WO2013038764A1 - 二次電池システム及び二次電池の運用方法 - Google Patents

二次電池システム及び二次電池の運用方法 Download PDF

Info

Publication number
WO2013038764A1
WO2013038764A1 PCT/JP2012/065092 JP2012065092W WO2013038764A1 WO 2013038764 A1 WO2013038764 A1 WO 2013038764A1 JP 2012065092 W JP2012065092 W JP 2012065092W WO 2013038764 A1 WO2013038764 A1 WO 2013038764A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
soc
threshold value
battery
control device
Prior art date
Application number
PCT/JP2012/065092
Other languages
English (en)
French (fr)
Inventor
本郷 廣生
耕治 工藤
石井 健一
小林 憲司
隆之 丹生
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to EP12832386.2A priority Critical patent/EP2757652A4/en
Priority to US14/237,909 priority patent/US9450439B2/en
Publication of WO2013038764A1 publication Critical patent/WO2013038764A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a secondary battery system including a secondary battery and a method for operating the secondary battery.
  • Lithium ion secondary batteries that use lithium ion storage / release have higher energy density and higher operating voltage compared to, for example, nickel-cadmium (Ni-Cd) and nickel-hydrogen (Ni-MH) batteries of the same capacity. Since it has advantages, it is widely used in information processing equipment and communication equipment such as personal computers and mobile phones that are required to be reduced in size and weight.
  • lithium-ion secondary batteries as power sources for electric vehicles and hybrid vehicles has been studied, and solar cells and wind power being introduced for the realization of a low-carbon society associated with global warming issues.
  • Patent Literature 1 and Patent Literature 2 propose a technique for suppressing a reduction in product life by devising a charging / discharging method for a lithium ion secondary battery.
  • Patent Document 1 discloses a lithium ion secondary battery in which the amount of lithium ions moving between the positive electrode active material and the negative electrode active material during charge / discharge is 95% or less of the reversibly movable lithium ion amount. It is described that the charging / discharging of is controlled.
  • Patent Document 2 discloses charging / discharging of a lithium ion secondary battery so that the discharge end voltage during discharge is 3.2 to 3.1 V and the upper limit voltage during charging is 4.0 to 4.5 V. It is described to control.
  • a structure using lithium cobalt oxide, lithium manganate, or lithium nickelate as a positive electrode material (positive electrode active material) is known for a lithium ion secondary battery.
  • a negative electrode material negative electrode active material
  • group is known.
  • the present applicant when storing a manganese-based lithium ion secondary battery using lithium manganate as a positive electrode material in a specific SOC (State of Charge), It has been found that the battery performance deteriorates rapidly (battery capacity decreases).
  • SOC refers to the ratio of the amount of electricity charged to the capacity of the lithium ion secondary battery.
  • storage in this specification refers to leaving a lithium ion secondary battery in a state of a certain SOC value.
  • the deterioration of battery performance due to this specific SOC is when using a lithium ion secondary battery in a usage form that is often stored in a fully charged state, such as UPS (Uninterruptible Power Supply). It is not a big problem.
  • UPS Uninterruptible Power Supply
  • the lithium ion secondary battery is stored at the specific SOC. It is also possible. In such a case, the battery performance of the lithium ion secondary battery is rapidly deteriorated.
  • an object of the present invention is to provide a secondary battery system and a secondary battery operation method capable of suppressing a reduction in product life of the secondary battery during storage.
  • the secondary battery system of the present invention is a secondary battery system including a secondary battery having a deterioration progress SOC that is an SOC whose battery performance deteriorates during storage, A control device that detects the SOC of the secondary battery, charges the secondary battery with power from a power supply source, and supplies power discharged from the secondary battery to a load; A preset first threshold value smaller than the deterioration progressing SOC of the secondary battery and a second threshold value larger than the deterioration progressing SOC are maintained, and the minimum SOC of the secondary battery is maximized.
  • the range of the SOC is divided into at least two regions with a section from the first threshold value to the second threshold value as a boundary, and the control device includes the second threshold value in any of the regions.
  • the operation method of the secondary battery of the present invention is an operation method of the secondary battery having a deterioration progress SOC which is an SOC in which the battery performance deteriorates during storage,
  • a controller that detects the SOC of the secondary battery, charges the secondary battery with power from a power supply source, and supplies the power discharged from the secondary battery to a load;
  • Computer Holding a preset first threshold value smaller than the deterioration progress SOC of the secondary battery and a second threshold value larger than the deterioration progress SOC; Dividing the range from the minimum SOC to the maximum SOC of the secondary battery into at least two regions with a section from the first threshold value to the second threshold value as a boundary;
  • the control device charges or discharges the secondary battery in any of the regions.
  • FIG. 1 is a block diagram showing a configuration example of the secondary battery system of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration example of the information processing apparatus illustrated in FIG.
  • FIG. 3 is a graph showing an example of the relationship between the SOC during storage of the secondary battery and the deterioration progress rate of battery performance.
  • FIG. 1 is a block diagram showing a configuration example of the secondary battery system of the present invention
  • FIG. 2 is a block diagram showing a configuration example of the information processing apparatus shown in FIG.
  • the secondary battery system of the present invention includes a lithium ion secondary battery (hereinafter simply referred to as “secondary battery”) 1 and a control device 2 that charges and discharges the secondary battery 1.
  • secondary battery a lithium ion secondary battery
  • the consumer 3 is a power user (factory, building, facility, house, etc.) equipped with loads 6 such as various electric devices and heat pump water heaters that consume power supplied from the power system and the secondary battery 1. ).
  • loads 6 such as various electric devices and heat pump water heaters that consume power supplied from the power system and the secondary battery 1.
  • a load 6 shown in FIG. 1 collectively shows a large number of loads that the customer 3 has.
  • the secondary battery 1 is linked to a power system via a switchboard 5 provided in the control device 2 and the customer 3.
  • the consumer 3 may include a distributed power source 7 such as the above-described renewable power source, fuel cell, private power generation device, gas cogeneration system, and the like.
  • the distributed power source 7 is connected to the power system via the PCS (Power Control System) 8 for the distributed power source 7 and the switchboard 5.
  • PCS Power Control System
  • the information processing device 4 and the control device 2 included in the customer 3 are connected to each other so that information, commands, and the like can be transmitted and received via known communication means.
  • a well-known wireless communication means or a well-known wired communication means may be used.
  • the wireless communication means for example, a well-known Zigbee wireless system using a radio frequency in the 950 MHz band can be considered.
  • the wired communication means for example, a well-known PLC (Power Line Communication) system that transmits and receives information using a distribution line (power line) can be considered.
  • FIG. 1 shows a configuration example in which the information processing device 4 controls the secondary battery 1 of one consumer 3 linked to the power system via the control device 2.
  • Multiple customers may be sufficient as the customer 3 provided with the control apparatus 2 and the secondary battery 1 made into a control object.
  • those consumers 3 may be linked adjacent to the power grid, or may be linked to the power grid in a remote area.
  • the secondary battery 1 is supplied with electric power necessary for charging from an electric power system or a distributed power source 7, and is used, for example, to level the peak demand of the electric power system.
  • a manganese-based lithium ion secondary battery is used as the secondary battery 1, for example.
  • the manganese-based lithium ion secondary battery is mainly composed of lithium manganate (Li x Mn y O z : x is about 1, or about 0.65, or about 0.1 to 0.5. Y is about 2 and z is about 4).
  • the composition ratio of Li, Mn, and O is not limited to these numerical values.
  • the positive electrode material only needs to be mainly lithium manganate, and may contain various substances such as Al, Mg, Cr, Fe, Co, Ni, and Cu.
  • the present invention is not limited to a manganese-based lithium ion secondary battery, and can be applied to any secondary battery as long as performance deterioration proceeds rapidly with a specific SOC.
  • a dotted line on the secondary battery 1 shown in FIG. 1 indicates a specific SOC in which the performance deterioration of the secondary battery 1 rapidly proceeds during storage (hereinafter referred to as deterioration progressing SOC d ). Further, the solid line on the secondary battery 1 shown in FIG. 1 schematically shows the amount of electricity (SOC) accumulated with respect to the capacity of the secondary battery 1.
  • the customer 3 includes one secondary battery 1 .
  • the number of secondary batteries 1 included in the customer 3 is as follows. It is not limited to one.
  • the secondary battery 1 may be configured to charge / discharge in units of battery packs in which a plurality of secondary batteries (cells) are accommodated in one package, or may be configured to be charged / discharged in units of individual cells.
  • the control device 2 is supplied from, for example, a well-known charging device and protection device manufactured according to the performance and characteristics of the secondary battery 1, which are provided from the manufacturer and seller of the secondary battery 1, and the power system.
  • PCS with a well-known bidirectional inverter that converts AC power into DC power that can be stored in the secondary battery 1 and converts DC power discharged from the secondary battery 1 into AC power that can be connected to the power system ( It can be realized with Power Control System).
  • the control apparatus 2 is provided with the communication means for transmitting / receiving information with the information processing apparatus 4 shown in FIG. 1, and charges / discharges the secondary battery 1 according to the instruction
  • the protection device detects the SOC of the secondary battery 1 and the current value input to and output from the secondary battery 1, and the charging device charges the charging current (constant current) based on the SOC and current value detected by the protection device. And change the charging voltage (constant voltage).
  • the control device 2 may detect the value of the output voltage of the secondary battery 1 instead of the SOC.
  • the control device 2 may include an A / D converter for converting the SOC value into a digital value.
  • the information processing device 4 receives the SOC value of each secondary battery 1 transmitted from the control device 2 when the secondary battery 1 is charged and discharged, and the control device of each consumer 3 based on the received SOC value
  • the charging / discharging of the secondary battery 1 is controlled by transmitting an instruction to 2.
  • the information processing apparatus 4 can be realized by, for example, a computer shown in FIG.
  • the computer shown in FIG. 2 outputs a processing device 10 that executes predetermined processing according to a program, an input device 20 for inputting commands and information to the processing device 10, and a processing result of the processing device 10.
  • Output device 30 outputs a processing device 10 that executes predetermined processing according to a program, an input device 20 for inputting commands and information to the processing device 10, and a processing result of the processing device 10.
  • the processing device 10 includes a CPU 11, a main storage device 12 that temporarily holds information necessary for the processing of the CPU 11, a recording medium 13 on which a program for causing the CPU 11 to execute the processing of the present invention is recorded, and a secondary A data storage device 14 in which values such as the rated capacity, maximum SOC, minimum SOC, first threshold value SOC L and second threshold value SOC U described later are stored, a main storage device 12, and a record A memory control interface unit 15 that controls data transfer with the medium 13 and the data storage device 14; an I / O interface unit 16 that is an interface device with the input device 20 and the output device 30; And a communication control device 17 for transmitting and receiving the data, and these are connected via a bus 18.
  • the processing device 10 controls the charging / discharging of the secondary battery 1 included in the customer 3 through the control device 2 by executing processing described later according to the program recorded in the recording medium 13.
  • the recording medium 13 may be a magnetic disk, a semiconductor memory, an optical disk, or other recording medium.
  • the data storage device 14 does not need to be provided in the processing device 10 and may be an independent device.
  • FIG. 3 is a graph showing an example of the relationship between the SOC during storage of the secondary battery and the deterioration progress rate of the battery performance.
  • FIG. 3 shows a state in which the deterioration progress rate of the battery performance becomes maximum at SOC d from the minimum SOC (0%) to the maximum SOC (100%).
  • the range of up to SOC from the minimum SOC of the secondary battery 1, and the boundary of the deterioration SOC d into two regions The secondary battery 1 is divided and used only in any region. However, if the degradation progressing SOC d is divided at the boundary, the SOC may reach the degradation progression SOC d when the secondary battery 1 is operated. Therefore, a first threshold value SOC L smaller than the deterioration progressing SOC d of the secondary battery 1 and a second threshold value SOC U larger than the deterioration progressing SOC d are set in advance, and the first threshold value is set.
  • the area from the SOC L to the second threshold value SOC U is divided into two areas.
  • the first threshold value SOC L and the second threshold value SOC U are set by the manufacturer, seller, or user of the secondary battery 1 corresponding to the deterioration progress SOC d .
  • the values of the first threshold value SOC L and the second threshold value SOC U for each secondary battery 1 are transmitted from the control device 2 to the information processing device 4, for example, so that the data storage of the information processing device 4 is performed. What is necessary is just to store in the apparatus 14.
  • the information processing device 4 monitors the SOC value of the secondary battery 1 transmitted from the control device 2, and when the secondary battery 1 is charged, the SOC reaches the first threshold value SOC L (or the maximum SOC). Then, the control device 2 stops the charging operation of the secondary battery 1 or switches the secondary battery 1 to the discharging operation.
  • the controller 2 stops the discharge operation of the secondary battery 1 or the secondary battery 1 is switched to a charging operation using, for example, power from the distribution system.
  • the information processing device 4 causes the control device 2 to continue charging from the first threshold value SOC L to the second threshold value SOC U when the secondary battery 1 is charged, and the secondary battery 1 During the discharge of, the control device 2 may continue the discharge from the second threshold value SOC U to the first threshold value SOC L.
  • the secondary battery 1 when the secondary battery 1 is charged with electric power generated by a renewable power source such as a solar battery, the power generation by the renewable power source is stopped when the secondary battery 1 is deteriorated SOC d and the charging operation is performed. May stop. In that case, the information processing apparatus 1 should just make the control apparatus 2 continue the charge operation of the secondary battery 1 using the electric power supplied from an electric power grid
  • scheduling may be performed so that the charging operation does not stop between the first threshold value SOC L and the second threshold value SOC U.
  • the secondary battery 1 when the secondary battery 1 is discharged, the operation of all the electric devices that are the load 6 of the customer 3 is stopped, so that the possibility of the discharge operation being stopped due to the deterioration progress SOC d of the secondary battery 1 is also denied. Can not. In that case, the information processing apparatus 4 should just continue discharge operation of the secondary battery 1 by operating the said heat pump type water heater with which the consumer 3 is equipped, for example. Note that the secondary battery being charged is equivalent to an electric device that consumes power for other secondary batteries. Therefore, when there is a secondary battery (external secondary battery) that is not included in the secondary battery system of the present embodiment, the secondary battery 1 can be continuously discharged by charging the external secondary battery. Good.
  • the internal load when an internal load that consumes power is provided in the secondary battery 1 and the discharge operation is stopped due to the degradation progress SOC d of the secondary battery 1, the internal load is connected between the positive and negative terminals of the secondary battery 1. Thus, the discharging operation of the secondary battery 1 may be continued.
  • the hot water heater, the external secondary battery, and the internal load may be connected to the information processing device 4 through communication means and be controllable in accordance with instructions from the information processing device 4.
  • this communication means a well-known wireless communication means or a well-known wired communication means may be used.
  • the charging current and the charging voltage are increased within the allowable range of the secondary battery 1 during the period of charging from the first threshold value SOC L to the second threshold value SOC U.
  • the charging speed may be increased.
  • the discharge rate is increased by increasing the current flowing through the load 6 within the allowable range of the secondary battery 1. You may speed up.
  • the charging current and the charging voltage can be controlled by a charging device provided in the control device 2 manufactured according to the performance and characteristics of the secondary battery 1. As a method of increasing the load current, a method of operating the heat pump type water heater or a method of charging an external secondary battery can be considered.
  • the secondary battery 1 has one deterioration progressing SOC d is shown.
  • the deterioration progresses in the range from the minimum SOC to the maximum SOC. It suffices to divide into a plurality of regions according to the number of SOCs d and use it as a secondary battery only in any region.
  • the first threshold value SOC L and the second threshold value SOC U may be set for each deterioration progressing SOC d as described above.
  • the above description shows an example in which the deterioration progress SOC d of each secondary battery 1 is constant, but the deterioration progress SOC d may vary depending on the operating time of the secondary battery 1 and the number of times of charge / discharge. . Therefore, the first threshold value SOC L and the second threshold value SOC U may be changed according to the operation time and the number of charge / discharge cycles.
  • the range from the minimum SOC to the maximum SOC of the secondary battery 1 is divided into a plurality of regions with a section from the first threshold value SOC L to the second threshold value SOC U as a boundary.
  • the charging operation or the discharging operation is not stopped by the degradation progressing SOC d of the secondary battery 1. Therefore, shortening of the product life of the secondary battery 1 during storage can be suppressed.
  • the controller 2 When the battery capacity is to be utilized to the maximum, when the secondary battery 1 is charged, the controller 2 continues charging from the first threshold value SOC L to the second threshold value SOC U. When the secondary battery 1 is discharged, the control device 2 continues the discharge from the second threshold value SOC U to the first threshold value SOC L, so that the secondary battery 1 is charged with the deterioration progressing SOC d. Or the discharge operation does not stop. In particular, by accelerating the charging and discharging speed between the first threshold SOC L and second threshold SOC U, in order to shorten the residence time in the deterioration SOC d vicinity, Ya charging operation in the deterioration SOC d The risk of stopping the discharge operation can be further reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 二次電池は保存時に電池性能が劣化するSOCである劣化進行SOCを有し、制御装置で充放電される。情報処理装置は、予め設定された、二次電池の劣化進行SOCよりも小さい第1のしきい値及び劣化進行SOCよりも大きい第2のしきい値を保持し、二次電池の最小SOCから最大SOCの範囲を、第1のしきい値から第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、制御装置に、何れかの領域内にて二次電池を充電または放電させる。

Description

二次電池システム及び二次電池の運用方法
 本発明は二次電池を備えた二次電池システム及び二次電池の運用方法に関する。
 リチウムイオンの吸蔵・放出を利用したリチウムイオン二次電池は、例えば同容量のニカド(Ni-Cd)電池やニッケル水素(Ni-MH)電池と比べてエネルギー密度が高く、動作電圧が高い等の利点を有するため、小型化・軽量化が要求されるパーソナルコンピュータや携帯電話機等の情報処理機器、通信機器で広く用いられている。
 また、近年では、電気自動車やハイブリッド自動車等の電源としてもリチウムイオン二次電池を用いることが検討され、さらに地球温暖化問題に伴う低炭素社会の実現へ向けて導入されつつある太陽電池や風力発電等の再生可能電源で発電された電力を貯蔵する蓄電池にもリチウムイオン二次電池を用いることが検討されている。
 リチウムイオン二次電池を電力貯蔵や電気自動車等の大型の電源としても普及させるには、製造コストを低減するだけでなく、メンテナンス等に要するコストも低減する必要があり、そのためには製品寿命を延ばすことが重要になる。
 リチウムイオン二次電池の製品寿命を延ばす方法としては、材料や構造を見直すことで製品寿命そのものを延ばす方法も考えられるが、運用方法等に起因する製品寿命の短縮を抑制する方法もある。例えば特許文献1や特許文献2では、リチウムイオン二次電池に対する充放電方法を工夫することで、製品寿命が短縮するのを抑制する技術が提案されている。
 特許文献1には、充放電時における、正極活物質と負極活物質間で移動するリチウムイオン量を、可逆的に移動可能なリチウムイオン量の95%以下となるように、リチウムイオン二次電池の充放電を制御することが記載されている。
 また、特許文献2には、放電時の放電終止電圧が3.2~3.1Vとなり、充電時の上限電圧が4.0~4.5Vとなるようにリチウムイオン二次電池の充放電を制御することが記載されている。
 リチウムイオン二次電池には、正極材料(正極活物質)として、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウムを用いる構成が知られている。また、負極材料(負極活物質)としては、グラファイト系やコークス系を用いる構成が知られている。
 本出願人は、これら各種のリチウムイオン二次電池のうち、正極材料にマンガン酸リチウムを用いたマンガン系のリチウムイオン二次電池を、特定のSOC(State of Charge:充電状態)で保存すると、電池性能が急速に劣化(電池容量が低下)することを見出した。
 なお、SOCとは、リチウムイオン二次電池の容量に対する充電された電気量の比率を指す。上記電池性能が急速に劣化する特定のSOCは、充電の上限である最大SOCよりも小さく、放電の下限である最小SOCよりも大きい、例えばSOC=40%程度の値である。また、本願明細書で言う「保存」とは、リチウムイオン二次電池をあるSOCの値の状態で放置しておくことを指す。
 この特定のSOCで電池性能が劣化することは、満充電状態で保存することが多い利用形態、例えばUPS(Uninterruptible Power Supply:無停電電源装置)等でリチウムイオン二次電池を使用する場合には大きな問題とはならない。
 しかしながら、上記最大SOCと最小SOC間の任意のSOCで保存される利用形態、例えば上記再生可能電源で発電された電力を貯蔵する用途では、リチウムイオン二次電池が上記特定のSOCで保存されることも考えられる。そのような場合、リチウムイオン二次電池の電池性能が急速に劣化してしまう。
特開2000-030751号公報 特開2001-307781号公報
 そこで、本発明は、保存時における二次電池の製品寿命の短縮を抑制できる二次電池システム及び二次電池の運用方法を提供することを目的とする。
 上記目的を達成するため本発明の二次電池システムは、保存時に電池性能が劣化するSOCである劣化進行SOCを有する二次電池を備えた二次電池システムであって、
 前記二次電池のSOCを検出すると共に、電力供給元からの電力で前記二次電池を充電し、前記二次電池から放電された電力を負荷へ供給する制御装置と、
 予め設定された、前記二次電池の前記劣化進行SOCよりも小さい第1のしきい値及び前記劣化進行SOCよりも大きい第2のしきい値を保持し、前記二次電池の最小SOCから最大SOCの範囲を、前記第1のしきい値から前記第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、前記制御装置に、何れかの前記領域内にて前記二次電池を充電または放電させる情報処理装置と、
を有する。
 一方、本発明の二次電池の運用方法は、保存時に電池性能が劣化するSOCである劣化進行SOCを有する二次電池の運用方法であって、
 前記二次電池のSOCを検出すると共に、電力供給元からの電力で前記二次電池を充電し、前記二次電池から放電された電力を負荷へ供給する制御装置を備えておき、
 コンピュータが、
 予め設定された、前記二次電池の前記劣化進行SOCよりも小さい第1のしきい値及び前記劣化進行SOCよりも大きい第2のしきい値を保持し、
 前記二次電池の最小SOCから最大SOCの範囲を、前記第1のしきい値から前記第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、
 前記制御装置に、何れかの前記領域内にて前記二次電池を充電または放電させる方法である。
図1は、本発明の二次電池システムの一構成例を示すブロック図である。 図2は、図1に示した情報処理装置の一構成例を示すブロック図である。 図3は、二次電池の保存時のSOCと電池性能の劣化進行速度との関係例を示すグラフである。
 次に本発明について図面を参照して説明する。
 図1は本発明の二次電池システムの一構成例を示すブロック図であり、図2は図1に示した情報処理装置の一構成例を示すブロック図である。
 図1に示すように、本発明の二次電池システムは、リチウムイオン二次電池(以下、単に「二次電池」と称す)1及び該二次電池1を充放電させる制御装置2を備える、電力系統に連系された需要家3と、需要家3が備える制御装置2を制御することで後述する本発明の二次電池の運用方法を実現する情報処理装置4とを有する構成である。
 需要家3は、電力系統や二次電池1から供給される電力を消費する各種の電気機器やヒートポンプ式の給湯器等の負荷6を備えた電力利用者(工場、建造物、施設、住宅等)である。図1に示す負荷6は、需要家3が備える多数の負荷をまとめて示している。二次電池1は、制御装置2及び需要家3が備える配電盤5を介して電力系統に連系される。需要家3は、上記再生可能電源、燃料電池、自家発電装置、ガスコージェネレーションシステム等の分散型電源7を備えていてもよい。その場合、分散型電源7は、該分散型電源7用のPCS(Power Control System)8及び配電盤5を介して電力系統に連系される。
 情報処理装置4と需要家3が備える制御装置2とは、周知の通信手段を介して情報やコマンド等が送受信可能に接続されている。通信手段としては、周知の無線通信手段を用いてもよく、周知の有線通信手段を用いてもよい。無線通信手段としては、例えば950MHz帯の無線周波数を利用する周知のZigbee無線方式等が考えられる。有線通信手段としては、例えば配電線(電力線)を利用して情報を送受信する周知のPLC(Power Line Communication)方式等が考えられる。
 図1では、電力系統に連系された1戸の需要家3の二次電池1を、制御装置2を介して情報処理装置4で制御する構成例を示しているが、情報処理装置4が制御対象とする制御装置2及び二次電池1を備える需要家3は、複数戸でもよい。また、それらの需要家3は、電力系統に隣接して連系していてもよく、離れた地域で電力系統に連系していてもよい。
 二次電池1は、電力系統や分散型電源7から充電に必要な電力が供給され、例えば電力系統のピーク需要を平準化するために用いられる。二次電池1には、例えばマンガン系のリチウムイオン二次電池が用いられる。マンガン系のリチウムイオン二次電池とは、正極材料の主体がマンガン酸リチウム(LiMn:xは、約1、または約0.65、または約0.1~0.5である。yは約2であり、zは約4である)であるものを指す。但し、Li、Mn、Oの組成比は、これらの数値に限定されるものではない。また、正極材料は、マンガン酸リチウムが主体であればよく、Al,Mg,Cr,Fe,Co,Ni,Cu等の各種の物質を含んでいてもよい。本発明は、マンガン系のリチウムイオン二次電池に限らず、特定のSOCで性能劣化が急速に進むものであれば、どのような二次電池にも適用可能である。
 図1に示す二次電池1上の点線は、保存時に二次電池1の性能劣化が急速に進む特定のSOC(以下、劣化進行SOCと称す)を示している。また、図1に示す二次電池1上の実線は二次電池1の容量に対して蓄積されている電気量(SOC)を模式的に示している。
 図1では、需要家3が1台の二次電池1を備える例を示しているが、制御装置2によって個別に充放電が可能であれば、需要家3が備える二次電池1の数は1台に限定されるものではない。二次電池1は、1つのパッケージ内に複数の二次電池(セル)が収容されたバッテリーパック単位で充放電できる構成でもよく、個別のセル単位で充放電できる構成でもよい。
 制御装置2は、例えば二次電池1の製造者や販売者から提供される、二次電池1の性能や特性に合わせて製造された周知の充電装置及び保護装置、並びに電力系統から供給される交流電力を二次電池1に蓄電可能な直流電力に変換し、二次電池1から放電された直流電力を電力系統へ連系可能な交流電力に変換する周知の双方向インバータを備えたPCS(Power Control System)等で実現できる。また、制御装置2は、図1に示した情報処理装置4と情報を送受信するための通信手段を備え、情報処理装置4の指示にしたがって二次電池1を充放電させる。
 一般に、保護装置は、二次電池1のSOCや二次電池1に入出力される電流値を検出し、充電装置は保護装置で検出されたSOCや電流値に基づいて充電電流(定電流)や充電電圧(定電圧)を切り換える。通常、二次電池1のSOCは出力電圧とほぼ1対1に対応するため、制御装置2はSOCに代えて二次電池1の出力電圧の値を検出してもよい。制御装置2で検出する二次電池1のSOCがアナログ値である場合、制御装置2には該SOCの値をデジタル値に変換するためのA/D変換器を備えていてもよい。
 情報処理装置4は、二次電池1の充放電時に制御装置2から送信される各二次電池1のSOCの値を受信し、該受信したSOCの値に基づいて各需要家3の制御装置2へ指示を送信することで二次電池1の充放電を制御する。情報処理装置4は、例えば図2に示すコンピュータによって実現できる。
 図2に示すコンピュータは、プログラムにしたがって所定の処理を実行する処理装置10と、処理装置10に対してコマンドや情報等を入力するための入力装置20と、処理装置10の処理結果を出力するための出力装置30とを有する。
 処理装置10は、CPU11と、CPU11の処理で必要な情報を一時的に保持する主記憶装置12と、CPU11に本発明の処理を実行させるためのプログラムが記録された記録媒体13と、二次電池1の定格容量、最大SOC、最小SOC、後述する第1のしきい値SOC、第2のしきい値SOC等の値が格納されるデータ蓄積装置14と、主記憶装置12、記録媒体13及びデータ蓄積装置14とのデータ転送を制御するメモリ制御インタフェース部15と、入力装置20及び出力装置30とのインタフェース装置であるI/Oインタフェース部16と、各制御装置2と情報やコマンドを送受信するための通信制御装置17とを備え、それらがバス18を介して接続された構成である。
 処理装置10は、記録媒体13に記録されたプログラムにしたがって、後述する処理を実行することで制御装置2を介して需要家3が備える二次電池1の充放電を制御する。なお、記録媒体13は、磁気ディスク、半導体メモリ、光ディスクあるいはその他の記録媒体であってもよい。また、データ蓄積装置14は、処理装置10内に備える必要はなく、独立した装置であってもよい。
 次に、本発明の二次電池の運用方法について説明する。
 図3は、二次電池の保存時のSOCと電池性能の劣化進行速度との関係例を示すグラフである。
 上述したように、例えばマンガン系のリチウムイオン二次電池は、劣化進行SOCで保存すると、電池性能が急速に劣化(電池容量が低下)する。図3は、最小SOC(0%)から最大SOC(100%)において、電池性能の劣化進行速度がSOCで最大になる様子を示している。
 本発明では、二次電池1の充放電時に劣化進行SOCを通過しないように、該二次電池1の最小SOCから最大SOCまでの範囲を、劣化進行SOCを境にして2つの領域に分割し、該二次電池1を何れかの領域でのみ使用する。但し、劣化進行SOCを境に分割すると、二次電池1の運用時にSOCが劣化進行SOCに到達するおそれがある。そのため、予め二次電池1の劣化進行SOCよりも小さい第1のしきい値SOC及び劣化進行SOCよりも大きい第2のしきい値SOCを設定し、該第1のしきい値SOCから第2のしきい値SOCまでの区間を境にして2つの領域に分割する。図1に示す二次電池1の場合は、最小SOCから第1のしきい値SOCまでの領域(図3の領域(a))、または第2のしきい値SOCから最大SOCまでの領域(図3の領域(b))で使用することになる。
 第1のしきい値SOC及び第2のしきい値SOCは、劣化進行SOCに対応して、二次電池1の製造者や販売者、あるいはユーザによって設定される。二次電池1毎の第1のしきい値SOC及び第2のしきい値SOCの値は、例えば制御装置2から情報処理装置4へ送信することで、該情報処理装置4のデータ蓄積装置14に格納すればよい。
 情報処理装置4は、制御装置2から送信される二次電池1のSOCの値を監視し、二次電池1の充電時、SOCが第1のしきい値SOC(または最大SOC)に到達すると、制御装置2に該二次電池1の充電動作を停止させる、または該二次電池1を放電動作に切り換える。
 一方、二次電池1の放電時、SOCが第2のしきい値SOC(または最小SOC)に到達すると、制御装置2に該二次電池1の放電動作を停止させる、または該二次電池1を、例えば配電系統からの電力を利用した充電動作に切り換える。
 ところで、二次電池1の最小SOCから最大SOCまでを2つの領域に分割し、何れか一方の領域のみを使用すると、該二次電池1で利用できる電池容量が見かけ上小さくなってしまう。
 そこで、電池容量を最大限に利用したい場合、すなわち二次電池1の最小SOCから最大SOCまでの範囲を使用する場合(図3の領域(c))は、劣化進行SOCで充電動作または放電動作が停止しないように制御する。
 その場合、情報処理装置4は、二次電池1の充電時においては、制御装置2に第1のしきい値SOCから第2のしきい値SOCまで充電を継続させ、二次電池1の放電時においては、制御装置2に第2のしきい値SOCから第1のしきい値SOCまで放電を継続させればよい。
 例えば、二次電池1を太陽電池等の再生可能電源で発電された電力で充電している場合、二次電池1が劣化進行SOCであるときに再生可能電源による発電が停止して充電動作が停止する可能性がある。その場合、情報処理装置1は、電力系統から供給される電力を用いて制御装置2に二次電池1の充電動作を継続させればよい。二次電池1を電力系統から供給される電力のみで充電する場合は、第1のしきい値SOCと第2のしきい値SOC間で充電動作が停止しないようにスケジューリングすればよい。
 一方、二次電池1の放電時では、需要家3の負荷6である全ての電気機器の動作が停止することで、二次電池1の劣化進行SOCで放電動作が停止する可能性も否定できない。その場合、情報処理装置4は、例えば需要家3が備える上記ヒートポンプ式の給湯器を作動させることで二次電池1の放電動作を継続させればよい。なお、充電中の二次電池は、他の二次電池にとって電力を消費する電気機器と同等である。したがって、本実施形態の二次電池システムに含まれない二次電池(外部二次電池)がある場合は、該外部二次電池を充電することで二次電池1の放電動作を継続させてもよい。また、二次電池1内に電力を消費する内部負荷を設け、二次電池1の劣化進行SOCで放電動作が停止する場合、該内部負荷を二次電池1の正負端子間に接続することで二次電池1の放電動作を継続させてもよい。
 給湯器、外部二次電池、内部負荷は、通信手段を介して情報処理装置4と接続しておき、情報処理装置4からの指示にしたがって制御可能にしておけばよい。この通信手段としては、周知の無線通信手段を用いてもよく、周知の有線通信手段を用いてもよい。
 また、本発明では、第1のしきい値SOCから第2のしきい値SOCまで充電している期間において、二次電池1の許容範囲内で充電電流や充電電圧を大きくすることで充電速度を速めてもよい。同様に、第2のしきい値SOCから第1のしきい値SOCまで放電させている期間において、二次電池1の許容範囲内で負荷6に流れる電流を大きくすることで放電速度を速めてもよい。充電電流や充電電圧は、二次電池1の性能や特性に合わせて製造された上記制御装置2が備える充電装置によって制御できる。負荷電流を増大させる方法としては、上記ヒートポンプ式の給湯器を動作させる方法や外部二次電池に充電する方法が考えられる。
 上記説明では、二次電池1が1つの劣化進行SOCを有する例を示したが、二次電池1が複数の劣化進行SOCを有する場合は、最小SOCから最大SOCまでの範囲を劣化進行SOC数に応じて複数の領域に分割し、何れかの領域でのみ二次電池として使用すればよい。その場合も、上述したように劣化進行SOC毎に、第1のしきい値SOC及び第2のしきい値SOCをそれぞれ設定すればよい。
 また、上記説明では各二次電池1の劣化進行SOCが一定である例を示しているが、劣化進行SOCは二次電池1の稼動時間や充放電回数に応じて変動することがある。したがって、上記第1のしきい値SOC及び第2のしきい値SOCは、稼動時間や充放電回数に応じて変更してもよい。
 本発明によれば、二次電池1の最小SOCから最大SOCまでの範囲を、第1のしきい値SOCから第2のしきい値SOCまでの区間を境にして複数の領域に分割し、該二次電池を何れかの領域でのみ使用することで、二次電池1の劣化進行SOCで充電動作または放電動作が停止することがない。そのため、保存時における二次電池1の製品寿命の短縮を抑制できる。
 また、電池容量を最大限に利用したい場合、二次電池1の充電時においては、制御装置2に第1のしきい値SOCから第2のしきい値SOCまで充電を継続させ、二次電池1の放電時においては、制御装置2に第2のしきい値SOCから第1のしきい値SOCまで放電を継続させることで、二次電池1の劣化進行SOCで充電動作または放電動作が停止することがない。特に第1のしきい値SOCと第2のしきい値SOC間における充放電速度を速めることで、劣化進行SOC近傍で滞留する時間が短縮するため、劣化進行SOCで充電動作や放電動作が停止する危険をより低減できる。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されものではない。本願発明の構成や詳細は本願発明のスコープ内で当業者が理解し得る様々な変更が可能である。
 この出願は、2011年9月15日に出願された特願2011-202094号を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (9)

  1.  保存時に電池性能が劣化するSOCである劣化進行SOCを有する二次電池を備えた二次電池システムであって、
     前記二次電池のSOCを検出すると共に、電力供給元からの電力で前記二次電池を充電し、前記二次電池から放電された電力を負荷へ供給する制御装置と、
     予め設定された、前記二次電池の前記劣化進行SOCよりも小さい第1のしきい値及び前記劣化進行SOCよりも大きい第2のしきい値を保持し、前記二次電池の最小SOCから最大SOCの範囲を、前記第1のしきい値から前記第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、前記制御装置に、何れかの前記領域内にて前記二次電池を充電または放電させる情報処理装置と、
    を有する二次電池システム。
  2.  前記情報処理装置は、
     前記二次電池を前記最小SOCから前記最大SOCの範囲で使用する場合、前記二次電池の充電時、前記制御装置に前記第1のしきい値から前記第2のしきい値まで前記二次電池の充電動作を継続させ、前記二次電池の放電時、前記制御装置に前記第2のしきい値から前記第1のしきい値まで前記二次電池の放電動作を継続させる請求項1記載の二次電池システム。
  3.  前記二次電池は、
     正極材料の主体がマンガン酸リチウムである請求項1または2記載の充放電システム。
  4.  保存時に電池性能が劣化するSOCである劣化進行SOCを有する二次電池の運用方法であって、
     前記二次電池のSOCを検出すると共に、電力供給元からの電力で前記二次電池を充電し、前記二次電池から放電された電力を負荷へ供給する制御装置を備えておき、
     コンピュータが、
     予め設定された、前記二次電池の前記劣化進行SOCよりも小さい第1のしきい値及び前記劣化進行SOCよりも大きい第2のしきい値を保持し、
     前記二次電池の最小SOCから最大SOCの範囲を、前記第1のしきい値から前記第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、
     前記制御装置に、何れかの前記領域内にて前記二次電池を充電または放電させる二次電池の運用方法。
  5.  前記コンピュータが、
     前記二次電池を前記最小SOCから前記最大SOCの範囲で使用する場合、前記二次電池の充電時、前記制御装置に前記第1のしきい値から前記第2のしきい値まで前記二次電池の充電動作を継続させ、前記二次電池の放電時、前記制御装置に前記第2のしきい値から前記第1のしきい値まで前記二次電池の放電動作を継続させる請求項4記載の二次電池の運用方法。
  6.  前記二次電池が、
     正極材料の主体がマンガン酸リチウムである請求項4または5記載の二次電池の運用方法。
  7.  保存時に電池性能が劣化するSOCである劣化進行SOCを有する二次電池を制御する情報処理装置であって、
     予め設定された、前記二次電池の前記劣化進行SOCよりも小さい第1のしきい値及び前記劣化進行SOCよりも大きい第2のしきい値を保持する記憶装置と、
     前記二次電池の最小SOCから最大SOCの範囲を、前記第1のしきい値から前記第2のしきい値までの区間を境にして少なくとも2つの領域に分割し、
     前記二次電池のSOCを検出すると共に、電力供給元からの電力で前記二次電池を充電し、前記二次電池から放電された電力を負荷へ供給する制御装置に、何れかの前記領域内にて前記二次電池を充電または放電させる処理装置と、
    を有する情報処理装置。
  8.  前記処理装置は、
     前記二次電池を前記最小SOCから前記最大SOCの範囲で使用する場合、前記二次電池の充電時、前記制御装置に前記第1のしきい値から前記第2のしきい値まで前記二次電池の充電動作を継続させ、前記二次電池の放電時、前記制御装置に前記第2のしきい値から前記第1のしきい値まで前記二次電池の放電動作を継続させる請求項7記載の情報処理装置。
  9.  前記二次電池は、
     正極材料の主体がマンガン酸リチウムである請求項7または8記載の情報処理装置。
PCT/JP2012/065092 2011-09-15 2012-06-13 二次電池システム及び二次電池の運用方法 WO2013038764A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12832386.2A EP2757652A4 (en) 2011-09-15 2012-06-13 SECONDARY BATTERY SYSTEM, AND METHOD OF OPERATING SECONDARY BATTERY
US14/237,909 US9450439B2 (en) 2011-09-15 2012-06-13 Secondary battery system and operating method of secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011202094 2011-09-15
JP2011-202094 2011-09-15

Publications (1)

Publication Number Publication Date
WO2013038764A1 true WO2013038764A1 (ja) 2013-03-21

Family

ID=47883008

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065092 WO2013038764A1 (ja) 2011-09-15 2012-06-13 二次電池システム及び二次電池の運用方法

Country Status (4)

Country Link
US (1) US9450439B2 (ja)
EP (1) EP2757652A4 (ja)
JP (1) JPWO2013038764A1 (ja)
WO (1) WO2013038764A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122907A (ja) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 二次電池の管理装置
JP2015171197A (ja) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 二次電池の管理装置
WO2019138805A1 (ja) * 2018-01-12 2019-07-18 三菱自動車工業株式会社 車両の制御装置
JPWO2021079922A1 (ja) * 2019-10-25 2021-04-29
WO2023197132A1 (zh) * 2022-04-12 2023-10-19 东莞新能安科技有限公司 电化学装置管理方法、装置、充电装置、电池***及介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160063756A (ko) * 2014-11-27 2016-06-07 삼성에스디아이 주식회사 배터리 팩 및 이의 제어 방법
KR102400501B1 (ko) * 2015-09-24 2022-05-20 삼성에스디아이 주식회사 무정전 전원 공급장치
KR102400502B1 (ko) * 2015-09-24 2022-05-20 삼성에스디아이 주식회사 에너지 저장 시스템
JP2017085754A (ja) * 2015-10-27 2017-05-18 本田技研工業株式会社 蓄電装置、輸送機器及び制御方法
JP6254139B2 (ja) * 2015-11-28 2017-12-27 本田技研工業株式会社 電力供給システム及び輸送機器、並びに、電力伝送方法
JP6681963B1 (ja) * 2018-10-31 2020-04-15 日本たばこ産業株式会社 エアロゾル吸引器用の電源ユニット、その制御方法及び制御プログラム
US20220410755A1 (en) * 2021-06-25 2022-12-29 Zoox, Inc. Fleet charging station architecture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030751A (ja) 1998-07-10 2000-01-28 Toyota Central Res & Dev Lab Inc リチウム二次電池の充放電方法
JP2001307781A (ja) 2000-04-24 2001-11-02 Hitachi Ltd リチウム二次電池及びその充放電方法
WO2009037881A1 (ja) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. 電力貯蔵システム
JP2010097760A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 蓄電システム
WO2011118294A1 (ja) * 2010-03-23 2011-09-29 日本電気株式会社 リチウムイオン二次電池の充放電方法及び充放電システム

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071653B2 (en) 2003-05-30 2006-07-04 Matsushita Electric Industrial Co., Ltd. Method for charging a non-aqueous electrolyte secondary battery and charger therefor
JP4538418B2 (ja) * 2006-02-15 2010-09-08 トヨタ自動車株式会社 二次電池の充放電制御装置
JP4930482B2 (ja) 2008-09-30 2012-05-16 株式会社デンソー バッテリの充放電制御装置
WO2011085327A2 (en) * 2010-01-11 2011-07-14 Amprius Inc. Variable capacity cell assembly

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000030751A (ja) 1998-07-10 2000-01-28 Toyota Central Res & Dev Lab Inc リチウム二次電池の充放電方法
JP2001307781A (ja) 2000-04-24 2001-11-02 Hitachi Ltd リチウム二次電池及びその充放電方法
WO2009037881A1 (ja) * 2007-09-18 2009-03-26 Mitsubishi Heavy Industries, Ltd. 電力貯蔵システム
JP2010097760A (ja) * 2008-10-15 2010-04-30 Mitsubishi Heavy Ind Ltd 蓄電システム
WO2011118294A1 (ja) * 2010-03-23 2011-09-29 日本電気株式会社 リチウムイオン二次電池の充放電方法及び充放電システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2757652A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015122907A (ja) * 2013-12-24 2015-07-02 三菱自動車工業株式会社 二次電池の管理装置
JP2015171197A (ja) * 2014-03-05 2015-09-28 三菱自動車工業株式会社 二次電池の管理装置
WO2019138805A1 (ja) * 2018-01-12 2019-07-18 三菱自動車工業株式会社 車両の制御装置
JPWO2021079922A1 (ja) * 2019-10-25 2021-04-29
WO2021079922A1 (ja) * 2019-10-25 2021-04-29 株式会社村田製作所 蓄電装置および充放電の制御方法
JP7287483B2 (ja) 2019-10-25 2023-06-06 株式会社村田製作所 蓄電装置および充放電の制御方法
WO2023197132A1 (zh) * 2022-04-12 2023-10-19 东莞新能安科技有限公司 电化学装置管理方法、装置、充电装置、电池***及介质

Also Published As

Publication number Publication date
EP2757652A4 (en) 2015-05-13
JPWO2013038764A1 (ja) 2015-03-23
US20140197798A1 (en) 2014-07-17
US9450439B2 (en) 2016-09-20
EP2757652A1 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
WO2013038764A1 (ja) 二次電池システム及び二次電池の運用方法
JP5569643B2 (ja) 二次電池システム及びその充放電方法
JP5682583B2 (ja) リチウムイオン二次電池の充放電方法及び充放電システム
US10141551B2 (en) Battery system
CN106816884B (zh) 能量存储***
JP5583781B2 (ja) 電力管理システム
JP5327407B2 (ja) 蓄電池システム及びその制御方法
US20130187465A1 (en) Power management system
US20120176094A1 (en) Battery charge and discharge control apparatus and method for controlling battery charge and discharge
JP2014166015A (ja) 定置用蓄電システム及び制御方法
TW201300255A (zh) 混合動力電源系統
US20220285950A1 (en) Energy storage system and battery management method
US20120306275A1 (en) System and Method for Charging and Discharging a Li-ION Battery
JP2013176282A (ja) 発電設備及び電力貯蔵装置を備えた発電システム及びその制御方法並びにプログラム
JP5861063B2 (ja) 蓄電装置及び電力供給システム
JP2013215045A (ja) 蓄電システム、カートリッジ
JP2017127169A (ja) 余剰電力の貯蔵用蓄電システム
Yuan et al. A hybrid fuel cell-battery power system
Alimardani et al. A new approach to improve li-ion battery lifetime in home energy storage system with photovoltaic modules
RU2561193C2 (ru) Выравнивающее устройство для иерархической системы управления батареей электрических накопителей энергии с энергообменной изолированной магистралью постоянного тока и блоками управления накопителями
KR20210059498A (ko) 에너지 통합관리를 위해 태양광 발전을 이용한 배터리 충방전 제어장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12832386

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14237909

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013533545

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012832386

Country of ref document: EP