereby, the backlight signal generator 13 controls the driving of the backlight BL.
  • a backlight drive signal BLS which is a drive signal for turning on and off the backlight BL
  • the 3D glasses signal generation unit 14 is for controlling the driving of the 3D glasses 20 based on various signals acquired from the image signal generation unit 11.
  • the 3D glasses signal generation unit 14 includes a shutter frequency setting unit 14a.
  • the shutter frequency setting unit 14a sets a light shielding frequency that is a frequency for switching each of the liquid crystal shutters 21 and 22 from the transmission state (open state) to the light shielding state (closed state), a period of the transmission state, and the like.
  • the 3D glasses signal generation unit 14 acquires various signals such as a synchronization signal, left and right image identification signals, and information indicating a frame frequency from the image signal generation unit 11.
  • the shutter frequency setting unit 14a obtains the liquid crystal shutters 21 and 22 from the transmission state to the light shielding state (closed) from the frame frequency indicated by the information indicating the frame frequency. Set the shading frequency that is the frequency to switch to (status).
  • the shutter frequency setting unit 14a sets the light shielding frequency M as follows.
  • the shutter frequency setting unit 14a sets the shutter frequency so as to be an odd multiple of the frame frequency (which is an integer and excludes 1).
  • the natural number x may be recorded in advance in the shutter frequency setting unit 14a, or may be set by the user, for example.
  • the shutter frequency setting unit 14a sets a transmission state period (time length) that is a period for holding the transmission state of each of the liquid crystal shutters 21 and 22.
  • the period during which the liquid crystal shutters 21 and 22 are kept transmissive may be stored in advance in the shutter frequency setting unit 14a or may be set by user input.
  • the period showing the transmission state is t, it is about in the range of (1 / 2M) ⁇ t ⁇ (1 / M). Note that the range of t is not limited to this.
  • the 3D glasses signal generation unit 14 includes various synchronization signals acquired from the image signal generation unit 11, left and right image identification signals, information indicating the frame frequency, and information indicating the shutter frequency set by the shutter frequency setting unit 14a. From the information indicating the period of the transmission state, the 3D glasses signal MS indicating the timing for opening and closing the liquid crystal shutters 21 and 22 is generated.
  • the 3D glasses signal MS includes information indicating the frame frequency, information indicating the shutter frequency, and information indicating the period of the transmission state.
  • the 3D glasses signal generation unit 14 outputs the generated 3D glasses signal MS to the shutter control unit 23, and also backs information indicating the shutter frequency set by the shutter frequency setting unit 14a and information indicating the period of the transmission state. Output to the write signal generator 13.
  • the shutter frequency setting unit 14a is not necessarily provided in the drive control unit 10, and may be provided on the 3D glasses 20 side.
  • the shutter controller 23 is for controlling the drive of the liquid crystal shutter 21 for the right eye and the liquid crystal shutter 22 for the left eye based on the 3D glasses signal MS acquired from the 3D glasses signal generator 14.
  • the shutter control unit 23 uses the information indicating the shutter frequency of the 3D glasses signal MS, the information indicating the period of the transmission state, and the like for the right eye.
  • a liquid crystal shutter driving signal (shutter driving signal, second shutter driving signal, first eye) having information indicating that the liquid crystal shutter 21 is switched from the light shielding state to the transmission state and information indicating switching from the transmission state to the light shielding state.
  • a liquid crystal shutter drive signal (shutter drive signal, RS), information indicating that the liquid crystal shutter 22 for the left eye is switched from the light shielding state to the transmission state, and information indicating the switching from the transmission state to the light shielding state.
  • the first shutter driving signal for the first eye and the second shutter driving signal for the second eye) LS are generated.
  • the shutter control unit 23 outputs the generated liquid crystal shutter drive signal RS to the shutter drive unit 24, and controls the shutter drive unit 24 to drive the liquid crystal shutter 21.
  • the shutter control unit 23 outputs the generated liquid crystal shutter drive signal LS for the left eye to the shutter drive unit 25 and causes the shutter drive unit 25 to control driving of the liquid crystal shutter 22.
  • the shutter driving unit 24 generates a liquid crystal driving voltage indicated by the liquid crystal shutter driving signal RS acquired from the shutter control unit 23, and drives the liquid crystal of the liquid crystal shutter 21 by the generated liquid crystal driving voltage. Thereby, the transmission (open) state and the light shielding (closed) state of the liquid crystal shutter 21 are controlled.
  • the shutter driving unit 25 generates a liquid crystal driving voltage indicated by the liquid crystal shutter driving signal LS acquired from the shutter control unit 23, and drives the liquid crystal of the liquid crystal shutter 22 by the generated liquid crystal driving voltage. Thereby, the transmission (open) state and the light shielding (closed) state of the liquid crystal shutter 22 are controlled.
  • FIG. 1 is a diagram for explaining a display operation of the stereoscopic image display device 1.
  • FIG. 1A shows the operating state of the stereoscopic image display device
  • FIG. 1B shows the operating state of the backlight BL
  • FIG. 1C shows the liquid crystal shutter driving signal and the liquid crystal for the left eye.
  • the shutter driving state is shown
  • (d) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
  • one stereoscopic image includes a left eye image (first eye image, second eye image) and a right eye image (second eye image, first eye image).
  • One stereoscopic image is defined as one frame.
  • the frame frequency in this case is N (Hz).
  • the frame frequency N (Hz) 60 (Hz). That is, the length of one frame is 1/60 (second).
  • the period of each of the left-eye image and the right-eye image per frame is twice the frame frequency.
  • the frequency of the left-eye image and the frequency of the right-eye image per frame are 120 (Hz), respectively.
  • the backlight BL is turned off and on in each of the period in which the left-eye image is displayed and the period in which the right-eye image is displayed.
  • the user can view the left-eye image displayed on the liquid crystal panel LCP only during the period in which the backlight BL is lit. .
  • the user can visually recognize the right-eye image displayed on the liquid crystal panel LCP only during the period when the backlight BL is lit. Can do.
  • the backlight signal generation unit 13 performs a plurality of times in the display period of the left-eye image, and within the period in which the left-eye liquid crystal shutter 22 is opened, which is the last open period. Therefore, the backlight drive signal BLS is generated so as to turn on the backlight BL, and is output to the backlight BL.
  • the backlight BL obtained from the backlight drive signal BLS from the backlight signal generation unit 13 is generated by the left-eye liquid crystal shutter 22 that is opened multiple times during the left-eye image display period during the left-eye image display period. It is lit only during the last open period of the open period (period showing the transmission state). The backlight BL is turned off during other periods of the left-eye image display period.
  • the backlight signal generation unit 13 opens the right eye liquid crystal shutter 21 that is opened a plurality of times during the right eye image display period (a period indicating a transmission state).
  • the backlight drive signal BLS is generated so as to turn on the backlight BL only during the last open period, and is output to the backlight BL.
  • the backlight BL obtained from the backlight signal generation unit 13 of the backlight drive signal BLS is generated by the right-eye liquid crystal shutter 21 that is opened a plurality of times during the right-eye image display period during the right-eye image display period. Lights only during the last open period of the open period. The backlight BL is extinguished during other periods of the right-eye image display period.
  • the shutter control unit 23 generates a left-eye liquid crystal shutter driving signal LS and a right-eye liquid crystal shutter driving signal LS from the 3D glasses signal MS acquired from the 3D glasses signal generation unit 14.
  • a liquid crystal shutter driving signal RS is generated.
  • the shutter control unit 23 outputs the liquid crystal shutter drive signal LS and the right-eye liquid crystal shutter drive signal RS to the shutter drive units 25 and 24, respectively, thereby driving the liquid crystal shutters 22 and 21 to open and close.
  • the liquid crystal shutter drive signal LS and the right-eye liquid crystal shutter drive signal RS indicate that the liquid crystal shutters 22 and 21 are closed (light-shielded) at low (L) (information indicating the light-shielded state), respectively.
  • (H) indicates that the liquid crystal shutters 22 and 21 are opened (transmitted) (information indicating the transmitted state).
  • the rise from low to high is information indicating that the liquid crystal shutter 22 or the liquid crystal shutter 21 is switched from the light shielding state to the transmission state. .
  • the liquid crystal shutter driving signal LS and the right-eye liquid crystal shutter driving signal RS information indicating that the falling from high to low switches the liquid crystal shutter 22 or the liquid crystal shutter 21 from the transmission state to the light shielding state. is there.
  • the shutter driving unit 25 When the shutter driving unit 25 acquires the liquid crystal shutter driving signal LS for low, the shutter driving unit 25 applies a liquid crystal driving voltage to the liquid crystal shutter 22 in a closed (light-shielded) state. As a result, the liquid crystal shutter 22 is in a closed (light-shielded) state.
  • the shutter driving unit 25 acquires the high liquid crystal shutter driving signal LS, the shutter driving unit 25 applies a liquid crystal driving voltage for opening (transmitting) the liquid crystal shutter 22. As a result, the liquid crystal shutter 22 is in an open (transmission) state.
  • the shutter driving unit 24 When the shutter driving unit 24 acquires the liquid crystal shutter driving signal RS, the shutter driving unit 24 applies a liquid crystal driving voltage to the liquid crystal shutter 21 in a closed (light-shielded) state. As a result, the liquid crystal shutter 21 is in a closed (light-shielded) state.
  • the shutter drive unit 24 when acquiring the high liquid crystal shutter drive signal RS, the shutter drive unit 24 applies a liquid crystal drive voltage that is in an open (transmission) state to the liquid crystal shutter 21. As a result, the liquid crystal shutter 21 is in an open (transmitted) state.
  • the liquid crystal shutter driving signal LS is repeatedly opened and closed a plurality of times during the display period of the left-eye image, and the light-shielding frequency M, which is a frequency representing the period of falling from high to low in the display period of the left-eye image, It is larger than the frame frequency N and is an odd multiple of the frame frequency N (except 1).
  • the liquid crystal shutter drive signal RS is repeatedly opened and closed a plurality of times during the display period of the right-eye image, and is a light-shielding frequency that is a frequency that represents a cycle of falling from high to low in the display period of the right-eye image.
  • M is larger than the frame frequency N and is an odd multiple (except 1) of the frame frequency N.
  • the liquid crystal shutter 22 for the left eye and the liquid crystal shutter 21 for the right eye each repeat opening and closing faster than the frame rate of the stereoscopic image of the liquid crystal panel LCP. .
  • each of the liquid crystal shutter 22 for the left eye and the liquid crystal shutter 21 for the right eye repeats opening and closing faster than the frame rate of the stereoscopic image of the liquid crystal panel LCP.
  • image light Of the light of the image to be displayed (referred to as image light), external light or image light having a frequency higher than the frame frequency N is incident.
  • image light external light or image light having a frequency higher than the frame frequency N is incident.
  • the light shielding frequency M is higher than the frame frequency N, flicker can be suppressed.
  • M only needs to be larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
  • the liquid crystal shutter 21 for the right eye on the opposite side is opened during the backlight BL lighting period during the display period of the left eye image. Problems may occur.
  • the light shielding frequency M is (2 ⁇ + 1) N times
  • the left eye liquid crystal shutter 22 is sequentially transmitted, the left eye image is incident on the user's left eye, and the right eye liquid crystal shutter 21 is transmitted.
  • the right-eye image can be incident on the right eye of the user.
  • the left-eye liquid crystal shutter 22 can be transmitted through the left-eye image so that the left-eye image is incident on the user's left eye, and the right-eye liquid crystal shutter 21 can be transmitted through the right-eye image.
  • the frequency of the light entering the eye is the image emitted from the liquid crystal panel LCP.
  • the frequency is 180 Hz, which is higher than the frequency of light (that is, the frame frequency).
  • the shading frequency M is not limited to 3 times the frame frequency N, but may be an odd multiple such as 5 times, 7 times,.
  • the frequency of the light shielding frequency M is a high frequency
  • the alignment of the liquid crystal of each of the liquid crystal shutters 21 and 22 cannot be sufficiently controlled, and for example, the next light shielding state is set without being fully transmitted.
  • the liquid crystal driving voltage is applied. In such a case, the brightness of the stereoscopic image displayed on the liquid crystal panel LCP is visually recognized by the user as dark, leading to a reduction in display quality.
  • the liquid crystal shutter driving signal LS is in the high period (the period in which the transmission state of the left-eye liquid crystal shutter 22 is maintained) and the liquid crystal shutter driving signal RS.
  • a high period (a period in which the transmission state of the right-eye liquid crystal shutter 21 is maintained), a low period of the liquid crystal shutter drive signal LS (a period in which the light-shielding state of the left-eye liquid crystal shutter 22 is maintained), and a liquid crystal shutter drive signal RS
  • a low period (a period in which the light-shielding state of the right-eye liquid crystal shutter 21 is maintained) is sufficiently secured.
  • the alignment of the liquid crystal of each of the liquid crystal shutters 21 and 22 can be sufficiently controlled, so that the drive of the liquid crystal of each of the liquid crystal shutters 22 and 21 is delayed so that the liquid crystal shutters 21 and 22 are not fully opened or closed. Can be prevented.
  • the liquid crystal shutter drive signal LS and the liquid crystal shutter drive signal RS are signals that repeat high and low at regular intervals.
  • the liquid crystal shutter drive signal LS becomes high at the start of the display period of the left-eye image, and changes from high to low every 1/3 period (t1) of the display period of the left-eye image. ⁇ It is high.
  • t1 1/360 (seconds).
  • the liquid crystal shutter drive signal RS becomes low at the start of the display period of the left-eye image, and decreases by 1/3 period (t1) of the display period of the left-eye image. ⁇ High ⁇ Low.
  • the liquid crystal shutter drive signal LS is low at the start of the right eye image display period, and is low for every 3 period (t1) of the right eye image display period. ⁇ High ⁇ Low.
  • the liquid crystal shutter drive signal RS becomes high with the start of the right eye image display period, and increases by 1/3 period (t1) of the right eye image display period. ⁇ Low ⁇ High.
  • t is the display period of the left-eye image or the right-eye image as described above. It is not limited to 1/3 of the display period.
  • t is preferably in the range of (1 / 2M) ⁇ t ⁇ (1 / M).
  • the next high-to-low falling signal is input before the left-eye and right-eye liquid crystal shutters 22 and 21 are completely transmissive. Can be prevented. For this reason, it is possible to prevent the stereoscopic image displayed on the liquid crystal panel LCP from being visually recognized as dark by the user.
  • the timing of the rise of the liquid crystal shutter drive signal LS (information indicating that the left-eye liquid crystal shutter 22 is switched from the light shielding state to the transmission state) and the display start of the left-eye image on the liquid crystal panel LCP are displayed.
  • the timing is consistent.
  • the timing of the rise of the liquid crystal shutter drive signal RS (information indicating that the right-eye liquid crystal shutter 21 is switched from the light-shielding state to the transmission state) coincides with the display start timing of the right-eye image on the liquid crystal panel LCP. Yes.
  • the high / low period of the liquid crystal shutter drive signal LS and the high / low period of the liquid crystal shutter drive signal RS are reversed.
  • the rising timing and falling timing of the liquid crystal shutter driving signal LS coincide with the falling timing and rising timing of the liquid crystal shutter driving signal RS.
  • the shutter control unit 23 can use the inverted signal of the liquid crystal shutter drive signal RS (or the liquid crystal shutter drive signal LS) as the liquid crystal shutter drive signal LS (or the liquid crystal shutter drive signal RS). Therefore, the signal can be simplified.
  • the backlight BL is lit only during a period in which the liquid crystal shutter drive signal LS is high and the liquid crystal shutter drive signal RS is low at the end (second time) of the left-eye image display period.
  • the backlight BL is lit only during a period in which the liquid crystal shutter drive signal RS is high and the liquid crystal shutter drive signal LS is low at the end (second time) of the right-eye image display period.
  • the left-eye liquid crystal shutter 22 of the 3D glasses 20 is opened, the right-eye liquid crystal shutter 21 is closed, and the back
  • the display image is visible only to the left eye and the right eye remains dark.
  • the right-eye liquid crystal shutter 21 of the 3D glasses 20 is opened, the left-eye liquid crystal shutter 22 is closed, and the back
  • the display image is visible only to the right eye and the left eye remains dark.
  • the image displayed on the liquid crystal panel LCP can be recognized as a 3D image by the user.
  • FIG. 4 is a diagram for explaining the display operation of the stereoscopic image display apparatus according to the second embodiment.
  • FIG. 4A shows the operating state of the stereoscopic image display device
  • FIG. 4B shows the operating state of the backlight
  • FIG. 4C shows the liquid crystal shutter driving signal for the left eye and the liquid crystal shutter
  • (D) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
  • FIG. 5 is a diagram showing the voltage applied to the liquid crystal of the liquid crystal shutter and the state of driving the liquid crystal.
  • the light shielding frequency M is the same as that of the first embodiment, but the rising timings of the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS are different.
  • the timing of the rise of the liquid crystal shutter drive signal LS (information indicating that the left-eye liquid crystal shutter 22 is switched from the light-shielding state to the transmission state) is for the left-eye of the liquid crystal panel LCP. It is earlier than the image display start timing.
  • the timing of the rise of the liquid crystal shutter drive signal RS (information indicating that the right-eye liquid crystal shutter 21 is switched from the light shielding state to the transmission state) is the timing of the liquid crystal panel LCP. It is earlier than the display start timing of the right-eye image.
  • the liquid crystal shutter drive signal LS is already high immediately before the start timing of the left eye image display period. After t2, elapses from high to low, elapses from time t3, rises from low to high, and elapses after time t2 and falls simultaneously with the end of the display period of the left-eye image.
  • the liquid crystal shutter drive signal LS becomes low simultaneously with the start timing of the right-eye image display period, rises from low to high after the elapse of the period t3, and elapses of the period t2. Thereafter, the signal falls from high to low, and after the elapse of the period t3, the signal rises immediately before the end timing of the right-eye image display period.
  • the liquid crystal shutter drive signal RS becomes low simultaneously with the start timing of the display period of the left eye image, and after the elapse of the period t3, It falls from low to high, falls from high to low after the elapse of period t2, and rises immediately before the end of the display period of the left-eye image after elapse of period t3.
  • the liquid crystal shutter drive signal RS is high immediately before the start timing of the right-eye image display period, and rises from high to low after the elapse of the period t2. After the elapse of the period t3, the signal rises from low to high, and after the elapse of the period t2, falls at the same time as the end of the display period of the right-eye image.
  • the change in the alignment direction of the liquid crystal of each of the liquid crystal shutters 21 and 22 is delayed with respect to the application of the drive voltage to the liquid crystal shutters 21 and 22.
  • the rising timing of the signal of the liquid crystal shutter driving signal LS is earlier than the display start timing of the image for the left eye of the liquid crystal panel LCP
  • the rising timing of the signal of the liquid crystal shutter driving signal RS is By making the display of the right-eye image on the liquid crystal panel LCP earlier than the display start timing, it is possible to secure a long period of time during which the left-eye liquid crystal shutter 22 and the right-eye liquid crystal shutter 21 change to the transmission state.
  • the left eye liquid crystal shutter 22 and the right eye liquid crystal shutter 21 have a short time for the user to visually recognize the left eye image or the right eye image displayed on the liquid crystal panel LCP due to a delay in liquid crystal orientation. Can be suppressed.
  • the backlight BL can be turned on where the transmittance of the liquid crystal shutters 21 and 22 is close to 100%, the luminance through the liquid crystal shutters 21 and 22 can be made brighter. For this reason, it is possible to prevent a reduction in display quality.
  • the liquid crystal shutter drive signal LS rises during the backlight BL lighting period of the right-eye image.
  • the liquid crystal shutter 22 rises slowly, so that there is no practical problem.
  • the fall timing of the liquid crystal shutter drive signal LS is set to the display end time of the left-eye image.
  • the timing of falling of the liquid crystal shutter drive signal RS may be set later than the display end time of the right-eye image.
  • FIG. 6 is a diagram for explaining the display operation of the stereoscopic image display apparatus according to the third embodiment.
  • FIG. 6A shows the operating state of the stereoscopic image display device
  • FIG. 6B shows the operating state of the backlight
  • FIG. 6C shows the liquid crystal shutter driving signal and the liquid crystal shutter for the left eye
  • (D) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
  • FIGS. 1 and 4 (a) and 4 (b) are the same as FIGS. 1 and 4 (a) and 4 (b).
  • the light shielding frequency M is the same as in the first and second embodiments, but in the period during which the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS are in a transmission state.
  • the length varies depending on the timing.
  • the liquid crystal shutter drive signal LS becomes high at the same time as the start of the display period of the left-eye image. It falls from low to low, rises from low to high after the lapse of the period t3, and falls simultaneously with the end timing of the display period of the left-eye image after the lapse of the period t2.
  • the liquid crystal shutter drive signal LS becomes low simultaneously with the start timing of the right-eye image display period, rises from low to high after the elapse of the period t1, and elapses of the period t1. Thereafter, the signal falls from high to low, and after the elapse of the period t1, the timing is lowered at the same time as the end of the right eye image display period.
  • the liquid crystal shutter drive signal LS repeats the transmission state and the light-shielding state at regular intervals.
  • the liquid crystal shutter drive signal RS becomes low simultaneously with the start timing of the left eye image display period, and after the elapse of the period t1. It falls from low to high, falls from high to low after the elapse of period t1, and rises simultaneously with the end of the display period of the left-eye image after elapse of period t1.
  • the liquid crystal shutter drive signal RS repeats the light shielding state and the transmission state at regular intervals.
  • the liquid crystal shutter drive signal RS becomes high simultaneously with the start timing of the right-eye image display period, and falls from high to low after the period t1, and the period t3. After elapses, the signal rises from low to high, and rises simultaneously with the end timing of the right-eye image display period after the elapse of the period t2.
  • the low period may be lengthened as period t2.
  • the high / low of the liquid crystal shutter drive signal LS and the high / low of the liquid crystal shutter drive signal RS may be inverted.
  • the high / low switching timing of the liquid crystal shutter driving signal LS and the high / low switching timing of the liquid crystal shutter driving signal RS become the same, and the control signal can be reduced.
  • FIG. 9 is a block diagram showing a configuration of a stereoscopic image display device 19 according to the fourth embodiment.
  • the stereoscopic image display device 19 is different from the stereoscopic image display device 1 in that a drive control unit 15 is provided instead of the drive control unit 10.
  • Other configurations of the stereoscopic image display device 19 are the same as those of the stereoscopic image display device 1.
  • the drive control unit 15 includes an image signal generation unit 16 instead of the drive control unit 10 and the image signal generation unit 11, and a 3D glasses signal generation unit 17 instead of the 3D glasses signal generation unit 14. It differs in that it has. Other configurations of the drive control unit 15 are the same as those of the drive control unit 10.
  • the image signal generation unit 16 includes a storage unit 16a.
  • the storage unit 16a stores information indicating the light shielding frequency M, information indicating the period t during which the liquid crystal shutters 21 and 22 are kept transmissive, and information indicating the lighting timing and lighting period of the backlight BL in one frame. Has been.
  • the information indicating the light shielding frequency M may be stored in the storage unit 16a by calculating the light shielding frequency M based on the above (Formula 1) at the time of factory shipment, or may be appropriately set by the user. May be stored in the storage unit 16a.
  • the lighting timing and lighting period of the backlight BL in one frame indicated by the information indicating the lighting timing and lighting period of the backlight BL in one frame stored in the storage unit 16a takes the light shielding frequency M into consideration.
  • the user can visually recognize the left-eye image with the left eye, and during the right-eye image display period. Is set so that the user can visually recognize the right-eye image with the right eye.
  • the information indicating the lighting timing and lighting period of the backlight BL in one frame is calculated based on the light shielding frequency M calculated in advance at the time of factory shipment, for example. It may be stored in the storage unit 16a, or may be appropriately set by the user and stored in the storage 16a.
  • the image signal generator 16 receives a video signal for stereoscopic image display from the outside. Then, the image signal generation unit 16 outputs the same signal or the like as in the first embodiment to the liquid crystal panel signal generation unit 12.
  • the image signal generation unit 16 is based on the received video signal such as a vertical synchronization signal, and the various synchronization signals and gradation signals for stereoscopic image display, and the image to be displayed on the liquid crystal panel LCP is a left-eye image.
  • Left and right image identification signals which are identification signals for identifying whether the image is for (first eye image, second eye image) or right eye image (second eye image, first eye image);
  • Information indicating the frame frequency (frame frequency information) or the like is generated, and the generated signal is output to the liquid crystal panel signal generator 12.
  • the liquid crystal panel signal generator 12 performs the same processing as in the first embodiment and controls the driving of the liquid crystal panel LCP.
  • the image signal generation unit 16 displays a synchronization signal for displaying a stereoscopic image (for example, a vertical synchronization signal) and information indicating the lighting timing and lighting period of the backlight BL in one frame acquired from the storage unit 16a.
  • a synchronization signal for displaying a stereoscopic image for example, a vertical synchronization signal
  • the image signal generation unit 16 3D displays a synchronization signal for displaying a stereoscopic image (a vertical synchronization signal as an example), information indicating the light shielding frequency M acquired from the storage unit 16a, and information indicating the period t during which the transmission state is maintained.
  • the backlight signal generation unit 13 When the backlight signal generation unit 13 acquires from the image signal generation unit 16 a synchronization signal for stereoscopic image display and information indicating the lighting timing and lighting period of the backlight BL in one frame, the acquired respective signals
  • the backlight drive signal BLS is generated from the above signals and information and output to the backlight BL.
  • the backlight signal generator 13 controls the driving of the backlight BL.
  • the 3D glasses signal generation unit 17 acquires from the image signal generation unit 16 a synchronization signal for stereoscopic image display, information indicating the light shielding frequency M, and information indicating the period t during which the transmission state is held, the acquired A 3D glasses signal MS is generated from each signal and information. Then, the 3D glasses signal generator 17 outputs the generated 3D glasses signal MS to the shutter controller 23. As a result, the shutter control unit 23 performs the same processing as in the first embodiment.
  • the shutter control unit 23 generates the liquid crystal shutter driving signal LS / RS and outputs the liquid crystal shutter driving signal LS to the shutter driving unit 25 to control the driving of the liquid crystal shutter 22, and the liquid crystal shutter driving signal.
  • the drive of the liquid crystal shutter 21 is controlled by outputting RS to the shutter drive unit 24.
  • the stereoscopic image display device 19 includes the storage unit 16a, and the storage unit 16a previously includes information indicating the light shielding frequency M and information indicating the period t during which the liquid crystal shutters 21 and 22 are transmitted. Information indicating the lighting timing and lighting period of the backlight BL in the frame is stored. This eliminates the need for exchanging information between the 3D glasses signal generation unit 17 and the backlight signal generation unit 13 as in the stereoscopic image display device 1, thus simplifying the circuit configuration of the drive control unit 15. Can be
  • the storage unit 16 a may be arranged inside the image signal generation unit 16 or may be arranged outside the image signal generation unit 16.
  • a storage unit in which information indicating the light shielding frequency M and information indicating the period t during which the liquid crystal shutters 21 and 22 are held is stored in the storage unit 16 a is provided inside or outside the 3D glasses signal generation unit 17.
  • the storage unit storing information indicating the lighting timing and lighting period of the backlight BL in one frame may be arranged inside or outside the backlight signal generation unit 13.
  • the stereoscopic image display device displays the first eye image and the second eye image in order, thereby displaying one stereoscopic image
  • the display device includes the above-described display device.
  • a first eye shutter that is in a transmissive state when displaying the first eye image, a second shutter that is in a transmissive state when the display device displays the second eye image, and the first shutter And a shutter control signal for generating a shutter drive signal for driving the second shutter, and controlling the driving of the first and second shutters based on the generated shutter drive signal.
  • the frequency representing the period of information indicating that the first or second shutter is switched from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye image are combined.
  • a driving method of a stereoscopic image display device is a display device that displays one stereoscopic image by sequentially displaying a first eye image and a second eye image.
  • a first eye shutter that is in a transmissive state when the display device displays the first eye image
  • a second eye that is in a transmissive state when the display device displays the second eye image.
  • a stereoscopic image display device comprising: a shutter frequency M, a frequency representing a cycle of switching the first or second shutter for shutter from a transmission state to a light shielding state as a light shielding frequency M, and the first eye
  • the first eye shutter is in the transmissive state when the first eye image is displayed by the shutter drive signal generated by the shutter control unit, and the second eye is displayed when the second eye image is displayed.
  • the shutter is in a transmissive state. Accordingly, the first eye image can be incident on the first eye of the user and the second eye image can be incident on the second eye of the user, so that the user can visually recognize the stereoscopic image.
  • the frequency representing the period of information for switching the first or second eye shutter from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye.
  • M (2x + 1) ⁇ N where the frame frequency is N when the images for the image are combined and the natural number is x.
  • the shading frequency M is larger than the frame frequency N.
  • each of the first and second shutters is repeatedly opened and closed faster than the frame rate.
  • flicker caused by a frequency component lower than the frame rate can be suppressed.
  • flicker caused by high frequency components in outside light is generally difficult for human eyes to feel.
  • flicker can be reduced.
  • M is larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
  • the first eye shutter is sequentially transmitted to cause the first eye image to enter the user's first eye, and the second eye shutter is transmitted.
  • the second eye image can be incident on the user's second eye.
  • the timing of the information indicating that the first eye shutter is switched from the light shielding state to the transmission state in the shutter driving signal coincides with the timing of the first eye image start of the display device.
  • the timing of information indicating that the second shutter is switched from the light shielding state to the transmission state coincides with the timing of the second eye image start of the display device.
  • the timing of the information indicating that the first eye shutter is switched from the light shielding state to the transmission state in the shutter driving signal is earlier than the display start timing of the first eye image of the display device.
  • the timing of information indicating that the second eye shutter is switched from the light shielding state to the transmission state may be earlier than the display start timing of the second eye image of the display device.
  • the first-eye shutter and the second-eye shutter change to the transmission state. For example, even when the first-eye shutter and the second-eye shutter are switched between the transmission state and the light-shielding state by driving the liquid crystal, the first shutter displayed on the display device due to the delay in the alignment of the liquid crystal. It can suppress that the time for which the image for 1 eye or the image for 2nd eye is visually recognized becomes short. For this reason, it is possible to prevent a reduction in display quality.
  • the light shielding frequency M is preferably three times the frame frequency N.
  • the first-eye shutter is sequentially transmitted through the first-eye shutter, the first-eye image is incident on the first eye of the user, and the second-eye shutter is transmitted through the second-eye shutter. It can enter the eye. Furthermore, since the period for maintaining the transmission state and the period for maintaining the light shielding state of the first eye shutter and the second eye shutter are sufficiently ensured, the first eye shutter and the second eye shutter are secured. Even when the transmission state and the light shielding state are switched by driving the liquid crystal, the transmission state and the light shielding state can be switched reliably. For this reason, it is possible to prevent a reduction in display quality.
  • the shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive signal for driving the second eye shutter.
  • first shutter drive signal for the first eye information timing indicating switching from the light shielding state to the light transmitting state, information timing indicating switching from the light transmitting state to the light shielding state, and the second shutter driving signal for the second eye It is preferable that the timing of information indicating switching from the transmission state to the light shielding state and the timing of information indicating switching from the light shielding state to the transmission state coincide with each other.
  • the other driving signal is generated only by inverting the generated driving signal. can do.
  • a circuit required for signal generation can be simplified, and an increase in cost can be prevented.
  • a shutter frequency setting unit that sets the light shielding frequency M from the frame frequency N is provided, and the shutter control unit generates the shutter drive signal based on the light shielding frequency M set by the shutter frequency setting unit. Is preferred.
  • the shutter control unit can generate the shutter drive signal.
  • the shutter control unit preferably generates the shutter drive signal based on the light shielding frequency M stored in the storage unit.
  • a backlight is provided, and the shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive for driving the second eye shutter.
  • the first eye shutter drive signal has information indicating a plurality of transmission states within the display period of the first eye image of the display device, and the second eye shutter.
  • the drive signal has information indicating a plurality of transmission states within the display period of the second eye image of the display device, and the backlight is the first and second eye images of the display device. It is preferable to light only during the last period of the information periods indicating the plurality of transmission states in each of the display periods.
  • the first eye image or the second eye image being displayed on the display device is prevented from being visually recognized by the user, and the first eye displayed on the display device is surely displayed.
  • the user image or the second eye image can be visually recognized by the user. Thereby, the fall of the display quality of a stereo image can be prevented.
  • the present invention can be used in a display device that displays a stereoscopic image.
  • stereoscopic image display device 2 liquid crystal display device (display device) DESCRIPTION OF SYMBOLS 10 Drive control part 11 * 16 Image signal generation part 12 Liquid crystal panel signal generation part 13 Backlight signal generation part 14 * 17 3D glasses signal generation part 14a Shutter frequency setting part 16a Storage part 20 3D glasses 21 * 22 Liquid crystal shutter 23 Shutter control unit 24/25 Shutter drive unit BL Backlight LCP Liquid crystal panel LS Liquid crystal shutter drive signal (shutter drive signal, first shutter drive signal, second shutter drive signal) RS Liquid crystal shutter drive signal (shutter drive signal, second shutter drive signal, first shutter drive signal) M Shading frequency MS 3D glasses signal N Frame frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)
  • Liquid Crystal Display Device Control (AREA)

Abstract

This stereoscopic image display device (1) is provided with a liquid crystal display device (2), liquid crystal shutters (22, 21) for the left eye and for the right eye, and a shutter control unit (23) which generates signals (LS, RS) for driving the liquid crystal shutters and which controls driving of the liquid crystal shutters (22, 21) by means of the generated signals (LS, RS) for driving the liquid crystal shutters. If light blocking frequency M is the frequency that represents the period of rising and falling of the signals (LS, RS) for driving the liquid crystal shutters, N is the frame frequency when one frame is a combination of a left-eye image and a right-eye image, and x is a natural number, it holds that M = (2x+1)×N. By this means, manufacturing costs are prevented from rising, and flicker is reliably decreased without depending on the blanking period.

Description

立体画像表示装置、及び立体画像表示装置の駆動方法Stereoscopic image display device and driving method of stereoscopic image display device
 本発明は立体画像表示装置、及び立体画像表示装置の駆動方法に関する。 The present invention relates to a stereoscopic image display device and a driving method of the stereoscopic image display device.
 近年、液晶シャッタを用いて、ユーザに立体画像を鑑賞させることが可能な立体映像表示システムが開発されている。 Recently, a stereoscopic video display system has been developed that allows a user to appreciate a stereoscopic image using a liquid crystal shutter.
 このような立体映像表示システムに、一般的に、アクティブシャッター方式と呼ばれる方式が用いられている。 In such a stereoscopic image display system, a method called an active shutter method is generally used.
 アクティブシャッター方式では、表示装置に順次表示する右目用画像及び左目用画像と同期して、立体(3D)メガネの右目用の液晶シャッタと、左目用の液晶シャッタとの透過状態、すなわちON(オン)状態とOFF(オフ)状態とを順次切替える。これにより、ユーザは、右目と左目との視差により、立体画像を鑑賞することができる。 In the active shutter method, in synchronization with the right-eye image and the left-eye image sequentially displayed on the display device, the transmission state of the right-eye liquid crystal shutter and the left-eye liquid crystal shutter of the stereoscopic (3D) glasses, that is, ON (on) ) State and OFF (off) state are sequentially switched. Thereby, the user can appreciate a stereoscopic image by the parallax between the right eye and the left eye.
 しかし、上記立体映像表示システムでは、液晶シャッタの透過状態を順次切替えるので、表示装置の周囲に明るい照明光等の外光が存在すると、液晶シャッタのオン/オフ周期で、その外光を認識することになり、目にフリッカとしてちらつきを感じる場合がある。 However, in the stereoscopic video display system, since the transmission state of the liquid crystal shutter is sequentially switched, if external light such as bright illumination light exists around the display device, the external light is recognized in the on / off cycle of the liquid crystal shutter. In other words, flicker may be felt in the eyes.
 図7は、一般的な3Dメガネの右目用の液晶シャッタと左目用の液晶シャッタとの開閉タイミングを説明する図である。 FIG. 7 is a diagram for explaining opening and closing timings of the liquid crystal shutter for the right eye and the liquid crystal shutter for the left eye of general 3D glasses.
 図7に示すように、通常は、左目用の画像表示期間を通して、3Dメガネの左目用の液晶シャッタのみを開状態とし、右目用の画像表示期間を通して3Dメガネの右目用の液晶シャッタのみを開状態とする。 As shown in FIG. 7, normally, only the liquid crystal shutter for the left eye of the 3D glasses is opened during the image display period for the left eye, and only the liquid crystal shutter for the right eye of the 3D glasses is opened throughout the image display period for the right eye. State.
 これにより、左目用画像はユーザの左目のみに入射し、右目用画像はユーザの右目のみに入射する。この結果、ユーザは立体画像を視認することができる。 Thus, the left-eye image is incident only on the user's left eye, and the right-eye image is incident only on the user's right eye. As a result, the user can visually recognize the stereoscopic image.
 しかし、このように3Dメガネのそれぞれの液晶シャッタの開閉駆動を行うと、液晶パネルで、一対の左目用画像及び右目用画像を、例えば60Hzで駆動している場合、3Dメガネの開閉の周期も60Hz程度となり、フリッカが見え易い周期となる。 However, when the respective liquid crystal shutters of the 3D glasses are opened / closed in this way, when the pair of left-eye images and right-eye images are driven at 60 Hz, for example, by the liquid crystal panel, the cycle of opening / closing the 3D glasses is also increased. The frequency is about 60 Hz, and the flicker is easy to see.
 特許文献1、2には、ブランキング期間を利用して液晶シャッタを開閉制御する立体映像再生システムが開示されている。 Patent Documents 1 and 2 disclose a stereoscopic video reproduction system that controls opening and closing of a liquid crystal shutter using a blanking period.
 図8は、特許文献1の立体映像再生システム駆動の様子を表す図である。 FIG. 8 is a diagram showing a state of driving the stereoscopic video reproduction system of Patent Document 1.
 例えば、特許文献1では、ブランキング期間である走査線が表示されていない期間が、右目用・左目用の液晶シャッタの透過周期であっても、一時的にそれぞれの液晶シャッタを閉じる。 For example, in Patent Document 1, each liquid crystal shutter is temporarily closed even if the scanning period, which is the blanking period, is a transmission period of the right-eye and left-eye liquid crystal shutters.
 また、逆に、ブランキング期間が、右目用・左目用の液晶シャッタの遮断周期であっても、一時的にそれぞれの液晶シャッタを開く。 Also, conversely, even if the blanking period is the cutoff cycle of the right-eye and left-eye liquid crystal shutters, the respective liquid crystal shutters are temporarily opened.
 これにより、眼に入る光の刺激を平均化してフリッカを低減している。 This reduces the flicker by averaging the stimulus of light entering the eye.
 また、特許文献3では、商用電源周波数の周期で点滅する外光である照明光の点滅周期を検出するための点滅周期検出手段を設けている表示システムが開示されている。 Further, Patent Document 3 discloses a display system provided with a blinking cycle detecting means for detecting a blinking cycle of illumination light that is external light blinking at a cycle of a commercial power supply frequency.
 特許文献3では、点滅周期検出手段で得られた外光の点滅周期に同期させて、光シャッタを開閉することで、フリッカを低減している。 In Patent Document 3, flicker is reduced by opening and closing the optical shutter in synchronization with the blinking cycle of external light obtained by the blinking cycle detection means.
日本国公開特許公報「特開昭64‐86694号公報(1989年3月31日公開)」Japanese Patent Publication "Japanese Patent Laid-Open No. 64-86694 (published on March 31, 1989)" 日本国公開特許公報「特開平9‐138384号公報(1997年5月27日公開)」Japanese Patent Publication “JP 9-138384 A (published May 27, 1997)” 国際公開特許公報「WO2008/056753号公報(2008年5月15日国際公開)」International Patent Publication “WO2008 / 056753 Publication (May 15, 2008 International Publication)”
 しかし、1フレーム期間中のブランキング期間は、非常に短い期間である。このため、特許文献1、2の駆動方法では、フリッカの低減効果が不十分であるという課題が生じる。 However, the blanking period in one frame period is a very short period. For this reason, the driving methods disclosed in Patent Documents 1 and 2 have a problem that the flicker reduction effect is insufficient.
 また、特許文献3の表示システムでは、新たに、外光の点滅周期を検出するための点滅周期検出手段を装置内に配する必要があるので、製造コスト増大の原因となる。 Further, in the display system of Patent Document 3, it is necessary to newly provide a blinking period detecting means for detecting the blinking period of external light in the apparatus, which causes an increase in manufacturing cost.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、製造コストの増大を防止して、かつ、ブランキング期間に依存せず、確実にフリッカを低減することである。 The present invention has been made to solve the above-described problems, and an object thereof is to prevent an increase in manufacturing cost and reliably reduce flicker without depending on the blanking period. .
 上記の課題を解決するために、本発明の立体画像表示装置は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、上記第1及び第2目用シャッタを駆動させるシャッタ駆動信号を生成し、当該生成したシャッタ駆動信号により、上記第1及び第2目用シャッタの駆動を制御するシャッタ制御部とを備え、上記シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えることを示す情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなっていることを特徴としている。 In order to solve the above-described problems, a stereoscopic image display device according to the present invention includes a display device that displays one stereoscopic image by sequentially displaying a first-eye image and a second-eye image; A first eye shutter that is in a transmissive state when the display device displays the first eye image, and a second eye shutter that is in a transmissive state when the display device displays the second eye image; A shutter control unit that generates a shutter drive signal for driving the first and second shutters, and controls the driving of the first and second shutters according to the generated shutter drive signal, Of the shutter driving signals, the frequency representing the period of information indicating that the first or second shutter is switched from the transmission state to the light shielding state is a light shielding frequency M, and the first eye image and the second eye image are displayed. 1 frame combined with image If you have a frame frequency N of time, the natural number and x, is characterized in that has a M = (2x + 1) × N.
 上記の課題を解決するために、本発明の立体画像表示装置の駆動方法は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、を備えている立体画像表示装置の駆動方法であって、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替える周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなるように、上記第1及び第2目用シャッタの駆動を制御することを特徴としている。 In order to solve the above-described problem, a driving method of a stereoscopic image display device according to the present invention is a display device that displays one stereoscopic image by sequentially displaying a first eye image and a second eye image. A first eye shutter that is in a transmissive state when the display device displays the first eye image, and a second eye that is in a transmissive state when the display device displays the second eye image. A stereoscopic image display device comprising: a shutter frequency M, a frequency representing a cycle of switching the first or second shutter for shutter from a transmission state to a light shielding state as a light shielding frequency M, and the first eye The first and second eye shutters are set such that M = (2x + 1) × N, where the frame frequency is N when the image for the second image is combined with the image for the second eye and the natural number is x. It is characterized by controlling the driving of the.
 上記構成によると、上記シャッタ制御部が生成したシャッタ駆動信号により、第1目用画像を表示する際に第1目用シャッタが透過状態となり、第2目用画像を表示する際に第2目用シャッタが透過状態となる。これにより、第1目用画像をユーザの第1目に入射させ、第2目用画像をユーザの第2目に入射させることができるので、ユーザに立体画像を視認させることができる。 According to the above configuration, the first eye shutter is in the transmissive state when the first eye image is displayed by the shutter drive signal generated by the shutter control unit, and the second eye is displayed when the second eye image is displayed. The shutter is in a transmissive state. Accordingly, the first eye image can be incident on the first eye of the user and the second eye image can be incident on the second eye of the user, so that the user can visually recognize the stereoscopic image.
 そして、シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えるための情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなっている。 Of the shutter drive signals, the frequency representing the period of information for switching the first or second eye shutter from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye. M = (2x + 1) × N where the frame frequency is N when the images for the image are combined and the natural number is x.
 すなわち、遮光周波数Mはフレーム周波数Nより大きい。これにより、第1及び第2目用シャッタのそれぞれは、フレームレートよりも速く、開閉を繰り返す。これにより、フレームレートより低い周波数成分に起因するフリッカを抑えることができる。また、外光のうち、一般的に、高い周波数の成分に起因するフリッカは人の目には感じ難い。このように、上記構成によると、フリッカを低減することができる。 That is, the shading frequency M is larger than the frame frequency N. Thus, each of the first and second shutters is repeatedly opened and closed faster than the frame rate. As a result, flicker caused by a frequency component lower than the frame rate can be suppressed. In addition, flicker caused by high frequency components in outside light is generally difficult for human eyes to feel. Thus, according to the above configuration, flicker can be reduced.
 そして、MはNより大きければよく、特許文献3に記載の技術のように、商用電源の周波数と同期させる必要はない。このため、外光の周期を常に監視するための手段等は必要なく、製造コスト増大を防止することができる。 And it is sufficient that M is larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
 さらに、M=(2x+1)×Nとなっているので、順次、第1目用シャッタを透過させて第1目用画像をユーザの第1目に入射させ、第2目用シャッタを透過させて第2目用画像をユーザの第2目に入射させることができる。これにより、ユーザに立体画像を視認させると共に、ブランキングに依存することなく、フリッカを低減することができる。 Further, since M = (2x + 1) × N, the first eye shutter is sequentially transmitted to cause the first eye image to enter the user's first eye, and the second eye shutter is transmitted. The second eye image can be incident on the user's second eye. Thereby, while making a user visually recognize a stereo image, flicker can be reduced without depending on blanking.
 本発明の立体画像表示装置は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、上記第1及び第2目用シャッタを駆動させるシャッタ駆動信号を生成し、当該生成したシャッタ駆動信号により、上記第1及び第2目用シャッタの駆動を制御するシャッタ制御部とを備え、上記シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えることを示す情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなっている。 The stereoscopic image display device according to the present invention sequentially displays a first eye image and a second eye image, thereby displaying one stereoscopic image, and the display device includes the first eye image. A first eye shutter that is in a transmissive state when displaying the image, a second eye shutter that is in a transmissive state when the display device displays the second eye image, and the first and second eye shutters. A shutter control unit configured to generate a shutter drive signal for driving the shutter, and to control driving of the first and second shutters according to the generated shutter drive signal; Alternatively, when the frequency representing the period of information indicating that the second shutter is switched from the transmission state to the light shielding state is the light shielding frequency M and the first eye image and the second eye image are combined into one frame. Frame frequency N And, if the natural number and x, and has a M = (2x + 1) × N.
 本発明の立体画像表示装置の駆動方法は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、を備えている立体画像表示装置の駆動方法であって、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替える周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなるように、上記第1及び第2目用シャッタの駆動を制御する。 According to the driving method of the stereoscopic image display device of the present invention, the first eye image and the second eye image are sequentially displayed to display one stereoscopic image, and the display device includes the first image. A stereoscopic apparatus including a first eye shutter that is in a transmissive state when displaying an eye image, and a second shutter that is in a transmissive state when the display device displays the second eye image. A driving method of the image display device, wherein a frequency representing a cycle of switching the first or second eye shutter from a transmission state to a light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye image. The first and second shutters are controlled so that M = (2x + 1) × N where the frame frequency is N and the natural number is x.
 これにより、製造コストの増大を防止して、かつ、ブランキング期間に依存せず、確実にフリッカを低減するという効果を奏する。 This prevents the increase in manufacturing cost and reliably reduces flicker without depending on the blanking period.
本発明の立体画像表示装置の表示動作を説明するための図である。It is a figure for demonstrating the display operation of the stereo image display apparatus of this invention. 本発明の立体画像表示装置の構成を表す概略図である。It is the schematic showing the structure of the three-dimensional image display apparatus of this invention. 本発明の立体画像表示装置の構成を表すブロック図である。It is a block diagram showing the structure of the stereo image display apparatus of this invention. 本発明の立体画像表示装置の表示動作を説明するための図である。It is a figure for demonstrating the display operation of the stereo image display apparatus of this invention. 液晶シャッタの液晶への印加電圧と液晶の駆動の様子を表す図である。It is a figure showing the applied voltage to the liquid crystal of a liquid-crystal shutter, and the mode of a liquid crystal drive. 本発明の立体画像表示装置の表示動作を説明するための図である。It is a figure for demonstrating the display operation of the stereo image display apparatus of this invention. 一般的な3Dメガネの右目用の液晶シャッタと左目用の液晶シャッタとの開閉タイミングを説明する図である。It is a figure explaining the opening-and-closing timing of the liquid-crystal shutter for right eyes of the general 3D glasses, and the liquid-crystal shutter for left eyes. 従来の立体映像再生システム駆動の様子を表す図である。It is a figure showing the mode of the conventional stereoscopic video reproduction system drive. 本発明の立体画像表示装置の構成を表すブロック図である。It is a block diagram showing the structure of the stereo image display apparatus of this invention.
 以下、本発明の実施の形態について、詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
 〔実施の形態1〕
 (立体画像表示システムの構成)
 まず、図2、図3を用いて、本発明の立体画像表示装置1の構成について説明する。
[Embodiment 1]
(Configuration of stereoscopic image display system)
First, the configuration of the stereoscopic image display device 1 of the present invention will be described with reference to FIGS. 2 and 3.
 図2は、本発明の立体画像表示装置1の構成を表す概略図である。 FIG. 2 is a schematic diagram showing the configuration of the stereoscopic image display device 1 of the present invention.
 図2に示すように、立体画像表示装置1は、液晶表示装置(表示装置)2と、3Dメガネ20とを備えている。 As shown in FIG. 2, the stereoscopic image display device 1 includes a liquid crystal display device (display device) 2 and 3D glasses 20.
 液晶表示装置2は、液晶パネルLCPと、バックライトBLと、駆動制御部10とを備えている。 The liquid crystal display device 2 includes a liquid crystal panel LCP, a backlight BL, and a drive control unit 10.
 駆動制御部10は、外部から、映像信号を取得し、当該取得した映像信号に基づいて、液晶パネルLCP、バックライトBL、及び3Dメガネ20のそれぞれの駆動制御を行うためのものである。 The drive control unit 10 acquires a video signal from the outside, and performs drive control of each of the liquid crystal panel LCP, the backlight BL, and the 3D glasses 20 based on the acquired video signal.
 液晶パネルLCPは、立体(3D)画像又は平面(2D)画像の表示が可能な液晶パネルである。液晶パネルLCPは、画像表示領域3と、ゲートドライバGDと、ソースドライバSDとを備えている。 The liquid crystal panel LCP is a liquid crystal panel capable of displaying a stereoscopic (3D) image or a planar (2D) image. The liquid crystal panel LCP includes an image display area 3, a gate driver GD, and a source driver SD.
 画像表示領域3には、互いに平行に配されている複数のゲート配線Giと、互いに平行に配されている複数のソース配線Sjと、が交差して配されている。ゲート配線Giと、ソース配線Sjとによって区画されている領域が画素Pである。画素Pは、画像表示領域3にマトリクス状に配されている。 In the image display area 3, a plurality of gate wirings Gi arranged in parallel to each other and a plurality of source wirings Sj arranged in parallel to each other are arranged so as to intersect each other. A region partitioned by the gate wiring Gi and the source wiring Sj is a pixel P. The pixels P are arranged in a matrix in the image display area 3.
 ゲートドライバGDは、画像表示領域3の左辺に沿って配されている。ゲートドライバGDは、駆動制御部10から出力されてくるゲートドライバ駆動信号GSに基づいて、各ゲート配線Giを駆動する。 The gate driver GD is arranged along the left side of the image display area 3. The gate driver GD drives each gate line Gi based on the gate driver drive signal GS output from the drive control unit 10.
 ソースドライバSDは、画像表示領域3の上辺に沿って配されている。ソースドライバSDは、駆動制御部10からのソースドライバ駆動信号SSに基づいて、各ソース配線Sjを駆動する。 The source driver SD is arranged along the upper side of the image display area 3. The source driver SD drives each source line Sj based on the source driver drive signal SS from the drive control unit 10.
 液晶パネルLCPは、各画素P毎にスイッチング素子としてのTFT素子及び画素電極が配されているアクティブ基板と、カラーフィルタ及び共通電極が配されている対向基板とが、液晶を介して対向配置されて構成されている。 In the liquid crystal panel LCP, an active substrate on which a TFT element and a pixel electrode as a switching element are arranged for each pixel P, and a counter substrate on which a color filter and a common electrode are arranged are opposed to each other through a liquid crystal. Configured.
 画像表示領域3に画像表示を行う際、ゲートドライバGD、及びソースドライバSDは、画素を順次走査することで、必要な階調に対応する電圧を各画素Pの画素電極に印加する。これにより、各画素P内の液晶が駆動し、各画素Pの透過状態が制御されることで、所望の画像が表示される(書き込まれる)。 When performing image display in the image display area 3, the gate driver GD and the source driver SD sequentially scan the pixels to apply a voltage corresponding to a necessary gradation to the pixel electrode of each pixel P. As a result, the liquid crystal in each pixel P is driven, and the transmission state of each pixel P is controlled, so that a desired image is displayed (written).
 バックライトBLは、液晶パネルLCPの画像表示領域3を背面側から照明するものである。液晶は自発光素子ではないので、目視で画像をユーザに確認させるためには、光源としてのバックライトBLを用い、背後から液晶パネルLCPを照らす必要がある。 The backlight BL illuminates the image display area 3 of the liquid crystal panel LCP from the back side. Since the liquid crystal is not a self-luminous element, it is necessary to use the backlight BL as a light source and illuminate the liquid crystal panel LCP from behind in order to make the user visually confirm the image.
 バックライトBLは、駆動制御部10から出力されてくるバックライト駆動信号BLSに基づいて点灯したり、消灯したりする。 The backlight BL is turned on or off based on the backlight drive signal BLS output from the drive control unit 10.
 バックライトBLから発光された光は、各画素Pを透過する。これにより、画像表示領域3に表示されている画像をユーザに視認させることができる。バックライトBLは、LEDを複数配することで構成することができるが、特にこれに限定されるものではない。 The light emitted from the backlight BL passes through each pixel P. Thereby, the user can visually recognize the image displayed in the image display area 3. The backlight BL can be configured by arranging a plurality of LEDs, but is not particularly limited thereto.
 3Dメガネ20は、液晶パネルLCPに表示する3D画像に応じて、ユーザの右目又は左目への入射光を遮光するための遮光装置である。これにより、3Dメガネ20は、液晶パネルLCPに表示されている3D画像を、ユーザに立体視させることができる。 The 3D glasses 20 are light shielding devices for shielding incident light to the user's right eye or left eye according to the 3D image displayed on the liquid crystal panel LCP. Thereby, the 3D glasses 20 can make the user stereoscopically view the 3D image displayed on the liquid crystal panel LCP.
 3Dメガネ20は、ユーザの右目(第2目、第1目)への入射光を遮光するための右目用の液晶シャッタ21(第2目用シャッタ、第1目用シャッタ)と、ユーザの左目(第1目、第2目)への入射光を遮光するための左目用の液晶シャッタ22(第1目用シャッタ、第2目用シャッタ)とを備えている。 The 3D glasses 20 include a right-eye liquid crystal shutter 21 (second eye shutter, first eye shutter) for blocking incident light on the user's right eye (second eye, first eye), and the user's left eye. And a left-eye liquid crystal shutter 22 (first-eye shutter, second-eye shutter) for blocking incident light on the first eye and the second eye.
 右目用の液晶シャッタ21及び左目用の液晶シャッタ22は、液晶パネルLCPに表示される3D画像に同期して透過状態(開状態)と遮光状態(閉状態)とが切替えられる。 The liquid crystal shutter 21 for the right eye and the liquid crystal shutter 22 for the left eye are switched between a transmission state (open state) and a light shielding state (closed state) in synchronization with the 3D image displayed on the liquid crystal panel LCP.
 3Dメガネ20は、駆動制御部10から出力されてくる3Dメガネ用信号MSに基づいて、液晶シャッタ21・22のそれぞれを透過状態(開状態)にしたり、遮光状態(閉状態)にしたりする。 Based on the 3D glasses signal MS output from the drive control unit 10, the 3D glasses 20 sets each of the liquid crystal shutters 21 and 22 to a transmissive state (open state) or a light shielding state (closed state).
 図3は、立体画像表示装置1の構成を表すブロック図である。 FIG. 3 is a block diagram showing the configuration of the stereoscopic image display apparatus 1.
 駆動制御部10は、画像信号生成部11と、液晶パネル用信号生成部12と、バックライト用信号生成部13と、3Dメガネ用信号生成部14とを備えている。3Dメガネ用信号生成部14はシャッタ周波数設定部14aを備えている。 The drive control unit 10 includes an image signal generation unit 11, a liquid crystal panel signal generation unit 12, a backlight signal generation unit 13, and a 3D glasses signal generation unit 14. The 3D glasses signal generator 14 includes a shutter frequency setting unit 14a.
 また、3Dメガネ20は、シャッタ制御部23と、シャッタ駆動部24・25と、液晶シャッタ21・22とを備えている。 The 3D glasses 20 include a shutter control unit 23, shutter drive units 24 and 25, and liquid crystal shutters 21 and 22.
 画像信号生成部11は、外部から、立体画像表示用の映像信号を受信する。そして、受信した垂直同期信号等の映像信号に基づいて、立体画像表示用の各種の同期信号や階調用信号、液晶パネルLCPに表示する画像が3D画像のうち左目用画像(第1目用画像、第2目用画像)であるか、右目用画像(第2目用画像、第1目用画像)であるかを識別するための識別信号である左右画像識別信号、フレーム周波数を示す情報(フレーム周波数情報)等を生成する。 The image signal generator 11 receives a video signal for stereoscopic image display from the outside. Then, based on the received video signal such as a vertical synchronization signal, various synchronization signals for gray-scale image display, gradation signals, and an image to be displayed on the liquid crystal panel LCP are left-eye images (first-eye images). , Second-eye image) or right-eye image (second-eye image, first-eye image). Frame frequency information) and the like.
 そして、画像信号生成部11は、生成した信号を液晶パネル用信号生成部12、バックライト用信号生成部13、及び3Dメガネ用信号生成部14に出力する。 Then, the image signal generator 11 outputs the generated signal to the liquid crystal panel signal generator 12, the backlight signal generator 13, and the 3D glasses signal generator 14.
 ここで、本明細書中では、1フレームとは、1つの立体画像を表示するための画像のことである。すなわち、フレーム周波数は立体画像の周期のことである。1つの立体画像は、順次表示される左目用画像と右目用画像とからなる。 Here, in this specification, one frame is an image for displaying one stereoscopic image. That is, the frame frequency is a period of a stereoscopic image. One stereoscopic image includes a left-eye image and a right-eye image that are sequentially displayed.
 液晶パネル用信号生成部12は、画像信号生成部11から取得する各種の信号に基づいて、液晶パネルLCPの駆動を制御するためのものである。 The liquid crystal panel signal generation unit 12 is for controlling the driving of the liquid crystal panel LCP based on various signals acquired from the image signal generation unit 11.
 液晶パネル用信号生成部12は、画像信号生成部11からの各種の信号を取得すると、画像の書き込み用信号として、ソースドライバ駆動信号SS・ゲートドライバ駆動信号GSを生成する。そして、液晶パネル用信号生成部12は、生成したソースドライバ駆動信号SSをソースドライバSDへ出力し、ゲートドライバ駆動信号GSをゲートドライバGDへ出力する。これにより、液晶パネル用信号生成部12は、液晶パネルLCPの駆動を制御する。 When the liquid crystal panel signal generation unit 12 acquires various signals from the image signal generation unit 11, the liquid crystal panel signal generation unit 12 generates a source driver drive signal SS and a gate driver drive signal GS as image write signals. Then, the liquid crystal panel signal generator 12 outputs the generated source driver drive signal SS to the source driver SD, and outputs the gate driver drive signal GS to the gate driver GD. Thereby, the liquid crystal panel signal generation unit 12 controls the driving of the liquid crystal panel LCP.
 バックライト用信号生成部13は、画像信号生成部11から取得する各種の信号や、3Dメガネ用信号生成部14から取得する遮光周波数(後述する)を示す情報等に基づいて、バックライトBLの駆動を制御するためのものである。 The backlight signal generation unit 13 is based on various signals acquired from the image signal generation unit 11, information indicating a light shielding frequency (described later) acquired from the 3D glasses signal generation unit 14, and the like. This is for controlling the drive.
 バックライト用信号生成部13は、画像信号生成部11から各種の信号を取得し、また、3Dメガネ用信号生成部14から遮光周波数(後述する)を示す情報、透過状態の期間を示す情報を取得すると、バックライトBLの点灯及び消灯させるための駆動信号であるバックライト駆動信号BLSを生成し、バックライトBLへ出力する。これにより、バックライト用信号生成部13は、バックライトBLの駆動を制御する。 The backlight signal generation unit 13 acquires various signals from the image signal generation unit 11, and information indicating the light shielding frequency (described later) and information indicating the period of the transmission state from the 3D glasses signal generation unit 14. Upon acquisition, a backlight drive signal BLS, which is a drive signal for turning on and off the backlight BL, is generated and output to the backlight BL. Thereby, the backlight signal generator 13 controls the driving of the backlight BL.
 3Dメガネ用信号生成部14は、画像信号生成部11から取得する各種の信号に基づいて、3Dメガネ20の駆動を制御するためのものである。 The 3D glasses signal generation unit 14 is for controlling the driving of the 3D glasses 20 based on various signals acquired from the image signal generation unit 11.
 3Dメガネ用信号生成部14は、シャッタ周波数設定部14aを備えている。シャッタ周波数設定部14aは、液晶シャッタ21・22それぞれを、透過状態(開状態)から遮光状態(閉状態)へ切替える周波数である遮光周波数や、透過状態の期間等を設定する。 The 3D glasses signal generation unit 14 includes a shutter frequency setting unit 14a. The shutter frequency setting unit 14a sets a light shielding frequency that is a frequency for switching each of the liquid crystal shutters 21 and 22 from the transmission state (open state) to the light shielding state (closed state), a period of the transmission state, and the like.
 3Dメガネ用信号生成部14は、画像信号生成部11から、同期信号や、左右画像識別信号、フレーム周波数を示す情報等の各種の信号を取得する。 The 3D glasses signal generation unit 14 acquires various signals such as a synchronization signal, left and right image identification signals, and information indicating a frame frequency from the image signal generation unit 11.
 シャッタ周波数設定部14aは、3Dメガネ用信号生成部14がフレーム周波数を示す情報を取得すると、当該フレーム周波数を示す情報が示すフレーム周波数から、液晶シャッタ21・22それぞれを透過状態から遮光状態(閉状態)へ切替える周波数である遮光周波数を設定する。 When the 3D glasses signal generation unit 14 obtains information indicating the frame frequency, the shutter frequency setting unit 14a obtains the liquid crystal shutters 21 and 22 from the transmission state to the light shielding state (closed) from the frame frequency indicated by the information indicating the frame frequency. Set the shading frequency that is the frequency to switch to (status).
 フレーム周波数N(Hz)、遮光周波数M(Hz)、自然数をxとすると、シャッタ周波数設定部14aは、遮光周波数Mを以下のように設定する。 When the frame frequency N (Hz), the light shielding frequency M (Hz), and the natural number are x, the shutter frequency setting unit 14a sets the light shielding frequency M as follows.
 M=(2x+1)×N   (式1)
 すなわち、シャッタ周波数設定部14aは、フレーム周波数の奇数倍(整数であり1を除く)となるように、シャッタ周波数を設定する。自然数xは、例えば、シャッタ周波数設定部14aに予め記録されていてもよいし、ユーザによって設定されてもよい。
M = (2x + 1) × N (Formula 1)
That is, the shutter frequency setting unit 14a sets the shutter frequency so as to be an odd multiple of the frame frequency (which is an integer and excludes 1). The natural number x may be recorded in advance in the shutter frequency setting unit 14a, or may be set by the user, for example.
 さらに、シャッタ周波数設定部14aは、液晶シャッタ21・22それぞれの透過状態を保持する期間である透過状態の期間(時間長さ)を設定する。 Furthermore, the shutter frequency setting unit 14a sets a transmission state period (time length) that is a period for holding the transmission state of each of the liquid crystal shutters 21 and 22.
 液晶シャッタ21・22それぞれの透過状態を保持する期間は、予め、シャッタ周波数設定部14a等に記憶されていてもよいし、ユーザの入力によって設定されてもよい。一例として、透過状態を示す期間をtとすると、(1/2M)≦t<(1/M)の範囲内程度である。なお、tの範囲はこれに限定されるものではない。 The period during which the liquid crystal shutters 21 and 22 are kept transmissive may be stored in advance in the shutter frequency setting unit 14a or may be set by user input. As an example, if the period showing the transmission state is t, it is about in the range of (1 / 2M) ≦ t <(1 / M). Note that the range of t is not limited to this.
 そして、3Dメガネ用信号生成部14は、画像信号生成部11から取得した各種の同期信号や、左右画像識別信号、フレーム周波数を示す情報、及びシャッタ周波数設定部14aが設定したシャッタ周波数を示す情報、透過状態の期間を示す情報から、液晶シャッタ21・22を開閉するタイミングを示す3Dメガネ用信号MSを生成する。なお、この3Dメガネ用信号MSには、フレーム周波数を示す情報や、シャッタ周波数を示す情報、透過状態の期間を示す情報が含まれている。 Then, the 3D glasses signal generation unit 14 includes various synchronization signals acquired from the image signal generation unit 11, left and right image identification signals, information indicating the frame frequency, and information indicating the shutter frequency set by the shutter frequency setting unit 14a. From the information indicating the period of the transmission state, the 3D glasses signal MS indicating the timing for opening and closing the liquid crystal shutters 21 and 22 is generated. The 3D glasses signal MS includes information indicating the frame frequency, information indicating the shutter frequency, and information indicating the period of the transmission state.
 3Dメガネ用信号生成部14は、生成した3Dメガネ用信号MSをシャッタ制御部23に出力すると共に、シャッタ周波数設定部14aが設定したシャッタ周波数を示す情報、及び透過状態の期間を示す情報をバックライト用信号生成部13へ出力する。 The 3D glasses signal generation unit 14 outputs the generated 3D glasses signal MS to the shutter control unit 23, and also backs information indicating the shutter frequency set by the shutter frequency setting unit 14a and information indicating the period of the transmission state. Output to the write signal generator 13.
 なお、シャッタ周波数設定部14aは、必ずしも駆動制御部10に設けられている必要はなく、3Dメガネ20側に設けられていてもよい。 The shutter frequency setting unit 14a is not necessarily provided in the drive control unit 10, and may be provided on the 3D glasses 20 side.
 シャッタ制御部23は、3Dメガネ用信号生成部14から取得する3Dメガネ用信号MSに基づいて、右目用の液晶シャッタ21及び左目用の液晶シャッタ22それぞれの駆動制御させるためのものである。 The shutter controller 23 is for controlling the drive of the liquid crystal shutter 21 for the right eye and the liquid crystal shutter 22 for the left eye based on the 3D glasses signal MS acquired from the 3D glasses signal generator 14.
 シャッタ制御部23は、3Dメガネ用信号生成部14から3Dメガネ用信号MSを取得すると、当該3Dメガネ用信号MSのシャッタ周波数を示す情報、及び透過状態の期間を示す情報等から、右目用の液晶シャッタ21を遮光状態から透過状態へ切替えることを示す情報及び透過状態から遮光状態へ切替えることを示す情報を有する液晶シャッタ駆動用信号(シャッタ駆動信号、第2目用シャッタ駆動信号、第1目用シャッタ駆動信号)RSと、左目用の液晶シャッタ22を遮光状態から透過状態へ切替えることを示す情報及び透過状態から遮光状態へ切替えることを示す情報を有する液晶シャッタ駆動用信号(シャッタ駆動信号、第1目用シャッタ駆動信号、第2目用シャッタ駆動信号)LSとを生成する。 When the shutter control unit 23 acquires the 3D glasses signal MS from the 3D glasses signal generation unit 14, the shutter control unit 23 uses the information indicating the shutter frequency of the 3D glasses signal MS, the information indicating the period of the transmission state, and the like for the right eye. A liquid crystal shutter driving signal (shutter driving signal, second shutter driving signal, first eye) having information indicating that the liquid crystal shutter 21 is switched from the light shielding state to the transmission state and information indicating switching from the transmission state to the light shielding state. A liquid crystal shutter drive signal (shutter drive signal, RS), information indicating that the liquid crystal shutter 22 for the left eye is switched from the light shielding state to the transmission state, and information indicating the switching from the transmission state to the light shielding state. The first shutter driving signal for the first eye and the second shutter driving signal for the second eye) LS are generated.
 そして、シャッタ制御部23は、生成した液晶シャッタ駆動用信号RSをシャッタ駆動部24に出力し、シャッタ駆動部24に液晶シャッタ21の駆動を制御させる。 Then, the shutter control unit 23 outputs the generated liquid crystal shutter drive signal RS to the shutter drive unit 24, and controls the shutter drive unit 24 to drive the liquid crystal shutter 21.
 また、シャッタ制御部23は、生成した左目用の液晶シャッタ駆動用信号LSをシャッタ駆動部25に出力し、シャッタ駆動部25に液晶シャッタ22の駆動を制御させる。 Further, the shutter control unit 23 outputs the generated liquid crystal shutter drive signal LS for the left eye to the shutter drive unit 25 and causes the shutter drive unit 25 to control driving of the liquid crystal shutter 22.
 シャッタ駆動部24は、シャッタ制御部23から取得した液晶シャッタ駆動用信号RSが示す液晶駆動電圧を生成し、当該生成した液晶駆動電圧により液晶シャッタ21の液晶を駆動させる。これにより、液晶シャッタ21の透過(開)状態と、遮光(閉)状態とが制御される。 The shutter driving unit 24 generates a liquid crystal driving voltage indicated by the liquid crystal shutter driving signal RS acquired from the shutter control unit 23, and drives the liquid crystal of the liquid crystal shutter 21 by the generated liquid crystal driving voltage. Thereby, the transmission (open) state and the light shielding (closed) state of the liquid crystal shutter 21 are controlled.
 シャッタ駆動部25は、シャッタ制御部23から取得した液晶シャッタ駆動用信号LSが示す液晶駆動電圧を生成し、当該生成した液晶駆動電圧により液晶シャッタ22の液晶を駆動させる。これにより、液晶シャッタ22の透過(開)状態と、遮光(閉)状態とが制御される。 The shutter driving unit 25 generates a liquid crystal driving voltage indicated by the liquid crystal shutter driving signal LS acquired from the shutter control unit 23, and drives the liquid crystal of the liquid crystal shutter 22 by the generated liquid crystal driving voltage. Thereby, the transmission (open) state and the light shielding (closed) state of the liquid crystal shutter 22 are controlled.
 このようにして、液晶パネルLCPに表示する画像の表示タイミングと、液晶シャッタ21・22の開/閉のタイミングとを同期している。 In this way, the display timing of the image displayed on the liquid crystal panel LCP and the opening / closing timing of the liquid crystal shutters 21 and 22 are synchronized.
 (立体画像表示システムの表示動作)
 次に、図1を用いて、立体画像表示装置1の表示動作について説明する。図1は、立体画像表示装置1の表示動作を説明するための図である。
(Display operation of stereoscopic image display system)
Next, the display operation of the stereoscopic image display device 1 will be described with reference to FIG. FIG. 1 is a diagram for explaining a display operation of the stereoscopic image display device 1.
 図1の(a)は立体画像表示装置の動作状態の様子を表しており、(b)はバックライトBLの動作状態を表しており、(c)は左目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表しており、(d)は右目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表している。 1A shows the operating state of the stereoscopic image display device, FIG. 1B shows the operating state of the backlight BL, and FIG. 1C shows the liquid crystal shutter driving signal and the liquid crystal for the left eye. The shutter driving state is shown, and (d) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
 図1の(a)に示すように、1つの立体画像は、左目用画像(第1目用画像、第2目用画像)と、右目用画像(第2目用画像、第1目用画像)とから構成されている。1つの立体画像を1フレームとする。この場合のフレーム周波数をN(Hz)とする。 As shown in FIG. 1A, one stereoscopic image includes a left eye image (first eye image, second eye image) and a right eye image (second eye image, first eye image). ). One stereoscopic image is defined as one frame. The frame frequency in this case is N (Hz).
 一例として、本実施の形態では、フレーム周波数N(Hz)=60(Hz)とする。すなわち、1フレームの長さは1/60(秒)である。 As an example, in this embodiment, the frame frequency N (Hz) = 60 (Hz). That is, the length of one frame is 1/60 (second).
 1フレームあたりの左目用画像及び右目用画像のそれぞれの周期は、フレーム周波数の2倍である。本実施の形態では、1フレームあたりの左目用画像の周波数と、右目用画像の周波数とは、それぞれ、120(Hz)である。 The period of each of the left-eye image and the right-eye image per frame is twice the frame frequency. In this embodiment, the frequency of the left-eye image and the frequency of the right-eye image per frame are 120 (Hz), respectively.
 図1の(b)に示すように、バックライトBLは、左目用画像が表示されている期間と、右目用画像が表示されている期間とのそれぞれで、消灯及び点灯している。 As shown in FIG. 1B, the backlight BL is turned off and on in each of the period in which the left-eye image is displayed and the period in which the right-eye image is displayed.
 左目用画像が表示されている期間中にバックライトBLが点灯することで、バックライトBLが点灯している期間だけ、ユーザが液晶パネルLCPに表示されている左目用画像を視認することができる。 By turning on the backlight BL during the period in which the left-eye image is displayed, the user can view the left-eye image displayed on the liquid crystal panel LCP only during the period in which the backlight BL is lit. .
 また、同様に、右目用画像の表示期間中にバックライトBLが点灯することで、バックライトBLが点灯している期間だけ、ユーザが液晶パネルLCPに表示されている右目用画像を視認することができる。 Similarly, when the backlight BL is lit during the display period of the right-eye image, the user can visually recognize the right-eye image displayed on the liquid crystal panel LCP only during the period when the backlight BL is lit. Can do.
 バックライト用信号生成部13は、左目用画像の表示期間では、左目用画像の表示期間内に複数回、開となる左目用の液晶シャッタ22の開期間のうち、最後に開となる期間内だけ、バックライトBLを点灯するようバックライト駆動信号BLSを生成し、バックライトBLに出力する。 In the display period of the left-eye image, the backlight signal generation unit 13 performs a plurality of times in the display period of the left-eye image, and within the period in which the left-eye liquid crystal shutter 22 is opened, which is the last open period. Therefore, the backlight drive signal BLS is generated so as to turn on the backlight BL, and is output to the backlight BL.
 バックライト駆動信号BLSをバックライト用信号生成部13から取得したバックライトBLは、左目用画像の表示期間では、左目用画像の表示期間内に複数回、開となる左目用の液晶シャッタ22の開期間(透過状態を示す期間)のうち、最後に開となる期間内だけ点灯する。左目用画像の表示期間のうち、それ以外の期間は、バックライトBLは消灯している。 The backlight BL obtained from the backlight drive signal BLS from the backlight signal generation unit 13 is generated by the left-eye liquid crystal shutter 22 that is opened multiple times during the left-eye image display period during the left-eye image display period. It is lit only during the last open period of the open period (period showing the transmission state). The backlight BL is turned off during other periods of the left-eye image display period.
 同様に、バックライト用信号生成部13は、右目用画像の表示期間では、右目用画像の表示期間内に複数回、開となる右目用の液晶シャッタ21の開期間(透過状態を示す期間)のうち、最後に開となる期間内だけ、バックライトBLを点灯するようバックライト駆動信号BLSを生成し、バックライトBLに出力する。 Similarly, in the right eye image display period, the backlight signal generation unit 13 opens the right eye liquid crystal shutter 21 that is opened a plurality of times during the right eye image display period (a period indicating a transmission state). Among them, the backlight drive signal BLS is generated so as to turn on the backlight BL only during the last open period, and is output to the backlight BL.
 バックライト駆動信号BLSをバックライト用信号生成部13から取得したバックライトBLは、右目用画像の表示期間では、右目用画像の表示期間内に複数回、開となる右目用の液晶シャッタ21の開期間のうち、最後に開となる期間内だけ点灯する。右目用画像の表示期間のうち、それ以外の期間は、バックライトBLは消灯している。 The backlight BL obtained from the backlight signal generation unit 13 of the backlight drive signal BLS is generated by the right-eye liquid crystal shutter 21 that is opened a plurality of times during the right-eye image display period during the right-eye image display period. Lights only during the last open period of the open period. The backlight BL is extinguished during other periods of the right-eye image display period.
 これにより、液晶パネルLCPに表示されている最中の左目用画像又は右目用画像がユーザに視認されることを防止することができる。すなわち、液晶パネルLCPへの書き込みが完了した左目用画像又は右目用画像をユーザに視認させることができる。このため、確実に、液晶パネルLCPに表示された左目用画像又は右目用画像をユーザに視認させることができるので、立体画像の表示品位の低下を防止することができる。 Thereby, it is possible to prevent the left-eye image or right-eye image being displayed on the liquid crystal panel LCP from being visually recognized by the user. That is, the user can visually recognize the left-eye image or the right-eye image that has been written to the liquid crystal panel LCP. For this reason, since it is possible to make the user visually recognize the left-eye image or the right-eye image displayed on the liquid crystal panel LCP, it is possible to prevent the display quality of the stereoscopic image from being deteriorated.
 シャッタ制御部23は、3Dメガネ用信号生成部14から取得した3Dメガネ用信号MSから、図1の(c)(d)に示すように、左目用の液晶シャッタ駆動用信号LS、右目用の液晶シャッタ駆動用信号RSを生成する。 As shown in FIGS. 1C and 1D, the shutter control unit 23 generates a left-eye liquid crystal shutter driving signal LS and a right-eye liquid crystal shutter driving signal LS from the 3D glasses signal MS acquired from the 3D glasses signal generation unit 14. A liquid crystal shutter driving signal RS is generated.
 そして、シャッタ制御部23は、液晶シャッタ駆動用信号LS、右目用の液晶シャッタ駆動用信号RSを、それぞれ、シャッタ駆動部25・24に出力することで、液晶シャッタ22・21を開閉駆動させる。 The shutter control unit 23 outputs the liquid crystal shutter drive signal LS and the right-eye liquid crystal shutter drive signal RS to the shutter drive units 25 and 24, respectively, thereby driving the liquid crystal shutters 22 and 21 to open and close.
 液晶シャッタ駆動用信号LS及び右目用の液晶シャッタ駆動用信号RSは、それぞれ、ロウ(L)で液晶シャッタ22・21を閉(遮光)状態とすること(遮光状態を示す情報)を示し、ハイ(H)で液晶シャッタ22・21を開(透過)状態とすること(透過状態を示す情報)を示している。 The liquid crystal shutter drive signal LS and the right-eye liquid crystal shutter drive signal RS indicate that the liquid crystal shutters 22 and 21 are closed (light-shielded) at low (L) (information indicating the light-shielded state), respectively. (H) indicates that the liquid crystal shutters 22 and 21 are opened (transmitted) (information indicating the transmitted state).
 また、液晶シャッタ駆動用信号LS及び右目用の液晶シャッタ駆動用信号RSのうち、ロウからハイへの立ち上がりが、液晶シャッタ22または液晶シャッタ21を遮光状態から透過状態へ切替えることを示す情報である。そして、液晶シャッタ駆動用信号LS及び右目用の液晶シャッタ駆動用信号RSのうち、ハイからロウへの立ち下がりが、液晶シャッタ22または液晶シャッタ21を透過状態から遮光状態へ切替えることを示す情報である。 Further, of the liquid crystal shutter driving signal LS and the right-eye liquid crystal shutter driving signal RS, the rise from low to high is information indicating that the liquid crystal shutter 22 or the liquid crystal shutter 21 is switched from the light shielding state to the transmission state. . In the liquid crystal shutter driving signal LS and the right-eye liquid crystal shutter driving signal RS, information indicating that the falling from high to low switches the liquid crystal shutter 22 or the liquid crystal shutter 21 from the transmission state to the light shielding state. is there.
 シャッタ駆動部25は、ロウの液晶シャッタ駆動用信号LSを取得すると、液晶シャッタ22に、閉(遮光)状態となる液晶駆動電圧を印加する。これにより、液晶シャッタ22は閉(遮光)状態となる。一方、シャッタ駆動部25は、ハイの液晶シャッタ駆動用信号LSを取得すると、液晶シャッタ22に、開(透過)状態となる液晶駆動電圧を印加する。これにより、液晶シャッタ22は開(透過)状態となる。 When the shutter driving unit 25 acquires the liquid crystal shutter driving signal LS for low, the shutter driving unit 25 applies a liquid crystal driving voltage to the liquid crystal shutter 22 in a closed (light-shielded) state. As a result, the liquid crystal shutter 22 is in a closed (light-shielded) state. On the other hand, when the shutter driving unit 25 acquires the high liquid crystal shutter driving signal LS, the shutter driving unit 25 applies a liquid crystal driving voltage for opening (transmitting) the liquid crystal shutter 22. As a result, the liquid crystal shutter 22 is in an open (transmission) state.
 シャッタ駆動部24は、ロウの液晶シャッタ駆動用信号RSを取得すると、液晶シャッタ21に、閉(遮光)状態となる液晶駆動電圧を印加する。これにより、液晶シャッタ21は閉(遮光)状態となる。一方、シャッタ駆動部24は、ハイの液晶シャッタ駆動用信号RSを取得すると、液晶シャッタ21に、開(透過)状態となる液晶駆動電圧を印加する。これにより、液晶シャッタ21は開(透過)状態となる。 When the shutter driving unit 24 acquires the liquid crystal shutter driving signal RS, the shutter driving unit 24 applies a liquid crystal driving voltage to the liquid crystal shutter 21 in a closed (light-shielded) state. As a result, the liquid crystal shutter 21 is in a closed (light-shielded) state. On the other hand, when acquiring the high liquid crystal shutter drive signal RS, the shutter drive unit 24 applies a liquid crystal drive voltage that is in an open (transmission) state to the liquid crystal shutter 21. As a result, the liquid crystal shutter 21 is in an open (transmitted) state.
 液晶シャッタ駆動用信号LSは、左目用画像の表示期間に複数回、開閉を繰り返しており、左目用画像の表示期間のハイからロウへの立ち下がりの周期を表す周波数である遮光周波数Mは、フレーム周波数Nより大きく、かつ、フレーム周波数Nの奇数倍(ただし1を除く)となっている。 The liquid crystal shutter driving signal LS is repeatedly opened and closed a plurality of times during the display period of the left-eye image, and the light-shielding frequency M, which is a frequency representing the period of falling from high to low in the display period of the left-eye image, It is larger than the frame frequency N and is an odd multiple of the frame frequency N (except 1).
 同様に、液晶シャッタ駆動用信号RSは、右目用画像の表示期間に複数回、開閉を繰り返しており、右目用画像の表示期間のハイからロウへの立ち下がりの周期を表す周波数である遮光周波数Mは、フレーム周波数Nより大きく、かつ、フレーム周波数Nの奇数倍(ただし1を除く)となっている。 Similarly, the liquid crystal shutter drive signal RS is repeatedly opened and closed a plurality of times during the display period of the right-eye image, and is a light-shielding frequency that is a frequency that represents a cycle of falling from high to low in the display period of the right-eye image. M is larger than the frame frequency N and is an odd multiple (except 1) of the frame frequency N.
 このように、遮光周波数Mはフレーム周波数Nより大きいので、左目用の液晶シャッタ22及び右目用の液晶シャッタ21のそれぞれは、液晶パネルLCPの立体画像のフレームレートよりも速く開閉を繰り返すことになる。 Thus, since the light shielding frequency M is higher than the frame frequency N, the liquid crystal shutter 22 for the left eye and the liquid crystal shutter 21 for the right eye each repeat opening and closing faster than the frame rate of the stereoscopic image of the liquid crystal panel LCP. .
 これにより、液晶パネルLCPの立体画像のフレームレートより低い周波数成分に起因するフリッカを抑えることができる。 Thereby, flicker due to a frequency component lower than the frame rate of the stereoscopic image of the liquid crystal panel LCP can be suppressed.
 また、左目用の液晶シャッタ22及び右目用の液晶シャッタ21のそれぞれは、液晶パネルLCPの立体画像のフレームレートよりも速く開閉を繰り返すので、ユーザの目には、外光や、液晶パネルLCPに表示される画像の光(画像光の称する)のうち、フレーム周波数Nより高周波の外光や画像光が入射する。しかし、ユーザの目には、高周波の光のちらつきは感じ難くい。 Further, each of the liquid crystal shutter 22 for the left eye and the liquid crystal shutter 21 for the right eye repeats opening and closing faster than the frame rate of the stereoscopic image of the liquid crystal panel LCP. Of the light of the image to be displayed (referred to as image light), external light or image light having a frequency higher than the frame frequency N is incident. However, it is difficult for the user to feel high-frequency light flicker.
 このように、立体画像表示装置1では、遮光周波数Mはフレーム周波数Nより大きいので、フリッカを抑えることができる。 Thus, in the stereoscopic image display device 1, since the light shielding frequency M is higher than the frame frequency N, flicker can be suppressed.
 また、MはNより大きければよく、特許文献3に記載の技術のように、商用電源の周波数と同期させる必要はない。このため、外光の周期を常に監視するための手段等は必要なく、製造コスト増大を防止することができる。 Also, M only needs to be larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
 ここで、遮光周波数Mを、フレーム周波数Nの偶数倍とすると、例えば、左目用画像の表示期間中でのバックライトBL点灯期間中に、逆側の右目用の液晶シャッタ21が開となるといった不具合が生じる場合がある。 Here, if the light shielding frequency M is an even multiple of the frame frequency N, for example, the liquid crystal shutter 21 for the right eye on the opposite side is opened during the backlight BL lighting period during the display period of the left eye image. Problems may occur.
 そこで、上述したように、遮光周波数Mを(2x+1)N倍と、遮光周波数Mを、フレーム周波数Nの奇数倍(ただし1を除く)とすることで、例えば、左目用画像の表示期間中(または右目用画像の表示期間中)でのバックライトBL点灯期間中に、逆側の右目用の液晶シャッタ21(又は左目用の液晶シャッタ22)が開状態となるといった不具合を防止することができる。 Therefore, as described above, by setting the shading frequency M to (2x + 1) N times and the shading frequency M to an odd multiple of the frame frequency N (except 1), for example, during the display period of the image for the left eye ( Alternatively, it is possible to prevent a problem such that the right-eye liquid crystal shutter 21 (or the left-eye liquid crystal shutter 22) on the opposite side is opened during the backlight BL lighting period (during the right-eye image display period). .
 このように、遮光周波数Mは(2x+1)N倍となっているので、順次、左目用の液晶シャッタ22を透過させて左目用画像をユーザの左目に入射させ、右目用の液晶シャッタ21を透過させて右目用画像をユーザの右目に入射させることができる。これにより、ユーザに立体画像を視認させると共に、ブランキングに依存することなく、フリッカを低減することができる。 Thus, since the light shielding frequency M is (2 × + 1) N times, the left eye liquid crystal shutter 22 is sequentially transmitted, the left eye image is incident on the user's left eye, and the right eye liquid crystal shutter 21 is transmitted. Thus, the right-eye image can be incident on the right eye of the user. Thereby, while making a user visually recognize a stereo image, flicker can be reduced without depending on blanking.
 本実施の形態では、フレーム周波数N=60Hzに対して、遮光周波数Mは、フレーム周波数Nの3倍である180Hzとなっている。 In the present embodiment, the light shielding frequency M is 180 Hz, which is three times the frame frequency N, with respect to the frame frequency N = 60 Hz.
 これにより、順次、左目用液晶シャッタ22を透過させて左目用画像をユーザの左目に入射させ、右目用液晶シャッタ21を透過させて右目用画像をユーザの右目に入射させることができる。 Thus, the left-eye liquid crystal shutter 22 can be transmitted through the left-eye image so that the left-eye image is incident on the user's left eye, and the right-eye liquid crystal shutter 21 can be transmitted through the right-eye image.
 加えて、液晶シャッタ21・22それぞれを開から閉とする周期を、立体画像の切り替え周期の3倍である180Hzとすることで、目に入る光の周波数は、液晶パネルLCPから出射される画像光の周波数(すなわちフレーム周波数)より高周波である180Hzとなる。これにより、フリッカの程度を改善することができる。 In addition, by setting the period of opening and closing each of the liquid crystal shutters 21 and 22 to 180 Hz, which is three times the switching period of the three-dimensional image, the frequency of the light entering the eye is the image emitted from the liquid crystal panel LCP. The frequency is 180 Hz, which is higher than the frequency of light (that is, the frame frequency). Thereby, the degree of flicker can be improved.
 ここで、遮光周波数Mは、フレーム周波数Nの3倍に限定されるものではなく、5倍、7倍・・・と、奇数倍であればよい。 Here, the shading frequency M is not limited to 3 times the frame frequency N, but may be an odd multiple such as 5 times, 7 times,.
 しかし、遮光周波数Mの周波数が高い周波数となると、液晶シャッタ21・22それぞれの液晶の配向を十分制御することができず、例えば、十分な透過状態となりきらないまま、次の遮光状態とするための液晶駆動電圧が印加される場合がある。このような場合、ユーザには、液晶パネルLCPに表示されている立体画像の輝度が暗く視認されることになり、表示品位の低下を招くことになる。 However, if the frequency of the light shielding frequency M is a high frequency, the alignment of the liquid crystal of each of the liquid crystal shutters 21 and 22 cannot be sufficiently controlled, and for example, the next light shielding state is set without being fully transmitted. In some cases, the liquid crystal driving voltage is applied. In such a case, the brightness of the stereoscopic image displayed on the liquid crystal panel LCP is visually recognized by the user as dark, leading to a reduction in display quality.
 一方、遮光周波数Mを、フレーム周波数Nの3倍とすることで、液晶シャッタ駆動用信号LSのハイの期間(左目用液晶シャッタ22の透過状態を維持する期間)及び液晶シャッタ駆動用信号RSのハイの期間(右目用液晶シャッタ21の透過状態を維持する期間)と、液晶シャッタ駆動用信号LSのロウの期間(左目用液晶シャッタ22の遮光状態を維持する期間)及び液晶シャッタ駆動用信号RSのロウの期間(右目用液晶シャッタ21の遮光状態を維持する期間)とが充分に確保されている。 On the other hand, by setting the light shielding frequency M to be three times the frame frequency N, the liquid crystal shutter driving signal LS is in the high period (the period in which the transmission state of the left-eye liquid crystal shutter 22 is maintained) and the liquid crystal shutter driving signal RS. A high period (a period in which the transmission state of the right-eye liquid crystal shutter 21 is maintained), a low period of the liquid crystal shutter drive signal LS (a period in which the light-shielding state of the left-eye liquid crystal shutter 22 is maintained), and a liquid crystal shutter drive signal RS A low period (a period in which the light-shielding state of the right-eye liquid crystal shutter 21 is maintained) is sufficiently secured.
 このため、液晶シャッタ21・22それぞれの液晶の配向を十分制御することができるので、液晶シャッタ22・21それぞれの液晶の駆動が遅延することにより、充分に開状態または閉状態とならないといった不具合を防止することができる。 For this reason, the alignment of the liquid crystal of each of the liquid crystal shutters 21 and 22 can be sufficiently controlled, so that the drive of the liquid crystal of each of the liquid crystal shutters 22 and 21 is delayed so that the liquid crystal shutters 21 and 22 are not fully opened or closed. Can be prevented.
 これにより、ユーザに、液晶パネルLCPに表示されている立体画像の輝度が暗く視認されることを防止することができる。この結果、フリッカを防止すると共に、確実に透過状態と遮光状態とを切替えることができるので、立体画像の表示品位の低下を防止することができる。 Thereby, it is possible to prevent the user from visually recognizing the brightness of the stereoscopic image displayed on the liquid crystal panel LCP. As a result, flicker can be prevented and the transmission state and the light-shielding state can be switched reliably, so that the display quality of the stereoscopic image can be prevented from deteriorating.
 液晶シャッタ駆動用信号LS及び液晶シャッタ駆動用信号RSは、一定期間づつ、ハイとロウとを繰り返す信号となっている。 The liquid crystal shutter drive signal LS and the liquid crystal shutter drive signal RS are signals that repeat high and low at regular intervals.
 左目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、左目用画像の表示期間の開始とともにハイとなり、左目用画像の表示期間の1/3の期間(t1)づつ、ハイ→ロウ→ハイとなっている。 During the display period of the left-eye image, the liquid crystal shutter drive signal LS becomes high at the start of the display period of the left-eye image, and changes from high to low every 1/3 period (t1) of the display period of the left-eye image. → It is high.
 なお、本実施の形態ではt1=1/360(秒)である。 In the present embodiment, t1 = 1/360 (seconds).
 一方、液晶シャッタ駆動用信号RSは、左目用画像の表示期間中においては、左目用画像の表示期間の開始とともにロウとなり、左目用画像の表示期間の1/3の期間(t1)づつ、ロウ→ハイ→ロウとなっている。 On the other hand, during the display period of the left-eye image, the liquid crystal shutter drive signal RS becomes low at the start of the display period of the left-eye image, and decreases by 1/3 period (t1) of the display period of the left-eye image. → High → Low.
 また、右目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、右目用画像の表示期間の開始とともにロウとなり、右目用画像の表示期間の1/3の期間(t1)づつ、ロウ→ハイ→ロウとなっている。 Further, during the right eye image display period, the liquid crystal shutter drive signal LS is low at the start of the right eye image display period, and is low for every 3 period (t1) of the right eye image display period. → High → Low.
 一方、液晶シャッタ駆動用信号RSは、右目用画像の表示期間中においては、右目用画像の表示期間の開始とともにハイとなり、右目用画像の表示期間の1/3の期間(t1)づつ、ハイ→ロウ→ハイとなっている。 On the other hand, during the right eye image display period, the liquid crystal shutter drive signal RS becomes high with the start of the right eye image display period, and increases by 1/3 period (t1) of the right eye image display period. → Low → High.
 ここで、液晶シャッタ駆動用信号LS及び液晶シャッタ駆動用信号RSのうち、透過状態を示す情報の期間をtとすると、tは、上記のように、左目用画像の表示期間又は右目用画像の表示期間の1/3に限定されるものではない。 Here, in the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS, when the period of information indicating the transmission state is t, t is the display period of the left-eye image or the right-eye image as described above. It is not limited to 1/3 of the display period.
 しかし、tは、(1/2M)≦t<(1/M)の範囲であることが好ましい。このように、t<(1/M)とすることで、フレーム周波数Nより高い周波数の外光が、ユーザの左目及び右目に入射することになるので、ユーザに、外光のちらつきを感じ難くすることができる。すなわち、フリッカを低減することができる。 However, t is preferably in the range of (1 / 2M) ≦ t <(1 / M). In this way, by setting t <(1 / M), external light having a frequency higher than the frame frequency N is incident on the left eye and the right eye of the user, so it is difficult for the user to feel flickering of external light. can do. That is, flicker can be reduced.
 また、(1/2M)≦tとすることで、左目び右目用の液晶シャッタ22・21が完全に透過状態となる前に、次のハイからロウへの立ち下がりの信号が入力されることを防止することができる。このため、液晶パネルLCPに表示されている立体画像が、ユーザに暗いと視認されることを防止することができる。 Further, by setting (1 / 2M) ≦ t, the next high-to-low falling signal is input before the left-eye and right-eye liquid crystal shutters 22 and 21 are completely transmissive. Can be prevented. For this reason, it is possible to prevent the stereoscopic image displayed on the liquid crystal panel LCP from being visually recognized as dark by the user.
 そして、本実施の形態では、液晶シャッタ駆動用信号LSの立ち上がり(左目用液晶シャッタ22を遮光状態から透過状態へ切替えることを示す情報)のタイミングと、液晶パネルLCPの左目用画像の表示開始のタイミングとは一致している。また、液晶シャッタ駆動用信号RSの立ち上がり(右目用液晶シャッタ21を遮光状態から透過状態へ切替えることを示す情報)のタイミングと、液晶パネルLCPの右目用画像の表示開始のタイミングとは一致している。 In this embodiment, the timing of the rise of the liquid crystal shutter drive signal LS (information indicating that the left-eye liquid crystal shutter 22 is switched from the light shielding state to the transmission state) and the display start of the left-eye image on the liquid crystal panel LCP are displayed. The timing is consistent. The timing of the rise of the liquid crystal shutter drive signal RS (information indicating that the right-eye liquid crystal shutter 21 is switched from the light-shielding state to the transmission state) coincides with the display start timing of the right-eye image on the liquid crystal panel LCP. Yes.
 これにより、左目用画像をユーザの右目に入射させたり、右目用画像をユーザの左目に入射させたりといった逆側の画像がユーザに視認させることを防止することができるので、表示品位を向上させることができる。 As a result, it is possible to prevent the user from visually recognizing the opposite image such as the left-eye image being incident on the user's right eye or the right-eye image being incident on the user's left eye, thereby improving display quality. be able to.
 また、本実施の形態では、液晶シャッタ駆動用信号LSのハイ・ロウの期間と、液晶シャッタ駆動用信号RSのハイ・ロウの期間とが逆になっている。 In the present embodiment, the high / low period of the liquid crystal shutter drive signal LS and the high / low period of the liquid crystal shutter drive signal RS are reversed.
 すなわち、液晶シャッタ駆動用信号LSの立ち上がりのタイミング及び立ち下がりのタイミングと、液晶シャッタ駆動用信号RSの立ち下がりのタイミング及び立ち上がりのタイミングとは一致している。 That is, the rising timing and falling timing of the liquid crystal shutter driving signal LS coincide with the falling timing and rising timing of the liquid crystal shutter driving signal RS.
 これによると、液晶シャッタ駆動用信号LSと、液晶シャッタ駆動用信号RSとのうち何れか一方を生成すれば、当該生成した駆動信号を反転させるだけで、他方の信号を生成することができる。このように、シャッタ制御部23は、液晶シャッタ駆動用信号RS(又は液晶シャッタ駆動用信号LS)の反転信号を液晶シャッタ駆動用信号LS(又は液晶シャッタ駆動用信号RS)として利用することができるので、信号の簡略化が可能である。 According to this, if one of the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS is generated, the other signal can be generated simply by inverting the generated driving signal. As described above, the shutter control unit 23 can use the inverted signal of the liquid crystal shutter drive signal RS (or the liquid crystal shutter drive signal LS) as the liquid crystal shutter drive signal LS (or the liquid crystal shutter drive signal RS). Therefore, the signal can be simplified.
 これにより、信号の生成に必要な回路を簡略化することができ、コストの増大を防止することができる。 This makes it possible to simplify the circuit required for signal generation and prevent an increase in cost.
 バックライトBLは、左目用画像の表示期間のうち、最後(2回目)に、液晶シャッタ駆動用信号LSがハイとなり、液晶シャッタ駆動用信号RSがロウとなっている期間内だけ点灯する。 The backlight BL is lit only during a period in which the liquid crystal shutter drive signal LS is high and the liquid crystal shutter drive signal RS is low at the end (second time) of the left-eye image display period.
 バックライトBLは、右目用画像の表示期間のうち、最後(2回目)に、液晶シャッタ駆動用信号RSがハイとなり、液晶シャッタ駆動用信号LSがロウとなっている期間内だけ点灯する。 The backlight BL is lit only during a period in which the liquid crystal shutter drive signal RS is high and the liquid crystal shutter drive signal LS is low at the end (second time) of the right-eye image display period.
 ここで、ユーザが、裸眼(3Dメガネ20無し)で液晶パネルLCPの表示画面を見ている状態では、右目にも左目にも同じ画像が見えているので、3Dに見えることはない。 Here, when the user is viewing the display screen of the liquid crystal panel LCP with the naked eye (without the 3D glasses 20), the same image is seen in both the right eye and the left eye, so that the user does not see 3D.
 一方、左目用画像を液晶パネルLCPの表示画面上に表示している際に、3Dメガネ20の左目用の液晶シャッタ22を開状態とし、右目用の液晶シャッタ21を閉状態とすると共に、バックライトBLを点灯させると、左目だけに表示画像が見え、右目は暗いままになる。 On the other hand, when the left-eye image is displayed on the display screen of the liquid crystal panel LCP, the left-eye liquid crystal shutter 22 of the 3D glasses 20 is opened, the right-eye liquid crystal shutter 21 is closed, and the back When the light BL is turned on, the display image is visible only to the left eye and the right eye remains dark.
 また、右目用画像を液晶パネルLCPの表示画面上に表示している際に、3Dメガネ20の右目用の液晶シャッタ21を開状態とし、左目用の液晶シャッタ22を閉状態とすると共に、バックライトBLを点灯させると、右目だけに表示画像が見え、左目は暗いままになる。 When the right-eye image is displayed on the display screen of the liquid crystal panel LCP, the right-eye liquid crystal shutter 21 of the 3D glasses 20 is opened, the left-eye liquid crystal shutter 22 is closed, and the back When the light BL is turned on, the display image is visible only to the right eye and the left eye remains dark.
 このようにして、左目と右目とのそれぞれに入射する画像を分離することで、液晶パネルLCPに表示している画像を、ユーザに3D画像であると認識させることができる。 Thus, by separating the images incident on the left eye and the right eye, the image displayed on the liquid crystal panel LCP can be recognized as a 3D image by the user.
 バックライトBLが消灯している期間は、液晶パネルLCP上の画像を視認することができないため、その期間に3Dメガネ20の液晶シャッタ21・22が開いても、逆側の画像がユーザに視認されることはなく、なんら問題はない。 Since the image on the liquid crystal panel LCP cannot be viewed during the period when the backlight BL is turned off, even if the liquid crystal shutters 21 and 22 of the 3D glasses 20 are opened during that period, the reverse image is visible to the user. There is no problem.
 〔実施の形態2〕
 次に、図4、5を用いて本発明の第2の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Next, a second embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図4は、第2の実施の形態に係る立体画像表示装置の表示動作を説明するための図である。 FIG. 4 is a diagram for explaining the display operation of the stereoscopic image display apparatus according to the second embodiment.
 図4の(a)は立体画像表示装置の動作状態の様子を表しており、(b)はバックライトの動作状態を表しており、(c)は左目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表しており、(d)は右目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表している。 4A shows the operating state of the stereoscopic image display device, FIG. 4B shows the operating state of the backlight, and FIG. 4C shows the liquid crystal shutter driving signal for the left eye and the liquid crystal shutter. (D) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
 図5は、液晶シャッタの液晶への印加電圧と液晶の駆動の様子を表す図である。 FIG. 5 is a diagram showing the voltage applied to the liquid crystal of the liquid crystal shutter and the state of driving the liquid crystal.
 図4の(a)(b)は図1の(a)(b)と同じである。 (A) and (b) in FIG. 4 are the same as (a) and (b) in FIG.
 図4の(c)(d)で、遮光周波数Mは、実施の形態1と同じであるが、液晶シャッタ駆動用信号LS及び液晶シャッタ駆動用信号RSの立ち上がりのタイミングが異なる。 4C and 4D, the light shielding frequency M is the same as that of the first embodiment, but the rising timings of the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS are different.
 図4の(c)に示すように、液晶シャッタ駆動用信号LSの信号の立ち上がり(左目用液晶シャッタ22を遮光状態から透過状態へ切替えることを示す情報)のタイミングは、液晶パネルLCPの左目用画像の表示開始のタイミングより早い。 As shown in FIG. 4C, the timing of the rise of the liquid crystal shutter drive signal LS (information indicating that the left-eye liquid crystal shutter 22 is switched from the light-shielding state to the transmission state) is for the left-eye of the liquid crystal panel LCP. It is earlier than the image display start timing.
 また、図4の(d)に示すように、液晶シャッタ駆動用信号RSの信号の立ち上がり(右目用液晶シャッタ21を遮光状態から透過状態へ切替えることを示す情報)のタイミングは、液晶パネルLCPの右目用画像の表示開始のタイミングより早い。 Also, as shown in FIG. 4D, the timing of the rise of the liquid crystal shutter drive signal RS (information indicating that the right-eye liquid crystal shutter 21 is switched from the light shielding state to the transmission state) is the timing of the liquid crystal panel LCP. It is earlier than the display start timing of the right-eye image.
 具体的には、図4の(c)に示すように、左目用画像の表示期間においては、液晶シャッタ駆動用信号LSは、左目用画像の表示期間の開始のタイミング直前に既にハイとなり、期間t2経過後、ハイからロウへと立ち下がり、期間t3経過後、ロウからハイへ立ち上がり、期間t2経過後、左目用画像の表示期間の終了のタイミングと同時にたち下がる。 Specifically, as shown in FIG. 4C, in the left eye image display period, the liquid crystal shutter drive signal LS is already high immediately before the start timing of the left eye image display period. After t2, elapses from high to low, elapses from time t3, rises from low to high, and elapses after time t2 and falls simultaneously with the end of the display period of the left-eye image.
 ここで、t2>t3である。 Here, t2> t3.
 また、右目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、右目用画像の表示期間の開始のタイミングと同時にロウとなり、期間t3経過後、ロウからハイへと立ち上がり、期間t2経過後、ハイからロウへ立ち下がり、期間t3経過後、右目用画像の表示期間の終了のタイミングの直前に立ち上がる。 Further, during the right-eye image display period, the liquid crystal shutter drive signal LS becomes low simultaneously with the start timing of the right-eye image display period, rises from low to high after the elapse of the period t3, and elapses of the period t2. Thereafter, the signal falls from high to low, and after the elapse of the period t3, the signal rises immediately before the end timing of the right-eye image display period.
 また、図4の(d)に示すように、左目用画像の表示期間においては、液晶シャッタ駆動用信号RSは、左目用画像の表示期間の開始のタイミングと同時にロウとなり、期間t3経過後、ロウからハイへと立ち下がり、期間t2経過後、ハイからロウへ立ち下がり、期間t3経過後、左目用画像の表示期間の終了のタイミングの直前に立ち上がる。 Further, as shown in FIG. 4D, in the display period of the left eye image, the liquid crystal shutter drive signal RS becomes low simultaneously with the start timing of the display period of the left eye image, and after the elapse of the period t3, It falls from low to high, falls from high to low after the elapse of period t2, and rises immediately before the end of the display period of the left-eye image after elapse of period t3.
 また、右目用画像の表示期間中においては、液晶シャッタ駆動用信号RSは、右目用画像の表示期間の開始のタイミングの直前にハイとなっており、期間t2経過後、ハイからロウへと立ち下がり、期間t3経過後、ロウからハイへ立ち上がり、期間t2経過後、右目用画像の表示期間の終了のタイミングと同時に立ち下がる。 Further, during the right-eye image display period, the liquid crystal shutter drive signal RS is high immediately before the start timing of the right-eye image display period, and rises from high to low after the elapse of the period t2. After the elapse of the period t3, the signal rises from low to high, and after the elapse of the period t2, falls at the same time as the end of the display period of the right-eye image.
 ここで、図5に示すように、液晶シャッタ21・22への駆動電圧の印加に対して、液晶シャッタ21・22それぞれの液晶の配向方向の変化は遅れる。 Here, as shown in FIG. 5, the change in the alignment direction of the liquid crystal of each of the liquid crystal shutters 21 and 22 is delayed with respect to the application of the drive voltage to the liquid crystal shutters 21 and 22.
 そこで、上記のように、液晶シャッタ駆動用信号LSの信号の立ち上がりのタイミングを、液晶パネルLCPの左目用画像の表示開始のタイミングより早く、液晶シャッタ駆動用信号RSの信号の立ち上がりのタイミングを、液晶パネルLCPの右目用画像の表示開始のタイミングより早くすることで、左目用液晶シャッタ22及び右目用液晶シャッタ21のそれぞれの透過状態へ変化する期間を長時間確保することができる。 Therefore, as described above, the rising timing of the signal of the liquid crystal shutter driving signal LS is earlier than the display start timing of the image for the left eye of the liquid crystal panel LCP, and the rising timing of the signal of the liquid crystal shutter driving signal RS is By making the display of the right-eye image on the liquid crystal panel LCP earlier than the display start timing, it is possible to secure a long period of time during which the left-eye liquid crystal shutter 22 and the right-eye liquid crystal shutter 21 change to the transmission state.
 このため、左目用液晶シャッタ22及び右目用液晶シャッタ21が、液晶の配向の遅れにより、液晶パネルLCPに表示されている左目用画像又は右目用画像が、ユーザに視認される時間が短くなることを抑制することができる。 For this reason, the left eye liquid crystal shutter 22 and the right eye liquid crystal shutter 21 have a short time for the user to visually recognize the left eye image or the right eye image displayed on the liquid crystal panel LCP due to a delay in liquid crystal orientation. Can be suppressed.
 すなわち、液晶シャッタ21・22の透過率が100%に近い所でバックライトBLを点灯させることが出来るため、液晶シャッタ21・22越しの輝度をより明るくすることができる。このため、表示品位の低下を防止することができる。 That is, since the backlight BL can be turned on where the transmittance of the liquid crystal shutters 21 and 22 is close to 100%, the luminance through the liquid crystal shutters 21 and 22 can be made brighter. For this reason, it is possible to prevent a reduction in display quality.
 ここで、例えば、右目用画像のバックライトBL点灯期間に、液晶シャッタ駆動用信号LSが立ち上がっているが、上述したように、液晶シャッタ22の液晶の立ち上がりが遅いので、実用上問題にならない。 Here, for example, the liquid crystal shutter drive signal LS rises during the backlight BL lighting period of the right-eye image. However, as described above, the liquid crystal shutter 22 rises slowly, so that there is no practical problem.
 なお、本実施の形態では、液晶の立ち上がりが遅い場合について言及しているが、液晶の立ち下がりが遅い場合は、液晶シャッタ駆動用信号LSの立ち下がりのタイミングを、左目用画像の表示終了時間より遅くし、また、液晶シャッタ駆動用信号RSの立ち下がりのタイミングを、右目用画像の表示終了時間より遅くすればよい。 In this embodiment, the case where the rise of the liquid crystal is slow is mentioned. However, when the fall of the liquid crystal is slow, the fall timing of the liquid crystal shutter drive signal LS is set to the display end time of the left-eye image. The timing of falling of the liquid crystal shutter drive signal RS may be set later than the display end time of the right-eye image.
 〔実施の形態3〕
 次に、図6を用いて本発明の第3の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1、2にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Next, a third embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those in the drawings described in the first and second embodiments are denoted by the same reference numerals and description thereof is omitted.
 図6は、第3の実施の形態に係る立体画像表示装置の表示動作を説明するための図である。 FIG. 6 is a diagram for explaining the display operation of the stereoscopic image display apparatus according to the third embodiment.
 図6の(a)は立体画像表示装置の動作状態の様子を表しており、(b)はバックライトの動作状態を表しており、(c)は左目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表しており、(d)は右目用の液晶シャッタ駆動用信号と液晶シャッタの駆動状態を表している。 6A shows the operating state of the stereoscopic image display device, FIG. 6B shows the operating state of the backlight, and FIG. 6C shows the liquid crystal shutter driving signal and the liquid crystal shutter for the left eye. (D) shows the liquid crystal shutter driving signal for the right eye and the driving state of the liquid crystal shutter.
 図6の(a)(b)は図1、図4の(a)(b)と同じである。 6 (a) and 6 (b) are the same as FIGS. 1 and 4 (a) and 4 (b).
 図6の(c)(d)で、遮光周波数Mは、実施の形態1、2と同じであるが、液晶シャッタ駆動用信号LS及び液晶シャッタ駆動用信号RSの透過状態となっている期間の長さをタイミングによって異ならせている。 In FIGS. 6C and 6D, the light shielding frequency M is the same as in the first and second embodiments, but in the period during which the liquid crystal shutter driving signal LS and the liquid crystal shutter driving signal RS are in a transmission state. The length varies depending on the timing.
 図6の(c)に示すように、左目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、左目用画像の表示期間の開始のタイミングと同時にハイとなり、期間t1経過後、ハイからロウへと立ち下がり、期間t3経過後、ロウからハイへ立ち上がり、期間t2経過後、左目用画像の表示期間の終了のタイミングと同時にたち下がる。 As shown in FIG. 6C, during the display period of the left-eye image, the liquid crystal shutter drive signal LS becomes high at the same time as the start of the display period of the left-eye image. It falls from low to low, rises from low to high after the lapse of the period t3, and falls simultaneously with the end timing of the display period of the left-eye image after the lapse of the period t2.
 ここで、t2>t1>t3である。 Here, t2> t1> t3.
 また、右目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、右目用画像の表示期間の開始のタイミングと同時にロウとなり、期間t1経過後、ロウからハイへと立ち上がり、期間t1経過後、ハイからロウへ立ち下がり、期間t1経過後、右目用画像の表示期間の終了のタイミングと同時たち下がる。 Further, during the right-eye image display period, the liquid crystal shutter drive signal LS becomes low simultaneously with the start timing of the right-eye image display period, rises from low to high after the elapse of the period t1, and elapses of the period t1. Thereafter, the signal falls from high to low, and after the elapse of the period t1, the timing is lowered at the same time as the end of the right eye image display period.
 このように、右目用画像の表示期間中においては、液晶シャッタ駆動用信号LSは、均等な期間づつ、透過状態と遮光状態とを繰り返す。 Thus, during the display period of the right-eye image, the liquid crystal shutter drive signal LS repeats the transmission state and the light-shielding state at regular intervals.
 また、図6の(d)に示すように、左目用画像の表示期間中においては、液晶シャッタ駆動用信号RSは、左目用画像の表示期間の開始のタイミングと同時にロウとなり、期間t1経過後、ロウからハイへと立ち下がり、期間t1経過後、ハイからロウへ立ち下がり、期間t1経過後、左目用画像の表示期間の終了のタイミングと同時に立ち上がる。 Further, as shown in FIG. 6D, during the left eye image display period, the liquid crystal shutter drive signal RS becomes low simultaneously with the start timing of the left eye image display period, and after the elapse of the period t1. It falls from low to high, falls from high to low after the elapse of period t1, and rises simultaneously with the end of the display period of the left-eye image after elapse of period t1.
 このように、左目用画像の表示期間中においては、液晶シャッタ駆動用信号RSは、均等な期間づつ、遮光状態と透過状態とを繰り返す。 As described above, during the display period of the image for the left eye, the liquid crystal shutter drive signal RS repeats the light shielding state and the transmission state at regular intervals.
 また、右目用画像の表示期間中においては、液晶シャッタ駆動用信号RSは、右目用画像の表示期間の開始のタイミングと同時にハイとなり、期間t1経過後、ハイからロウへと立ち下がり、期間t3経過後、ロウからハイへ立ち上がり、期間t2経過後、右目用画像の表示期間の終了のタイミングと同時に立ち上がる。 Further, during the right-eye image display period, the liquid crystal shutter drive signal RS becomes high simultaneously with the start timing of the right-eye image display period, and falls from high to low after the period t1, and the period t3. After elapses, the signal rises from low to high, and rises simultaneously with the end timing of the right-eye image display period after the elapse of the period t2.
 上記同様、t2>t1>t3である。 As above, t2> t1> t3.
 このように、ハイの期間を長くすることで、実施の形態2と同様の効果を得ることができる。 Thus, the same effect as in the second embodiment can be obtained by lengthening the high period.
 さらに、本実施の形態では、ハイとしている期間を長くすることについてだけ説明したが、例えば、液晶シャッタ駆動用信号LSを期間t2の間ハイとしているときの、逆側の液晶シャッタ駆動用信号RSのロウとしている期間を期間t2とし長くしてもよい。 Furthermore, in the present embodiment, only the lengthening of the high period has been described. However, for example, the liquid crystal shutter driving signal RS on the opposite side when the liquid crystal shutter driving signal LS is high during the period t2. The low period may be lengthened as period t2.
 すなわち、液晶シャッタ駆動用信号LSのハイ・ロウと、液晶シャッタ駆動用信号RSのハイ・ロウとを反転させてもよい。 That is, the high / low of the liquid crystal shutter drive signal LS and the high / low of the liquid crystal shutter drive signal RS may be inverted.
 これにより、液晶シャッタ駆動用信号LSのハイ・ロウの切替えタイミングと、液晶シャッタ駆動用信号RSのハイ・ロウの切替えタイミングとが同じになり、制御信号を減らすことができる。 Thereby, the high / low switching timing of the liquid crystal shutter driving signal LS and the high / low switching timing of the liquid crystal shutter driving signal RS become the same, and the control signal can be reduced.
 〔実施の形態4〕
 次に、図9を用いて本発明の第4の実施の形態について説明する。なお、説明の便宜上、前記実施の形態1にて説明した図面と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Next, a fourth embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those in the drawings described in the first embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図9は、第4の実施の形態に係る立体画像表示装置19の構成を表すブロック図である。立体画像表示装置19は、立体画像表示装置1と、駆動制御部10に替えて駆動制御部15を備えている点で相違する。立体画像表示装置19の他の構成は、立体画像表示装置1と同様である。 FIG. 9 is a block diagram showing a configuration of a stereoscopic image display device 19 according to the fourth embodiment. The stereoscopic image display device 19 is different from the stereoscopic image display device 1 in that a drive control unit 15 is provided instead of the drive control unit 10. Other configurations of the stereoscopic image display device 19 are the same as those of the stereoscopic image display device 1.
 駆動制御部15は、駆動制御部10と、画像信号生成部11に替えて画像信号生成部16を備えている点、及び、3Dメガネ用信号生成部14に替えて3Dメガネ用信号生成部17を備えている点で相違する。駆動制御部15の他の構成は、駆動制御部10と同様である。 The drive control unit 15 includes an image signal generation unit 16 instead of the drive control unit 10 and the image signal generation unit 11, and a 3D glasses signal generation unit 17 instead of the 3D glasses signal generation unit 14. It differs in that it has. Other configurations of the drive control unit 15 are the same as those of the drive control unit 10.
 画像信号生成部16は、記憶部16aを備えている。 The image signal generation unit 16 includes a storage unit 16a.
 記憶部16aには、遮光周波数Mを示す情報及び液晶シャッタ21・22それぞれの透過状態を保持する期間tを示す情報や、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報が記憶されている。 The storage unit 16a stores information indicating the light shielding frequency M, information indicating the period t during which the liquid crystal shutters 21 and 22 are kept transmissive, and information indicating the lighting timing and lighting period of the backlight BL in one frame. Has been.
 記憶部16aに記憶されている遮光周波数Mを示す情報が示す遮光周波数Mは、実施形態1と同様に、M=(2x+1)×N(式1)に基づいて設定されたものである。遮光周波数Mを示す情報は、例えば、工場出荷の際に、予め上記(式1)基づいて遮光周波数Mが算出されることで記憶部16aに記憶されていてもよいし、ユーザに適宜設定されて記憶部16aに記憶されてもよい。 The light shielding frequency M indicated by the information indicating the light shielding frequency M stored in the storage unit 16a is set based on M = (2x + 1) × N (Equation 1) as in the first embodiment. The information indicating the light shielding frequency M may be stored in the storage unit 16a by calculating the light shielding frequency M based on the above (Formula 1) at the time of factory shipment, or may be appropriately set by the user. May be stored in the storage unit 16a.
 記憶部16aに記憶されている、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報が示す1フレーム中におけるバックライトBLの点灯タイミングや点灯期間は、遮光周波数Mを考慮して、図1、図4、図6等を用いて説明したように、左目用画像表示期間中には、ユーザが左目で左目用画像を視認することができるように、また、右目用画像表示期間中には、ユーザが右目で右目用画像を視認することができるように設定されたものである。 The lighting timing and lighting period of the backlight BL in one frame indicated by the information indicating the lighting timing and lighting period of the backlight BL in one frame stored in the storage unit 16a takes the light shielding frequency M into consideration. As described with reference to FIGS. 1, 4, 6, etc., during the left-eye image display period, the user can visually recognize the left-eye image with the left eye, and during the right-eye image display period. Is set so that the user can visually recognize the right-eye image with the right eye.
 この、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報は、例えば、工場出荷の際に、予め算出された遮光周波数Mに基づいてバックライトBLの点灯タイミングや点灯期間が算出されることで記憶部16aに記憶されていてもよいし、ユーザに適宜設定されて記憶物16aに記憶されてもよい。 The information indicating the lighting timing and lighting period of the backlight BL in one frame is calculated based on the light shielding frequency M calculated in advance at the time of factory shipment, for example. It may be stored in the storage unit 16a, or may be appropriately set by the user and stored in the storage 16a.
 画像信号生成部16は、外部から、立体画像表示用の映像信号を受信する。そして、画像信号生成部16は、液晶パネル用信号生成部12に対しては実施形態1と同様の信号等を出力する。 The image signal generator 16 receives a video signal for stereoscopic image display from the outside. Then, the image signal generation unit 16 outputs the same signal or the like as in the first embodiment to the liquid crystal panel signal generation unit 12.
 すなわち画像信号生成部16は、受信した垂直同期信号等の映像信号に基づいて、立体画像表示用の各種の同期信号や階調用信号、液晶パネルLCPに表示する画像が3D画像のうち左目用画像(第1目用画像、第2目用画像)であるか、右目用画像(第2目用画像、第1目用画像)であるかを識別するための識別信号である左右画像識別信号、フレーム周波数を示す情報(フレーム周波数情報)等を生成し、当該生成した信号を液晶パネル用信号生成部12に出力する。液晶パネル用信号生成部12は、実施の形態1と同様の処理を行い、液晶パネルLCPの駆動を制御する。 That is, the image signal generation unit 16 is based on the received video signal such as a vertical synchronization signal, and the various synchronization signals and gradation signals for stereoscopic image display, and the image to be displayed on the liquid crystal panel LCP is a left-eye image. Left and right image identification signals, which are identification signals for identifying whether the image is for (first eye image, second eye image) or right eye image (second eye image, first eye image); Information indicating the frame frequency (frame frequency information) or the like is generated, and the generated signal is output to the liquid crystal panel signal generator 12. The liquid crystal panel signal generator 12 performs the same processing as in the first embodiment and controls the driving of the liquid crystal panel LCP.
 また、画像信号生成部16は、立体画像表示用の同期信号(一例として垂直同期信号)と、記憶部16aから取得した1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報をバックライト用信号生成部13へ出力する。さらに、画像信号生成部16は、立体画像表示用の同期信号(一例として垂直同期信号)と、記憶部16aから取得した遮光周波数Mを示す情報及び透過状態を保持する期間tを示す情報を3Dメガネ用信号生成部17へ出力する。 Further, the image signal generation unit 16 displays a synchronization signal for displaying a stereoscopic image (for example, a vertical synchronization signal) and information indicating the lighting timing and lighting period of the backlight BL in one frame acquired from the storage unit 16a. To the signal generator 13. Furthermore, the image signal generation unit 16 3D displays a synchronization signal for displaying a stereoscopic image (a vertical synchronization signal as an example), information indicating the light shielding frequency M acquired from the storage unit 16a, and information indicating the period t during which the transmission state is maintained. Output to the signal generation unit 17 for glasses.
 バックライト用信号生成部13は、画像信号生成部16から、立体画像表示用の同期信号と、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報とを取得すると、当該取得したそれぞれの信号及び情報からバックライト駆動信号BLSを生成し、バックライトBLへ出力する。これにより、バックライト用信号生成部13は、バックライトBLの駆動を制御する。 When the backlight signal generation unit 13 acquires from the image signal generation unit 16 a synchronization signal for stereoscopic image display and information indicating the lighting timing and lighting period of the backlight BL in one frame, the acquired respective signals The backlight drive signal BLS is generated from the above signals and information and output to the backlight BL. Thereby, the backlight signal generator 13 controls the driving of the backlight BL.
 3Dメガネ用信号生成部17は、画像信号生成部16から、立体画像表示用の同期信号と、遮光周波数Mを示す情報及び透過状態を保持する期間tを示す情報とを取得すると、当該取得したそれぞれの信号及び情報から、3Dメガネ用信号MSを生成する。そして、3Dメガネ用信号生成部17は、生成した3Dメガネ用信号MSをシャッタ制御部23に出力する。これにより、シャッタ制御部23は、実施の形態1と同様の処理を行う。 When the 3D glasses signal generation unit 17 acquires from the image signal generation unit 16 a synchronization signal for stereoscopic image display, information indicating the light shielding frequency M, and information indicating the period t during which the transmission state is held, the acquired A 3D glasses signal MS is generated from each signal and information. Then, the 3D glasses signal generator 17 outputs the generated 3D glasses signal MS to the shutter controller 23. As a result, the shutter control unit 23 performs the same processing as in the first embodiment.
 すなわち、シャッタ制御部23は、液晶シャッタ駆動用信号LS・RSを生成し、液晶シャッタ駆動用信号LSをシャッタ駆動部25に出力することで液晶シャッタ22の駆動を制御し、液晶シャッタ駆動用信号RSをシャッタ駆動部24に出力することで液晶シャッタ21の駆動を制御する。 That is, the shutter control unit 23 generates the liquid crystal shutter driving signal LS / RS and outputs the liquid crystal shutter driving signal LS to the shutter driving unit 25 to control the driving of the liquid crystal shutter 22, and the liquid crystal shutter driving signal. The drive of the liquid crystal shutter 21 is controlled by outputting RS to the shutter drive unit 24.
 このように、立体画像表示装置19では、記憶部16aを備え、その記憶部16aに、予め、遮光周波数Mを示す情報、液晶シャッタ21・22の透過状態を保持する期間tを示す情報、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報が記憶されている。これにより、立体画像表示装置1のように、3Dメガネ用信号生成部17と、バックライト用信号生成部13との間での情報のやり取りが必要なくなるので、駆動制御部15の回路構成を簡略化することができる。 As described above, the stereoscopic image display device 19 includes the storage unit 16a, and the storage unit 16a previously includes information indicating the light shielding frequency M and information indicating the period t during which the liquid crystal shutters 21 and 22 are transmitted. Information indicating the lighting timing and lighting period of the backlight BL in the frame is stored. This eliminates the need for exchanging information between the 3D glasses signal generation unit 17 and the backlight signal generation unit 13 as in the stereoscopic image display device 1, thus simplifying the circuit configuration of the drive control unit 15. Can be
 なお、記憶部16aは、画像信号生成部16の内部に配されていてもよいし、画像信号生成部16の外部に配されていてもよい。または、記憶部16aのうち、遮光周波数Mを示す情報及び液晶シャッタ21・22の透過状態を保持する期間tを示す情報が記憶されている記憶部を3Dメガネ用信号生成部17の内部又は外部に配し、1フレーム中におけるバックライトBLの点灯タイミングや点灯期間を示す情報が記憶されている記憶部をバックライト用信号生成部13の内部又は外部に配してもよい。 Note that the storage unit 16 a may be arranged inside the image signal generation unit 16 or may be arranged outside the image signal generation unit 16. Alternatively, a storage unit in which information indicating the light shielding frequency M and information indicating the period t during which the liquid crystal shutters 21 and 22 are held is stored in the storage unit 16 a is provided inside or outside the 3D glasses signal generation unit 17. The storage unit storing information indicating the lighting timing and lighting period of the backlight BL in one frame may be arranged inside or outside the backlight signal generation unit 13.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以上のように、本発明の立体画像表示装置は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、上記第1及び第2目用シャッタを駆動させるシャッタ駆動信号を生成し、当該生成したシャッタ駆動信号により、上記第1及び第2目用シャッタの駆動を制御するシャッタ制御部とを備え、上記シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えることを示す情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなっていることを特徴としている。 As described above, the stereoscopic image display device according to the present invention displays the first eye image and the second eye image in order, thereby displaying one stereoscopic image, and the display device includes the above-described display device. A first eye shutter that is in a transmissive state when displaying the first eye image, a second shutter that is in a transmissive state when the display device displays the second eye image, and the first shutter And a shutter control signal for generating a shutter drive signal for driving the second shutter, and controlling the driving of the first and second shutters based on the generated shutter drive signal. Of these, the frequency representing the period of information indicating that the first or second shutter is switched from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye image are combined. A frame with one frame And over beam frequency N, the natural number and x, is characterized in that has a M = (2x + 1) × N.
 上記の課題を解決するために、本発明の立体画像表示装置の駆動方法は、第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、を備えている立体画像表示装置の駆動方法であって、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替える周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなるように、上記第1及び第2目用シャッタの駆動を制御することを特徴としている。 In order to solve the above-described problem, a driving method of a stereoscopic image display device according to the present invention is a display device that displays one stereoscopic image by sequentially displaying a first eye image and a second eye image. A first eye shutter that is in a transmissive state when the display device displays the first eye image, and a second eye that is in a transmissive state when the display device displays the second eye image. A stereoscopic image display device comprising: a shutter frequency M, a frequency representing a cycle of switching the first or second shutter for shutter from a transmission state to a light shielding state as a light shielding frequency M, and the first eye The first and second eye shutters are set such that M = (2x + 1) × N, where the frame frequency is N when the image for the second image is combined with the image for the second eye and the natural number is x. It is characterized by controlling the driving of the.
 上記構成によると、上記シャッタ制御部が生成したシャッタ駆動信号により、第1目用画像を表示する際に第1目用シャッタが透過状態となり、第2目用画像を表示する際に第2目用シャッタが透過状態となる。これにより、第1目用画像をユーザの第1目に入射させ、第2目用画像をユーザの第2目に入射させることができるので、ユーザに立体画像を視認させることができる。 According to the above configuration, the first eye shutter is in the transmissive state when the first eye image is displayed by the shutter drive signal generated by the shutter control unit, and the second eye is displayed when the second eye image is displayed. The shutter is in a transmissive state. Accordingly, the first eye image can be incident on the first eye of the user and the second eye image can be incident on the second eye of the user, so that the user can visually recognize the stereoscopic image.
 そして、シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えるための情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、M=(2x+1)×Nとなっている。 Of the shutter drive signals, the frequency representing the period of information for switching the first or second eye shutter from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye. M = (2x + 1) × N where the frame frequency is N when the images for the image are combined and the natural number is x.
 すなわち、遮光周波数Mはフレーム周波数Nより大きい。これにより、第1及び第2目用シャッタのそれぞれは、フレームレートよりも速く、開閉を繰り返す。これにより、フレームレートより低い周波数成分に起因するフリッカを抑えることができる。また、外光のうち、一般的に、高い周波数の成分に起因するフリッカは人の目には感じ難い。このように、上記構成によると、フリッカを低減することができる。 That is, the shading frequency M is larger than the frame frequency N. Thus, each of the first and second shutters is repeatedly opened and closed faster than the frame rate. As a result, flicker caused by a frequency component lower than the frame rate can be suppressed. In addition, flicker caused by high frequency components in outside light is generally difficult for human eyes to feel. Thus, according to the above configuration, flicker can be reduced.
 そして、MはNより大きければよく、特許文献3に記載の技術のように、商用電源の周波数と同期させる必要はない。このため、外光の周期を常に監視するための手段等は必要なく、製造コスト増大を防止することができる。 And it is sufficient that M is larger than N, and it is not necessary to synchronize with the frequency of the commercial power supply as in the technique described in Patent Document 3. For this reason, means for constantly monitoring the period of the external light is not necessary, and an increase in manufacturing cost can be prevented.
 さらに、M=(2x+1)×Nとなっているので、順次、第1目用シャッタを透過させて第1目用画像をユーザの第1目に入射させ、第2目用シャッタを透過させて第2目用画像をユーザの第2目に入射させることができる。これにより、ユーザに立体画像を視認させると共に、ブランキングに依存することなく、フリッカを低減することができる。 Further, since M = (2x + 1) × N, the first eye shutter is sequentially transmitted to cause the first eye image to enter the user's first eye, and the second eye shutter is transmitted. The second eye image can be incident on the user's second eye. Thereby, while making a user visually recognize a stereo image, flicker can be reduced without depending on blanking.
 また、上記シャッタ駆動信号のうち、透過状態を示す情報の期間をtとすると、(1/2M)≦t<(1/M)であることが好ましい。 In the shutter drive signal, it is preferable that (1 / 2M) ≦ t <(1 / M), where t is the period of information indicating the transmission state.
 上記構成のように、t<(1/M)とすることで、商用電源の周波数より高い周波数の外光がユーザの第1目及び第2目に入射することになるので、ユーザは表示装置に表示された立体画像のちらつきを感じ難く、これにより、フリッカを抑えることができる。また、(1/2M)≦tとすることで、第1及び第2目用シャッタが完全に透過状態となる前に、次の透過状態から遮光状態へ切替えることを示す情報が入力されることを防止することができる。このため、表示装置に表示されている立体画像が、ユーザに暗いと視認されることを防止することができる。 As in the above configuration, by setting t <(1 / M), external light having a frequency higher than the frequency of the commercial power source is incident on the first and second eyes of the user. It is difficult to perceive flickering of the stereoscopic image displayed on the screen, and flicker can be suppressed. In addition, by setting (1 / 2M) ≦ t, information indicating that the next transmission state is switched to the light-shielding state is input before the first and second shutters are completely in the transmission state. Can be prevented. For this reason, the stereoscopic image displayed on the display device can be prevented from being visually recognized by the user as dark.
 また、上記シャッタ駆動信号のうち、第1目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第1目用画像開始のタイミングと一致しており、
 上記シャッタ駆動信号のうち、第2目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第2目用画像開始のタイミングと一致していることが好ましい。
The timing of the information indicating that the first eye shutter is switched from the light shielding state to the transmission state in the shutter driving signal coincides with the timing of the first eye image start of the display device.
In the shutter drive signal, it is preferable that the timing of information indicating that the second shutter is switched from the light shielding state to the transmission state coincides with the timing of the second eye image start of the display device.
 これにより、第1目用画像をユーザの第2目に入射させたり、第2目用画像をユーザの第1目に入射させたりといった逆側の画像がユーザに視認させることを防止することができるので、表示品位を向上させることができる。 Thereby, it is possible to prevent the user from visually recognizing the opposite image such as the first eye image being incident on the user's second eye or the second eye image being incident on the user's first eye. As a result, display quality can be improved.
 また、上記シャッタ駆動信号のうち、第1目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第1目用画像の表示開始のタイミングより早く、上記シャッタ駆動信号のうち、第2目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第2目用画像の表示開始のタイミングより早くてもよい。 In addition, the timing of the information indicating that the first eye shutter is switched from the light shielding state to the transmission state in the shutter driving signal is earlier than the display start timing of the first eye image of the display device. Among the drive signals, the timing of information indicating that the second eye shutter is switched from the light shielding state to the transmission state may be earlier than the display start timing of the second eye image of the display device.
 上記構成によると、上記第1目用シャッタ及び第2目用シャッタのそれぞれの透過状態へ変化する期間を長時間確保することができる。例えば、上記第1目用シャッタ及び第2目用シャッタが液晶の駆動により、透過状態と遮光状態とが切替えられる場合であっても、液晶の配向の遅れにより、表示装置に表示されている第1目用画像又は第2目用画像が視認される時間が短くなることを抑制することができる。このため、表示品位の低下を防止することができる。 According to the above configuration, it is possible to ensure a long period of time during which the first eye shutter and the second eye shutter change to the transmission state. For example, even when the first-eye shutter and the second-eye shutter are switched between the transmission state and the light-shielding state by driving the liquid crystal, the first shutter displayed on the display device due to the delay in the alignment of the liquid crystal. It can suppress that the time for which the image for 1 eye or the image for 2nd eye is visually recognized becomes short. For this reason, it is possible to prevent a reduction in display quality.
 また、上記遮光周波数Mは、上記フレーム周波数Nの3倍であることが好ましい。上記構成によると、順次、第1目用シャッタを透過させて第1目用画像をユーザの第1目に入射させ、第2目用シャッタを透過させて第2目用画像をユーザの第2目に入射させることができる。さらに、上記第1目用シャッタ及び第2目用シャッタの透過状態を維持する期間と遮光状態を維持する期間とを充分に確保されているので、上記第1目用シャッタ及び第2目用シャッタが液晶の駆動により透過状態と遮光状態とが切替えられる場合であっても、確実に透過状態と遮光状態とを切替えることができる。このため、表示品位の低下を防止することができる。 The light shielding frequency M is preferably three times the frame frequency N. According to the above configuration, the first-eye shutter is sequentially transmitted through the first-eye shutter, the first-eye image is incident on the first eye of the user, and the second-eye shutter is transmitted through the second-eye shutter. It can enter the eye. Furthermore, since the period for maintaining the transmission state and the period for maintaining the light shielding state of the first eye shutter and the second eye shutter are sufficiently ensured, the first eye shutter and the second eye shutter are secured. Even when the transmission state and the light shielding state are switched by driving the liquid crystal, the transmission state and the light shielding state can be switched reliably. For this reason, it is possible to prevent a reduction in display quality.
 また、上記シャッタ駆動信号は、上記第1目用シャッタを駆動するための第1目用シャッタ駆動信号と、上記第2目用シャッタを駆動するための第2目用シャッタ駆動信号とからなり、上記第1目用シャッタ駆動信号のうちの、遮光状態から透過状態へ切替えることを示す情報のタイミング及び透過状態から遮光状態へ切替えることを示す情報のタイミングと、上記第2目用シャッタ駆動信号のうちの、透過状態から遮光状態へ切替えることを示す情報のタイミング及び遮光状態から透過状態へ切替えることを示す情報のタイミングとは一致していることが好ましい。 The shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive signal for driving the second eye shutter. Of the first shutter drive signal for the first eye, information timing indicating switching from the light shielding state to the light transmitting state, information timing indicating switching from the light transmitting state to the light shielding state, and the second shutter driving signal for the second eye It is preferable that the timing of information indicating switching from the transmission state to the light shielding state and the timing of information indicating switching from the light shielding state to the transmission state coincide with each other.
 上記構成によると、上記第1目用シャッタ駆動信号と、上記第2目用シャッタ駆動信号とのうち何れか一方を生成すれば、当該生成した駆動信号を反転させるだけで、他方の信号を生成することができる。これにより、信号の生成に必要な回路を簡略化することができ、コストの増大を防止することができる。 According to the above configuration, when one of the first shutter driving signal and the second shutter driving signal is generated, the other driving signal is generated only by inverting the generated driving signal. can do. As a result, a circuit required for signal generation can be simplified, and an increase in cost can be prevented.
 また、上記フレーム周波数Nから、上記遮光周波数Mを設定するシャッタ周波数設定部を備え、上記シャッタ制御部は、上記シャッタ周波数設定部が設定した遮光周波数Mに基づいて上記シャッタ駆動信号を生成することが好ましい。 In addition, a shutter frequency setting unit that sets the light shielding frequency M from the frame frequency N is provided, and the shutter control unit generates the shutter drive signal based on the light shielding frequency M set by the shutter frequency setting unit. Is preferred.
 上記構成により、上記シャッタ制御部は、上記シャッタ駆動信号を生成することができる。 With the above configuration, the shutter control unit can generate the shutter drive signal.
 また、上記フレーム周波数Nから設定された上記遮光周波数Mを記憶する記憶部を備え、
 上記シャッタ制御部は、上記記憶部が記憶する上記遮光周波数Mに基づいて上記シャッタ駆動信号を生成することが好ましい。これにより、回路構成を簡略化することができる。
A storage unit for storing the shading frequency M set from the frame frequency N;
The shutter control unit preferably generates the shutter drive signal based on the light shielding frequency M stored in the storage unit. As a result, the circuit configuration can be simplified.
 また、バックライトを備え、上記シャッタ駆動信号は、上記第1目用シャッタを駆動するための第1目用シャッタ駆動信号と、上記第2目用シャッタを駆動するための第2目用シャッタ駆動信号とからなり、上記第1目用シャッタ駆動信号は、上記表示装置の上記第1目用画像の表示期間内に、複数の透過状態を示す情報を有しており、上記第2目用シャッタ駆動信号は、上記表示装置の上記第2目用画像の表示期間内に、複数の透過状態を示す情報を有しており、上記バックライトは、上記表示装置の上記第1及び2目用画像の表示期間のそれぞれの期間内のうち、上記複数の透過状態を示す情報の期間のうちの最後の期間内だけ点灯することが好ましい。 Also, a backlight is provided, and the shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive for driving the second eye shutter. The first eye shutter drive signal has information indicating a plurality of transmission states within the display period of the first eye image of the display device, and the second eye shutter. The drive signal has information indicating a plurality of transmission states within the display period of the second eye image of the display device, and the backlight is the first and second eye images of the display device. It is preferable to light only during the last period of the information periods indicating the plurality of transmission states in each of the display periods.
 上記構成によると、上記表示装置に表示されている最中の第1目用画像又は第2目用画像がユーザに視認されることを防止し、確実に、表示装置に表示された第1目用画像又は第2目用画像をユーザに視認させることができる。これにより、立体画像の表示品位の低下を防止することができる。 According to the above configuration, the first eye image or the second eye image being displayed on the display device is prevented from being visually recognized by the user, and the first eye displayed on the display device is surely displayed. The user image or the second eye image can be visually recognized by the user. Thereby, the fall of the display quality of a stereo image can be prevented.
 本発明は、立体画像を表示する表示装置に利用することができる。 The present invention can be used in a display device that displays a stereoscopic image.
1 立体画像表示装置
2 液晶表示装置(表示装置)
10 駆動制御部
11・16 画像信号生成部
12 液晶パネル用信号生成部
13 バックライト用信号生成部
14・17 3Dメガネ用信号生成部
14a シャッタ周波数設定部
16a 記憶部
20 3Dメガネ
21・22 液晶シャッタ
23 シャッタ制御部
24・25 シャッタ駆動部
BL バックライト
LCP 液晶パネル
LS 液晶シャッタ駆動用信号(シャッタ駆動信号、第1目用シャッタ駆動信号、第2目用シャッタ駆動信号)
RS 液晶シャッタ駆動用信号(シャッタ駆動信号、第2目用シャッタ駆動信号、第1目用シャッタ駆動信号)
M 遮光周波数
MS 3Dメガネ用信号
N フレーム周波数
1 stereoscopic image display device 2 liquid crystal display device (display device)
DESCRIPTION OF SYMBOLS 10 Drive control part 11 * 16 Image signal generation part 12 Liquid crystal panel signal generation part 13 Backlight signal generation part 14 * 17 3D glasses signal generation part 14a Shutter frequency setting part 16a Storage part 20 3D glasses 21 * 22 Liquid crystal shutter 23 Shutter control unit 24/25 Shutter drive unit BL Backlight LCP Liquid crystal panel LS Liquid crystal shutter drive signal (shutter drive signal, first shutter drive signal, second shutter drive signal)
RS Liquid crystal shutter drive signal (shutter drive signal, second shutter drive signal, first shutter drive signal)
M Shading frequency MS 3D glasses signal N Frame frequency

