WO2013038802A1 - Surface light emitting device and liquid crystal display device provided with same - Google Patents

Surface light emitting device and liquid crystal display device provided with same Download PDF

Info

Publication number
WO2013038802A1
WO2013038802A1 PCT/JP2012/068158 JP2012068158W WO2013038802A1 WO 2013038802 A1 WO2013038802 A1 WO 2013038802A1 JP 2012068158 W JP2012068158 W JP 2012068158W WO 2013038802 A1 WO2013038802 A1 WO 2013038802A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
light emitting
mounting portion
light
substrate mounting
Prior art date
Application number
PCT/JP2012/068158
Other languages
French (fr)
Japanese (ja)
Inventor
信二 住ノ江
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013038802A1 publication Critical patent/WO2013038802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133608Direct backlight including particular frames or supporting means
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133612Electrical details

Definitions

  • the present invention relates to a surface light emitting device having a plurality of light emitting elements and a liquid crystal display device including the surface light emitting device.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional liquid crystal display device 100 including a direct type backlight 101.
  • 10 is a horizontal sectional view, and the direction in which the LEDs (light emitting diodes) 102 are arranged in FIG. 10 corresponds to the left-right direction of the liquid crystal display device 100.
  • the backlight 101 includes a plurality of LEDs 102, an LED substrate 103, a diffusion plate 104, a backlight chassis 105, a reflection sheet 106, and a circuit substrate 107.
  • Such a backlight 101 and a liquid crystal panel 108 are fixed to a cabinet 110 via a fixing member 109 to constitute a liquid crystal display device 100.
  • the plurality of LEDs 102 are mounted on and supported by the LED substrate 103.
  • the diffusing plate 104 diffuses the light emitted from each LED 102 to make it uniform and emit it.
  • the backlight chassis 105 includes a flat substrate mounting portion 105a on which the LED substrate 103 is mounted, and a diffusion plate support portion 105b that is connected to the substrate mounting portion 105a and supports the diffusion plate 104 positioned on the light emitting side of each LED 102. And have.
  • the reflection sheet 106 has an opening corresponding to the position of each LED 102, and is formed on the surface of the substrate mounting portion 105 a and the diffusion plate support portion 105 b so as to cover the LED substrate 103.
  • the circuit board 107 includes a circuit board for controlling the light emission of each LED 102 and a circuit board for driving the liquid crystal panel 108.
  • the liquid crystal panel 108 is provided on the light emission side of the diffusion plate 104 via optical sheets (not shown) including a lens sheet and the like.
  • the circuit board 107 is disposed on the opposite side of the diffusion plate 104 with the substrate mounting portion 105a of the backlight chassis 105 and the gap S therebetween.
  • the gap S is provided between the board mounting portion 105a and the circuit board 107 because the heat generated in the LED 102 and the heat generated in the circuit board 107 are mixed with each other and the temperature rises. This is for the purpose of suppressing and ensuring a ventilation path for heat dissipation of the LED 102 and the circuit board 107.
  • the configuration in which the circuit board 107 is arranged via the flat board mounting portion 105a and the gap S is similarly adopted in the liquid crystal display device disclosed in Patent Document 1, for example.
  • JP 2011-134474 A (see FIG. 1 etc.)
  • the thickness of the backlight 101 increases accordingly. That is, in the configuration of FIG. 10, the thickness of the thickest portion of the backlight 101 is the distance from the circuit board 107 to the diffusion plate 104, and the thickness of the backlight 101 includes the gap S and the thickness of the circuit board 107. Therefore, the thickness of the backlight 101 increases accordingly.
  • the present invention has been made to solve the above-described problems, and its purpose is to reduce the thickness of the circuit board and the light emitting element without hindering heat dissipation even when the circuit board is arranged outside the board mounting portion.
  • An object of the present invention is to provide a surface light emitting device capable of performing the above and a liquid crystal display device including the surface light emitting device.
  • the surface light-emitting device of the present invention includes an element mounting substrate on which a plurality of light emitting elements are mounted, a diffusion plate that diffuses and emits light emitted from each of the light emitting elements, and a substrate mounting portion on which the element mounting substrate is mounted
  • a chassis member coupled to the substrate mounting portion and having a diffusion plate support portion for supporting the diffusion plate located on the light emitting side of each light emitting device, and for controlling light emission of each light emitting device
  • a surface light emitting device including a circuit board, wherein the board mounting portion of the chassis member has a distance between the board mounting portion and the diffusion plate being different in at least two regions, and the distance is the same in the same region.
  • the chassis member is formed to be bent and the longest distance among the at least two areas is a first area, and the distance is shorter than the first area.
  • the circuit board is a space formed on the opposite side of the diffuser plate with respect to the substrate mounting portion in the second region, and the circuit board is bent by the substrate mounting portion. It is characterized in that it is arranged in a space corresponding to a step between the first region and the second region with a gap between the substrate mounting portion of the second region and the second region.
  • the circuit board is a space formed on the side opposite to the diffusion plate with respect to the substrate mounting portion in the second region, and the first region and the second region due to the bending of the substrate mounting portion.
  • the thickness of the thickest part of the surface light emitting device is from the substrate mounting part of the first region to the diffusion plate regardless of the thickness of the circuit board. Distance.
  • the circuit board is disposed in the space via the substrate mounting portion in the second region and the gap, the circuit board and the light emitting element can be dissipated by ventilating the gap. Therefore, the surface light emitting device can be thinned without impeding the heat dissipation of the circuit board and the light emitting element.
  • the chassis member has a recess formed by a part of the substrate mounting portion being recessed toward the diffusion plate, and the substrate mounting portion in the second region is The bottom of the recess is formed, and the circuit board is disposed in the recess, and is disposed through a gap with the substrate mounting portion in the second region that forms the bottom of the recess. May be.
  • the thickness of the thickest portion of the surface light emitting device is determined by the board mounting portion.
  • the surface light emitting device can be made thinner as compared with the configuration in which the circuit board protrudes outward from the flat substrate mounting portion.
  • the circuit board and the light emitting element can be dissipated by ventilating the gap. it can. Therefore, even if it is the structure which provides a circuit board in a recessed part, a surface emitting device can be reduced in thickness, without inhibiting heat dissipation of a circuit board and a light emitting element.
  • each light-emitting element is disposed in both the first region and the second region of the chassis member, and the arrangement density of the light-emitting elements in the second region May be higher than the arrangement density of the light emitting elements in the first region.
  • the distance between the light emitting element and the diffusion plate is shorter in the second region than in the first region. For this reason, in the second region, optical luminance unevenness is more likely to occur when each light emitting element emits light than in the first region.
  • the arrangement density of the light emitting elements in the second region higher than the arrangement density of the light emitting elements in the first region, the distance between the light emitting elements in the second region is shortened. Brightness unevenness can be reduced.
  • a light guide plate that guides light incident from an end face and emits the light toward the diffuser plate between the substrate mounting portion in the second region and the diffuser plate.
  • Each light emitting element is disposed in the first region and emits light toward the diffusion plate, and second light emission that emits light toward the end face of the light guide plate. And an element.
  • each light emitting element when each light emitting element is positioned between the substrate mounting portion in the second region and the diffusion plate and each light emitting element emits light toward the diffusion plate, the distance between each light emitting element and the diffusion plate Therefore, optical brightness unevenness is likely to occur when each light emitting element emits light.
  • the edge light method in which light is incident on the end face of the light guide plate and the surface light is emitted, uneven luminance can be reduced by surface light emission, but light loss occurs when light enters the light guide plate. Usage efficiency tends to decrease.
  • a light guide plate is disposed between the substrate mounting portion in the second region and the diffusion plate, and among the light emitting devices, the first light emitting device located in the first region emits light toward the diffusion plate.
  • the luminance unevenness is reduced by surface light emission on the light guide plate,
  • the direct type it is possible to avoid a decrease in light utilization efficiency that occurs in the edge light system.
  • the second region includes a central portion of the substrate mounting portion.
  • the circuit board In the central part of the board mounting part, heat is more likely to accumulate than the peripheral part, and the temperature tends to rise. Therefore, in the second region including the central portion of the substrate mounting portion, the circuit board is positioned in the space opposite to the diffusion plate with respect to the substrate mounting portion via the gap, so that the gap is used for heat dissipation. It is possible to reduce the thickness of the device while securing the ventilation path and improving the heat dissipation at least in the central portion of the substrate mounting portion.
  • the liquid crystal display device of the present invention may include the above-described surface light emitting device of the present invention and a liquid crystal panel that displays an image by modulating light supplied from the surface light emitting device.
  • the circuit board is a space formed on the side opposite to the diffusion plate with respect to the substrate mounting portion in the second region, and the first region and the second region due to the bending of the substrate mounting portion. Since it is arranged in a space corresponding to a step with the region, the thickness of the thickest portion of the surface light emitting device can be the distance from the substrate mounting portion of the first region to the diffusion plate, and surface light emission The apparatus can be thinned. Moreover, since the circuit board is disposed in the space via the substrate mounting portion in the second region and the gap, the circuit board and the light emitting element can be dissipated by ventilating the gap, The surface light emitting device can be thinned without hindering such heat dissipation.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 1 of the present embodiment.
  • 1 is a horizontal sectional view, and the direction in which the LEDs 11 are arranged in FIG. 1 corresponds to the left-right direction of the liquid crystal display device 1, and the direction perpendicular to the plane of FIG. 1 corresponds to the up-down direction.
  • the cross-sectional views appearing below are also horizontal cross-sectional views unless otherwise specified, and the correspondence between the left, right, and top and bottom directions is the same as that in FIG.
  • the liquid crystal display device 1 is configured by fixing a backlight 2 and a liquid crystal panel 3 to a cabinet 5 via a fixing member 4.
  • the backlight 2 is a surface light emitting device for illuminating the liquid crystal panel 3 in a planar shape.
  • the liquid crystal panel 3 is a liquid crystal display element that displays light by modulating light supplied from the backlight 2.
  • details of the backlight 2 will be described.
  • FIG. 2 is a cross-sectional view showing the configuration of the backlight 2.
  • the backlight 2 includes an LED 11 as a plurality of light emitting elements, an LED substrate 12, a diffusion plate 13, a backlight chassis 14, a reflection sheet 15, and a circuit board 16, and in this embodiment, a direct type This is a surface light emitting device.
  • the plurality of LEDs 11 are mounted and supported in a line shape (left and right direction in FIG. 1) on an LED substrate 12 as a substrate for mounting light emitting elements.
  • Each LED board 12 is arranged side by side so that the plurality of LEDs 11 are two-dimensionally arranged.
  • the diffusion plate 13 diffuses and uniformizes the light emitted from each LED 11 that is a point light source, and emits the light in a planar shape.
  • the diffusion plate 13 is formed in a flat plate shape and disposed on the light emitting side of each LED 11. .
  • the backlight chassis 14 is a chassis member formed by bending one sheet metal into a predetermined shape, and includes a substrate mounting portion 14a on which a plurality of LED substrates 12 are mounted, and a diffusion plate support portion that supports the diffusion plate 13. 14b.
  • the diffusion plate support portion 14b is connected to the end portion of the substrate mounting portion 14a and supports the diffusion plate 13 located on the light emission side of each LED 11. More specifically, the diffusion plate support portion 14b is formed to extend obliquely from the end of the substrate mounting portion 14a toward the diffusion plate 13 and then be bent at an obtuse angle so as to be parallel to the diffusion plate 13. The diffusion plate 13 is supported by the bent end portion.
  • the reflection sheet 15 has an opening corresponding to the position of each LED 11, and is formed on the surface of the substrate mounting portion 14 a and the diffusion plate support portion 14 b so as to cover the LED substrate 12.
  • the circuit board 16 is a circuit board for controlling the light emission of each LED 11.
  • the circuit board 16 may include a circuit board for driving the liquid crystal panel 3 (see FIG. 1) and other boards (power supply board, control board).
  • the liquid crystal panel 3 is provided on the light emission side of the diffusion plate 13 via optical sheets (not shown) including a lens sheet, a prism sheet, a retroreflective sheet, and the like.
  • a recess 21 is formed in the substrate mounting portion 14a of the backlight chassis 14.
  • the recess 21 is formed by a part of the flat substrate mounting portion 14a being recessed toward the diffusion plate 13 side.
  • the concave portion 21 is formed in a groove shape along the vertical direction in the central portion of the substrate mounting portion 14 a corresponding to the central portion in the left-right direction of the backlight 2.
  • the shape in the horizontal cross section of the backlight chassis 14 becomes a substantially W shape as a whole, as shown in FIG.
  • the circuit board 16 described above is disposed in the recess 21, and is disposed via the substrate mounting portion 14 a that forms the bottom of the recess 21 and the gap S.
  • the substrate mounting portion 14 a that forms the bottom of the recess 21 is the substrate mounting portion 14 a that is located on the opposite side of the opening 21 a of the recess 21, and the LED substrate 12 is placed in the formation region of the recess 21.
  • the substrate mounting portion 14a is the substrate mounting portion 14 a that is located on the opposite side of the opening 21 a of the recess 21, and the LED substrate 12 is placed in the formation region of the recess 21.
  • the thickness of the thickest part of the backlight 2 is changed from a portion other than the formation region of the recess 21 in the substrate mounting portion 14 a to the diffusion plate 13.
  • the backlight 2 can be thinned.
  • the thickness of the surface light emitting device is opposite to that of the diffusion plate as in the conventional configuration in which the circuit board is arranged with a gap between the substrate mounting portion and the substrate mounting portion in a flat shape. It is not necessary to consider the distance (including the thickness of the circuit board) of the portion protruding to the side, and the surface light emitting device can be made thinner accordingly.
  • a thin liquid crystal display device 1 that illuminates the liquid crystal panel 3 with a thin surface light emitting device can be realized. Therefore, when the liquid crystal display device 1 is commercialized as, for example, a liquid crystal television, the commercial value can be increased at least in terms of thinness.
  • the circuit board 16 when the circuit board 16 is provided behind the LED 11, the heat generated by the LED 11 and the heat generated by the circuit board 16 are mixed with each other and the temperature is likely to rise.
  • the circuit board 16 is disposed via the substrate mounting portion 14 a that forms the bottom of the recess 21 and the gap S, and there is a gap S between the LED 11 and the circuit board 16. Therefore, by ventilating the gap S, the LED 11 and the circuit board 16 can be dissipated. Therefore, the backlight 2 and thus the liquid crystal display device 1 can be thinned without hindering the heat radiation of the LED 11 and the circuit board 16.
  • the surface area of the substrate mounting portion 14a is increased due to the formation of the recess 21 and the ventilation area is increased, the heat dissipation effect by ventilation can be further enhanced.
  • the gap S can be increased to suppress mutual interference between the heat of the LED 11 and the heat of the circuit board 16.
  • a high-definition liquid crystal television having a resolution of 4000 ⁇ 2000 pixels or more is called 4K2K (K indicates 10 3 ), and has a pixel number four times that of full HD (full high definition).
  • K indicates 10 3
  • full HD full high definition
  • the edge light method using the light guide plate causes loss when entering the light guide plate and lowers the light utilization efficiency as compared with the direct type, so that the power consumption increases. Furthermore, in the edge light system, it is necessary to use a thick light guide plate in consideration of warpage of the light guide plate, but in this case, the weight becomes heavy.
  • the backlight 2 of the present embodiment is a direct type in which the LEDs 11 are two-dimensionally arranged, has high light utilization efficiency, can sufficiently obtain luminance, and has the concave portion 21 as described above. Thinning can be realized without considering the thickness of the circuit board 16, and a light guide plate such as an edge light system is unnecessary (since the weight of the light guide plate need not be considered), the above high-definition liquid crystal It will be suitable for television.
  • the recess 21 is formed in a size that can further accommodate a reinforcing member for securing the overall strength of the liquid crystal display device 1, a speaker, a wall hanging member (wall hanging bracket), and the like. Then, all of these members or at least one of these members may be disposed in the recess 21. Even in this case, the amount of protrusion of the member from the back surface of the backlight chassis 14 is reliably reduced and the thickness of the liquid crystal display device 1 is increased as compared with the configuration in which the reinforcing member is disposed without forming the recess 21. Can be avoided.
  • the substrate mounting portion 14a has different distances between the substrate mounting portion 14a and the diffusion plate 13 in at least two regions and the same region. Then, it can be said that it is bent and formed so that the above-mentioned distance is the same. Therefore, in the backlight chassis 14, in the backlight chassis 14, the region having the longest distance among the above two regions is referred to as a first region R1, and the region other than the first region R1, that is, the distance is the first region. A region shorter than the region R1 is referred to as a second region R2. In this case, the substrate mounting portion 14a in the second region R2 forms the bottom of the recess 21 described above.
  • the above-described circuit board 16 can also be expressed as being disposed in the space T via the board mounting portion 14a and the gap S in the second region R2.
  • the space T is a space formed on the opposite side of the diffusion plate 13 with respect to the substrate mounting portion 14a in the second region R2, and the first region R1 due to the bending of the substrate mounting portion 14a. It refers to a space corresponding to a step with the second region R2.
  • FIG. 3 shows the above-described space T by hatching different from the hatching that shows the substrate mounting portion 14a.
  • the space T is formed by the step d between the first region R1 and the second region R2 due to the bending of the substrate mounting portion 14a. Therefore, when the surface constituting the lowermost part of the space T (the surface farthest from the substrate mounting portion 14a in the second region R2 in the space T) is virtually considered, this virtual surface is the first region R1. It becomes the same surface as the surface opposite to the diffusion plate 13 in the substrate mounting portion 14a. In other words, the space T corresponding to the step d between the first region R1 and the second region R2 is further below the space T from the substrate mounting portion 14a of the first region R1 (on the opposite side to the diffusion plate 13). ) Means that it is formed without jumping out.
  • the circuit board 16 is disposed in the space T (by being disposed closer to the diffusion plate 13 than the virtual surface including the virtual plane), so that Regardless of the thickness of the circuit board 16, the thickness of the thick part can be the distance from the substrate mounting portion 14a to the diffusion plate 13 in the first region R1. Therefore, it can be said that the backlight can be thinned by arranging the circuit board 16 in the space T.
  • the circuit board 16 since the circuit board 16 is disposed in the space T via the board mounting portion 14a in the second region R2 and the gap S, the circuit board 16 inhibits heat radiation of the circuit board and the light emitting element due to the ventilation of the gap S. Therefore, the backlight 2 can be made thinner.
  • the LED substrate 12 is arranged in both the first region R1 and the second region R2, and therefore, the plurality of LEDs 11 are arranged in the first region R1. It is arranged in both the region R1 and the second region R2. At this time, the LEDs 11 are arranged such that the arrangement density of the LEDs 11 in the second region R2 is higher than the arrangement density of the LEDs 11 in the first region R1.
  • the arrangement density of each LED 11 refers to the number of LEDs 11 per unit area.
  • the distance between the LED 11 and the diffusion plate 13 is shorter in the second region R2 than in the first region R1. For this reason, if each LED 11 of 1st area
  • the light can be reliably made uniform by the diffusion by the diffusion plate 13, and the luminance unevenness can be reduced.
  • the arrangement pitch of the LEDs 11 (or the distance between the LEDs 11) and the minimum distance between the LED 11 and the diffusion plate 13 when no optical luminance unevenness occurs are in a proportional relationship, and if the arrangement pitch of the LEDs 11 is shortened. Even if the distance between the LED 11 and the diffusion plate 13 is shortened, no optical luminance unevenness occurs. On the contrary, this means that when the distance is shortened, optical luminance unevenness occurs unless the arrangement pitch of the LEDs 11 is shortened.
  • the recess 21 is formed in the substrate mounting portion 14a, the distance between the LED 11 and the diffusion plate 13 is shorter in the second region R2 than in the first region R1, By shortening the arrangement pitch of the LEDs 11 in the second region R2, it is possible to prevent optical luminance unevenness from occurring. That is, the luminance unevenness caused by forming the concave portion 21 can be easily reduced by changing the arrangement pitch of the LEDs 11 between the first region R1 and the second region R2. As a result, it is possible to realize the backlight 2 in which luminance unevenness does not occur with the minimum number of LEDs 11.
  • the LEDs 11 in the second region R2 higher than the arrangement density of the LEDs 11 in the first region R1, for example, the LEDs 11 in the first region R1 having a lower arrangement density. Can be emitted with a high luminance, and the LEDs 11 in the second region R2 having a higher arrangement density can emit a light with a low luminance to achieve uniform luminance over the entire surface. Thereby, the electric power per LED11 of 2nd area
  • region R2 can be suppressed, and the raise of the temperature of LED11 (LED terminal temperature) and the temperature rise of the solder joint part of LED11 can be suppressed.
  • the arrangement density of the LEDs 11 and the magnitude of the current flowing through the LEDs it is possible to achieve a desired brightness using the minimum number of LEDs 11 while maintaining a uniform temperature distribution. it can.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 1 of the present embodiment.
  • the liquid crystal display device 1 has the same configuration as that of the first embodiment except that the second region R2 of the backlight 2 is an edge light system. This will be specifically described below.
  • the light guide plate 31 is disposed in the second region R2. More specifically, the light guide plate 31 is disposed between the substrate mounting portion 14 a in the second region R 2, that is, the substrate mounting portion 14 a that forms the bottom of the recess 21, and the diffusion plate 13.
  • the light guide plate 31 guides light incident from the end surface (side surface) inside and emits the light toward the diffusion plate 13 from the surface facing the diffusion plate 13.
  • FIG. 5 is a plan view (front view) when the light guide plate 31 disposed in the second region R2 is viewed from the diffusion plate 13 side.
  • each LED 11 as a point light source includes an LED 11a (see FIG. 4) as a first light emitting element constituting a direct type and an edge light.
  • LED11b (refer FIG. 5) as the 2nd light emitting element which comprises a system is included.
  • the LED 11 a is a light emitting element that is located in the first region R 1, that is, in a region other than the region where the recess 21 is formed, and emits light toward the diffusion plate 13.
  • the LED 11 b is a light emitting element that emits light toward the end face of the light guide plate 31.
  • the LED 11b may emit light toward any of the left, right, top, and bottom end surfaces of the light guide plate 31 that does not face the diffusion plate 13 (opposite any of the four left, right, top, and bottom end surfaces that do not face the diffusion plate 13). May be arranged).
  • each LED 11 When the LED 11 is arranged in the second region R2 where the concave portion 21 is formed and the LED 11 emits light toward the diffusion plate 13, the distance between each LED 11 and the diffusion plate 13 is short, so that each LED 11 As described in the first embodiment, optical luminance unevenness is likely to occur when the light is emitted.
  • the luminance unevenness can be reduced by the surface light emission, but at least about 10% due to the surface reflection when entering the light guide plate. Since light loss occurs, light utilization efficiency decreases. Therefore, in order to obtain the same luminance on the entire surface, it is necessary to increase power consumption.
  • the light guide plate 31 is disposed between the substrate mounting portion 14a and the diffusion plate 13 in the second region R2, and each LED 11a emits light toward the diffusion plate 13, while each LED 11b.
  • the use of the direct type can avoid a decrease in light utilization efficiency that occurs in the edge light system.
  • the edge light system as a part of the backlight 2, it is possible to realize the backlight 2 that is thin and has no luminance unevenness compared to a simple (entire-surface) direct-type structure, and has a thickness limitation. Since the light directing efficiency is better in the direct part (first region R1) than in the edge light system, the backlight 2 with low power consumption and excellent environmental performance can be realized.
  • the LED 11b is disposed at the end of the light guide plate 31, so that the LED is not disposed in a region where the temperature is likely to rise (for example, the central portion of the second region R2), and the temperature rises. It is also possible to avoid deterioration of LED characteristics (for example, luminance reduction).
  • the mounting portion (mounting region) of the LED substrate 12 in the substrate mounting portion 14a is composed of a central portion C and two peripheral portions P.
  • the central portion C of the substrate mounting portion 14a is a region including the center of the substrate mounting portion 14a, and is, for example, a vertically long region in the vertical direction.
  • the peripheral portion P of the substrate mounting portion 14a is a region around the central portion C.
  • the peripheral portion P is located on the left side and the right side of the central portion C and is a vertically long region.
  • the backlight chassis 14 only needs to have at least one space T corresponding to a step between the first region R1 and the second region R2, and the space T It is clear that the position to be formed is not limited to the central portion of the substrate mounting portion 14a.
  • the substrate mounting portion 14 a of the backlight chassis 14 may be formed to be bent so that one of the two peripheral portions P is shifted to the diffusion plate 13 side. Further, as shown in FIG. 7, the substrate mounting portion 14a may be formed to be bent so that the central portion C and the one peripheral portion P are combined and shifted to the diffusion plate 13 side. Further, as shown in FIG. 8, the substrate mounting portion 14a may be formed to be bent so that both peripheral portions P are shifted to the diffusion plate 13 side.
  • the backlight chassis 14 has two second regions R2, and two spaces T corresponding to the step between the first region R1 and the second region R2 are also formed. .
  • substrate mounting part 14a may be bent and formed so that the center part C and a part of both peripheral part P may shift to the diffusion plate 13 side.
  • the backlight chassis 14 has three second regions R2, and three spaces T corresponding to the step between the first region R1 and the second region R2 are also formed. . Although not shown, four or more spaces T may be formed.
  • the circuit board 16 is disposed in the space T corresponding to the step between the first region R1 and the second region R2, and the second region
  • the circuit board 16 does not jump out of the backlight chassis 14, and a gap S for heat dissipation of the LED 11 and the circuit board 16 is also secured. Therefore, similarly to the first and second embodiments, the backlight 2 and thus the liquid crystal display device 1 can be thinned without inhibiting the heat radiation of the LED 11 and the circuit board 16.
  • the second region R2 includes the central portion C of the substrate mounting portion 14a as in the configurations of FIGS.
  • a space T corresponding to a step between the first region R1 and the second region R2 is formed at least on the side opposite to the diffusion plate 13 with respect to the central portion C of the substrate mounting portion 14a.
  • the circuit board 16 By disposing the circuit board 16 in the space T via the substrate mounting portion 14a and the gap S, the heat dissipation at the central portion C of the substrate mounting portion 14a that is likely to rise in temperature due to the ventilation of the gap S is improved.
  • the backlight 2 and thus the liquid crystal display device 1 can be thinned.
  • a recess 21 constituting the space T is formed in the central portion of the substrate mounting portion 14a, and a circuit is formed in the recess 21 via the substrate mounting portion 14a and the gap S. Since the board
  • the backlight 2 and thus the liquid crystal display device 1 by appropriately combining the configurations of the above-described embodiments.
  • the configuration of the first embodiment in which the arrangement density of the LEDs 11 is changed between the first region R1 and the second region R2 can be applied to the configurations of FIGS. 6 to 9 of the third embodiment.
  • the configuration of the second embodiment in which the light guide plate 31 is provided in the second region R2 and the edge light system is used can be applied to the configurations of FIGS. 6 to 9 of the third embodiment.
  • the backlight 2 can also be used alone as a room illuminating device.
  • the surface light-emitting device of the present invention can be used, for example, for a backlight of a liquid crystal display device or a room lighting device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Planar Illumination Modules (AREA)

Abstract

In the present invention, a backlight chassis (14) of a back light (2) comprises a substrate mounting unit (14a) on which an LED substrate (12) is mounted and a diffuser plate support unit (14b) that is contiguous with the substrate mounting unit (14a) and that supports a diffuser plate (13) disposed on the light-output side of LEDs (11). In the backlight chassis (14), if a region having the greatest distance between the substrate mounting unit (14a) and the diffuser plate (13) is a first region (R1) and a region where this distance is less than in the first region (R1) is a second region (R2), a circuit board (16) is disposed in a space (T), which is a space formed on the side opposite the diffusion plate (13) across the substrate mounting unit (14a) and corresponds to the difference in height between the first region (R1) and the second region (R2), with a gap (S) between the circuit board and the substrate mounting unit (14a) in the second region (R2).

Description

面発光装置およびそれを備えた液晶表示装置Surface light emitting device and liquid crystal display device including the same
 本発明は、複数の発光素子を有する面発光装置と、その面発光装置を備えた液晶表示装置とに関するものである。 The present invention relates to a surface light emitting device having a plurality of light emitting elements and a liquid crystal display device including the surface light emitting device.
 従来から、液晶パネルを照明する面発光装置として、直下型のバックライトを用いた液晶表示装置が提案されている。図10は、直下型のバックライト101を備えた従来の液晶表示装置100の概略の構成を示す断面図である。なお、図10の断面図は水平断面図であり、図10においてLED(発光ダイオード)102が並ぶ方向は、液晶表示装置100の左右方向に対応している。バックライト101は、複数のLED102と、LED基板103と、拡散板104と、バックライトシャーシ105と、反射シート106と、回路基板107とを備えている。このようなバックライト101と液晶パネル108とが、固定部材109を介してキャビネット110に固定されて液晶表示装置100が構成されている。 Conventionally, a liquid crystal display device using a direct backlight has been proposed as a surface emitting device for illuminating a liquid crystal panel. FIG. 10 is a cross-sectional view showing a schematic configuration of a conventional liquid crystal display device 100 including a direct type backlight 101. 10 is a horizontal sectional view, and the direction in which the LEDs (light emitting diodes) 102 are arranged in FIG. 10 corresponds to the left-right direction of the liquid crystal display device 100. The backlight 101 includes a plurality of LEDs 102, an LED substrate 103, a diffusion plate 104, a backlight chassis 105, a reflection sheet 106, and a circuit substrate 107. Such a backlight 101 and a liquid crystal panel 108 are fixed to a cabinet 110 via a fixing member 109 to constitute a liquid crystal display device 100.
 複数のLED102は、LED基板103に搭載され、支持されている。拡散板104は、各LED102から出射される光を拡散させて均一化して出射する。バックライトシャーシ105は、LED基板103が搭載される平板状の基板搭載部105aと、基板搭載部105aと連結されて各LED102の光出射側に位置する拡散板104を支持する拡散板支持部105bとを有している。 The plurality of LEDs 102 are mounted on and supported by the LED substrate 103. The diffusing plate 104 diffuses the light emitted from each LED 102 to make it uniform and emit it. The backlight chassis 105 includes a flat substrate mounting portion 105a on which the LED substrate 103 is mounted, and a diffusion plate support portion 105b that is connected to the substrate mounting portion 105a and supports the diffusion plate 104 positioned on the light emitting side of each LED 102. And have.
 反射シート106は、各LED102の位置に対応する開口部を有しており、LED基板103を覆うように基板搭載部105aおよび拡散板支持部105bの表面に形成されている。これにより、各LED102から出射されて、拡散板104の表面で反射された光や、拡散板104で拡散された後にバックライトシャーシ105側に戻ってきた光が、反射シート106で再度反射されて拡散板104側に戻されるので、各LED102から出射される光の利用効率が向上する。回路基板107は、各LED102の発光を制御するための回路基板や、液晶パネル108を駆動するための回路基板を含んでいる。液晶パネル108は、拡散板104の光出射側に、レンズシート等を含む光学シート類(図示せず)を介して設けられている。 The reflection sheet 106 has an opening corresponding to the position of each LED 102, and is formed on the surface of the substrate mounting portion 105 a and the diffusion plate support portion 105 b so as to cover the LED substrate 103. As a result, the light emitted from each LED 102 and reflected on the surface of the diffusion plate 104 or the light returned to the backlight chassis 105 after being diffused by the diffusion plate 104 is reflected again by the reflection sheet 106. Since the light is returned to the diffusion plate 104 side, the utilization efficiency of the light emitted from each LED 102 is improved. The circuit board 107 includes a circuit board for controlling the light emission of each LED 102 and a circuit board for driving the liquid crystal panel 108. The liquid crystal panel 108 is provided on the light emission side of the diffusion plate 104 via optical sheets (not shown) including a lens sheet and the like.
 ここで、上記の回路基板107は、バックライトシャーシ105の基板搭載部105aと、間隙Sを介して、拡散板104とは反対側に配置されている。このように、基板搭載部105aと回路基板107との間に間隙Sを設けているのは、LED102で発生する熱および回路基板107で発生する熱が相互に炙りあって温度が上昇するのを抑えるためと、LED102および回路基板107の放熱用の通風路を確保するためである。このように、平板状の基板搭載部105aと間隙Sを介して回路基板107を配置した構成は、例えば特許文献1の液晶表示装置でも同様に採用されている。 Here, the circuit board 107 is disposed on the opposite side of the diffusion plate 104 with the substrate mounting portion 105a of the backlight chassis 105 and the gap S therebetween. Thus, the gap S is provided between the board mounting portion 105a and the circuit board 107 because the heat generated in the LED 102 and the heat generated in the circuit board 107 are mixed with each other and the temperature rises. This is for the purpose of suppressing and ensuring a ventilation path for heat dissipation of the LED 102 and the circuit board 107. In this way, the configuration in which the circuit board 107 is arranged via the flat board mounting portion 105a and the gap S is similarly adopted in the liquid crystal display device disclosed in Patent Document 1, for example.
特開2011-134474号公報(図1等参照)JP 2011-134474 A (see FIG. 1 etc.)
 ところが、図10の構成では、回路基板107が平板状の基板搭載部105aから外側に飛び出ているため、その分、バックライト101の厚さが増大するという問題が生ずる。つまり、図10の構成では、バックライト101の最厚部の厚さは、回路基板107から拡散板104までの距離となり、バックライト101の厚さには、間隙Sと回路基板107の厚さとが含まれるため、その分だけバックライト101の厚さが増大する。 However, in the configuration of FIG. 10, since the circuit board 107 protrudes outward from the flat board mounting portion 105a, there arises a problem that the thickness of the backlight 101 increases accordingly. That is, in the configuration of FIG. 10, the thickness of the thickest portion of the backlight 101 is the distance from the circuit board 107 to the diffusion plate 104, and the thickness of the backlight 101 includes the gap S and the thickness of the circuit board 107. Therefore, the thickness of the backlight 101 increases accordingly.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、基板搭載部の外側に回路基板を配置する場合でも、回路基板および発光素子の放熱を阻害することなく薄型化が可能な面発光装置と、その面発光装置を備えた液晶表示装置とを提供することにある。 The present invention has been made to solve the above-described problems, and its purpose is to reduce the thickness of the circuit board and the light emitting element without hindering heat dissipation even when the circuit board is arranged outside the board mounting portion. An object of the present invention is to provide a surface light emitting device capable of performing the above and a liquid crystal display device including the surface light emitting device.
 本発明の面発光装置は、複数の発光素子を搭載した素子搭載基板と、前記各発光素子から出射される光を拡散して出射する拡散板と、前記素子搭載基板が搭載される基板搭載部と、前記基板搭載部と連結されて、前記各発光素子の光出射側に位置する前記拡散板を支持する拡散板支持部とを有するシャーシ部材と、前記各発光素子の発光を制御するための回路基板とを備えた面発光装置であって、前記シャーシ部材の前記基板搭載部は、該基板搭載部と前記拡散板との距離が少なくとも2つの領域で異なり、かつ、同じ領域では前記距離が同じになるように、折れ曲がって形成されており、前記シャーシ部材において、前記少なくとも2つの領域のうち、前記距離が最も長い領域を第1の領域とし、前記距離が前記第1の領域よりも短い領域を第2の領域とすると、前記回路基板は、前記第2の領域の基板搭載部に対して前記拡散板とは反対側に形成される空間であって、前記基板搭載部の折れ曲がりによる前記第1の領域と前記第2の領域との段差に相当する空間内に、前記第2の領域の基板搭載部と間隙を介して配置されていることを特徴としている。 The surface light-emitting device of the present invention includes an element mounting substrate on which a plurality of light emitting elements are mounted, a diffusion plate that diffuses and emits light emitted from each of the light emitting elements, and a substrate mounting portion on which the element mounting substrate is mounted A chassis member coupled to the substrate mounting portion and having a diffusion plate support portion for supporting the diffusion plate located on the light emitting side of each light emitting device, and for controlling light emission of each light emitting device A surface light emitting device including a circuit board, wherein the board mounting portion of the chassis member has a distance between the board mounting portion and the diffusion plate being different in at least two regions, and the distance is the same in the same region. In the chassis member, the chassis member is formed to be bent and the longest distance among the at least two areas is a first area, and the distance is shorter than the first area. Territory Is the second region, the circuit board is a space formed on the opposite side of the diffuser plate with respect to the substrate mounting portion in the second region, and the circuit board is bent by the substrate mounting portion. It is characterized in that it is arranged in a space corresponding to a step between the first region and the second region with a gap between the substrate mounting portion of the second region and the second region.
 上記の構成によれば、回路基板は、第2の領域の基板搭載部に対して拡散板とは反対側に形成される空間であって、基板搭載部の折れ曲がりによる第1の領域と第2の領域との段差に相当する空間内に配置されているので、面発光装置の最厚部の厚さを、回路基板の厚さに関係なく、第1の領域の基板搭載部から拡散板までの距離とすることができる。その結果、基板搭載部の外側(拡散板とは反対側)に回路基板を配置する構成であっても、回路基板が平板状の基板搭載部から外側に飛び出る構成に比べて、面発光装置を薄型化することができる。 According to the above configuration, the circuit board is a space formed on the side opposite to the diffusion plate with respect to the substrate mounting portion in the second region, and the first region and the second region due to the bending of the substrate mounting portion. The thickness of the thickest part of the surface light emitting device is from the substrate mounting part of the first region to the diffusion plate regardless of the thickness of the circuit board. Distance. As a result, even when the circuit board is arranged outside the board mounting portion (on the side opposite to the diffusion plate), the surface light emitting device is compared with the configuration in which the circuit board protrudes outward from the flat board mounting portion. Thinning can be achieved.
 しかも、回路基板は、上記空間内に、第2の領域の基板搭載部と間隙を介して配置されているので、上記間隙に通風することによって、回路基板および発光素子を放熱させることができる。したがって、回路基板および発光素子の放熱を阻害することなく、面発光装置を薄型化することができる。 In addition, since the circuit board is disposed in the space via the substrate mounting portion in the second region and the gap, the circuit board and the light emitting element can be dissipated by ventilating the gap. Therefore, the surface light emitting device can be thinned without impeding the heat dissipation of the circuit board and the light emitting element.
 本発明の面発光装置において、前記シャーシ部材は、前記基板搭載部の一部が前記拡散板側に窪むことによって形成される凹部を有しており、前記第2の領域の基板搭載部は、前記凹部の底部を形成しており、前記回路基板は、前記凹部内に配置されているとともに、前記凹部の底部を形成する前記第2の領域の基板搭載部と間隙を介して配置されていてもよい。 In the surface light emitting device of the present invention, the chassis member has a recess formed by a part of the substrate mounting portion being recessed toward the diffusion plate, and the substrate mounting portion in the second region is The bottom of the recess is formed, and the circuit board is disposed in the recess, and is disposed through a gap with the substrate mounting portion in the second region that forms the bottom of the recess. May be.
 回路基板が、シャーシ部材の基板搭載部の一部が拡散板側に窪むことによって形成される凹部内に配置されている場合でも、面発光装置の最厚部の厚さを、基板搭載部における凹部以外の領域から拡散板までの距離とすることができ、回路基板が平板状の基板搭載部から外側に飛び出る構成に比べて、面発光装置を薄型化することができる。しかも、回路基板は、上記凹部の底部を形成する第2の領域の基板搭載部と間隙を介して配置されているので、上記間隙に通風することによって、回路基板および発光素子を放熱させることができる。したがって、凹部内に回路基板を設ける構成であっても、回路基板および発光素子の放熱を阻害することなく、面発光装置を薄型化することができる。 Even when the circuit board is disposed in a recess formed by recessing a part of the board mounting portion of the chassis member toward the diffusion plate, the thickness of the thickest portion of the surface light emitting device is determined by the board mounting portion. The surface light emitting device can be made thinner as compared with the configuration in which the circuit board protrudes outward from the flat substrate mounting portion. In addition, since the circuit board is disposed through a gap with the substrate mounting portion in the second region that forms the bottom of the recess, the circuit board and the light emitting element can be dissipated by ventilating the gap. it can. Therefore, even if it is the structure which provides a circuit board in a recessed part, a surface emitting device can be reduced in thickness, without inhibiting heat dissipation of a circuit board and a light emitting element.
 本発明の面発光装置において、前記各発光素子は、前記シャーシ部材の前記第1の領域および前記第2の領域の両方に配置されており、前記第2の領域における前記各発光素子の配置密度は、前記第1の領域における前記各発光素子の配置密度よりも高くてもよい。 In the surface light-emitting device of the present invention, each light-emitting element is disposed in both the first region and the second region of the chassis member, and the arrangement density of the light-emitting elements in the second region May be higher than the arrangement density of the light emitting elements in the first region.
 発光素子と拡散板との距離は、第1の領域よりも第2の領域のほうが短い。このため、第2の領域では、第1の領域よりも、各発光素子の発光時に光学的な輝度ムラが発生しやすくなる。しかし、第2の領域における各発光素子の配置密度を、第1の領域における各発光素子の配置密度よりも高くすることにより、第2の領域では各発光素子間の距離が短くなるので、上記の輝度ムラを低減することができる。 The distance between the light emitting element and the diffusion plate is shorter in the second region than in the first region. For this reason, in the second region, optical luminance unevenness is more likely to occur when each light emitting element emits light than in the first region. However, by making the arrangement density of the light emitting elements in the second region higher than the arrangement density of the light emitting elements in the first region, the distance between the light emitting elements in the second region is shortened. Brightness unevenness can be reduced.
 本発明の面発光装置において、前記第2の領域の基板搭載部と前記拡散板との間には、端面から入射する光を内部で導光して前記拡散板に向けて出射する導光板が配置されており、前記各発光素子は、前記第1の領域に位置して前記拡散板に向けて発光する第1の発光素子と、前記導光板の前記端面に向けて発光する第2の発光素子とを含んでいてもよい。 In the surface light-emitting device of the present invention, a light guide plate that guides light incident from an end face and emits the light toward the diffuser plate between the substrate mounting portion in the second region and the diffuser plate. Each light emitting element is disposed in the first region and emits light toward the diffusion plate, and second light emission that emits light toward the end face of the light guide plate. And an element.
 例えば、第2の領域の基板搭載部と拡散板との間に各発光素子を位置させて、各発光素子が拡散板に向けて発光する構成とした場合、各発光素子と拡散板との距離が短いために、各発光素子の発光時に光学的な輝度ムラが発生しやすくなる。一方、導光板の端面に光を入射させて面発光するエッジライト方式では、面発光によって輝度ムラを低減することはできるが、導光板への入光時に光の損出が発生するため、光利用効率が低下しやすい。 For example, when each light emitting element is positioned between the substrate mounting portion in the second region and the diffusion plate and each light emitting element emits light toward the diffusion plate, the distance between each light emitting element and the diffusion plate Therefore, optical brightness unevenness is likely to occur when each light emitting element emits light. On the other hand, in the edge light method in which light is incident on the end face of the light guide plate and the surface light is emitted, uneven luminance can be reduced by surface light emission, but light loss occurs when light enters the light guide plate. Usage efficiency tends to decrease.
 そこで、第2の領域の基板搭載部と拡散板との間に導光板を配置し、各発光素子のうち、第1の領域に位置する第1の発光素子が拡散板に向けて発光する一方で、第2の発光素子が導光板の端面に向けて発光する構成とすることにより、輝度ムラが生じやすくなった第2の領域では、導光板での面発光によって輝度ムラを低減しつつ、第1の領域では、直下型とすることで、エッジライト方式で生じるような光利用効率の低下を回避することができる。 Therefore, a light guide plate is disposed between the substrate mounting portion in the second region and the diffusion plate, and among the light emitting devices, the first light emitting device located in the first region emits light toward the diffusion plate. In the second region where the luminance unevenness is likely to occur due to the configuration in which the second light emitting element emits light toward the end surface of the light guide plate, the luminance unevenness is reduced by surface light emission on the light guide plate, In the first region, by using the direct type, it is possible to avoid a decrease in light utilization efficiency that occurs in the edge light system.
 本発明の面発光装置において、前記第2の領域は、前記基板搭載部の中央部を含んでいることが望ましい。 In the surface light emitting device of the present invention, it is preferable that the second region includes a central portion of the substrate mounting portion.
 基板搭載部の中央部では、周辺部に比べて熱がこもりやすく、温度が上昇しやすい。したがって、基板搭載部の中央部を含む第2の領域において、基板搭載部に対して拡散板とは反対側の空間内に間隙を介して回路基板を位置させることにより、上記間隙として放熱のための通風路を確保して、少なくとも基板搭載部の中央部での放熱性を高めながら、装置を薄型化することができる。 In the central part of the board mounting part, heat is more likely to accumulate than the peripheral part, and the temperature tends to rise. Therefore, in the second region including the central portion of the substrate mounting portion, the circuit board is positioned in the space opposite to the diffusion plate with respect to the substrate mounting portion via the gap, so that the gap is used for heat dissipation. It is possible to reduce the thickness of the device while securing the ventilation path and improving the heat dissipation at least in the central portion of the substrate mounting portion.
 本発明の液晶表示装置は、上述した本発明の面発光装置と、前記面発光装置から供給される光を変調して映像を表示する液晶パネルとを備えていてもよい。 The liquid crystal display device of the present invention may include the above-described surface light emitting device of the present invention and a liquid crystal panel that displays an image by modulating light supplied from the surface light emitting device.
 この構成では、薄型の面発光装置で液晶パネルを照明する薄型の液晶表示装置を実現することができる。 With this configuration, a thin liquid crystal display device that illuminates the liquid crystal panel with a thin surface light emitting device can be realized.
 本発明によれば、回路基板は、第2の領域の基板搭載部に対して拡散板とは反対側に形成される空間であって、基板搭載部の折れ曲がりによる第1の領域と第2の領域との段差に相当する空間内に配置されているので、面発光装置の最厚部の厚さを、第1の領域の基板搭載部から拡散板までの距離とすることができ、面発光装置を薄型化することができる。しかも、回路基板は、上記空間内に、第2の領域の基板搭載部と間隙を介して配置されているので、上記間隙に通風することによって、回路基板および発光素子を放熱させることができ、そのような放熱を阻害することなく、面発光装置を薄型化することができる。 According to the present invention, the circuit board is a space formed on the side opposite to the diffusion plate with respect to the substrate mounting portion in the second region, and the first region and the second region due to the bending of the substrate mounting portion. Since it is arranged in a space corresponding to a step with the region, the thickness of the thickest portion of the surface light emitting device can be the distance from the substrate mounting portion of the first region to the diffusion plate, and surface light emission The apparatus can be thinned. Moreover, since the circuit board is disposed in the space via the substrate mounting portion in the second region and the gap, the circuit board and the light emitting element can be dissipated by ventilating the gap, The surface light emitting device can be thinned without hindering such heat dissipation.
本発明の実施の一形態の液晶表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the liquid crystal display device of one Embodiment of this invention. 上記液晶表示装置が備えるバックライトの構成を示す断面図である。It is sectional drawing which shows the structure of the backlight with which the said liquid crystal display device is provided. 上記バックライトの基板搭載部と回路基板の配置空間とを示す断面図である。It is sectional drawing which shows the board | substrate mounting part of the said backlight, and the arrangement | positioning space of a circuit board. 本発明の他の実施の形態の液晶表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the liquid crystal display device of other embodiment of this invention. 上記液晶表示装置が備えるバックライトの導光板の平面図である。It is a top view of the light-guide plate of the backlight with which the said liquid crystal display device is provided. 本発明のさらに他の実施の形態の液晶表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the liquid crystal display device of further another embodiment of this invention. 上記液晶表示装置の他の構成を示す断面図である。It is sectional drawing which shows the other structure of the said liquid crystal display device. 上記液晶表示装置のさらに他の構成を示す断面図である。It is sectional drawing which shows other structure of the said liquid crystal display device. 上記液晶表示装置のさらに他の構成を示す断面図である。It is sectional drawing which shows other structure of the said liquid crystal display device. 従来の液晶表示装置の概略の構成を示す断面図である。It is sectional drawing which shows the schematic structure of the conventional liquid crystal display device.
 〔実施の形態1〕
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、各実施の形態で共通する構成には同一の部材番号を付記して説明を省略することがある。
[Embodiment 1]
An embodiment of the present invention will be described below with reference to the drawings. In addition, the same member number is attached to the common configuration in each embodiment, and the description may be omitted.
 図1は、本実施形態の液晶表示装置1の概略の構成を示す断面図である。なお、図1の断面図は水平断面図であり、図1においてLED11が並ぶ方向は、液晶表示装置1の左右方向に対応しており、図1の紙面に垂直な方向は上下方向に対応している。なお、以下で登場する断面図も、特に断らない限り、水平断面図であり、左右、上下の各方向の対応関係も図1と同様とする。 FIG. 1 is a cross-sectional view showing a schematic configuration of a liquid crystal display device 1 of the present embodiment. 1 is a horizontal sectional view, and the direction in which the LEDs 11 are arranged in FIG. 1 corresponds to the left-right direction of the liquid crystal display device 1, and the direction perpendicular to the plane of FIG. 1 corresponds to the up-down direction. ing. Note that the cross-sectional views appearing below are also horizontal cross-sectional views unless otherwise specified, and the correspondence between the left, right, and top and bottom directions is the same as that in FIG.
 液晶表示装置1は、バックライト2と液晶パネル3とを固定部材4を介してキャビネット5に固定して構成されている。バックライト2は、液晶パネル3を面状に照明するための面発光装置である。液晶パネル3は、バックライト2から供給される光を変調して映像を表示する液晶表示素子である。以下、バックライト2の詳細について説明する。 The liquid crystal display device 1 is configured by fixing a backlight 2 and a liquid crystal panel 3 to a cabinet 5 via a fixing member 4. The backlight 2 is a surface light emitting device for illuminating the liquid crystal panel 3 in a planar shape. The liquid crystal panel 3 is a liquid crystal display element that displays light by modulating light supplied from the backlight 2. Hereinafter, details of the backlight 2 will be described.
 図2は、バックライト2の構成を示す断面図である。バックライト2は、複数の発光素子としてのLED11と、LED基板12と、拡散板13と、バックライトシャーシ14と、反射シート15と、回路基板16とを備えており、本実施形態では直下型の面発光装置となっている。 FIG. 2 is a cross-sectional view showing the configuration of the backlight 2. The backlight 2 includes an LED 11 as a plurality of light emitting elements, an LED substrate 12, a diffusion plate 13, a backlight chassis 14, a reflection sheet 15, and a circuit board 16, and in this embodiment, a direct type This is a surface light emitting device.
 複数のLED11は、発光素子搭載用の基板としてのLED基板12にライン状(図1では左右方向)に搭載され、支持されている。各LED基板12は、複数のLED11が2次元的に配置されるように並べて配置されている。拡散板13は、点光源である各LED11から出射される光を拡散させて均一化し、面状に出射するものであり、平板状に形成されて、各LED11の光出射側に配置されている。 The plurality of LEDs 11 are mounted and supported in a line shape (left and right direction in FIG. 1) on an LED substrate 12 as a substrate for mounting light emitting elements. Each LED board 12 is arranged side by side so that the plurality of LEDs 11 are two-dimensionally arranged. The diffusion plate 13 diffuses and uniformizes the light emitted from each LED 11 that is a point light source, and emits the light in a planar shape. The diffusion plate 13 is formed in a flat plate shape and disposed on the light emitting side of each LED 11. .
 バックライトシャーシ14は、1枚の板金を所定形状に折り曲げることによって形成されるシャーシ部材であり、複数のLED基板12が搭載される基板搭載部14aと、拡散板13を支持する拡散板支持部14bとを有している。拡散板支持部14bは、基板搭載部14aの端部と連結されて、各LED11の光出射側に位置する拡散板13を支持している。より詳しくは、拡散板支持部14bは、基板搭載部14aの端部から拡散板13側に向かって斜めに伸びた後、拡散板13と平行となるように鈍角に折り曲げられて形成されており、その折り曲げられた端部にて、拡散板13を支持している。 The backlight chassis 14 is a chassis member formed by bending one sheet metal into a predetermined shape, and includes a substrate mounting portion 14a on which a plurality of LED substrates 12 are mounted, and a diffusion plate support portion that supports the diffusion plate 13. 14b. The diffusion plate support portion 14b is connected to the end portion of the substrate mounting portion 14a and supports the diffusion plate 13 located on the light emission side of each LED 11. More specifically, the diffusion plate support portion 14b is formed to extend obliquely from the end of the substrate mounting portion 14a toward the diffusion plate 13 and then be bent at an obtuse angle so as to be parallel to the diffusion plate 13. The diffusion plate 13 is supported by the bent end portion.
 反射シート15は、各LED11の位置に対応する開口部を有しており、LED基板12を覆うように基板搭載部14aおよび拡散板支持部14bの表面に形成されている。これにより、各LED11から出射されて、拡散板13の表面で反射された光や、拡散板13で拡散された後にバックライトシャーシ14側に戻ってきた光が、反射シート15で再度反射されて拡散板13側に戻されるので、各LED11から出射される光の利用効率が向上する。回路基板16は、各LED11の発光を制御するための回路基板である。この回路基板16は、液晶パネル3(図1参照)を駆動するための回路基板やその他の基板(電源基板、制御基板)を含んでいてもよい。上記の液晶パネル3は、拡散板13の光出射側に、レンズシート、プリズムシート、再帰反射シート等を含む光学シート類(図示せず)を介して設けられている。 The reflection sheet 15 has an opening corresponding to the position of each LED 11, and is formed on the surface of the substrate mounting portion 14 a and the diffusion plate support portion 14 b so as to cover the LED substrate 12. As a result, the light emitted from each LED 11 and reflected by the surface of the diffusion plate 13 or the light returned to the backlight chassis 14 after being diffused by the diffusion plate 13 is reflected again by the reflection sheet 15. Since it returns to the diffusion plate 13 side, the utilization efficiency of the light emitted from each LED 11 is improved. The circuit board 16 is a circuit board for controlling the light emission of each LED 11. The circuit board 16 may include a circuit board for driving the liquid crystal panel 3 (see FIG. 1) and other boards (power supply board, control board). The liquid crystal panel 3 is provided on the light emission side of the diffusion plate 13 via optical sheets (not shown) including a lens sheet, a prism sheet, a retroreflective sheet, and the like.
 本実施形態では、バックライトシャーシ14の基板搭載部14aに凹部21が形成されている。この凹部21は、平板状の基板搭載部14aの一部が拡散板13側に窪むことによって形成されている。特に、凹部21は、バックライト2の左右方向の中央部に相当する基板搭載部14aの中央部に、上下方向に沿った溝形状で形成されている。これにより、バックライトシャーシ14の水平断面での形状は、図2に示すように全体として略W字形となっている。 In the present embodiment, a recess 21 is formed in the substrate mounting portion 14a of the backlight chassis 14. The recess 21 is formed by a part of the flat substrate mounting portion 14a being recessed toward the diffusion plate 13 side. In particular, the concave portion 21 is formed in a groove shape along the vertical direction in the central portion of the substrate mounting portion 14 a corresponding to the central portion in the left-right direction of the backlight 2. Thereby, the shape in the horizontal cross section of the backlight chassis 14 becomes a substantially W shape as a whole, as shown in FIG.
 上記した回路基板16は、上記凹部21内に配置されているとともに、凹部21の底部を形成する基板搭載部14aと間隙Sを介して配置されている。なお、凹部21の底部を形成する基板搭載部14aとは、凹部21の開口部21aとは反対側に位置する基板搭載部14aであって、凹部21の形成領域でLED基板12が載置される基板搭載部14aを指す。 The circuit board 16 described above is disposed in the recess 21, and is disposed via the substrate mounting portion 14 a that forms the bottom of the recess 21 and the gap S. The substrate mounting portion 14 a that forms the bottom of the recess 21 is the substrate mounting portion 14 a that is located on the opposite side of the opening 21 a of the recess 21, and the LED substrate 12 is placed in the formation region of the recess 21. The substrate mounting portion 14a.
 このように、回路基板16が上記凹部21内に配置されていることにより、バックライト2の最厚部の厚さを、基板搭載部14aにおける凹部21の形成領域以外の部分から拡散板13までの距離とすることができ、これによって、バックライト2を薄型化することができる。つまり、基板搭載部を平板状としたまま、その基板搭載部と間隙を介して回路基板を配置する従来の構成のように、面発光装置の厚さとして、基板搭載部から拡散板とは反対側に飛び出る部分の距離(回路基板の厚さを含む)を考慮しなくても済み、その分、面発光装置を薄型化することができる。この結果、薄型の面発光装置で液晶パネル3を照明する薄型の液晶表示装置1を実現することができる。したがって、液晶表示装置1を例えば液晶テレビとして商品化する場合には、少なくとも薄型という点で商品価値を増大させることができる。 As described above, since the circuit board 16 is disposed in the recess 21, the thickness of the thickest part of the backlight 2 is changed from a portion other than the formation region of the recess 21 in the substrate mounting portion 14 a to the diffusion plate 13. Thus, the backlight 2 can be thinned. In other words, the thickness of the surface light emitting device is opposite to that of the diffusion plate as in the conventional configuration in which the circuit board is arranged with a gap between the substrate mounting portion and the substrate mounting portion in a flat shape. It is not necessary to consider the distance (including the thickness of the circuit board) of the portion protruding to the side, and the surface light emitting device can be made thinner accordingly. As a result, a thin liquid crystal display device 1 that illuminates the liquid crystal panel 3 with a thin surface light emitting device can be realized. Therefore, when the liquid crystal display device 1 is commercialized as, for example, a liquid crystal television, the commercial value can be increased at least in terms of thinness.
 また、LED11の背後に回路基板16を設ける場合は、LED11で発生する熱と回路基板16で発生する熱とが相互に炙りあって温度が上昇しやすい。しかし、本実施形態では、回路基板16は、凹部21の底部を形成する基板搭載部14aと間隙Sを介して配置されており、LED11と回路基板16との間に間隙Sが存在しているので、この間隙Sに通風することによって、LED11および回路基板16を放熱させることができる。したがって、LED11および回路基板16の放熱を阻害することなく、バックライト2ひいては液晶表示装置1を薄型化することができる。しかも、凹部21の形成によって基板搭載部14aの表面積が増大し、通風面積が増大することになるため、通風による放熱効果をより高めることができる。また、間隙Sを大きくして、LED11の熱と回路基板16の熱との相互干渉を抑制することもできる。 Further, when the circuit board 16 is provided behind the LED 11, the heat generated by the LED 11 and the heat generated by the circuit board 16 are mixed with each other and the temperature is likely to rise. However, in the present embodiment, the circuit board 16 is disposed via the substrate mounting portion 14 a that forms the bottom of the recess 21 and the gap S, and there is a gap S between the LED 11 and the circuit board 16. Therefore, by ventilating the gap S, the LED 11 and the circuit board 16 can be dissipated. Therefore, the backlight 2 and thus the liquid crystal display device 1 can be thinned without hindering the heat radiation of the LED 11 and the circuit board 16. In addition, since the surface area of the substrate mounting portion 14a is increased due to the formation of the recess 21 and the ventilation area is increased, the heat dissipation effect by ventilation can be further enhanced. Moreover, the gap S can be increased to suppress mutual interference between the heat of the LED 11 and the heat of the circuit board 16.
 また、4000×2000ピクセル以上の解像度を持つ高精細な液晶テレビは、4K2K(Kは10を指す)と呼ばれ、フルHD(full high definition)の4倍の画素数を有している。このような高精細な液晶テレビでは、60インチ以上の大型化を考えた場合に、バックライト全体をエッジライト方式とすることは望ましくない。これは、以下の理由による。すなわち、上記した高精細な液晶テレビでは、液晶パネルの透過率が十分でなく、輝度が低下しやすいが、エッジライト方式では薄型化を実現できても、LEDを導光板のエッジにしか配置できないため、輝度を十分に稼ぐことができない。また、導光板を使用するエッジライト方式は、直下型に比べて、導光板への入光時に損出が生じ、光利用効率が低いため、消費電力が増大する。さらに、エッジライト方式では、導光板の反り等を考慮すると、厚さのある導光板を用いる必要があるが、この場合は重量が重くなる。 A high-definition liquid crystal television having a resolution of 4000 × 2000 pixels or more is called 4K2K (K indicates 10 3 ), and has a pixel number four times that of full HD (full high definition). In such a high-definition liquid crystal television, it is not desirable to adopt an edge light system for the entire backlight when an increase in size of 60 inches or more is considered. This is due to the following reason. That is, in the above-described high-definition liquid crystal television, the transmittance of the liquid crystal panel is not sufficient, and the luminance is likely to be lowered. Therefore, it is not possible to earn enough brightness. In addition, the edge light method using the light guide plate causes loss when entering the light guide plate and lowers the light utilization efficiency as compared with the direct type, so that the power consumption increases. Furthermore, in the edge light system, it is necessary to use a thick light guide plate in consideration of warpage of the light guide plate, but in this case, the weight becomes heavy.
 この点、本実施形態のバックライト2は、LED11を2次元的に配置した直下型で光利用効率が高く、輝度を十分稼ぐことができ、しかも、上述したように凹部21を形成することで回路基板16の厚さを考慮することなく薄型化を実現でき、また、エッジライト方式のような導光板が不要なので(導光板の重量を考慮しなくて済むので)、上記の高精細な液晶テレビに好適なものとなる。 In this respect, the backlight 2 of the present embodiment is a direct type in which the LEDs 11 are two-dimensionally arranged, has high light utilization efficiency, can sufficiently obtain luminance, and has the concave portion 21 as described above. Thinning can be realized without considering the thickness of the circuit board 16, and a light guide plate such as an edge light system is unnecessary (since the weight of the light guide plate need not be considered), the above high-definition liquid crystal It will be suitable for television.
 なお、上記の凹部21を、回路基板16に加えて、液晶表示装置1の全体の強度を確保するための補強部材や、スピーカー、壁掛け部材(壁掛け金具)などをさらに収容可能な大きさで形成し、これらの部材の全て、またはこれらの部材のうちで少なくとも厚みのあるものを凹部21内に配置してもよい。この場合でも、凹部21を形成せずに補強部材等を配置する構成に比べて、バックライトシャーシ14の裏面からの部材の飛び出し量を確実に低減して、液晶表示装置1の厚さの増大を回避することができる。 In addition to the circuit board 16, the recess 21 is formed in a size that can further accommodate a reinforcing member for securing the overall strength of the liquid crystal display device 1, a speaker, a wall hanging member (wall hanging bracket), and the like. Then, all of these members or at least one of these members may be disposed in the recess 21. Even in this case, the amount of protrusion of the member from the back surface of the backlight chassis 14 is reliably reduced and the thickness of the liquid crystal display device 1 is increased as compared with the configuration in which the reinforcing member is disposed without forming the recess 21. Can be avoided.
 ところで、基板搭載部14aの一部に上記の凹部21を形成することにより、基板搭載部14aは、該基板搭載部14aと拡散板13との距離が少なくとも2つの領域で異なり、かつ、同じ領域では上記距離が同じになるように、折れ曲がって形成されているとも言える。そこで、以下では、バックライトシャーシ14において、上記少なくとも2つの領域のうち、上記距離が最も長い領域を第1の領域R1と称し、第1の領域R1以外の領域、つまり、上記距離が第1の領域R1よりも短い領域を第2の領域R2と称する。この場合、第2の領域R2の基板搭載部14aは、上述した凹部21の底部を形成することになる。 By the way, by forming the concave portion 21 in a part of the substrate mounting portion 14a, the substrate mounting portion 14a has different distances between the substrate mounting portion 14a and the diffusion plate 13 in at least two regions and the same region. Then, it can be said that it is bent and formed so that the above-mentioned distance is the same. Therefore, in the backlight chassis 14, in the backlight chassis 14, the region having the longest distance among the above two regions is referred to as a first region R1, and the region other than the first region R1, that is, the distance is the first region. A region shorter than the region R1 is referred to as a second region R2. In this case, the substrate mounting portion 14a in the second region R2 forms the bottom of the recess 21 described above.
 したがって、上述した回路基板16は、空間T内に、第2の領域R2の基板搭載部14aと間隙Sを介して配置されていると表現することもできる。ここで、空間Tとは、第2の領域R2の基板搭載部14aに対して拡散板13とは反対側に形成される空間であって、基板搭載部14aの折れ曲がりによる第1の領域R1と第2の領域R2との段差に相当する空間を指す。図3は、上記の空間Tを、基板搭載部14aを示すハッチングとは異なるハッチングで示したものである。 Therefore, the above-described circuit board 16 can also be expressed as being disposed in the space T via the board mounting portion 14a and the gap S in the second region R2. Here, the space T is a space formed on the opposite side of the diffusion plate 13 with respect to the substrate mounting portion 14a in the second region R2, and the first region R1 due to the bending of the substrate mounting portion 14a. It refers to a space corresponding to a step with the second region R2. FIG. 3 shows the above-described space T by hatching different from the hatching that shows the substrate mounting portion 14a.
 このように、空間Tは、基板搭載部14aの折れ曲がりによる第1の領域R1と第2の領域R2との段差dによって形成されている。したがって、空間Tの最下部を構成する面(空間Tにおいて第2の領域R2の基板搭載部14aと最も離れた面)を仮想的に考えると、この仮想的な面は、第1の領域R1の基板搭載部14aにおける拡散板13とは反対側の面と同一面となる。つまり、第1の領域R1と第2の領域R2との段差dに相当する空間Tとは、空間Tが第1の領域R1の基板搭載部14aから、さらに下方(拡散板13とは反対側)に飛び出ることなく形成されるものであることを意味する。 Thus, the space T is formed by the step d between the first region R1 and the second region R2 due to the bending of the substrate mounting portion 14a. Therefore, when the surface constituting the lowermost part of the space T (the surface farthest from the substrate mounting portion 14a in the second region R2 in the space T) is virtually considered, this virtual surface is the first region R1. It becomes the same surface as the surface opposite to the diffusion plate 13 in the substrate mounting portion 14a. In other words, the space T corresponding to the step d between the first region R1 and the second region R2 is further below the space T from the substrate mounting portion 14a of the first region R1 (on the opposite side to the diffusion plate 13). ) Means that it is formed without jumping out.
 このように、回路基板16が、上記空間T内に配置されていることにより(上記仮想的な面を含んでこれよりも拡散板13側に配置されていることにより)、バックライト2の最厚部の厚さを、回路基板16の厚さに関係なく、第1の領域R1の基板搭載部14aから拡散板13までの距離とすることができる。したがって、回路基板16が上記空間T内に配置されていることによってバックライトを薄型化できるとも言える。しかも、回路基板16は、空間T内に、第2の領域R2の基板搭載部14aと間隙Sを介して配置されているので、間隙Sへの通風による回路基板および発光素子の放熱を阻害することなく、バックライト2を薄型化できる。 As described above, the circuit board 16 is disposed in the space T (by being disposed closer to the diffusion plate 13 than the virtual surface including the virtual plane), so that Regardless of the thickness of the circuit board 16, the thickness of the thick part can be the distance from the substrate mounting portion 14a to the diffusion plate 13 in the first region R1. Therefore, it can be said that the backlight can be thinned by arranging the circuit board 16 in the space T. In addition, since the circuit board 16 is disposed in the space T via the board mounting portion 14a in the second region R2 and the gap S, the circuit board 16 inhibits heat radiation of the circuit board and the light emitting element due to the ventilation of the gap S. Therefore, the backlight 2 can be made thinner.
 また、本実施形態では、図2に示すように、LED基板12は、第1の領域R1と第2の領域R2との両方に配置されており、それゆえ、複数のLED11が、第1の領域R1と第2の領域R2との両方に配置されている。このとき、第2の領域R2における各LED11の配置密度が、第1の領域R1における各LED11の配置密度よりも高くなるように、各LED11が配置されている。その理由は以下の通りである。なお、各LED11の配置密度とは、単位面積あたりのLED11の個数を指す。 In the present embodiment, as shown in FIG. 2, the LED substrate 12 is arranged in both the first region R1 and the second region R2, and therefore, the plurality of LEDs 11 are arranged in the first region R1. It is arranged in both the region R1 and the second region R2. At this time, the LEDs 11 are arranged such that the arrangement density of the LEDs 11 in the second region R2 is higher than the arrangement density of the LEDs 11 in the first region R1. The reason is as follows. The arrangement density of each LED 11 refers to the number of LEDs 11 per unit area.
 上述した第1の領域R1および第2の領域R2の定義から、LED11と拡散板13との距離は、第1の領域R1よりも第2の領域R2のほうが短い。このため、第1の領域R1および第2の領域R2の各LED11を同じ照度で発光させると、第2の領域R2では、拡散板13での拡散によって光を均一化しきれず、第1の領域R1に比べて、光学的な輝度ムラが発生しやすくなる。 From the definition of the first region R1 and the second region R2 described above, the distance between the LED 11 and the diffusion plate 13 is shorter in the second region R2 than in the first region R1. For this reason, if each LED 11 of 1st area | region R1 and 2nd area | region R2 is light-emitted by the same illumination intensity, in 2nd area | region R2, it cannot fully equalize light by the spreading | diffusion in the diffusion plate 13, and 1st area | region Compared to R1, optical luminance unevenness is likely to occur.
 そこで、本実施形態のように、第2の領域R2における各LED11の配置密度を、第1の領域R1における各LED11の配置密度よりも高くすることにより、第2の領域R2では、各LED11間の距離が短くなるため、拡散板13での拡散によって光を確実に均一化することができ、上記の輝度ムラを低減することができる。 Therefore, as in the present embodiment, by setting the arrangement density of the LEDs 11 in the second region R2 higher than the arrangement density of the LEDs 11 in the first region R1, in the second region R2, between the LEDs 11 Therefore, the light can be reliably made uniform by the diffusion by the diffusion plate 13, and the luminance unevenness can be reduced.
 つまり、LED11の配置ピッチ(または各LED11間の距離)と、光学的な輝度ムラが生じないときのLED11と拡散板13との最小距離とは比例関係にあり、LED11の配置ピッチを短くすれば、LED11と拡散板13との距離を短くしても、光学的な輝度ムラは発生しない。このことは、逆に、上記距離を短くした場合、LED11の配置ピッチを短くしなければ、光学的な輝度ムラが発生することを意味する。 That is, the arrangement pitch of the LEDs 11 (or the distance between the LEDs 11) and the minimum distance between the LED 11 and the diffusion plate 13 when no optical luminance unevenness occurs are in a proportional relationship, and if the arrangement pitch of the LEDs 11 is shortened. Even if the distance between the LED 11 and the diffusion plate 13 is shortened, no optical luminance unevenness occurs. On the contrary, this means that when the distance is shortened, optical luminance unevenness occurs unless the arrangement pitch of the LEDs 11 is shortened.
 本実施形態では、基板搭載部14aに凹部21を形成していることにより、LED11と拡散板13との距離が、第1の領域R1よりも第2の領域R2で短い構造となるため、第2の領域R2におけるLED11の配置ピッチを短くすることで、光学的な輝度ムラを生じさせないようにすることができる。つまり、凹部21を形成することによって生じる輝度ムラを、LED11の配置ピッチを第1の領域R1と第2の領域R2とで変えることで容易に低減することができる。この結果、LED11の最小限の個数で輝度ムラの生じないバックライト2を実現することができる。 In the present embodiment, since the recess 21 is formed in the substrate mounting portion 14a, the distance between the LED 11 and the diffusion plate 13 is shorter in the second region R2 than in the first region R1, By shortening the arrangement pitch of the LEDs 11 in the second region R2, it is possible to prevent optical luminance unevenness from occurring. That is, the luminance unevenness caused by forming the concave portion 21 can be easily reduced by changing the arrangement pitch of the LEDs 11 between the first region R1 and the second region R2. As a result, it is possible to realize the backlight 2 in which luminance unevenness does not occur with the minimum number of LEDs 11.
 また、第2の領域R2での各LED11の配置密度を、第1の領域R1での各LED11の配置密度よりも高くすることにより、例えば、配置密度のより低い第1の領域R1の各LED11を高い輝度で発光させる一方、配置密度のより高い第2の領域R2の各LED11を低い輝度で発光させて、全面で均一な輝度を実現することも可能となる。これにより、第2の領域R2のLED11の1個あたりの電力を抑えて、LED11の温度(LED端子温度)の上昇およびLED11の半田接合部の温度上昇を抑えることができる。つまり、各LED11の配置密度と各LEDに流す電流の大きさとを適切に設定することにより、温度分布を均一に保ちつつ、必要最小限の個数のLED11を用いて所望の輝度を実現することができる。 Further, by setting the arrangement density of the LEDs 11 in the second region R2 higher than the arrangement density of the LEDs 11 in the first region R1, for example, the LEDs 11 in the first region R1 having a lower arrangement density. Can be emitted with a high luminance, and the LEDs 11 in the second region R2 having a higher arrangement density can emit a light with a low luminance to achieve uniform luminance over the entire surface. Thereby, the electric power per LED11 of 2nd area | region R2 can be suppressed, and the raise of the temperature of LED11 (LED terminal temperature) and the temperature rise of the solder joint part of LED11 can be suppressed. In other words, by appropriately setting the arrangement density of the LEDs 11 and the magnitude of the current flowing through the LEDs, it is possible to achieve a desired brightness using the minimum number of LEDs 11 while maintaining a uniform temperature distribution. it can.
 〔実施の形態2〕
 本発明の他の実施の形態について、図面に基づいて説明すれば、以下の通りである。
[Embodiment 2]
The following will describe another embodiment of the present invention with reference to the drawings.
 図4は、本実施形態の液晶表示装置1の概略の構成を示す断面図である。この液晶表示装置1は、バックライト2の第2の領域R2をエッジライト方式とした以外は、実施の形態1と同様の構成である。以下、具体的に説明する。 FIG. 4 is a cross-sectional view showing a schematic configuration of the liquid crystal display device 1 of the present embodiment. The liquid crystal display device 1 has the same configuration as that of the first embodiment except that the second region R2 of the backlight 2 is an edge light system. This will be specifically described below.
 本実施形態のバックライト2では、第2の領域R2に導光板31が配置されている。より詳しくは、第2の領域R2の基板搭載部14a、つまり、凹部21の底部を形成する基板搭載部14aと、拡散板13との間に、導光板31が配置されている。導光板31は、端面(側面)から入射する光を内部で導光し、拡散板13と対向する面から拡散板13に向けて出射する。図5は、第2の領域R2に配置された導光板31を拡散板13側から見たときの平面図(正面図)である。 In the backlight 2 of the present embodiment, the light guide plate 31 is disposed in the second region R2. More specifically, the light guide plate 31 is disposed between the substrate mounting portion 14 a in the second region R 2, that is, the substrate mounting portion 14 a that forms the bottom of the recess 21, and the diffusion plate 13. The light guide plate 31 guides light incident from the end surface (side surface) inside and emits the light toward the diffusion plate 13 from the surface facing the diffusion plate 13. FIG. 5 is a plan view (front view) when the light guide plate 31 disposed in the second region R2 is viewed from the diffusion plate 13 side.
 このように、第2の領域R2に導光板31を配置しているため、点光源としての各LED11は、直下型を構成する第1の発光素子としてのLED11a(図4参照)と、エッジライト方式を構成する第2の発光素子としてのLED11b(図5参照)とを含んでいると言える。ここで、LED11aは、第1の領域R1、つまり、凹部21の形成領域以外の領域に位置して、拡散板13に向けて発光する発光素子である。一方、LED11bは、導光板31の上記端面に向けて発光する発光素子である。なお、LED11bは、導光板31における拡散板13と対向しない端面であれば、左右上下のどの端面に向けて発光してもよい(拡散板13と対向しない左右上下の4つの端面のいずれと対向して配置されてもよい)。 Thus, since the light guide plate 31 is arranged in the second region R2, each LED 11 as a point light source includes an LED 11a (see FIG. 4) as a first light emitting element constituting a direct type and an edge light. It can be said that LED11b (refer FIG. 5) as the 2nd light emitting element which comprises a system is included. Here, the LED 11 a is a light emitting element that is located in the first region R 1, that is, in a region other than the region where the recess 21 is formed, and emits light toward the diffusion plate 13. On the other hand, the LED 11 b is a light emitting element that emits light toward the end face of the light guide plate 31. Note that the LED 11b may emit light toward any of the left, right, top, and bottom end surfaces of the light guide plate 31 that does not face the diffusion plate 13 (opposite any of the four left, right, top, and bottom end surfaces that do not face the diffusion plate 13). May be arranged).
 凹部21が形成される第2の領域R2にLED11を配置して、各LED11から拡散板13に向けて発光する構成とした場合、各LED11と拡散板13との距離が短いために、各LED11の発光時に光学的な輝度ムラが発生しやすくなるのは、実施の形態1で述べた通りである。一方、導光板の端面に光を入射させて面発光するエッジライト方式では、面発光によって輝度ムラを低減することはできるが、導光板への入光時に、表面反射により最低でも10%程度の光の損出が発生するため、光利用効率が低下する。したがって、全面で同一輝度を得るためには、消費電力を増大させる必要がある。 When the LED 11 is arranged in the second region R2 where the concave portion 21 is formed and the LED 11 emits light toward the diffusion plate 13, the distance between each LED 11 and the diffusion plate 13 is short, so that each LED 11 As described in the first embodiment, optical luminance unevenness is likely to occur when the light is emitted. On the other hand, in the edge light method in which light is incident on the end face of the light guide plate and the surface light is emitted, the luminance unevenness can be reduced by the surface light emission, but at least about 10% due to the surface reflection when entering the light guide plate. Since light loss occurs, light utilization efficiency decreases. Therefore, in order to obtain the same luminance on the entire surface, it is necessary to increase power consumption.
 そこで、本実施形態のように、第2の領域R2の基板搭載部14aと拡散板13との間に導光板31を配置し、各LED11aが拡散板13に向けて発光する一方で、各LED11bが導光板31の端面に向けて発光する構成とすることにより、凹部21の形成によって輝度ムラが生じやすくなった第2の領域R2では、導光板31での面発光によって輝度ムラを低減しつつ、第1の領域R1では、直下型の採用によって、エッジライト方式で生じるような光利用効率の低下を回避することができる。 Therefore, as in the present embodiment, the light guide plate 31 is disposed between the substrate mounting portion 14a and the diffusion plate 13 in the second region R2, and each LED 11a emits light toward the diffusion plate 13, while each LED 11b. Is configured to emit light toward the end face of the light guide plate 31, and in the second region R <b> 2 in which unevenness in brightness is likely to occur due to the formation of the recess 21, the unevenness in brightness is reduced by surface light emission at the light guide plate 31. In the first region R1, the use of the direct type can avoid a decrease in light utilization efficiency that occurs in the edge light system.
 つまり、バックライト2の一部にエッジライト方式を採用することにより、単純な(全面が)直下型の構成に比べて、薄型で輝度ムラのないバックライト2を実現できるとともに、厚みの制約が少ない直下型の部分(第1の領域R1)では、エッジライト方式に比べて光利用効率がよいため、消費電力の少ない、環境性能に優れたバックライト2を実現できる。 In other words, by adopting the edge light system as a part of the backlight 2, it is possible to realize the backlight 2 that is thin and has no luminance unevenness compared to a simple (entire-surface) direct-type structure, and has a thickness limitation. Since the light directing efficiency is better in the direct part (first region R1) than in the edge light system, the backlight 2 with low power consumption and excellent environmental performance can be realized.
 また、エッジライト方式では、LED11bが導光板31の端部に配置されるため、温度が上がりやすい領域(例えば第2の領域R2の中心部分)には、LEDが配置されない構造となり、温度上昇によるLEDの特性低下(例えば輝度低下)を回避することも可能となる。 Further, in the edge light system, the LED 11b is disposed at the end of the light guide plate 31, so that the LED is not disposed in a region where the temperature is likely to rise (for example, the central portion of the second region R2), and the temperature rises. It is also possible to avoid deterioration of LED characteristics (for example, luminance reduction).
 〔実施の形態3〕
 本発明のさらに他の実施の形態について、図面に基づいて説明すれば、以下の通りである。本実施形態では、バックライトシャーシ14における上述した第1の領域R1と第2の領域R2との段差に相当する空間Tの数や位置のバリエーションについて説明する。
[Embodiment 3]
The following will describe still another embodiment of the present invention with reference to the drawings. In the present embodiment, variations in the number and positions of the spaces T corresponding to the steps between the first region R1 and the second region R2 described above in the backlight chassis 14 will be described.
 なお、以下での説明の便宜上、基板搭載部14aにおけるLED基板12の搭載部(搭載領域)は、中央部Cと2つの周辺部Pとで構成されているものとする。ここで、基板搭載部14aの中央部Cとは、基板搭載部14aの中心を含む領域であり、例えば上下方向に縦長の領域となっている。一方、基板搭載部14aの周辺部Pとは、中央部Cの周辺の領域であり、例えば中央部Cの左隣および右隣に位置して上下方向に縦長の領域となっている。以下の説明を参照することにより、バックライトシャーシ14は、第1の領域R1と第2の領域R2との段差に相当する空間Tを少なくとも1個有していればよく、また、空間Tが形成される位置も基板搭載部14aの中央部には限定されないことが明らかになる。 For convenience of explanation below, it is assumed that the mounting portion (mounting region) of the LED substrate 12 in the substrate mounting portion 14a is composed of a central portion C and two peripheral portions P. Here, the central portion C of the substrate mounting portion 14a is a region including the center of the substrate mounting portion 14a, and is, for example, a vertically long region in the vertical direction. On the other hand, the peripheral portion P of the substrate mounting portion 14a is a region around the central portion C. For example, the peripheral portion P is located on the left side and the right side of the central portion C and is a vertically long region. By referring to the following description, the backlight chassis 14 only needs to have at least one space T corresponding to a step between the first region R1 and the second region R2, and the space T It is clear that the position to be formed is not limited to the central portion of the substrate mounting portion 14a.
 図6~図9は、本実施形態の液晶表示装置1の構成のバリエーションを示す断面図である。図6に示すように、バックライトシャーシ14の基板搭載部14aは、2つの周辺部Pのうちの一方が拡散板13側にシフトするように折れ曲がって形成されていてもよい。また、図7に示すように、基板搭載部14aは、中央部Cと一方の周辺部Pとが合わせて拡散板13側にシフトするように折れ曲がって形成されていてもよい。さらに、図8に示すように、基板搭載部14aは、両方の周辺部Pが拡散板13側にシフトするように折れ曲がって形成されていてもよい。この場合、バックライトシャーシ14は、第2の領域R2を2個有することになり、第1の領域R1と第2の領域R2との段差に相当する空間Tも2個形成されることになる。また、図9に示すように、基板搭載部14aは、中央部Cと、両方の周辺部Pの一部とが拡散板13側にシフトするように折れ曲がって形成されていてもよい。この場合、バックライトシャーシ14は、第2の領域R2を3個有することになり、第1の領域R1と第2の領域R2との段差に相当する空間Tも3個形成されることになる。なお、図示はしないが、上記の空間Tは4個以上形成されていてもよい。 6 to 9 are cross-sectional views showing variations of the configuration of the liquid crystal display device 1 of the present embodiment. As shown in FIG. 6, the substrate mounting portion 14 a of the backlight chassis 14 may be formed to be bent so that one of the two peripheral portions P is shifted to the diffusion plate 13 side. Further, as shown in FIG. 7, the substrate mounting portion 14a may be formed to be bent so that the central portion C and the one peripheral portion P are combined and shifted to the diffusion plate 13 side. Further, as shown in FIG. 8, the substrate mounting portion 14a may be formed to be bent so that both peripheral portions P are shifted to the diffusion plate 13 side. In this case, the backlight chassis 14 has two second regions R2, and two spaces T corresponding to the step between the first region R1 and the second region R2 are also formed. . Moreover, as shown in FIG. 9, the board | substrate mounting part 14a may be bent and formed so that the center part C and a part of both peripheral part P may shift to the diffusion plate 13 side. In this case, the backlight chassis 14 has three second regions R2, and three spaces T corresponding to the step between the first region R1 and the second region R2 are also formed. . Although not shown, four or more spaces T may be formed.
 図6~図9のように基板搭載部14aを形成しても、第1の領域R1と第2の領域R2との段差に相当する空間Tに回路基板16を配置するとともに、第2の領域R2の基板搭載部14aと間隙Sを介して回路基板16を配置することにより、回路基板16がバックライトシャーシ14から外側に飛び出ず、LED11および回路基板16の放熱のための間隙Sも確保されているので、実施の形態1および2と同様に、LED11および回路基板16の放熱を阻害することなく、バックライト2ひいては液晶表示装置1を薄型化することができる。 Even if the substrate mounting portion 14a is formed as shown in FIGS. 6 to 9, the circuit board 16 is disposed in the space T corresponding to the step between the first region R1 and the second region R2, and the second region By arranging the circuit board 16 via the board mounting portion 14a of R2 and the gap S, the circuit board 16 does not jump out of the backlight chassis 14, and a gap S for heat dissipation of the LED 11 and the circuit board 16 is also secured. Therefore, similarly to the first and second embodiments, the backlight 2 and thus the liquid crystal display device 1 can be thinned without inhibiting the heat radiation of the LED 11 and the circuit board 16.
 ところで、基板搭載部14aの中央部Cでは、周辺部Pに比べて、バックライト2で発生する熱(LED11の発光による熱や回路基板16で発生する熱を含む)がこもりやすく、温度が上昇しやすい。このことを考慮すると、図7および図9の構成のように、第2の領域R2は、基板搭載部14aの中央部Cを含んでいることが望ましい。この場合、少なくとも、基板搭載部14aの中央部Cに対して拡散板13とは反対側に、第1の領域R1と第2の領域R2との段差に相当する空間Tが形成されるので、その空間T内に基板搭載部14aと間隙Sを介して回路基板16を配置することにより、間隙Sへの通風によって、温度が上昇しやすい基板搭載部14aの中央部Cでの放熱性を高めながら、バックライト2ひいては液晶表示装置1を薄型化することができる。なお、実施の形態1および2の構成についても、基板搭載部14aの中央部に、空間Tを構成する凹部21が形成されて、その凹部21内に基板搭載部14aと間隙Sを介して回路基板16が配置されているので、上記と同様の効果を得ることができる。 By the way, in the central part C of the board mounting part 14a, compared with the peripheral part P, the heat generated in the backlight 2 (including the heat generated by the light emission of the LED 11 and the heat generated in the circuit board 16) is easily trapped, and the temperature rises. It's easy to do. In consideration of this, it is desirable that the second region R2 includes the central portion C of the substrate mounting portion 14a as in the configurations of FIGS. In this case, a space T corresponding to a step between the first region R1 and the second region R2 is formed at least on the side opposite to the diffusion plate 13 with respect to the central portion C of the substrate mounting portion 14a. By disposing the circuit board 16 in the space T via the substrate mounting portion 14a and the gap S, the heat dissipation at the central portion C of the substrate mounting portion 14a that is likely to rise in temperature due to the ventilation of the gap S is improved. However, the backlight 2 and thus the liquid crystal display device 1 can be thinned. In the configurations of the first and second embodiments as well, a recess 21 constituting the space T is formed in the central portion of the substrate mounting portion 14a, and a circuit is formed in the recess 21 via the substrate mounting portion 14a and the gap S. Since the board | substrate 16 is arrange | positioned, the effect similar to the above can be acquired.
 なお、上述した各実施の形態の構成を適宜組み合わせて、バックライト2ひいては液晶表示装置1を構成することも勿論可能である。例えば、第1の領域R1と第2の領域R2とでLED11の配置密度を変える実施の形態1の構成を、実施の形態3の図6~図9の構成に適用することは可能である。さらに、第2の領域R2に導光板31を設けてエッジライト方式とする実施の形態2の構成を、実施の形態3の図6~図9の構成に適用することも可能である。 Of course, it is possible to configure the backlight 2 and thus the liquid crystal display device 1 by appropriately combining the configurations of the above-described embodiments. For example, the configuration of the first embodiment in which the arrangement density of the LEDs 11 is changed between the first region R1 and the second region R2 can be applied to the configurations of FIGS. 6 to 9 of the third embodiment. Further, the configuration of the second embodiment in which the light guide plate 31 is provided in the second region R2 and the edge light system is used can be applied to the configurations of FIGS. 6 to 9 of the third embodiment.
 なお、以上では、バックライト2を液晶パネル3を照明するための照明装置(光源装置)として用いた例について説明したが、バックライト2を部屋の照明装置として単体で用いることも可能である。 In addition, although the example which used the backlight 2 as an illuminating device (light source device) for illuminating the liquid crystal panel 3 was demonstrated above, the backlight 2 can also be used alone as a room illuminating device.
 本発明の面発光装置は、例えば液晶表示装置のバックライトや部屋の照明装置に利用することができる。 The surface light-emitting device of the present invention can be used, for example, for a backlight of a liquid crystal display device or a room lighting device.
   1   液晶表示装置
   2   バックライト(面発光装置)
   3   液晶パネル
  11   LED(発光素子)
  11a  LED(第1の発光素子)
  11b  LED(第2の発光素子)
  12   LED基板(基板)
  13   拡散板
  14   バックライトシャーシ(シャーシ部材)
  14a  基板搭載部
  14b  拡散板支持部
  16   回路基板
  21   凹部
  31   導光板
   C   中央部
   P   周辺部
   R1  第1の領域
   R2  第2の領域
   S   間隙
   T   空間
1 Liquid Crystal Display 2 Backlight (Surface Emitting Device)
3 Liquid crystal panel 11 LED (light emitting element)
11a LED (first light emitting element)
11b LED (second light emitting element)
12 LED substrate (substrate)
13 Diffuser 14 Backlight chassis (chassis member)
14a Substrate mounting portion 14b Diffusion plate support portion 16 Circuit board 21 Recessed portion 31 Light guide plate C Central portion P Peripheral portion R1 First region R2 Second region S Gap T Space

Claims (6)

  1.  複数の発光素子を搭載した素子搭載基板と、
     前記各発光素子から出射される光を拡散して出射する拡散板と、
     前記素子搭載基板が搭載される基板搭載部と、前記基板搭載部と連結されて、前記各発光素子の光出射側に位置する前記拡散板を支持する拡散板支持部とを有するシャーシ部材と、
     前記各発光素子の発光を制御するための回路基板とを備えた面発光装置であって、
     前記シャーシ部材の前記基板搭載部は、該基板搭載部と前記拡散板との距離が少なくとも2つの領域で異なり、かつ、同じ領域では前記距離が同じになるように、折れ曲がって形成されており、
     前記シャーシ部材において、前記少なくとも2つの領域のうち、前記距離が最も長い領域を第1の領域とし、前記距離が前記第1の領域よりも短い領域を第2の領域とすると、
     前記回路基板は、前記第2の領域の基板搭載部に対して前記拡散板とは反対側に形成される空間であって、前記基板搭載部の折れ曲がりによる前記第1の領域と前記第2の領域との段差に相当する空間内に、前記第2の領域の基板搭載部と間隙を介して配置されていることを特徴とする面発光装置。
    An element mounting board on which a plurality of light emitting elements are mounted;
    A diffusion plate that diffuses and emits light emitted from each of the light emitting elements;
    A chassis member having a substrate mounting portion on which the element mounting substrate is mounted; and a diffusion plate support portion that is connected to the substrate mounting portion and supports the diffusion plate located on the light emitting side of each light emitting element;
    A surface light emitting device comprising a circuit board for controlling light emission of each light emitting element,
    The board mounting portion of the chassis member is formed to be bent so that the distance between the board mounting portion and the diffusion plate is different in at least two regions, and the distance is the same in the same region,
    In the chassis member, when the region having the longest distance among the at least two regions is the first region, and the region having the distance shorter than the first region is the second region,
    The circuit board is a space formed on a side opposite to the diffusion plate with respect to the substrate mounting portion in the second region, and the first region and the second region due to the bending of the substrate mounting portion. A surface light-emitting device, wherein the surface light-emitting device is disposed in a space corresponding to a step with respect to a region via a gap between the substrate mounting portion of the second region.
  2.  前記シャーシ部材は、前記基板搭載部の一部が前記拡散板側に窪むことによって形成される凹部を有しており、
     前記第2の領域の基板搭載部は、前記凹部の底部を形成しており、
     前記回路基板は、前記凹部内に配置されているとともに、前記凹部の底部を形成する前記第2の領域の基板搭載部と間隙を介して配置されていることを特徴とする請求項1に記載の面発光装置。
    The chassis member has a recess formed by a part of the substrate mounting portion being recessed toward the diffusion plate,
    The substrate mounting portion of the second region forms the bottom of the recess;
    The said circuit board is arrange | positioned through the board | substrate mounting part of the said 2nd area | region which forms the bottom part of the said recessed part while being arrange | positioned in the said recessed part, and is arrange | positioned. Surface light emitting device.
  3.  前記各発光素子は、前記シャーシ部材の前記第1の領域および前記第2の領域の両方に配置されており、
     前記第2の領域における前記各発光素子の配置密度は、前記第1の領域における前記各発光素子の配置密度よりも高いことを特徴とする請求項1または2に記載の面発光装置。
    Each of the light emitting elements is disposed in both the first region and the second region of the chassis member,
    3. The surface light emitting device according to claim 1, wherein an arrangement density of the light emitting elements in the second region is higher than an arrangement density of the light emitting elements in the first region.
  4.  前記第2の領域の基板搭載部と前記拡散板との間には、端面から入射する光を内部で導光して前記拡散板に向けて出射する導光板が配置されており、
     前記各発光素子は、前記第1の領域に位置して前記拡散板に向けて発光する第1の発光素子と、前記導光板の前記端面に向けて発光する第2の発光素子とを含んでいることを特徴とする請求項1または2に記載の面発光装置。
    Between the substrate mounting portion of the second region and the diffusion plate, a light guide plate that guides light incident from an end face inside and emits the light toward the diffusion plate is disposed,
    Each of the light emitting elements includes a first light emitting element that is located in the first region and emits light toward the diffusion plate, and a second light emitting element that emits light toward the end surface of the light guide plate. The surface light-emitting device according to claim 1, wherein the surface light-emitting device is provided.
  5.  前記第2の領域は、前記基板搭載部の中央部を含んでいることを特徴とする請求項1から4のいずれかに記載の面発光装置。 5. The surface light emitting device according to claim 1, wherein the second region includes a central portion of the substrate mounting portion.
  6.  請求項1から5のいずれかに記載の面発光装置と、
     前記面発光装置から供給される光を変調して映像を表示する液晶パネルとを備えていることを特徴とする液晶表示装置。
    A surface light-emitting device according to any one of claims 1 to 5,
    A liquid crystal display device, comprising: a liquid crystal panel that displays light by modulating light supplied from the surface light emitting device.
PCT/JP2012/068158 2011-09-13 2012-07-18 Surface light emitting device and liquid crystal display device provided with same WO2013038802A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011199468 2011-09-13
JP2011-199468 2011-09-13

Publications (1)

Publication Number Publication Date
WO2013038802A1 true WO2013038802A1 (en) 2013-03-21

Family

ID=47883044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/068158 WO2013038802A1 (en) 2011-09-13 2012-07-18 Surface light emitting device and liquid crystal display device provided with same

Country Status (1)

Country Link
WO (1) WO2013038802A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103869591A (en) * 2013-12-12 2014-06-18 友达光电股份有限公司 Display module and head-up display
EP3200017A3 (en) * 2016-02-01 2017-09-13 Lg Electronics Inc. Display device
WO2017173703A1 (en) * 2016-04-05 2017-10-12 深圳市华星光电技术有限公司 Backlight module and liquid crystal display
EP2863255B1 (en) * 2013-10-16 2018-04-11 Samsung Electronics Co., Ltd. Liquid crystal display apparatus
US20190140153A1 (en) * 2016-10-27 2019-05-09 Funai Electric Co., Ltd. Display device
TWI780688B (en) * 2021-04-23 2022-10-11 緯創資通股份有限公司 Supporting back plate and direct back-lit display with a thin type
EP4375737A1 (en) * 2022-11-22 2024-05-29 Lg Electronics Inc. Display device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264042A (en) * 2006-03-27 2007-10-11 Funai Electric Co Ltd Direct type backlight device and liquid crystal tv device
JP2009076456A (en) * 2007-08-31 2009-04-09 Sharp Corp Backlight device and display device
WO2010089929A1 (en) * 2009-02-05 2010-08-12 シャープ株式会社 Illumination device, display device and television receiver device
WO2010100786A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Light source device and liquid crystal display device
WO2011033835A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Lighting device, display apparatus, and television receiver
JP2011119180A (en) * 2009-12-07 2011-06-16 Panasonic Corp Lighting system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007264042A (en) * 2006-03-27 2007-10-11 Funai Electric Co Ltd Direct type backlight device and liquid crystal tv device
JP2009076456A (en) * 2007-08-31 2009-04-09 Sharp Corp Backlight device and display device
WO2010089929A1 (en) * 2009-02-05 2010-08-12 シャープ株式会社 Illumination device, display device and television receiver device
WO2010100786A1 (en) * 2009-03-02 2010-09-10 シャープ株式会社 Light source device and liquid crystal display device
WO2011033835A1 (en) * 2009-09-15 2011-03-24 シャープ株式会社 Lighting device, display apparatus, and television receiver
JP2011119180A (en) * 2009-12-07 2011-06-16 Panasonic Corp Lighting system

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2863255B1 (en) * 2013-10-16 2018-04-11 Samsung Electronics Co., Ltd. Liquid crystal display apparatus
CN103869591A (en) * 2013-12-12 2014-06-18 友达光电股份有限公司 Display module and head-up display
CN103869591B (en) * 2013-12-12 2016-03-16 友达光电股份有限公司 Display module and head-up display
EP3200017A3 (en) * 2016-02-01 2017-09-13 Lg Electronics Inc. Display device
US10162219B2 (en) 2016-02-01 2018-12-25 Lg Electronics Inc. Display device
WO2017173703A1 (en) * 2016-04-05 2017-10-12 深圳市华星光电技术有限公司 Backlight module and liquid crystal display
US10522726B2 (en) 2016-10-27 2019-12-31 Funai Electric Co., Ltd. Display device
EP3489744A1 (en) * 2016-10-27 2019-05-29 Funai Electric Co., Ltd. Display device
US20190140153A1 (en) * 2016-10-27 2019-05-09 Funai Electric Co., Ltd. Display device
US10854799B2 (en) 2016-10-27 2020-12-01 Funai Electric Co., Ltd. Display device
US11538971B2 (en) 2016-10-27 2022-12-27 Funai Electric Co., Ltd. Light source
TWI780688B (en) * 2021-04-23 2022-10-11 緯創資通股份有限公司 Supporting back plate and direct back-lit display with a thin type
CN115240541A (en) * 2021-04-23 2022-10-25 纬联电子科技(中山)有限公司 Supporting backboard and thin direct type display thereof
US20220342459A1 (en) * 2021-04-23 2022-10-27 Wistron Corporation Supporting back plate and direct back-lit display with a thin type
US11762434B2 (en) 2021-04-23 2023-09-19 Wistron Corporation Direct backlight for a display, with light bars in different planes
EP4375737A1 (en) * 2022-11-22 2024-05-29 Lg Electronics Inc. Display device

Similar Documents

Publication Publication Date Title
WO2013038802A1 (en) Surface light emitting device and liquid crystal display device provided with same
US10670919B2 (en) Backlight device and liquid-crystal display device
JP5848612B2 (en) Surface light source device and liquid crystal display device including the same
WO2011099328A1 (en) Backlight device, liquid crystal display device and television receiver
WO2017002308A1 (en) Backlight device and liquid crystal display device
JP2010107753A (en) Liquid crystal display device
KR101867044B1 (en) Backlight unit, display apparatus using the same, and the lighting apparatus including the same
TW201104320A (en) Backlight unit
WO2012002010A1 (en) Liquid crystal display device and television receiver
KR102089970B1 (en) Liquid crystal display apparatus
KR20080053699A (en) Backlight assembly for liquid crystal display device
JP6297457B2 (en) Lighting device, display device, and television receiver
JP2010177076A (en) Tandem surface light source device, and liquid crystal display device using the same
JP7108897B2 (en) image display device
US20140300844A1 (en) Display device
US10620476B2 (en) Image display apparatus
US20140009965A1 (en) Lighting device and display device
KR20130035120A (en) Backlight unit and lcd moudule inclulding the same
KR101920753B1 (en) Backlight unit
KR100834892B1 (en) Lamp guiding device and direct type backlight unit using the same
KR101299453B1 (en) Display apparatus
US8502843B2 (en) Liquid crystal display device and liquid crystal display unit
JP5527230B2 (en) Backlight device and image display device
US8876357B2 (en) Lighting device, display device and television receiver
WO2012026162A1 (en) Lighting apparatus, display apparatus, and television receiver apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831271

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP