WO2013037288A1 - 直下式导光结构、直下式导光板及发光装置 - Google Patents

直下式导光结构、直下式导光板及发光装置 Download PDF

Info

Publication number
WO2013037288A1
WO2013037288A1 PCT/CN2012/081260 CN2012081260W WO2013037288A1 WO 2013037288 A1 WO2013037288 A1 WO 2013037288A1 CN 2012081260 W CN2012081260 W CN 2012081260W WO 2013037288 A1 WO2013037288 A1 WO 2013037288A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
direct
guiding structure
circuit board
transmitting body
Prior art date
Application number
PCT/CN2012/081260
Other languages
English (en)
French (fr)
Inventor
高智伟
侯维新
应文逡
高启仁
Original Assignee
敦网光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201110271826 external-priority patent/CN102411166B/zh
Application filed by 敦网光电股份有限公司 filed Critical 敦网光电股份有限公司
Publication of WO2013037288A1 publication Critical patent/WO2013037288A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0045Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide
    • G02B6/0046Tapered light guide, e.g. wedge-shaped light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/002Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces
    • G02B6/0021Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it by shaping at least a portion of the light guide, e.g. with collimating, focussing or diverging surfaces for housing at least a part of the light source, e.g. by forming holes or recesses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0068Arrangements of plural sources, e.g. multi-colour light sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0066Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form characterised by the light source being coupled to the light guide
    • G02B6/0073Light emitting diode [LED]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133603Direct backlight with LEDs
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses

Definitions

  • the invention relates to a direct light guiding structure, a direct light guiding plate and a light emitting device, in particular to a direct light guiding structure and a direct light guiding plate capable of uniform light intensity, and an application of the direct type Light guiding structure or light emitting device of the direct light guiding plate.
  • the Current flat lighting device Device gradually adopts a plurality of light-emitting diodes as a light source to replace the conventional white heat lamp or fluorescent tube.
  • the light-emitting diodes are usually disposed directly at the bottom of the planar light-emitting device.
  • the light emitting diodes emit light, and the intensity of the light is strongest in the direction of the positive viewing angle (that is, the direction of the light emitting surface of the vertical light emitting diode). Therefore, the light output from the planar light-emitting device is not uniform, and a local dark spot (the region where the light intensity is the weakest) or a local bright spot (the region where the light intensity is the strongest) can be observed.
  • a light diffusing plate may be disposed in front of the light emitting diodes and kept at a distance from the light emitting diodes.
  • this improvement will increase the overall thickness of the planar light-emitting device.
  • Another way to improve local dark spots or bright spots is to increase the number of light-emitting diodes.
  • this improvement will increase the manufacturing cost of the planar light-emitting device.
  • the main object of the present invention is to provide a direct light guiding structure, a direct light guiding plate and a light emitting device, wherein the direct light guiding structure or the direct light guiding plate can receive light and then uniformly output light;
  • the direct light guiding structure or the direct light guiding plate can be applied.
  • the direct light guiding structure disclosed in the present invention comprises a light transmitting body and a plurality of microstructures; wherein the light transmitting body comprises an upper surface, a lower surface, an upper tapered groove and a lower receiving groove, The tapered groove is formed on the upper surface, and the lower receiving groove is formed on the lower surface, and the upper tapered groove has a curved surface whose inclination is continuously changed; the microstructures are disposed on the light transmitting body.
  • the direct light guide plate disclosed in the present invention comprises: a plurality of the above-mentioned direct light guiding structures, and the light transmitting bodies of the direct light guiding structures are connected.
  • the illuminating device of the present invention comprises at least one circuit board, at least one light source and at least one of the aforementioned direct light guiding structures; wherein the circuit board comprises a top surface and a bottom surface; the light source is disposed on the circuit board The top surface; the direct light guiding structure is disposed on the top surface of the circuit board, and the light source is received in the lower receiving groove of the direct light guiding structure.
  • FIG. 1 is a cross-sectional view of a light emitting device in accordance with a first preferred embodiment of the present invention
  • FIG. 2 is a perspective view of the light-transmitting body of the direct-type light guiding structure of FIG. 1;
  • 3A is a schematic view of light transmitted in the light-transmitting body of FIG. 1;
  • 3B is a light energy distribution diagram in the light-transmitting body of FIG. 1;
  • Figure 3C is a diagram showing the angle distribution of the light corresponding to Figure 3B;
  • 3D is another schematic view of light transmitted in the light-transmitting body of FIG. 1;
  • FIG. 4A is a cross-sectional view of a light emitting device in accordance with a second preferred embodiment of the present invention.
  • FIG. 4B is a schematic view of light transmitted in the light-transmitting body of FIG. 4A;
  • Figure 5 is a cross-sectional view of a light emitting device in accordance with a third preferred embodiment of the present invention.
  • Figure 6 is a cross-sectional view showing a light emitting device in accordance with a fourth preferred embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing a light emitting device in accordance with a fifth preferred embodiment of the present invention.
  • Figure 8 is a cross-sectional view of a light emitting device in accordance with a sixth preferred embodiment of the present invention.
  • Figure 9 is a cross-sectional view of a light emitting device in accordance with a seventh preferred embodiment of the present invention.
  • Figure 10A is a cross-sectional view of a light emitting device in accordance with an eighth preferred embodiment of the present invention.
  • Figure 10B is a perspective view of the direct type light guide plate of the light-emitting device of Figure 10A;
  • FIG. 10C is a perspective view of another perspective view of the direct type light guide plate of the light emitting device of FIG. 10A; FIG.
  • Figure 11A is a cross-sectional view of a light emitting device in accordance with a ninth preferred embodiment of the present invention.
  • FIG. 11B is a light energy distribution diagram in the light-transmitting body of FIG. 11A;
  • Figure 11C is another cross-sectional view of a light emitting device in accordance with a ninth preferred embodiment of the present invention.
  • Figure 11D is another cross-sectional view of a light emitting device in accordance with a ninth preferred embodiment of the present invention.
  • Figure 11E is a cross-sectional view of a light emitting device in accordance with a ninth preferred embodiment of the present invention.
  • Figure 12A is a cross-sectional view of a light emitting device in accordance with a tenth preferred embodiment of the present invention.
  • Figure 12B is a perspective view of the direct type light guide plate of the light-emitting device of Figure 12A;
  • FIG. 12C is a perspective view of another perspective view of the direct type light guide plate of the light emitting device of FIG. 12A;
  • Figure 13 is a plan view showing a light-emitting device in a combined state according to an eleventh preferred embodiment of the present invention.
  • Figure 14 is a plan view showing a light-emitting device in an exploded state according to an eleventh preferred embodiment of the present invention.
  • Figure 15 is a side elevational view of the light-emitting device in a combined state in accordance with an eleventh preferred embodiment of the present invention.
  • Figure 16 is a perspective view of the two direct-type light guiding structures of the light-emitting device of Figure 13 (microstructure not shown);
  • Figure 17 is a side view (microstructure not shown) of two direct light guiding structures of the light emitting device of Figure 13;
  • Figure 18 is a plan view showing a light-emitting device in an exploded state according to a twelfth preferred embodiment of the present invention.
  • Figure 19 is a plan view showing a light-emitting device in a combined state according to a thirteenth preferred embodiment of the present invention.
  • Figure 20 is a plan view showing a light-emitting device in an exploded state according to a thirteenth preferred embodiment of the present invention.
  • Figure 21 is a plan view showing a light-emitting device in an exploded state according to a fourteenth preferred embodiment of the present invention.
  • Figure 22 is a plan view showing a light-emitting device in an exploded state according to a fifteenth preferred embodiment of the present invention.
  • Figure 23 is a plan view showing a light-emitting device in a combined state according to a sixteenth preferred embodiment of the present invention.
  • Figure 24 is a plan view showing a state in which a light-emitting device according to a seventeenth preferred embodiment of the present invention is combined.
  • FIG. 1 is a cross-sectional view of a light emitting device according to a first preferred embodiment of the present invention
  • FIG. 2 is a perspective view of the light transmitting body of the direct light guiding structure of FIG.
  • the illuminating device A1 of the present embodiment may include a circuit board 11, a light source 12, a reflective layer 13, and a direct light guiding structure 14. The technical contents of each component will be sequentially described below.
  • the circuit board 11 can carry other components of the illumination device 1 and can transfer electrical energy to the light source 12.
  • the circuit board 11 can be a general printed circuit board or can be a metal core printed circuit board (metal Core printed circuit board, The MCPCB) is to increase the heat dissipation efficiency of the circuit board 11; further, the circuit board 11 includes a top surface 111 and a bottom surface 112 opposite to the top surface 111.
  • the light source 12 can receive electrical energy to emit light and is disposed on the top surface 111 of the circuit board 11.
  • the light source 12 is further electrically connected to the circuit board 11 to receive the transmitted electrical energy of the circuit board 11.
  • the light source 12 can be a wire-connected light-emitting diode (wire) Bonded LED), flip-chip LED, SMD type LED or other types of light-emitting diodes.
  • the reflective layer 13 can reflect light and can be disposed on the top surface 111 of the circuit board 11 so that light cannot pass through the circuit board 11 (the function of the reflective layer 13 will be further described in describing FIG. 3A).
  • the reflective layer 13 can cover almost the entire top surface 111 except where the light source 12 is located.
  • the reflective layer 13 can be a white coated plastic (such as PET, PP, PE, PVC, PC, PMMA, PU, PS, ABS or other plastic) or a metal (such as Al, Ag, Ni, Mo, Zn).
  • the reflective layer 13 may comprise a plurality of reflective particles (reflective A plastic material such as TiO2, CaCO3, ZnO2, SiO2, Al2O3, SnO2, CeO2 particles, or metal particles.
  • the method of disposing the reflective layer 13 on the circuit board 11 may be a method such as sputtering, thermal evaporation, coating or pasting.
  • the reflective layer 13 may also be provided on the lower surface 1412 of the direct-type light guiding structure 14 to be described later. When so implemented, the reflective layer 13 can cover the entire lower surface 1412 except where the lower receiving groove 1415 is located.
  • the direct light guiding structure 14 receives light and then uniformly outputs the light.
  • the direct light guiding structure 14 can be disposed on the top surface 111 of the circuit board 11 (located above the top surface 111) and placed on the reflective layer 13; in other words, the reflective layer 13 is located on the direct light guiding structure 14 and the circuit board. 11 between.
  • the direct light guiding structure 14 can include a light transmissive body 141 and a plurality of microstructures 142.
  • the light transmitting body 141 can be made of any transparent or translucent polymer material, such as silicone or cyclic olefin copolymer (cyclic Olefin Copolymer), polyurethane, polystyrene, polyester, ethylene terephthalate Terephthalate, PET), polycarbonate (PC), polyimide (PI), polymethacrylate (polymethylmethacrylate, PMMA), acrylonitrile-butadiene-styrene Copolymer, ABS), polyethylene (PE), polypropylene (polypropylene, PP) or a combination of the above materials.
  • the light transmitting body 141 can be formed by injection molding (injection) Molding, molding, extrusion, pressing or embossing are used to make the process.
  • the light-transmitting body 141 can include an upper surface 1411, a lower surface 1412, an outer annular surface 1413, an upper tapered groove 1414, and a lower receiving groove 1415.
  • the upper surface 1411 and the lower surface 1412 are all planar and parallel and opposite each other; the lower surface 1412 is in contact with the reflective layer 13.
  • the outer annular surface 1413 is located between the upper surface 1411 and the lower surface 1412 and connects the upper surface 1411 and the lower surface 1412.
  • the outer annulus 1413 can include six associated sides 14131, each side 14131 being perpendicular to the lower surface 1412.
  • the upper tapered groove 1414 is formed on the upper surface 1411, or it can be said that a portion of the upper surface 1411 is recessed downward to form the upper tapered groove 1414, so that the upper surface 1411 is partially curved.
  • the lower accommodating groove 1415 is formed on the lower surface 1412, or a portion of the lower surface 1412 is recessed upward to form a lower accommodating groove 1415.
  • the lower accommodating groove 1415 can communicate with each other.
  • the light source 12 can be received in the lower receiving groove 1415.
  • a sharp point 14141 of the upper tapered groove 1414 (that is, the lowest point of the upper tapered groove 1414) may be a sharp point 14153 with the tapered portion 14151 of the lower receiving groove 1415 (that is, the highest point of the tapered portion 14151).
  • the surface of the upper tapered groove 1414 is based on the edge ray theorem (edge-ray)
  • edge-ray edge-ray
  • the design is such that when light strikes the surface of the upper tapered groove 1414, it is totally reflected without penetrating.
  • the surface of the upper tapered groove 1414 is a curved surface whose inclination is continuously changed; in other words, the upper tapered groove 1414 can locally make the upper surface 1411 a curved surface whose slope continuously changes.
  • the slope of each surface of the surface will cause total reflection when the light of a particular angle of incidence hits it. The above phenomenon of total light reflection is further explained below.
  • FIG. 3A a schematic diagram of light transmission in the light-transmitting body of FIG.
  • the light L emitted from the light source 12 can pass through the surface of the lower receiving groove 1415 and enter the light transmitting body 141.
  • the surface of the lower accommodating groove 1415 When the light L passes through the surface of the lower accommodating groove 1415, it refracts and advances toward the upper tapered groove 1414; in other words, the surface of the lower accommodating groove 1415 has a function of guiding light.
  • the light ray L is emitted from the front surface (top surface) of the light source 12, so that only the surface of the lower accommodating groove 1415 located above the front surface of the light source 12 has light L passing therethrough, and it is required to have a function of guiding light.
  • the surface of the lower accommodating groove 1415 that is, the surface of the columnar portion 14152 located below the front surface of the light source 12 does not need to have a function of guiding light.
  • the rays L then collide with different portions of the curved surface of the upper tapered groove 1414. Since the incident angle of the light rays L is greater than the critical angle (the size of the critical angle is determined by the material of the light-transmitting body 141 and the environment in which the light-transmitting body 141 is located, which is about 42 degrees in this embodiment), the light rays L will Reflected by the surface without penetrating the surface.
  • the light L reflected by the curved surface advances toward the outer annular surface 1413 of the light transmitting body 141. Part of the light L will strike the lower surface 1412 (or the upper surface 1411) and then be reflected by the lower surface 1412 (or the upper surface 1411) because the angle of incidence of the light L is still greater than the critical angle; the lower surface 1412 (or the upper surface 1411) The reflected light continues to advance toward the outer annulus 1413 of the light transmissive body 141.
  • the light-transmitting body 141 can transmit the light emitted by the light source 12 laterally without being concentrated in the vicinity of the light source 12, and will not be directly directed upward.
  • Upper surface 1411 and lower surface 1412 may not be smooth or level due to manufacturing tolerances or manufacturing tolerances. Therefore, some of the light rays L will penetrate the lower surface 1412 when they hit the lower surface 1412. The light penetrating the lower surface 1412 is reflected back into the light transmitting body 141 by the reflective layer 13 under the lower surface 1412, ensuring that the light L does not leak from the lower surface 1412 of the light transmitting body 141.
  • FIG. 3B is a light energy distribution diagram in the light-transmitting body of FIG. 1 , and this figure can be obtained by experimental measurement or simulation; the black part in the figure indicates that only a small amount of weak light passes through it. It is further understood from the distribution of light that, in the absence of microstructure 142, light will hardly pass through upper tapered groove 1414, and light passes over upper tapered groove 1414, upper surface 1411, and lower surface 1412. It is totally reflected and proceeds toward the outer annular surface 1413 of the light transmitting body 141.
  • FIG. 3C Please refer to FIG. 3C for the ray angle distribution diagram corresponding to FIG. 3B.
  • the angle is between 45 degrees and -45 degrees, and the remaining angles (complementary Angle) is greater than the critical angle (42 degrees). Therefore, the light reflected by the upper tapered groove 1414 is still totally reflected after hitting the upper surface 1411 and the lower surface 1412.
  • the half cone angle ⁇ c of the tapered portion 14151 of the lower accommodating groove 1415 (as shown, the half of the angle of the tapered portion is a half cone angle) and "light”
  • the incident angle ⁇ i" of the L striking the upper tapered groove 1414 affects the size of the light transmitting body 141.
  • the incident angle ⁇ i of each of the rays L striking the upper tapered groove 1414 may be different.
  • the half cone angle ⁇ c of the tapered portion 14151 of the lower receiving groove 1415 of the present embodiment is substantially equal to (that is, very close to) the complementary angle of the critical angle, and the minimum incident angle ⁇ i is substantially equal to (that is, very close to) the critical angle.
  • the angle therefore, the thickness of the light-transmitting body 141 can be minimized (if machining errors are not considered).
  • FIG. 3D is another schematic diagram of light transmitted in the light-transmitting body of FIG.
  • the tapered portion 14151 of the lower receiving groove 1415 When the half taper angle ⁇ c of the tapered portion 14151 of the lower receiving groove 1415 is equal to 90 degrees, the tapered portion 14151 will be equivalently absent, so that the lower receiving groove 1415 is substantially a cylindrical groove. In this case, the size of the upper tapered groove 1414 is changed so that the light L can still be reflected by the surface of the upper tapered groove 1414, but the thickness of the transparent body 141 is made larger (with the tapered portion 14151).
  • the half cone angle ⁇ c is equal to the complementary angle of the critical angle).
  • the microstructures 142 are used to break or prevent total reflection of light so that the light can leave the light transmitting body 141 .
  • the microstructures 142 are disposed on the light transmitting body 141 and distributed on the curved surfaces of the upper surface 1411 and the upper tapered groove 1414 of the light transmitting body 141.
  • the microstructures 142 may be linear, dot-like or any regular or irregularly shaped recessed structure.
  • the microstructure 142 of the present embodiment is a circular fine line.
  • the trench has a depth of 30 micrometers and a width of 50 micrometers; the microstructures 142 may also be raised structures or the like.
  • the microstructures 142 and the light transmissive body 141 may be integrally formed, whether it is a recessed structure or a raised structure.
  • the microstructures 142 can also be ink materials (ink Material) printed or coated on the light transmitting body 141.
  • the portion of the light-transmitting body 141 that is disposed by the microstructure 142 may become rough and uneven, so that when the light hits the portions, the incident angle of the light has a chance less than the critical angle, no longer. It is totally reflected back into the light transmitting body 141. As such, the light has a chance to leave the light transmitting body 141.
  • the microstructures 142 are away from the sharp point 14141 (light source 12) of the upper tapered groove 1414, the denser the distribution of the microstructures 142; in other words, the portion of the transparent body 141 that is farther away from the sharp point 14141 has more micro Structure 142 is distributed.
  • microstructures 142 are distributed in such a manner that the light uniformly leaves the light transmitting body 141.
  • microstructures 142 distributed on the curved surface of the upper tapered groove 1414 are lower than the height of the microstructures 142 distributed on the upper surface 1411. In other words, the heights of the microstructures 142 are not all the same.
  • the overall distribution of the microstructures 142 is a three-dimensional distribution (three-dimensional Distribution), the microstructure different from the existing light guiding structure is a planar distribution.
  • the above embodiment controls the uniformity of the light leaving the light transmitting body 141 by the uneven distribution of the microstructures 142.
  • the uniformity of the light exiting the light transmitting body 141 can also be controlled by the depth, size, angle or shape of the microstructures 142, and the like.
  • FIG. 4A is a cross-sectional view of a light emitting device in accordance with a second preferred embodiment of the present invention.
  • the main difference between the light-emitting device A2 and the light-emitting device A1 of the second preferred embodiment is that the upper surface 1411 of the light-transmitting body 141 of the light-emitting device A2 is not planar but a curved surface.
  • the light transmitting body 141 can have a large light emitting area (light The emitter range is compared to when the upper surface 1411 is a flat surface.
  • the microstructures 142 will vary correspondingly with the curvature of the curved surface, and this variation may include variations in the number, angle, shape, or size of the microstructures 142.
  • the upper surface 1411 is adjacent to the outer annulus 1413 and may have fewer microstructures 142; this is because the upper surface 1411 of the curved surface itself can destroy the total reflection of the light without relying entirely on the microstructure 142.
  • the lower accommodating groove 1415 of the light transmitting body 141 of the illuminating device A2 has only the tapered portion 14151; in other words, the lower accommodating groove 1415 is a lower tapered groove.
  • the lower receiving groove 1415 can be adapted to accommodate the "light source 12 that emits light on both sides and the front side"; the reason is as follows.
  • FIG. 4B is a schematic diagram of light transmitted in the light-transmitting body of FIG. 4A.
  • each surface of the lower receiving groove 1415 needs to be able to guide the light L to the surface of the upper tapered groove 1414, and when the lower receiving groove 1415 is the lower tapered groove. Can meet this requirement.
  • FIG. 5 and FIG. 6 are cross-sectional views of a light emitting device according to third and fourth preferred embodiments of the present invention, respectively.
  • the main difference between the light-emitting device A3 and the light-emitting device A2 of the third preferred embodiment is that the lower surface 1412 of the light-transmitting body 141 of the light-emitting device A3 is also distributed with the microstructures 142.
  • the microstructures 142 on the lower surface 1412 can also control the light output intensity of the light transmissive body 141.
  • the main difference between the light-emitting device A4 and the light-emitting device A3 of the fourth preferred embodiment is that the upper surface 1411 of the light-transmitting body 141 of the light-emitting device A4 is not distributed with the microstructures 142, and the microstructures 142 are only distributed on the lower surface 1412.
  • the reflective layer 13 is disposed on the lower surface 1412 but is not trapped in the microstructures 142.
  • the illuminating device A4 is characterized in that a diffuser (which may be a diffusing plate or a diffusing film) may be disposed on the upper surface 1411 (refer to FIG. 10A); when there is a gap between the diffuser and the upper surface 1411, the diffuser is disposed on the diffuser. It is easy to observe the unevenness of light and dark; however, when the upper surface 1411 has no distribution of the microstructure 142, the unevenness of light and darkness on the diffuser becomes less noticeable.
  • FIG. 7 is a cross-sectional view of a light emitting device according to a fifth preferred embodiment of the present invention.
  • the light-transmitting body 141 of the light-emitting device A5 of the present embodiment further includes a plurality of hollowed-out grooves 1416.
  • the hollow slots 1416 are formed on the lower surface 1412 of the light transmitting body 141, and the lower receiving slots 1415 are located between the hollow slots 1416.
  • the arrangement of the hollowed out grooves 1416 can reduce the manufacturing material of the light transmitting body 141 to reduce the manufacturing cost of the light transmitting body 141.
  • the hollowed out groove 1416 may be a dome-shaped hollowed out groove or a tapered hollowed out groove, but is not limited.
  • the hollowing groove 1416 does not affect the transmission of light to the outer annular surface 1413 of the light transmitting body 141. This is because, when referring to FIGS. 3A and 3B, when the light L is transmitted in the light transmitting body 141, the light transmitting body 141 The portion near the lower receiving groove 1415 has almost no light passing through; after the portion where almost no light passes is removed, the hollowed out groove 1416 is formed. Therefore, the hollow groove 1416 has almost no light (or weak light) passing through it, so that the transmission of light in the light transmitting body 141 is not affected.
  • the hollowed holes 1416 can communicate with each other to form an annular hollowed out groove (see FIG. 10C); and the lower receiving groove 1415 is surrounded by the annular hollowed out groove.
  • the annular hollowing groove can reduce the manufacturing material of the light transmitting body 141.
  • FIG. 8 and FIG. 9 are cross-sectional views of a light emitting device according to sixth and seventh preferred embodiments of the present invention, respectively.
  • the main difference between the illuminating device A6 and the illuminating device A5 of the sixth preferred embodiment is that the upper surface 1411 of the light transmitting body 141 of the illuminating device A6 is not planar but a curved surface; further, the hollowing groove 1416 of the light transmitting body 141 A reflective layer 13 is also provided to prevent light from being emitted from the hollowed out slot 1416.
  • the main difference between the light-emitting device A7 and the light-emitting device A6 of the seventh preferred embodiment is that the microstructures 142 are further distributed in the hollowed out grooves 1416, and the reflective layer 13 is trapped in the microstructures 142.
  • the reflective layer 13 may also not sink into the microstructures 142 (similar to the illumination device A4 shown in FIG. 6), only to contact or be near the lower surface 1412.
  • the upper surface 1411 of the light-transmitting body 141 of any one of the light-emitting devices A5 to A7 may not be provided with the microstructure 142 (similar to the light-emitting device A4); or, of any of the light-emitting devices A5 to A7
  • the top surface 111 of the circuit board 11 may not be provided with the reflective layer 13.
  • FIG. 10A is a cross-sectional view of a light-emitting device according to an eighth preferred embodiment of the present invention
  • FIG. 10B and FIG. 10C are perspective views of the direct-type light guide plate of the light-emitting device of FIG. 10A (microstructure not shown).
  • the light-emitting device A8 of the present embodiment and the light-emitting device A6 of the sixth embodiment include the same direct-type light-guiding structure 14, but the direct-type light-guiding structure 14 of the light-emitting device A8 is plural; the direct-type light-guiding structures 14 are mutually Connected and side by side to form a constant light guide plate.
  • the light-transmitting body 141 of the direct-type light-guiding structure 14 is integrally formed, and the hollow grooves 1416 are all annular hollow grooves. Further, the lower surface 1412 of the light transmitting body 141 may be coplanar.
  • the light-emitting device A8 further includes a plurality of light sources 12 and a support base 15, and optionally, if necessary, at least one circuit component 16 and at least one connecting rod 17; the technical content of each component will be sequentially described below.
  • the light source 12 is disposed on the top surface 111 of the circuit board 11.
  • the direct light guiding structures 14 are also disposed on the top surface 111 of the circuit board 11, and the light sources 12 are respectively received by the direct light guiding lights.
  • the lower receiving groove 1415 of the structure 14 is.
  • the light transmitting bodies 141 of the direct light guiding structures 14 may be integrally formed.
  • the support base 15 (also referred to as a base or a back plate) is used to enhance the structural strength of the light-emitting device A8 or to increase heat dissipation efficiency.
  • the support base 15 can be an aluminum plate disposed on the bottom surface 112 of the circuit board 11.
  • At least one circuit component 16 (e.g., control wafer, driver die, resistor, capacitor, etc.) is also disposed on the top surface 111 of the circuit board 11 and housed in one of the hollowed out slots 1416. If the direct light guiding structure 14 has no hollow slots 1416 (such as shown in FIG. 1), the circuit board 11 requires an additional portion to extend beyond the direct light guiding structure 14 so that the circuit component 16 can be placed in a direct type. Outside the light guiding structure 14, the interference of the direct light guiding structure 14 is prevented from being placed on the circuit board 11. It can be seen that when the direct light guiding structure 14 has the hollowed out groove 1416, the width or length of the circuit board 11 can be reduced, in addition to reducing the manufacturing material of the light transmitting body 141.
  • the direct light guiding structure 14 has the hollowed out groove 1416, the width or length of the circuit board 11 can be reduced, in addition to reducing the manufacturing material of the light transmitting body 141.
  • At least one connecting rod 17 is used to fix the circuit board 11, the direct light guiding structure 14 and the support base 15.
  • the connecting rod 17 includes a rod body 171, two stopping portions 172 and a supporting plane 173.
  • the rod body 171 extends through the circuit board 11 , the direct light guiding structure 14 and the support base 15 , and the two stopping portions 172 can each be a barb.
  • the two stopping portions 172 are respectively fastened to the direct light guiding structure 14 and the supporting base.
  • the support plane 173 is disposed at an upper end of the rod body 171 and is equal to the upper surface 1411 of the light transmitting body 141.
  • An illuminator 18, an optical layer 19 and a liquid crystal panel 20 may be further disposed on the illuminating device A8 to form a backlight module of the liquid crystal display.
  • the diffuser 18, the optical layer 19, and the liquid crystal panel 20 are sequentially stacked on the upper surface 1411 of the light transmitting body 141.
  • the bottom surface of the diffuser 18 can be bonded to the support plane 173 of the connecting rod 17 so that the diffuser 18 does not lift up to cause uneven brightness.
  • the optical layer 19 may include a lower diffusion film (bottom Diffuser film), brightness enhancement film (BEF), reflective brightness enhancement film (dual brightness) Enhancement film, DBEF) and top diffuser film are commonly used in backlight modules.
  • the light-transmitting body 141 of the light-emitting device A9 of the present embodiment includes a plurality of hollowed-out grooves 1417.
  • the hollow slots 1417 are formed on the lower surface 1412 of the light transmitting body 141, and the lower receiving slots 1415 are located between the hollow slots 1417.
  • the hollow slots 1417 extend to the outer annular surface 1413 of the light transmitting body 141.
  • the hollowed out slots 1417 can each have a flat surface 14171 that is substantially parallel to the upper surface 1411.
  • the arrangement of the hollowing groove 1417 can reduce the manufacturing material of the light transmitting body 141; even, the sum of the volumes of the hollowing grooves 1417 can be larger than the volume of the transparent body 141, so that the volume is made larger.
  • the material of the light body 141 can be reduced by more than half, compared to a light-transmissive body (such as that shown in FIG. 1) that does not form the hollowed out groove 1417.
  • the volume of the light-transmitting body 141 includes only the solid portion of the light-transmitting body 141, and does not include the non-solid portion of the light-transmitting body 141 (for example, the upper tapered groove 1414, the lower receiving groove 1415, and the hollowed-out groove 1417). .
  • the hollowing groove 1417 does not affect the transmission of light in the light transmitting body 141. This is because: referring to FIG. 3B and FIG. 3C, the angle of the light after the point P (after being reflected by the upper tapered groove 1414) The remaining angles are all larger than the critical angle, so even if the thickness of the light-transmitting body 141 after the P point is reduced, the light can be totally reflected in the light-transmitting body 141.
  • the space formed after the light-transmissive body 141 after the P point is thinned is a part of the hollowed out groove 1417.
  • FIG. 11B Please refer to FIG. 11B for the light energy distribution diagram in the light-transmitting body of FIG. 11A. It can be further understood from the distribution of the light that when the light-transmissive body 141 is thinned and no microstructure is disposed on the light-transmitting body 141, the light can be totally reflected whether it hits the plane 14171 or the upper surface 1411.
  • the reflective layer 13 of the light-emitting device A9 is different from the foregoing embodiment except for the hollowed out groove 1417.
  • the reflective layer 13 does not entirely conform to the top surface 111 of the circuit board 11, but is partially located in the hollowed out groove 1417 and is adjacent to the lower surface 1412 of the light transmitting body 141.
  • the illumination device A9 can have other variations.
  • the microstructures 142 may be distributed on the lower surface 1412 of the light transmissive body 141 and face the hollowed out grooves 1417 and covered by the reflective layer 13 (eg, white paint); or, as shown in FIG. 11D
  • the reflective layer 13 of the light-emitting device A9 can be entirely attached to the top surface 111 of the circuit board 11; alternatively, the light-emitting device A9 can be free of the reflective layer 13 (not shown).
  • the flat surface 14171 of the hollowed out groove 1417 of the light transmitting body 141 may be inclined and not parallel to the upper surface 1411; the lower receiving groove 1415 of the light transmitting body 141 may have only the tapered portion 14151, so that the lower portion
  • the receiving groove 1415 is substantially a lower tapered groove.
  • the light-transmitting body 141 can also have a plurality of protruding structures 1418 protruding downwardly from the lower surface 1412 of the light-transmitting body 141 and between the lower receiving groove 1415 and the hollowing groove 1417.
  • the circuit board 11 has a plurality of through holes 113, and the protruding structures 1418 can be respectively inserted into the through holes 113 such that the transparent body 141 is fixed on the circuit board 11 without using other fixing elements (for example, as shown in FIG. 10A). Connecting rod 17).
  • the end of the protruding structure 1418 can form a stop structure (for example, a barb, not shown), so that the protruding structure 1418 is not easily pulled out after being inserted into the through hole 113, thereby further fixing the light transmitting body 141 to the circuit board 11 more stably. on.
  • a stop structure for example, a barb, not shown
  • the length of the protruding structure 1418 can be less than the depth of the perforation 113 such that the protruding structure 1418 will not protrude beyond the bottom surface 112 of the circuit board 11 after the protruding structure 1418 is inserted into the through hole 113. . As such, there will be a space in the perforation 113 that is not occupied by the protruding structure 1418, and the space can be filled with glue (not shown) to secure the protruding structure 1418 to the circuit board 11.
  • FIG. 12A is a cross-sectional view of a light-emitting device according to a tenth preferred embodiment of the present invention
  • FIG. 12B and FIG. 12C are perspective views (microstructures not shown) of the direct-type light guide plate of the light-emitting device of FIG. 12A.
  • the light-emitting device A10 of the present embodiment and the light-emitting device A9 of the ninth embodiment include the same direct-type light-guiding structure 14, but the direct-light light-guiding structure 14 of the light-emitting device A10 is plural, and each of the direct-type light-guiding structures 14
  • the light transmitting bodies 141 are connected to each other to constitute a direct type light guide plate.
  • the upper surfaces 1411 of the light transmitting bodies 141 may be coplanar.
  • Each of the hollow grooves 1417 of the direct light guiding structure 14 has a microstructure 142 distributed therein, and the reflective layer 13 is a reflective sheet which is close to the lower portion of the microstructure 142 but not trapped in the
  • the other elements (the light source 12, the support base 15, the circuit element 16, the diffuser 18, the optical layer 19, and the liquid crystal panel 20) of the light-emitting device A10 of the present embodiment are the same as those of the light-emitting device A8, and thus will not be described again.
  • the hollowed-out groove 1417 of the light-transmitting body 141 of the light-emitting device A10 is large, so that a large or thick circuit component 16 can be accommodated.
  • the light-emitting device A11 of the present embodiment includes a plurality of circuit boards 11, a plurality of light sources 12, a plurality of direct light guiding structures 14, a support base 15, a circuit component 16, and a driving circuit board 21.
  • the circuit boards 11 are elongated, and one ends of the circuit boards 11 can be connected to the driving circuit board 21 via a connector 22. Furthermore, the circuit boards 11 can be connected to each other.
  • the light sources 12 are disposed on the circuit boards 11; the circuit board 11 and the light source 12 disposed thereon may be referred to as a light strip (light) Bar). Since the circuit board 11 is mainly provided for the light source 12, the circuit board 11 can also be referred to as a light source circuit board 11. Alternatively, the light source 12 can also be disposed on the drive circuit board 21.
  • the circuit component 16 can include a control chip and associated peripheral circuitry of the control die, etc., and is disposed on the driver circuit board 21 such that the driver circuit board 21 can issue control signals to control the light source 12 on the light source circuit board 11 to emit light.
  • the driving circuit board 21 can be fixed to the support base 15 by a layer of thermal conductive glue 23 or a plurality of bolts 24.
  • the thermal conductive adhesive 23 can quickly transfer the thermal energy of the drive circuit board 21 to the support base 15.
  • the light-transmitting bodies 141 of the direct-type light-guiding structures 14 are detachably connected such that the direct-type light-guiding structure 14 constitutes a direct-type light guide plate.
  • FIG. 16 and FIG. 17, are respectively a perspective view and a side view (microstructure not shown) of two direct-type light guiding structures of the light-emitting device of FIG.
  • the side surface 14131 of the light transmitting body 141 of the direct type light guiding structure 14 is inclined with respect to the upper surface 1411.
  • the inclination angles of the side faces 14131 of the two adjacent direct light guiding structures 14 are opposite (that is, if one of the inclination angles is 45 degrees, the other inclination angle is minus 45 degrees), so the adjacent two straight downs
  • the side surface 14131 of the light guiding structure 14 is reliably combined.
  • the sloping sides 14131 allow the boundaries between adjacent direct light guiding structures 14 to overlap such that the rays of the boundary overlap.
  • gaps of different sizes may appear between the adjacent direct light guiding structures 14.
  • the overlapping rays can cause bright or dark lines caused by slits of different sizes to become inconspicuous after penetrating the diffuser. It should be noted that when the tilt angle is between 20 degrees and 70 degrees, the above effects can be more significant.
  • the illuminating device A12 of the present embodiment includes a plurality of illuminating devices A11 and a control circuit board 25 of the eleventh embodiment.
  • the driving circuit boards 21 of the light-emitting devices A11 are connected to each other, and then connected to the control circuit board 25 through the connector 22.
  • the control circuit board 25 can be connected to another circuit component 27 (including a micro control unit (micro) Control unit, The MCU) and its peripheral circuits) send control signals to the driving circuit board 21, and the driving circuit board 21 controls the light source 12 on the light source circuit board 11 to emit light according to the content of the control signals.
  • FIG. 19 and FIG. 20 are top plan views and exploded views of a light-emitting device in a combined state according to a thirteenth preferred embodiment of the present invention.
  • the difference from the illuminating device A11 of the eleventh embodiment is that the illuminating device A13 of the present embodiment includes only one circuit board 11, and the light source 12, the direct light guiding structure 14, the circuit component 16, and the connector 22 are all disposed on On the circuit board 11.
  • the circuit board 11 is a driving circuit board, and can directly control whether the light source 12 emits light.
  • the circuit board 11 is a rectangular board having a connector 22 on each of its four sides so that the other side of the circuit board 11 can be connected to other light-emitting devices (not shown).
  • the illuminating device A14 of the present embodiment includes a plurality of illuminating devices A13 of the thirteenth embodiment, a support base 15, and a control circuit board 25.
  • the light-emitting devices A13 are side by side, and the circuit boards 11 of the light-emitting devices A13 are connected to each other through the connector 22.
  • the light-emitting devices A13 are also connected to the control circuit board 25 via the connector 22.
  • the light-emitting device 14 and the control circuit board 25 are all disposed on the support base 15 .
  • the light-emitting device A15 of the present embodiment includes a plurality of light source circuit boards 11, a plurality of light sources 12, a plurality of direct light guiding structures 14, a support plate 15, and two control circuit boards 25.
  • the circuit boards 11 and the light sources 12 can form a plurality of light strips. The strips are connected through a connector 22 and then connected to one of the control boards 25 via a connector 22.
  • the light strips are disposed between the two control circuit boards 25, and the light strips and the two control circuit boards 25 are disposed on the support board 15.
  • Each control circuit board 25 controls whether the light source 12 of the light strip emits light.
  • the illuminating device A16 of the present embodiment includes only one control circuit board 25, and additionally includes a driving circuit board 21 and a connecting line 26 (for example, a cable).
  • the light strips are disposed between the control circuit board 25 and the drive circuit board 21, and are connected to the control circuit board 25 and the drive circuit board 21.
  • the control circuit board 25 and the drive circuit board 21 are connected by a connection line 26.
  • the control circuit board 25 itself can control whether the light source 12 of the light bar emits light, and can transmit a control signal to the driving circuit board 21 through the connecting line 26, so that the driving circuit board 21 controls whether the light source 12 of the light bar emits light according to the control signal. .
  • the light-emitting device A17 of the present embodiment includes only one control circuit board 25; further, the control circuit board 25 is horizontally arranged, and the light bars are vertically arranged.
  • the above-described light-emitting devices A11 to A17 are characterized in that the circuit board 11, the light source 12, and the light guiding structure 14 can be easily expanded in number according to requirements to increase the light-emitting range of the light-emitting devices A11 to A17.
  • the illuminating device and the direct light guiding structure of the present invention can have the following features:
  • the upper tapered groove and the microstructure of the direct light guiding structure allow the direct light guiding structure to uniformly output the light after receiving the light emitted by the light source;
  • the direct light guiding structure can make the overall thickness of the light emitting device thin, and can reduce the number of light sources;
  • the thickness of the light transmitting body may be small
  • the hollowed-out groove of the light-transmitting body can reduce the manufacturing material of the light-transmitting body, and does not affect the transmission of light in the light-transmitting body;
  • the side surface of the light-transmitting body may be inclined to avoid bright lines or dark lines on the interface between the two non-integrally formed light-transmitting bodies;
  • the plurality of direct light guiding structures may be connected to form a direct light guiding plate, and the light transmitting bodies of the direct light guiding structures may be integrally formed;
  • the circuit board, the light source and the direct light guiding structure of the illuminating device have various configurations to meet various applications;
  • the circuit board, the light source and the direct light guiding structure of the light emitting device can be easily expanded to increase the light emitting range of the light emitting device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Planar Illumination Modules (AREA)

Abstract

一种直下式导光结构(14)、一种直下式导光板及一种发光装置(A1-A17),所述直下式导光结构(14)包含一透光本体(141)及多个微结构(142);其中,透光本体(141)包含一上锥形槽(1414)及一下容置槽(1415),上锥形槽(1414)具有一斜率连续变化的曲面;该些微结构(142)设置于透光本体(141)上。发光装置(A1-A17)则包含:一电路板(11)、一光源(12)及上述的直下式导光结构(14);其中,光源(12)及直下式导光结构(14)皆设置于电路板(11)上,而光源(12)容置于直下式导光结构(14)的下容置槽(1415)中。借此,直下式导光结构(14)可接收光源(12)发射出的光线(L),然后将光线(L)均匀地发射出。此外,多个直下式导光结构(14)可相连,以构成直下式导光板。

Description

直下式导光结构、直下式导光板及发光装置 技术领域
本发明有关一种直下式导光结构、一种直下式导光板及一种发光装置,特别关于一种可均匀光线强度的直下式导光结构与直下式导光板,及一种应用该直下式导光结构或该直下式导光板的发光装置。
背景技术
目前的平面型发光装置(flat lighting device)渐渐地采用多个发光二极管作为光源,以取代传统的白热灯管或荧光灯管。当该些发光二极管作为光源时,通常是直接设置于平面型发光装置的底部。该些发光二极管发射光线,而该些光线的强度在正视角方向(也就是垂直发光二极管的发光面的方向)上会最强。因此,平面型发光装置所输出的光线并不均匀,可观察到局部暗点(光线强度最弱的区域)或局部亮点(光线强度最强的区域)。
技术问题
为了改善上述的局部暗点或局部亮点,可将一光线扩散板设置在该些发光二极管的前方,并与该些发光二极管保持一段距离。然而,此改善方式将会增加平面型发光装置的整体厚度。另一种改善局部暗点或亮点的方式为:增加发光二极管的数目。然而,此改善方式将会增加平面型发光装置的制造成本。
有鉴于此,如何改善至少一种上述缺点,乃为此业界亟待解决的问题。
技术解决方案
本发明的主要目的在于提供一种直下式导光结构、直下式导光板及一种发光装置,该直下式导光结构或直下式导光板可接收光线,然后将光线均匀地输出;该发光装置可应用该直下式导光结构或直下式导光板。
达上述目的,本发明所揭露的直下式导光结构包含一透光本体及多个微结构;其中,透光本体包含一上表面、一下表面、一上锥形槽及一下容置槽,上锥形槽形成于上表面上,下容置槽形成于下表面上,上锥形槽具有一斜率连续变化的曲面;该些微结构设置于透光本体上。
为达上述目的,本发明所揭露的直下式导光板,包含:多个前述的直下式导光结构,该些直下式导光结构的透光本体相连接。
为达上述目的,本发明所揭露的发光装置包含至少一电路板、至少一光源及至少一个前述的直下式导光结构;其中,电路板包含一顶面及一底面;光源设置于电路板的顶面上;直下式导光结构设置于电路板的顶面上,而光源容置于直下式导光结构的下容置槽中。
为让上述目的、技术特征及优点能更明显易懂,下文以较佳的实施例配合附图进行详细说明。
附图说明
图1为依据本发明第一较佳实施例的发光装置的剖视图;
图2为图1的直下式导光结构的透光本体的立体图;
图3A为光线在图1的透光本体中传递的示意图;
图3B为图1的透光本体中的光线能量分布图;
图3C为对应图3B的光线角度分布图;
图3D为光线在图1的透光本体中传递的另一示意图;
图4A为依据本发明第二较佳实施例的发光装置的剖视图;
图4B为光线在图4A的透光本体中传递的示意图;
图5为依据本发明第三较佳实施例的发光装置的剖视图;
图6为依据本发明第四较佳实施例的发光装置的剖视图;
图7为依据本发明第五较佳实施例的发光装置的剖视图;
图8为依据本发明第六较佳实施例的发光装置的剖视图;
图9为依据本发明第七较佳实施例的发光装置的剖视图;
图10A为依据本发明第八较佳实施例的发光装置的剖视图;
图10B为图10A的发光装置的直下式导光板的立体图;
图10C为图10A的发光装置的直下式导光板的另一视角的立体图;
图11A为依据本发明第九较佳实施例的发光装置的剖视图;
图11B为图11A的透光本体中的光线能量分布图;
图11C为依据本发明第九较佳实施例的发光装置的另一剖视图;
图11D为依据本发明第九较佳实施例的发光装置的又一剖视图;
图11E为依据本发明第九较佳实施例的发光装置的再一剖视图;
图12A为依据本发明第十较佳实施例的发光装置的剖视图;
图12B为图12A的发光装置的直下式导光板的立体图;
图12C为图12A的发光装置的直下式导光板的另一视角的立体图;
图13为依据本发明第十一较佳实施例的发光装置于组合状态的俯视图;
图14为依据本发明第十一较佳实施例的发光装置于分解状态的俯视图;
图15为依据本发明第十一较佳实施例的发光装置于组合状态的侧视图;
图16为图13的发光装置的两个直下式导光结构的立体图(微结构未示);
图17为图13的发光装置的两个直下式导光结构的侧视图(微结构未示);
图18为依据本发明第十二较佳实施例的发光装置于分解状态的俯视图;
图19为依据本发明第十三较佳实施例的发光装置于组合状态的俯视图;
图20为依据本发明第十三较佳实施例的发光装置于分解状态的俯视图;
图21为依据本发明第十四较佳实施例的发光装置于分解状态的俯视图;
图22为依据本发明第十五较佳实施例的发光装置于分解状态的俯视图;
图23为依据本发明第十六较佳实施例的发光装置于组合状态的俯视图;以及
图24为依据本发明第十七较佳实施例的发光装置于组合状态的俯视图。
【主要元件符号说明】
A1~A17 发光装置 11 电路板、光源电路板
111 顶面 112 底面 113 穿孔
12 光源 13 反射层 14 直下式导光结构
141 透光本体 1411 上表面 1412 下表面
1413 外环面 14131 侧面 1414 上锥形槽
14141 尖点 1415 下容置槽 14151 锥状部
14152 柱状部 14153 尖点 θc 半锥角
θi 入射角 1416、1417 挖空槽 14171 平面
1418 突出结构 142 微结构 15 支撑座
16、27 电路元件 17 连接杆 171 杆体
172 止动部 173 支撑平面 18 扩散板
19 光学层 20 液晶面板 21 驱动电路板
22 连接器 23 导热胶 24 螺栓
25 控制电路板 26 连接线
本发明的最佳实施方式
请参阅图1,为依据本发明第一较佳实施例的发光装置的剖视图;并参阅图2,为图1的直下式导光结构的透光本体的立体图。本实施例的发光装置A1可包含一电路板11、一光源12、一反射层13及一直下式导光结构14;以下将依序说明各元件的技术内容。
电路板11可承载发光装置1的其他元件,且可传递电能至光源12。电路板11可为一般的印刷电路板,或是可为一金属芯印刷电路板(metal core printed circuit board, MCPCB),以增加电路板11的散热效率;此外,电路板11包含一顶面111及与顶面111相对的一底面112。
光源12可接受电能而发射光线,且设置于电路板11的顶面111上。光源12更与电路板11电性连接,以接收电路板11的所传递的电能。光源12可为线接式发光二极管(wire bonded LED)、覆晶式发光二极管(flip-chip LED)、表面固定式发光二极管(SMD type LED)或其他类型的发光二极管。
反射层13可反射光线,且可设置于电路板11的顶面111上,以使光线无法穿过电路板11(反射层13的功能将于描述图3A时进一步介绍)。除了光源12所在处外,反射层13可几乎涵盖整个顶面111。反射层13可为一具有白色涂层的塑胶(例如PET、PP、PE、PVC、PC、PMMA、PU、PS、ABS或其他塑胶)或为一金属(例如Al、Ag、Ni、Mo、Zn、Pt、Au、Cu或其他金属及合金);此外,反射层13可为包含多个反射微粒(reflective particles,例如TiO2、CaCO3、ZnO2、SiO2、Al2O3、SnO2、CeO2微粒,或是金属微粒)的一塑胶材料。反射层13设置在电路板11的方法可为溅镀、热蒸镀、涂覆或黏贴等方法。
反射层13亦可设置在后述的直下式导光结构14的下表面1412上。如此实施时,除了下容置槽1415所在处外,反射层13可几乎涵盖整个下表面1412。
直下式导光结构14可接收光线,然后将光线均匀地输出。直下式导光结构14可设置于电路板11的顶面111上(位在顶面111的上方),且放置在反射层13上;换言之,反射层13位于直下式导光结构14及电路板11之间。
直下式导光结构14可包含一透光本体141及多个微结构142。透光本体141可由任何透明或半透明的高分子材料所制成,例如硅树脂(silicone)、环状烯共聚物(cyclic olefin copolymer)、聚氨基甲酸酯(polyurethane)、聚苯乙烯(polystyrene)、共聚酯(polyester)、乙烯对苯二甲酸酯(polyethylene terephthalate, PET)、聚碳酸(polycarbonate, PC)、聚亚胺(polyimide, PI)、聚甲基丙烯酸酯 (polymethylmethacrylate, PMMA)、丙烯睛-丁二烯-苯乙烯(acrylonitrile-butadiene-styrene copolymer, ABS)、聚乙烯(polyethylene, PE)、聚丙烯(polypropylene, PP)或上述材料的组合。此外,透光本体141可借助射出成形(injection molding)、模造(molding)、挤出(protruding)、冲压(pressing)或压制(embossing)等制程来制作。
透光本体141可包含一上表面1411、一下表面1412、一外环面1413、一上锥形槽1414及一下容置槽1415。本实施例中,上表面1411及下表面1412皆为一平面,且相互平行及相对;下表面1412与反射层13相接触。外环面1413位于上表面1411及下表面1412之间,且连接上表面1411及下表面1412。外环面1413可包含六个相连的侧面14131,每个侧面14131与下表面1412相垂直。
上锥形槽1414形成于上表面1411上,或可说,上表面1411的一部份向下凹陷而形成上锥形槽1414,使得上表面1411局部为一曲面。下容置槽1415与上锥形槽1414相对应,形成于下表面1412上,或可说,下表面1412的一部份向上凹陷而形成下容置槽1415;下容置槽1415可具有相通的一锥状部14151及一柱状部14152。光源12可容置于下容置槽1415中。
上锥形槽1414的一尖点14141(也就是上锥形槽1414的最低处)可与下容置槽1415的锥状部14151的一尖点14153(也就是锥状部14151的最高处)垂直地对齐;换言之,上锥形槽1414的尖点14141可位于锥状部14151的尖点14153正上方。
上锥形槽1414的表面是依据边缘光线定理(edge-ray principle)来设计,以使得光线撞击到上锥形槽1414的表面时,会全反射而不会穿透。在此设计下,上锥形槽1414的表面为一斜率连续变化的曲面;换言之,上锥形槽1414可使上表面1411局部为斜率连续变化的曲面。曲面每一处的斜率将可使一特定入射角的光线撞击到该处时,全反射。上述的光线全反射的现象进一步说明如下。
请配合参阅图3A,为光线在图1的透光本体中传递的示意图。光源12所发射出的光线L可穿过下容置槽1415的表面,进入至透光本体141中。光线L穿过下容置槽1415的表面时,会折射而朝向上锥形槽1414前进;换言之,下容置槽1415的表面具有引导光线的功用。
另,光线L几乎是从光源12的正面(顶面)发射出,因此只有位于光源12正面的上方的下容置槽1415表面会有光线L穿过,而需具有导引光线的功能。换言之,位于光源12正面的下方的下容置槽1415表面(也就是柱状部14152的表面),可不需具有导引光线的功能。
该些光线L尔后会撞击到上锥形槽1414的曲面的不同处。由于该些光线L的入射角大于临界角度(由透光本体141的材质与透光本体141所在的一环境共同决定临界角度的大小,本实施例中约为42度),该些光线L会被该曲面反射,而不会穿透该曲面。
被曲面反射的光线L会朝向透光本体141的外环面1413前进。部分的光线L会撞击到下表面1412(或上表面1411),然后被下表面1412(或上表面1411)反射,因为光线L的入射角依然大于临界角度;被下表面1412(或上表面1411)反射的光线继续朝向透光本体141的外环面1413前进。
由此可知,透光本体141可使光源12发射的光线横向地传递,而不会集中在光源12附近处,也不会直接朝上射出。
因为制造公差或制造误差的关系,上表面1411及下表面1412可能会不平滑或不水平。因此有些光线L撞击到下表面1412时,会穿透下表面1412。穿透下表面1412的光线会被下表面1412下的反射层13反射回透光本体141中,确保光线L不会从透光本体141的下表面1412泄漏。
请配合参阅图3B,为图1的透光本体中的光线能量分布图,而此图可借助实验量测或模拟而得;图中黑色部分表示只有少量、微弱的光线通过其中。由光线的分布情形更可以了解到,在无微结构142的情况下,光线几乎不会穿过上锥形槽1414,且光线借助在上锥形槽1414、上表面1411及下表面1412上的全反射而朝向透光本体141的外环面1413前进。
请配合参阅图3C,为对应图3B的光线角度分布图。光线被上锥形槽1414反射后(即P点后)的角度约介于45度至-45度之间,而其余角(complementary angle)皆大于临界角度(42度)。因此,被上锥形槽1414反射的光线在撞击到上表面1411及下表面1412后,依然会全反射。
请复参阅图3A,需说明的是,“下容置槽1415的锥状部14151的半锥角θc”(如图所示,锥状部角度的1/2为半锥角)及“光线L撞击到上锥形槽1414的入射角θi”会影响到透光本体141的尺寸。光线L有非常多条,且每个光线L撞击至上锥形槽1414的入射角θi会不相同。锥状部14151的半锥角θc越接近于临界角度的余角时,且最小的入射角θi越接近临界角度时,透光本体141的厚度会越小。
而本实施例的下容置槽1415的锥状部14151的半锥角θc实质地等于(也就是非常接近)临界角度的余角,最小的入射角θi实质地等于(也就是非常接近)临界角度,因此透光本体141的厚度可被最小化(如果加工误差不考量时)。
请参阅图3D,为光线在图1的透光本体中传递的另一示意图。当下容置槽1415的锥状部14151的半锥角θc等于90度时,锥状部14151将等同不存在,使得下容置槽1415实质上为一柱状槽。此种情况中,上锥形槽1414的尺寸会改变,以使光线L依然可被上锥形槽1414的表面反射,但会使透光本体141的厚度变较大(与锥状部14151的半锥角θc等于临界角度的余角时相比)。
请复参阅图1,该些微结构142用以破坏或防止光线的全反射,以使光线可离开透光本体141。该些微结构142设置于透光本体141上,且分布在透光本体141的上表面1411及上锥形槽1414的曲面上。
该些微结构142可为线状、点状或任何规则或不规则形状的凹陷结构,本实施例的微结构142为环圈状沟槽(circular fine line trench),沟槽的深度为30微米,宽度为50微米;该些微结构142也可为凸起结构等。无论是凹陷结构或是凸起结构,该些微结构142与透光本体141可为一体成形。此外,该些微结构142也可为油墨材料(ink material),印刷或涂布于透光本体141上。
无论微结构142为何种型态,透光本体141上被微结构142设置的部分会变得粗糙、不平滑,因此光线撞击到该些部分时,光线的入射角有机会小于临界角度,不再全反射回透光本体141中。如此,光线有机会离开透光本体141。另,该些微结构142越远离上锥形槽1414的尖点14141(光源12)时,该些微结构142分布越密集;换言之,透光本体141越远离尖点14141的部分会有较多的微结构142分布。
上述的微结构142的分布方式可使光线均匀地离开透光本体141。详言之,靠近尖点14141处会有较强(较多)的光线及较少的微结构142,远离尖点14141处会有较弱(较少)的光线及较多的微结构142。因此,从靠近尖点14141处离开透光本体141的光线的强度,与从远离尖点14141处离开透光本体141的光线的强度,不会差异太大。
需说明的是,分布在上锥形槽1414的曲面上的微结构142会比分布在上表面1411上的微结构142的高度还低,换言之,该些微结构142的高度不是都一样。该些微结构142的整体分布为一三维度分布(three-dimensional distribution),有别于现有的导光结构的微结构为平面分布。
另需说明的是,上述实施例是借助微结构142的不均匀分布,来控制离开透光本体141的光线的均匀度。然而,在微结构142均匀分布的情况下,离开透光本体141的光线的均匀度亦可借助微结构142的深度、尺寸、角度或形状等来控制。
以上为第一较佳实施例的发光装置A1的说明,以下将说明依据本发明其他较佳实施例的发光装置。为了简洁说明的目的,其他较佳实施例与第一较佳实施例相似之处,以及其他较佳实施例之间的相似之处,皆将不再叙述。
请参阅图4A,为依据本发明第二较佳实施例的发光装置的剖视图。第二较佳实施例的发光装置A2与发光装置A1的主要差异为,发光装置A2的透光本体141的上表面1411全部皆非平面,而是一曲面。透光本体141的上表面1411为曲面时,透光本体141可有较大的光线发射面积(light emitting range),与上表面1411为平面时相比。
另,上表面1411为曲面时,微结构142将随着曲面的曲率做相对应的变化,此变化可包括微结构142的数量、角度、形状或尺寸的变化。以数量为例,上表面1411靠近外环面1413处,可有较少的微结构142;此举是因为曲面的上表面1411本身即可破坏光线的全反射,可不需全依靠微结构142。
发光装置A2与发光装置A1的另一差异为,发光装置A2的透光本体141的下容置槽1415只具有锥状部14151;换言之,此下容置槽1415为一下锥形槽。当下容置槽1415为下锥形槽时,下容置槽1415可适合容置“侧面及正面皆可发射光线的光源12”;原因说明如下。
请参阅图4B,为光线在图4A的透光本体中传递的示意图。当光源12的正面及侧面皆发射光线L时,下容置槽1415表面的每一处皆需能将光线L导向至上锥形槽1414的表面,而下容置槽1415为下锥形槽时可符合此要求。
请参阅图5及图6,分别为依据本发明第三及第四较佳实施例的发光装置的剖视图。第三较佳实施例的发光装置A3与发光装置A2的主要差异为,发光装置A3的透光本体141的下表面1412也分布有微结构142。如此,除了上表面1411上的微结构142,下表面1412上的微结构142也可控制透光本体141的光线输出强度。
第四较佳实施例的发光装置A4与发光装置A3的主要差异为,发光装置A4的透光本体141的上表面1411无分布有微结构142,而微结构142只分布在下表面1412。反射层13设置于下表面1412上,但没有陷入微结构142中。发光装置A4的特点为:上表面1411上可设置一散光器(diffuser)(可为散光板或散光膜)(请参阅图10A);散光器与上表面1411之间有间距时,散光器上容易观察到明暗不均的情况;但上表面1411无分布微结构142时,散光器上的明暗不均会变得较不明显。
请参阅图7,为依据本发明第五较佳实施例的发光装置的剖视图。与发光装置A1相比,本实施例的发光装置A5的透光本体141更包含多个挖空槽1416。
该些挖空槽1416形成于透光本体141的下表面1412上,而下容置槽1415位于该些挖空槽1416之间。挖空槽1416的设置可使得透光本体141的制造材料减少,以减少透光本体141的制造成本。挖空槽1416可为一圆顶状(dome-shaped)挖空槽或锥形状挖空槽,但不限定。
挖空槽1416并不会影响到光线往透光本体141的外环面1413的传递,这是由于:请配合参阅图3A及3B,光线L在透光本体141中传递时,透光本体141中靠近下容置槽1415的部分几乎没有光线通过;这些几乎无光线通过的部分被移除后,即形成挖空槽1416。因此,挖空槽1416几乎不会有光线(或是微弱的光线)穿过其中,故不会影响到光线在透光本体141中的传递。
此外,于其他实施方式中,该些挖空槽1416可彼此相通,以形成一环状挖空槽(请参阅图10C所示);而下容置槽1415会被环状挖空槽环绕。环状挖空槽可使得透光本体141的制造材料更为减少。
请参阅图8及图9,分别为依据本发明第六及第七较佳实施例的发光装置的剖视图。第六较佳实施例的发光装置A6与发光装置A5的主要差异为,发光装置A6的透光本体141的上表面1411非平面,而是一曲面;此外,透光本体141的挖空槽1416中也设置有反射层13,以使光线无法从挖空槽1416中射出。第七较佳实施例的发光装置A7与发光装置A6的主要差异为,该些微结构142进一步分布于挖空槽1416中,而反射层13陷入至微结构142中。然而,于其他配置中,反射层13也可不陷入微结构142中(类似图6所示的发光装置A4),仅是接触或靠近下表面1412。
需说明的是,虽然图未示,发光装置A5至A7的任一个的透光本体141的上表面1411可不设置微结构142(类似发光装置A4);或者,发光装置A5至A7的任一个的电路板11的顶面111可不设置反射层13。
请参阅图10A,为依据本发明第八较佳实施例的发光装置的剖视图;并请参阅第10B及10C图,为图10A的发光装置的直下式导光板的立体图(微结构未显示)。本实施例的发光装置A8与第六实施例的发光装置A6包含同样的直下式导光结构14,但发光装置A8的直下式导光结构14为多个;该些直下式导光结构14彼此相连及并排,以构成一直下式导光板。此外,该些直下式导光结构14的透光本体141为一体成形,且挖空槽1416皆为环状挖空槽。此外,透光本体141的下表面1412可为共平面。
此外,发光装置A8更包含多个光源12及一支撑座15,并可选择地(如需要时)包括至少一个电路元件16及至少一连接杆17;以下将依序说明各元件的技术内容。
该些光源12设置于电路板11的顶面111上,该些直下式导光结构14也设置于电路板11的顶面111上,而该些光源12分别容置于该些直下式导光结构14的下容置槽1415中。此外,该些直下式导光结构14的透光本体141可为一体成形的。支撑座15(或称为底座或背板)用以加强发光装置A8的结构强度,或是增加散热效率。支撑座15可为一铝板,设置于电路板11的底面112上。
至少一个电路元件16(例如控制晶片、驱动晶片、电阻、电容等)也设置于电路板11的顶面111上,且容置于其中一个挖空槽1416中。若直下式导光结构14无挖空槽1416时(例如图1所示的),电路板11需要额外的部分来伸出直下式导光结构14外,以使电路元件16可放置于直下式导光结构14外,避免干涉直下式导光结构14放置于电路板11上。由此可知,当直下式导光结构14有挖空槽1416时,除了可减少透光本体141的制造材料,也可减少电路板11的宽度或长度。
至少一个连接杆17用以将电路板11、直下式导光结构14及支撑座15固定于一起。连接杆17包含一杆体171、二止动部172及一支撑平面173。其中,杆体171贯穿电路板11、直下式导光结构14及支撑座15;而二止动部172可各为一倒钩,二止动部172分别扣在直下式导光结构14及支撑座15上,使得电路板11、直下式导光结构14及支撑座15无法任意地相对移动,达到固定的功用。支撑平面173设置于杆体171的上端,且与透光本体141的上表面1411等高。
发光装置A8上可进一步被设置一散光器18、一光学层19及一液晶面板20,以构成一液晶显示器的背光模组。
散光器18、光学层19及液晶面板20依序地堆叠于透光本体141的上表面1411上。散光器18的底面可与连接杆17的支撑平面173相黏接,以使散光器18不会翘起而造成明暗不均的现象。光学层19可包含下扩散膜(bottom diffuser film)、增亮膜(brightness enhancement film, BEF)、反射式增亮膜(dual brightness enhancement film, DBEF)及上扩散膜(top diffuser film)等常用于背光模组中的薄膜。
请参阅图11A,为依据本发明第九较佳实施例的发光装置的剖视图。与第五实施例的发光装置A5相似,本实施例的发光装置A9的透光本体141包含多个挖空槽1417。该些挖空槽1417形成于透光本体141的下表面1412上,而下容置槽1415位于该些挖空槽1417之间。此外,该些挖空槽1417延伸至透光本体141的外环面1413。该些挖空槽1417各可具有一平面14171,与上表面1411实质地平行。
与挖空槽1416相比,挖空槽1417的设置可使透光本体141的制造材料更为减少;甚至,该些挖空槽1417的容积之总和可大于透光本体141的体积,使得透光本体141的制造材料可减少一半以上,与未形成挖空槽1417的透光本体(例如图1所示)相比。需说明的是,透光本体141的体积只包括透光本体141的实体部分,不包括透光本体141的非实体部分(例如上锥形槽1414、下容置槽1415及挖空槽1417)。
挖空槽1417不会影响到光线在透光本体141中的传递,这是由于:请配合参阅图3B及图3C,在P点后(被上锥形槽1414反射后)的光线的角度的余角皆大于临界角度,因此P点后的透光本体141的厚度即使缩减,光线依然可在透光本体141中全反射。P点后的透光本体141变薄后所形成的空间即为挖空槽1417的一部份。
请配合参阅图11B,为图11A的透光本体中的光线能量分布图。由光线的分布情形更可了解到,透光本体141变薄后且透光本体141上无设置微结构时,光线无论是撞击到平面14171或上表面1411,皆可全反射。
请复参阅图11A,除了挖空槽1417外,发光装置A9的反射层13与前述实施例的也不相同。详言之,反射层13并非全部地贴合在电路板11的顶面111上,而是部分地位在挖空槽1417中,并且靠近透光本体141的下表面1412。
除了图11A所示外,发光装置A9可有其他的变化。例如,如图11C所示,微结构142可分布于透光本体141的下表面1412上,且面向挖空槽1417,并被反射层13(例如白色涂漆)覆盖住;或者,如图11D所示,发光装置A9的反射层13可全部地贴合在电路板11的顶面111上;或者,发光装置A9可无反射层13(图未示)。
如图11E所示,透光本体141的挖空槽1417的平面14171可为倾斜的,没有与上表面1411平行;透光本体141的下容置槽1415可只具有锥状部14151,使得下容置槽1415实质为一下锥形槽。
透光本体141还可具有多个突出结构1418,该些突出结构1418向下地凸设于透光本体141的下表面1412,且位于下容置槽1415与挖空槽1417之间。而电路板11具有多个穿孔113,该些突出结构1418可分别***该些穿孔113中,使得透光本体141固定在电路板11上,而不需借助其他固定元件(例如图10A所示的连接杆17)。
突出结构1418的末端可形成一止动结构(例如倒钩,图未示),以使得突出结构1418***穿孔113中后,不易拔出,进而使透光本体141更稳定地固定在电路板11上。
在其它的实施方式中(图未示),突出结构1418的长度可小于穿孔113的深度,使得突出结构1418***穿孔113中后,突出结构1418将不会伸出于电路板11的底面112外。如此,穿孔113之中将有一个没有被突出结构1418占据的空间,而该空间可被填入黏胶(图未示),以使突出结构1418与电路板11相固定。
请参阅图12A,为依据本发明第十较佳实施例的发光装置的剖视图;并请参阅图12B及12C,为图12A的发光装置的直下式导光板的立体图(微结构未示)。本实施例的发光装置A10与第九实施例的发光装置A9包含同样的直下式导光结构14,但发光装置A10的直下式导光结构14为多个,且各个直下式导光结构14的透光本体141彼此相连以构成一个直下式导光板。该些透光本体141的上表面1411可为共平面。每个直下式导光结构14的挖空槽1417中皆有微结构142分布,且反射层13为一反射薄板,其接近于微结构142的下方但未陷入微结构142中。
本实施例的发光装置A10的其他元件(光源12、支撑座15、电路元件16、散光器18、光学层19及液晶面板20)与发光装置A8的相同,因此不再此描述。
值得一提的是,发光装置A10的透光本体141的挖空槽1417由于较大,因此可容置较多或较厚的电路元件16。
请参阅图13至图15,分别为依据本发明第十一较佳实施例的发光装置于组合状态的俯视图、分解状态的俯视图及组合状态的侧视图。本实施例的发光装置A11包含多个电路板11、多个光源12、多个直下式导光结构14、一支撑座15、一电路元件16及一驱动电路板21。
该些电路板11为长条状,且该些电路板11的一端各可借助一连接器22与驱动电路板21相连接。此外,该些电路板11可彼此相连接。该些光源12则设置于该些电路板11;电路板11与设置其上的光源12可一起地被称为光条(light bar)。由于电路板11主要是供光源12设置,电路板11也可称为一光源电路板11。另,光源12也可设置在驱动电路板21上。
电路元件16可包括一控制晶片及控制晶片的相关周边电路等,并设置于驱动电路板21,以使驱动电路板21可发出控制信号来控制光源电路板11上的光源12发射光线。驱动电路板21可借助一层导热胶23或多个螺栓24与支撑座15相固定。导热胶23可快速地将驱动电路板21的热能传导至支撑座15上。
该些直下式导光结构14的透光本体141为可分离地相连接,以使直下式导光结构14构成一直下式导光板。请配合参阅图16及图17,分别为图13的发光装置的两个直下式导光结构的立体图及侧视图(微结构未示)。直下式导光结构14的透光本体141的侧面14131相对于上表面1411为倾斜的。相邻的两个直下式导光结构14的侧面14131的倾斜角度为相反(也就是,如果其中一个倾斜角度为45度时,另一个倾斜角度为负45度),故相邻的两个直下式导光结构14的侧面14131可靠合。
倾斜的侧面14131可让相邻的直下式导光结构14间的边界重叠,使得边界的光线重叠。当直下式导光结构14在组装上出现误差时,相邻的直下式导光结构14之间会出现大小不一的缝隙。重叠的光线可使得大小不一的缝隙所造成的亮线或暗线,穿透散光器后变得不明显。需说明的是,倾斜角度介于20度至70度之间时,上述的功效可较为显著。
请参阅图18,为依据本发明第十二较佳实施例的发光装置于分解状态的俯视图。本实施例的发光装置A12包括多个第十一实施例的发光装置A11及一控制电路板25。该些发光装置A11的驱动电路板21两两相连,然后再透过连接器22连与控制电路板25连接。控制电路板25可借助设置于其上的另一电路元件27(包含微控制单元(micro control unit, MCU)及其周边电路)来发出控制信号给驱动电路板21,驱动电路板21再依据控制信号的内容,控制光源电路板11上的光源12发射光线。
请参阅图19及图20,分别为依据本发明第十三较佳实施例的发光装置于组合状态的俯视图及分解状态的俯视图。与第十一实施例的发光装置A11不同之处为,本实施例的发光装置A13只包含一个电路板11,且光源12、直下式导光结构14、电路元件16及连接器22都设置于电路板11上。借此,电路板11即为驱动电路板,可直接控制光源12是否发光。
值得一提的是,电路板11为一矩形板,其四侧各有一个连接器22,以使电路板11的四侧都可连接其他的发光装置(图未示)。
请参阅图21,为依据本发明第十四较佳实施例的发光装置于分解状态的俯视图。本实施例的发光装置A14包括多个第十三实施例的发光装置A13、一支撑座15及一控制电路板25。该些发光装置A13为相并排,且该些发光装置A13的电路板11透过连接器22而彼此连接。该些发光装置A13另透过连接器22与控制电路板25连接。该些发光装置14及控制电路板25皆设置于支撑座15上。
请参阅图22,为依据本发明第十五较佳实施例的发光装置于分解状态的俯视图。本实施例的发光装置A15包含多个光源电路板11、多个光源12、多个直下式导光结构14、一支撑板15及二控制电路板25。该些电路板11及该些光源12可构成多个光条。该些光条透过连接器22相连接,然后再透过连接器22连接至其中一个控制电路板25上。此外,该些光条设置于二控制电路板25之间,且光条及二控制电路板25皆设置于支撑板15上。每个控制电路板25可控制光条的光源12是否发射光线。
请参阅图23,为依据本发明第十六较佳实施例的发光装置于组合状态的俯视图。与第十五实施例的发光装置A15相比,本实施例的发光装置A16只包含一控制电路板25,且另外包含一驱动电路板21及一连接线26(例如缆线)。该些光条(电路板11及光源12)设置于控制电路板25及驱动电路板21之间,且连接控制电路板25及驱动电路板21。
控制电路板25及驱动电路板21透过连接线26相连接。控制电路板25本身可控制光条的光源12是否发射光线,且可透过连接线26传递控制信号至驱动电路板21,让驱动电路板21依据控制信号来控制光条的光源12是否发射光线。
请参阅图24,为依据本发明第十七较佳实施例的发光装置于组合状态的俯视图。与第十五实施例的发光装置A15相比,本实施例的发光装置A17只包含一个控制电路板25;此外,控制电路板25呈水平排列,而光条呈垂直排列。
上述的发光装置A11至A17的特点在于,电路板11、光源12及导光结构14可依据需求而轻易地扩充数量,以增加发光装置A11至A17的发光范围。
综合上述,本发明的发光装置及直下式导光结构可具有以下特点:
1、 直下式导光结构的上锥形槽及微结构可让直下式导光结构在接受光源发射的光线后,均匀地将该些光线输出;
2、 直下式导光结构可使得发光装置的整体厚度较薄,且可减少光源的数量;
3、 下容置槽的锥状部的半锥角等于临界角度时,透光本体的厚度可较小;
4、 透光本体的挖空槽可减少透光本体的制造材料,且不会影响到光线在透光本体中的传递;
5、 透光本体的侧面可为倾斜,以避免两个非一体成形的透光本体相接面上出现亮线或暗线;
6、 多个直下式导光结构可相连接,以构成一个直下式导光板,且该些直下式导光结构的透光本体可为一体成形;
7、 发光装置的电路板、光源及直下式导光结构有多种配置方式,以因应各种应用场合;以及
8、 发光装置的电路板、光源及直下式导光结构皆可轻易地扩充,以增加发光装置的发光范围。
上述的实施例仅用来例举本发明的实施态样,以及阐释本发明的技术特征,并非用来限制本发明的保护范畴。任何熟悉此技术者可轻易完成的改变或均等性的安排均属于本发明所主张的范围。

Claims (29)

  1. 一种直下式导光结构,其特征包含:
    一个透光本体,包含一个上表面及与该上表面相对的一个下表面,该上表面形成一个上锥形槽,该下表面形成对应于该上锥形槽的一个下容置槽,其中,该上锥形槽使该上表面局部为斜率连续变化的一个曲面;以及
    多个微结构,设置于该透光本体上。
  2. 如权利要求1所述的直下式导光结构,其特征在于,该透光本体的该下表面更形成多个挖空槽,而该下容置槽位于该些挖空槽之间。
  3. 如权利要求2所述的直下式导光结构,其特征在于,该些挖空槽彼此相通,以形成一个环状挖空槽,而该下容置槽被该环状挖空槽环绕。
  4. 如权利要求2所述的直下式导光结构,其特征在于,该些微结构分布于该些挖空槽中。
  5. 如权利要求2所述的直下式导光结构,其特征在于,该透光本体的该下表面上及该些挖空槽中设置有一个反射层。
  6. 如权利要求2所述的直下式导光结构,其特征在于,该透光本体更包含一个外环面,连接该上表面及该下表面,而该些挖空槽延伸至该外环面。
  7. 如权利要求6所述的直下式导光结构,其特征在于,该些挖空槽的容积之总和大于该透光本体的体积。
  8. 如权利要求6所述的直下式导光结构,其特征在于,该外环面包含六个相连的侧面,该些侧面相对于该上表面为倾斜的。
  9. 如权利要求6所述的直下式导光结构,其特征在于,该些微结构分布于该些挖空槽中。
  10. 如权利要求6所述的直下式导光结构,其特征在于,该透光本体的该下表面上及该些挖空槽中设置有一个反射层。
  11. 如权利要求1所述的直下式导光结构,其特征在于,该透光本体的该下表面上设置有一个反射层。
  12. 如权利要求1至10任一项所述的直下式导光结构,其特征在于,该些微结构分布在该透光本体的该上表面或该下表面上。
  13. 如权利要求1至10任一项所述的直下式导光结构,其特征在于,该些微结构与该透光本体一体成形,或涂布于该透光本体上。
  14. 如权利要求1至10任一项所述的直下式导光结构,其特征在于,该透光本体与该透光本体所在的环境共同定义出一个临界角度,而该下容置槽具有一个锥状部,该锥状部的半锥角度等于该临界角度的余角。
  15. 如权利要求1至10任一项所述的直下式导光结构,其特征在于,该些微结构分布在该透光本体的该上表面及该上锥形槽,使得该些微结构的分布呈现三维度分布。
  16. 如权利要求1至10任一项所述的直下式导光结构,其特征在于,该透光本体具有多个突出结构,凸设于该透光本体的下表面。
  17. 一种直下式导光板,其特征包含:多个如权利要求1所述的直下式导光结构,该些直下式导光结构的透光本体相连接。
  18. 如权利要求17所述的直下式导光板,其特征在于,该些直下式导光结构的透光本体为一体成形。
  19. 如权利要求17所述的直下式导光板,其特征在于,该些直下式导光结构的透光本体为可分离地相连接,且各该透光本体更包含一个外环面,各该透光本体的外环面与相邻的该透光本体外环面相靠合。
  20. 如权利要求19所述的直下式导光板,其特征在于,各该透光本体的外环面包含六个相连的侧面,该些侧面相对于该上表面为倾斜的,相邻的两个该透光本体的侧面的倾斜角度为相反。
  21. 一种发光装置,其特征包含:
    至少一个电路板,包含一个顶面及与该顶面相对的一个底面;
    至少一个光源,设置于该电路板的该顶面上;以及
    至少一个如权利要求1所述的直下式导光结构,设置于该电路板的该顶面上,其中,该光源容置于该直下式导光结构的该下容置槽中。
  22. 如权利要求21所述的发光装置,其特征在于,该透光本体的该下表面更形成多个挖空槽,而该下容置槽位于该些挖空槽之间。
  23. 如权利要求22所述的发光装置,其特征在于,更包含至少一个电路元件,设置于该电路板上,且容置于其中一个该挖空槽中。
  24. 如权利要求21至23任一项所述的发光装置,其特征在于,更包含一个反射层,设置于电路板的该顶面上,且位于该直下式导光结构与该电路板之间。
  25. 如权利要求21至23任一项所述的发光装置,其特征在于,更包含一个支撑座,设置于该电路板的该底面上。
  26. 如权利要求25所述的发光装置,其特征在于,更包含一层导热胶,设置于该电路板与该支撑座之间。
  27. 如权利要求21至23任一项所述的发光装置,其特征在于,更包含一个散光器,堆叠于该透光本体的上表面上。
  28. 如权利要求27所述的发光装置,其特征在于,更包含一个液晶面板,堆叠于该散光器上。
  29. 如权利要求21至23任一项所述的发光装置,其特征在于,该透光本体具有多个突出结构,凸设于该透光本体的下表面,该电路板具有多个穿孔,该些突出结构分别***该些穿孔中。
PCT/CN2012/081260 2011-09-14 2012-09-11 直下式导光结构、直下式导光板及发光装置 WO2013037288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110271826.8 2011-09-14
CN 201110271826 CN102411166B (zh) 2010-09-20 2011-09-14 直下式导光结构、直下式导光板及发光装置

Publications (1)

Publication Number Publication Date
WO2013037288A1 true WO2013037288A1 (zh) 2013-03-21

Family

ID=47882655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/081260 WO2013037288A1 (zh) 2011-09-14 2012-09-11 直下式导光结构、直下式导光板及发光装置

Country Status (1)

Country Link
WO (1) WO2013037288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151675A1 (ja) * 2014-04-02 2015-10-08 株式会社エンプラス 光束制御部材、発光装置、面光源装置および表示装置
WO2017053235A1 (en) * 2015-09-25 2017-03-30 Snaptrack, Inc. Etendue-preserving light coupling system having light output aperture smaller than light input aperture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515068A (zh) * 2008-02-20 2009-08-26 奇菱科技股份有限公司 匀光器和包含所述匀光器的背光模块
CN101788118A (zh) * 2009-01-26 2010-07-28 索尼公司 发光装置和图像显示装置
CN102032528A (zh) * 2009-09-18 2011-04-27 敦网光电股份有限公司 发光装置及光扩散板
CN102042562A (zh) * 2009-10-16 2011-05-04 清华大学 导光板及背光模组
US20120069575A1 (en) * 2010-09-20 2012-03-22 Luxingtek, Ltd. Light converting optical structure and lighting device utilizing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515068A (zh) * 2008-02-20 2009-08-26 奇菱科技股份有限公司 匀光器和包含所述匀光器的背光模块
CN101788118A (zh) * 2009-01-26 2010-07-28 索尼公司 发光装置和图像显示装置
CN102032528A (zh) * 2009-09-18 2011-04-27 敦网光电股份有限公司 发光装置及光扩散板
CN102042562A (zh) * 2009-10-16 2011-05-04 清华大学 导光板及背光模组
US20120069575A1 (en) * 2010-09-20 2012-03-22 Luxingtek, Ltd. Light converting optical structure and lighting device utilizing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015151675A1 (ja) * 2014-04-02 2015-10-08 株式会社エンプラス 光束制御部材、発光装置、面光源装置および表示装置
JP2015197624A (ja) * 2014-04-02 2015-11-09 株式会社エンプラス 光束制御部材、発光装置、面光源装置および表示装置
US10133118B2 (en) 2014-04-02 2018-11-20 Enplas Corporation Light flux control member with an annular groove
WO2017053235A1 (en) * 2015-09-25 2017-03-30 Snaptrack, Inc. Etendue-preserving light coupling system having light output aperture smaller than light input aperture
US9823411B2 (en) 2015-09-25 2017-11-21 Snaptrack Inc. Etendue-preserving light coupling system having light output aperture smaller than light input aperture

Similar Documents

Publication Publication Date Title
TWI444679B (zh) 直下式導光結構、直下式導光板及發光裝置
US8814391B2 (en) Light guiding structure
KR20150025231A (ko) 광원 모듈 및 그 제조 방법, 및 백라이트 유닛
TW201142368A (en) Light reflective structure and light panel
WO2017138679A1 (ko) 직하형 led 면조명 장치
US10890802B2 (en) Optical lens, backlight module and display device using same
WO2010058996A2 (ko) 멀티칩 엘이디 패키지
WO2019010974A1 (zh) 一种背光模组及液晶显示装置
US11693273B2 (en) Light source module and display device
WO2013039317A2 (ko) 아이시클형 확산유닛을 적용한 엘이디 조명 엔진
KR20120038166A (ko) 액정표시모듈 및 이를 구비한 액정표시장치
WO2013037288A1 (zh) 直下式导光结构、直下式导光板及发光装置
WO2015099277A1 (ko) 조명장치 및 이에 사용되는 리플렉터
WO2017191967A1 (ko) 조명장치
US20140185320A1 (en) Optical coupling device and backlight module
US20120099028A1 (en) Lighting device, display device and television receiver
US8858052B2 (en) Backlight module
KR20230031651A (ko) 초슬림 백라이트 유닛
US9389354B2 (en) Backlight module
KR20170124271A (ko) 조명 장치
KR101285311B1 (ko) 발광 다이오드 패키지 및 백라이트 유닛
TWI599744B (zh) 導光結構及其背光模組
TWI532949B (zh) 板形燈具模組
KR101997251B1 (ko) 발광소자 어레이 모듈 및 조명 시스템
KR101797596B1 (ko) 발광소자 패키지 및 이를 포함하는 조명 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831639

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24.06.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12831639

Country of ref document: EP

Kind code of ref document: A1