Claims (10)

  1.  第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、
     上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、
     上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、
     上記第1及び第2目用シャッタを駆動させるシャッタ駆動信号を生成し、当該生成したシャッタ駆動信号により、上記第1及び第2目用シャッタの駆動を制御するシャッタ制御部とを備え、
     上記シャッタ駆動信号のうち、上記第1又は第2目用シャッタを透過状態から遮光状態へ切替えることを示す情報の周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、
    M=(2x+1)×N
    となっていることを特徴とする立体画像表示装置。
    A display device for displaying one stereoscopic image by sequentially displaying the first eye image and the second eye image;
    A first-eye shutter that becomes transparent when the display device displays the first-eye image;
    A second-eye shutter that becomes transparent when the display device displays the second-eye image;
    A shutter control unit that generates a shutter drive signal for driving the first and second shutters, and controls the driving of the first and second shutters according to the generated shutter drive signal;
    Of the shutter drive signals, the frequency representing the period of information indicating that the first or second shutter is switched from the transmission state to the light shielding state is defined as a light shielding frequency M, and the first eye image and the second eye. When the frame frequency is N and the natural number is x when the image is combined into one frame,
    M = (2x + 1) × N
    A stereoscopic image display device characterized in that
  2.  上記シャッタ駆動信号のうち、透過状態を示す情報の期間をtとすると、
    (1/2M))≦t<(1/M)
    であることを特徴とする請求項1に記載の立体画像表示装置。
    Of the shutter driving signal, if the period of information indicating the transmission state is t,
    (1 / 2M)) ≦ t <(1 / M)
    The stereoscopic image display apparatus according to claim 1, wherein
  3.  上記シャッタ駆動信号のうち、第1目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第1目用画像の表示開始のタイミングと一致しており、
     上記シャッタ駆動信号のうち、第2目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第2目用画像の表示開始のタイミングと一致していることを特徴とする請求項1又は2に記載の立体画像表示装置。
    Among the shutter drive signals, the timing of information indicating that the first eye shutter is switched from the light shielding state to the transmission state coincides with the display start timing of the first eye image of the display device,
    Among the shutter drive signals, the timing of information indicating that the second eye shutter is switched from the light shielding state to the transmissive state coincides with the display start timing of the second eye image of the display device. The stereoscopic image display device according to claim 1, wherein the stereoscopic image display device is a display device.
  4.  上記シャッタ駆動信号のうち、第1目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第1目用画像の表示開始のタイミングより早く、
     上記シャッタ駆動信号のうち、第2目用シャッタを遮光状態から透過状態へ切替えることを示す情報のタイミングは、上記表示装置の上記第2目用画像の表示開始のタイミングより早いことを特徴とする請求項1~3の何れか1項に記載の立体画像表示装置。
    Among the shutter drive signals, the timing of the information indicating that the first eye shutter is switched from the light shielding state to the transmission state is earlier than the display start timing of the first eye image of the display device.
    Among the shutter drive signals, the timing of information indicating that the second eye shutter is switched from the light shielding state to the transmission state is earlier than the display start timing of the second eye image of the display device. The stereoscopic image display device according to any one of claims 1 to 3.
  5.  上記遮光周波数Mは、上記フレーム周波数Nの3倍であることを特徴とする請求項1~4の何れか1項に記載の立体画像表示装置。 The stereoscopic image display device according to any one of claims 1 to 4, wherein the light shielding frequency M is three times the frame frequency N.
  6.  上記シャッタ駆動信号は、上記第1目用シャッタを駆動するための第1目用シャッタ駆動信号と、上記第2目用シャッタを駆動するための第2目用シャッタ駆動信号とからなり、
     上記第1目用シャッタ駆動信号のうちの、遮光状態から透過状態へ切替えることを示す情報のタイミング及び透過状態から遮光状態へ切替えることを示す情報のタイミングと、
     上記第2目用シャッタ駆動信号のうちの、透過状態から遮光状態へ切替えることを示す情報のタイミング及び遮光状態から透過状態へ切替えることを示す情報のタイミングとは一致していることを特徴とする請求項1~5の何れか1項に記載の立体画像表示装置。
    The shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive signal for driving the second eye shutter,
    Of the first shutter drive signal for the first eye, information timing indicating switching from the light shielding state to the transmission state and information timing indicating switching from the transmission state to the light shielding state;
    Of the second shutter driving signal for the second eye, the timing of information indicating switching from the transmission state to the light shielding state and the timing of information indicating switching from the light shielding state to the transmission state coincide with each other. The stereoscopic image display device according to any one of claims 1 to 5.
  7.  上記フレーム周波数Nから、上記遮光周波数Mを設定するシャッタ周波数設定部を備え、
     上記シャッタ制御部は、上記シャッタ周波数設定部が設定した遮光周波数Mに基づいて上記シャッタ駆動信号を生成することを特徴とする請求項1~6の何れか1項に記載の立体画像表示装置。
    A shutter frequency setting unit for setting the shading frequency M from the frame frequency N;
    The stereoscopic image display device according to any one of claims 1 to 6, wherein the shutter control unit generates the shutter drive signal based on a light shielding frequency M set by the shutter frequency setting unit.
  8.  上記フレーム周波数Nから設定された上記遮光周波数Mを記憶する記憶部を備え、
     上記シャッタ制御部は、上記記憶部が記憶する上記遮光周波数Mに基づいて上記シャッタ駆動信号を生成することを特徴とする請求項1~6の何れか1項に記載の立体画像表示装置。
    A storage unit for storing the light shielding frequency M set from the frame frequency N;
    7. The stereoscopic image display device according to claim 1, wherein the shutter control unit generates the shutter drive signal based on the light shielding frequency M stored in the storage unit.
  9.  バックライトを備え、
     上記シャッタ駆動信号は、上記第1目用シャッタを駆動するための第1目用シャッタ駆動信号と、上記第2目用シャッタを駆動するための第2目用シャッタ駆動信号とからなり、
     上記第1目用シャッタ駆動信号は、上記表示装置の上記第1目用画像の表示期間内に、複数の透過状態を示す情報を有しており、
     上記第2目用シャッタ駆動信号は、上記表示装置の上記第2目用画像の表示期間内に、複数の透過状態を示す情報を有しており、
     上記バックライトは、上記表示装置の上記第1及び2目用画像の表示期間のそれぞれの期間内のうち、上記複数の透過状態を示す情報の期間のうちの最後の期間内だけ点灯することを特徴とする請求項1~8の何れか1項に記載の立体画像表示装置。
    With backlight,
    The shutter drive signal includes a first eye shutter drive signal for driving the first eye shutter and a second eye shutter drive signal for driving the second eye shutter,
    The first eye shutter drive signal has information indicating a plurality of transmission states within the display period of the first eye image of the display device,
    The second-eye shutter drive signal has information indicating a plurality of transmission states within the display period of the second-eye image of the display device,
    The backlight is lit only during the last period of the information period indicating the plurality of transmission states in each of the display periods of the first and second-eye images of the display device. The three-dimensional image display device according to any one of claims 1 to 8, wherein
  10.  第1目用画像と、第2目用画像とを順次表示することで、一つの立体画像を表示する表示装置と、
     上記表示装置が上記第1目用画像を表示する際に透過状態となる第1目用シャッタと、
     上記表示装置が上記第2目用画像を表示する際に透過状態となる第2目用シャッタと、を備えている立体画像表示装置の駆動方法であって、
     上記第1又は第2目用シャッタを透過状態から遮光状態へ切替える周期を表す周波数を遮光周波数Mとし、上記第1目用画像及び上記第2目用画像を合せて1フレームとしたときのフレーム周波数Nとし、自然数をxとすると、
    M=(2x+1)×N
    となるように、上記第1及び第2目用シャッタの駆動を制御することを特徴とする立体画像表示装置の駆動方法。
    A display device for displaying one stereoscopic image by sequentially displaying the first eye image and the second eye image;
    A first-eye shutter that becomes transparent when the display device displays the first-eye image;
    A method for driving a stereoscopic image display device, comprising: a second-eye shutter that is in a transmissive state when the display device displays the second-eye image,
    A frame when the frequency representing the cycle of switching the first or second eye shutter from the transmission state to the light shielding state is a light shielding frequency M, and the first eye image and the second eye image are combined into one frame. If the frequency is N and the natural number is x,
    M = (2x + 1) × N
    The driving method of the stereoscopic image display device, wherein the driving of the first and second shutters is controlled so that
PCT/JP2012/071234 2011-09-16 2012-08-22 Stereoscopic image display device, and drive method of stereoscopic image display device WO2013038883A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-203664 2011-09-16
JP2011203664 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038883A1 true WO2013038883A1 (en) 2013-03-21

Family

ID=47883117

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071234 WO2013038883A1 (en) 2011-09-16 2012-08-22 Stereoscopic image display device, and drive method of stereoscopic image display device

Country Status (1)

Country Link
WO (1) WO2013038883A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210706A (en) * 2015-05-08 2016-12-07 深圳市立鼎光电技术有限公司 LED display realizes the system that 3D shows
FR3105458A1 (en) * 2019-12-18 2021-06-25 Valeo Vision CONTROL PROCESS AND ANTI-DARKENING SYSTEM FOR MOTOR VEHICLES

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233932A (en) * 2003-02-03 2004-08-19 Sharp Corp Liquid crystal display
WO2008056753A1 (en) * 2006-11-08 2008-05-15 Nec Corporation Display system
JP2010243705A (en) * 2009-04-03 2010-10-28 Hitachi Ltd Stereoscopic display
JP2011082615A (en) * 2009-10-02 2011-04-21 Toshiba Corp Video signal processing apparatus, and video signal processing method
JP2011124939A (en) * 2009-12-14 2011-06-23 Sony Corp Display device, display method, and computer program

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004233932A (en) * 2003-02-03 2004-08-19 Sharp Corp Liquid crystal display
WO2008056753A1 (en) * 2006-11-08 2008-05-15 Nec Corporation Display system
JP2010243705A (en) * 2009-04-03 2010-10-28 Hitachi Ltd Stereoscopic display
JP2011082615A (en) * 2009-10-02 2011-04-21 Toshiba Corp Video signal processing apparatus, and video signal processing method
JP2011124939A (en) * 2009-12-14 2011-06-23 Sony Corp Display device, display method, and computer program

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106210706A (en) * 2015-05-08 2016-12-07 深圳市立鼎光电技术有限公司 LED display realizes the system that 3D shows
FR3105458A1 (en) * 2019-12-18 2021-06-25 Valeo Vision CONTROL PROCESS AND ANTI-DARKENING SYSTEM FOR MOTOR VEHICLES

Similar Documents

Publication Publication Date Title
US8564646B2 (en) Image display apparatus, image display observation system, and image display method
KR101356248B1 (en) Image display device
US20110007140A1 (en) Video display device and system
US8482511B2 (en) Stereocopic visualisation
JP5495988B2 (en) 3D image display device
JP5619365B2 (en) Image display device, image display observation system, and image display method
US9001198B2 (en) Image display viewing system, optical modulator and image display device
JP2011128548A (en) Image display apparatus, image display observation system, and image display method
KR20110132242A (en) Stereoscopic display system
CN102906808A (en) Stereoscopic display apparatus and method of driving same
JP2010210712A (en) Image display apparatus, image display observation system, and image display method
JP2013529309A (en) Suppression of crosstalk in time sequential liquid crystal stereoscopic display system
US9787975B2 (en) Method for displaying stereoscopic image and display apparatus for performing the same
WO2011122291A1 (en) Image display device, image display system, image presenting method, and computer program
TWI422863B (en) Stereoscopic display
JP2011075617A (en) Image display viewing system and image display device
JP2011039194A (en) Liquid crystal shutter glass and picture display system
WO2012031387A1 (en) Three dimensional image displaying method, system, three dimensional television and glasses
JP2013012980A (en) Display control circuit and projector apparatus
WO2011155148A1 (en) Display device and video audiovisual system
WO2013038883A1 (en) Stereoscopic image display device, and drive method of stereoscopic image display device
KR101291804B1 (en) 3d image display device
US20110128287A1 (en) Method of displaying stereoscopic image and display apparatus for performing the same
CN102595177A (en) Method for achieving 3D (three-dimensional) image display and liquid crystal display television
WO2012147663A1 (en) Stereoscopic image display system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12832173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP