WO2013029514A1 - 具有一体化阴阳极双极板的燃料电池 - Google Patents

具有一体化阴阳极双极板的燃料电池 Download PDF

Info

Publication number
WO2013029514A1
WO2013029514A1 PCT/CN2012/080615 CN2012080615W WO2013029514A1 WO 2013029514 A1 WO2013029514 A1 WO 2013029514A1 CN 2012080615 W CN2012080615 W CN 2012080615W WO 2013029514 A1 WO2013029514 A1 WO 2013029514A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrochemical reaction
reaction portion
cathode
anode
fuel cell
Prior art date
Application number
PCT/CN2012/080615
Other languages
English (en)
French (fr)
Inventor
高勇
Original Assignee
上海恒劲动力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恒劲动力科技有限公司 filed Critical 上海恒劲动力科技有限公司
Publication of WO2013029514A1 publication Critical patent/WO2013029514A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of new energy, and in particular to a bipolar plate of a fuel cell. Background technique
  • Fuel cell is a promising new power source, usually hydrogen, carbon, methanol, borohydride, gas or natural gas, hydrogen as the negative electrode, oxygen in the air as the positive electrode, and general battery
  • the main difference is that the active material of the general battery is pre-charged, so the battery capacity depends on the amount of active material stored; and the active material (fuel and oxidant) of the fuel cell is continuously input while reacting, so This type of battery is actually just an energy conversion device.
  • These batteries have the advantages of high conversion efficiency, large capacity, high specific energy, wide power range, no charging, etc., and have broad development prospects in spacecraft, submarines, military, television transfer stations, lighthouses and buoys.
  • each of the battery cells includes a bipolar plate 110, 120 and a membrane electrode assembly 100, and the bipolar plates 110, 120 include an anode plate 110 and a cathode plate 120 which are separately disposed, respectively.
  • the electrode assembly 100 is interposed between the anode plate 110 and the cathode plate 120.
  • the anode plate 110 includes an anode electrochemical reaction portion 117 and an anode non-electrochemical reaction portion 118.
  • the anode electrochemical reaction portion 117 is provided with a groove-like structure of a fuel fluid passage near one side of the membrane electrode assembly 100. For the top view, the fuel fluid passage is not shown.
  • the cathode plate 120 includes a cathode electrochemical reaction portion 127 and a cathode non-electrochemical reaction portion 128.
  • the cathode electrochemical reaction portion 127 is provided with a groove-like oxidant fluid passage 129 on a side of the membrane electrode assembly 100.
  • the anode non-electrochemical reaction portion 118 is provided with a first through hole 111, a second through hole 112 and a third through hole 113.
  • the cathode non-electrochemical reaction portion 128 is provided with a fourth through hole.
  • the first through hole 111 is coaxially communicated with the fourth through hole, and the second through hole 112 and the fifth through hole 125 are coaxially connected
  • the third through hole 113 and the sixth through hole 126 are coaxially connected;
  • the fuel fluid passage is in communication with the first through hole 111;
  • the chemical fluid passage 129 is in communication with the sixth through hole 126; and an anode cooling is respectively disposed on one side of the anode electrochemical reaction portion 117 and the cathode electrochemical reaction portion 127 away from the membrane electrode assembly 100.
  • the liquid passage 119 and the cathode coolant passage 232 are not shown in FIG. 1, the anode coolant passage 119 is in communication with the second through hole 112, and the cathode coolant passage 232 is connected to the fifth through hole 125. through.
  • the anode plate and the cathode plate of the adjacent two battery cells are bonded together by bonding, and the anode is non-electrochemical between the anode electrochemical reaction portion and the cathode electrochemical reaction portion. There is a seam between the reaction portion and the cathode non-electrochemical reaction portion.
  • the bipolar plate structure described in the above prior art has a complicated structure due to the independent arrangement of the anode plate and the cathode plate; the contact between the anode plate and the adjacent cathode plate has a large contact internal resistance, resulting in low power generation efficiency; The anode plate and the cathode plate are separately manufactured and assembled separately, and the processing cost is high and the production efficiency is low. Summary of the invention
  • the present invention provides a fuel cell having an integrated cathode-anodic bipolar plate, comprising alternating bipolar plates and membrane electrode assemblies; the bipolar plates comprising an electrochemical reaction portion and a non-electrochemical reaction portion;
  • the chemical reaction unit is a frame having an integrated structure, and the electrochemical reaction unit is nested in the non-electrochemical reaction unit.
  • the electrochemical reaction portion includes an anode electrochemical reaction portion and a cathode electrochemical reaction portion.
  • the anode electrochemical reaction portion and the cathode electrochemical reaction portion are both bonded in the non-electrochemical reaction portion, and the anode electrochemical reaction portion and the cathode electrochemical reaction portion are closely arranged.
  • the electrochemical reaction portion may also be an integrated structure made of a conductive material.
  • the fuel cell with the integrated cathode-anodic bipolar plate provided by the invention has a simpler structure, makes the manufacturing process of the fuel cell more simple, increases the production efficiency and reduces the manufacturing cost; the fuel cell bipolar provided by the invention
  • the board due to the integrated design of the anode and cathode, reduces the contact resistance of the fuel cell, reduces the internal consumption of the output power, and greatly improves the power generation efficiency.
  • Figure 1 is a schematic perspective view of a fuel cell of an integrated cathode-anode bipolar plate of the present invention
  • Figure 2 is a cross-sectional view of Figure 1 taken along direction A and direction B, and the middle portion of Figure 2 is broken to show its length.
  • FIG. 3 is a schematic cross-sectional view of a bipolar plate and a membrane electrode assembly. detailed description
  • the embodiment provides a fuel cell having an integrated cathode-anode bipolar plate, comprising alternating bipolar plates and a membrane electrode assembly 200; the bipolar plate includes an electrochemical reaction unit. And the non-electrochemical reaction unit 210.
  • the non-electrochemical reaction unit is a frame having an integrated structure, and the electrochemical reaction unit 210 is nested in the non-electrochemical reaction unit casing.
  • the non-electrochemical reaction portion 210 of one of the adjacent two battery cells in the prior art and the non-electrochemical reaction portion 210 of one of the cathode plates are improved into a one-piece structure, which not only makes the internal structure of the fuel cell more Closely, it is conducive to simplifying the manufacturing process.
  • the two-piece board with integrated structure can reduce the internal resistance of the structure and reduce the loss of power generation of the battery, thereby improving the power generation efficiency and further saving the cost.
  • the electrochemical reaction portion includes an anode electrochemical reaction portion 2072 and a cathode electrochemical reaction portion 2071.
  • the anode electrochemical reaction portion 2072 is disposed away from the cathode electrochemical reaction portion 2071 with a groove-like fuel fluid passage 233; the cathode electrochemical reaction portion 2071 is disposed away from one side of the anode electrochemical reaction portion 2072.
  • An oxidant fluid passage having a trough structure facilitates passage of the fuel fluid and the oxidant fluid and electrochemical reaction.
  • the figure is mainly used to explain the structure and positional relationship of the electrochemical reaction portion and the non-electrochemical reaction portion 210, and the fuel fluid passage 233 and the oxidant fluid passage are not shown in order to make the drawing more clear and easy to understand.
  • the anode electrochemical reaction portion 2072 is away from one side of the cathode electrochemical reaction portion 2071 A fuel fluid passage 231 having a groove-like structure is provided; and an oxidant fluid passage 233 having a groove-like structure is disposed on a side of the cathode electrochemical reaction portion 2071 away from the anode electrochemical reaction portion 2072.
  • 4 is mainly used to explain the structure and positional relationship between the electrochemical reaction portion and the non-electrochemical reaction portion 210. In order to make the drawing more clear and understandable, the anode coolant channel 232 and the cathode coolant are not shown. Channel 232.
  • the anode electrochemical reaction portion 2072 and the cathode electrochemical reaction portion 2071 are adhered to the non-electrochemical reaction portion 210, and the anode electrochemical reaction portion 2072 and the cathode electrochemical reaction portion 2071 are closely connected back to back. Together.
  • the anode coolant passage 232 and the cathode coolant passage 232 communicate in a hole-like configuration to form a bore-shaped coolant passage 232 in the middle of the integrated cathode-anode bipolar plate.
  • the integrated cathode-anodic bipolar plate has a total channel on both sides and in the middle portion, respectively for passing the fuel flow, the oxidant fluid and the cooling liquid, facilitating the passage and mutual reaction of the fuel and the oxidant fluid, which can be further improved.
  • the power generation efficiency enables the fuel cell to have high water retention performance and the electrochemical reaction of the fuel cell, which is beneficial to lowering the internal temperature of the fuel cell, protecting the fuel cell, and increasing the service life of the fuel cell.
  • the cooling fluid channel 232 is disposed between the anode electrochemical reaction portion 2072 and the cathode electrochemical reaction portion 2071; the fluid channel 232 may be formed in whole or in part on a side of the cathode electrochemical reaction portion adjacent to the anode electrochemical reaction portion. The fluid channel 232 may also be processed in whole or in part on one side of the anode electrochemical reaction portion adjacent to the cathode electrochemical reaction portion.
  • the fluid passages 232 are formed on the male and female reaction portions, the male and female reaction portions connected back to back combine the anode coolant passages and the cathode coolant passages into a hole-like structure.
  • the non-electrochemical reaction portion is provided with a through hole 221 for flowing in and out of the fuel fluid, a through hole 223 for flowing in and out of the oxidant fluid, and a through hole 222 for flowing in and out of the cooling liquid, respectively, and the manufacturing
  • the fuel fluid passage, the oxidant fluid passage, and the coolant passage are connected in the yin and yang reaction portion. Since the non-electrochemical reaction unit 210 has an integrated structure, the through holes can be formed in one time, and it is not necessary to separately open a through hole in the non-electrochemical reaction unit 210, and the processing process is simpler. Effectively reduce manufacturing costs and increase production efficiency.
  • the present invention also provides the integrated cathode-anode bipolar plate.
  • a fuel cell comprising alternating bipolar plates and membrane electrode assemblies
  • the bipolar plate includes an electrochemical reaction portion and a non-electrochemical reaction portion 210, and the structure of the non-electrochemical reaction portion 210 is the same as that of the non-electrochemical reaction portion 210 described in the first embodiment, but
  • the electrochemical reaction portion is an integrated structure made of a conductive material, and the anode electrochemical reaction portion 2072 and the cathode electrochemical reaction portion 2071 described in the first embodiment are combined into one, and both of the above-mentioned first embodiment are The function of the anode electrochemical reaction portion 2072 and the cathode electrochemical reaction portion 2071.
  • a bipolar plate in which both the electrochemical reaction portion and the non-electrochemical reaction portion 210 are formed in one body is formed.
  • the internal structure of the fuel cell is further tightened, the assembly is easier, the manufacturing process is simpler, and the cost is lower.
  • the electrochemical reaction unit is also an integrated structure, there is no joint between the anode and the cathode, which can further reduce the contact resistance inside the fuel cell, and further increase the power generation efficiency.
  • the fuel fluid passage 233 having the groove-like structure on both sides of the electrochemical reaction portion and the oxidant fluid passage pattern of the groove-like structure are not shown, facilitating passage of the reaction gas and electrochemical reaction.
  • the electrochemical reaction unit can adopt an open mold processing process to manufacture an integrated structure having a hole-shaped coolant passage 232 in the middle portion, and further facilitates the passage of the coolant through the fuel cell to improve the performance of the fuel battery.
  • the structure of the non-electrochemical reaction portion 210 is the same as that of the non-electrochemical reaction portion 210 of the fuel cell described in the first embodiment, and therefore, it can be molded once on the non-electrochemical reaction portion 210.
  • the three through holes are respectively connected to the fuel fluid passage 233, the coolant passage 232 and the oxidant fluid passage for flowing the fuel fluid, the coolant and the oxidant fluid into the fuel cell.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

本发明公开了一种具有一体化阴阳极双极板的燃料电池,包括交替排列的双极板和膜电极组件;所述双极板包括电化学反应部和非电化学反应部;所述非电化学反应部为一体结构的框体,所述电化学反应部嵌套在所述非电化学反应部内。本发明所提供的具有一体化阴阳极双极板的燃料电池,结构更加简单,使燃料电池的制造过程更为简便,增加了生产效率且降低了制造成本;本发明所提供的燃料电池双极板,由于阴阳极一体化的设计,减少了燃料电池的接触阻抗,降低了输出电量的内部消耗,极大程度的提高了发电效率。

Description

具有一体化阴阳极双极板的燃料电池 技术领域
本发明涉及新能源领域, 尤其涉及一种燃料电池的双极板。 背景技术
燃料电池是一种很有发展前途的新的动力电源, 一般以氢气、 碳、 甲 醇、 硼氢化物、 煤气或天然气为燃料, 用氢作为负极, 用空气中的氧作为 正极. 和一般电池的主要区别在于一般电池的活性物质是预先放在入的, 因而电池容量取决于贮存的活性物质的量; 而燃料电池的活性物质 (燃料 和氧化剂) 是在反应的同时源源不断地输入的, 因此, 这类电池实际上只 是一个能量转换装置。 这类电池具有转换效率高、 容量大、 比能量高、 功 率范围广、 不用充电等优点, 在飞船、 潜艇、 军事、 电视中转站、 灯塔和 浮标等方面具有广阔的发展前景。
现有技术中的燃料电池, 主要由二个以上的电池单元串联结合而成。 图 1描述了一个电池单元中各部件的结构和位置关系。 如图 1所示, 所述 每个电池单元都包括双极板 110、 120和膜电极组件 100,所述双极板 110、 120包括分别独立设置的阳极板 110和阴极板 120, 所述膜电极组件 100 夹设在所述阳极板 110和所述阴极板 120之间。 所述阳极板 110包括阳极 电化学反应部 117和阳极非电化学反应部 118,所述阳极电化学反应部 117 靠近所述膜电极组件 100的一面设有槽状结构的燃料流体通道由于图 1为 俯视图, 所述燃料流体通道未示出。 所述阴极板 120包括阴极电化学反应 部 127和阴极非电化学反应部 128, 所述阴极电化学反应部 127靠近所述 膜电极组件 100的一面设有槽状结构的氧化剂流体通道 129 ; 所述阳极非 电化学反应部 118上设有第一通孔 111、第二通孔 112和第三通孔 113,所 述阴极非电化学反应部 128上设有第四通孔图 1 中未示出、 第五通孔 125 和第六通孔 126, 所述第一通孔 111 与所述第四通孔同轴连通, 所述第二 通孔 112和所述第五通孔 125同轴连通, 所述第三通孔 113和所述第六通 孔 126同轴连通; 所述燃料流体通道与所述第一通孔 111相连通; 所述氧 化剂流体通道 129与所述第六通孔 126相连通; 另外, 在所述阳极电化学 反应部 117及所述阴极电化学反应部 127远离所述膜电极组件 100的一面 分别设有阳极冷却液通道 119和阴极冷却液通道 232图 1中未示出, 所述 阳极冷却液通道 119与所述第二通孔 112相连通,所述阴极冷却液通道 232 与所述第五通孔 125相连通。
现有技术中, 采用粘合的方式将相邻两电池单元中的阳极板和阴极板 粘接在一起, 所述阳极电化学反应部和阴极电化学反应部之间, 所述阳极 非电化学反应部和阴极非电化学反应部之间均存在接缝。 上述现有技术中 所描述的双极板结构, 由于阳极板和阴极板独立设置, 结构较为复杂; 阳 极板与相邻阴极板之间具有较大的接触内阻, 导致发电效率较低; 另外, 阳极板与阴极板需独立制造, 分别组装, 加工成本较高, 生产效率较低。 发明内容
本发明的目的是提供一种具有一体化阴阳极双极板的燃料电池。
本发明提供一种具有一体化阴阳极双极板的燃料电池, 包括交替排列 的双极板和膜电极组件;所述双极板包括电化学反应部和非电化学反应部; 所述非电化学反应部为一体化结构的框体, 所述电化学反应部嵌套在所述 非电化学反应部内。
所述电化学反应部包括阳极电化学反应部和阴极电化学反应部。 所述 阳极电化学反应部和所述阴极电化学反应部均粘接在所述非电化学反应部 内, 所述阳极电化学反应部和阴极电化学反应部紧密排列在一起。 所述电 化学反应部还可以为导电材料制成的一体化结构。 本发明所提供的具有一 体化阴阳极双极板的燃料电池, 结构更加简单, 使燃料电池的制造过程更 为简便, 增加了生产效率且降低了制造成本; 本发明所提供的燃料电池双 极板, 由于阴阳极一体化的设计, 减少了燃料电池的接触阻抗, 降低了输 出电量的内部消耗, 极大程度的提高了发电效率。 附图说明
图 1本发明具有一体化阴阳极双极板的燃料电池立体结构示意图; 图 2为图 1沿方向 A及方向 B的剖视图, 图 2中部为折断表示, 以省 略其长度。
图 3为双极板及膜电极组件的剖面结构示意图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚, 下面将结合本 发明实施例中的附图, 对本发明实施例中的技术方案进行清楚、 完整地描 述, 显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动前提 下所获得的所有其他实施例, 都属于本发明保护的范围。
实施例一
如图 1至图 3所示, 本实施例提供一种具有一体化阴阳极双极板的燃 料电池, 包括交替排列的双极板和膜电极组件 200 ; 所述双极板包括电化 学反应部和非电化学反应部 210 ; 其特征在于: 所述非电化学反应部为一 体化结构的框体, 所述电化学反应部 210嵌套在所述非电化学反应部框体 内。 这样, 将现有技术中相邻两个电池单元中的一片阳极板的非电化学反 应部 210和一片阴极板的非电化学反应部 210改进为一片整体结构, 不但 使燃料电池的内部结构更加紧密, 有利于简化制造工艺, 同时这种一体结 构的二机板可减少结构间的接触内阻, 减少电池发电量的损耗, 从而可提 高发电效率, 进一歩节省自造成本。
所述电化学反应部包括阳极电化学反应部 2072 和阴极电化学反应部 2071 ο
所述阳极电化学反应部 2072远离所述阴极电化学反应部 2071的一面 设有槽状结构的燃料流体通道 233 ; 所述阴极电化学反应部 2071远离所述 阳极电化学反应部 2072的一面设有槽状结构的氧化剂流体通道,这样便于 燃料流体及氧化剂流体通过并进行电化学反应。 图主要用于说明所述电化 学反应部和所述非电化学反应部 210的结构及位置关系, 为了使附图更加 清晰易懂, 未示出所述燃料流体通道 233和氧化剂流体通道。
所述阳极电化学反应部 2072远离所述阴极电化学反应部 2071的一面 设有槽状结构的燃料流体通道 231 ; 所述阴极电化学反应部 2071远离所述 阳极电化学反应部 2072的一面设有槽状结构的氧化剂流体通道 233。 图 4 主要用于说明所述电化学反应部和所述非电化学反应部 210的结构及位置 关系, 为了使附图更加清晰易懂, 未示出所述阳极冷却液通道 232和阴极 冷却液通道 232。
所述阳极电化学反应部 2072和所述阴极电化学反应部均 2071粘接在 所述非电化学反应部 210框体内,所述阳极电化学反应部 2072和阴极电化 学反应部 2071 紧密背靠背连接在一起。 这样, 所述阳极冷却液通道 232 和所述阴极冷却液通道 232相连通成孔状结构, 形成位于所述具有一体化 阴阳极双极板中部的孔状的冷却液通道 232。 这样就使该具有一体化阴阳 极双极板分别在两面及中部共具有个通道, 分别用于通过燃料流、 氧化剂 流体和冷却液, 便于燃料和氧化剂流体的通过及相互反应, 可进一歩提高 发电效率, 使燃料电池具有较高的保水性能及燃料电池的电化学反应的进 行, 有利于降低燃料电池的内部温度, 保护燃料电池, 增加燃料电池的使 用寿命。
所述冷却流体通道 232设在阳极电化学反应部 2072和阴极电化学反应 部 2071之间;所述流体通道 232可全部或部分制作在阴极电化学反应部靠 近所述阳极电化学反应部的一面, 所述流体通道 232也可全部或部分加工 在阳极电化学反应部靠近所述阴极电化学反应部的一面。 当所述流体通道 232 制作在阴阳两极反应部上时, 背靠背连接在一起的阴阳两反应部使所 述阳极冷却液通道和所述阴极冷却液通道合并相连通成孔状结构。
所述非电化学反应部上设有用于流入和流出燃料流体的通孔 221、 用 于流入和流出氧化剂流体的通孔 223及用于流入和流出冷却液的通孔 222, 分别与所述制作在阴阳反应部上的燃料流体通道、 氧化剂流体通道和冷却 液通道相连通。 由于所述非电化学反应部 210为一整体化的结构, 上述通 孔、 一次成型即可, 无需在非电化学反应部 210上分别开个通孔后再进行 组合, 加工工艺更加简单, 可有效降低制造成本, 提高生产效率。
实施例二
如图 1至图 3所示, 本发明还提供了所述具有一体化阴阳极双极板的 燃料电池的另一实施例, 该燃料电池包括交替排列的双极板和膜电极组件
200, 所述双极板包括电化学反应部和非电化学反应部 210, 所述非电化学 反应部 210的结构与上述实施例一中所述的非电化学反应部 210—致, 但 是其电化学反应部为导电材料制成的一体化结构, 将上述实施例一中所述 的阳极电化学反应部 2072和阴极电化学反应部 2071合二为一, 同时兼具 了上述实施例一中所述的阳极电化学反应部 2072 和阴极电化学反应部 2071的功能。 这样, 就形成了电化学反应部及非电化学反应部 210均为一 体结构的双极板。 这样, 就在实施例一的基础上, 进一歩使燃料电池的内 部结构更加紧密, 装配更加容易, 制造工艺更加简便, 成本更低。
由于电化学反应部也为一体化的结构, 阳极和阴极之间无接缝, 可进 一歩降低了燃料电池内部的接触阻抗, 进一歩增加了发电效率。
所述电化学反应部的两面分别设有槽状结构的燃料流体通道 233和槽 状结构的氧化剂流体通道图中未示出, 便于反应气体通过并进行电化学反 应。
所述电化学反应部可采用开模的加工工艺制造出中部设有孔状冷却液 通道 232的一体化结构, 进一歩便于冷却液通过所述燃料电池, 提高该燃 料电池的性能。
如前述, 所述非电化学反应部 210的结构与上述实施例一中所介绍的 燃料电池的非电化学反应部 210的结构一致, 因此, 可在所述非电化学反 应部 210上一次成型的设三个通孔, 分别与所述燃料流体通道 233、 冷却 液通道 232和氧化剂流体通道相连通, 用于向该燃料电池流入燃料流体、 冷却液和氧化剂流体。
需要说明的是, 本说明书中只对用于流入燃料流体、 流入氧化剂流体 和流入冷却液的通孔进行了说明, 相应的用于流出燃料流体、 氧化剂流体 和冷却液的通孔与上述用于流入燃料流体、 流入氧化剂流体和流入冷却液 的通孔同理且相对应, 这里不做累述。
最后应说明的是, 以上实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修 , 或者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不 相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要 求 书
1.一种具有一体化阴阳极双极板的燃料电池, 包括交替排列的双极板 和膜电极组件; 所述双极板包括电化学反应部和非电化学反应部; 其特征 在于: 所述非电化学反应部为一体化结构的框体, 所述电化学反应部嵌套 在所述非电化学反应部框体内。
2.如权利要求 1所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述电化学反应部包括阳极电化学反应部和阴极电化学反应部。
3.如权利要求 2所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述阳极电化学反应部和所述阴极电化学反应部均粘接在所述非电 化学反应部框体内, 所述阳极电化学反应部和阴极电化学反应部紧密背靠 背连接在一起。
4.如权利要求 3所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述阳极电化学反应部远离所述阴极电化学反应部的一面设有槽状 结构的燃料流体通道; 所述阴极电化学反应部远离所述阳极电化学反应部 的一面设有槽状结构的氧化剂流体通道。
5.如权利要求 4所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于:所述冷却流体通道设在阳极电化学反应部和阴极电化学反应部之间; 所述流体通道可全部或部分制作在阴极电化学反应部靠近所述阳极电化学 反应部的一面, 所述流体通道也可全部或部分加工在阳极电化学反应部靠 近所述阴极电化学反应部的一面。 当所述流体通道制作在阴阳两极反应部 上时, 背靠背连接在一起的阴阳两反应部使所述阳极冷却液通道和所述阴 极冷却液通道合并相连通成孔状结构。
6.如权利要求 4所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述非电化学反应部上设有用于流入和流出燃料流体的通孔、 用于 流入和流出氧化剂流体的通孔及用于流入和流出冷却液的通孔, 分别与所 述制作在阴阳反应部上的燃料流体通道、 氧化剂流体通道和冷却液通道相 连通。
7.如权利要求 1所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述电化学反应部为导电材料制成的一体化结构。
8.如权利要求 7所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述电化学反应部的两面分别设有槽状结构的燃料流体通道和槽状 结构的氧化剂流体通道。
9.如权利要求 8所述的具有一体化阴阳极双极板的燃料电池, 其特征 在于: 所述电化学反应部的中部设有孔状的冷却液通道。
10. 如权利要求 9所述的具有一体化阴阳极双极板的燃料电池,其特 征在于: 所述非电化学反应部上设有三个流入通孔和三个流出通孔, 分别 依次与所述燃料流体通道、 冷却液通道和氧化剂流体通道相连通。
PCT/CN2012/080615 2011-09-01 2012-08-27 具有一体化阴阳极双极板的燃料电池 WO2013029514A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110257362.5 2011-09-01
CN201110257362.5A CN102969512B (zh) 2011-09-01 2011-09-01 具有一体化阴阳极双极板的燃料电池

Publications (1)

Publication Number Publication Date
WO2013029514A1 true WO2013029514A1 (zh) 2013-03-07

Family

ID=47755322

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080615 WO2013029514A1 (zh) 2011-09-01 2012-08-27 具有一体化阴阳极双极板的燃料电池

Country Status (2)

Country Link
CN (1) CN102969512B (zh)
WO (1) WO2013029514A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022057551A1 (zh) * 2020-09-21 2022-03-24 中国科学院大连化学物理研究所 一种pem电解槽用带气液分配流场结构的导电分隔板
CN112366333B (zh) * 2020-09-21 2022-03-25 中国科学院大连化学物理研究所 一种带气液分配流场的导电分隔板的3d打印加工方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416184A (zh) * 2001-11-01 2003-05-07 哈尔滨工业大学 质子交换膜燃料电池的金属复合双极板
JP2005267868A (ja) * 2004-03-16 2005-09-29 Honda Motor Co Ltd 燃料電池
CN101752587A (zh) * 2008-12-04 2010-06-23 上海空间电源研究所 金属双极板、密封件一体化燃料电池的制备方法
CN202268448U (zh) * 2011-09-01 2012-06-06 上海恒劲动力科技有限公司 具有一体化阴阳极双极板的燃料电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447583A (zh) * 2008-10-31 2009-06-03 清华大学 一种燃料电池一体化单元模块及其电堆
CN101867053B (zh) * 2010-06-25 2012-07-11 清华大学 一种联合应用板内逆流流场和板间逆流流场的燃料电池堆
CN101937997B (zh) * 2010-09-21 2013-07-17 武汉理工大学 质子交换膜燃料电池金属双极板及其构成的单池和电堆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1416184A (zh) * 2001-11-01 2003-05-07 哈尔滨工业大学 质子交换膜燃料电池的金属复合双极板
JP2005267868A (ja) * 2004-03-16 2005-09-29 Honda Motor Co Ltd 燃料電池
CN101752587A (zh) * 2008-12-04 2010-06-23 上海空间电源研究所 金属双极板、密封件一体化燃料电池的制备方法
CN202268448U (zh) * 2011-09-01 2012-06-06 上海恒劲动力科技有限公司 具有一体化阴阳极双极板的燃料电池

Also Published As

Publication number Publication date
CN102969512B (zh) 2015-10-28
CN102969512A (zh) 2013-03-13

Similar Documents

Publication Publication Date Title
CN109904484B (zh) 一种燃料电池双极板结构及燃料电池
US10720653B2 (en) Bipolar plate intake structure of fuel cell having drainage channels
JP5240282B2 (ja) 燃料電池セル
CN104900894A (zh) 燃料电池的金属极板、燃料电池的金属双极板、燃料电池
CN104795574A (zh) 燃料电池的金属双极板、燃料电池
US20180151892A1 (en) Bipolar plate structure having optimized gas flow channels
WO2011120426A1 (zh) 燃料电池用双极板
CN102832399A (zh) 一种圆环形燃料电池双极板
CN111564644A (zh) 一种小功率的高温质子交换膜燃料电池电堆
CN101764240B (zh) 燃料电池组
CN209929408U (zh) 长寿命与可靠性的金属板燃料电池单池结构及电堆
CN210866383U (zh) 一种燃料电池
CN100550500C (zh) 一种燃料电池组
CN209947950U (zh) 液体燃料电池中具有太极图状流场结构双极板、单电池、便携式电子产品
CN210866380U (zh) 一种质子交换膜燃料电池单体和质子交换膜燃料电池电堆
WO2013029514A1 (zh) 具有一体化阴阳极双极板的燃料电池
CN116826100A (zh) 一种封闭式气冷质子交换膜燃料电池双极板组件及燃料电池
CN102110838A (zh) 一种质子交换膜燃料电池电堆
CN209947951U (zh) 一种流场结构双极板、单电池、绿色能源车辆、电子设备、移动通讯终端
CN109980241B (zh) 液体燃料电池中具有太极图状流场结构双极板及设计方法
CN111326763A (zh) 一种类蜂巢形流场的金属双极板
CN217468496U (zh) 一种蜿蜒型流道燃料电池双极板
KR100556814B1 (ko) 연료전지의 스택
CN216958101U (zh) 一种并联燃料电池电堆
CN220209030U (zh) 燃料电池堆以及燃料电池***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12828074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12828074

Country of ref document: EP

Kind code of ref document: A1