WO2013031864A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2013031864A1
WO2013031864A1 PCT/JP2012/071908 JP2012071908W WO2013031864A1 WO 2013031864 A1 WO2013031864 A1 WO 2013031864A1 JP 2012071908 W JP2012071908 W JP 2012071908W WO 2013031864 A1 WO2013031864 A1 WO 2013031864A1
Authority
WO
WIPO (PCT)
Prior art keywords
observer
display device
video
display
information
Prior art date
Application number
PCT/JP2012/071908
Other languages
English (en)
French (fr)
Inventor
圭 及部
柳 俊洋
亮 荒木
滋規 田中
良信 平山
清志 中川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US14/232,962 priority Critical patent/US20140152783A1/en
Publication of WO2013031864A1 publication Critical patent/WO2013031864A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/26Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type
    • G02B30/27Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the autostereoscopic type involving lenticular arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/275Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals
    • H04N13/279Image signal generators from 3D object models, e.g. computer-generated stereoscopic image signals the virtual viewpoint locations being selected by the viewers or determined by tracking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/373Image reproducers using viewer tracking for tracking forward-backward translational head movements, i.e. longitudinal movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/376Image reproducers using viewer tracking for tracking left-right translational head movements, i.e. lateral movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/38Image reproducers using viewer tracking for tracking vertical translational head movements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/366Image reproducers using viewer tracking
    • H04N13/383Image reproducers using viewer tracking for tracking with gaze detection, i.e. detecting the lines of sight of the viewer's eyes

Definitions

  • the present invention relates to a display device that displays a stereoscopically viewable three-dimensional image.
  • the observer's parallax direction needs to match the parallax direction of the 3D image.
  • the parallax direction of video is always fixed in the same direction. Therefore, it becomes possible for the observer to stereoscopically view a three-dimensional image for the first time only by fixing the head at a fixed position.
  • Patent Document 1 discloses a head position tracking type stereoscopic image display device that optimizes the timing of switching the display image of the left and right eyes and can reduce the observer's recognition of moire and crosstalk at the time of switching. .
  • Patent Document 2 discloses a virtual space presentation device that includes a distant view presentation unit that presents a distant view image with a wide field of view and a near view image unit that is attached to the head of an observer and presents a foreground image.
  • Patent Document 3 discloses that, in a virtual world, two-dimensional information is a plane image that does not require stereoscopic vision on a composite information display unit when working with a two-dimensional object such as a word processor document, a drawing, or a photograph.
  • An immersive display device is disclosed.
  • Japanese Patent Publication Japanese Patent Application No. 2003-107392 (Publication Date: April 9, 2003)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2002-290991 (Publication Date: October 4, 2002)” Japanese Patent Publication “Japanese Patent Laid-Open No. 2003-141573 (Publication Date: May 16, 2003)”
  • Patent Document 2 since a plurality of projectors and screens are used, there is a problem that the apparatus becomes large. In addition, since the projection method and the half mirror are used in combination, the sense of unity of the perspective of the 3D image is impaired. Accordingly, the sense of distance and the actual distance do not match, which causes confusion for the observer. That is, it is not possible to see a 3D image as if it were a real object.
  • the technique of Patent Document 3 has a similar problem.
  • the present invention has been made in view of the above-described problems, and according to one aspect of the present invention, the observer can perform the third order with the same feeling as when an actual three-dimensional object is viewed from various angles.
  • the original image can be stereoscopically viewed from various angles.
  • a display unit for displaying stereoscopically viewable 3D video using video data;
  • An acquisition unit for acquiring at least information indicating a line-of-sight direction when an observer observes a predetermined position on the display unit;
  • a generating unit that generates the video data representing the 3D video corresponding to the line-of-sight direction based on the acquired information and provides the generated video data to the display unit.
  • the display device is a device that displays stereoscopically viewable three-dimensional video using video data.
  • the observer observes the three-dimensional image displayed on the display unit of the display device in a manner corresponding to the display method.
  • a three-dimensional image can be stereoscopically viewed by observing with naked eyes or by wearing dedicated glasses.
  • the display device acquires at least information indicating the line-of-sight direction when the observer observes the predetermined position on the display unit.
  • the predetermined position here is, for example, the position of the center of gravity in the display unit or the center position. Alternatively, any position in the 3D video displayed on the display unit may be used. That is, the predetermined position is not necessarily limited to the plane of the display unit.
  • the display device generates video data representing 3D video corresponding to the viewing direction of the observer based on the acquired information, and provides the video data to the display unit.
  • the display unit can display a three-dimensional image corresponding to the viewing direction of the observer, that is, facing the direction of the observer. If the observer changes the line-of-sight direction, the display device follows it, and generates video data and displays a 3D video in accordance with the line-of-sight direction in real time. Accordingly, the observer can stereoscopically view the 3D image from various angles with the same feeling as when viewing an actual three-dimensional object from various angles.
  • the display device executes real-time generation of video data and display of a three-dimensional video in accordance with the visual line direction if the observer changes the visual line direction.
  • the display device executes real-time generation of video data and display of a three-dimensional video in accordance with the visual line direction if the observer changes the visual line direction.
  • FIG. 1 It is a block diagram which shows the principal part structure of the display apparatus which concerns on one Embodiment of this invention.
  • (A) And (b) is a figure explaining a gaze direction and a parallax direction at the time of seeing a solid thing from two different viewpoints, respectively.
  • (A) is a figure explaining the relationship between the displayed 3D image and the position of the observer when the observer views the 3D image from the first viewpoint
  • FIG. 1 is a block diagram showing a main configuration of a display device 1 according to an embodiment of the present invention.
  • the display device 1 includes a sensor 10 (detection unit), an arithmetic processing unit 12 (acquisition unit, generation unit), a display unit 14, and a transmitter 16.
  • the display device 1 is a device that displays a stereoscopically viewable three-dimensional video 18 on the display unit 14 using video data.
  • the line-of-sight direction 20 when the observer 2 observes the display unit 14 is determined, the parallax direction 22 is simultaneously determined.
  • the 3D image 18 having the parallax direction 30 that coincides with the parallax direction 22 is displayed on the display unit 14, the observer 2 can correctly stereoscopically view the 3D image 18.
  • the observer 2 observes the displayed 3D image 18 in a manner corresponding to the display method.
  • the observer 2 can stereoscopically view a three-dimensional image by wearing dedicated active shutter glasses 4 and observing.
  • the display unit 14 displays the 3D video 18 by a time division method. Specifically, the left-eye video and the right-eye video are repeatedly displayed for every fixed number of frames.
  • the active shutter glasses 4 receive the signal indicating the shutter timing transmitted from the transmitter 16 and control the on / off timing of the left and right shutters based on the signal.
  • the left-eye shutter of the active shutter glasses 4 is turned on and the right-eye shutter is turned off.
  • the right-eye shutter of the active shutter glasses 4 is turned on and the left-eye shutter is turned off.
  • the observer 2 sees only the left-eye image with the left eye and sees only the right-eye image with the right eye, so that the three-dimensional image 18 can be stereoscopically viewed.
  • the sensor 10 acquires information representing at least the line-of-sight direction 20 when the observer 2 observes a predetermined position on the display unit 14.
  • the predetermined position here is, for example, the position of the center of gravity in the display unit 14 or the center position. Alternatively, the position may be somewhere in the 3D video 18 displayed on the display unit 14. That is, the predetermined position is not necessarily limited to the plane of the display unit 14.
  • the arithmetic processing unit 12 acquires information generated by the sensor 10 from the sensor 10. That is, the display device 1 is integrated with a function of detecting the visual line direction 20 of the observer 2. Based on the information acquired from the sensor 10, the arithmetic processing unit 12 generates video data representing the three-dimensional video 18 corresponding to the visual line direction 20 of the observer and provides the video data to the display unit 14. As a result, the display unit 14 can display the three-dimensional image 18 corresponding to the line-of-sight direction 20 of the observer, that is, matching the direction of the observer. Therefore, the observer can view the three-dimensional image 18 from various angles with the same feeling as when viewing an actual three-dimensional object from various angles.
  • the sensor 10 further detects at least one of the parallax direction 22 of the observer 2, the position of the observer's head, and the distance from the observer's viewpoint to the predetermined position, and represents information (others). Information) can be generated.
  • the arithmetic processing unit 12 generates video data using information indicating the parallax direction 22 and the like in addition to the information indicating the line-of-sight direction 20 of the observer 2 and supplies the video data to the display unit 14.
  • the display part 14 can display the three-dimensional image 18 in which the observer 2 remembers a more natural stereoscopic effect. Note that the more types of information used, the more appropriate 3D video 18 can be displayed for the observer 2. This is because the relative positional relationship between the three-dimensional image 18 and the observer 2 can be specified more accurately.
  • FIG. 2 shows a state in which the whole of FIG. 2A is rotated by a fixed angle with respect to the center of gravity of the bottom surface of the three-dimensional object.
  • a certain amount of parallax occurs between the left eye 6 and the right eye 8, and the direction (parallax direction) is determined.
  • the parallax direction 22a connecting the left eye 6 and the right eye 8 is determined. Furthermore, the line-of-sight direction 20a when the observer 2 observes the three-dimensional object is also determined. On the other hand, when the observer 2 observes a three-dimensional object from a viewpoint 40b different from the viewpoint 40a, the parallax direction 22b connecting the left eye 6 and the right eye 8 is determined. Further, the line-of-sight direction 20b when the observer 2 observes the three-dimensional object is also determined.
  • the display device 1 detects the gaze direction 20 and the parallax direction 22 of the observer 2 in real time as shown in FIGS. 2A and 2B, and a three-dimensional image corresponding to the detection result. 18 is displayed on the display unit 14. This point will be described below with reference to FIGS. 3A and 3B.
  • FIG. 3 is a figure explaining the relationship between the displayed 3D image 18a and the position of the observer 2 when the observer 2 views the 3D image 18a from the viewpoint 40a.
  • the display unit 14 displays a three-dimensional image 18a corresponding to the line-of-sight direction 20a of the observer 2.
  • the arithmetic processing unit 12 generates video data including the left-eye video 50 and the right-eye video 52 from the input video data, and supplies the video data to the display unit 14.
  • the arithmetic processing unit 12 generates video data so that the 3D video 18a displayed on the display unit 14 looks the same as when the observer 2 observes an actual three-dimensional object from the viewpoint 40a. More specifically, the information acquired from the sensor 10 is used to calculate which part of the three-dimensional object is to be displayed as the 3D video 18a, and video data is generated based on the result.
  • the display unit 14 switches and displays the left-eye video 50 and the right-eye video 52 for each predetermined number of frames.
  • the observer 2 stereoscopically views the three-dimensional image 18 a through the active shutter glasses 4. At that time, the observer 2 can stereoscopically view the three-dimensional image 18a with the same feeling as when observing an actual three-dimensional object from the viewpoint 40a.
  • FIG. 3B illustrates a relationship between the displayed 3D image 18b and the position of the observer 2 when the observer 2 views the 3D image 18b from a viewpoint 40b different from the viewpoint 40a. is there.
  • the display unit 14 displays a three-dimensional image 18b corresponding to the line-of-sight direction 20b of the observer 2.
  • the arithmetic processing unit 12 generates video data including the left-eye video 54 and the right-eye video 56 from the input video data, and supplies the video data to the display unit 14.
  • the arithmetic processing unit 12 generates video data so that the 3D video 18b displayed on the display unit 14 looks the same as when the observer 2 observes an actual three-dimensional object from the viewpoint 40b. More specifically, the information acquired from the sensor 10 is used to calculate which part of the three-dimensional object is to be displayed as the 3D video 18b, and video data is generated based on the result.
  • the display unit 14 switches and displays the left-eye video 54 and the right-eye video 56 for each predetermined number of frames.
  • the observer 2 stereoscopically views the three-dimensional image 18 b through the active shutter glasses 4. At that time, the observer 2 can observe the three-dimensional image 18b with the same feeling as when observing an actual three-dimensional object from the viewpoint 40b.
  • the display device 1 detects the line-of-sight direction 20 and the parallax direction 22 of the observer 2 and displays the three-dimensional video 18 corresponding to the detection result on the display unit 14. Therefore, if the observer 2 moves, the display state of the three-dimensional image 18 also changes in real time following it. That is, the display device 1 performs real-time detection of the line-of-sight direction 20 and the like, generation of video data, and display of a 3D video corresponding to the line-of-sight direction 20 and the like. At this time, no matter what position the observer 2 moves to, a three-dimensional image 18 having the same stereoscopic effect as when an actual three-dimensional object is observed from that position is displayed. Accordingly, the observer 2 can stereoscopically view the three-dimensional image 18 with the same feeling as when viewing an actual three-dimensional object from various angles.
  • the sensor 10 is not necessarily provided in the display device 1. It may be attached to the observer 2 or may be attached at a position away from both the display device 1 and the observer 2. That is, the sensor 10 may be disposed at any position as long as the sensor 10 can detect the visual line direction 20 of the observer 2.
  • the display unit 14 preferably includes a switching element (TFT element or the like) having a semiconductor layer made of an oxide semiconductor.
  • the oxide semiconductor include IGZO (InGaZnO x ). In this configuration, the display unit 14 can display an image at a very high speed. Therefore, even if the observer 2 moves quickly, the display unit 14 can display the 3D image 18 by smoothly changing the 3D image 18 following the movement.
  • the display unit 14 may include a switching element configured by MEMS (Micro Electro Mechanical Systems). Even in this configuration, the display unit 14 can display an image at a very high speed. Therefore, even if the observer 2 moves quickly, the 3D image 18 can be smoothly changed and displayed following the movement.
  • MEMS Micro Electro Mechanical Systems
  • the arithmetic processing unit 12 can process input data having 3D information from the beginning to generate video data representing the 3D video 18. Alternatively, the arithmetic processing unit 12 can also generate video data representing the 3D video 18 from video data representing the 2D video (other video data). That is, the display device 1 can display the 3D video 18 even if video data that originally does not have 3D information is used.
  • the display device 1 is not limited to a device with a specific display method.
  • the display unit 14 is a liquid crystal display panel
  • the display device 1 can be realized as a liquid crystal display device.
  • the display unit 14 is preferably a circularly polarized liquid crystal display panel.
  • the quality of the image is kept constant no matter what angle the observer 2 views the display unit 14 from. Therefore, in particular, when the observer 2 wearing the circularly polarized active shutter glass 4 observes the three-dimensional image 18 displayed on the display unit 14, the fixed-quality three-dimensional image 18 regardless of the viewing angle. Can be stereoscopically viewed.
  • the display device 1 displays the display unit 14 so that each observer 2 can stereoscopically view the three-dimensional image 18 corresponding to its own position (viewpoint). Control is sufficient.
  • the 3D image 18 is displayed by the time division method
  • the 3D image 18 corresponding to the line of sight of the observer 2a is displayed at the timing when the active shutter glasses 4 of the observer 2a are turned on
  • a three-dimensional image 18 corresponding to the viewing direction of the observer 2b is displayed.
  • the display unit 14 can also display the 3D video 18 using a space division method. Specifically, for example, a video in which a left-eye video and a right-eye video are alternately arranged for each row (or column) is displayed. At that time, a special structure is formed on the display surface of the display unit 14 such that the left-eye image is incident only on the left eye and the right-eye image is incident only on the right eye. This structure is, for example, a parallax barrier. Thus, when the display unit 14 displays the 3D video 18, the observer 2 can stereoscopically view the 3D video 18 with the naked eye.
  • the display unit 14 can also display the 3D video 18 by combining the time division method and the space division method.
  • the display device 1 may be arranged with the display screen nearly parallel to the gravity direction, or may be arranged with the display screen nearly perpendicular to the gravity direction.
  • the arithmetic processing unit 12 performs arithmetic processing according to the arrangement state of the display device 1 and generates video data representing the 3D video 18 according to the arrangement state.
  • the acquisition unit further acquires other information representing at least one of the parallax direction of the observer, the position of the head of the observer, and the distance from the viewpoint of the observer to the predetermined position.
  • the generating unit generates the video data using the information and the other information.
  • the display device has a detection unit that detects the viewer's gaze direction and generates information representing the gaze direction
  • the acquisition unit preferably acquires the information from the detection unit.
  • the display portion preferably includes a switching element having a semiconductor layer made of an oxide semiconductor.
  • the display unit can display an image at a very high speed. Therefore, even if the observer moves quickly, the 3D image can be smoothly changed and displayed following the movement.
  • the oxide semiconductor is preferably IGZO.
  • the display unit can display an image at a very high speed. Therefore, even if the observer moves quickly, the 3D image can be smoothly changed and displayed following the movement.
  • the display unit preferably includes a switching element made of MEMS.
  • the display unit can display an image at a very high speed. Therefore, even if the observer moves quickly, the 3D image can be smoothly changed and displayed following the movement.
  • the generation unit generates the video data representing the 3D video from other video data representing the 2D video.
  • the display unit is preferably a liquid crystal display panel.
  • the display device can be realized as a liquid crystal display device.
  • the display unit is preferably a circularly polarized liquid crystal display panel.
  • the image quality is kept constant regardless of the angle of the display unit. Therefore, in particular, when an observer wearing circularly polarized active shutter glasses observes a 3D image displayed on the display unit, a 3D image of a certain quality can be stereoscopically viewed regardless of the viewing angle. Can do.
  • the display device according to the present invention can be widely used as a device capable of displaying a stereoscopically viewable three-dimensional image.
  • a display device incorporated in a television device or a game machine is expected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

 表示装置(1)は、観察者(2)の視線方向(20)を表す情報を少なくとも用いて、視線方向(20)に対応した、観察者(2)の方を向いた三次元映像(18)を表示する。観察者(2)は、実際の立体物を様々な角度から見たときと同じような感覚で、三次元映像を様々な角度から見ることができる。

Description

表示装置
 本発明は、立体視可能な三次元映像を表示する表示装置に関する。
 近年、観察者が立体視可能な三次元映像を表示できる表示装置が広く普及している。この種の表示装置を登載したテレビやゲーム機は、新たな付加価値を持つ製品として、昨今、消費者に広く受け入れられている。
 観察者が三次元映像を立体視するには、観察者の視差方向を、三次元映像の視差方向に一致させる必要がある。従来の三次元映像表示装置では、映像の視差方向がつねに同じ方向に固定されている。したがって、観察者が頭部を一定の位置に固定することによって、初めて、三次元映像を安定して立体視することが可能となる。
 観察者が頭を大きく動かしたり、あるいは頭を画面に対して斜めに傾けたりすると、観察者の視差方向と映像の視差方向とが互いに一致しなくなるので、三次元映像の品位が大きく損なわれて見える。たとえば、立体視がうまくなされなかったり、映像のクロストークが起こったりする。そこで従来、このような問題を解決しようと試みた技術が、いくつか開発されている。
 特許文献1には、左右眼の表示映像の切り替え等のタイミングを好適化し、切り替え時に観察者がモアレやクロストークを認識するのを軽減できる頭部位置追従型立体映像表示装置が開示されている。
 特許文献2には、遠景映像を広視野で提示する遠景提示手段と、観察者の頭部に装着され、近景映像を提示する近景映像手段とを備える仮想空間提示装置が開示されている。
 特許文献3には、仮想世界中において、ワープロ文書、図面、写真などの二次元の対象を利用して作業する際にも、二次元情報は合成情報表示部に立体視の必要の無い平面映像として表示する没入型表示装置が開示されている。
日本国公開特許公報「特願2003-107392号(公開日:2003年4月9日)」 日本国公開特許公報「特開2002-290991号(公開日:2002年10月4日)」 日本国公開特許公報「特開2003-141573号(公開日:2003年5月16日)」
 特許文献1の技術では、映像の視差方向においては、映像を立体視する範囲を広げることができる。しかし、映像の視差方向はつねに固定されているため、それとは異なる方向では、映像を立体視する範囲を広げることはできない。したがって、観察者が実物を眺めるように感覚で頭部を動かしたとしても、映像を正しく立体視できる範囲には制限がある。
 特許文献2の技術では、複数の投射機やスクリーンを用いるので、装置が大型化してしまう問題がある。また、投射方式とハーフミラーとを組み合わせて利用するため、三次元映像の遠近感の一体感が損なわれてしまう。したがって、感覚上の距離感と、実際の距離とが一致せず、観察者に混乱を与えてしまう。すなわち、実物を見るような感覚で、三次元映像を見ることはできない。なお、特許文献3の技術にも同様の問題がある。
 本発明は、上記の問題点に鑑みてなされたものであり、本発明の一態様によれば、観察者が、実際の立体物を様々な角度から見たときと同じような感覚で、三次元映像を様々な角度から立体視することができる。
 本発明の一態様に係る表示装置は、上記の課題を解決するために、
 映像データを用いて、立体視可能な三次元映像を表示する表示部と、
 観察者が上記表示部における所定位置を観察する際の視線方向を表す情報を少なくとも取得する取得部と、
 取得された上記情報に基づき、上記視線方向に対応した上記三次元映像を表す上記映像データを生成して上記表示部に提供する生成部とを備えていることを特徴としている。
 上記の構成によれば、表示装置は、映像データを用いて、立体視可能な三次元映像を表示する装置である。観察者は、表示装置の表示部に表示される三次元映像を、その表示方式に応じたやり方で観察する。たとえば、裸眼で観察したり、または専用のメガネを装着して観察したりすれば、三次元映像を立体視することができる。
 表示装置は、観察者が表示部における所定位置を観察する際の視線方向を表す情報を、少なくとも取得する。ここでいう所定位置とは、たとえば表示部における重心位置であったり、中心位置であったりする。あるいは、表示部に表示される三次元映像における何処かの位置であってもよい。すなわち所定位置は、かならずしも、表示部の面内に限られるわけではない。
 表示装置は、取得した情報に基づき、観察者の視線方向に対応した三次元映像を表す映像データを生成して、表示部に提供する。これにより表示部は、観察者の視線方向に応じた、すなわち、観察者の方向を向いた三次元映像を表示することができる。観察者が視線方向を変えれば、表示装置はそれに追従して、映像データの生成、および視線方向に応じた三次元映像の表示を、リアルタイムに実行する。したがって観察者は、実際の立体物を様々な角度から見たときと同じような感覚で、三次元映像を様々な角度から立体視することができる。
 以上のように、本発明に係る表示装置は、観察者が視線方向を変えれば、それに追従して、映像データの生成、および視線方向に応じた三次元映像の表示を、リアルタイムに実行する。これにより、観察者に対し、実際の立体物を様々な角度から見たときと同じような感覚で、三次元映像を様々な角度から見せることができる。
本発明の一実施形態に係る表示装置の要部構成を示すブロック図である。 (a)および(b)は、立体物を異なる2つの視点からそれぞれ見た場合の、視線方向および視差方向を説明する図である。 (a)は、観察者が三次元映像を第1の視点から見る際の、表示される三次元映像と観察者の位置との関係を説明する図であり、(b)は、観察者が三次元映像を第1の視点とは異なる第2の視点から見る際の、表示される三次元映像と観察者の位置との関係を説明する図である。
 本発明の一実施形態について、図1~図3を参照して以下に説明する。
 (表示装置1の構成)
 図1は、本発明の一実施形態に係る表示装置1の要部構成を示すブロック図である。この図に示すように、表示装置1は、センサー10(検知部)、演算処理部12(取得部、生成部)、表示部14、およびトランスミッター16を備えている。
 表示装置1は、映像データを用いて、立体視可能な三次元映像18を表示部14に表示する装置である。観察者2が表示部14を観察するときの視線方向20が決まると、同時に視差方向22が決まる。視差方向22と一致する視差方向30を有する三次元映像18が表示部14に表示されているとき、観察者2は、三次元映像18を正しく立体視できる。
 観察者2は、表示される三次元映像18を、その表示方式に応じたやり方で観察する。本実施形態では、観察者2は専用のアクティブシャッターメガネ4を装着して観察することによって、三次元映像を立体視することができる。表示部14は、時分割方式によって、三次元映像18を表示する。具体的には、一定数のフレームごとに、左目用映像と右目用映像とを繰り替えて表示する。
 アクティブシャッターメガネ4は、トランスミッター16から送信される、シャッタータイミングを指示する信号を受信し、その信号に基づき、左右のシャッターのオン/オフのタイミングを制御する。
 具体的には、表示部14に左目用映像が表示されるときには、アクティブシャッターメガネ4の左目用のシャッターをオンにし、右目用のシャッターをオフにする。一方、表示部14に右目用映像が表示されるときには、アクティブシャッターメガネ4の右目用のシャッターをオンにし、左目用のシャッターをオフにする。これにより観察者2は、左目は左目用映像のみを見て、右目は右目用映像のみを見ることになるので、三次元映像18を立体視することができる。
 (センサー10)
 センサー10は、観察者2が表示部14における所定位置を観察する際の、少なくとも視線方向20を表す情報を取得する。ここでいう所定位置とは、たとえば表示部14における重心位置であったり、中心位置であったりする。あるいは、表示部14に表示される三次元映像18における何処かの位置であってもよい。すなわち所定位置は、かならずしも、表示部14の面内に限られるわけではない。
 表示装置1では、演算処理部12が、センサー10によって生成された情報を、センサー10から取得する。すなわち表示装置1には、観察者2の視線方向20を検知する機能が一体化されている。演算処理部12は、センサー10から取得した情報に基づき、観察者の視線方向20に対応した三次元映像18を表す映像データを生成して、表示部14に提供する。これにより表示部14は、観察者の視線方向20に応じた、すなわち、観察者の方向に合致した三次元映像18を表示することができる。したがって観察者は、実際の立体物を様々な角度から見たときと同じような感覚で、三次元映像18を様々な角度から見ることができる。
 (他の検知対象)
 センサー10は、さらに、観察者2の視差方向22、観察者の頭部の位置、および観察者の視点から所定位置までの距離のうち、少なくともいずれかを検知し、検知結果を表す情報(他の情報)を生成することができる。このとき演算処理部12は、観察者2の視線方向20を表す情報に加えて、さらに視差方向22等を表す情報も用いて、映像データを生成し、表示部14に供給する。これにより表示部14は、観察者2がより自然な立体感を憶える三次元映像18を表示することができる。なお、用いる情報の種類が多ければ多いほど、より観察者2にとって適切な三次元映像18を表示することができる。なぜなら、三次元映像18と観察者2との相対的な位置関係を、より正確に特定することができるからである。
 なお、センサー10が観察者2の視線方向20等を検知する際の手法は、公知技術であるため、ここでは具体的な説明を省略する。また、演算処理部12が、観察者2の視線方向20等に対応した三次元映像18を表す映像データを生成する際の手法も、よく知られた技術である。したがって、その詳細な説明をここでは省略する。
 (異なる2つの視点)
 図2の(a)は、立体物を異なる2つの視点からそれぞれ見た場合の、観察者2の視線方向および視差方向を説明する図である。図2の(b)は、図2の(a)の全体を、立体物の底面の重心を基準に一定角度回転させた状態を表している。これらの図に示すように、観察者2が立体物を観察する際、左目6と右目8との間に、一定の視差が生じ、さらに、その方向(視差方向)が決まる。たとえば観察者2が視点40aから立体物を観察する場合、左目6と右目8とを結ぶ視差方向22aが決まる。さらに、観察者2が立体物を観察する際の視線方向20aも決まる。一方、観察者2が視点40aとは異なる視点40bから立体物を観察する場合、左目6と右目8とを結ぶ視差方向22bが決まる。さらに、観察者2が立体物を観察する際の視線方向20bも決まる。
 (三次元映像18の表示)
 表示装置1は、図2の(a)および図2の(b)に示すような、観察者2の視線方向20および視差方向22等をリアルタイムで検知し、その検知結果に応じた三次元映像18を表示部14に表示する。この点について、図3の(a)および図3の(b)を参照して以下に説明する。
 図3の(a)は、観察者2が三次元映像18aを視点40aから見る際の、表示される三次元映像18aと観察者2の位置との関係を説明する図である。この図に示すように、観察者2が視点40aにいるとき、表示部14は、観察者2の視線方向20aに応じた三次元映像18aを表示する。その際、演算処理部12は入力された映像データから、左目用映像50および右目用映像52を含む映像データを生成し、表示部14に供給する。
 演算処理部12は、表示部14に表示される三次元映像18aが、観察者2が視点40aから実際の立体物を観察した場合と同じように見えるように、映像データを生成する。より具体的には、センサー10から取得した情報を用いて、立体物のどの部分を三次元映像18aとして表示するべきかを演算し、その結果に基づき、映像データを生成する。
 表示部14は、左目用映像50と右目用映像52とを一定数のフレームごとに切り替えて表示する。観察者2は、アクティブシャッターメガネ4を通じて、三次元映像18aを立体視する。その際、観察者2は、実際の立体物を視点40aから観察する場合と同じ感覚で、三次元映像18aを立体視することができる。
 (三次元映像18の表示)
 図3の(b)は、観察者2が三次元映像18bを視点40aとは異なる視点40bから見る際の、表示される三次元映像18bと観察者2の位置との関係を説明する図である。この図に示すように、観察者2が視点40aにいるとき、表示部14は、観察者2の視線方向20bに応じた三次元映像18bを表示する。その際、演算処理部12は、入力された映像データから、左目用映像54および右目用映像56を含む映像データを生成し、表示部14に供給する。
 演算処理部12は、表示部14に表示される三次元映像18bが、観察者2が視点40bから実際の立体物を観察した場合と同じように見えるように、映像データを生成する。より具体的には、センサー10から取得した情報を用いて、立体物のどの部分を三次元映像18bとして表示するべきかを演算し、その結果に基づき、映像データを生成する。
 表示部14は、左目用映像54と右目用映像56とを一定数のフレームごとに切り替えて表示する。観察者2は、アクティブシャッターメガネ4を通じて、三次元映像18bを立体視する。その際、観察者2は、実際の立体物を視点40bから観察する場合と同じ感覚で、三次元映像18bを観察することができる。
 以上のように、表示装置1は、観察者2の視線方向20や視差方向22等を検知し、検知結果に応じた三次元映像18を表示部14に表示する。したがって、観察者2が動けば、それに追従して、三次元映像18の表示状態もリアルタイムに変化する。すなわち表示装置1は、視線方向20等の検知、映像データの生成、および視線方向20等に応じた三次元映像の表示を、リアルタイムに実行する。その際、観察者2がどんな位置に動いたとしても、その位置から実際の立体物を観察したときと同じような立体感を有する三次元映像18を表示する。したがって観察者2は、現実の立体物を様々な角度から眺めるときと同じ感覚で、三次元映像18を立体視することができる。
 本発明は上述した各実施形態に限定されるものではない。当業者は、請求項に示した範囲内において、本発明をいろいろと変更できる。すなわち、請求項に示した範囲内において、適宜変更された技術的手段を組み合わせれば、新たな実施形態が得られる。
 (センサー10の位置)
 センサー10は、必ずしも、表示装置1に備えられている必要はない。観察者2に取り付けられていてもよく、あるいは、表示装置1からも観察者2からも離れた位置に取り付けられていてもよい。すなわちセンサー10は、観察者2の視線方向20等を検知できる位置であれば、どのような位置に配置されていてもよい。
 (酸化物半導体)
 表示部14は、酸化物半導体を材料とする半導体層を有するスイッチング素子(TFT素子等)を備えていることが好ましい。酸化物半導体には、たとえばIGZO(InGaZnOx)が含まれる。この構成では、表示部14は非常に高速に映像を表示できる。したがって表示部14は、観察者2が素早く動いても、それに追従して三次元映像18を滑らかに変化させて表示することができる。
 また、表示部14は、MEMS(Micro Electro Mechanical Systems)によって構成されているスイッチング素子を備えていてもよい。この構成でも、表示部14は非常に高速に映像を表示できる。したがって、観察者2が素早く動いても、それに追従して三次元映像18を滑らかに変化させて表示することができる。
 (データ生成)
 演算処理部12は、始めから三次元情報を有する入力データを処理して、三次元映像18を表す映像データを生成することができる。または、演算処理部12は、二次元映像を表す映像データ(他の映像データ)から、三次元映像18を表す映像データを生成することもできる。すなわち表示装置1は、もともと三次元の情報を持たない映像データを用いたとしても、三次元映像18を表示することができる。
 (表示装置1の種類)
 表示装置1は、特定の表示方式の装置に限定されない。たとえば表示部14が液晶表示パネルであれば、表示装置1を液晶表示装置として実現できる。
 (円偏向方式)
 表示装置1が液晶表示装置である場合、表示部14は、円偏光方式の液晶表示パネルであることが好ましい。この場合、観察者2が表示部14をどのような角度から見ても、映像の品位は一定に保たれる。したがって、特に、円偏光方式のアクティブシャッターグラス4を装着した観察者2が、表示部14に表示される三次元映像18を観察する場合に、視野角に関わらず、一定品位の三次元映像18を立体視することができる。
 (複数の観察者2)
 複数の観察者2が同時に表示部14を観察する場合、表示装置1は、それぞれの観察者2が自身の位置(視点)に対応する三次元映像18を立体視できるように、表示部14を制御すればよい。たとえば、時分割方式によって三次元映像18を表示する際、観察者2aのアクティブシャッターメガネ4がオンになるタイミングでは、観察者2aの視線方向等に応じた三次元映像18を表示し、一方、観察者2bのアクティブシャッターメガネ4がオンになるタイミングでは、観察者2bの視線方向等に応じた三次元映像18を表示する。
 (空間分割方式)
 表示部14は、空間分割方式を用いて三次元映像18を表示することもできる。具体的には、たとえば、左目用映像と右目用映像とを一行(または一列)ごとに交互に配置した映像を表示する。その際、表示部14の表示面には、左目用映像が左目のみに入射し、右目用映像が右目のみに入射するような、特別な構造が形成されている。この構造とは、たとえばパララックスバリアである。これにより表示部14が三次元映像18を表示した際、観察者2は裸眼で三次元映像18を立体視することができる。
 なお、表示部14は、時分割方式と空間分割方式とを組み合わせて三次元映像18を表示することもできる。
 (表示装置1の配置)
 表示装置1は、表示画面を重力方向と平行に近い状態にして配置してもよいし、あるいは、表示画面を重力方向と垂直に近い状態に配置してもよい。いずれの場合も、演算処理部12は、表示装置1の配置状態に応じた演算処理を行い、配置状態に応じた三次元映像18を表す映像データを生成する。
 (その他)
 本発明の一態様に係る表示装置では、さらに、
 上記取得部は、さらに、上記観察者の視差方向、上記観察者の頭部の位置、および上記観察者の視点から上記所定位置までの距離のうち、少なくともいずれかを表す他の情報を取得し、
 上記生成部は、上記情報および上記他の情報を用いて、上記映像データを生成することが好ましい。
 上記の構成によれば、視線方向に加えて、視差方向なども反映させた三次元映像を表す映像データを生成することができる。したがって、観察者がより自然な立体感を憶える三次元映像を表示することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記観察者の視線方向を検知して、その視線方向を表す情報を生成する検知部を備えており、
 上記取得部は、上記検知部から上記情報を取得することが好ましい。
 上記の構成によれば、視線方向を検知する機能を一体化した表示装置を実現することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記表示部は、酸化物半導体を材料とする半導体層を有するスイッチング素子を備えていることが好ましい。
 上記の構成によれば、表示部が非常に高速に映像を表示できる。したがって、観察者が素早く動いても、それに追従して三次元映像を滑らかに変化させて表示することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記酸化物半導体は、IGZOであることが好ましい。
 上記の構成によれば、表示部が非常に高速に映像を表示できる。したがって、観察者が素早く動いても、それに追従して三次元映像を滑らかに変化させて表示することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記表示部は、MEMSによって構成されているスイッチング素子を備えていることが好ましい。
 上記の構成によれば、表示部が非常に高速に映像を表示できる。したがって、観察者が素早く動いても、それに追従して三次元映像を滑らかに変化させて表示することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記生成部は、二次元映像を表す他の映像データから、上記三次元映像を表す上記映像データを生成することが好ましい。
 上記の構成によれば、もともと三次元の情報を持たない映像データを用いたとしても、三次元映像を表示することができる。
 本発明の一態様に係る表示装置では、さらに、
 上記表示部は、液晶表示パネルであることが好ましい。
 上記の構成によれば、表示装置を液晶表示装置として実現できる。
 本発明の一態様に係る表示装置では、さらに、
 上記表示部は、円偏光方式の液晶表示パネルであることが好ましい。
 上記の構成によれば、表示部をどのような角度から見ても、映像の品位が一定に保たれる。したがって、特に、円偏光方式のアクティブシャッターメガネを装着した観察者が、表示部に表示される三次元映像を観察する場合に、視野角に関わらず、一定品位の三次元映像を立体視することができる。
 本発明に係る表示装置は、立体視可能な三次元映像を表示することができる装置として、幅広く利用できる。たとえば、テレビジョン装置またはゲーム機に組み込まれる表示装置としての用途が見込まれる。
 1 表示装置
 2 観察者
 4 アクティブシャッターメガネ
 10 センサー(検知部)
 12 演算処理部(取得部、生成部)
 14 表示部
 16 トランスミッター
 18 三次元映像

Claims (10)

  1.  映像データを用いて、立体視可能な三次元映像を表示する表示部と、
     観察者が上記表示部における所定位置を観察する際の視線方向を表す情報を少なくとも取得する取得部と、
     取得された上記情報に基づき、上記視線方向に対応した上記三次元映像を表す上記映像データを生成して上記表示部に提供する生成部とを備えていることを特徴とする表示装置。
  2.  上記取得部は、さらに、上記観察者の視差方向、上記観察者の頭部の位置、および観察者の視点から上記所定位置までの距離のうち、少なくともいずれかを表す他の情報を取得し、
     上記生成部は、上記情報および上記他の情報を用いて、上記映像データを生成することを特徴とする請求項1に記載の表示装置。
  3.  上記観察者の視線方向を検知して、その視線方向を表す情報を生成する検知部を備えており、
     上記取得部は、上記検知部から上記情報を取得することを特徴とする請求項1または2に記載の表示装置。
  4.  上記表示部は、酸化物半導体を材料とする半導体層を有するスイッチング素子を備えていることを特徴とする請求項1~3のいずれか1項に記載の表示装置。
  5.  上記酸化物半導体は、IGZOであることを特徴とする請求項4に記載の表示装置。
  6.  上記表示部は、MEMSによって構成されているスイッチング素子を備えていることを特徴とする請求項1~3のいずれか1項に記載の表示装置。
  7.  上記生成部は、二次元映像を表す他の映像データから、上記三次元映像を表す上記映像データを生成することを特徴とする請求項1~6のいずれか1項に記載の表示装置。
  8.  上記表示部は、液晶表示パネルであることを特徴とする請求項1~7のいずれか1項に記載の表示装置。
  9.  上記表示部は、円偏光方式の液晶表示パネルであることを特徴とする請求項8に記載の表示装置。
  10.  上記観察者の視線方向を検知して、その視線方向を表す情報を生成する検知部を備えており、
     上記取得部は、上記検知部から上記情報を取得し、さらに、上記観察者の視差方向、上記観察者の頭部の位置、および観察者の視点から上記所定位置までの距離のうち、少なくともいずれかを表す他の情報を取得し、
     上記生成部は、上記情報および上記他の情報を用いて、上記映像データを生成し、
     上記表示部は、酸化物半導体を材料とする半導体層を有するスイッチング素子を備えていることを特徴とする請求項1に記載の表示装置。
PCT/JP2012/071908 2011-09-01 2012-08-29 表示装置 WO2013031864A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/232,962 US20140152783A1 (en) 2011-09-01 2012-08-29 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-191114 2011-09-01
JP2011191114 2011-09-01

Publications (1)

Publication Number Publication Date
WO2013031864A1 true WO2013031864A1 (ja) 2013-03-07

Family

ID=47756344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071908 WO2013031864A1 (ja) 2011-09-01 2012-08-29 表示装置

Country Status (2)

Country Link
US (1) US20140152783A1 (ja)
WO (1) WO2013031864A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3278321B1 (en) * 2015-03-31 2021-09-08 CAE Inc. Multifactor eye position identification in a display system
JP7128030B2 (ja) * 2018-05-21 2022-08-30 エスペック株式会社 環境形成装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340017A (ja) * 2005-06-01 2006-12-14 Olympus Corp 立体映像表示装置及び立体映像表示方法
JP2008085503A (ja) * 2006-09-26 2008-04-10 Toshiba Corp 三次元画像処理装置、方法、プログラム及び三次元画像表示装置
JP2010171608A (ja) * 2009-01-21 2010-08-05 Nikon Corp 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体
JP2011101366A (ja) * 2009-11-04 2011-05-19 Samsung Electronics Co Ltd アクティブサブピクセルレンダリング方式に基づく高密度多視点映像表示システムおよび方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2428344A (en) * 2005-07-08 2007-01-24 Sharp Kk Multiple view directional display

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006340017A (ja) * 2005-06-01 2006-12-14 Olympus Corp 立体映像表示装置及び立体映像表示方法
JP2008085503A (ja) * 2006-09-26 2008-04-10 Toshiba Corp 三次元画像処理装置、方法、プログラム及び三次元画像表示装置
JP2010171608A (ja) * 2009-01-21 2010-08-05 Nikon Corp 画像処理装置、プログラム、画像処理方法、記録方法および記録媒体
JP2011101366A (ja) * 2009-11-04 2011-05-19 Samsung Electronics Co Ltd アクティブサブピクセルレンダリング方式に基づく高密度多視点映像表示システムおよび方法

Also Published As

Publication number Publication date
US20140152783A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
Dodgson Autostereoscopic 3D displays
JP5006587B2 (ja) 画像提示装置および画像提示方法
JP6380881B2 (ja) 立体画像表示装置、画像処理装置及び立体画像処理方法
EP2395759B1 (en) Autostereoscopic display device and method for operating an autostereoscopic display device
EP1296173B1 (en) Multiple sharing type display device
US20060221443A1 (en) Stereoscopic display for switching between 2D/3D images
JP5625979B2 (ja) 表示装置および表示方法ならびに表示制御装置
CN103984108B (zh) 基于振动光栅的裸眼立体显示方法与装置
US8933878B2 (en) Display apparatus and display method
JP5762998B2 (ja) 表示装置および電子機器
US6788274B2 (en) Apparatus and method for displaying stereoscopic images
JP2012065174A (ja) 画像処理装置および方法、ならびに立体画像表示装置
KR20120051287A (ko) 사용자 위치 기반의 영상 제공 장치 및 방법
US9124880B2 (en) Method and apparatus for stereoscopic image display
Dodgson Autostereo displays: 3D without glasses
WO2013031864A1 (ja) 表示装置
EP2408217A2 (en) Method of virtual 3d image presentation and apparatus for virtual 3d image presentation
JP3425402B2 (ja) 立体画像を表示する装置および方法
JP2004282217A (ja) 多眼式立体映像表示装置
KR101086305B1 (ko) 3차원 영상 디스플레이 장치 및 방법
KR101785915B1 (ko) 무안경 멀티뷰 또는 수퍼멀티뷰 영상 구현 시스템
KR20130066742A (ko) 영상표시장치
US20060152580A1 (en) Auto-stereoscopic volumetric imaging system and method
KR20120031401A (ko) 입체영상표시장치 및 그 구동방법
JP2004279743A (ja) 三次元表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12827942

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14232962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12827942

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP