WO2013036069A1 - Method for manufacturing metal - Google Patents

Method for manufacturing metal Download PDF

Info

Publication number
WO2013036069A1
WO2013036069A1 PCT/KR2012/007221 KR2012007221W WO2013036069A1 WO 2013036069 A1 WO2013036069 A1 WO 2013036069A1 KR 2012007221 W KR2012007221 W KR 2012007221W WO 2013036069 A1 WO2013036069 A1 WO 2013036069A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
magnesium
producing
precursor
solvent
Prior art date
Application number
PCT/KR2012/007221
Other languages
French (fr)
Korean (ko)
Inventor
김종훈
Original Assignee
Kim Jong-Hoon
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kim Jong-Hoon filed Critical Kim Jong-Hoon
Publication of WO2013036069A1 publication Critical patent/WO2013036069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B5/00General methods of reducing to metals
    • C22B5/02Dry methods smelting of sulfides or formation of mattes
    • C22B5/04Dry methods smelting of sulfides or formation of mattes by aluminium, other metals or silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/05Light metals
    • B22F2301/058Magnesium

Definitions

  • the present invention relates to a method for producing a metal by a novel method and a metal made using the same.
  • the metal making method generally uses a reduction reaction, uses high temperature to reduce metal compounds (mainly oxides) to metals, and uses coke, oil, gas and electricity as heat sources.
  • metal compounds mainly oxides
  • the metal powder may include internal or external electrodes of a multilayer ceramic capacitor, porous electrodes of a hydrogen-nickel secondary battery, hollow porous electrodes of a fuel cell (which supplies electrical energy through electrochemical oxidation of fuel), and electrodes of various electronic components. It is attracting attention as a material for forming a film.
  • the multilayer ceramic capacitor alternates with a layer of ceramic dielectric (such as titanium oxide, barium titanate or complex PEROVSKITE) under appropriate pressure and complete combustion conditions.
  • a layer of ceramic dielectric such as titanium oxide, barium titanate or complex PEROVSKITE
  • a stacked metal internal electrode layer and an external electrode layer connected to the internal electrode layer Today they are growing rapidly as electrode components.
  • Patent Document 1 Ni particles having an average particle diameter of 0.2 to 0.6 and a content of less than 0.1% in a water-size distribution and having a particle size of 2.5 times or more larger than the average particle diameter are used for hydrogen reduction in the gas phase.
  • the manufacturing method is disclosed.
  • the use of the gas phase method has the advantage of high purity and particle size density, while the process temperature is higher than 1000, and there is a disadvantage that the yield is low.
  • Patent Document 2 discloses a method for producing a metal or alloy powder by spray pyrolysis of a solution containing a metal salt at a temperature higher than the decomposition temperature of the metal salt.
  • the yield can be improved, but there is a problem that it is difficult to control the size of the particles and is not economical.
  • Patent Document 3 discloses a method for synthesizing metal nanoparticles by synthesizing metal nanoparticles with an insoluble metal salt and preparing metal nanoparticles suitable for use as a conductive material. have.
  • environmental problems such as wastewater treatment of the reducing agent used may be caused.
  • the electrolysis method and the sol-gel method are expensive to manufacture and difficult to mass-produce, and the reverse phase microemulsion method is easy to control the size, shape, and size distribution of particles, but the manufacturing process is very complicated and cannot be put to practical use. There is.
  • the gas phase method or the distributed pyrolysis method it is suitable for manufacturing metal particles used as electronic materials because of the particle size control, crystallinity, purity, etc., but the excessive cost of the production process also occurs due to excessive initial equipment cost.
  • the present invention has been made to solve the problem of the waste water treatment by the reducing agent of the reduction method and to overcome the limitations of the prior art as described above, the object of the present invention is to provide a method for producing a simple and environmentally friendly metal. .
  • the present invention provides a method for producing a metal, comprising the steps of: reducing and depositing a metal of a metal precursor, which is a metal salt, a metal alkoxide, or a mixture thereof, using magnesium.
  • the equivalent ratio of metal to magnesium of the metal precursor is 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.5.
  • the present invention is the step of reusing the filtrate passed through the filtration system in the step (b) as a solvent to dissolve the metal salt again; It provides a method for producing a metal further comprising.
  • the present invention comprises the steps of washing the recovered metal of the step (b); It provides a method for producing a metal further comprising.
  • the solvent is added to the reactor, and the metal precursor is melted at 25 to 80 degrees in room temperature or low solubility, and then magnesium powder is added and cooled to room temperature or room temperature or 25 to 100 degrees in the case of low reactivity metal precursor. It is a method of making metal powder by reducing and precipitating the metal of the metal precursor by increasing the reaction.
  • An advantage of the present invention is that the components of the waste water are magnesium salt solutions.
  • This magnesium salt can be obtained by concentrating the wastewater, and it can be completely dried and used as recycled magnesium salt.
  • the price of magnesium powder is very cheap, so the production cost of metal is very low.
  • the water that evaporates when the waste water is dried may be recycled because it is pure water.
  • magnesium is added in an equivalent or more, and the metal: magnesium equivalent ratio of the metal precursor is 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.5.
  • the size and shape of the particles can be controlled according to the rate at which magnesium is added.
  • the present invention includes the step of controlling the size of the metal powder by adjusting the injection speed of magnesium. You can make larger particles that are larger than the micron scale, and you can make nanoscale particles. Furthermore, as the reduction rate of the metal precursor is controlled according to the input rate of magnesium, the size of the metal powder can be varied.
  • the solvent may be any solvent that can dissolve the metal salt well.
  • Water, ultrapure water, polar solvents, nonpolar solvents and the like can be used, but are not limited to ultrapure water, methyl alcohol, ethyl alcohol, propyl alcohol, benzyl alcohol, tetrahydrofuran, dioxane, ionic liquid, surfactants, etc. It may be selected according to the form of the product.
  • Metals of the metal precursors are not particularly limited, but strontium, barium, aluminum, silicon, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium , Rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth, polonium cerium, praseodymium, One or more selected from neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium may be used
  • the anion of the metal salt is not limited to a hydroxide, nitrate, acetate, propionate, acetylacetonate, 2,2,6,6-tetramethyl-3,5-heptanedionate, methoxide, Secondary-butoxide, tertiary-butoxide, n-propoxide, i-propoxide, ethoxide, phosphate, alkylphosphate, carbon tetrachloride, perchlorite, sulfate, iodide, alkylsulfonate, tetra It may be selected from the group consisting of alkyl, phenoxide, bromide, chloride and the like.
  • the alkoxide of the metal alkoxide is selected from the group consisting of alkoxide having 1 to 8 carbons such as tetra isopropoxy titanate, tetraethyl orthosilicate, methoxide, ethoxide, propoxide, butoxide, pentoxide and the like. Can be.
  • the average size of the metal can be controlled by adjusting the input rate of magnesium, and further, materials such as surfactant, benzyl alcohol, octyl alcohol, etc., which can form the interface, are first added to the solvent. After melting or melting the metal precursor of step (a) There is a feature of controlling the form of the metal by adding.
  • step (e) adding a precursor of a second metal different from the first metal, which is the metal precipitated in step (b), to the solvent in step (b); It provides a method for producing a metal comprising a.
  • magnesium is added so that the ratio of the total metal equivalent and the magnesium equivalent of the first metal equivalent and the second metal equivalent finally added in step (b) is 1: 0.5 to 1.5.
  • the present invention is characterized in that (a) + (b) step as a unit process, and repeating the unit process.
  • a method of adding precursors of different metals is also included in the scope of the present invention.
  • the amount of magnesium added is more preferably the equivalent ratio of metal: magnesium 1: 1: 0.8 to 1.5 of each of the metal precursors added immediately before the step (b).
  • Nano-sized particles, wires, rods or plate-shaped particles of metal produced by the production method of the present invention are included in the scope of the present invention.
  • the production method of the metal according to the present invention is not only a very low production cost but also an environmentally friendly and future-oriented technology because it can make the metal without generating very little or no waste water. Not only that, but the technology can be applied to various metals, so the use range is very large.
  • Example 1 is a result of analyzing the copper powder prepared in Example 3 with a particle size analyzer.
  • Example 2 is a photograph of the titanium powder prepared in Example 4 with a transmission electron microscope (TEM, model name: Tecnai F20) and the results of elemental analysis using an EDS (Energy Dispersive Spectrometer).
  • TEM transmission electron microscope
  • EDS Electronic Dispersive Spectrometer
  • the vessel used in the example used a general super reactor.
  • the present invention is not only very inexpensive to produce, but also very low in wastewater or metals can be produced without generating any wastewater, which is environmentally friendly and future-oriented, and can be applied to various metals, and thus the use range is very large.

Abstract

Provided is a method for manufacturing a metal by reducing, in a solution, metal salts, metal alkoxides, or a metal of a metal precursor which is a mixture of the metal salts and metal alkoxides, using magnesium. Further provided is the metal manufactured using said method. The provided method enables the metal to be produced at low cost in a very simple manner enabling easy wastewater treatment, wherein metal particles may be manufactured to have various nanoscale or larger sizes and shapes.

Description

금속의 제조방법Metal manufacturing method
본 발명은 신규한 방법으로 금속을 제조하는 방법 및 이를 이용하여 만들어지는 금속에 관한 것이다.The present invention relates to a method for producing a metal by a novel method and a metal made using the same.
금속을 만드는 방식은 일반적으로 환원반응을 이용하며, 금속화합물(주로 산화물)을 금속으로 환원시키기 위하여 고온을 이용하며, 열원으로는 코크스, 오일, 가스 및 전기를 사용한다. The metal making method generally uses a reduction reaction, uses high temperature to reduce metal compounds (mainly oxides) to metals, and uses coke, oil, gas and electricity as heat sources.
또한 금속분은 적층 세라믹 콘덴서의 내부전극이나 외부전극, 수소-니켈 제2전지의 다공성 전극, 연료전지(연료의 전기화학적 산화를 통하여 전기 에너지를 공급하는)의 중공다공성 전극, 그리고 다양한 전자부품의 전극을 형성하는 재료로서 주목받고 있다.In addition, the metal powder may include internal or external electrodes of a multilayer ceramic capacitor, porous electrodes of a hydrogen-nickel secondary battery, hollow porous electrodes of a fuel cell (which supplies electrical energy through electrochemical oxidation of fuel), and electrodes of various electronic components. It is attracting attention as a material for forming a film.
일예로 적층 세라믹 콘덴서의 내부 전극과 연관지어 설명해보면, 적층 세라믹 콘덴서는 세라믹 유전체(산화티타늄, 티탄화바륨 혹은 착물 페로브스카이트(PEROVSKITE)등)의 층과 적정 압력 및 완전한 연소 조건하에서 교대로 적층된 금속 내부전극층과, 상기 내부전극층에 연결되어 있는 외부전극층으로 구성되어 있다. 오늘날 이들은 전극부품으로서 급성장하고 있다.As an example, in connection with the internal electrodes of a multilayer ceramic capacitor, the multilayer ceramic capacitor alternates with a layer of ceramic dielectric (such as titanium oxide, barium titanate or complex PEROVSKITE) under appropriate pressure and complete combustion conditions. A stacked metal internal electrode layer and an external electrode layer connected to the internal electrode layer. Today they are growing rapidly as electrode components.
한편, 상기 내부전극층이 얇아짐에 따라 크기가 감소하고 용량이 증가하여 전자기계와 고출력장비의 요구에 부응할 수 있다는 점에서, 종래에 각각 내부전극과 외부전극으로서 사용하던 팔라듐과 은을 근래에는 니켈과 구리로 대체하고 우수한 전기전도도, 작은 비표면적, 낮은 산소함량, 작은 입경 및 좁은 크기 분포를 갖는 입자를 개발하는 추세에 있다.On the other hand, as the inner electrode layer becomes thinner, its size decreases and its capacity increases, thereby meeting the demands of electromechanical and high power equipment. There is a trend to replace nickel and copper and develop particles with good electrical conductivity, small specific surface area, low oxygen content, small particle diameter and narrow size distribution.
이같은 미세 금속 입자를 제조하는 방법에는 기계적 분쇄법, 공침법, 분무법, 졸-겔법, 전기분해법, 역상 마이크로에멀젼 이용법등 다양한 방법이 존재하며, 최근에는 전자재료를 위한 금속미립자 제조방법의 일환으로서 기상법이나 분사 열분해법도 있다.There are a variety of methods for producing such fine metal particles, such as mechanical grinding, coprecipitation, spraying, sol-gel, electrolysis, reverse phase microemulsion, etc. Recently, as a part of the method for producing metal fine particles for electronic materials, There is also a spray pyrolysis method.
대한민국 공개특허 10-1999-0063419(특허문헌1)에는 평균 입경이 0.2~0.6이고, 수-크기분포에서 함유량이 0.1% 미만으로서 입경이 평균 입경보다 2.5배이상 큰 Ni입자를 기상에서 수소환원에 의해 제조하는 방법이 개시되어 있다. 이같이 기상법을 사용함으로써 순도와 입경밀도가 높은 장점이 있는 반면에, 공정 온도가 1000이상으로 높고, 수율이 떨어지는 단점이 있었다.In Korean Patent Laid-Open Publication No. 10-1999-0063419 (Patent Document 1), Ni particles having an average particle diameter of 0.2 to 0.6 and a content of less than 0.1% in a water-size distribution and having a particle size of 2.5 times or more larger than the average particle diameter are used for hydrogen reduction in the gas phase. The manufacturing method is disclosed. Thus, the use of the gas phase method has the advantage of high purity and particle size density, while the process temperature is higher than 1000, and there is a disadvantage that the yield is low.
한편, 대한민국 공개특허 10-2000-0028837(특허문헌2)에는 금속염을 함유하는 용액이 금속염의 분해온도보다 높은 온도에서 분사 열분해시켜 금속 혹은 합금분말을 제조하는 방법이 개시되어 있다. 그러나 이 방법에 의하면, 수율은 개선시킬 수 있지만 입자의 크기를 제어하기 힘들며 경제적이지 못한 문제가 있었다.On the other hand, Korean Patent Laid-Open Publication No. 10-2000-0028837 (Patent Document 2) discloses a method for producing a metal or alloy powder by spray pyrolysis of a solution containing a metal salt at a temperature higher than the decomposition temperature of the metal salt. However, according to this method, the yield can be improved, but there is a problem that it is difficult to control the size of the particles and is not economical.
대한민국 공개특허 10-2009-0115854(특허문헌3)에는 불용성의 금속염으로 금속 나노 입자를 합성하여, 도전 재료로서 사용하기에 바람직한 금속 나노 입자를 제조할 수 있는 금속 나노 입자의 합성 방법에 대하여 개시되어 있다. 그러나 사용되는 환원제의 폐수 처리의 등의 환경 문제가 야기될 수 있다.Korean Patent Laid-Open Publication No. 10-2009-0115854 (Patent Document 3) discloses a method for synthesizing metal nanoparticles by synthesizing metal nanoparticles with an insoluble metal salt and preparing metal nanoparticles suitable for use as a conductive material. have. However, environmental problems such as wastewater treatment of the reducing agent used may be caused.
한편, 전기분해법과 졸-겔법은 제조단가가 비싸고 대량생산하기가 어려운 문제가 있고, 역상 마이크로에멀젼법은 입자의 크기, 모양, 크기분포를 제어하기는 쉬우나 제조공정이 매우 복잡하여 실용화되지 못하는 문제가 있다.On the other hand, the electrolysis method and the sol-gel method are expensive to manufacture and difficult to mass-produce, and the reverse phase microemulsion method is easy to control the size, shape, and size distribution of particles, but the manufacturing process is very complicated and cannot be put to practical use. There is.
나아가 기상법이나 분산 열분해방법의 경우에는 입자크기 제어 및 결정성, 순도 등에 이로우므로 전자재료로 쓰이는 금속입자를 제조하기에는 적합하나 과다한 초기 설비비로 인하여 생산공정시 고비용이라는 문제가 역시 발생하게 된다.Furthermore, in the case of the gas phase method or the distributed pyrolysis method, it is suitable for manufacturing metal particles used as electronic materials because of the particle size control, crystallinity, purity, etc., but the excessive cost of the production process also occurs due to excessive initial equipment cost.
따라서 비용과 환경면에서 효율적으로 금속을 제조하는 기술에 대한 관심과 수요가 증대되고 있다.Therefore, there is a growing interest and demand for a technique for efficiently manufacturing metal in terms of cost and environment.
본 발명은 환원법의 환원제에 의한 폐수 처리의 문제점을 해결하고 상기와 같은 종래기술의 한계를 극복하기 위해 안출된 것으로, 본 발명의 목적은 친환경적이고 간단하게 금속을 제조하는 방법을 제공하는 데에 있다.The present invention has been made to solve the problem of the waste water treatment by the reducing agent of the reduction method and to overcome the limitations of the prior art as described above, the object of the present invention is to provide a method for producing a simple and environmentally friendly metal. .
상기 목적을 달성하기 위하여 본 발명은 마그네슘을 이용하여 금속염, 금속 알콕사이드, 또는 이들의 혼합물인 금속전구체의 금속을 환원 및 석출하는 단계;를 포함하는 금속의 제조방법을 제공한다.In order to achieve the above object, the present invention provides a method for producing a metal, comprising the steps of: reducing and depositing a metal of a metal precursor, which is a metal salt, a metal alkoxide, or a mixture thereof, using magnesium.
보다 상세하게는,More specifically,
(a) 상기 금속전구체를 용매에 녹이는 단계; 및 (b) 상기 용매에 마그네슘을 투입하여 금속을 환원 및 석출하는 단계; 를 포함하는 금속의 제조방법을 제공한다. (a) dissolving the metal precursor in a solvent; And (b) injecting magnesium into the solvent to reduce and precipitate the metal; It provides a method for producing a metal comprising a.
본 발명의 다른 일 양태는, Another aspect of the present invention,
a) 상기 금속전구체를 용매에 녹이는 단계; (b) 상기 용매에 마그네슘을 투입하여 금속을 환원 및 석출하는 단계; 및 상기 (b) 단계의 용매로부터 금속을 회수하고, 남은 용매를 농축 및 건조하여 마그네슘염을 얻는 단계; 를 포함하는 금속의 제조방법도 본 발명의 범위에 포함된다.a) dissolving the metal precursor in a solvent; (b) injecting magnesium into the solvent to reduce and precipitate metal; And recovering metal from the solvent of step (b) and concentrating and drying the remaining solvent to obtain magnesium salts. Method for producing a metal containing is also included in the scope of the present invention.
이때, 금속전구체의 금속과 마그네슘의 당량비는 1 : 0.5 ~ 1.5이며 보다 바람직하게는 1 : 0.8 ~ 1.5이 좋다. At this time, the equivalent ratio of metal to magnesium of the metal precursor is 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.5.
상기 당량비중 1:1 당량 이하로 마그네슘을 투입하는 경우 (b) 단계의 금속전구체의 금속의 환원 및 석출단계 이후, 여과하여 물 또는 약한 알칼리 용액 또는 약한 환원제 용액으로 세정하는 단계; 를 더 포함하는 금속의 제조방법도 본 발명의 범위에 포함된다. When the magnesium is added in an amount of less than 1: 1 equivalent of the equivalent ratio, after the reduction and precipitation of the metal of the metal precursor of step (b), filtration and washing with water or a weak alkali solution or a weak reducing agent solution; Method for producing a metal further comprising is also included in the scope of the present invention.
또한 본 발명은 상기 (b)단계에서 여과 시스템을 통과한 여액을 다시 금속염을 녹이는 용매로 재사용하는 단계; 를 더 포함하는 금속의 제조방법을 제공한다. In another aspect, the present invention is the step of reusing the filtrate passed through the filtration system in the step (b) as a solvent to dissolve the metal salt again; It provides a method for producing a metal further comprising.
상기 당량비 중 1:1 당량 이상으로 마그네슘을 투입하는 경우 (b) 단계의 금속전구체의 금속의 환원 및 석출단계 이후, 산을 투입하여 반응에 참여하지 않은 마그네슘을 마그네슘염으로 산화하는 단계; 를 더 포함하는 금속의 제조방법도 본 발명의 범위에 포함된다. When the magnesium is added in a ratio of 1: 1 equivalent or more of the equivalent ratio, after the reduction and precipitation of the metal of the metal precursor of step (b), the step of oxidizing the magnesium that does not participate in the reaction to magnesium salt by adding an acid; Method for producing a metal further comprising is also included in the scope of the present invention.
또한 본 발명은 상기 (b)단계의 회수된 금속을 수세하는 단계; 를 더 포함하는 금속의 제조방법을 제공한다. In addition, the present invention comprises the steps of washing the recovered metal of the step (b); It provides a method for producing a metal further comprising.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 반응기에 용매를 넣고 상온 또는 용해도가 낮은 금속 전구체의 경우 25 ~80 에서 금속전구체를 녹인 후 마그네슘 파우더를 넣고 상온 또는 상온으로 냉각 시키거나 반응성이 낮은 금속전구체의 경우 25 ~100 로 온도를 높여 반응을 시킴으로써 금속전구체의 금속을 환원 및 석출하여 금속 파우더를 만드는 방법이다. In the present invention, the solvent is added to the reactor, and the metal precursor is melted at 25 to 80 degrees in room temperature or low solubility, and then magnesium powder is added and cooled to room temperature or room temperature or 25 to 100 degrees in the case of low reactivity metal precursor. It is a method of making metal powder by reducing and precipitating the metal of the metal precursor by increasing the reaction.
본 발명의 장점은 폐수의 성분이 마그네슘염 용액이라는 점이다. 이 마그네슘염은 상기 폐수를 농축하여 얻을 수 있으며, 완전 건조하여 재활용 마그네슘염으로도 사용할 수 있다는 것이다. 이는 금속을 만들 때 다른 방식으로 만드는 것과 비교하여 폐수의 상태가 매우 양호하며 폐수를 적게 발생시키고, 완전 건조하여 재활용함으로써 무 방류 시스템을 만들 수도 있다. 이것은 친환경적이므로 공장 부지를 선정할 때 매우 유리하다. 또한 마그네슘 파우더의 가격은 매우 싸므로 금속의 생산 단가가 매우 싸다. 또한 폐수의 건조 시에 증발하는 물은 순수한 물이므로 이를 재활용할 수도 있다.An advantage of the present invention is that the components of the waste water are magnesium salt solutions. This magnesium salt can be obtained by concentrating the wastewater, and it can be completely dried and used as recycled magnesium salt. This makes the waste water in very good condition compared to other ways of making metals, and can produce a zero discharge system by generating less waste water and completely drying and recycling it. This is environmentally friendly and is very advantageous when selecting plant sites. In addition, the price of magnesium powder is very cheap, so the production cost of metal is very low. In addition, the water that evaporates when the waste water is dried may be recycled because it is pure water.
본 발명의 (b)단계에서 마그네슘은 당량 이상으로 투입하며, 상기 금속전구체의 금속 : 마그네슘의 당량비는 1 : 0.5 ~ 1.5 이며, 1 : 0.8 ~ 1.5인 것이 보다 바람직하다. 마그네슘을 투입하는 속도에 따라 입자의 크기 및 모양을 제어할 수 있다. In the step (b) of the present invention, magnesium is added in an equivalent or more, and the metal: magnesium equivalent ratio of the metal precursor is 1: 0.5 to 1.5, more preferably 1: 0.8 to 1.5. The size and shape of the particles can be controlled according to the rate at which magnesium is added.
본 발명은 마그네슘의 투입속도를 조절하여 금속 파우더의 크기를 제어하는 단계를 포함한다. 마이크론급 이상의 큰 입자를 만들 수도 있으며 나노크기의 입자를 만들 수 있다. 나아가 마그네슘의 투입속도에 따라 금속전구체의 환원속도가 제어됨에 따라 금속 파우더의 크기를 다양하게 만들 수 있다.The present invention includes the step of controlling the size of the metal powder by adjusting the injection speed of magnesium. You can make larger particles that are larger than the micron scale, and you can make nanoscale particles. Furthermore, as the reduction rate of the metal precursor is controlled according to the input rate of magnesium, the size of the metal powder can be varied.
상기 용매는 금속염을 잘 녹일 수 있는 용매이면 다 가능하다. 물, 초순수, 극성용매, 비극성용매 등등이 사용 될 수 있고, 초순수, 메틸알콜, 에틸 알콜, 프로필알콜, 벤질 알콜, 테트라하이드로 퓨란, 디옥산, 이오닉리퀴드, 계면활성제 등등 크게 제한적이지 않으나 원하는 최종 제품의 형태에 따라 선택될 수 있다. The solvent may be any solvent that can dissolve the metal salt well. Water, ultrapure water, polar solvents, nonpolar solvents and the like can be used, but are not limited to ultrapure water, methyl alcohol, ethyl alcohol, propyl alcohol, benzyl alcohol, tetrahydrofuran, dioxane, ionic liquid, surfactants, etc. It may be selected according to the form of the product.
상기 금속전구체의 금속은 크게 제한되지는 않지만 스트론튬, 바륨, 알루미늄, 실리콘, 스칸듐, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연, 이트륨, 지르코늄, 니오븀, 몰리브덴, 테크네튬, 루테늄, 로듐, 팔라듐, 은, 카드뮴, 하프늄, 탄탈, 텅스텐, 레늄, 오스뮴, 이리듐, 백금, 금, 수은, 갈륨, 인듐, 탈륨, 게르마늄, 주석, 납, 비소, 안티몬, 비스무트, 폴로늄세륨, 프라세오디뮴, 네오디뮴, 프로메튬, 사마륨, 유로퓸, 가돌리늄, 테르븀, 디스프로슘, 홀뮴, 에르븀, 툴륨, 이테르븀 및 루테튬에서 선택되는 어느 하나 또는 둘 이상을 사용할 수 있다.Metals of the metal precursors are not particularly limited, but strontium, barium, aluminum, silicon, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium , Rhodium, palladium, silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth, polonium cerium, praseodymium, One or more selected from neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium may be used.
또한 상기 금속염의 음이온은 크게 제한되지는 않지만 하이드록사이드, 나이트레이트, 아세테이트, 프로피오네이트, 아세틸아세토네이트, 2,2,6,6-테트라메틸-3,5-헵탄디오네이트, 메톡사이드, 2차-부톡사이드, 3차-부톡사이드, n-프로폭사이드, i-프로폭사이드, 에톡사이드, 포스페이트, 알킬포스페이트, 카본테트라클로라이드, 퍼클로라이트, 설페이트, 아이오디데, 알킬설포네이트, 테트라알킬, 페녹사이드, 브로마이드, 및 클로라이드 등으로 이루어진 군으로부터 선택될 수 있다.In addition, the anion of the metal salt is not limited to a hydroxide, nitrate, acetate, propionate, acetylacetonate, 2,2,6,6-tetramethyl-3,5-heptanedionate, methoxide, Secondary-butoxide, tertiary-butoxide, n-propoxide, i-propoxide, ethoxide, phosphate, alkylphosphate, carbon tetrachloride, perchlorite, sulfate, iodide, alkylsulfonate, tetra It may be selected from the group consisting of alkyl, phenoxide, bromide, chloride and the like.
상기 금속알콕사이드의 알콕사이드는 테트라 이소프로폭시 티타네이트, 테트라에틸오쏘실리케이트, 메톡사이드, 에톡사이드, 프로폭사이드, 부톡사이드, 펜톡사이드 등의 탄소가 1개에서 8개 사이의 알콕사이드로부터 이루어진 군으로부터 선택될 수 있다.The alkoxide of the metal alkoxide is selected from the group consisting of alkoxide having 1 to 8 carbons such as tetra isopropoxy titanate, tetraethyl orthosilicate, methoxide, ethoxide, propoxide, butoxide, pentoxide and the like. Can be.
상술한 바와 같이 마그네슘의 투입속도로 조절하여 금속의 평균 크기를 제어할 수 있으며, 나아가 상기 계면을 형성할 수 있는 물질, 예를들면, 계면활성제, 벤질 알콜, 옥틸 알콜 등등의 물질 들을 용매에 먼저 녹이거나, 상기 (a)단계의 금속 전구체를 녹인 후 첨가함으로써 금속의 형태를 제어하는 특징이 있다. As described above, the average size of the metal can be controlled by adjusting the input rate of magnesium, and further, materials such as surfactant, benzyl alcohol, octyl alcohol, etc., which can form the interface, are first added to the solvent. After melting or melting the metal precursor of step (a)  There is a feature of controlling the form of the metal by adding.
또한 본 발명은, (b) 단계후,In addition, the present invention, after step (b),
(e) (b) 단계에서 석출된 금속인 제1금속과 상이한 제2금속의 전구체로 상기 (b) 단계에 용매에 투입하는 단계; 를 포함하는 금속의 제조방법을 제공한다.(e) adding a precursor of a second metal different from the first metal, which is the metal precipitated in step (b), to the solvent in step (b); It provides a method for producing a metal comprising a.
이때 (b) 단계에서 최종투입된 제1금속의 당량과 제2금속의 당량을 합한 총금속 당량과 마그네슘과의 당량비는 1 : 0.5 ~ 1.5가 되도록 마그네슘을 투입한다.In this case, magnesium is added so that the ratio of the total metal equivalent and the magnesium equivalent of the first metal equivalent and the second metal equivalent finally added in step (b) is 1: 0.5 to 1.5.
본 발명은 상기 (a)+(b) 단계를 단위공정으로 하고, 상기 단위공정을 반복수행하는 특징이 있다. 상기 단위공정의 반복시, 서로 다른 금속의 전구체가 투입되는 방법도 본 발명의 범위에 포함된다. 이때 투입되는 마그네슘의 양은 각각의 (b)단계의 수행 직전에 각각의 투입된 금속전구체의 금속 : 마그네슘의 당량비가 1 : 0.8 ~ 1.5 인 것이 보다 바람직하다. 상기 단위공정을 통하여 다층의 코어 쉘 구조를 가지는 금속을 만들 수 있다.The present invention is characterized in that (a) + (b) step as a unit process, and repeating the unit process. At the time of repeating the unit process, a method of adding precursors of different metals is also included in the scope of the present invention. At this time, the amount of magnesium added is more preferably the equivalent ratio of metal: magnesium 1: 1: 0.8 to 1.5 of each of the metal precursors added immediately before the step (b). Through the unit process, a metal having a multi-layer core shell structure can be made.
이 반응 들을 수행함에 있어서 초음파, 공동현상(Cavitation)등의 기계화학적인 방법을 사용하여 반응 속도의 향상 및 입자 형태 및 크기를 제어하는 것이 포함된다. Implementing these reactions involves improving the reaction rate and controlling the particle shape and size using mechanochemical methods such as ultrasound and cavitation.
이러한 본 발명의 제조방법에 의해 제조된 나노 크기의 입자, 와이어, 로드 또는 판상 입자의 금속은 본 발명의 범위에 포함된다.Nano-sized particles, wires, rods or plate-shaped particles of metal produced by the production method of the present invention are included in the scope of the present invention.
본 발명에 따른 금속의 생산 방법은 생산 단가가 매우 저렴할 뿐만이 아니라 폐수를 아주 적게 발생시키거나, 전혀 발생 시키지 않고 금속을 만들 수 있으므로 환경 친화적이고 미래 지향적인 기술이라고 할 수 있다. 이 뿐만 아니라 이 기술은 다양한 금속에 적용을 시킬 수 있으므로 이용 범위가 매우 방대하다.The production method of the metal according to the present invention is not only a very low production cost but also an environmentally friendly and future-oriented technology because it can make the metal without generating very little or no waste water. Not only that, but the technology can be applied to various metals, so the use range is very large.
도 1은 실시예 3으로 제조된 구리 파우더를 입도분석기로 분석한 결과이다.1 is a result of analyzing the copper powder prepared in Example 3 with a particle size analyzer.
도 2는 실시예 4로 제조된 티타늄 파우더를 투과전자현미경(TEM, 모델명 :Tecnai F20)으로 촬영한 결과 및 EDS(Energy Dispersive Spectrometer)를 이용한 원소분석 결과이다.2 is a photograph of the titanium powder prepared in Example 4 with a transmission electron microscope (TEM, model name: Tecnai F20) and the results of elemental analysis using an EDS (Energy Dispersive Spectrometer).
이하, 실시 예에 의해 본 발명을 보다 상세히 설명하나, 이는 발명의 구성 및 효과를 이해시키기 위한 것일 뿐, 본 발명의 범위를 제한하고자 하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples, which are only intended to understand the configuration and effects of the present invention and are not intended to limit the scope of the present invention.
실시 예에서 사용한 용기는 일반 초자반응기를 사용하였다.The vessel used in the example used a general super reactor.
[실시 예 1]Example 1
대정화금의 질산은(분자량 169.97) 1.7g(0.01몰)을 초순수 100g에 녹이고, 마그네슘 파우더(원자량 24)를 0.17g(0.007몰) 투입하고 상온을 유지하면서 6시간동안 교반하여 환원반응을 진행하였다. 환원반응이 끝난 후, 묽은 염산을 5 ml 투입하여 상기 환원반응에 참여하지 않은 마그네슘을 염화마그네슘으로 전환시킨 후 Sartorius사의 0.22마이크론 포어 크기를 가지는 폴리이서설폰(Polyethersulfone) 여과장치로 걸러 검은색의 은 파우더를 수득하였다. 여액을 건조기에 넣고 건조하여 흰색의 염화마그네슘 파우더 0.65 g을 수득하였다.Dissolve 1.7 g (0.01 mole) of silver nitrate (molecular weight 169.97) in 100 g of ultrapure water, add 0.17 g (0.007 mole) of magnesium powder (atomic weight 24), and keep it at room temperature. The reaction was carried out by stirring for 6 hours. After the reduction reaction, 5 ml of dilute hydrochloric acid was added to convert magnesium which did not participate in the reduction reaction to magnesium chloride, and then filtered through a polyethersulfone filter having a 0.22 micron pore size from Sartorius. A powder was obtained. The filtrate was put into a drier and dried to obtain 0.65 g of white magnesium chloride powder.
[실시 예 2]Example 2
대정화금의 염화니켈 6수화물 (분자량 237.69) 2.4g(0.01몰)을 초순수 100g에 녹이고 마그네슘 파우더(원자량 24)를 0.29g(0.012몰)투입하고 상온을 유지하면서 6시간동안 교반하여 환원반응을 진행하였다. 환원반응이 끝난 후, 묽은 염산을 10 ml 투입하여 상기 환원반응에 참여하지 않은 마그네슘을 염화마그네슘으로 전환 시킨 후 Sartorius사의 0.22마이크론 포어 크기를 가지는 Polyethersulfone 여과장치로 걸러 연한 노란색의 금속 빛이 나는 니켈 파우더를 수득하였다. 2.4 g (0.01 mol) of nickel chloride hexahydrate (molecular weight 237.69) of large purified gold was dissolved in 100 g of ultrapure water, 0.29 g (0.012 mol) of magnesium powder (atomic weight 24) was added thereto, and stirred for 6 hours while maintaining at room temperature. Proceeded. After the reduction reaction, 10 ml of diluted hydrochloric acid was added to convert magnesium which did not participate in the reduction reaction to magnesium chloride, and then filtered through Sartorius Polyethersulfone filter having a 0.22 micron pore size to light yellow metallic shiny nickel powder. Obtained.
[실시 예 3]Example 3
대정화금의 황산구리 5수화물 (분자량 249.68) 2.5g(0.01몰)을 초 순수 100g에 녹이고 마그네슘 파우더(원자량 24)를 0.29g(0.012몰)투입하고 상온을 유지하면서 6시간동안 교반하여 환원반응을 진행하였다. 환원반응이 끝난 후, 묽은 염산을 10 ml 투입하여 상기 환원반응에 참여하지 않은 마그네슘을 염화마그네슘으로 전환 시킨 후 Sartorius사의 0.22마이크론 포어 크기를 가지는 Polyethersulfone 여과장치로 걸러 구리 빛의 파우더를 수득하였다. 이것을 물에 다시 투입하고 초음파를 이용하여 분산시킨 후 입도를 측정하여 도 1에 나타 내었다. 평균 입경이 3마이크론 크기의 입자가 만들어 졌다.Dissolve 2.5 g (0.01 mol) of copper sulfate pentahydrate (molecular weight 249.68) of large purified gold in 100 g of ultra pure water, add 0.29 g (0.012 mol) of magnesium powder (atomic weight 24), and maintain the room temperature. The reaction was carried out by stirring for 6 hours. After the reduction reaction, 10 ml of dilute hydrochloric acid was added to convert magnesium which did not participate in the reduction reaction to magnesium chloride, and then filtered through a Polyethersulfone filter having a 0.22 micron pore size of Sartorius, to obtain a copper powder. This was added again to water and dispersed using ultrasonic waves, and the particle size was measured and shown in FIG. 1. An average particle diameter of 3 microns was produced.
[실시 예 4]Example 4
시그마알드리치의 사염화티타늄 (분자량 189.68) 1.9g(0.01몰)을 유리주사기를 사용하여 에틸 알콜 100g에 녹이고 마그네슘 파우더(원자량 24)를 0.58g(0.024몰)투입하고 상온을 유지하면서 6시간동안 교반하여 환원반응을 진행하였다. 환원반응이 끝난 후, 묽은 염산을 10 ml 투입하여 상기 환원반응에 참여하지 않은 마그네슘을 염화마그네슘으로 전환 시킨 후 Sartorius사의 0.22마이크론 포어 크기를 가지는 Polyethersulfone 여과장치로 걸러 연한 회백색의 파우더를 수득하였다. 이때, 많은 열이 발생하므로 물에 얼음을 넣은 아이스 배스를 사용하여 실온으로 유지하였다. 이 파우더를 KAIST에서 투과전자현미경(Transmission Electron Microscope) TEM(Tecnai F20)으로 촬영하여 EDS를 이용하여 원소 분석을 실시하였다. 이것을 도 2에 예시하였다. 결과 둥근 판상형태의 티타늄금속이 만들어졌음을 확인하였다. 그 크기는 직경이 80nm 정도이고 두께는 10nm이하인 것으로 보인다. 1.9 g (0.01 mol) of titanium tetrachloride (molecular weight 189.68) of Sigma Aldrich was dissolved in 100 g of ethyl alcohol using a glass syringe, 0.58 g (0.024 mol) of magnesium powder (atomic weight 24) was added and stirred for 6 hours while maintaining the room temperature. Reduction reaction was carried out. After the reduction reaction, 10 ml of dilute hydrochloric acid was added to convert magnesium which did not participate in the reduction reaction to magnesium chloride, and then filtered through Sartorius Polyethersulfone filter having a 0.22 micron pore size to obtain a pale white powder. At this time, since a lot of heat is generated it was kept at room temperature using an ice bath in which ice is put in water. This powder was photographed by Transmission Electron Microscope TEM (Tecnai F20) at KAIST and subjected to elemental analysis using EDS. This is illustrated in FIG. 2. As a result, it was confirmed that titanium metal of round plate shape was made. Its size is about 80nm in diameter and less than 10nm thick.
[실시 예 5]Example 5
시그마알드리치의 테트라에틸오쏘실리케이트(Tetraethyl orthosilicate, 분자량 208.33) 2g을 에틸 알콜 100g에 녹이고 마그네슘 파우더(원자량 24)를 0.24g(0.01몰)투입하여 상온을 유지하면서 24시간동안 교반을 시켰다. 마그네슘파우더가 녹아서 없어진 것을 확인하였다. 나노크기의 실리콘 금속은 반응성이 매우 강하여 위험하므로 분리를 시도하지 않았다.2 g of Tetraethyl orthosilicate (molecular weight 208.33) of Sigma Aldrich was dissolved in 100 g of ethyl alcohol and 0.24 g (0.01 mol) of magnesium powder (atomic weight 24) was added to maintain room temperature. Stirred for 24 hours. It was confirmed that the magnesium powder melted and disappeared. Nano-sized silicon metals are highly reactive and dangerous, so no separation was attempted.
본 발명은 생산 단가가 매우 저렴할 뿐만이 아니라 폐수를 아주 적게 발생시키거나, 전혀 발생 시키지 않고 금속을 만들 수 있으므로 환경 친화적이고 미래 지향적이며, 다양한 금속에 적용을 시킬 수 있으므로 이용 범위가 매우 방대하다.The present invention is not only very inexpensive to produce, but also very low in wastewater or metals can be produced without generating any wastewater, which is environmentally friendly and future-oriented, and can be applied to various metals, and thus the use range is very large.

Claims (14)

  1. 마그네슘을 이용하여 금속염, 금속 알콕사이드, 또는 이들의 혼합물인 금속전구체의 금속을 환원 및 석출하는 단계;를 포함하는 금속의 제조방법.Reducing and precipitation of the metal of the metal precursor which is a metal salt, a metal alkoxide, or a mixture thereof using magnesium; manufacturing method of a metal comprising.
  2. 제 1항에 있어서,The method of claim 1,
    (a) 상기 금속전구체를 용매에 녹이는 단계; 및 (a) dissolving the metal precursor in a solvent; And
    (b) 상기 용매에 마그네슘을 투입하여 상기 금속전구체의 금속을 환원 및 석출하는 단계;(b) injecting magnesium into the solvent to reduce and precipitate metal of the metal precursor;
    를 포함하는 금속의 제조방법.Method for producing a metal comprising a.
  3. 제 2항에 있어서,The method of claim 2,
    (c) 상기 (b) 단계의 용매로부터 금속을 회수하고, 남은 용매를 농축 및 건조하여 마그네슘염을 얻는 단계; 를 더 포함하는 금속의 제조방법. (c) recovering the metal from the solvent of step (b) and concentrating and drying the remaining solvent to obtain a magnesium salt; Method for producing a metal further comprising.
  4. 제 2항에 있어서,The method of claim 2,
    금속전구체의 금속과 마그네슘의 당량비는 1 : 0.5 ~ 1.5 인 금속의 제조방법.A method for producing a metal in which the equivalent ratio of metal to magnesium of the metal precursor is 1: 0.5 to 1.5.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 (b)의 금속전구체의 금속의 환원 및 석출단계 이후 산을 투입하여 반응에 참여하지 않은 마그네슘을 마그네슘염으로 산화하는 단계; 를 더 포함하는 금속의 제조방법.Oxidizing magnesium, which is not involved in the reaction, into magnesium salt by adding an acid after the reduction and precipitation of the metal of the metal precursor of (b); Method for producing a metal further comprising.
  6. 제 2항에 있어서,The method of claim 2,
    상기 금속전구체의 금속이 스트론튬, 바륨, 알루미늄, 실리콘, 스칸듐, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 구리, 아연, 이트륨, 지르코늄, 니오븀, 몰리브덴, 테크네튬, 루테늄, 로듐, 팔라듐, 은, 카드뮴, 하프늄, 탄탈, 텅스텐, 레늄, 오스뮴, 이리듐, 백금, 금, 수은, 갈륨, 인듐, 탈륨, 게르마늄, 주석, 납, 비소, 안티몬, 비스무트, 폴로늄세륨, 프라세오디뮴, 네오디뮴, 프로메튬, 사마륨, 유로퓸, 가돌리늄, 테르븀, 디스프로슘, 홀뮴, 에르븀, 툴륨, 이테르븀 및 루테튬에서 선택되는 어느 하나 또는 둘 이상인 금속의 제조방법.The metal of the metal precursor is strontium, barium, aluminum, silicon, scandium, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, technetium, ruthenium, rhodium, palladium, Silver, cadmium, hafnium, tantalum, tungsten, rhenium, osmium, iridium, platinum, gold, mercury, gallium, indium, thallium, germanium, tin, lead, arsenic, antimony, bismuth, polonium cerium, praseodymium, neodymium, promethium, samarium , Europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and ruthetium.
  7. 제 2항에 있어서,The method of claim 2,
    상기 금속염의 염은 하이드록사이드, 나이트레이트, 아세테이트, 프로피오네이트, 아세틸아세토네이트, 2,2,6,6-테트라메틸-3,5-헵탄디오네이트, 메톡사이드, 2차-부톡사이드, 3차-부톡사이드, n-프로폭사이드, i-프로폭사이드, 에톡사이드, 포스페이트, 알킬포스페이트, 퍼클로라이드, 설페이트, 아이오디데, 알킬설포네이트, 알킬, 페녹사이드, 브로마이드, 및 클로라이드에서 선택되는 어느 하나 또는 둘 이상인 금속의 제조방법.Salts of the metal salts are hydroxide, nitrate, acetate, propionate, acetylacetonate, 2,2,6,6-tetramethyl-3,5-heptanedionate, methoxide, secondary-butoxide, Tert-butoxide, n-propoxide, i-propoxide, ethoxide, phosphate, alkylphosphate, perchloride, sulfate, iodide, alkylsulfonate, alkyl, phenoxide, bromide, and chloride Method for producing a metal of any one or two or more.
  8. 제 2항에 있어서,The method of claim 2,
    상기 금속알콕사이드의 알콕사이드는 탄소수가 1 ~ 8 인 알콕사이드에서 선택되는 어느 하나 또는 둘 이상인 금속의 제조방법.The alkoxide of the metal alkoxide is any one or more than two selected from the alkoxide having 1 to 8 carbon atoms.
  9. 제 6항에 있어서,The method of claim 6,
    상기 (a) 단계시, 서로 다른 2종 이상의 금속전구체가 용해되는 금속의 제조방법.In the step (a), at least two different metal precursors are dissolved.
  10. 제 2항에 있어서,The method of claim 2,
    (b) 단계후,after step (b),
    (e) (b) 단계에서 석출된 금속인 제1금속과 상이한 제2금속의 전구체를 상기 (b) 단계의 용매에 투입하는 단계; 를 포함하는 금속의 제조방법.(e) injecting a precursor of a second metal different from the first metal, which is the metal precipitated in step (b), into the solvent of step (b); Method for producing a metal comprising a.
  11. 제 10항에 있어서,The method of claim 10,
    제1 및 제2의 금속과 마그네슘과의 당량비는 1 : 0.5 ~ 1.5 인 금속의 제조방법.A method of producing a metal in which the equivalent ratio of the first and second metals to magnesium is 1: 0.5 to 1.5.
  12. 제 2항에 있어서,The method of claim 2,
    상기 (b) 단계의 마그네슘의 투입시간을 조절하여 크기를 제어하는 단계를 포함하는 금속의 제조방법. Method of manufacturing a metal comprising the step of controlling the size by adjusting the input time of the magnesium of step (b).
  13. 제 2항에 있어서,The method of claim 2,
    상기 (a)단계에서 계면활성제, 벤질 알콜, 옥틸 알콜에서 선택된 어느 하나 또는 둘 이상을 첨가하는 단계를 포함하는 금속의 제조방법.Method of producing a metal comprising the step (a) adding any one or two or more selected from surfactants, benzyl alcohol, octyl alcohol.
  14. 제 1항 내지 제 13항에서 선택되는 어느 한 항의 제조방법에 의해 제조된 나노 크기의 입자, 와이어, 로드 또는 판상 입자의 금속.Metal of nano size particle, wire, rod or plate particle manufactured by the manufacturing method of any one of Claims 1-13.
PCT/KR2012/007221 2011-09-08 2012-09-07 Method for manufacturing metal WO2013036069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0091296 2011-09-08
KR1020110091296A KR101701819B1 (en) 2011-09-08 2011-09-08 Manufacturing method of metal

Publications (1)

Publication Number Publication Date
WO2013036069A1 true WO2013036069A1 (en) 2013-03-14

Family

ID=47832410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/007221 WO2013036069A1 (en) 2011-09-08 2012-09-07 Method for manufacturing metal

Country Status (2)

Country Link
KR (1) KR101701819B1 (en)
WO (1) WO2013036069A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112035A (en) * 2016-02-16 2018-10-11 실라 나노테크놀로지스 인코포레이티드 Formation and modification of ceramic nanowires, and their use in functional materials

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262129B1 (en) * 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
KR20050037566A (en) * 2002-08-01 2005-04-22 다이켄카가쿠 코교 가부시키가이샤 Metal nanoparticle and process for producing the same
KR20060120987A (en) * 2005-05-23 2006-11-28 삼성전기주식회사 Conductive ink, method for producing thereof and condoctive substrate
KR100790457B1 (en) * 2006-07-10 2008-01-02 삼성전기주식회사 Method for producing metal nanoparticles
KR20090012605A (en) * 2007-07-30 2009-02-04 삼성전기주식회사 Method for manufacturing metal nanoparticles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2812250A (en) * 1952-09-29 1957-11-05 Du Pont Production of titanium by the reduction of titanium tetrachloride by magnesium
JP3928309B2 (en) 1998-10-06 2007-06-13 昭栄化学工業株式会社 Nickel composite particles, conductor paste, and ceramic multilayer electronic components
KR100674345B1 (en) 1999-12-28 2007-01-24 주식회사 케이티 Method of voice message delivery service using intelligent network
JP4573153B2 (en) * 2003-03-26 2010-11-04 三菱マテリアル株式会社 Metal nanorod, metal nanorod-containing composition, method for producing the same, and use thereof
WO2008105456A1 (en) 2007-02-27 2008-09-04 Mitsubishi Materials Corporation Dispersion solution of metal nanoparticle, method for production thereof, and method for synthesis of metal nanoparticle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6262129B1 (en) * 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
KR20050037566A (en) * 2002-08-01 2005-04-22 다이켄카가쿠 코교 가부시키가이샤 Metal nanoparticle and process for producing the same
KR20060120987A (en) * 2005-05-23 2006-11-28 삼성전기주식회사 Conductive ink, method for producing thereof and condoctive substrate
KR100790457B1 (en) * 2006-07-10 2008-01-02 삼성전기주식회사 Method for producing metal nanoparticles
KR20090012605A (en) * 2007-07-30 2009-02-04 삼성전기주식회사 Method for manufacturing metal nanoparticles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180112035A (en) * 2016-02-16 2018-10-11 실라 나노테크놀로지스 인코포레이티드 Formation and modification of ceramic nanowires, and their use in functional materials
KR101967713B1 (en) 2016-02-16 2019-04-10 실라 나노테크놀로지스 인코포레이티드 Formation and modification of ceramic nanowires, and their use in functional materials

Also Published As

Publication number Publication date
KR101701819B1 (en) 2017-02-13
KR20130027828A (en) 2013-03-18

Similar Documents

Publication Publication Date Title
CN103332678B (en) The preparation method of Graphene and Graphene-complex oxide
Palanisamy et al. Synthesis of spherical NiO nanoparticles through a novel biosurfactant mediated emulsion technique
WO2022116692A1 (en) Method for preparing iron phosphate from lithium extraction slag of waste lithium iron phosphate positive electrode powder and application
KR101110297B1 (en) Nanocomposite, synthesis method thereof and capacitor comprising the same
KR101543971B1 (en) Method for preparing metal oxide nanoparticles/graphene composite using supercritical fluides and metal oxide nanoparticles/graphene composite prepared thereby
US20100252785A1 (en) Ito powder and method of producing the same, coating material for transparent conductive material, and transparent conductive film
CN102153137B (en) Method for preparing spherical lithium titanate from inorganic titanium sources
CN101550003A (en) Nano-graphite alkenyl composite wave-absorbing material and method of preparing the same
JP2006193392A (en) Oxide composite material, its manufacturing method, electrochemical device and catalyst containing oxide composite material
TW201228750A (en) Reactor and continuous process for producing silver powders
US6676821B1 (en) Electrochemical production of amorphous or crystalline metal oxides with particles sizes in the nanometer range
CN1291508C (en) Method for preparing carbon coated lithium ferrous phosphate composite material including metal conductive agent
CN103227322A (en) Quaternary lithium-ion battery positive electrode material and preparation method thereof
CN109437313B (en) Ultra-fine CuFeO with controllable size2Nanosheet and preparation and application thereof
CN103737013A (en) Method for preparing nanometer spherical copper powder
KR20110132860A (en) Making method of tungsten trioxide nano powder having excellent nano dispersion and electrochromism and nano dispersion sol containing tungsten trioxide manufactured by the method
CN103008675A (en) Preparation method of nickel coated copper composite powder
US20160064732A1 (en) Methods for the preparation of lithium titanate
CN101824625B (en) Method for controllably synthesizing bismuth-based nano-material by directly electrolyzing metal bismuth
CN110745790B (en) Hydrothermal preparation method of bismuth selenide nano powder
CN102906025A (en) Process for making titanium compounds
Mahmoudabad et al. Synthesis and characterization of PbO nanostructure and NiO doped with PbO through combustion of citrate/nitrate gel
WO2013036069A1 (en) Method for manufacturing metal
Glibo et al. Comparative study of electrochemical properties of SnS and SnS2 as anode materials in lithium-ion batteries
CN115286002B (en) Electrochemical preparation method of mesoporous silica material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/07/2014)

122 Ep: pct application non-entry in european phase

Ref document number: 12829408

Country of ref document: EP

Kind code of ref document: A1