WO2013035695A1 - Cu-te-alloy-based sintered body sputtering target - Google Patents

Cu-te-alloy-based sintered body sputtering target Download PDF

Info

Publication number
WO2013035695A1
WO2013035695A1 PCT/JP2012/072463 JP2012072463W WO2013035695A1 WO 2013035695 A1 WO2013035695 A1 WO 2013035695A1 JP 2012072463 W JP2012072463 W JP 2012072463W WO 2013035695 A1 WO2013035695 A1 WO 2013035695A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
based sintered
alloy
sputtering target
sputtering
Prior art date
Application number
PCT/JP2012/072463
Other languages
French (fr)
Japanese (ja)
Inventor
由将 小井土
Original Assignee
Jx日鉱日石金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx日鉱日石金属株式会社 filed Critical Jx日鉱日石金属株式会社
Priority to JP2013532601A priority Critical patent/JP5457609B2/en
Publication of WO2013035695A1 publication Critical patent/WO2013035695A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/547Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on sulfides or selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/24Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
    • H10N70/245Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Definitions

  • a Cu—Te sintered sputtering target having a high bending strength with few defects such as abnormal discharge, nodule, arcing, etc. by setting the size of segregation in the target to a predetermined value or less.
  • a thin film made of a Cu—Te alloy material has been used as a resistance change recording material, that is, as a medium for recording information using resistance change.
  • a method of forming a thin film made of this Cu—Te alloy material it is usually performed by means generally called physical vapor deposition, such as vacuum vapor deposition or sputtering.
  • the magnetron sputtering method is often used in view of operability and film stability.
  • a film is formed by sputtering, in which positive ions such as Ar ions are physically collided with a target placed on the cathode, and the material constituting the target is released by the collision energy, and the substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material.
  • the coating method by sputtering has a feature that a thin film in angstrom units to a thick film of several tens of ⁇ m can be formed at a stable film formation speed by adjusting the processing time, supply power, and the like.
  • abnormal structures such as nodules (abnormal protrusions) and craters (abnormal dents) are generated on the target surface.
  • Micro arcing occurred as a base point, and these themselves were mixed in the thin film as a foreign substance in the form of clusters (aggregates of atoms) called particles.
  • Conventional resistance change recording layers mainly use metal oxides such as NiO, TaO 2 and TiO 2 and perovskite complex oxides such as PrCaMnO 3 and Cr-doped SrZrO 3 .
  • metal oxides such as NiO, TaO 2 and TiO 2
  • perovskite complex oxides such as PrCaMnO 3 and Cr-doped SrZrO 3 .
  • the track record of using a chalcogenide compound such as a Cu-Te alloy as a sputtering target is poor, and the characteristics required when sputtering this material and the problems in manufacturing the target are not fully understood. It was the current situation.
  • a 5N purity Cu wire and Te shot are prepared as raw materials, these are prepared so as to have a predetermined composition, and then synthesized in an ampule.
  • the ingot was pulverized to a predetermined particle size and then subjected to pressure sintering to produce a Cu—Te based sputtering target.
  • the target made by this method causes large segregation of Cu and Te, so the composition of the target becomes non-uniform, and because the ingot is coarsely pulverized, the particle size distribution becomes non-uniform and the target is uniformly eroded. There was a problem of not being. As a result, a large number of particles were generated due to the generation of nodules and arcing, and the target itself cracked during sputtering due to the weakness of the target itself.
  • Patent Documents 1 to 9 show examples in which Cu and Te are used as an ion source layer for a storage element for stably performing operations such as information recording, and these are formed by sputtering.
  • An example is shown.
  • the invention is centered on the selection of the configuration and material of the storage element such as the lower electrode, ion source layer, storage layer, and upper electrode, and is completely indifferent to the problem of the sputtering target. From this, it can be said that the target used in this case contains the problems of the prior art.
  • the present invention improves the synthesis conditions of the raw material powder used for the Cu—Te alloy-based sintered sputtering target and controls the pulverization method, thereby making the composition and structure of the target uniform and simultaneously increasing the bending strength.
  • it is an object to provide a Cu—Te alloy-based sintered sputtering target that can effectively prevent cracking during sputtering, improve its quality, and form a uniform resistance change recording layer.
  • the technical means for solving the above-mentioned problems is that a Cu-Te alloy-based sintered sputtering target for forming a stable and homogeneous resistance change recording layer is improved in the synthesis conditions of raw material powder and pulverization method It has been found that the dispersibility and uniformity of the target structure can be improved, the mechanical strength of the target can be improved, and stable sputtering can be realized.
  • the present invention provides the following inventions. 1) Te: 40-90 at%, Cu—Te alloy-based sintered sputtering target composed of Cu, Te, or an intermetallic compound existing in the target, the Cu—Te alloy-based sintered sputtering target composed of the inevitable impurities and Cu. A Cu—Te alloy-based sintered sputtering target having a maximum diameter of 20 ⁇ m or less. 2) The Cu—Te-based sintered sputtering target according to claim 1, wherein the maximum diameter of the segregated portion made of Cu, Te or an intermetallic compound thereof is 10 ⁇ m or less.
  • the average grain size of the crystal grains present in the Cu—Te alloy-based sintered body target is 10 ⁇ m or less, and the bending strength of the target is 70 Mpa or more.
  • Cu—Te based sintered sputtering target is 4) The Cu—Te based sintered sputtering target according to any one of 1) to 3) above, wherein Al and / or Ge are contained at a maximum of 50 at%. 5) The Cu—Te based sintered sputtering target according to any one of 1) to 4) above, wherein Zr is contained in a maximum of 50 at%.
  • FIG. 3 is a view showing an FE-EPMA observation photograph of the surface after sintering in Example 1.
  • FIG. 4 is a view showing an FE-EPMA observation photograph of the surface after sintering in Example 2.
  • FIG. 4 is a view showing an FE-EPMA observation photograph of a surface after sintering in Comparative Example 1.
  • FIG. 4 is a view showing an FE-EPMA observation photograph of a surface after sintering in Comparative Example 2.
  • the Cu—Te alloy-based sintered sputtering target of the present invention is composed of Te: 40 to 90 at%, and the balance is inevitable impurities and Cu.
  • One of the major features of the present invention is that the maximum diameter of the segregated portion made of Cu, Te or these intermetallic compounds existing in the target is 20 ⁇ m or less, and further the maximum diameter of the segregated portion is 10 ⁇ m. Such segregation is formed by causing a composition shift when the Cu—Te alloy is sintered, without forming a uniform composition alloy.
  • the Cu—Te-based sintered sputtering target of the present invention is characterized in that the average grain size of crystal grains present in the target is 10 ⁇ m or less, and the bending strength of the target is 70 Mpa or more. It is. From the viewpoint of improving the bending strength, it is more desirable to prepare the target with Te: 40 to 60 at%, the remainder of inevitable impurities and Cu raw material.
  • the maximum crystal grain size is preferably 10 ⁇ m or less.
  • the diameter of the segregation part is equivalent to the crystal grain size, smaller than that, or even larger than the crystal grain size. Thus, since the diameter of the segregation part is not constant, the average particle diameter of the target is measured by excluding the segregation part.
  • the Cu—Te based sintered sputtering target of the present invention can contain Al and / or Ge in the above composition at a maximum of 50 at%, with the balance being Cu. Further, in the composition of the Cu—Te based sintered body, Zr can be contained at a maximum of 50 at%, and the balance can be Cu. These elements, as cations, easily move through the material and play a role of stabilizing the CuTe metal chalcogenide layer. In particular, since Al and Ge form an oxide when erasing data, the resistance is greatly increased. Thereby, the resistance ratio adjustment, which is a characteristic of ReRAM, can be performed. On the other hand, Zr becomes a cation and becomes easy to move, has a function of lowering resistance and operating stably.
  • the Cu—Te-based sintered sputtering target of the present invention having the above characteristics is manufactured through the following steps. Specifically, high-purity (4N level or higher) Cu and Te raw materials are weighed and prepared so as to be 40 to 90 at% Te and the balance Cu, and this is rocked and dissolved at 900 to 1100 ° C. . This is because Cu and Te are mixed uniformly. When deviating from this condition, there arises a problem that an undissolved portion of Cu remains. Next, after this is gradually cooled to 340 to 450 ° C. by natural heat dissipation, the temperature is kept constant at 340 to 450 ° C. for 10 to 20 hours. This is for precipitating the phase according to the phase diagram. When deviating from this, a problem of composition unevenness due to segregation occurs. Then, it is gradually cooled to room temperature by natural heat dissipation to make an ingot. The above process is important in suppressing segregation of components.
  • Example 1 Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 50 at% Cu-50 at% Te, and dissolved at 1000 ° C. Next, after this was gradually cooled to 420 ° C. by natural heat dissipation, the temperature was kept constant at 420 ° C. for 20 hours. Thereafter, it was gradually cooled to room temperature by natural heat dissipation.
  • the obtained CuTe ingot was pulverized and then jet milled to obtain a CuTe raw material powder having an average particle size of 2 to 3 ⁇ m. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
  • FIG. 1 shows an FE-EPMA observation photograph of the sintered target surface obtained in Example 1.
  • segregation was suppressed, and the maximum diameter of the segregation part existing in the sputtering target of Example 1 was reduced to 20 ⁇ m or less. That is, no segregated portion of Cu, Te or Cu—Te intermetallic compound having a maximum diameter of 20 ⁇ m or more was present over the entire erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te alloy based sintered compact target was 10 ⁇ m or less.
  • the bending strength was 128 Mpa (50 at% Cu), and the bending strength of the target of the present invention: 70 Mpa or more was achieved.
  • Example 2 Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 60 at% Cu-40 at% Te, and dissolved at 1000 ° C. Next, after this was gradually cooled to 420 ° C. by natural heat dissipation, the temperature was kept constant at 420 ° C. for 20 hours. Thereafter, it was gradually cooled to room temperature by natural heat dissipation.
  • the obtained CuTe ingot was pulverized and then jet milled to obtain a CuTe raw material powder having an average particle size of 2 to 3 ⁇ m. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
  • FIG. 2 shows an FE-EPMA observation photograph of the target surface after sintering obtained in Example 2.
  • segregation was suppressed, and the maximum diameter of the segregation part existing in the sputtering target of Example 2 was reduced to 20 ⁇ m or less. That is, no segregated portion of Cu, Te or Cu—Te intermetallic compound having a maximum diameter of 10 ⁇ m or more was present over the entire erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te alloy based sintered compact target was 10 ⁇ m or less.
  • the bending strength was 78 Mpa (60 at% Cu), and the bending strength of the target of the present invention: 70 Mpa or more was achieved.
  • the maximum diameter of the segregation part exceeded 20 ⁇ m, and the one with large segregation reached the maximum diameter of 50 ⁇ m. And this segregation part was scattered over the whole erosion surface with the target of Cu or Te.
  • the bending strength of the target of Comparative Example 1 was 47 Mpa, and the bending strength of the target of the present invention of the present invention: 70 Mpa or more could not be achieved.
  • the average grain size of the crystal grains present in the Cu—Te alloy-based sintered compact target exceeded 10 ⁇ m and was 28 ⁇ m.
  • the maximum diameter of the segregation part exceeded 20 ⁇ m, and the one with large segregation reached the maximum diameter of 50 ⁇ m. And this segregation part was scattered over the whole erosion surface with the target of Cu or Te.
  • the bending strength of the target of Comparative Example 2 was 31 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more could not be achieved.
  • the average grain size of the crystal grains present in the Cu—Te alloy-based sintered body target exceeded 10 ⁇ m and was 22 ⁇ m.
  • Comparative Example 2 abnormal discharge, nodules, and arcing occurred frequently, resulting in a sputtered film with many particles. Further, in Comparative Example 2, cracks occurred during use. These were considered to be caused by the fact that the synthesis conditions and the pulverization method of the raw material powder used for the Cu—Te alloy-based sintered sputtering target were not appropriately performed.
  • the obtained CuTeGe ingot was pulverized and then jet milled to obtain a CuTeGe raw material powder having an average particle size of 2 to 3 ⁇ m. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
  • Example 3 As a result of FE-EPMA observation of the surface of the sintered target obtained in Example 3, as in Example 1, segregation was suppressed, and the maximum diameter of the segregated part existing in the sputtering target of Example 3 was 20 ⁇ m or less. Diminished. That is, the segregation part of Cu, Te, Ge or these intermetallic compounds whose maximum diameter is 20 micrometers or more did not exist over the whole erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te—Ge alloy based sintered compact target was 10 ⁇ m or less.
  • Example 4N Cu, 4N Te and 4N Al raw materials are weighed and prepared to be 42.5at% Cu-42.5at% Te-15at% Al. Therefore, the CuTeAl raw material powder was hot-pressed as it was to obtain a target shape.
  • the surface of the obtained target material was ground and subjected to surface polishing after bonding to a backing plate plate to obtain a sputtering target.
  • the relative density of these targets was 99% or more.
  • Example 4 As a result of FE-EPMA observation of the target surface after sintering obtained in Example 4, as in Example 1, segregation was suppressed, and the maximum diameter of the segregated portion existing in the sputtering target of Example 4 was 20 ⁇ m or less. Diminished. That is, there was no segregated portion of Cu, Te, Ge, Al or an intermetallic compound having a maximum diameter of 20 ⁇ m or more over the entire erosion surface. The average grain size of the crystal grains present in the Cu—Te—Al alloy-based sintered body target was 10 ⁇ m or less.
  • the bending strength was 128 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more was achieved.
  • Example 5 Raw materials of 4N Cu, 4N Te, 4N Al and 4N Zr were weighed and prepared so as to be 14 at% Cu-22 at% Te-50 at% Al-14 at% Zr. When these mixed powders were prepared by dissolution, there was a concern that they would become very active substances, so the mixture of CuTeAlZr raw powder was directly hot pressed to the target shape, and then the surface was ground and backed Surface polishing was performed after bonding to the plate to obtain a sputtering target. The relative density of these targets was 99% or more.
  • Example 5 As a result of FE-EPMA observation of the target surface after sintering obtained in Example 5, segregation was suppressed as in Example 1.
  • the segregation part present in such a sputtering target can be controlled by adjusting the particle size of the powder and the hot press temperature, and Example 5 satisfied the conditions of the present invention. Further, the average grain size of the crystal grains present in the Cu—Te—Al—Zr alloy based sintered compact target was 10 ⁇ m or less.
  • the bending strength was 80 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more was achieved.
  • the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and to improve the bending strength by optimizing the particle size of Cu, Te, Al, and Zr raw material powders. It was possible to realize.
  • the present invention makes it possible to make the composition and structure of the target uniform by improving the synthesis conditions of the raw material powder used for the Cu—Te alloy-based sintered sputtering target and controlling the pulverization method. Since segregation of the target can be prevented and abnormal structure can be suppressed, abnormal discharge starting from these can be prevented, generation of particles due to arcing can be suppressed, and the uniformity of the sputtered film Has an excellent effect of improving. At the same time, since the bending strength of the target can be increased, it is possible to effectively prevent cracking during sputtering, improve its quality, and form a uniform resistance change recording layer. A sputtering target can be obtained. Therefore, since the film forming conditions are stable, it is extremely useful as a resistance change recording material, that is, a medium for recording information using resistance change.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Powder Metallurgy (AREA)
  • Semiconductor Memories (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

A Cu-Te-alloy-based sintered body sputtering target comprising 40 to 90 at% of Te and a remainder made up by unavoidable impurities and Cu, said sputtering target being characterized in that the largest diameter of a segregated part that exists in the target and comprises Cu, Te or an intermetallic compound thereof is 20 μm or less. The purpose of the present invention is to make the composition and the structure of a Cu-Te-alloy-based sintered body sputtering target uniform and, at the same time, increase the bending strength of the target by improving the conditions for the synthesis of a raw material powder to be used for the target and controlling the method for milling the raw material powder to thereby prevent the occurrence of cracking of the target during sputtering effectively and improve the quality of the target, thereby providing a Cu-Te-alloy-based sintered body sputtering target that can form a homogeneous resistive random recording layer.

Description

Cu-Te合金系焼結体スパッタリングターゲットCu-Te alloy-based sintered sputtering target
 ターゲット中の偏析の大きさを所定以下とすることにより、異常放電、ノジュール、アーキング等が発生するという不具合が少なく、抗折力の高いCu-Te焼結スパッタリングターゲットを提供する。 Provided is a Cu—Te sintered sputtering target having a high bending strength with few defects such as abnormal discharge, nodule, arcing, etc. by setting the size of segregation in the target to a predetermined value or less.
 近年、抵抗変化記録用材料として、すなわち抵抗変化を利用して情報を記録する媒体としてCu-Te合金材料からなる薄膜が用いられるようになってきた。
 このCu-Te合金材料からなる薄膜を形成する方法としては、真空蒸着法やスパッタリング法などの、一般に物理蒸着法と言われている手段によって行われるのが普通である。特に、操作性や皮膜の安定性からマグネトロンスパッタリング法を用いて形成することが多い。
In recent years, a thin film made of a Cu—Te alloy material has been used as a resistance change recording material, that is, as a medium for recording information using resistance change.
As a method of forming a thin film made of this Cu—Te alloy material, it is usually performed by means generally called physical vapor deposition, such as vacuum vapor deposition or sputtering. In particular, the magnetron sputtering method is often used in view of operability and film stability.
 スパッタリング法による膜の形成は、陰極に設置したターゲットにArイオンなどの正イオンを物理的に衝突させ、その衝突エネルギーでターゲットを構成する材料を放出させて、対面している陽極側の基板にターゲット材料とほぼ同組成の膜を積層することによって行われる。
 スパッタリング法による被覆法は処理時間や供給電力等を調節することによって、安定した成膜速度でオングストローム単位の薄い膜から数十μmの厚い膜まで形成できるという特徴を有している。
A film is formed by sputtering, in which positive ions such as Ar ions are physically collided with a target placed on the cathode, and the material constituting the target is released by the collision energy, and the substrate on the anode side facing the target is released. This is done by stacking films having the same composition as the target material.
The coating method by sputtering has a feature that a thin film in angstrom units to a thick film of several tens of μm can be formed at a stable film formation speed by adjusting the processing time, supply power, and the like.
 従来、抵抗変化記録膜用Cu-Te基合金材料からなる膜をスパッタリング法によって形成しようとすると、ノジュール(異常突起物)やクレーター(異常凹み)などの異常組織がターゲット表面に発生し、これらを基点としてマイクロアーキング(異常放電)が発生し、これら自身がパーティクルと呼ばれるクラスター(原子の集合体)状の異物として薄膜に混入してしまっていた。 Conventionally, when a film made of a Cu—Te based alloy material for a resistance change recording film is formed by sputtering, abnormal structures such as nodules (abnormal protrusions) and craters (abnormal dents) are generated on the target surface. Micro arcing (abnormal discharge) occurred as a base point, and these themselves were mixed in the thin film as a foreign substance in the form of clusters (aggregates of atoms) called particles.
 また、スパッタリングの際にターゲットのクラック又は割れの発生、形成された薄膜の不均一性、ターゲット用焼結粉の製造工程で吸収される酸素等の多量のガス成分があり、スパッタ膜の膜質に悪影響を与えていた。
 このようなターゲット又はスパッタリングの際の問題は、記録媒体である薄膜の品質や歩留まりを低下させる大きな原因となる。
In addition, there is a large amount of gas components such as the generation of cracks or cracks in the target during sputtering, non-uniformity of the formed thin film, oxygen absorbed in the manufacturing process of the sintered powder for the target, and the film quality of the sputtered film It had an adverse effect.
Such a problem in the target or sputtering is a major cause of lowering the quality and yield of a thin film as a recording medium.
 従来の抵抗変化記録層は、NiO、TaO、TiO等の金属酸化物、PrCaMnO、CrドープされたSrZrO等のペロブスカイト系複合酸化物
が主に使用されている。しかしながら、Cu-Te合金のようなカルコゲナイド化合物をスパッタリングターゲットとして使用した実績が乏しく、この材料をスパッタリングする際に求められる特性やターゲットとして製造する上での問題点が十分に把握されていないのが現状であった。
Conventional resistance change recording layers mainly use metal oxides such as NiO, TaO 2 and TiO 2 and perovskite complex oxides such as PrCaMnO 3 and Cr-doped SrZrO 3 . However, the track record of using a chalcogenide compound such as a Cu-Te alloy as a sputtering target is poor, and the characteristics required when sputtering this material and the problems in manufacturing the target are not fully understood. It was the current situation.
 このため、Cu-Te合金ターゲットを用いてスパッタリングする際に発生する、パーティクル、異常放電(アーキング)、ターゲット上のノジュールやクレーターの発生、ターゲットのクラック又は割れの発生、さらにはターゲット中に含まれる多量の酸素等のガス成分を避けることができなかった。 For this reason, particles, abnormal discharge (arcing), generation of nodules and craters on the target, generation of cracks or cracks in the target, and generation of cracks or cracks in the target are generated when sputtering using a Cu—Te alloy target. A large amount of gas components such as oxygen could not be avoided.
 従来のCu-Te基スパッタリング用ターゲットの製造方法として、原料として、純度5NのCuワイヤーとTeショットを準備し、これらを所定の組成となるように調合した後、アンプル内で合成し、得られたインゴットを所定の粒度まで粉砕した後、加圧焼結を行ってCu-Te基スパッタリング用ターゲットを製造していた。 As a conventional method for producing a target for Cu-Te based sputtering, a 5N purity Cu wire and Te shot are prepared as raw materials, these are prepared so as to have a predetermined composition, and then synthesized in an ampule. The ingot was pulverized to a predetermined particle size and then subjected to pressure sintering to produce a Cu—Te based sputtering target.
 しかしながら、この製法で作られたターゲットは、CuとTeの大きな偏析を生じるために、ターゲットの組成が不均一となり、またインゴットを粗粉砕したために、粒度分布も不均一となり、ターゲットが均一にエロージョンされないという問題があった。その結果、ノジュールやアーキングの発生によるパーティクルが大量発生し、ターゲット自体の強度が弱いことで、スパッタ中にターゲットが割れるといった事象も見られた。 However, the target made by this method causes large segregation of Cu and Te, so the composition of the target becomes non-uniform, and because the ingot is coarsely pulverized, the particle size distribution becomes non-uniform and the target is uniformly eroded. There was a problem of not being. As a result, a large number of particles were generated due to the generation of nodules and arcing, and the target itself cracked during sputtering due to the weakness of the target itself.
 従来技術を見ると、下記特許文献1~9に、情報の記録等の動作を安定して行うための記憶素子用のイオン源層として、CuとTeを用いる例と、これらをスパッタリングにより成膜する例が示されている。
 しかし、この場合は、下部電極、イオン源層、記憶層、上部電極などの、記憶素子の構成と材料の選択することが中心の発明であり、スパッタリングターゲットの問題には、全く無関心である。このことから、この場合に使用するターゲットは、従来技術の問題を内包していると言える。
Looking at the prior art, the following Patent Documents 1 to 9 show examples in which Cu and Te are used as an ion source layer for a storage element for stably performing operations such as information recording, and these are formed by sputtering. An example is shown.
However, in this case, the invention is centered on the selection of the configuration and material of the storage element such as the lower electrode, ion source layer, storage layer, and upper electrode, and is completely indifferent to the problem of the sputtering target. From this, it can be said that the target used in this case contains the problems of the prior art.
特開2005-197634号公報JP 2005-197634 A 特開2006-173267号公報JP 2006-173267 A 特開2006-324425号公報JP 2006-324425 A 特開2006-351780号公報JP 2006-351780 A 特開2007-157941号公報JP 2007-157941 A 特開2007-157942号公報JP 2007-157842 A 特開2007-201270号公報JP 2007-201270 A 特開2007-294745号公報JP 2007-294745 A 特開2009-043758号公報JP 2009-043758 A
 本発明は、Cu-Te合金系焼結体スパッタリングターゲットに使用する原料粉末の合成条件の改良と粉砕方法を制御することにより、ターゲットの組成と組織の均一化を図り、同時に抗折力を高めることで、スパッタ中の割れを効果的に防止して、その品質を改善し、均質な抵抗変化記録層を形成できるCu-Te合金系焼結体スパッタリングターゲットを提供することを課題とする。 The present invention improves the synthesis conditions of the raw material powder used for the Cu—Te alloy-based sintered sputtering target and controls the pulverization method, thereby making the composition and structure of the target uniform and simultaneously increasing the bending strength. Thus, it is an object to provide a Cu—Te alloy-based sintered sputtering target that can effectively prevent cracking during sputtering, improve its quality, and form a uniform resistance change recording layer.
 上記問題点を解決するための技術的な手段は、安定しかつ均質な抵抗変化記録層を形成するためのCu-Te合金系焼結体スパッタリングターゲットは、原料粉末の合成条件の改良と粉砕方法を工夫することによって得ることができ、これによってターゲット組織の分散性と均一性を向上させると共に、ターゲットの機械的強度を向上させ、安定したスパッタが実現するとの知見を得た。 The technical means for solving the above-mentioned problems is that a Cu-Te alloy-based sintered sputtering target for forming a stable and homogeneous resistance change recording layer is improved in the synthesis conditions of raw material powder and pulverization method It has been found that the dispersibility and uniformity of the target structure can be improved, the mechanical strength of the target can be improved, and stable sputtering can be realized.
 この知見に基づき、本発明は、下記の発明を提供するものである。
 1)Te:40~90at%、残部不可避的不純物とCuからなるCu-Te合金系焼結体スパッタリングターゲットであって、該ターゲットに存在するCu、Te又はこれらの金属間化合物からなる偏析部の最大径が20μm以下であることを特徴とするCu-Te合金系焼結体スパッタリングターゲット。
 2)Cu、Te又はこれらの金属間化合物からなる偏析部の最大径が10μm以下であることを特徴とする請求項1記載のCu-Te系焼結体スパッタリングターゲット。
 3)Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であり、該ターゲットの抗折力が70Mpa以上であることを特徴とする請求項1又は2に記載のCu-Te系焼結体スパッタリングターゲット。
 4)Al及び又はGeを、最大で50at%含有することを特徴とする上記1)~3)のいずれか一項に記載のCu-Te系焼結体スパッタリングターゲット。
 5)Zrを、最大で50at%含有することを特徴とする上記1)~4)のいずれか一項に記載のCu-Te系焼結体スパッタリングターゲット。
Based on this knowledge, the present invention provides the following inventions.
1) Te: 40-90 at%, Cu—Te alloy-based sintered sputtering target composed of Cu, Te, or an intermetallic compound existing in the target, the Cu—Te alloy-based sintered sputtering target composed of the inevitable impurities and Cu. A Cu—Te alloy-based sintered sputtering target having a maximum diameter of 20 μm or less.
2) The Cu—Te-based sintered sputtering target according to claim 1, wherein the maximum diameter of the segregated portion made of Cu, Te or an intermetallic compound thereof is 10 μm or less.
3) The average grain size of the crystal grains present in the Cu—Te alloy-based sintered body target is 10 μm or less, and the bending strength of the target is 70 Mpa or more. Cu—Te based sintered sputtering target.
4) The Cu—Te based sintered sputtering target according to any one of 1) to 3) above, wherein Al and / or Ge are contained at a maximum of 50 at%.
5) The Cu—Te based sintered sputtering target according to any one of 1) to 4) above, wherein Zr is contained in a maximum of 50 at%.
 本発明は、Cu-Te合金系焼結体スパッタリングターゲットに使用する原料粉末の合成条件の改良と粉砕方法を制御することにより、ターゲットの組成と組織の均一化を図ることが可能となり、これによってターゲットの偏析を防止し、異常組織を抑制することができるので、これらを起点とする異常放電を防止することが可能となり、アーキングによるパーティクルの発生を抑制することができ、さらにスパッタ膜の均一性が向上するという優れた効果を有する。
 また、同時にターゲットの抗折力を高めることができるので、スパッタ中の割れを効果的に防止して、その品質を改善し、均質な抵抗変化記録層を形成できるCu-Te合金系焼結体スパッタリングターゲットを得ることができる。
The present invention makes it possible to make the composition and structure of the target uniform by improving the synthesis conditions of the raw material powder used for the Cu—Te alloy-based sintered sputtering target and controlling the pulverization method. Since segregation of the target can be prevented and abnormal structure can be suppressed, abnormal discharge starting from these can be prevented, generation of particles due to arcing can be suppressed, and the uniformity of the sputtered film Has an excellent effect of improving.
At the same time, since the bending strength of the target can be increased, it is possible to effectively prevent cracking during sputtering, improve its quality, and form a uniform resistance change recording layer. A sputtering target can be obtained.
実施例1の焼結後の表面のFE-EPMA観察写真を示す図である。3 is a view showing an FE-EPMA observation photograph of the surface after sintering in Example 1. FIG. 実施例2の焼結後の表面のFE-EPMA観察写真を示す図である。4 is a view showing an FE-EPMA observation photograph of the surface after sintering in Example 2. FIG. 比較例1の焼結後の表面のFE-EPMA観察写真を示す図である。4 is a view showing an FE-EPMA observation photograph of a surface after sintering in Comparative Example 1. FIG. 比較例2の焼結後の表面のFE-EPMA観察写真を示す図である。4 is a view showing an FE-EPMA observation photograph of a surface after sintering in Comparative Example 2. FIG.
 本発明のCu-Te合金系焼結体スパッタリングターゲットは、Te:40~90at%、残部不可避的不純物とCuからなる。該ターゲットに存在するCu、Te又はこれらの金属間化合物からなる偏析部の最大径が20μm以下、さらには偏析部の最大径が10μmであることが、本願発明の大きな特徴の一つである。このような偏析は、Cu-Te合金の焼結の際に、均一な組成の合金とならずに、組成ずれを起こすことにより形成される。
 偏析部が大きくなると、後述する比較例に示すように、異常放電、ノジュール、アーキングが多発して、パーティクルの多いスパッタ膜が形成され、本願発明の目的を達成することができない。また、抗折力が低下するために、スパッタリング中に割れが発生することもある。
The Cu—Te alloy-based sintered sputtering target of the present invention is composed of Te: 40 to 90 at%, and the balance is inevitable impurities and Cu. One of the major features of the present invention is that the maximum diameter of the segregated portion made of Cu, Te or these intermetallic compounds existing in the target is 20 μm or less, and further the maximum diameter of the segregated portion is 10 μm. Such segregation is formed by causing a composition shift when the Cu—Te alloy is sintered, without forming a uniform composition alloy.
When the segregation portion becomes large, abnormal discharge, nodules, and arcing occur frequently as shown in a comparative example described later, and a sputtered film with many particles is formed, and the object of the present invention cannot be achieved. In addition, since the bending strength is reduced, cracks may occur during sputtering.
 さらに、本願発明のCu-Te系焼結体スパッタリングターゲットは、当該ターゲットに存在する結晶粒の平均粒径が10μm以下であり、該ターゲットの抗折力が70Mpa以上であることも特徴の一つである。抗折力向上の観点から見れば、ターゲットをTe:40~60at%、残部不可避不純物とCuの原料で作製することがより望ましい。
 また、最大結晶粒径は10μm以下であることが好ましい。前記偏析部の径は、結晶粒径同等のもの、それよりも小さなもの、さらには結晶粒径を超える大きさのものも存在する。このように偏析部の径は一定ではないので、ターゲットの平均粒径は、前記偏析部を除外して平均粒径を計測する。
Furthermore, the Cu—Te-based sintered sputtering target of the present invention is characterized in that the average grain size of crystal grains present in the target is 10 μm or less, and the bending strength of the target is 70 Mpa or more. It is. From the viewpoint of improving the bending strength, it is more desirable to prepare the target with Te: 40 to 60 at%, the remainder of inevitable impurities and Cu raw material.
The maximum crystal grain size is preferably 10 μm or less. The diameter of the segregation part is equivalent to the crystal grain size, smaller than that, or even larger than the crystal grain size. Thus, since the diameter of the segregation part is not constant, the average particle diameter of the target is measured by excluding the segregation part.
 本発明のCu-Te系焼結体スパッタリングターゲットは、上記組成においてAl及び又はGeを、最大で50at%含有させ、残部をCuとすることができる。また、Cu-Te系焼結体の前記組成において、Zrを最大で50at%含有させ、残部をCuとすることができる。
 これらの元素は、陽イオンとして、材料中を容易に移動し、CuTeの金属カルコゲナイド層を安定化させる役割を担う。特に、Al、Geは、データの消去時に酸化物を形成するため、抵抗が大幅に増加する。これによりReRAMの特徴である抵抗比調整を行うことができる。一方、Zrは陽イオンとなり移動し易くなり、抵抗を下げ、安定的に動作させる機能を持つ。
The Cu—Te based sintered sputtering target of the present invention can contain Al and / or Ge in the above composition at a maximum of 50 at%, with the balance being Cu. Further, in the composition of the Cu—Te based sintered body, Zr can be contained at a maximum of 50 at%, and the balance can be Cu.
These elements, as cations, easily move through the material and play a role of stabilizing the CuTe metal chalcogenide layer. In particular, since Al and Ge form an oxide when erasing data, the resistance is greatly increased. Thereby, the resistance ratio adjustment, which is a characteristic of ReRAM, can be performed. On the other hand, Zr becomes a cation and becomes easy to move, has a function of lowering resistance and operating stably.
 上記の特徴を持つ本願発明のCu-Te系焼結体スパッタリングターゲットは次のような工程を経て製造する。
 具体的には、高純度の(4Nレベル以上)CuとTeの原料を、40~90at%Te、残部Cuとなるように、秤量・調合し、これを900~1100°Cで揺動溶解する。これは、CuとTeを均一に混ぜ合わせるためである。
 この条件を逸脱した場合には、Cuの未固溶部が残存するという不具合が生ずる。次に、これを340~450°Cまでは自然放熱により徐冷した後、340~450°Cで10~20時間、温度を一定に保持する。これは状態図通りの相を析出させるためである。これを逸脱する場合には偏析による組成ムラという不具合が生ずる。
 その後、室温まで自然放熱により徐冷しインゴットとする。以上の工程は、成分の偏析を抑制する上で、重要である。
The Cu—Te-based sintered sputtering target of the present invention having the above characteristics is manufactured through the following steps.
Specifically, high-purity (4N level or higher) Cu and Te raw materials are weighed and prepared so as to be 40 to 90 at% Te and the balance Cu, and this is rocked and dissolved at 900 to 1100 ° C. . This is because Cu and Te are mixed uniformly.
When deviating from this condition, there arises a problem that an undissolved portion of Cu remains. Next, after this is gradually cooled to 340 to 450 ° C. by natural heat dissipation, the temperature is kept constant at 340 to 450 ° C. for 10 to 20 hours. This is for precipitating the phase according to the phase diagram. When deviating from this, a problem of composition unevenness due to segregation occurs.
Then, it is gradually cooled to room temperature by natural heat dissipation to make an ingot. The above process is important in suppressing segregation of components.
 次に、得られたCuTeインゴットを乳鉢で粉砕した後、ジェットミル粉砕し、平均粒径が2~3μmのCuTe原料粉とする。
 ボールミルやアトライターの摩砕では、粉同士が凝集し易いので、好ましくはジエットミル、ハンマーミル、スタンプミルなどの瞬間的に打撃を与える粉砕方法を採用するのが良い。また、後者の場合は、高効率での粉砕が可能であるという利点もある。
 次に、粉砕した原料粉をホットプレスして、ターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得る。Al、Ge、Zrを添加する場合には、同様にして原料粉末を作製するか、又はそれぞれの粉末を単に混合し、ホットプレスしてターゲットとする。これらの製造工程によって、ターゲットの相対密度を、99%以上に高密度化が達成できる。
Next, the obtained CuTe ingot is pulverized in a mortar and then jet milled to obtain a CuTe raw material powder having an average particle diameter of 2 to 3 μm.
In ball milling or attritor grinding, powders are likely to aggregate, and therefore, a grinding method that instantaneously strikes, such as a jet mill, a hammer mill, or a stamp mill, is preferably employed. In the latter case, there is also an advantage that pulverization with high efficiency is possible.
Next, after the pulverized raw material powder is hot pressed to obtain a target shape, the surface is ground and subjected to surface polishing through bonding to a backing plate to obtain a sputtering target. In the case of adding Al, Ge, Zr, raw material powders are produced in the same manner, or the respective powders are simply mixed and hot pressed to obtain a target. By these manufacturing steps, the relative density of the target can be increased to 99% or more.
 ここでは、最も代表的な50at%Cu-50at%Teと40at%Cu-60at%Teのターゲットの例を、下記実施例1、2に説明する。
 なお、以下の実施例はあくまで一例であり、この例に制限されるものではない。すなわち、本発明の技術思想の範囲内で、実施例以外の態様あるいは変形を全て包含するものである。
Here, examples of the most typical targets of 50 at% Cu-50 at% Te and 40 at% Cu-60 at% Te will be described in Examples 1 and 2 below.
The following embodiment is merely an example, and the present invention is not limited to this example. That is, all aspects or modifications other than the embodiments are included within the scope of the technical idea of the present invention.
(実施例1)
 4NのCuと4NのTeの原料を、50at%Cu-50at%Teとなるように秤量・調合し、これを1000°Cで溶解した。次に、これを420°Cまでは自然放熱により徐冷した後、420°Cで20時間、温度を一定に保持した。その後、室温まで自然放熱により徐冷した。
Example 1
Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 50 at% Cu-50 at% Te, and dissolved at 1000 ° C. Next, after this was gradually cooled to 420 ° C. by natural heat dissipation, the temperature was kept constant at 420 ° C. for 20 hours. Thereafter, it was gradually cooled to room temperature by natural heat dissipation.
 得られたCuTeインゴットを乳鉢粉砕した後、ジェットミル粉砕し、平均粒径が2~3μmのCuTe原料粉とした。これをホットプレスして、ターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 The obtained CuTe ingot was pulverized and then jet milled to obtain a CuTe raw material powder having an average particle size of 2 to 3 μm. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
 図1に実施例1によって得た焼結後のターゲット表面のFE-EPMA観察写真を示す。この図1に示すように、偏析が抑制され、実施例1のスパッタリングターゲットに存在する偏析部の最大径は20μm以下に減少した。すなわち最大径が20μm以上のCu、Te又はCu-Te金属間化合物の偏析部は、エロージョン面全体に渡って存在しなかった。また、Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であった。 FIG. 1 shows an FE-EPMA observation photograph of the sintered target surface obtained in Example 1. As shown in FIG. 1, segregation was suppressed, and the maximum diameter of the segregation part existing in the sputtering target of Example 1 was reduced to 20 μm or less. That is, no segregated portion of Cu, Te or Cu—Te intermetallic compound having a maximum diameter of 20 μm or more was present over the entire erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te alloy based sintered compact target was 10 μm or less.
 さらに、抗折力については、128 Mpa(50at%Cu)であり、本願発明のターゲットの抗折力:70Mpa以上を達成していた。原料合成後の冷却温度パターンを工夫することで焼結後に大きな偏析部が発生することを抑制すると共に、CuTe原料粉の粒径を最適化することで抗折力アップを実現することが可能であった。 Furthermore, the bending strength was 128 Mpa (50 at% Cu), and the bending strength of the target of the present invention: 70 Mpa or more was achieved. By devising the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and it is possible to increase the bending strength by optimizing the particle size of the CuTe raw material powder. there were.
 また、実際にスパッタリングを行って比較した所、実施例によるものは、異常放電、ノジュール、アーキングが少なく良好なスパッタ膜が得られた。 In addition, when sputtering was actually performed and compared, according to the example, a good sputtered film with less abnormal discharge, nodules, and arcing was obtained.
(実施例2)
 4NのCuと4NのTeの原料を、60at%Cu-40at%Teとなるように秤量・調合し、これを1000°Cで溶解した。次に、これを420°Cまでは自然放熱により徐冷した後、420°Cで20時間、温度を一定に保持した。その後、室温まで自然放熱により徐冷した。
(Example 2)
Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 60 at% Cu-40 at% Te, and dissolved at 1000 ° C. Next, after this was gradually cooled to 420 ° C. by natural heat dissipation, the temperature was kept constant at 420 ° C. for 20 hours. Thereafter, it was gradually cooled to room temperature by natural heat dissipation.
 得られたCuTeインゴットを乳鉢粉砕した後、ジェットミル粉砕し、平均粒径が2~3μmのCuTe原料粉とした。これをホットプレスして、ターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 The obtained CuTe ingot was pulverized and then jet milled to obtain a CuTe raw material powder having an average particle size of 2 to 3 μm. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
 図2に実施例2によって得た焼結後のターゲット表面のFE-EPMA観察写真を示す。この図2に示すように、偏析が抑制され、実施例2のスパッタリングターゲットに存在する偏析部の最大径は20μm以下に減少した。すなわち最大径が10μm以上の、Cu、Te又はCu-Te金属間化合物の偏析部は、エロージョン面全体に渡って存在しなかった。また、Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であった。 FIG. 2 shows an FE-EPMA observation photograph of the target surface after sintering obtained in Example 2. As shown in FIG. 2, segregation was suppressed, and the maximum diameter of the segregation part existing in the sputtering target of Example 2 was reduced to 20 μm or less. That is, no segregated portion of Cu, Te or Cu—Te intermetallic compound having a maximum diameter of 10 μm or more was present over the entire erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te alloy based sintered compact target was 10 μm or less.
 さらに、抗折力については、78 Mpa(60at%Cu)であり、本願発明のターゲットの抗折力:70Mpa以上を達成していた。原料合成後の冷却温度パターンを工夫することで焼結後に大きな偏析部が発生することを抑制すると共に、CuTe原料粉の粒径を最適化することで抗折力アップを実現することが可能であった。 Furthermore, the bending strength was 78 Mpa (60 at% Cu), and the bending strength of the target of the present invention: 70 Mpa or more was achieved. By devising the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and it is possible to increase the bending strength by optimizing the particle size of the CuTe raw material powder. there were.
 また、実際にスパッタリングを行って比較した所、実施例によるものは、異常放電、ノジュール、アーキングが少なく良好なスパッタ膜が得られた。 In addition, when sputtering was actually performed and compared, according to the example, a good sputtered film with less abnormal discharge, nodules, and arcing was obtained.
(比較例1)
 4NのCuと4NのTeの原料を、50at%Cu-50at%Teとなるように秤量・調合し1000°Cで溶解した。その後、そのまま室温まで自然放熱により徐冷した。得られたCuTeインゴットを乳鉢粉砕し、平均粒径が20~30μmCuTe原料粉とした。
(Comparative Example 1)
Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 50 at% Cu-50 at% Te and dissolved at 1000 ° C. Thereafter, it was gradually cooled to room temperature by natural heat dissipation. The obtained CuTe ingot was pulverized to obtain a CuTe raw material powder having an average particle size of 20 to 30 μm.
 次に、これをホットプレスしてターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 Next, this was hot pressed to obtain a target shape, and then the surface was ground and subjected to surface polishing after bonding to a backing plate plate to obtain a sputtering target. The relative density of these targets was 99% or more.
 しかしながら、比較例1のスパッタリングターゲットは、図3に示すように、偏析部の最大径が20μmを超え、偏析の大きいものは、最大径が50μmに達した。そして、この偏析部はCu又はTeのターゲットとのエロージョン面全体に渡って散在していた。また、比較例1のターゲットの、抗折力は47Mpaであり、本願発明の本願発明のターゲットの抗折力:70Mpa以上を達成することができなかった。また、Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μmを超え、28μmであった。 However, in the sputtering target of Comparative Example 1, as shown in FIG. 3, the maximum diameter of the segregation part exceeded 20 μm, and the one with large segregation reached the maximum diameter of 50 μm. And this segregation part was scattered over the whole erosion surface with the target of Cu or Te. Moreover, the bending strength of the target of Comparative Example 1 was 47 Mpa, and the bending strength of the target of the present invention of the present invention: 70 Mpa or more could not be achieved. In addition, the average grain size of the crystal grains present in the Cu—Te alloy-based sintered compact target exceeded 10 μm and was 28 μm.
 そして、比較例1によるものは、異常放電、ノジュール、アーキングが多発して、パーティクルの多いスパッタ膜となった。これらは、Cu-Te合金系焼結体スパッタリングターゲットに使用する原料粉末の合成条件と粉砕方法が適切に行われなかったことに原因があり、ターゲットの組成と組織の均一化を図ることができなかった。 And, according to Comparative Example 1, abnormal discharge, nodules, and arcing frequently occurred, resulting in a sputtered film with many particles. These are due to the fact that the synthesis conditions and pulverization method of the raw material powder used for the Cu—Te alloy-based sintered sputtering target have not been properly performed, and the target composition and structure can be made uniform. There wasn't.
(比較例2)
 4NのCuと4NのTeの原料を、60at%Cu-40at%Teとなるように秤量・調合し1000°Cで溶解した。その後、そのまま室温まで自然放熱により徐冷した。得られたCuTeインゴットを乳鉢粉砕し、平均粒径が20~30μmCuTe原料粉とした。
(Comparative Example 2)
Raw materials of 4N Cu and 4N Te were weighed and prepared so as to be 60 at% Cu-40 at% Te and dissolved at 1000 ° C. Thereafter, it was gradually cooled to room temperature by natural heat dissipation. The obtained CuTe ingot was pulverized to obtain a CuTe raw material powder having an average particle size of 20 to 30 μm.
 次に、これをホットプレスしてターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 Next, this was hot pressed to obtain a target shape, and then the surface was ground and subjected to surface polishing after bonding to a backing plate plate to obtain a sputtering target. The relative density of these targets was 99% or more.
 しかしながら、比較例1のスパッタリングターゲットは、図4に示すように、偏析部の最大径が20μmを超え、偏析の大きいものは、最大径が50μmに達した。そして、この偏析部はCu又はTeのターゲットとのエロージョン面全体に渡って散在していた。また、比較例2のターゲットの、抗折力は31Mpaとなり、本願発明のターゲットの抗折力:70Mpa以上を達成することができなかった。また、Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μmを超え、22μmであった。 However, in the sputtering target of Comparative Example 1, as shown in FIG. 4, the maximum diameter of the segregation part exceeded 20 μm, and the one with large segregation reached the maximum diameter of 50 μm. And this segregation part was scattered over the whole erosion surface with the target of Cu or Te. Moreover, the bending strength of the target of Comparative Example 2 was 31 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more could not be achieved. In addition, the average grain size of the crystal grains present in the Cu—Te alloy-based sintered body target exceeded 10 μm and was 22 μm.
 そして、比較例2によるものは、異常放電、ノジュール、アーキングが多発して、パーティクルの多いスパッタ膜となった。さらに、この比較例2では、使用中にクラックが発生した。これらは、Cu-Te合金系焼結体スパッタリングターゲットに使用する原料粉末の合成条件と粉砕方法が適切に行われなかったことに原因があると考えられた。 And, according to Comparative Example 2, abnormal discharge, nodules, and arcing occurred frequently, resulting in a sputtered film with many particles. Further, in Comparative Example 2, cracks occurred during use. These were considered to be caused by the fact that the synthesis conditions and the pulverization method of the raw material powder used for the Cu—Te alloy-based sintered sputtering target were not appropriately performed.
(実施例3)
 4NのCuと4NのTeと4NのGeの原料を、42.5at%Cu-42.5at%Te-15at%Geとなるように秤量・調合し、これを1000°Cで溶解した。次に、これを420°Cまでは自然放熱により徐冷した後、420°Cで20時間、温度を一定に保持した。その後、室温まで自然放熱により徐冷した。
(Example 3)
Raw materials of 4N Cu, 4N Te and 4N Ge were weighed and prepared so as to be 42.5 at% Cu-42.5 at% Te-15 at% Ge, and dissolved at 1000 ° C. Next, after this was gradually cooled to 420 ° C. by natural heat dissipation, the temperature was kept constant at 420 ° C. for 20 hours. Thereafter, it was gradually cooled to room temperature by natural heat dissipation.
 得られたCuTeGeインゴットを乳鉢粉砕した後、ジェットミル粉砕し、平均粒径が2~3μmのCuTeGe原料粉とした。これをホットプレスして、ターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 The obtained CuTeGe ingot was pulverized and then jet milled to obtain a CuTeGe raw material powder having an average particle size of 2 to 3 μm. This was hot-pressed to obtain a target shape, and then the surface was ground and bonded to a backing plate, and surface polishing was performed to obtain a sputtering target. The relative density of these targets was 99% or more.
 実施例3によって得た焼結後のターゲット表面のFE-EPMA観察した結果、実施例1と同様に、偏析が抑制され、実施例3のスパッタリングターゲットに存在する偏析部の最大径は20μm以下に減少した。すなわち最大径が20μm以上のCu、Te、Ge又はこれらの金属間化合物の偏析部は、エロージョン面全体に渡って存在しなかった。また、Cu-Te-Ge合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であった。 As a result of FE-EPMA observation of the surface of the sintered target obtained in Example 3, as in Example 1, segregation was suppressed, and the maximum diameter of the segregated part existing in the sputtering target of Example 3 was 20 μm or less. Diminished. That is, the segregation part of Cu, Te, Ge or these intermetallic compounds whose maximum diameter is 20 micrometers or more did not exist over the whole erosion surface. Further, the average grain size of the crystal grains present in the Cu—Te—Ge alloy based sintered compact target was 10 μm or less.
 さらに、抗折力については、90Mpaであり、本願発明のターゲットの抗折力:70Mpa以上を達成していた。原料合成後の冷却温度パターンを工夫することで焼結後に大きな偏析部が発生することを抑制すると共に、Cu、Te、Ge原料粉の粒径を最適化することで抗折力アップを実現することが可能であった。 Furthermore, the bending strength was 90 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more was achieved. By devising the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and to improve the bending strength by optimizing the particle size of Cu, Te, Ge raw material powder. It was possible.
(実施例4)
 4NのCuと4NのTeと4NのAlの原料を、42.5at%Cu-42.5at%Te-15at%Alとなるように秤量・調合し、これらの混合粉末を溶解で作製すると、非常に活性な物質となることが懸念されたので、CuTeAl原料粉の混合物を、そのままホットプレスして、ターゲット形状とした。
(Example 4)
4N Cu, 4N Te and 4N Al raw materials are weighed and prepared to be 42.5at% Cu-42.5at% Te-15at% Al. Therefore, the CuTeAl raw material powder was hot-pressed as it was to obtain a target shape.
 得られたターゲット材料の表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。 The surface of the obtained target material was ground and subjected to surface polishing after bonding to a backing plate plate to obtain a sputtering target. The relative density of these targets was 99% or more.
 実施例4によって得た焼結後のターゲット表面のFE-EPMA観察した結果、実施例1と同様に、偏析が抑制され、実施例4のスパッタリングターゲットに存在する偏析部の最大径は20μm以下に減少した。すなわち最大径が20μm以上のCu、Te、Ge、Al又はこれらの金属間化合物の偏析部は、エロージョン面全体に渡って存在しなかった。また、Cu-Te-Al合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であった。 As a result of FE-EPMA observation of the target surface after sintering obtained in Example 4, as in Example 1, segregation was suppressed, and the maximum diameter of the segregated portion existing in the sputtering target of Example 4 was 20 μm or less. Diminished. That is, there was no segregated portion of Cu, Te, Ge, Al or an intermetallic compound having a maximum diameter of 20 μm or more over the entire erosion surface. The average grain size of the crystal grains present in the Cu—Te—Al alloy-based sintered body target was 10 μm or less.
 さらに、抗折力については、128Mpaであり、本願発明のターゲットの抗折力:70Mpa以上を達成していた。原料合成後の冷却温度パターンを工夫することで焼結後に大きな偏析部が発生することを抑制すると共に、Cu、Te、Al原料粉の粒径を最適化することで抗折力アップを実現することが可能であった。 Furthermore, the bending strength was 128 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more was achieved. By devising the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and to improve the bending strength by optimizing the particle size of Cu, Te, Al raw material powder It was possible.
(実施例5)
 4NのCuと4NのTeと4NのAlと4NのZrの原料を、14at%Cu-22at%Te-50at%Al-14at%Zrとなるように秤量・調合した。これらの混合粉末を溶解で作製すると、非常に活性な物質となることが懸念されたので、CuTeAlZr原料粉の混合物を、そのままホットプレスして、ターゲット形状とした後、表面を研削加工、バッキングプレート板へのボンディングを経て表面研磨加工を行い、スパッタリングターゲットを得た。これらのターゲットの相対密度は99%以上であった。
(Example 5)
Raw materials of 4N Cu, 4N Te, 4N Al and 4N Zr were weighed and prepared so as to be 14 at% Cu-22 at% Te-50 at% Al-14 at% Zr. When these mixed powders were prepared by dissolution, there was a concern that they would become very active substances, so the mixture of CuTeAlZr raw powder was directly hot pressed to the target shape, and then the surface was ground and backed Surface polishing was performed after bonding to the plate to obtain a sputtering target. The relative density of these targets was 99% or more.
 実施例5によって得た焼結後のターゲット表面のFE-EPMA観察した結果、実施例1と同様に、偏析が抑制された。このようなスパッタリングターゲットに存在する偏析部については、粉末の粒径やホットプレス温度を調整することにより制御可能であり、本実施例5は本願発明の条件を満たしていた。また、Cu-Te-Al-Zr合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であった。 As a result of FE-EPMA observation of the target surface after sintering obtained in Example 5, segregation was suppressed as in Example 1. The segregation part present in such a sputtering target can be controlled by adjusting the particle size of the powder and the hot press temperature, and Example 5 satisfied the conditions of the present invention. Further, the average grain size of the crystal grains present in the Cu—Te—Al—Zr alloy based sintered compact target was 10 μm or less.
 さらに、抗折力については、80Mpaであり、本願発明のターゲットの抗折力:70Mpa以上を達成していた。原料合成後の冷却温度パターンを工夫することで焼結後に大きな偏析部が発生することを抑制すると共に、Cu、Te、Al、Zr原料粉の粒径を最適化することで抗折力アップを実現することが可能であった。 Furthermore, the bending strength was 80 Mpa, and the bending strength of the target of the present invention: 70 Mpa or more was achieved. By devising the cooling temperature pattern after synthesis of raw materials, it is possible to suppress the occurrence of large segregation parts after sintering, and to improve the bending strength by optimizing the particle size of Cu, Te, Al, and Zr raw material powders. It was possible to realize.
 また、実際にスパッタリングを行って比較した所、実施例によるものは、異常放電、ノジュール、アーキングが少なく良好なスパッタ膜が得られた。 In addition, when sputtering was actually performed and compared, according to the example, a good sputtered film with less abnormal discharge, nodules, and arcing was obtained.
 本発明は、Cu-Te合金系焼結体スパッタリングターゲットに使用する原料粉末の合成条件の改良と粉砕方法を制御することにより、ターゲットの組成と組織の均一化を図ることが可能となり、これによってターゲットの偏析を防止し、異常組織を抑制することができるので、これらを起点とする異常放電を防止することが可能となり、アーキングによるパーティクルの発生を抑制することができ、さらにスパッタ膜の均一性が向上するという優れた効果を有する。また、同時にターゲットの抗折力を高めることができるので、スパッタ中の割れを効果的に防止して、その品質を改善し、均質な抵抗変化記録層を形成できるCu-Te合金系焼結体スパッタリングターゲットを得ることができる。したがって、成膜条件が安定しているので、抵抗変化記録用材料、すなわち抵抗変化を利用して情報を記録する媒体として極めて有用である。 The present invention makes it possible to make the composition and structure of the target uniform by improving the synthesis conditions of the raw material powder used for the Cu—Te alloy-based sintered sputtering target and controlling the pulverization method. Since segregation of the target can be prevented and abnormal structure can be suppressed, abnormal discharge starting from these can be prevented, generation of particles due to arcing can be suppressed, and the uniformity of the sputtered film Has an excellent effect of improving. At the same time, since the bending strength of the target can be increased, it is possible to effectively prevent cracking during sputtering, improve its quality, and form a uniform resistance change recording layer. A sputtering target can be obtained. Therefore, since the film forming conditions are stable, it is extremely useful as a resistance change recording material, that is, a medium for recording information using resistance change.

Claims (5)

  1.  Te:40~90at%、残部不可避的不純物とCuからなるCu-Te合金系焼結体スパッタリングターゲットであって、該ターゲットに存在するCu、Te又はこれらの金属間化合物からなる偏析部の最大径が20μm以下であることを特徴とするCu-Te合金系焼結体スパッタリングターゲット。 Te: 40 to 90 at%, the remaining diameter of the Cu-Te alloy-based sintered sputtering target composed of inevitable impurities and Cu, and the maximum diameter of the segregated portion composed of Cu, Te or an intermetallic compound existing in the target A Cu—Te alloy-based sintered sputtering target characterized by having a thickness of 20 μm or less.
  2.  Cu、Te又はこれらの金属間化合物からなる偏析部の最大径が10μm以下であることを特徴とする請求項1記載のCu-Te系焼結体スパッタリングターゲット。 2. The Cu—Te based sintered sputtering target according to claim 1, wherein the maximum diameter of the segregated portion made of Cu, Te or an intermetallic compound thereof is 10 μm or less.
  3.  Cu-Te合金系焼結体ターゲットに存在する結晶粒の平均粒径が10μm以下であり、該ターゲットの抗折力が70Mpa以上であることを特徴とする請求項1又は2に記載のCu-Te系焼結体スパッタリングターゲット。 3. The Cu— according to claim 1, wherein the average grain size of the crystal grains present in the Cu—Te alloy-based sintered body target is 10 μm or less, and the bending strength of the target is 70 Mpa or more. Te-based sintered sputtering target.
  4.  Al及び又はGeを、最大で50at%含有することを特徴とする請求項1~3のいずれか一項に記載のCu-Te系焼結体スパッタリングターゲット。 The Cu-Te sintered sputtering target according to any one of claims 1 to 3, wherein Al and / or Ge are contained in a maximum of 50 at%.
  5.  Zrを、最大で50at%含有することを特徴とする請求項1~4のいずれか一項に記載のCu-Te系焼結体スパッタリングターゲット。 The Cu-Te based sintered sputtering target according to any one of claims 1 to 4, wherein Zr is contained at a maximum of 50 at%.
PCT/JP2012/072463 2011-09-08 2012-09-04 Cu-te-alloy-based sintered body sputtering target WO2013035695A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013532601A JP5457609B2 (en) 2011-09-08 2012-09-04 Method for producing Cu-Te alloy-based sintered sputtering target

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-195689 2011-09-08
JP2011195689 2011-09-08

Publications (1)

Publication Number Publication Date
WO2013035695A1 true WO2013035695A1 (en) 2013-03-14

Family

ID=47832140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/072463 WO2013035695A1 (en) 2011-09-08 2012-09-04 Cu-te-alloy-based sintered body sputtering target

Country Status (2)

Country Link
JP (2) JP5457609B2 (en)
WO (1) WO2013035695A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146311A1 (en) * 2014-03-28 2015-10-01 Jx日鉱日石金属株式会社 SPUTTERING TARGET COMPRISING Al-Te-Cu-Zr ALLOY, AND METHOD FOR PRODUCING SAME
TWI667354B (en) * 2014-10-09 2019-08-01 日商Jx日鑛日石金屬股份有限公司 Sputtering target composed of Al-Te-Cu-Zr alloy and manufacturing method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213569A (en) * 1985-07-10 1987-01-22 Mitsubishi Metal Corp Sintered te or te alloy target for sputtering
JPH03162570A (en) * 1989-11-20 1991-07-12 Toshiba Corp Sputtering target and production thereof
JP2001223183A (en) * 1996-11-14 2001-08-17 Hitachi Metals Ltd Al-FAMILY ELECTRODE FILM AND LIQUID CRYSTAL DISPLAY
JP2006173267A (en) * 2004-12-14 2006-06-29 Sony Corp Storage element and storage device
JP2009043758A (en) * 2007-08-06 2009-02-26 Sony Corp Memory element and memory device
WO2010026924A1 (en) * 2008-09-02 2010-03-11 ソニー株式会社 Storage element and storage device
JP2011026679A (en) * 2009-07-28 2011-02-10 Sony Corp Target, method for producing the same, memory and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4857373A (en) * 1987-03-31 1989-08-15 E. I. Du Pont De Nemours And Company Optical recording element
JP2004162109A (en) * 2002-11-12 2004-06-10 Nikko Materials Co Ltd Sputtering target and powder for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6213569A (en) * 1985-07-10 1987-01-22 Mitsubishi Metal Corp Sintered te or te alloy target for sputtering
JPH03162570A (en) * 1989-11-20 1991-07-12 Toshiba Corp Sputtering target and production thereof
JP2001223183A (en) * 1996-11-14 2001-08-17 Hitachi Metals Ltd Al-FAMILY ELECTRODE FILM AND LIQUID CRYSTAL DISPLAY
JP2006173267A (en) * 2004-12-14 2006-06-29 Sony Corp Storage element and storage device
JP2009043758A (en) * 2007-08-06 2009-02-26 Sony Corp Memory element and memory device
WO2010026924A1 (en) * 2008-09-02 2010-03-11 ソニー株式会社 Storage element and storage device
JP2011026679A (en) * 2009-07-28 2011-02-10 Sony Corp Target, method for producing the same, memory and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015146311A1 (en) * 2014-03-28 2015-10-01 Jx日鉱日石金属株式会社 SPUTTERING TARGET COMPRISING Al-Te-Cu-Zr ALLOY, AND METHOD FOR PRODUCING SAME
JPWO2015146311A1 (en) * 2014-03-28 2017-04-13 Jx金属株式会社 Sputtering target made of Al-Te-Cu-Zr alloy and method for producing the same
TWI667354B (en) * 2014-10-09 2019-08-01 日商Jx日鑛日石金屬股份有限公司 Sputtering target composed of Al-Te-Cu-Zr alloy and manufacturing method thereof

Also Published As

Publication number Publication date
JP5766754B2 (en) 2015-08-19
JPWO2013035695A1 (en) 2015-03-23
JP5457609B2 (en) 2014-04-02
JP2014029026A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
US11846015B2 (en) Sb—Te-based alloy sintered compact sputtering target
US20210237153A1 (en) Sintered compact target and method of producing sintered compact
TWI432590B (en) A sintered body, a sintered body, a sputtering target and a sputtering target-supporting plate assembly
US9567665B2 (en) Sputtering target for magnetic recording film, and process for producing same
US7947106B2 (en) Sb-Te alloy powder for sintering, sintered compact sputtering target obtained by sintering said powder, and manufacturing method of Sb-Te alloy powder for sintering
JP6037421B2 (en) Sb-Te based alloy sintered compact sputtering target
WO2017115648A1 (en) Method for manufacturing sputtering target
US20130206591A1 (en) Sputtering Target for Magnetic Recording Film and Method for Producing Same
KR20160145839A (en) Sintered body target and method for producing sintered body
US7943021B2 (en) Sb-Te alloy sintered compact target and manufacturing method thereof
WO2004044260A1 (en) Sputtering target and powder for production thereof
JP5766754B2 (en) Cu-Te alloy-based sintered sputtering target
JP5496078B2 (en) Sb-Te alloy powder for sintering, method for producing the same, and sintered body target
JP2020147822A (en) MANUFACTURING METHOD OF MgO-TiO-BASED SPUTTERING TARGET
JP2007291522A (en) Manganese alloy sputtering target

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12830745

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013532601

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12830745

Country of ref document: EP

Kind code of ref document: A1