WO2013029277A1 - 多桨叶单驱同步变桨装置 - Google Patents

多桨叶单驱同步变桨装置 Download PDF

Info

Publication number
WO2013029277A1
WO2013029277A1 PCT/CN2011/079295 CN2011079295W WO2013029277A1 WO 2013029277 A1 WO2013029277 A1 WO 2013029277A1 CN 2011079295 W CN2011079295 W CN 2011079295W WO 2013029277 A1 WO2013029277 A1 WO 2013029277A1
Authority
WO
WIPO (PCT)
Prior art keywords
synchronous
drive
sleeve
blade
transmission
Prior art date
Application number
PCT/CN2011/079295
Other languages
English (en)
French (fr)
Inventor
刘金鹏
袁炜
周绍君
Original Assignee
上海致远绿色能源有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海致远绿色能源有限公司 filed Critical 上海致远绿色能源有限公司
Priority to DK11852207.7T priority Critical patent/DK2597304T3/en
Priority to EP11852207.7A priority patent/EP2597304B1/en
Priority to PCT/CN2011/079295 priority patent/WO2013029277A1/zh
Priority to US13/520,733 priority patent/US9322284B2/en
Priority to CN201180002326.2A priority patent/CN102725519B/zh
Priority to PL11852207T priority patent/PL2597304T3/pl
Publication of WO2013029277A1 publication Critical patent/WO2013029277A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D7/00Rotors with blades adjustable in operation; Control thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • F03D7/022Adjusting aerodynamic properties of the blades
    • F03D7/0224Adjusting blade pitch
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/79Bearing, support or actuation arrangements therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the present invention relates generally to pitching techniques for use in an impeller system in a wind or hydroelectric generator, and more particularly to a synchronous pitching device for a multi-blade impeller system.
  • the blade is the key medium for the rotation of the generator rotor by using wind energy water.
  • the shape of the blade directly affects the efficiency of the generator. In order to make full use of energy and improve energy conversion efficiency, the generator impeller system with timely pitch technology has become Market preferred .
  • the pitch mechanism that is often used is mainly inside the hub of the impeller system, a set of pitch mechanisms is installed corresponding to each blade, and synchronous pitch control is performed on each blade by the synchronous control device.
  • These synchronous pitch mechanisms mainly include servo motor gear transmission, electric cylinder direct drive and the like, but the prior art pitch mechanisms have one or several of the following disadvantages:
  • the structure is complex, the cost is high, and the required installation space is large, which is hardly applicable in small and medium-sized generators;
  • the present invention provides a multi-blade synchronous pitching with only a single power source, a transmission mechanism, a synchronous linkage mechanism and a control device.
  • the new single-drive synchronous pitching device can be applied to various small and medium multi-blade wind wheel systems.
  • each slewing bearing seat comprises a slewing bearing, each slewing bearing comprises a relatively rotatable inner and outer ring;
  • the synchronous pitching device comprises a power source, a transmission mechanism, a a synchronous link mechanism and a control device;
  • the transmission mechanism comprises a coupling, a ball screw, a transmission sleeve, a transmission shaft and a conversion sleeve;
  • the synchronous linkage mechanism comprises a synchronous disk, a a guiding support and a connecting rod;
  • the control device comprises a rotation speed detector, a limit sensor and a travel switch, and a programmable controller;
  • the ball screw and the transmission sleeve of the transmission mechanism convert the rotational power outputted by the power
  • the single-drive synchronous pitching device of the present invention is mainly connected by a connecting rod between a synchronous disk and a plurality of blade slewing bearings, and the linear motion of the synchronous disk is driven by a single power source so that the pitch motion of the plurality of blades can be simultaneously controlled.
  • the structure is simple and direct, the control is precise, and multiple blades are synchronously operated at a completely consistent speed and precision to achieve high operational reliability.
  • FIG. 1 is a cross-sectional view showing the overall structure of a main assembly and an impeller portion of a wind power generator to which a multi-blade single-drive synchronous pitch device of the present invention is applied;
  • FIG. 2A is an external perspective view of the wind power generator shown in FIG. 1;
  • FIG. 2B is a top plan view of the wind power generator shown in FIG. 1;
  • Figure 3 is a plan view showing the overall structure of the multi-blade single-drive synchronous pitching device of the present invention, blanking the wind power generator shown in Figure 1;
  • Figure 4 is a cross-sectional view of the multi-blade single-drive synchronous pitching device of Figure 3 taken along line A-A;
  • Figure 5 is an enlarged cross-sectional view showing the multi-blade single-drive synchronous pitching device of the present invention installed in a wind power generator;
  • Figure 6 is a cross-sectional view of the impeller portion of the wind power generator of Figure 5 taken along line B-B;
  • Figure 7 is a perspective view showing only one set of blade slewing support after the synchronous pitching device of the present invention blanks the wind turbine hub;
  • Figure 8 is a perspective view showing the blade slewing support of the synchronous pitching device of Figure 7 after being exploded;
  • Figure 9 is an enlarged cross-sectional view showing the first end of the transmission shaft shown in Figure 5 and the second end of the transmission sleeve;
  • Figure 10 is a cross-sectional view taken along line C-C of Figure 5, showing the connection relationship between the second end of the drive shaft and the synchronizing disc and the guide support;
  • Figure 11A is a top plan view of a particular embodiment of a sync disk in a synchronous pitching device in accordance with the present invention.
  • Figure 11B is a side elevational view of the synchronous disk embodiment of Figure 11A taken along line D-D;
  • Figure 11C is a partial side elevational view of the synchronous disk embodiment of Figure 11A taken along the II direction;
  • Figure 11D is a partial cross-sectional view of the synchronous disk embodiment of Figure 11A taken along line E-E;
  • Figure 12A is a cross-sectional view of a particular embodiment of a guide support in a synchronous pitching device in accordance with the present invention.
  • Figure 12B is a right side elevational view of the embodiment of the guide support of Figure 12A;
  • Figure 12C is a cross-sectional view of the guide support base of Figure 12A taken along line F-F;
  • FIG. 12D is a perspective view of a specific embodiment of the guide support seat of FIG. 12A;
  • Figure 13A is a partial cross-sectional view showing a specific embodiment of a connecting rod in a synchronous pitching device according to the present invention
  • Figure 13B is a perspective view of the specific embodiment of the connecting rod of Figure 13A.
  • the present invention actually provides a multi-blade single-drive synchronous pitch device suitable for a variety of pitch technology fields. It can be understood that the multi-blade single-drive synchronous pitching device according to the basic principle of the present invention is applied to a wind turbine to realize synchronous adjustment of the blade angle as a specific embodiment of the application of the present invention, which is merely an example. The invention is not intended to limit the scope of the invention.
  • a typical wind power generator generally includes a generator main unit 10 and an impeller system 20, and a generator main unit 10
  • the interior of the nacelle 11 is disposed, and the impeller system 20 includes a hub 21 disposed in front of the nacelle 11 and a plurality of blades equally spaced around the hub 21, the blades being not shown for simplicity.
  • the multi-blade single-drive synchronous pitching device according to the present invention is disposed inside the main engine nacelle 11 and the hub 21 of the wind power generator 10.
  • 2A and 2B are respectively an external perspective view and a plan view of the wind power generator 10 shown in Fig. 1.
  • FIG. 3 is a top plan view of the overall structure of the multi-blade single-drive synchronous pitching device 100 of the present invention, in order to more clearly show its structure, the wind power generator main body 10 of FIG. 1 is blanked;
  • FIG. 4 is FIG. A cross-sectional view of the multi-blade single-drive synchronous pitch device along the AA line.
  • the enlarged cross-sectional view of FIG. 5 describes in more detail the case where the multi-blade single-drive synchronous pitch device 100 of the present invention is installed in the wind power generator main body 10, wherein the broken line portion is represented as the main assembly 10 of the wind power generator.
  • the generator rotor shaft 12 and the generator stator 13 and the like are included; and the solid line portion is shown as the hub 21 of the impeller system 20 and the synchronous pitch device 100 installed inside the main engine nacelle 11 and the hub 21.
  • a plurality of blade mounting holes are disposed at equal intervals around the hub 21 of the impeller system 20, and each blade mounting hole is fixed with a set of blade slewing seats 22, correspondingly, each set of blade slewing seats 22 Install a blade in a fixed position.
  • FIG. 6 is a cross-sectional view of the impeller portion of the wind power generator 10 of FIG. 5 along the line BB;
  • FIG. 8 is a perspective view of the blade rotator support 22 after being disassembled.
  • the cross-sectional views of Figures 5 and 6 clearly show the structural relationship between the blade swivel mount 22 and the hub 21, while the perspective views of Figures 7 and 8 more clearly show the paddle swivel mount 22 and synchronization.
  • the manner of connection between the pitch devices 100 is a cross-sectional view of Figures 5 and 6 clearly show the structural relationship between the blade swivel mount 22 and the hub 21, while the perspective views of Figures 7 and 8 more clearly show the paddle swivel mount 22 and synchronization.
  • the manner of connection between the pitch devices 100 is a cross-sectional view of the impeller portion
  • the blade swing support 22 includes a coupling flange 221 and a support bearing 222. And a blade root shield 223.
  • the root of the blade is fixedly coupled to one end of the coupling flange 221 by a plurality of bolts, and the other end of the coupling flange 221 is fixedly coupled to the inner ring of the support bearing 222 by a plurality of bolts.
  • the outer ring of the support bearing 222 is fixedly coupled to the periphery of the blade mounting hole by a plurality of bolts, and the inner ring and the outer ring of the support bearing 222 are relatively rotatable, thereby allowing the paddle to rotate relative to the hub 21.
  • the same pitching device 100 of the present invention mainly includes a power source 110, a transmission mechanism 120, a synchronous linkage mechanism 130, and a control device.
  • the power source 110 advantageously employs a combination of a conventional variable frequency brake motor and a planetary reducer, referred to as a variable frequency brake motor combination.
  • the transmission mechanism 120 is mainly composed of a coupling 121, a ball screw 122, a support mechanism 123, a transmission sleeve 124, a transmission shaft 125, and a conversion sleeve 126.
  • the synchronizing link mechanism 130 includes a synchronizing disc 131, a guide support base 132, and a link 133.
  • control device portion mainly includes a rotation speed detector for measuring the output speed of the speed reducer, a limit sensor for detecting the moving position of the transmission sleeve 124, a stroke switch for switching the rotation direction of the screw rod, and for controlling the entire synchronization.
  • Programmable controller for the speed and direction of the pitcher.
  • the power source 110 that is, the output shaft of the above-described variable frequency brake motor
  • the power source 110 is coupled to the first end of the ball screw 122 via the coupling 121 to rotate the ball screw 122 together with the output shaft of the reducer.
  • the support mechanism 123 through which the first end of the ball screw 122 passes is supported at the rear end of the rotor shaft 12 of the wind power generator.
  • the support mechanism 123 is designed as shown in FIG.
  • the double-layer bearing support structure subtly utilizes the rotating rotor shaft 12 to support one end of the transmission mechanism 120, which simplifies the structure and ensures operational reliability.
  • the second end of the ball screw 122 is screwed to the first joint end of the drive sleeve 124.
  • the ball screw 122 outputs a clockwise or counterclockwise rotation, and the thread between the nut of the drive sleeve 124 and the ball screw 122 is passed.
  • the combination is converted into a forward and backward linear motion of the drive sleeve 124 relative to the ball screw 122 and transmitted to the drive shaft 125 through the drive sleeve 124.
  • the first end of the drive shaft 125 is coupled to the second joint end of the drive sleeve 124 via the conversion sleeve 126 such that the drive shaft 125 can only rotate relative to the drive sleeve 124 and cannot move in the axial direction relative to the drive sleeve 124.
  • the structure can be seen in detail later with reference to FIG.
  • the second end of the drive shaft 125 is coupled to the front end of the synchronizing disc 131 and the guide support 132 via a pin 127, the specific structure of which can be seen in the following detailed description with respect to FIG.
  • FIG. 9 is an enlarged cross-sectional view of the portion I of the drive shaft 125 shown in FIG. 5 connected to the second end of the drive sleeve 124 through the conversion sleeve 126.
  • the cover of the conversion sleeve 126 is provided with a protruding flange, which is bolted to one end of the transmission sleeve 124.
  • the first bearing 1261, the second bearing 1262 and the third bearing 1263 are sequentially disposed in the conversion sleeve 126.
  • a first washer 1261a, a second washer 1262a and a third washer 1263a are respectively disposed on one side of each bearing, and the first end of the drive shaft 125 is designed in two steps, and the first step passes through the conversion sleeve The end surface of the 126 is stopped on one side of the first bearing 1261. The end of the transmission shaft 125 passes through the first bearing 1261, the second bearing 1262, the third bearing 1263, and the bearing cover 1264 and then extends into the transmission sleeve 124. And fixed with a nut 1265. The second step of the drive shaft 125 is stopped inside the nut 1265, and the nut 1265 is stopped outside the bearing cover 1264.
  • the drive shaft 125 is rotatably coupled to the drive sleeve 124 with respect to the drive sleeve 124, and cannot Moving relative to the transmission sleeve 124 in the axial direction thereof, thereby transmitting the linear motion of the transmission sleeve 124 to the transmission shaft 125, so that the transmission shaft 125 can drive the synchronous disc 131 together to perform linear motion as well as rotate around its axis. motion.
  • FIG. 11A is a plan view of the synchronizing disk 131
  • FIG. 11B is a cross-sectional view of the synchronizing disk 131 of FIG. 11A along the line DD
  • FIG. 11C is a front end portion of the connecting end of the synchronizing disk 131.
  • a side view of the direction, and FIG. 11D is a cross-sectional view of the connecting end bolt hole of the synchronizing disk 131 taken along line EE.
  • the synchronizing disc 131 shown in the specific embodiment of the figure includes an integrally formed disc-shaped base 1311, a sleeve 1312, and a pair of connecting ears 1313 protruding forward from the sleeve; wherein the disc-shaped base 1311 is waiting a plurality of bolt holes are provided at intervals, the number corresponding to the number of blades, the central axis extending in a direction substantially parallel to the central axis of the blade slewing bearing; the two ends of the sleeve 1312 are respectively provided with an oil seal groove 1314; A pair of pin holes 1315 are respectively formed on the relatively protruding connecting ears 1313.
  • Figure 12A is a cross-sectional view of the guide support 132
  • Figure 12B is a right side view of the guide support 132
  • Figure 12C is the guide cylinder of the guide support 132 along the FF line
  • 1D is a cross-sectional view of the guide support 132 of FIG. 12A taken along line FF.
  • the guiding support base 132 is integrally cast and formed, and includes two parts, a base 1321 and a guiding tube 1322.
  • the guiding tube 1322 extends into one end of the hub 21 and is provided with a pair of opposite long holes 1323.
  • the base 1321 is fixed to the rear end of the hub 21 by bolts, and its guide cylinder 1322 extends horizontally forward to the middle of the hub 21.
  • a shaft end cover 1324 is disposed at one end of the guiding cylinder 1322 facing the driving sleeve 124.
  • a lubricating bearing is disposed between the shaft end cover 1324 and the transmission shaft 125.
  • the guiding tube 1322 is disposed at the guiding tube 1322.
  • a slide cover 1325 is provided near the open end of the hub 21.
  • the pin 127 is bored through the pin hole 1315 of the pair of connecting ears 1313 of the synchronizing disk 131 (see FIG. 11), and the long hole on the guiding cylinder 1322 of the guiding seat 132 is guided. 1323 (see Figure 12), slide 1325 And the pin hole in the connecting end of the transmission shaft 125, such that the transmission shaft 125 linearly moves along the long hole 1323 of the guiding cylinder 1322 with the pin shaft 127, and moves the transmission shaft in the axial direction.
  • the synchronous disk 131 sleeved on the guiding cylinder 1322 can be driven to move, and the long hole 1323 serves as a guiding function for the pin shaft 127 and the synchronous disk 131. Therefore, with the structure described above, the drive shaft 125 can rotate with the synchronizing disc 131 together with the hub 21 and its blades, and the synchronizing disc 131 can also be driven by the variable frequency brake deceleration motor combination 110 with the drive shaft 125.
  • the guide cylinder 1322 along the guide support 132 linearly moves in the axial direction.
  • FIG. 13A and 13B are a front and partial cross-sectional views and a perspective view, respectively, of a link 133, each of which is provided with a connecting hole 1331 at each end.
  • the synchronous link mechanism 130 of the present invention is connected to the inner ring 2222 of the blade slewing bearing 222 via the link 133.
  • the first connecting hole 1331 of the connecting rod 133 is pivotally connected to the bolt hole 1316 of the disk-shaped base 1311 of the synchronous disk 131 through a first connecting port, and the second connecting hole passes through a first connecting hole.
  • the two ports are pivotally connected to a connecting block 134 which is fixed to the inner ring 2222 of the blade slewing bearing 222 by a plurality of bolts. Referring to the perspective exploded view of FIG.
  • the working principle of the multi-blade single-drive synchronous pitching device 100 of the present invention will be described below with reference to the perspective views of FIG. 7 and FIG. 8.
  • the motor of the power source 110 When the motor of the power source 110 is started, the rotation of the output of the reducer is converted into linear motion transmission via the transmission sleeve 124.
  • the drive shaft 125 drives the synchronous disk 131 to move linearly along the axial direction guided by the guiding cylinder 1322.
  • the movable range of the synchronous disk 131 along the axial direction of the guiding cylinder 1322 can be preset by the program of the programmable controller.
  • the control is performed by the limit sensor and the travel switch to determine the angular range in which the inner ring of the slewing bearing 222 is rotatable relative to the outer ring.
  • the angle range of the pitch can be calculated by inputting the PLC program, which simplifies the control process (regular detection and control of each blade individually), thereby further improving the synchronous pitch.
  • the operational reliability of the device By detecting the amount of front and rear displacement of the synchronous disk by the limit sensor, the angle range of the pitch can be calculated by inputting the PLC program, which simplifies the control process (regular detection and control of each blade individually), thereby further improving the synchronous pitch. The operational reliability of the device.
  • the present invention also provides a shutdown feathering protection method. Since the pitch drive device has a set of power sources from the wind turbine itself, in addition to the conventional grid power supply, the synchronous pitch can be controlled by the control device.
  • the driving device provides online power supply. When the power grid is cut off, the energy output from the genset itself can be used to reliably stop the wind turbine from feathering, thus replacing the conventional practice of using the battery pack as an essential backup power source.
  • the variable frequency brake motor of the synchronous pitch mechanism of the present invention has a function of enabling the blade to maintain its operating angle after pitching.
  • the pitch synchronous linkage device is mainly composed of a separate power source composed of a set of variable frequency brake motor, and a transmission mechanism composed of a coupling, a ball screw, a transmission sleeve and a transmission shaft, through a single synchronous disk and a connecting rod connection between a plurality of blade slewing bearings, Converting the rotary motion into a linear motion, using a single low-power motor drive to meet the power requirements of multiple blade synchronous pitches, not only reduces energy consumption, but also reduces manufacturing costs, and Under the control of the control device, a single synchronous disk is used to drive a single synchronous disk for linear motion control, and a plurality of paddle blades are synchronously implemented to perform pitching, so that the pitch speed and precision of the plurality of blades are completely identical, and the structure is simple and the precision is high. Reliable operation.
  • Another aspect of the present invention is also advantageous in that a double-layer bearing structure is employed to support the first end of the transmission mechanism 120, and the transmission mechanism 120 of the synchronous pitching device is skillfully placed in the nacelle 11, and the synchronous linkage mechanism is
  • the 130 is disposed in the hub 21, and fully utilizes the internal space of the nacelle 11 and the hub 21, so that the conventional detection circuit cable or the like can be directly connected to the interior of the nacelle 11 at a stationary component, and in the relatively narrow hub 21
  • Only mechanical components such as synchronous linkages with relatively small mass and volume are placed inside, which not only optimizes the line stability of the control device, but also ensures the operational reliability of the transmission mechanism, facilitates installation and maintenance, and prolongs the use of the equipment. life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Wind Motors (AREA)

Abstract

一种用于多桨叶叶轮***中的单驱同步变桨装置,包括动力源、传动机构、同步连杆机构以及控制装置,其中,传动机构包括联轴器(121)、滚珠丝杠(122)、传动套(124)、传动轴(125)和转换套(126);同步连杆机构包括同步盘(131)、导向支撑座(132)和连杆(133);控制装置包括转速检测器、限位传感器、行程开关和可编程控制器。所述滚珠丝杠和传动套将动力源输出的旋转转化为传动轴的直线运动,再通过转换套将其传递给同步连杆机构的同步盘,所述控制器被设置为令传动轴仅在预设长度范围内做直线运动,驱动同步盘在导向支撑座上往复移动,通过连杆带动多个桨叶回转支撑轴承的内圈同步地相对于其外圈旋转同样的角度,以实现可控的单驱同步变桨。该单驱同步变桨装置结构简单,控制简便,能耗低且运行可靠。

Description

多桨叶单驱同步变桨装置 技术领域
本发明主要涉及的是应用于风力或水力发电机中的叶轮***的变桨技术,具体涉及一种多桨叶叶轮***的同步变桨装置 。
背景技术
随着社会经济的迅猛发展,人们对能源的需求与日俱增,由此带来的环境污染也日益加重。风能和水能是可再生的清洁能源,因而风力、水力发电机越来越受到世界各地的广泛关注和推广应用 。
桨叶是利用风能水能带动发电机转子旋转的关键介质,桨叶的形状直接影响着发电机的效率,为了充分利用能源,提高能源转换效率,具有适时变桨技术的发电机叶轮***已成为市场首选 。
目前,经常被应用的变桨机构主要是在叶轮***的轮毂内部,对应于每个桨叶安装一套变桨机构,再以同步控制装置对各个桨叶实行同步变桨控制。这些同步变桨机构主要包括伺服电机齿轮传动、电动缸直驱等几种形式,但现有技术的这些变桨机构分别存在以下一种或几种不足:
- 结构复杂、造价高、所需要的安装空间较大,在中小型发电机中几乎不能适用;
- 由于采用多驱动模式,而导致能耗较大;
- 由于轮毂是旋转部件,所以现有技术中的同步结构中所有控制电路的电缆均需要采用电滑环过渡的形式安装,使运行可靠性降低; 多桨叶同步控制及检测难度大,控制精度低;
- 由于较多的部件都装载在旋转运动着的轮毂之中,增加了发电机转子重量和惯性,因而增加了变桨故障发生的概率,降低了发电效率;
- 发生故障时,检修和维护难度大;
- 发电机停机实行顺桨保护时需要依靠外部电源供电,应对外部电源异常断电不能及时顺桨,存在一定的风险。
因此,亟需开发一种结构紧凑、控制简便、成本低、能耗低、可靠性高的新型多桨叶叶轮***的同步变桨机构以克服以上现有技术的不足。
发明内容
有鉴于现有多桨叶风轮***中的同步变桨技术中的上述缺陷,本发明提供了一种仅以单一动力源、传动机构、同步连杆机构和控制装置实现多桨叶同步变桨,可适用于各种中小型多桨叶风轮***的新型单驱同步变桨装置。
为实现上述发明目的,本发明所提供的多桨叶单驱同步变桨装置,用于包括轮毂和多个桨叶的叶轮***中,所述桨叶分别通过对应的回转支撑座等间距间隔地固定安装在轮毂周围,每个回转支撑座包含一回转支撑轴承,每个回转支撑轴承包含可相对旋转的内圈和外圈;其中所述同步变桨装置包括一动力源,一传动机构,一同步连杆机构以及一控制装置;其中,所述传动机构包括一联轴器、一滚珠丝杆、一传动套、一传动轴和一转换套;所述同步连杆机构包括一同步盘、一导向支撑座和一连杆;所述控制装置,包括转速检测器、限位传感器和行程开关、以及可编程控制器;所述传动机构的滚珠丝杆和传动套将动力源输出的旋转动力转化为传动轴的直线运动传递给同步连杆机构的同步盘;所述控制器被设置为令所述传动轴仅在预设的长度范围内做直线运动,带动同步盘在导向支撑座上往复移动,从而通过连杆带动多个桨叶回转支撑轴承内圈同步地相对于其外圈旋转相同的角度,实现单驱动同步变桨。
上述本发明的单驱同步变桨装置主要是通过同步盘与多个桨叶回转轴承之间的连杆连接,由单个动力源驱动同步盘直线运动以便可以同时控制多个桨叶的变桨运动,其结构简单直接,控制精确,实现多个桨叶以完全一致的速度和精度同步运转,达到很高的运行可靠性。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是应用本发明的多桨叶单驱同步变桨装置的一种风力发电机的主机和叶轮部分的总体结构剖视图;
图2A为图1所示的风力发电机的外观立体图;
图2B为图1所示的风力发电机的俯视图;
图3为本发明的多桨叶单驱同步变桨装置的总体结构的俯视图,消隐了图1所示的风力发电机;
图4为图3中的多桨叶单驱同步变桨装置沿A-A线的剖视图;
图5为详细描述本发明的多桨叶单驱同步变桨装置安装于风力发电机中的放大的剖视示意图;
图6为图5中的风力发电机的叶轮部分沿B-B线的剖视图;
图7为本发明的同步变桨装置消隐了风力发电机轮毂之后,仅表现了一套桨叶回转支撑座的立体示意图;
图8为图7中的同步变桨装置的桨叶回转支撑座被分解之后所显示的立体示意图;
图9为图5中所示的传动轴的第一端与传动套的第二端连接部位I的放大剖视图;
图10为沿图5中的C-C线的剖视图,显示了传动轴的第二端与同步盘以及导向支撑座之间的连接关系;
图11A为根据本发明的同步变桨装置中的同步盘具体实施例的俯视图 ;
图11B为图11A中的同步盘具体实施例沿D-D线的侧视图 ;
图11C为图11A中的同步盘具体实施例沿II向的局部侧视图 ;
图11D为图11A中的同步盘具体实施例沿E-E线的局部剖视图 ;
图12A为根据本发明的同步变桨装置中的导向支撑座具体实施例的剖视图 ;
图12B为图12A中的导向支撑座具体实施例的右视图 ;
图12C为图12A中的导向支撑座具体实施例沿F-F线的剖视图 ;
图12D为图12A中的导向支撑座具体实施例的立体示意图 ;
图13A为根据本发明的同步变桨装置中的连杆具体实施例的局部剖视的示意图;
图13B为图13A中的连杆具体实施例的立体示意图。
具体实施方式
以下结合附图中的具体实施例来详细说明本发明的原理,由于这种叶轮变桨技术可应用于各种形式的叶轮***,比如风力或水力发电机、直升飞机等多桨叶叶轮***,因此,本发明实际上提供了一种适合多种变桨技术领域的多桨叶单驱同步变桨装置。可以理解,以下将根据本发明基本原理的多桨叶单驱同步变桨装置应用于风力发电机中实现对桨叶角度的同步调整作为应用本发明的一种具体实施例,仅为举例来说明本发明的目的,而不是对本发明保护范围的限定。
图1所示为应用本发明的同步变桨装置的风力发电机主机和叶轮***的总体结构的剖视图,典型的风力发电机一般包括发电机主机10和叶轮***20两大部分,发电机主机10设置在机舱11的内部,而叶轮***20包括设在机舱11前的轮毂21和等间距安装在轮毂21周围的多个桨叶,图中为简明起见未显示桨叶。根据本发明的多桨叶单驱同步变桨装置即设置在风力发电机10主机机舱11和轮毂21的内部。作为参考,图2A和2B分别为图1所示的风力发电机10的外观立体图和俯视图。
图3为本发明多桨叶单驱同步变桨装置100的总体结构的俯视图,为了更为清楚地展现其结构而消隐了图1中的风力发电机主机10;图4则为图3中的多桨叶单驱同步变桨装置沿A-A线的剖视图。进一步地,图5的放大剖视图更为详细地描述了本发明的多桨叶单驱同步变桨装置100安装于风力发电机主机10中的情况,其中的虚线部分表示为风力发电机的主机10,包括发电机转子轴12和发电机定子13等;而实线部分表示为叶轮***20的轮毂21和安装在主机机舱11和轮毂21内部的同步变桨装置100。叶轮***20的轮毂21周围等间距地设有多个桨叶安装孔,每个桨叶安装孔上固定着一套桨叶回转支撑座22,对应地,每一套桨叶回转支撑座22用于固定安装一片桨叶。
该桨叶回转支撑座22的结构亦可参见图6、图7和图8,其中,图6为图5中的风力发电机10的叶轮部分沿B-B线的剖视图;图7为消隐了风力发电机的轮毂21后仅表现了其中一套桨叶回转支撑座22时的多桨叶单驱同步变桨装置100立体示意图;图8为该桨叶回转支撑座22分解后的立体示意图。图5和图6的剖视图清楚地显示了该桨叶回转支撑座22与轮毂21之间的结构关系,而图7和图8的立体图则更为清楚地显示了桨叶回转支撑座22与同步变桨装置100之间的连接方式。所述桨叶回转支撑座22包括一联接法兰221、一支撑轴承222 以及一叶根护罩223。桨叶的根部通过复数个螺栓固定连接于联接法兰221的一端,联接法兰221的另一端通过复数个螺栓固定连接于支撑轴承222的内圈。而支撑轴承222的外圈则通过复数个螺栓固定连接于桨叶安装孔的周边,支撑轴承222的内圈和外圈可相对旋转,从而允许桨叶相对于轮毂21旋转。
现参考图5、图7和图8所示,本发明的同变桨装置100主要包括动力源110、传动机构120、同步连杆机构130、以及控制装置四大部分。动力源110有利地采用了普通的变频制动电动机与行星减速机的组合,简称变频制动减速电机组合。传动机构120主要由联轴器121、滚珠丝杆122、支撑机构123、传动套124、传动轴125以及转换套126组成。同步连杆机构130中包括同步盘131、导向支撑座132和连杆133。另外,控制装置部分主要包括用于测量减速器输出速度的转速检测器、用于检测传动套124的移动位置的限位传感器、用于切换丝杆旋转方向的行程开关、以及用于控制整个同步变桨装置的转速及方向的可编程控制器等。
具体而言,动力源110即上述变频制动减速电机的输出轴通过联轴器121连接滚珠丝杆122的第一端,使滚珠丝杆122与减速器输出轴一起旋转。从图5中可以看出滚珠丝杆122的第一端通过的支撑机构123支撑于风力发电机的转子轴12的后端,优选地,所述支撑机构123被设计为如图5中所示的双层轴承支撑结构,巧妙地利用旋转的转子轴12支撑传动机构120的一端,既简化了结构,又保障了运行可靠性。滚珠丝杆122的第二端与传动套124的第一结合端相互螺纹结合,滚珠丝杆122所输出的顺时针或逆时针旋转,通过传动套124的螺母与滚珠丝杆122之间的螺纹结合被转化为传动套124相对于滚珠丝杆122的前后直线运动,再通过传动套124传递给传动轴125。传动轴125的第一端通过转换套126连接于传动套124的第二结合端,使该传动轴125仅可相对于传动套124旋转而不能相对于该传动套124在轴向方向上移动,其结构可详见于后面关于图9的说明。传动轴125的第二端通过一销轴127与同步盘131和导向支撑座132的前端相连接,其具体结构可见于后面关于图10的详细说明。
图9的放大剖视图为图5中所示的传动轴125的第一端通过转换套126与传动套124的第二端相连接的部位I的放大的剖视图。所述转换套126的罩壳上设有凸出的法兰,以螺栓固定于传动套124的一端,于转换套126中依序设有第一轴承1261、第二轴承1262和第三轴承1263,在各个轴承的一侧还分别设有第一垫圈1261a、第二垫圈1262a和第三垫圈1263a,该传动轴125的第一端被设计成两级台阶状,第一级台阶穿过转换套126的端面,被止挡于第一轴承1261的一侧,传动轴125端部穿过第一轴承1261、第二轴承1262、第三轴承1263,以及轴承盖1264之后延伸至传动套124内,并以螺母1265固定。传动轴125的第二台阶被止挡于螺母1265内侧,而螺母1265则被止挡于轴承盖1264外侧,因此,传动轴125被相对于传动套124可旋转地连接于传动套124,而不能相对于该传动套124在其轴线方向上运动,从而将传动套124的直线运动传递给传动轴125,使传动轴125既可以带动同步盘131一起做直线运动同时也可以围绕其轴心做旋转运动。
图10为沿图5中的C-C线的放大剖视图,更为清楚地显示了传动轴125的第二端、同步盘131、导向支撑座132、以及销轴127之间的连接。同步盘131的结构如参考图11A-11D所示,图11A为同步盘131的俯视图,图11B为图11A中的同步盘131沿D-D线的剖视图,图11C为同步盘131连接端前端部II向的侧视图,而图11D为同步盘131的连接端螺栓孔沿E-E线的剖视图。如图中的具体实施例所示的同步盘131包括一体成型的盘形底座1311、套筒1312以及自套筒向前突伸而出的一对连接耳1313;其中该盘形底座1311上等间隔地设有多个螺栓孔,数量对应于桨叶数量,其中心轴沿基本上平行于桨叶回转支撑轴承的中心轴的方向延伸;套筒1312内的两端分别设有油封槽1314;相对突出的连接耳1313上分别设有一对销孔1315。导向支撑座132的结构参考图12A-12D所示,图12A为导向支撑座132的剖视图,图12B为导向支撑座132的右视图,图12C为导向支撑座132的导向筒部位沿F-F线的剖视图,图12D为图12A的导向支撑座132沿F-F线的剖视图。导向支撑座132为一体铸造成型,包括底座1321和导向筒1322两部分,该导向筒1322伸入轮毂21的一端设有一对相对的长孔1323。
底座1321通过螺栓固定在轮毂21的后端,其导向筒1322则向前水平延伸至轮毂21的中部。在导向筒1322朝向传动套124的一端设有一轴端盖1324,在该轴端盖1324与传动轴125之间设有润滑轴承;在导向筒1322 靠近轮毂21的开口端设有一滑盖1325。
仍由图10并参考图7或图8可见,销轴127穿设于同步盘131的一对连接耳1313的销孔1315(见图11),导向支撑座132的导向筒1322上的长孔1323(见图12),滑盖1325 ,以及传动轴125连接端上的销孔之中,这样,使所述传动轴125带着所述销轴127沿该导向筒1322上的长孔1323作直线运动,在轴向上移动传动轴125即可以带动套在导向筒1322上的同步盘131移动,长孔1323对于销轴127和同步盘131起到导向的作用。因此,通过以上所描述的结构,传动轴125可以随着同步盘131与轮毂21及其桨叶等一起旋转,而同步盘131也可以在变频制动减速电机组合110的驱动下随传动轴125沿导向支撑座132的导向筒1322在轴向上作直线运动。
图13A和13B分别为连杆133的前视和局部剖视图以及立体图,其两端各设有一个连接孔1331。本发明上述的同步连杆机构130即通过该连杆133与桨叶回转支撑轴承222的内圈2222相连接。具体地,可参见图5至图8,连杆133的第一连接孔1331通过一第一连接拴枢接于同步盘131的盘形底座1311的螺栓孔1316,其第二连接孔通过一第二连接拴枢接于一块连接块134,该连接块134以多个螺栓固定于桨叶回转支撑轴承222的内圈2222 ,参考图8的立体分解图。
下面结合图7和图8的立体图来介绍本发明的多桨叶单驱同步变桨装置100的工作原理,当动力源110的电机启动,减速器输出的旋转经传动套124转换为直线运动传递给传动轴125,传动轴125带动同步盘131沿导向筒1322所引导的轴向作直线运动,同步盘131沿该导向筒1322的轴向可移动的范围可以由可编程控制器的程序预先设定,通过限位传感器和行程开关来控制,从而确定回转支撑轴承222的内圈相对于外圈可旋转的角度范围。通过上述的结构,在风轮旋转时,传动轴125在销轴127的带动下随着风轮一起旋转,而当变频制动减速电机组合110启动的时候,传动轴125会带动同步盘131沿着导向筒1322作直线运动。从图中可以看到设在减速器旁的速度检测器,用于测量减速器的输出速度,通过可编程控制器的程序来可以计算出桨叶变桨角度,从而控制减速器的输出速率,以调整变桨的速度。通过限位传感器检测到同步盘的前后位移量,便可以通过输入PLC的程式计算出变桨的角度范围,简化了控制过程(常规每支叶片单独检测和控制),从而进一步提高了同步变桨装置的运行可靠性。
有利的是,本发明还提供了一种停机顺桨保护方法,由于变桨驱动装置除了接入常规的电网电源,还有一组来自风力发电机本身输出的电源,可以通过控制装置给同步变桨驱动装置提供在线式供电,当电网断电时,可以即时利用发电机组自身输出的能量可靠地使风轮顺桨停机,从而取代了以蓄电池组作为必备备用电源的常规作法。另外, 本发明的同步 变桨机构的变频制动电机具有能够使桨叶在变桨后保持其运转角度的功能。
综上,根据本发明的 变桨同步连杆装置主要是通过由一套变频制动减速电机组合的独立的动力源,由联轴器、滚珠丝杆、传动套、传动轴等组成的传动机构,通过单个的同步盘与多个桨叶回转轴承之间的连杆连接, 将旋转运动转变为直线运动,利用单个小功率的电机驱动就能满足多个桨叶同步变桨的动力要求,不仅降低了能耗,也减少了制造成本,并且 在控制装置的控制下,以一套动力带动单个同步盘作直线运动控制多个桨叶片同步地实施变桨,使多个桨叶的变桨速度和精度完全一致,其结构简单、精度高、运行可靠。
本发明又一方面优点还在于,采用了双层轴承结构来支撑传动机构120的第一端,又巧妙地将同步变桨装置的传动机构120安置在了机舱11内,而将同步连杆机构130安置在轮毂21内,充分有效地利用了机舱11和轮毂21的内部空间,使常规的检测电路线缆等均可直接连接机舱11内部在静止的零部件商,而在较为狭小的轮毂21内部仅安置了质量和体积均为比较小的同步连杆机构等机械部件,不仅优化了控制装置的线路稳定性,更保证了传动机构的运行可靠性,便于安装和维护,延长了设备的使用寿命。
尽管以上详细描述了本发明较佳的具体实施例,可以理解的是,对于上述本发明具体实施例的所描述的技术方案仅为说明本发明宗旨的目的而非限定,本领域普通技术人员可以在理解本发明的构思和教导的基础上无需创造性劳动而作出某些显而易见的修改、变化或者等同的替换,这些显而易见的修改、变化或者等同替换皆应在本申请所附的权利要求的保护范围内。

Claims (8)

  1. 一种用于多桨叶叶轮***中的单驱同步变桨装置,所述多桨叶叶轮***包括轮毂和多个桨叶,所述桨叶分别通过对应的回转支撑座(22)等间距间隔地固定安装在轮毂周围,每个回转支撑座(22)包含一回转支撑轴承(222),每个回转支撑轴承(222) 包含可相对旋转的外圈(2221) 和内圈(2222) ,其特征在于 所述单驱同步变桨装置包括一动力源(110)、 一传动机构(120)、一同步连杆机构(130)以及一控制装置;其中,所述传动机构(120)包括一联轴器(121),一滚珠丝杆(122)、一传动套(124)、一传动轴(125)和一转换套(126);所述同步连杆机构(130)包括一同步盘(131)、一导向支撑座(132)和多个连杆(133);所述控制装置包括一转速检测器、一限位传感器、一行程开关以及一可编程控制器; 所述传动机构(120)的滚珠丝杆(122)和传动套(124)通过螺纹结合将动力源(110)输出的旋转动力转化为传动轴(125)的直线运动,再通过转换套(126)传递给同步连杆机构(130)的同步盘(131); 所述控制器被设置为令所述传动轴(125)仅在预设的长度范围内做直线运动,驱动同步盘(131)在导向支撑座(132)上沿轴向方向往复移动,从而通过所述多个连杆(133)带动所述多个桨叶回转支撑轴承(222)的内圈(2222)相对于外圈(2221)同步地旋转相同的角度 。
  2. 根据权利要求1所述的多桨叶单驱同步变桨装置,其特征在于所述传动机构(120)还包括一具有双层轴承结构的支撑机构(123)。
  3. 根据权利要求1所述的多桨叶单驱同步变桨装置,其特征在于所述同步盘(131)包括一体成形的盘形底座(1311)、套筒(1312)以及一对向前突伸的连接耳(1313),于所述连接耳(1313)上设有一对相对的销孔(1315)。
  4. 根据权利要求3所述的多桨叶单驱同步变桨装置,其特征在于所述同步盘(131)的套筒(1312)内的两端分别设有油封槽(1314)。
  5. 根据权利要求3所述的多桨叶单驱同步变桨装置,其特征在于所述同步盘(131)的底座(1311)等间隔地设有多个螺栓孔(1316)用于固定连杆(133)的连接拴,所述螺栓(1316)孔的数量对应于桨叶的数量,该螺栓孔(1316)的中心轴基本上平行于桨叶回转支撑轴承(222)的中心轴方向延伸。
  6. 根据权利要求1所述的多桨叶单驱同步变桨装置,其特征在于所述导向支撑座(132)包括一体成形的底座(1321)和导向筒(1322),于该导向筒(1322)伸入轮毂21的一端设有一对相对的长孔(1323)。
  7. 根据权利要求1所述的多桨叶单驱同步变桨装置,其特征在于所述传动轴(125)的第一端可相对于传动套(124)旋转而不能相对于传动套(124)在轴向上移动地连接于该传动套(124)的结合端。
  8. 根据权利要求8所述的多桨叶单驱同步变桨装置,其特征在于所述传动轴(125)的第一端通过转换套(126)连接于传动套(124),所述转换套(126)中依序设有第一、第二和第三轴承(1261、1262、1263),在第一轴承(1261)的一侧设有第一垫圈(1261a),在第二轴承(1262)的一侧设有第二垫圈(1262a),在第三轴承(1263)的一侧设有第三垫圈(1263a),所述传动轴(125)的第一端被设计成两级台阶状,其第一级台阶穿过转换套(126)的端面被止挡于第一轴承(1261)的一侧,传动轴(125)的第二台阶穿过第一、第二和第三轴承(1261、1262、1263)以及轴承盖(1264)之后延伸至传动套(124)内并以螺母(1265)固定,所述第二台阶被止挡于螺母(1265)内侧,而螺母(1265)则被止挡于轴承盖(1264)外侧。
PCT/CN2011/079295 2011-09-02 2011-09-02 多桨叶单驱同步变桨装置 WO2013029277A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DK11852207.7T DK2597304T3 (en) 2011-09-02 2011-09-02 WIND TURBINE WITH A MECHANISM FOR synchronously VARY SLOPE OF A MULTI BLADE ROTOR
EP11852207.7A EP2597304B1 (en) 2011-09-02 2011-09-02 Wind turbine with a mechanism for synchronously varying the pitch of a multi-blade rotor
PCT/CN2011/079295 WO2013029277A1 (zh) 2011-09-02 2011-09-02 多桨叶单驱同步变桨装置
US13/520,733 US9322284B2 (en) 2011-09-02 2011-09-02 Mechanism for synchronously varying pitch of a multi-blade rotor
CN201180002326.2A CN102725519B (zh) 2011-09-02 具有多桨叶单驱同步变桨装置的风力发电机
PL11852207T PL2597304T3 (pl) 2011-09-02 2011-09-02 Turbina wiatrowa z mechanizmem do synchronicznego zmieniania skoku wirnika wielołopatowego

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/079295 WO2013029277A1 (zh) 2011-09-02 2011-09-02 多桨叶单驱同步变桨装置

Publications (1)

Publication Number Publication Date
WO2013029277A1 true WO2013029277A1 (zh) 2013-03-07

Family

ID=46950457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/079295 WO2013029277A1 (zh) 2011-09-02 2011-09-02 多桨叶单驱同步变桨装置

Country Status (5)

Country Link
US (1) US9322284B2 (zh)
EP (1) EP2597304B1 (zh)
DK (1) DK2597304T3 (zh)
PL (1) PL2597304T3 (zh)
WO (1) WO2013029277A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITVR20130105A1 (it) * 2013-05-03 2014-11-04 Treccani Engineering S R L Turbina eolica
US9322284B2 (en) 2011-09-02 2016-04-26 Jin Peng Liu Mechanism for synchronously varying pitch of a multi-blade rotor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2435340B1 (es) * 2012-06-15 2014-12-05 Gamesa Innovation & Technology, S.L. Sistema de fijación para aerogeneradores y método de colocación del mismo
CN103670920B (zh) * 2012-09-06 2016-06-01 台达电子工业股份有限公司 风力变桨***及风力变桨***的桨叶零点备份与恢复方法
PL225683B1 (pl) * 2014-07-31 2017-05-31 Ząber Zdzisław Przedsiębiorstwo Produkcyjno Usługowe Dr Ząber Sposób sterowania elektrownią wiatrową oraz zespół sterowania elektrownią wiatrową
CN107429661A (zh) * 2015-03-30 2017-12-01 维斯塔斯风力***有限公司 包括两个或更多个转子的风轮机
BR112017019060A2 (pt) * 2015-03-30 2018-04-17 Vestas Wind Sys As turbina eólica com um rotor compreendendo um pino rei oco
DE102015105249B3 (de) * 2015-04-07 2016-09-29 Technische Universität Berlin Rotor und Verfahren zum Einstellen eines Blattstellwinkels eines Rotorblatts am Rotor
EP3845760A1 (en) * 2019-12-31 2021-07-07 Nordex Energy Spain, S.A.U. Pitch bearing of a wind turbine, wind turbine and method of limiting the stresses in the reinforcement plates of a pitch bearing
CN115750207B (zh) * 2022-11-24 2024-02-20 华能四平风力发电有限公司 一种风电机组防超速偏航提升装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183715A (en) * 1978-02-01 1980-01-15 First National Bank Of Lubbock Adjustable vane windmills
US4435646A (en) * 1982-02-24 1984-03-06 North Wind Power Company, Inc. Wind turbine rotor control system
US4490093A (en) * 1981-07-13 1984-12-25 U.S. Windpower, Inc. Windpower system
CN101037988A (zh) * 2006-03-16 2007-09-19 沈阳风电设备发展有限责任公司 一种风力发电机变桨距装置
CN201334986Y (zh) * 2008-10-23 2009-10-28 宁波欣达(集团)有限公司 风力发电机的变桨距机构
US20110135471A1 (en) * 2007-06-12 2011-06-09 Jonathan Graham Wangford Wind Turbine
CN201953567U (zh) * 2011-03-29 2011-08-31 三一电气有限责任公司 一种风力发电机组及其变桨机构

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4623051A (en) * 1984-05-02 1986-11-18 Roton Products, Inc. Load bearing, one-way, spring clutch assembly
JP3581918B2 (ja) * 1998-08-21 2004-10-27 東洋機械金属株式会社 射出成形機のノズルタツチ機構
KR100306208B1 (ko) * 1998-09-16 2001-12-20 조한원 회전체의날개각조절장치
JP2000145914A (ja) * 1998-11-17 2000-05-26 Tsubakimoto Chain Co 逆転防止機構付直線作動機
JP2001120599A (ja) * 1999-10-29 2001-05-08 Nissan Shatai Co Ltd シートリフタ
EP1719812B1 (en) * 2004-02-09 2018-04-04 NTN Corporation Grease
EP2343455A1 (en) * 2010-01-07 2011-07-13 Vestas Wind Systems A/S Wind energy power plant having a rotor blade pitch actuator
CN201881049U (zh) * 2010-11-09 2011-06-29 苏州德龙激光有限公司 应用于激光加工设备的激光螺旋旋转光学模组
PL2597304T3 (pl) 2011-09-02 2015-12-31 Shanghai Ghrepower Green Energy Co Ltd Turbina wiatrowa z mechanizmem do synchronicznego zmieniania skoku wirnika wielołopatowego

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4183715A (en) * 1978-02-01 1980-01-15 First National Bank Of Lubbock Adjustable vane windmills
US4490093A (en) * 1981-07-13 1984-12-25 U.S. Windpower, Inc. Windpower system
US4435646A (en) * 1982-02-24 1984-03-06 North Wind Power Company, Inc. Wind turbine rotor control system
CN101037988A (zh) * 2006-03-16 2007-09-19 沈阳风电设备发展有限责任公司 一种风力发电机变桨距装置
US20110135471A1 (en) * 2007-06-12 2011-06-09 Jonathan Graham Wangford Wind Turbine
CN201334986Y (zh) * 2008-10-23 2009-10-28 宁波欣达(集团)有限公司 风力发电机的变桨距机构
CN201953567U (zh) * 2011-03-29 2011-08-31 三一电气有限责任公司 一种风力发电机组及其变桨机构

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2597304A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9322284B2 (en) 2011-09-02 2016-04-26 Jin Peng Liu Mechanism for synchronously varying pitch of a multi-blade rotor
ITVR20130105A1 (it) * 2013-05-03 2014-11-04 Treccani Engineering S R L Turbina eolica

Also Published As

Publication number Publication date
US20130216380A1 (en) 2013-08-22
US9322284B2 (en) 2016-04-26
EP2597304A1 (en) 2013-05-29
PL2597304T3 (pl) 2015-12-31
EP2597304B1 (en) 2015-05-27
DK2597304T3 (en) 2015-08-31
CN102725519A (zh) 2012-10-10
EP2597304A4 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
WO2013029277A1 (zh) 多桨叶单驱同步变桨装置
CN102678467B (zh) 一种变桨距垂直轴风力机
KR20140072561A (ko) 풍력발전기의 회전축 잠금장치
CN201300421Y (zh) 一种i型单自由度机器人关节模块
CN102392782A (zh) 一种升阻力非固定组合型垂直轴风力机
WO2016062295A1 (zh) 一种风力发电机组单框架式叶轮
CN103867388B (zh) 电动直驱式风电变桨驱动***
US9074579B2 (en) Power generator
US10018182B2 (en) Turbine driven by wind or motor and method for generating electricity
CN201808064U (zh) 单自由度旋转装置
CN201653696U (zh) 风力发电机组变桨***试验设备
CN202718810U (zh) 一种变桨距垂直轴风力机
CN201731996U (zh) 全数字化的电动变桨***功能实验台
CN201714564U (zh) 变角度风叶控制装置
CN108999744B (zh) 一种教学型风力发电机变桨联动机构
CN101004167A (zh) 花瓣状风叶垂直轴高效风力发电机
CN101907515B (zh) 全数字化的电动变桨***功能实验台
CN103953504B (zh) 电动直驱式风电变桨装置
CN201650590U (zh) 风力发电机联动变桨结构
WO2012138129A2 (ko) 날개이동식 수직형 풍력발전장치
CN209458058U (zh) 一种教学型风力发电机变桨联动机构
CN113640537A (zh) 一种用于风力发电机低速侧的转速检测装置及方法
CN203783811U (zh) 电动直驱式风电变桨驱动***
CN102725519B (zh) 具有多桨叶单驱同步变桨装置的风力发电机
CN221144650U (zh) 一种自适应的海流能发电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002326.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2011852207

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13520733

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852207

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE