WO2013027318A1 - Automatic adjustment device for tracking filter and receiver using same - Google Patents

Automatic adjustment device for tracking filter and receiver using same Download PDF

Info

Publication number
WO2013027318A1
WO2013027318A1 PCT/JP2012/004083 JP2012004083W WO2013027318A1 WO 2013027318 A1 WO2013027318 A1 WO 2013027318A1 JP 2012004083 W JP2012004083 W JP 2012004083W WO 2013027318 A1 WO2013027318 A1 WO 2013027318A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
filter
tracking filter
control signal
Prior art date
Application number
PCT/JP2012/004083
Other languages
French (fr)
Japanese (ja)
Inventor
聡 塚本
秀彦 栗本
大場 康雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013027318A1 publication Critical patent/WO2013027318A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J3/00Continuous tuning
    • H03J3/02Details
    • H03J3/06Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges
    • H03J3/08Arrangements for obtaining constant bandwidth or gain throughout tuning range or ranges by varying a second parameter simultaneously with the tuning, e.g. coupling bandpass filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J1/00Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general
    • H03J1/0008Details of adjusting, driving, indicating, or mechanical control arrangements for resonant circuits in general using a central processing unit, e.g. a microprocessor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03JTUNING RESONANT CIRCUITS; SELECTING RESONANT CIRCUITS
    • H03J2200/00Indexing scheme relating to tuning resonant circuits and selecting resonant circuits
    • H03J2200/32Tuning of tracking filter

Definitions

  • the present disclosure relates to tracking filter control, and more particularly, to an automatic adjustment device for a tracking filter and a receiver using the same.
  • the front end portion of the wireless communication receiver may have a tracking filter that can switch constants of resistors, capacitors, inductors, and other circuit elements by a control signal for the purpose of changing the center frequency in accordance with the reception frequency.
  • the tracking filter is used for the purpose of removing the influence of interference other than the desired wave by making the center frequency of the filter coincide with the target frequency that is the frequency of the desired signal to be received.
  • the interference wave of the nearby frequency is not sufficiently attenuated and is input to the next-stage amplifier.
  • the receiver is equipped with an AGC (automatic gain control) system, and is controlled so that the input power to the next stage (the sum of the desired wave power and the interference wave power) is constant. For this reason, the smaller the attenuation of the interference wave, the higher the level of the interference wave input to the next stage and the lower the level of the desired wave. As a result, the SNR (signal-to-noise ratio) of the desired wave Will fall.
  • a tracking filter has a frequency characteristic that allows signals in a relatively wide range of frequencies to pass. For this reason, the signal of the adjacent channel cannot be sufficiently attenuated, and the signal of the adjacent channel can be attenuated even in a subsequent filter or a digital filter to which a signal after AD (analog-to-digital) conversion is input. Many. In the vicinity of the center frequency of the tracking filter, the frequency characteristic of the tracking filter is relatively flat. Therefore, even if the value of the variable capacitor is changed, the level of the signal that has passed through the filter does not change much. For this reason, it is difficult to accurately match the center frequency of the tracking filter with the target frequency that is the frequency of the desired signal to be received.
  • test signals of two different frequencies p1 and p2 having the same level and the frequency equal to the lower side and the upper side and separated by ⁇ from the rated value f0 of the center frequency are sequentially supplied to the filter circuit unit.
  • the levels V1 and V2 of the output signals sequentially output in response to the signals of are compared, and the constants of the filter circuit section having band pass (or band rejection) characteristics are switched in the control signal generation means according to the comparison result
  • a control signal is generated and adjusted so that the difference value between levels V1 and V2 becomes zero.
  • An object of the present invention is to bring the center frequency of a tracking filter closer to the target frequency in a shorter time with a relatively small circuit for a wide range of target frequencies.
  • a tracking filter automatic adjustment device includes a test signal generation unit that generates a test signal having a frequency corresponding to a frequency control signal, and selects the test signal in an adjustment period, and selects a reception signal in other periods. And a switch circuit having a variable capacitor corresponding to the filter control signal, and a tracking filter that passes and outputs a component in the passband of the output of the switch, and passes through the tracking filter A level measurement unit that measures the amplitude of the received signal and outputs a measurement result; and a control unit that generates the filter control signal and the frequency control signal.
  • the control unit causes the test signal generator to generate the test signal having a first frequency lower than the target frequency by a predetermined frequency for each of a plurality of different target frequencies.
  • the level measurement unit When the test signal generator generates the first signal level to be output as a measurement result and the test signal having a second frequency higher than the target frequency by the predetermined frequency, the level measurement unit performs the measurement result.
  • the filter control signal is generated so that the difference from the second signal level output as a predetermined threshold or less is used, and the value of the filter control signal generated for each of the plurality of different target frequencies is used. By performing interpolation, a value corresponding to the new target frequency is obtained and used as the filter control signal for the new target frequency. Used.
  • the filter control signal is generated so that the difference between the first signal level corresponding to the first frequency and the second signal level corresponding to the second frequency is equal to or less than a predetermined threshold value. Since the first frequency and the second frequency are separated from the target frequency by the same frequency, the center frequency of the tracking filter can be made closer to the target frequency by the generated filter control signal.
  • a receiver includes an automatic adjustment device for the tracking filter, performs a predetermined process on a signal that has passed through the automatic adjustment device for the tracking filter, and outputs the received signal. And a demodulator that outputs the obtained demodulated signal, a signal processor that performs predetermined signal processing on the demodulated signal and outputs the obtained signal, and a signal obtained by the signal processor An output unit that performs at least one of video display and audio output.
  • the center frequency of the tracking filter can be brought closer to the target frequency, the influence of the interference wave can be further reduced in the receiver.
  • the center frequency of the tracking filter can be brought closer to the target frequency in a short time with a relatively small circuit for a wide range of target frequencies. Since the interference wave does not easily pass through the tracking filter, the influence of the interference wave can be further reduced in the receiver.
  • FIG. 1 is a block diagram showing a configuration example of an automatic adjustment device for a tracking filter according to an embodiment of the present invention.
  • FIG. 2 is a graph showing an example of the relationship between the value of the filter control signal TC and the filter center frequency of the tracking filter 16.
  • FIG. 3 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by curve interpolation using these values.
  • FIG. 4 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by linear interpolation using these values.
  • FIG. 2 is a graph showing an example of the relationship between the value of the filter control signal TC and the filter center frequency of the tracking filter 16.
  • FIG. 3 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by curve interpolation using these values.
  • FIG. 4 is a graph showing an example of the
  • FIG. 5 is a graph showing an example of the relationship between the value of the filter control signal TC for more than three frequencies and the value of the filter center frequency obtained by curve interpolation using these values.
  • FIG. 6 is a graph showing another example of curve interpolation.
  • a graph (a) in FIG. 7 is a graph showing an example of the frequency characteristic of the tracking filter.
  • a graph (b) in FIG. 7 is a graph showing a difference obtained by subtracting a target frequency corresponding to the true center frequency of the tracking filter.
  • a graph (a) in FIG. 8 is a graph showing another example of the frequency characteristic of the tracking filter.
  • FIG. 8 shows the difference obtained by subtracting the value of the filter control signal that maximizes the transmittance of the tracking filter at the target frequency corresponding to the value of the obtained filter control signal. It is a graph which shows.
  • FIG. 9 is a block diagram showing another example of the automatic adjustment device for the tracking filter of FIG.
  • FIG. 10 is a block diagram showing another example of the automatic adjustment device for the tracking filter of FIG.
  • FIG. 11 is a graph showing an example of a change in the frequency characteristic of the tracking filter according to the filter control signal.
  • FIG. 12 is a block diagram illustrating another example of the automatic adjustment device for the tracking filter of FIG.
  • FIG. 13 is a block diagram illustrating a configuration example of a receiver having the tracking filter automatic adjustment apparatus of FIG.
  • FIG. 1 is a block diagram showing a configuration example of an automatic adjustment device for a tracking filter according to an embodiment of the present invention.
  • a tracking filter automatic adjustment apparatus 100 of FIG. 1 includes a low noise amplifier (LNA) 12, a switch 14, a tracking filter 16, an IF (intermediate frequency) amplifier 18, an AD (analog-to-digital) converter (ADC). ) 22, a level measurement unit 24, a control unit 26, and a test signal generation unit 30.
  • the test signal generation unit 30 includes a reference signal generator 32 and a frequency dividing circuit 34.
  • the antenna receives the transmitted signal and supplies the received signal RS to the LNA 12.
  • the LNA 12 amplifies the reception signal RS and outputs it.
  • the switch 14 selects and outputs one of the output of the LNA 12 and the test signal TS output from the frequency divider circuit 34 in accordance with the switch control signal SC.
  • the switch 14 selects the test signal TS during the adjustment period, and selects the output of the LNA 12 during other periods during which normal reception is performed.
  • the tracking filter 16 passes and outputs the components in the pass band of the tracking filter 16 among the frequency components of the output of the switch 14.
  • the passband and center frequency of the tracking filter 16 are determined based on the filter control signal TC.
  • the control unit 26 controls the tracking filter 16 so that the center frequency of the tracking filter 16 becomes a target frequency that is a frequency (reception frequency) of a desired signal among the reception signals.
  • the center frequency is a frequency at which attenuation by the tracking filter 16 is minimized.
  • the pass band is a frequency range in which the difference between the attenuation by the tracking filter 16 and the attenuation at the center frequency is equal to or less than a predetermined value (for example, 0.5 dB).
  • the IF amplifier 18 amplifies and outputs the output of the tracking filter 16.
  • the ADC 22 converts the output of the IF amplifier 18 into a digital signal and outputs the digital signal. For example, in the receiver having the apparatus 100 of FIG. 1, subsequent processing such as frequency conversion and demodulation is performed on the output of the ADC 22.
  • the level measuring unit 24 measures the amplitude of the output of the ADC 22 and outputs the measurement result as a received signal level. As the level measuring unit 24, an RSSI (received signal signal strength) indicator or an S meter may be used.
  • the test signal generator 30 generates a test signal TS having a frequency corresponding to the frequency control signal RC.
  • the reference signal generator 32 generates and outputs a reference signal having a substantially constant frequency f0.
  • the frequency dividing circuit 34 divides the reference signal output from the reference signal generator 32 by the frequency dividing ratio indicated by the frequency control signal RC, and outputs the frequency-divided signal to the switch 14 as the test signal TS.
  • the control unit 26 generates and outputs a switch control signal SC, a filter control signal TC, and a frequency control signal RC based on the received signal level output from the level measuring unit 24.
  • the tracking filter 16 is, for example, a tuned band-pass tracking filter including a capacitor circuit having a variable capacitance C (hereinafter referred to as a C bank) and an inductor having a fixed inductance L.
  • the C bank has N capacitors connected in parallel (N is a natural number) and N switches connected in series to the N capacitors.
  • the filter control signal TC is an N-bit digital signal. The N bits of the filter control signal TC correspond to N switches, and the N switches are turned on or off based on the corresponding bits. Therefore, the variable capacitor C in the C bank of the tracking filter 16 has a value corresponding to the filter control signal TC.
  • the control unit 26 sets the filter control signal TC to a predetermined initial value.
  • the control unit 26 generates the switch control signal SC so that the switch 14 selects the test signal TS output from the frequency dividing circuit 34. Then, the switch 14 selects the test signal TS.
  • a period during which the switch 14 selects the test signal TS is referred to as an adjustment period.
  • the control unit 26 generates the frequency control signal RC so that the frequency of the test signal TS becomes a frequency (fc ⁇ f) lower than the target frequency fc by the frequency ⁇ f.
  • the control unit 26 stores the measurement result of the level measurement unit 24 at this time as the signal level S1.
  • control unit 26 generates the frequency control signal RC so that the frequency of the test signal TS becomes a frequency (fc + ⁇ f) higher than the target frequency fc by the frequency ⁇ f.
  • the control unit 26 stores the measurement result of the level measurement unit 24 at this time as the signal level S2.
  • the control unit 26 compares the signal level S1 with the signal level S2. When the signal levels S1 and S2 are equal, the control unit 26 stores the value of the filter control signal TC at that time as an optimum value, and ends the adjustment process of the tracking filter 16. At this time, the control unit 26 generates the switch control signal SC so that the switch 14 selects the output of the LNA 12. The switch 14 selects the output of the LNA 12 and the adjustment period ends.
  • the control unit 26 changes the filter control signal TC so that the frequency of the test signal TS becomes the frequency (fc ⁇ f). Do.
  • the filter control signal TC is changed, the tracking filter 16 changes the center frequency based on the filter control signal TC.
  • the control unit 26 changes the value of the filter control signal TC so that the capacity of the C bank of the tracking filter 16 increases or decreases monotonously, for example.
  • the control unit 26 generates the filter control signal TC so that the signal levels S1 and S2 are equal.
  • the control unit 26 may generate the filter control signal TC so that the difference between the signal levels S1 and S2 is equal to or less than a predetermined threshold value. That is, when comparing the signal levels S1 and S2, the control unit 26 ends the adjustment process of the tracking filter 16 when the difference between the signal levels S1 and S2 is equal to or less than a predetermined threshold. Also good.
  • the filter control signal TC is set to a value that equalizes the signal levels of fc + ⁇ f and fc ⁇ f, that is, the target frequency fc with a relatively simple configuration.
  • the optimum value of the filter control signal TC can be determined.
  • FIG. 2 is a graph showing an example of the relationship between the value of the filter control signal TC and the filter center frequency of the tracking filter 16. Theoretically, if the optimal TC values at two certain frequencies are known, the TC values at other frequencies can be obtained by the equation (1). However, in the tracking filter 16 of FIG. 1, the filter center frequency and the passband frequency deviate from the design values, as shown in FIG. 2, due to variations in the quality of circuit elements and the influence of parasitic elements.
  • FIG. 3 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by curve interpolation using these values.
  • the control unit 26 sets the value of the filter control signal TC corresponding to the new target frequency to two of the three target frequencies shown in FIG. 3 and the filter control corresponding to each of the three target frequencies. Using the signal value, the value is obtained by curve interpolation, and the obtained value is output to the tracking filter 16.
  • FIG. 4 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by linear interpolation using these values.
  • fc ⁇ 1 / ⁇ C Therefore, the interpolation using the curve as shown in FIG. 3 is more accurate than the linear interpolation as shown in FIG.
  • K1 to K6 may be obtained by using an expression represented by a real constant, and the obtained value may be output to the tracking filter 16.
  • TC a0 + a1.x + a2.x ⁇ 2 + a3.x ⁇ 3 + .. + am.x ⁇ m (4)
  • a0 to am may be real constants
  • m may be a natural number.
  • FIG. 5 is a graph showing an example of the relationship between the value of the filter control signal TC for more than three frequencies and the value of the filter center frequency obtained by curve interpolation using these values.
  • the example of obtaining the filter control signal TC for three frequencies and performing interpolation has been described, but as shown in FIG. 5, the values of the filter control signal TC for more than three frequencies are obtained, Interpolation may be performed.
  • the accuracy of the value obtained by interpolation can be increased.
  • the value of the filter control signal TC may be obtained for a larger number of frequencies.
  • FIG. 6 is a graph showing another example of curve interpolation.
  • the interpolation formula for example, formula (4) is used. It is preferable to use a spline curve as the interpolation formula. This is because continuity can be ensured at the boundary of each section (such as the frequency f2 in FIG. 6).
  • the frequency characteristics of the tracking filter 16 are symmetric with respect to the center frequency of the tracking filter 16.
  • the center frequency moves while maintaining the shape of the graph indicating the filter characteristics when the filter adjustment signal TC is changed. It is difficult to design such a filter.
  • a graph (b) in FIG. 7 is a graph showing an example of the frequency characteristic of the tracking filter 16.
  • a graph (b) in FIG. 7 is a graph showing a difference df obtained by subtracting a target frequency corresponding to the true center frequency of the tracking filter 16.
  • the target frequency fc is the frequencies f1, f2, and f3
  • the values of the generated filter control signal TC are C1, C2, and C3, respectively
  • the true center frequencies of the filters are f1 ′, f2 ′, And f3 ′.
  • the target frequency f1 ′ or the like does not necessarily coincide with the true center frequency f1 ′ or the like.
  • the difference df obtained by subtracting the target frequency fc corresponding to the true center frequency of the filter changes monotonously with respect to the frequency f as shown in the graph (b) of FIG.
  • the control unit 26 measures the differences df1, df2, and df3 in advance for the frequencies f1, f2, and f3, and holds the obtained differences.
  • the relationship between the target frequency and the difference df (graph (b) in FIG. 7) is relatively less affected by the variation among individuals, so there is little need to obtain the difference df for each chip.
  • the control unit 26 generates the filter control signal TC for each of a plurality of different target frequencies f1, f2, and f3, and then sets the differences df1, df2, and df as offset values corresponding to the target frequencies f1, f2, and f3, respectively. Alternatively, interpolation is performed after adding df3.
  • the control unit 26 corrects the values C1, C2, and C3 of the generated filter control signal TC by adding the difference df to each, that is, the true center frequencies f1 ′, f2 ′, And the various interpolation methods described above are applied, assuming that these are optimum values for f3 ′. That is, the control unit 26 is not the point (f1, C1), the point (f2, C2), and the point (f3, C3), but the point (f1 ′, C1), the point (f2 ′, C2), and the point ( Interpolation is performed by obtaining a curve passing through f3 ′, C3).
  • the tracking filter 16 needs to cover a wide band, and even when the symmetry of the filter characteristics is broken depending on the frequency, the center frequency can be accurately matched with the target frequency.
  • the graph (b) in FIG. 8 is obtained by subtracting the value of the filter control signal TC that maximizes the transmittance of the tracking filter 16 at the target frequency corresponding to the obtained value of the filter control signal TC. It is a graph which shows difference dC obtained.
  • the target frequency fc is the frequencies f1, f2, and f3
  • the values of the generated filter control signal TC are C1, C2, and C3, respectively, and the transmittance of the tracking filter 16 at the frequencies f1, f2, and f3.
  • the values of the filter control signal TC that maximize the value are C1 ′, C2 ′, and C3 ′, respectively.
  • the difference dC changes monotonously with respect to the frequency f as shown in the graph (b) of FIG.
  • the control unit 26 adds the difference dC1, dC2, or dC3 as an offset value corresponding to the filter control signal TC generated for each of the plurality of different target frequencies f1, f2, and f3, and then adds the difference dC1, dC2, or dC3 to the tracking filter 16. Output and perform interpolation.
  • the control unit 26 does not use the point (f1, C1), the point (f2, C2), and the point (f3, C3), but the point (f1, C1 ′), the point (f2, C2 ′), and the point ( A curve passing through f3, C3 ′) is obtained and interpolation is performed.
  • the offset value dC corresponding to the target frequency f can be obtained by interpolation calculation according to the target frequency based on the graph (b) of FIG. In this case, linear interpolation is sufficient in most cases.
  • the tracking filter 16 needs to cover a wide band, and even when the symmetry of the filter characteristics is broken depending on the frequency, the center frequency can be accurately matched with the target frequency.
  • FIG. 9 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 100 of FIG.
  • the tracking filter automatic adjustment apparatus 200 in FIG. 9 further includes an attenuator 211 between the antenna and the switch 14, and includes a control unit 226 instead of the control unit 26. It is constituted similarly.
  • the switch 14 selects the test signal TS.
  • the test signal TS since the test signal TS is strong, it leaks to the LNA 12 and may be radiated as unnecessary radiation from the antenna. Therefore, the control unit 226 operates the attenuator 211 in the adjustment period in which the switch 14 selects the test signal TS, and attenuates the input signal. Since the signal input to the attenuator 211 is attenuated, leakage of the test signal TS to the antenna can be suppressed.
  • the attenuator 211 for example, an attenuator used as a part of an AGC (automatic gain control) circuit can be used.
  • FIG. 10 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 200 of FIG.
  • the tracking filter automatic adjustment apparatus 300 in FIG. 10 further includes a variable gain amplifier 319 and is configured in the same manner as the apparatus 200 in FIG. 9 except that the control section 326 is provided instead of the control section 226.
  • FIG. 11 is a graph showing an example of a change in the frequency characteristic of the tracking filter 16 according to the filter control signal TC.
  • the filter control signal TC is controlled to change the capacitance value of the tracking filter 16
  • the gain at the center frequency of the tracking filter 16 is not constant and has frequency characteristics (see FIG. 11).
  • the gain difference is large even within the same band. Since the gain difference causes a difference in receiver sensitivity and SN (signal-to-noise) ratio, it is preferable that the gain difference be small.
  • variable gain amplifier 319 amplifies or attenuates the output of the IF amplifier 18 based on the gain control signal GC and outputs the amplified output to the ADC 22.
  • the control unit 326 generates a gain control signal GC based on the target frequency and outputs the gain control signal GC to the variable gain amplifier 319 so that the fluctuation in the level of the signal input to the ADC 22 accompanying the change in the target frequency is reduced. Thereby, the change according to the frequency of the gain in the center frequency of the tracking filter 16 can be reduced.
  • FIG. 12 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 300 of FIG.
  • the tracking filter automatic adjustment device 400 of FIG. 12 further includes a temperature detection unit 442 and is configured in the same manner as the device 300 of FIG. 10 except that a control unit 426 is provided instead of the control unit 326.
  • the pass band of the tracking filter 16 may be a narrow band.
  • the characteristics of elements such as an inductor, a capacitor, and a resistor included in the filter change according to temperature. This change greatly affects the filter characteristics as the pass band of the filter is narrower.
  • the temperature detection unit 442 detects the temperature of the tracking filter 16 or its surroundings, and notifies the control unit 426 of the detected temperature.
  • the control unit 426 adjusts and outputs the value of the filter control signal TC based on the notified temperature so that the influence of the characteristic of the tracking filter 16 due to the temperature change is reduced. Thereby, the influence of the temperature change on the characteristics of the tracking filter 16 can be reduced.
  • FIG. 13 is a block diagram showing a configuration example of a receiver having the tracking filter automatic adjustment apparatus 100 of FIG. 13 includes a receiving unit 82, a demodulating unit 84, a signal processing unit 86, and an audio / video output unit 88.
  • the receiving unit 82 includes the tracking filter automatic adjusting device 100 of FIG.
  • the receiving unit 82 may include the tracking filter automatic adjustment device 200, 300, or 400 shown in FIGS. 9, 10, and 12 instead of the device 100.
  • the apparatus 100 allows a component near the target frequency, which is the frequency of a desired signal, of the received signal RS to pass and performs AD conversion.
  • the receiving unit 82 performs processing such as frequency conversion on the AD-converted signal and outputs it.
  • the demodulator 84 performs demodulation processing corresponding to the modulation scheme of the received signal RS on the output of the receiver 82 and outputs the obtained demodulated signal.
  • the signal processor 86 performs predetermined signal processing such as decoding on the demodulated signal output from the demodulator 84, and outputs the obtained audio signal and / or video signal.
  • the audio / video output unit 88 performs at least one of display of video represented by the video signal and output of audio represented by the audio signal.
  • the frequency of the required test signal does not need to correspond to every frequency in the band, and peripheral frequencies such as frequencies f1, f2, and f3 used for adjustment in advance are not required. It is sufficient that only a signal can be generated, and a test signal generator having a reference signal generator and a frequency dividing circuit that oscillates at a constant frequency can be used. Therefore, the test signal generator does not require a PLL (phase locked loop) or the like, and the circuit scale can be reduced. Further, there is no need to input a test tone from the outside, and adjustment time can be shortened and simplified.
  • PLL phase locked loop
  • each functional block in this specification can be typically realized by hardware.
  • each functional block can be formed on a semiconductor substrate as part of an IC (integrated circuit).
  • the IC includes an LSI (large-scale integrated circuit), an ASIC (application-specific integrated circuit), a gate array, an FPGA (field programmable gate array), and the like.
  • some or all of each functional block can be implemented in software.
  • such a functional block can be realized by a processor and a program executed on the processor.
  • each functional block described in the present specification may be realized by hardware, may be realized by software, or may be realized by any combination of hardware and software.
  • the present invention provides an automatic adjustment device for a tracking filter and a reception using the same. This is useful for a vehicle-mounted radio tuner, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Circuits Of Receivers In General (AREA)
  • Filters And Equalizers (AREA)
  • Noise Elimination (AREA)

Abstract

This automatic adjustment device for a tracking filter has: a tracking filter which has a capacitor circuit which has a variable capacitance corresponding to a filter control signal so as to pass, from the received signal, the component within the passband in order to output the same; a level measurement unit which measures the amplitude of the signal which has passed through the tracking filter so as to output the same; and a control unit which generates a filter control signal. The control unit generates the filter control signal and performs interpolation so that, for each of a plurality of different target frequencies, the difference between a first signal level which is output by the level measurement unit when a test signal of a first frequency is being generated which is lower by a predetermined frequency than the target frequency, and a second signal level which is output by the level measurement unit when a test signal is being generated which is of a second frequency which is higher by a predetermined frequency than the target frequency, is less than or equal to a predetermined threshold. Accordingly, the center frequency of the tracking filter can be made to approximate the target frequency in a shorter period of time.

Description

トラッキングフィルタの自動調整装置及びこれを用いた受信機Tracking filter automatic adjustment device and receiver using the same
 本開示は、トラッキングフィルタの制御に関し、特にトラッキングフィルタの自動調整装置、及びこれを用いた受信機に関する。 The present disclosure relates to tracking filter control, and more particularly, to an automatic adjustment device for a tracking filter and a receiver using the same.
 無線通信受信機のフロントエンド部は、受信周波数に合わせてその中心周波数を変化させる目的で、制御信号によって抵抗、コンデンサ、インダクタ、その他の回路素子の定数の切り替えが可能なトラッキングフィルタを有することが多い。トラッキングフィルタは、フィルタの中心周波数を受信したい所望信号の周波数である目標周波数に一致させることによって、希望波以外の妨害の影響を除去することを目的として用いられる。 The front end portion of the wireless communication receiver may have a tracking filter that can switch constants of resistors, capacitors, inductors, and other circuit elements by a control signal for the purpose of changing the center frequency in accordance with the reception frequency. Many. The tracking filter is used for the purpose of removing the influence of interference other than the desired wave by making the center frequency of the filter coincide with the target frequency that is the frequency of the desired signal to be received.
 トラッキングフィルタの中心周波数が目標周波数に一致しない場合には、近傍の周波数の妨害波は十分に減衰されず、次段のアンプに入力される。通常、受信機にはAGC(automatic gain control)システムが搭載されており、次段への入力電力(希望波電力と妨害波電力との和)が一定となるように制御される。このため、妨害波の減衰量が少ないほど、次段へ入力される妨害波のレベルが大きく、希望波のレベルは小さくなってしまい、その結果、希望波のSNR(signal-to-noise ratio)が低下してしまう。 When the center frequency of the tracking filter does not match the target frequency, the interference wave of the nearby frequency is not sufficiently attenuated and is input to the next-stage amplifier. Usually, the receiver is equipped with an AGC (automatic gain control) system, and is controlled so that the input power to the next stage (the sum of the desired wave power and the interference wave power) is constant. For this reason, the smaller the attenuation of the interference wave, the higher the level of the interference wave input to the next stage and the lower the level of the desired wave. As a result, the SNR (signal-to-noise ratio) of the desired wave Will fall.
 一般に、集積回路(IC)を構成する回路素子の特性ばらつきを避けることができない。このため、トラッキングフィルタを構成する素子の全部又は一部をIC内に内蔵する場合においては、トラッキングフィルタに含まれる各素子の値のばらつきを含む回路ごとの個体差の違いを吸収して、全ての受信周波数に対応したトラッキングフィルタの調整を自動的に行うことが要求される。 Generally, characteristic variations of circuit elements constituting an integrated circuit (IC) cannot be avoided. For this reason, in the case where all or part of the elements constituting the tracking filter are built in the IC, the differences in individual differences for each circuit, including variations in the values of the elements included in the tracking filter, are absorbed, It is required to automatically adjust the tracking filter corresponding to the received frequency.
 通常、トラッキングフィルタは、比較的広い範囲の周波数の信号を通過させるような周波数特性を有する。このため、隣接チャンネルの信号を十分に減衰させることはできず、後段のフィルタやAD(analog-to-digital)変換後の信号が入力されるデジタルフィルタにおいても隣接チャンネルの信号を減衰させることが多い。トラッキングフィルタの中心周波数付近では、トラッキングフィルタの周波数特性は比較的フラットであるので、可変容量の値を変化させても、フィルタを通過した信号のレベルはあまり変化しない。このため、トラッキングフィルタの中心周波数を、受信したい所望の信号の周波数である目標周波数に正確に一致させることは困難である。 Normally, a tracking filter has a frequency characteristic that allows signals in a relatively wide range of frequencies to pass. For this reason, the signal of the adjacent channel cannot be sufficiently attenuated, and the signal of the adjacent channel can be attenuated even in a subsequent filter or a digital filter to which a signal after AD (analog-to-digital) conversion is input. Many. In the vicinity of the center frequency of the tracking filter, the frequency characteristic of the tracking filter is relatively flat. Therefore, even if the value of the variable capacitor is changed, the level of the signal that has passed through the filter does not change much. For this reason, it is difficult to accurately match the center frequency of the tracking filter with the target frequency that is the frequency of the desired signal to be received.
 トラッキングフィルタの調整方法の一例が特許文献1に記載されている。この方法においては、フィルタ回路部に、レベルが等しく、周波数が中心周波数の定格値f0から下方と上方とに等しくαだけ離れた異なる2種類の周波数p1及びp2のテスト信号を順次供給し、これらの信号に対応して順次出力される出力信号のレベルV1及びV2を比較し、この比較結果に応じて、制御信号生成手段において帯域通過(又は帯域阻止)特性を有するフィルタ回路部の定数を切り替える制御信号を生成し、レベルV1とV2との間の差分値が零になるように調整する。 An example of a tracking filter adjustment method is described in Patent Document 1. In this method, test signals of two different frequencies p1 and p2 having the same level and the frequency equal to the lower side and the upper side and separated by α from the rated value f0 of the center frequency are sequentially supplied to the filter circuit unit. The levels V1 and V2 of the output signals sequentially output in response to the signals of are compared, and the constants of the filter circuit section having band pass (or band rejection) characteristics are switched in the control signal generation means according to the comparison result A control signal is generated and adjusted so that the difference value between levels V1 and V2 becomes zero.
特開2008-98730号公報JP 2008-98730 A
 しかしながら、特許文献1のトラッキングフィルタの制御方法にあっては、受信周波数を切り替えるたびにテスト信号を入力し、制御信号を変化させてトラッキングフィルタの特性を設定する必要があり、最適な同調特性を得るまでに時間を要する。また、広範囲な目標周波数に対して目標周波数から周波数αだけ離れた異なる2種類の周波数のテスト信号が必要となり、このような信号を生成できるテスト信号発生回路を集積回路上で実現するためには、回路規模が大きくなってしまう。更に、この制御方法は、フィルタの中心周波数からみて、マイナス側とプラス側の周波数特性が対称であることを前提としている。実際には、広帯域の周波数に対して、対称なフィルタを構成するのは困難である。 However, in the tracking filter control method of Patent Document 1, it is necessary to input a test signal every time the reception frequency is switched, and to change the control signal to set the characteristics of the tracking filter. It takes time to get. In addition, test signals having two different frequencies separated from the target frequency by a frequency α with respect to a wide range of target frequencies are required, and in order to realize a test signal generation circuit capable of generating such a signal on an integrated circuit. The circuit scale becomes large. Further, this control method is based on the premise that the frequency characteristics on the minus side and the plus side are symmetric when viewed from the center frequency of the filter. In practice, it is difficult to construct a symmetric filter with respect to a wideband frequency.
 本発明は、広範囲の目標周波数を対象として、比較的小規模な回路によって、より短時間で、トラッキングフィルタの中心周波数を目標周波数に近づけることを目的とする。 An object of the present invention is to bring the center frequency of a tracking filter closer to the target frequency in a shorter time with a relatively small circuit for a wide range of target frequencies.
 本開示によるトラッキングフィルタの自動調整装置は、周波数制御信号に対応する周波数のテスト信号を生成するテスト信号生成部と、調整期間においては前記テスト信号を選択し、その他の期間には受信信号を選択して出力するスイッチと、フィルタ制御信号に対応する可変容量を有するキャパシタ回路を有し、前記スイッチの出力のうち、通過帯域内の成分を通過させて出力するトラッキングフィルタと、前記トラッキングフィルタを通過した信号の振幅を測定し、測定結果を出力するレベル測定部と、前記フィルタ制御信号、及び前記周波数制御信号を生成する制御部とを有する。前記制御部は、複数の異なる目標周波数のそれぞれについて、前記目標周波数より所定の周波数だけ低い第1周波数の前記テスト信号を前記テスト信号生成部に生成させているときに、前記レベル測定部が前記測定結果として出力する第1信号レベルと、前記目標周波数より前記所定の周波数だけ高い第2周波数の前記テスト信号を前記テスト信号生成部に生成させているときに、前記レベル測定部が前記測定結果として出力する第2信号レベルとの差が、所定の閾値以下になるように、前記フィルタ制御信号を生成し、前記複数の異なる目標周波数のそれぞれについて生成された前記フィルタ制御信号の値を用いて補間を行うことにより、新たな目標周波数に対応する値を求め、前記新たな目標周波数についての前記フィルタ制御信号として用いる。 A tracking filter automatic adjustment device according to the present disclosure includes a test signal generation unit that generates a test signal having a frequency corresponding to a frequency control signal, and selects the test signal in an adjustment period, and selects a reception signal in other periods. And a switch circuit having a variable capacitor corresponding to the filter control signal, and a tracking filter that passes and outputs a component in the passband of the output of the switch, and passes through the tracking filter A level measurement unit that measures the amplitude of the received signal and outputs a measurement result; and a control unit that generates the filter control signal and the frequency control signal. The control unit causes the test signal generator to generate the test signal having a first frequency lower than the target frequency by a predetermined frequency for each of a plurality of different target frequencies. When the test signal generator generates the first signal level to be output as a measurement result and the test signal having a second frequency higher than the target frequency by the predetermined frequency, the level measurement unit performs the measurement result. The filter control signal is generated so that the difference from the second signal level output as a predetermined threshold or less is used, and the value of the filter control signal generated for each of the plurality of different target frequencies is used. By performing interpolation, a value corresponding to the new target frequency is obtained and used as the filter control signal for the new target frequency. Used.
 これによると、第1周波数に対応する第1信号レベルと、第2周波数に対応する第2信号レベルとの差が、所定の閾値以下となるように、フィルタ制御信号が生成される。第1周波数と第2周波数とは、目標周波数から同じ周波数だけ離れているので、生成されたフィルタ制御信号により、トラッキングフィルタの中心周波数を目標周波数により近づけることができる。 According to this, the filter control signal is generated so that the difference between the first signal level corresponding to the first frequency and the second signal level corresponding to the second frequency is equal to or less than a predetermined threshold value. Since the first frequency and the second frequency are separated from the target frequency by the same frequency, the center frequency of the tracking filter can be made closer to the target frequency by the generated filter control signal.
 本開示による受信機は、前記トラッキングフィルタの自動調整装置を有し、前記トラッキングフィルタの自動調整装置を通過した信号に所定の処理を行って出力する受信部と、前記受信部の出力に復調処理を行い、得られた復調信号を出力する復調部と、前記復調信号に所定の信号処理を行い、得られた信号を出力する信号処理部と、前記信号処理部で得られた信号によって表される、映像の表示及び音声の出力のうちの少なくとも一方を行う出力部とを有する。 A receiver according to the present disclosure includes an automatic adjustment device for the tracking filter, performs a predetermined process on a signal that has passed through the automatic adjustment device for the tracking filter, and outputs the received signal. And a demodulator that outputs the obtained demodulated signal, a signal processor that performs predetermined signal processing on the demodulated signal and outputs the obtained signal, and a signal obtained by the signal processor An output unit that performs at least one of video display and audio output.
 これによると、トラッキングフィルタの中心周波数を目標周波数により近づけることができるので、受信機において、妨害波の影響をより小さくすることができる。 According to this, since the center frequency of the tracking filter can be brought closer to the target frequency, the influence of the interference wave can be further reduced in the receiver.
 本開示によれば、広範囲の目標周波数を対象として、比較的小規模な回路によって、短時間で、トラッキングフィルタの中心周波数を、目標周波数により近づけることができることができる。妨害波がトラッキングフィルタを通過しにくくなるので、受信機において、妨害波の影響をより小さくすることができる。 According to the present disclosure, the center frequency of the tracking filter can be brought closer to the target frequency in a short time with a relatively small circuit for a wide range of target frequencies. Since the interference wave does not easily pass through the tracking filter, the influence of the interference wave can be further reduced in the receiver.
図1は、本発明の実施形態に係るトラッキングフィルタの自動調整装置の構成例を示すブロック図である。FIG. 1 is a block diagram showing a configuration example of an automatic adjustment device for a tracking filter according to an embodiment of the present invention. 図2は、フィルタ制御信号TCの値と、トラッキングフィルタ16のフィルタ中心周波数との関係の例を示すグラフである。FIG. 2 is a graph showing an example of the relationship between the value of the filter control signal TC and the filter center frequency of the tracking filter 16. 図3は、3つの周波数についてのフィルタ制御信号TCの値と、これらの値を用いた曲線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。FIG. 3 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by curve interpolation using these values. 図4は、3つの周波数についてのフィルタ制御信号TCの値と、これらの値を用いた直線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。FIG. 4 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by linear interpolation using these values. 図5は、3より多くの数の周波数についてのフィルタ制御信号TCの値と、これらの値を用いた曲線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。FIG. 5 is a graph showing an example of the relationship between the value of the filter control signal TC for more than three frequencies and the value of the filter center frequency obtained by curve interpolation using these values. 図6は、曲線補間の他の例を示すグラフである。FIG. 6 is a graph showing another example of curve interpolation. 図7のグラフ(a)は、トラッキングフィルタの周波数特性の例を示すグラフである。図7のグラフ(b)は、トラッキングフィルタの真の中心周波数からこれに対応する目標周波数を減算して得られる差分を示すグラフである。A graph (a) in FIG. 7 is a graph showing an example of the frequency characteristic of the tracking filter. A graph (b) in FIG. 7 is a graph showing a difference obtained by subtracting a target frequency corresponding to the true center frequency of the tracking filter. 図8のグラフ(a)は、トラッキングフィルタの周波数特性の他の例を示すグラフである。図8のグラフ(b)は、求められたフィルタ制御信号の値から、その値に対応する目標周波数においてトラッキングフィルタの透過率を最大にするようなフィルタ制御信号の値を減算して得られる差分を示すグラフである。A graph (a) in FIG. 8 is a graph showing another example of the frequency characteristic of the tracking filter. The graph (b) in FIG. 8 shows the difference obtained by subtracting the value of the filter control signal that maximizes the transmittance of the tracking filter at the target frequency corresponding to the value of the obtained filter control signal. It is a graph which shows. 図9は、図1のトラッキングフィルタの自動調整装置の他の例を示すブロック図である。FIG. 9 is a block diagram showing another example of the automatic adjustment device for the tracking filter of FIG. 図10は、図9のトラッキングフィルタの自動調整装置の他の例を示すブロック図である。FIG. 10 is a block diagram showing another example of the automatic adjustment device for the tracking filter of FIG. 図11は、トラッキングフィルタの周波数特性のフィルタ制御信号に応じた変化の例を示すグラフである。FIG. 11 is a graph showing an example of a change in the frequency characteristic of the tracking filter according to the filter control signal. 図12は、図10のトラッキングフィルタの自動調整装置の他の例を示すブロック図である。FIG. 12 is a block diagram illustrating another example of the automatic adjustment device for the tracking filter of FIG. 図13は、図1のトラッキングフィルタの自動調整装置を有する受信機の構成例を示すブロック図である。FIG. 13 is a block diagram illustrating a configuration example of a receiver having the tracking filter automatic adjustment apparatus of FIG.
 以下、本発明の実施の形態について、図面を参照しながら説明する。図面において下2桁が同じ参照番号で示された構成要素は、互いに対応しており、同一の又は類似の構成要素である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the drawings, the components indicated by the same reference numerals in the last two digits correspond to each other and are the same or similar components.
 図1は、本発明の実施形態に係るトラッキングフィルタの自動調整装置の構成例を示すブロック図である。図1のトラッキングフィルタの自動調整装置100は、低雑音アンプ(LNA)12と、スイッチ14と、トラッキングフィルタ16と、IF(intermediate frequency)アンプ18と、AD(analog-to-digital)コンバータ(ADC)22と、レベル測定部24と、制御部26と、テスト信号生成部30とを有する。テスト信号生成部30は、基準信号発生器32と、分周回路34とを有する。 FIG. 1 is a block diagram showing a configuration example of an automatic adjustment device for a tracking filter according to an embodiment of the present invention. A tracking filter automatic adjustment apparatus 100 of FIG. 1 includes a low noise amplifier (LNA) 12, a switch 14, a tracking filter 16, an IF (intermediate frequency) amplifier 18, an AD (analog-to-digital) converter (ADC). ) 22, a level measurement unit 24, a control unit 26, and a test signal generation unit 30. The test signal generation unit 30 includes a reference signal generator 32 and a frequency dividing circuit 34.
 アンテナ(図示せず)は、送信された信号を受信し、受信信号RSをLNA12に供給する。LNA12は、受信信号RSを増幅して出力する。スイッチ14は、スイッチ制御信号SCに従って、LNA12の出力及び分周回路34から出力されたテスト信号TSのうちの一方を選択し、出力する。スイッチ14は、調整期間中においてはテスト信号TSを選択し、通常の受信を行うその他の期間には、LNA12の出力を選択する。トラッキングフィルタ16は、スイッチ14の出力の周波数成分のうち、トラッキングフィルタ16の通過帯域内の成分を通過させ、出力する。トラッキングフィルタ16の通過帯域及び中心周波数は、フィルタ制御信号TCに基づいて決定される。 The antenna (not shown) receives the transmitted signal and supplies the received signal RS to the LNA 12. The LNA 12 amplifies the reception signal RS and outputs it. The switch 14 selects and outputs one of the output of the LNA 12 and the test signal TS output from the frequency divider circuit 34 in accordance with the switch control signal SC. The switch 14 selects the test signal TS during the adjustment period, and selects the output of the LNA 12 during other periods during which normal reception is performed. The tracking filter 16 passes and outputs the components in the pass band of the tracking filter 16 among the frequency components of the output of the switch 14. The passband and center frequency of the tracking filter 16 are determined based on the filter control signal TC.
 制御部26は、トラッキングフィルタ16の中心周波数が、受信信号のうちの所望の信号の周波数(受信周波数)である目標周波数になるように、トラッキングフィルタ16に対して制御を行う。中心周波数は、トラッキングフィルタ16による減衰が最小になる周波数である。通過帯域は、トラッキングフィルタ16による減衰の、中心周波数の場合の減衰との差が、所定値(例えば0.5dB)以下であるような周波数範囲である。 The control unit 26 controls the tracking filter 16 so that the center frequency of the tracking filter 16 becomes a target frequency that is a frequency (reception frequency) of a desired signal among the reception signals. The center frequency is a frequency at which attenuation by the tracking filter 16 is minimized. The pass band is a frequency range in which the difference between the attenuation by the tracking filter 16 and the attenuation at the center frequency is equal to or less than a predetermined value (for example, 0.5 dB).
 IFアンプ18は、トラッキングフィルタ16の出力を増幅して出力する。ADC22は、IFアンプ18の出力をデジタル信号に変換して出力する。例えば図1の装置100を有する受信機においては、ADC22の出力に対して、周波数変換や復調等の後段の処理が行われる。レベル測定部24は、ADC22の出力の振幅を測定し、測定結果を受信信号レベルとして出力する。レベル測定部24として、RSSI(received signal strength indicator)やSメータを用いてもよい。 The IF amplifier 18 amplifies and outputs the output of the tracking filter 16. The ADC 22 converts the output of the IF amplifier 18 into a digital signal and outputs the digital signal. For example, in the receiver having the apparatus 100 of FIG. 1, subsequent processing such as frequency conversion and demodulation is performed on the output of the ADC 22. The level measuring unit 24 measures the amplitude of the output of the ADC 22 and outputs the measurement result as a received signal level. As the level measuring unit 24, an RSSI (received signal signal strength) indicator or an S meter may be used.
 テスト信号生成部30は、周波数制御信号RCに対応する周波数のテスト信号TSを生成する。具体的には、基準信号発生器32は、ほぼ一定の周波数f0の基準信号を生成し、出力する。分周回路34は、基準信号発生器32から出力された基準信号を周波数制御信号RCが示す分周比で分周し、分周された信号をテスト信号TSとしてスイッチ14に出力する。制御部26は、レベル測定部24から出力された受信信号レベルに基づいて、スイッチ制御信号SC、フィルタ制御信号TC、及び周波数制御信号RCを生成し、出力する。 The test signal generator 30 generates a test signal TS having a frequency corresponding to the frequency control signal RC. Specifically, the reference signal generator 32 generates and outputs a reference signal having a substantially constant frequency f0. The frequency dividing circuit 34 divides the reference signal output from the reference signal generator 32 by the frequency dividing ratio indicated by the frequency control signal RC, and outputs the frequency-divided signal to the switch 14 as the test signal TS. The control unit 26 generates and outputs a switch control signal SC, a filter control signal TC, and a frequency control signal RC based on the received signal level output from the level measuring unit 24.
 トラッキングフィルタ16は、例えば、可変容量Cを有するキャパシタ回路(以下ではCバンクと称する)と、固定インダクタンスLを有するインダクタとを含む同調型のバンドパストラッキングフィルタである。Cバンクは、並列に接続されたN個のキャパシタと(Nは自然数)、N個のキャパシタにそれぞれ直列に接続されたN個のスイッチとを有する。フィルタ制御信号TCは、Nビットのデジタル信号であり、フィルタ制御信号TCのNビットは、N個のスイッチにそれぞれ対応し、N個のスイッチは、対応するビットに基づいてオン又はオフになる。したがって、トラッキングフィルタ16のCバンクの可変容量Cは、フィルタ制御信号TCに対応する値になる。 The tracking filter 16 is, for example, a tuned band-pass tracking filter including a capacitor circuit having a variable capacitance C (hereinafter referred to as a C bank) and an inductor having a fixed inductance L. The C bank has N capacitors connected in parallel (N is a natural number) and N switches connected in series to the N capacitors. The filter control signal TC is an N-bit digital signal. The N bits of the filter control signal TC correspond to N switches, and the N switches are turned on or off based on the corresponding bits. Therefore, the variable capacitor C in the C bank of the tracking filter 16 has a value corresponding to the filter control signal TC.
 トラッキングフィルタ16の中心周波数は、可変容量Cと固定インダクタLとの共振周波数であって、次式(1)、
  ωc = 1/√(L・C)  …(1)
で表される。トラッキングフィルタ16の可変容量Cを変化させることにより、トラッキングフィルタ16の中心周波数を目標周波数にほぼ一致させることができる。
The center frequency of the tracking filter 16 is the resonance frequency of the variable capacitor C and the fixed inductor L, and the following equation (1),
ωc = 1 / √ (L · C) (1)
It is represented by By changing the variable capacitance C of the tracking filter 16, the center frequency of the tracking filter 16 can be made substantially coincident with the target frequency.
 フィルタ制御信号TCの値を決定するトラッキングフィルタ16の調整処理について、具体的な手順を以下に説明する。制御部26は、フィルタ制御信号TCを所定の初期値に設定する。制御部26は、スイッチ14が、分周回路34から出力されたテスト信号TSを選択するように、スイッチ制御信号SCを生成する。すると、スイッチ14は、テスト信号TSを選択する。スイッチ14がテスト信号TSを選択する期間を調整期間と称する。 A specific procedure for the adjustment process of the tracking filter 16 that determines the value of the filter control signal TC will be described below. The control unit 26 sets the filter control signal TC to a predetermined initial value. The control unit 26 generates the switch control signal SC so that the switch 14 selects the test signal TS output from the frequency dividing circuit 34. Then, the switch 14 selects the test signal TS. A period during which the switch 14 selects the test signal TS is referred to as an adjustment period.
 制御部26は、テスト信号TSの周波数が目標周波数fcより周波数Δfだけ低い周波数(fc-Δf)になるように、周波数制御信号RCを生成する。制御部26は、このときのレベル測定部24の測定結果を信号レベルS1として格納する。 The control unit 26 generates the frequency control signal RC so that the frequency of the test signal TS becomes a frequency (fc−Δf) lower than the target frequency fc by the frequency Δf. The control unit 26 stores the measurement result of the level measurement unit 24 at this time as the signal level S1.
 次に、制御部26は、テスト信号TSの周波数が目標周波数fcより周波数Δfだけ高い周波数(fc+Δf)になるように、周波数制御信号RCを生成する。制御部26は、このときのレベル測定部24の測定結果を信号レベルS2として格納する。 Next, the control unit 26 generates the frequency control signal RC so that the frequency of the test signal TS becomes a frequency (fc + Δf) higher than the target frequency fc by the frequency Δf. The control unit 26 stores the measurement result of the level measurement unit 24 at this time as the signal level S2.
 制御部26は、信号レベルS1と信号レベルS2とを比較する。制御部26は、信号レベルS1とS2とが等しい場合には、そのときのフィルタ制御信号TCの値を最適値として格納し、トラッキングフィルタ16の調整処理を終了する。この際、制御部26は、スイッチ14が、LNA12の出力を選択するように、スイッチ制御信号SCを生成する。スイッチ14は、LNA12の出力を選択し、調整期間が終了する。 The control unit 26 compares the signal level S1 with the signal level S2. When the signal levels S1 and S2 are equal, the control unit 26 stores the value of the filter control signal TC at that time as an optimum value, and ends the adjustment process of the tracking filter 16. At this time, the control unit 26 generates the switch control signal SC so that the switch 14 selects the output of the LNA 12. The switch 14 selects the output of the LNA 12 and the adjustment period ends.
 制御部26は、信号レベルS1とS2とが等しくない場合には、フィルタ制御信号TCを変更して、テスト信号TSの周波数が周波数(fc-Δf)になるようにする処理以降の処理を再び行う。フィルタ制御信号TCが変更されると、トラッキングフィルタ16は、その中心周波数をフィルタ制御信号TCに基づいて変更する。制御部26は、フィルタ制御信号TCを変更する際には、トラッキングフィルタ16のCバンクの容量が例えば単調増加又は単調減少するように、フィルタ制御信号TCの値を変更する。このように制御部26は、信号レベルS1とS2とが等しくなるように、フィルタ制御信号TCを生成する。 When the signal levels S1 and S2 are not equal, the control unit 26 changes the filter control signal TC so that the frequency of the test signal TS becomes the frequency (fc−Δf). Do. When the filter control signal TC is changed, the tracking filter 16 changes the center frequency based on the filter control signal TC. When changing the filter control signal TC, the control unit 26 changes the value of the filter control signal TC so that the capacity of the C bank of the tracking filter 16 increases or decreases monotonously, for example. Thus, the control unit 26 generates the filter control signal TC so that the signal levels S1 and S2 are equal.
 実際には、ノイズの影響等により、信号レベルS1とS2とが等しくならない場合がある。そこで、制御部26は、信号レベルS1とS2との差が所定の閾値以下になるように、フィルタ制御信号TCを生成してもよい。つまり、制御部26は、信号レベルS1とS2とを比較する際には、信号レベルS1とS2との差が所定の閾値以下である場合に、トラッキングフィルタ16の調整処理を終了するようにしてもよい。 Actually, the signal levels S1 and S2 may not be equal due to the influence of noise or the like. Therefore, the control unit 26 may generate the filter control signal TC so that the difference between the signal levels S1 and S2 is equal to or less than a predetermined threshold value. That is, when comparing the signal levels S1 and S2, the control unit 26 ends the adjustment process of the tracking filter 16 when the difference between the signal levels S1 and S2 is equal to or less than a predetermined threshold. Also good.
 このように、図1のトラッキングフィルタの自動調整装置100によると、比較的簡易な構成で、fc+Δfとfc-Δfの信号レベルが等しくなるようなフィルタ制御信号TCの値、すなわち、目標周波数fcに対して最適なフィルタ制御信号TCの値を決定することができる。 As described above, according to the tracking filter automatic adjustment apparatus 100 of FIG. 1, the filter control signal TC is set to a value that equalizes the signal levels of fc + Δf and fc−Δf, that is, the target frequency fc with a relatively simple configuration. On the other hand, the optimum value of the filter control signal TC can be determined.
 トラッキングフィルタ16のCバンクが有するi番目(iはi≦Nの自然数)のキャパシタの容量Ciを、Ci=C0・2^(i-1)にしてもよい(C0は所定の容量値、^は累乗を表す)。フィルタ制御信号TCの最下位からi番目のビットが、i番目のキャパシタに直列に接続されたスイッチの制御をすれば、Cバンクの容量は、フィルタ制御信号TCの値に比例する。 The capacitance Ci of the i-th capacitor (i is a natural number where i ≦ N) included in the C bank of the tracking filter 16 may be set to Ci = C0 · 2 ^ (i−1) (C0 is a predetermined capacitance value, ^ Represents a power). If the i-th bit from the lowest order of the filter control signal TC controls the switch connected in series to the i-th capacitor, the capacity of the C bank is proportional to the value of the filter control signal TC.
 このようにすると、少数の素子で広範囲な容量値を実現できるので、集積回路上で大きな面積を占めるキャパシタの数を削減することができ、回路規模を削減することができる。更にこの場合、フィルタ制御信号TCの最上位のビットから順に値を決定するバイナリサーチを行うことができるので、フィルタ制御信号TCの最適値を求めるために要する時間を短縮することができる。 In this manner, since a wide range of capacitance values can be realized with a small number of elements, the number of capacitors occupying a large area on the integrated circuit can be reduced, and the circuit scale can be reduced. Furthermore, in this case, since a binary search for determining values in order from the most significant bit of the filter control signal TC can be performed, the time required to obtain the optimum value of the filter control signal TC can be shortened.
 図2は、フィルタ制御信号TCの値と、トラッキングフィルタ16のフィルタ中心周波数との関係の例を示すグラフである。理論的には、ある2点の周波数における最適なTCの値が分かれば、それ以外の周波数におけるTCの値は式(1)により求めることができる。しかしながら、図1のトラッキングフィルタ16においては、回路素子の品質のばらつきや寄生素子の影響などに起因して、図2に示すように、フィルタ中心周波数や通過帯域の周波数が設計値からずれる。 FIG. 2 is a graph showing an example of the relationship between the value of the filter control signal TC and the filter center frequency of the tracking filter 16. Theoretically, if the optimal TC values at two certain frequencies are known, the TC values at other frequencies can be obtained by the equation (1). However, in the tracking filter 16 of FIG. 1, the filter center frequency and the passband frequency deviate from the design values, as shown in FIG. 2, due to variations in the quality of circuit elements and the influence of parasitic elements.
 図3は、3つの周波数についてのフィルタ制御信号TCの値と、これらの値を用いた曲線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。制御部26は、目標周波数を変更するときには、新たな目標周波数に対応するフィルタ制御信号TCの値を、図3に示された3つの目標周波数のうちの2つ、及びそれぞれに対応するフィルタ制御信号の値を用いて、曲線補間により求め、求められた値をトラッキングフィルタ16に出力する。 FIG. 3 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by curve interpolation using these values. When changing the target frequency, the control unit 26 sets the value of the filter control signal TC corresponding to the new target frequency to two of the three target frequencies shown in FIG. 3 and the filter control corresponding to each of the three target frequencies. Using the signal value, the value is obtained by curve interpolation, and the obtained value is output to the tracking filter 16.
 最も簡易な補間方法は直線補間である。図4は、3つの周波数についてのフィルタ制御信号TCの値と、これらの値を用いた直線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。実際には、前記の式(1)で示されているように、
  fc ∝ 1/√C
の関係があるので、図4のような直線補間より、図3のような曲線を用いた補間の方が精度がよい。
The simplest interpolation method is linear interpolation. FIG. 4 is a graph showing an example of the relationship between the value of the filter control signal TC for three frequencies and the value of the filter center frequency obtained by linear interpolation using these values. Actually, as shown in the above equation (1),
fc ∝ 1 / √C
Therefore, the interpolation using the curve as shown in FIG. 3 is more accurate than the linear interpolation as shown in FIG.
 そこで、制御部26は、目標周波数を変更するときには、新たな目標周波数fに対応するフィルタ制御信号TCの値を、例えば、
 TC = K1*(C1-C2)/(f^2)+C2*K2-C1*K3 (f≧f2) …(2)
 TC = K4*(C2-C3)/(f^2)+C3*K5-C2*K6 (f<f2) …(3)
 但し、K1~K6は実数の定数
で表される式を用いて求め、求められた値をトラッキングフィルタ16に出力してもよい。用いられる式はこれには限られず、有理式や次の多項式(4)、すなわち、
 TC = a0+a1・x+a2・x^2+a3・x^3+・・+am・x^m …(4)
 但し、a0~amは実数の定数、mは自然数
を用いてもよい。
Therefore, when changing the target frequency, the control unit 26 sets the value of the filter control signal TC corresponding to the new target frequency f, for example,
TC = K1 * (C1-C2) / (f ^ 2) + C2 * K2-C1 * K3 (f ≧ f2) (2)
TC = K4 * (C2-C3) / (f ^ 2) + C3 * K5-C2 * K6 (f <f2) (3)
However, K1 to K6 may be obtained by using an expression represented by a real constant, and the obtained value may be output to the tracking filter 16. The formula used is not limited to this, but a rational formula or the following polynomial (4), that is,
TC = a0 + a1.x + a2.x ^ 2 + a3.x ^ 3 + .. + am.x ^ m (4)
However, a0 to am may be real constants, and m may be a natural number.
 図5は、3より多くの数の周波数についてのフィルタ制御信号TCの値と、これらの値を用いた曲線補間によって得られるフィルタ中心周波数の値との関係の例を示すグラフである。以上では、3つの周波数について、フィルタ制御信号TCの値を求め、補間を行う例について説明したが、図5のように、3より多くの数の周波数についてのフィルタ制御信号TCの値を求め、補間を行ってもよい。より多くの数の周波数についてフィルタ制御信号TCの値を求め、補間を行うことにより、補間で得られる値の精度を高くすることができる。トラッキングフィルタ16がカバーする周波数帯域が広くなるほど、より多くの数の周波数についてフィルタ制御信号TCの値を求めるようにするとよい。 FIG. 5 is a graph showing an example of the relationship between the value of the filter control signal TC for more than three frequencies and the value of the filter center frequency obtained by curve interpolation using these values. In the above, the example of obtaining the filter control signal TC for three frequencies and performing interpolation has been described, but as shown in FIG. 5, the values of the filter control signal TC for more than three frequencies are obtained, Interpolation may be performed. By obtaining the value of the filter control signal TC for a larger number of frequencies and performing interpolation, the accuracy of the value obtained by interpolation can be increased. As the frequency band covered by the tracking filter 16 becomes wider, the value of the filter control signal TC may be obtained for a larger number of frequencies.
 図6は、曲線補間の他の例を示すグラフである。以上では、周波数の区間ごとに適用する補間式を変更する例について説明したが、全区間で1つの補間式を用いるようにしてもよい。すなわち、図6において、点(f1,C1),点(f2,C2),…,点(fN,CN)を通る1つの補間式を用いる。補間式としては、例えば式(4)を用いる。補間式としてはスプライン曲線を用いることが好ましい。なぜなら、各区間の境界(図6の周波数f2等)での連続性が確保できるからである。 FIG. 6 is a graph showing another example of curve interpolation. The example in which the interpolation formula to be applied for each frequency section has been described above, but one interpolation formula may be used for all sections. That is, in FIG. 6, one interpolation formula passing through the point (f1, C1), the point (f2, C2),..., The point (fN, CN) is used. As the interpolation formula, for example, formula (4) is used. It is preferable to use a spline curve as the interpolation formula. This is because continuity can be ensured at the boundary of each section (such as the frequency f2 in FIG. 6).
 以上の例では、トラッキングフィルタ16の周波数特性が、トラッキングフィルタ16の中心周波数に関して対称であることを仮定している。しかしながら、一般的には、トラッキングフィルタがカバーする周波数の範囲(バンド)が広い場合には、フィルタ調整信号TCを変化させた場合に、フィルタ特性を示すグラフの形状を保ったまま中心周波数が移動するようなフィルタを設計することは困難である。 In the above example, it is assumed that the frequency characteristics of the tracking filter 16 are symmetric with respect to the center frequency of the tracking filter 16. However, in general, when the frequency range (band) covered by the tracking filter is wide, the center frequency moves while maintaining the shape of the graph indicating the filter characteristics when the filter adjustment signal TC is changed. It is difficult to design such a filter.
 図7のグラフ(a)は、トラッキングフィルタ16の周波数特性の例を示すグラフである。図7のグラフ(b)は、トラッキングフィルタ16の真の中心周波数からこれに対応する目標周波数を減算して得られる差分dfを示すグラフである。目標周波数fcが周波数f1、f2、及びf3である場合に、生成されたフィルタ制御信号TCの値がそれぞれC1、C2、及びC3であり、フィルタの真の中心周波数がそれぞれf1’、f2’、及びf3’であるとする。 7 is a graph showing an example of the frequency characteristic of the tracking filter 16. A graph (b) in FIG. 7 is a graph showing a difference df obtained by subtracting a target frequency corresponding to the true center frequency of the tracking filter 16. When the target frequency fc is the frequencies f1, f2, and f3, the values of the generated filter control signal TC are C1, C2, and C3, respectively, and the true center frequencies of the filters are f1 ′, f2 ′, And f3 ′.
 図7のグラフ(a)に示されているように、中心周波数の可変幅が大きいほど、バンドの端に近づくにつれてフィルタの形状が非対称となる。このように、バンドの中心近くでは、(信号レベルS1)=(信号レベルS2)となるときのフィルタ制御信号TCに対応する目標周波数f2は真の中心周波数f2’に近い値であるが、バンドの端の方では、目標周波数f1’等は必ずしも真の中心周波数f1’等に一致するわけではない。フィルタの真の中心周波数からこれに対応する目標周波数fcを減算して得られる差分dfは、図7のグラフ(b)に示されているように、周波数fに対してに単調に変化する。 As shown in the graph (a) of FIG. 7, the greater the variable width of the center frequency, the more the shape of the filter becomes asymmetric as it approaches the end of the band. Thus, near the center of the band, the target frequency f2 corresponding to the filter control signal TC when (signal level S1) = (signal level S2) is a value close to the true center frequency f2 ′. On the other hand, the target frequency f1 ′ or the like does not necessarily coincide with the true center frequency f1 ′ or the like. The difference df obtained by subtracting the target frequency fc corresponding to the true center frequency of the filter changes monotonously with respect to the frequency f as shown in the graph (b) of FIG.
 そこで、制御部26は、あらかじめ周波数f1、f2、及びf3について、差分df1、df2、及びdf3をそれぞれ測定しておき、得られた差分を保持しておく。目標周波数と差分dfとの関係(図7のグラフ(b))に対しては、個体ごとのばらつきによる影響が比較的小さいので、チップごとに差分dfを求める必要は少ない。制御部26は、複数の異なる目標周波数f1、f2、及びf3のそれぞれについてフィルタ制御信号TCを生成した後、目標周波数f1、f2、及びf3に、それぞれに応じたオフセット値として差分df1、df2、又はdf3を加えてから補間を行う。 Therefore, the control unit 26 measures the differences df1, df2, and df3 in advance for the frequencies f1, f2, and f3, and holds the obtained differences. The relationship between the target frequency and the difference df (graph (b) in FIG. 7) is relatively less affected by the variation among individuals, so there is little need to obtain the difference df for each chip. The control unit 26 generates the filter control signal TC for each of a plurality of different target frequencies f1, f2, and f3, and then sets the differences df1, df2, and df as offset values corresponding to the target frequencies f1, f2, and f3, respectively. Alternatively, interpolation is performed after adding df3.
 言い換えると、制御部26は、生成されたフィルタ制御信号TCの値C1、C2、及びC3を、それぞれに差分dfを加えて補正した後の目標周波数、すなわち真の中心周波数f1’、f2’、及びf3’に対して最適な値であると見なして、以上で説明した種々の補間方式を適用する。すなわち、制御部26は、点(f1,C1)、点(f2,C2)、及び点(f3,C3)ではなく、点(f1’,C1)、点(f2’,C2)、及び点(f3’,C3)を通る曲線を求めて補間を行う。これにより、トラッキングフィルタ16が広帯域なバンドをカバーする必要があり、周波数によってはフィルタ特性の対称性がくずれるような場合においても、正確に中心周波数を目標周波数に一致させることができる。 In other words, the control unit 26 corrects the values C1, C2, and C3 of the generated filter control signal TC by adding the difference df to each, that is, the true center frequencies f1 ′, f2 ′, And the various interpolation methods described above are applied, assuming that these are optimum values for f3 ′. That is, the control unit 26 is not the point (f1, C1), the point (f2, C2), and the point (f3, C3), but the point (f1 ′, C1), the point (f2 ′, C2), and the point ( Interpolation is performed by obtaining a curve passing through f3 ′, C3). As a result, the tracking filter 16 needs to cover a wide band, and even when the symmetry of the filter characteristics is broken depending on the frequency, the center frequency can be accurately matched with the target frequency.
 図8のグラフ(a)は、トラッキングフィルタ16の周波数特性の他の例を示すグラフである。図8のグラフ(b)は、求められたフィルタ制御信号TCの値から、その値に対応する目標周波数においてトラッキングフィルタ16の透過率を最大にするようなフィルタ制御信号TCの値を減算して得られる差分dCを示すグラフである。目標周波数fcが周波数f1、f2、及びf3である場合に、生成されたフィルタ制御信号TCの値がそれぞれC1、C2、及びC3であり、周波数f1、f2、及びf3においてトラッキングフィルタ16の透過率を最大にするようなフィルタ制御信号TCの値がそれぞれC1’、C2’、及びC3’であるとする。 8 is a graph showing another example of the frequency characteristic of the tracking filter 16. The graph (b) in FIG. 8 is obtained by subtracting the value of the filter control signal TC that maximizes the transmittance of the tracking filter 16 at the target frequency corresponding to the obtained value of the filter control signal TC. It is a graph which shows difference dC obtained. When the target frequency fc is the frequencies f1, f2, and f3, the values of the generated filter control signal TC are C1, C2, and C3, respectively, and the transmittance of the tracking filter 16 at the frequencies f1, f2, and f3. Suppose that the values of the filter control signal TC that maximize the value are C1 ′, C2 ′, and C3 ′, respectively.
 差分dCは、図8のグラフ(b)に示されているように、周波数fに対してに単調に変化する。制御部26は、あらかじめ周波数f1、f2、及びf3について、C1’、C2’、及びC3’、又は差分dC1=C1-C1’、dC2=C2-C2’、及びdC3=C3-C3’をそれぞれ測定しておき、その測定結果を保持しておく。制御部26は、複数の異なる目標周波数f1、f2、及びf3のそれぞれについて生成されたフィルタ制御信号TCに、それぞれに応じたオフセット値として差分dC1、dC2、又はdC3を加えてからトラッキングフィルタ16に出力し、補間を行う。 The difference dC changes monotonously with respect to the frequency f as shown in the graph (b) of FIG. The control unit 26 previously sets C1 ′, C2 ′, and C3 ′ or differences dC1 = C1-C1 ′, dC2 = C2-C2 ′, and dC3 = C3-C3 ′ for the frequencies f1, f2, and f3, respectively. Measure and keep the measurement results. The control unit 26 adds the difference dC1, dC2, or dC3 as an offset value corresponding to the filter control signal TC generated for each of the plurality of different target frequencies f1, f2, and f3, and then adds the difference dC1, dC2, or dC3 to the tracking filter 16. Output and perform interpolation.
 すなわち、制御部26は、点(f1,C1)、点(f2,C2)、及び点(f3,C3)ではなく、点(f1,C1’)、点(f2,C2’)、及び点(f3,C3’)を通る曲線を求めて補間を行う。目標周波数fに応じたオフセット値dCは、図8のグラフ(b)に基づいて目標周波数に応じて補間計算により求めることができる。この場合の補間は、ほとんどの場合直線補間で十分である。これにより、トラッキングフィルタ16が広帯域なバンドをカバーする必要があり、周波数によってはフィルタ特性の対称性がくずれるような場合においても、正確に中心周波数を目標周波数に一致させることができる。 That is, the control unit 26 does not use the point (f1, C1), the point (f2, C2), and the point (f3, C3), but the point (f1, C1 ′), the point (f2, C2 ′), and the point ( A curve passing through f3, C3 ′) is obtained and interpolation is performed. The offset value dC corresponding to the target frequency f can be obtained by interpolation calculation according to the target frequency based on the graph (b) of FIG. In this case, linear interpolation is sufficient in most cases. As a result, the tracking filter 16 needs to cover a wide band, and even when the symmetry of the filter characteristics is broken depending on the frequency, the center frequency can be accurately matched with the target frequency.
 図9は、図1のトラッキングフィルタの自動調整装置100の他の例を示すブロック図である。図9のトラッキングフィルタの自動調整装置200は、アンテナとスイッチ14との間に減衰器211を更に有し、制御部26に代えて制御部226を有する点の他は、図1の装置100と同様に構成されている。 FIG. 9 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 100 of FIG. The tracking filter automatic adjustment apparatus 200 in FIG. 9 further includes an attenuator 211 between the antenna and the switch 14, and includes a control unit 226 instead of the control unit 26. It is constituted similarly.
 図1を参照して説明したように、トラッキングフィルタ16の調整期間中は、スイッチ14はテスト信号TSを選択する。しかし、テスト信号TSは強いので、これがLNA12にリークし、更にはアンテナから不要な輻射として放射されることがある。そこで、制御部226は、スイッチ14がテスト信号TSを選択する調整期間においては減衰器211を動作させ、入力された信号を減衰させる。減衰器211に入力された信号は減衰するので、テスト信号TSのアンテナへのリークを抑えることができる。減衰器211としては、例えば、AGC(automatic gain control)回路の一部として用いられている減衰器を使用することができる。 As described with reference to FIG. 1, during the adjustment period of the tracking filter 16, the switch 14 selects the test signal TS. However, since the test signal TS is strong, it leaks to the LNA 12 and may be radiated as unnecessary radiation from the antenna. Therefore, the control unit 226 operates the attenuator 211 in the adjustment period in which the switch 14 selects the test signal TS, and attenuates the input signal. Since the signal input to the attenuator 211 is attenuated, leakage of the test signal TS to the antenna can be suppressed. As the attenuator 211, for example, an attenuator used as a part of an AGC (automatic gain control) circuit can be used.
 図10は、図9のトラッキングフィルタの自動調整装置200の他の例を示すブロック図である。図10のトラッキングフィルタの自動調整装置300は、可変ゲインアンプ319を更に有し、制御部226に代えて制御部326を有する点の他は、図9の装置200と同様に構成されている。 FIG. 10 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 200 of FIG. The tracking filter automatic adjustment apparatus 300 in FIG. 10 further includes a variable gain amplifier 319 and is configured in the same manner as the apparatus 200 in FIG. 9 except that the control section 326 is provided instead of the control section 226.
 図11は、トラッキングフィルタ16の周波数特性のフィルタ制御信号TCに応じた変化の例を示すグラフである。フィルタ制御信号TCを制御してトラッキングフィルタ16の容量値を変化させた場合には、トラッキングフィルタ16の中心周波数におけるゲインは一定ではなく、周波数特性を持つ(図11参照)。特に、対応する周波数が広範囲にわたる場合には、同一バンド内であってもゲインの差が大きい。ゲインの差は、受信機の感度やSN(signal-to-noise)比の差の原因となるので、小さい方がよい。 FIG. 11 is a graph showing an example of a change in the frequency characteristic of the tracking filter 16 according to the filter control signal TC. When the filter control signal TC is controlled to change the capacitance value of the tracking filter 16, the gain at the center frequency of the tracking filter 16 is not constant and has frequency characteristics (see FIG. 11). In particular, when the corresponding frequency covers a wide range, the gain difference is large even within the same band. Since the gain difference causes a difference in receiver sensitivity and SN (signal-to-noise) ratio, it is preferable that the gain difference be small.
 そこで、図10の装置300では、可変ゲインアンプ319は、IFアンプ18の出力をゲイン制御信号GCに基づいて増幅又は減衰させ、ADC22に出力する。制御部326は、目標周波数の変化に伴う、ADC22に入力される信号のレベルの変動が小さくなるように、目標周波数に基づいてゲイン制御信号GCを生成し、可変ゲインアンプ319に出力する。これにより、トラッキングフィルタ16の中心周波数におけるゲインの周波数に応じた変化を小さくすることができる。 Therefore, in the apparatus 300 of FIG. 10, the variable gain amplifier 319 amplifies or attenuates the output of the IF amplifier 18 based on the gain control signal GC and outputs the amplified output to the ADC 22. The control unit 326 generates a gain control signal GC based on the target frequency and outputs the gain control signal GC to the variable gain amplifier 319 so that the fluctuation in the level of the signal input to the ADC 22 accompanying the change in the target frequency is reduced. Thereby, the change according to the frequency of the gain in the center frequency of the tracking filter 16 can be reduced.
 図12は、図10のトラッキングフィルタの自動調整装置300の他の例を示すブロック図である。図12のトラッキングフィルタの自動調整装置400は、温度検出部442を更に有し、制御部326に代えて制御部426を有する点の他は、図10の装置300と同様に構成されている。 FIG. 12 is a block diagram showing another example of the tracking filter automatic adjustment apparatus 300 of FIG. The tracking filter automatic adjustment device 400 of FIG. 12 further includes a temperature detection unit 442 and is configured in the same manner as the device 300 of FIG. 10 except that a control unit 426 is provided instead of the control unit 326.
 これまでは、トラッキングフィルタ16の通過帯域が比較的ブロードである場合について説明したが、トラッキングフィルタ16の通過帯域は狭帯域であってもよい。フィルタが有するインダクタ、キャパシタ、及び抵抗等の素子の特性は、温度に応じて変化する。この変化は、フィルタの通過帯域が狭いほど、フィルタ特性に大きく影響する。 So far, the case where the pass band of the tracking filter 16 is relatively broad has been described, but the pass band of the tracking filter 16 may be a narrow band. The characteristics of elements such as an inductor, a capacitor, and a resistor included in the filter change according to temperature. This change greatly affects the filter characteristics as the pass band of the filter is narrower.
 そこで、図12の装置400では、温度検出部442がトラッキングフィルタ16又はその周辺の温度を検出し、検出された温度を制御部426に通知する。制御部426は、トラッキングフィルタ16の特性の温度変化による影響が小さくなるように、通知された温度に基づいて、フィルタ制御信号TCの値を調整して出力する。これにより、トラッキングフィルタ16の特性に対する温度変化の影響を小さくすることができる。 Therefore, in the apparatus 400 of FIG. 12, the temperature detection unit 442 detects the temperature of the tracking filter 16 or its surroundings, and notifies the control unit 426 of the detected temperature. The control unit 426 adjusts and outputs the value of the filter control signal TC based on the notified temperature so that the influence of the characteristic of the tracking filter 16 due to the temperature change is reduced. Thereby, the influence of the temperature change on the characteristics of the tracking filter 16 can be reduced.
 図13は、図1のトラッキングフィルタの自動調整装置100を有する受信機の構成例を示すブロック図である。図13の受信機80は、受信部82と、復調部84と、信号処理部86と、音声/映像出力部88とを有する。受信部82は、図1のトラッキングフィルタの自動調整装置100を有する。受信部82は、装置100に代えて、図9、図10、及び図12のトラッキングフィルタの自動調整装置200,300,又は400を有してもよい。 FIG. 13 is a block diagram showing a configuration example of a receiver having the tracking filter automatic adjustment apparatus 100 of FIG. 13 includes a receiving unit 82, a demodulating unit 84, a signal processing unit 86, and an audio / video output unit 88. The receiving unit 82 includes the tracking filter automatic adjusting device 100 of FIG. The receiving unit 82 may include the tracking filter automatic adjustment device 200, 300, or 400 shown in FIGS. 9, 10, and 12 instead of the device 100.
 装置100は、図1を参照して説明したように、受信信号RSのうちの所望の信号の周波数である目標周波数付近の成分を通過させ、AD変換する。受信部82は、AD変換された信号に対して周波数変換等の処理を行い、出力する。復調部84は、受信部82の出力に対して、受信信号RSの変調方式に対応した復調処理を行い、得られた復調信号を出力する。信号処理部86は、復調部84から出力された復調信号にデコード等の所定の信号処理を行い、得られた音声信号及び/又は映像信号を出力する。音声/映像出力部88は、映像信号によって表される映像の表示、及び音声信号によって表される音声の出力のうちの少なくとも一方を行う。 As described with reference to FIG. 1, the apparatus 100 allows a component near the target frequency, which is the frequency of a desired signal, of the received signal RS to pass and performs AD conversion. The receiving unit 82 performs processing such as frequency conversion on the AD-converted signal and outputs it. The demodulator 84 performs demodulation processing corresponding to the modulation scheme of the received signal RS on the output of the receiver 82 and outputs the obtained demodulated signal. The signal processor 86 performs predetermined signal processing such as decoding on the demodulated signal output from the demodulator 84, and outputs the obtained audio signal and / or video signal. The audio / video output unit 88 performs at least one of display of video represented by the video signal and output of audio represented by the audio signal.
 以上のように、本実施形態によると、要求されるテスト信号の周波数を、バンド内のあらゆるの周波数に対応する必要がなく、あらかじめ調整に用いる周波数f1,f2,及びf3等の周辺の周波数の信号のみを発生されることができれば十分であり、一定の周波数で発振する基準信号発生器と分周回路を有するテスト信号生成部を用いることができる。したがって、テスト信号生成部にはPLL(phase locked loop)等が不要になり、回路規模を小さくすることができる。また、テストトーンを外部から入力する必要もなく、調整時間の短縮、簡易化が可能である。 As described above, according to the present embodiment, the frequency of the required test signal does not need to correspond to every frequency in the band, and peripheral frequencies such as frequencies f1, f2, and f3 used for adjustment in advance are not required. It is sufficient that only a signal can be generated, and a test signal generator having a reference signal generator and a frequency dividing circuit that oscillates at a constant frequency can be used. Therefore, the test signal generator does not require a PLL (phase locked loop) or the like, and the circuit scale can be reduced. Further, there is no need to input a test tone from the outside, and adjustment time can be shortened and simplified.
 本明細書における各機能ブロックは、典型的にはハードウェアで実現され得る。例えば各機能ブロックは、IC(集積回路)の一部として半導体基板上に形成され得る。ここでICは、LSI(large-scale integrated circuit)、ASIC(application-specific integrated circuit)、ゲートアレイ、FPGA(field programmable gate array)等を含む。代替としては各機能ブロックの一部又は全ては、ソフトウェアで実現され得る。例えばそのような機能ブロックは、プロセッサ及びプロセッサ上で実行されるプログラムによって実現され得る。換言すれば、本明細書で説明される各機能ブロックは、ハードウェアで実現されてもよいし、ソフトウェアで実現されてもよいし、ハードウェアとソフトウェアとの任意の組合せで実現され得る。 Each functional block in this specification can be typically realized by hardware. For example, each functional block can be formed on a semiconductor substrate as part of an IC (integrated circuit). Here, the IC includes an LSI (large-scale integrated circuit), an ASIC (application-specific integrated circuit), a gate array, an FPGA (field programmable gate array), and the like. Alternatively, some or all of each functional block can be implemented in software. For example, such a functional block can be realized by a processor and a program executed on the processor. In other words, each functional block described in the present specification may be realized by hardware, may be realized by software, or may be realized by any combination of hardware and software.
 本発明の多くの特徴及び優位性は、記載された説明から明らかであり、よって添付の特許請求の範囲によって、本発明のそのような特徴及び優位性の全てをカバーすることが意図される。更に、多くの変更及び改変が当業者には容易に可能であるので、本発明は、図示され記載されたものと全く同じ構成及び動作に限定されるべきではない。したがって、全ての適切な改変物及び等価物は本発明の範囲に入るものとされる。 Many features and advantages of the present invention will be apparent from the written description, and thus, it is intended by the appended claims to cover all such features and advantages of the present invention. Further, since many changes and modifications will readily occur to those skilled in the art, the present invention should not be limited to the exact construction and operation as illustrated and described. Accordingly, all suitable modifications and equivalents are intended to be within the scope of the present invention.
 以上説明したように、本開示によれば、妨害波の影響を低減することが、比較的簡単な回路構成で可能となるので、本発明は、トラッキングフィルタの自動調整装置及びこれを用いた受信機等、例えば、車載用のラジオチューナについて有用である。 As described above, according to the present disclosure, it is possible to reduce the influence of an interference wave with a relatively simple circuit configuration. Therefore, the present invention provides an automatic adjustment device for a tracking filter and a reception using the same. This is useful for a vehicle-mounted radio tuner, for example.
12 低雑音アンプ
14 スイッチ
16 トラッキングフィルタ
18 IFアンプ
22 ADコンバータ
24 レベル測定部
26,226,326,426 制御部
30 テスト信号生成部
32 基準信号発生器
34 分周回路
80 受信機
82 受信部
84 復調部
86 信号処理部
88 音声/映像出力部
100,200,300,400 トラッキングフィルタの自動調整装置
319 可変ゲインアンプ
442 温度検出部
12 Low noise amplifier 14 Switch 16 Tracking filter 18 IF amplifier 22 AD converter 24 Level measurement unit 26, 226, 326, 426 Control unit 30 Test signal generation unit 32 Reference signal generator 34 Divider circuit 80 Receiver 82 Receiver 84 Demodulation Unit 86 signal processing unit 88 audio / video output unit 100, 200, 300, 400 tracking filter automatic adjustment device 319 variable gain amplifier 442 temperature detection unit

Claims (9)

  1.  周波数制御信号に対応する周波数のテスト信号を生成するテスト信号生成部と、
     調整期間においては前記テスト信号を選択し、その他の期間には受信信号を選択して出力するスイッチと、
     フィルタ制御信号に対応する可変容量を有するキャパシタ回路を有し、前記スイッチの出力のうち、通過帯域内の成分を通過させて出力するトラッキングフィルタと、
     前記トラッキングフィルタを通過した信号の振幅を測定し、測定結果を出力するレベル測定部と、
     前記フィルタ制御信号、及び前記周波数制御信号を生成する制御部とを備え、
     前記制御部は、複数の異なる目標周波数のそれぞれについて、前記目標周波数より所定の周波数だけ低い第1周波数の前記テスト信号を前記テスト信号生成部に生成させているときに、前記レベル測定部が前記測定結果として出力する第1信号レベルと、前記目標周波数より前記所定の周波数だけ高い第2周波数の前記テスト信号を前記テスト信号生成部に生成させているときに、前記レベル測定部が前記測定結果として出力する第2信号レベルとの差が、所定の閾値以下になるように、前記フィルタ制御信号を生成し、前記複数の異なる目標周波数のそれぞれについて生成された前記フィルタ制御信号の値を用いて補間を行うことにより、新たな目標周波数に対応する値を求め、前記新たな目標周波数についての前記フィルタ制御信号として用いる
    トラッキングフィルタの自動調整装置。
    A test signal generator for generating a test signal having a frequency corresponding to the frequency control signal;
    A switch that selects the test signal in the adjustment period, and selects and outputs the reception signal in the other period;
    A tracking circuit having a capacitor circuit having a variable capacitance corresponding to a filter control signal, and outputting a component in a pass band among outputs of the switch;
    A level measurement unit that measures the amplitude of the signal that has passed through the tracking filter and outputs a measurement result;
    A control unit that generates the filter control signal and the frequency control signal;
    The control unit causes the test signal generator to generate the test signal having a first frequency lower than the target frequency by a predetermined frequency for each of a plurality of different target frequencies. When the test signal generator generates the first signal level to be output as a measurement result and the test signal having a second frequency higher than the target frequency by the predetermined frequency, the level measurement unit performs the measurement result. The filter control signal is generated so that the difference from the second signal level output as a predetermined threshold or less is used, and the value of the filter control signal generated for each of the plurality of different target frequencies is used. By performing interpolation, a value corresponding to the new target frequency is obtained and used as the filter control signal for the new target frequency. Automatic adjusting apparatus of the tracking filter used.
  2.  請求項1に記載のトラッキングフィルタの自動調整装置において、
     前記テスト信号生成部は、
     所定の周波数の基準信号を生成する基準信号発生器と、
     前記基準信号を分周して前記テスト信号として出力する分周器とを有する
    トラッキングフィルタの自動調整装置。
    In the automatic adjustment device of the tracking filter according to claim 1,
    The test signal generator is
    A reference signal generator for generating a reference signal of a predetermined frequency;
    A tracking filter automatic adjustment device comprising: a frequency divider that divides the reference signal and outputs the frequency as the test signal.
  3.  請求項1又は2に記載のトラッキングフィルタの自動調整装置において、
     前記キャパシタ回路は、並列に接続可能なN個(Nは2以上の整数)のキャパシタを有し、前記N個のキャパシタのうちのi番目のキャパシタの容量Ciは(iはi≦Nの自然数)、Ci=C0・2^i(C0は所定の容量値、^は累乗を表す)である
    トラッキングフィルタの自動調整装置。
    In the automatic adjustment device of the tracking filter according to claim 1 or 2,
    The capacitor circuit includes N capacitors (N is an integer of 2 or more) that can be connected in parallel, and the capacitance Ci of the i-th capacitor among the N capacitors is (i is a natural number where i ≦ N). ), Ci = C0 · 2 ^ i (C0 is a predetermined capacitance value, and ^ represents a power).
  4.  請求項1~3のいずれか1項に記載のトラッキングフィルタの自動調整装置において、
     前記受信信号を供給するアンテナと前記スイッチとの間に、減衰器を更に備え、
     前記減衰器は、前記調整期間においては、入力された信号を減衰させる
    トラッキングフィルタの自動調整装置。
    The automatic adjustment device for a tracking filter according to any one of claims 1 to 3,
    An attenuator is further provided between the antenna that supplies the received signal and the switch,
    The attenuator is an automatic adjustment device for a tracking filter that attenuates an input signal during the adjustment period.
  5.  請求項1~4のいずれか1項に記載のトラッキングフィルタの自動調整装置において、
     温度を検出する温度検出部を更に備え、
     前記制御部は、前記トラッキングフィルタの特性の温度変化による影響が小さくなるように、検出された温度に基づいて、前記フィルタ制御信号の値を調整する
    トラッキングフィルタの自動調整装置。
    The tracking filter automatic adjustment device according to any one of claims 1 to 4,
    A temperature detection unit for detecting the temperature;
    The control unit is an automatic adjustment device for a tracking filter that adjusts a value of the filter control signal based on a detected temperature so that an influence of a temperature change in characteristics of the tracking filter is reduced.
  6.  請求項1~5のいずれか1項に記載のトラッキングフィルタの自動調整装置において、
     前記制御部は、前記複数の異なる目標周波数のそれぞれについて前記フィルタ制御信号を生成した後、前記複数の異なる目標周波数に、それぞれに応じたオフセット値を加えてから補間を行う
    トラッキングフィルタの自動調整装置。
    The tracking filter automatic adjusting device according to any one of claims 1 to 5,
    An automatic adjustment device for a tracking filter that performs interpolation after adding an offset value corresponding to each of the plurality of different target frequencies after generating the filter control signal for each of the plurality of different target frequencies .
  7.  請求項1~5のいずれか1項に記載のトラッキングフィルタの自動調整装置において、
     前記制御部は、前記複数の異なる目標周波数のそれぞれについて生成された前記フィルタ制御信号の値にオフセット値を加えてから補間を行う
    トラッキングフィルタの自動調整装置。
    The tracking filter automatic adjusting device according to any one of claims 1 to 5,
    The tracking filter automatic adjustment device that performs interpolation after adding an offset value to the value of the filter control signal generated for each of the plurality of different target frequencies.
  8.  請求項1~5のいずれか1項に記載のトラッキングフィルタの自動調整装置において、
     前記トラッキングフィルタを通過した信号をゲイン制御信号に応じたゲインで増幅する可変ゲインアンプを更に備え、
     前記制御部は、前記ゲイン制御信号を生成する
    トラッキングフィルタの自動調整装置。
    The tracking filter automatic adjusting device according to any one of claims 1 to 5,
    A variable gain amplifier that amplifies the signal that has passed through the tracking filter with a gain according to a gain control signal;
    The control unit is an automatic adjustment device for a tracking filter that generates the gain control signal.
  9.  請求項1~5のいずれか1項に記載のトラッキングフィルタの自動調整装置を有し、前記トラッキングフィルタの自動調整装置を通過した信号に所定の処理を行って出力する受信部と、
     前記受信部の出力に復調処理を行い、得られた復調信号を出力する復調部と、
     前記復調信号に所定の信号処理を行い、得られた信号を出力する信号処理部と、
     前記信号処理部で得られた信号によって表される、映像の表示及び音声の出力のうちの少なくとも一方を行う出力部とを備える
    受信機。
    A receiver that has the tracking filter automatic adjustment device according to any one of claims 1 to 5, and performs a predetermined process on a signal that has passed through the tracking filter automatic adjustment device;
    A demodulator that performs demodulation processing on the output of the receiver and outputs the obtained demodulated signal;
    A signal processing unit that performs predetermined signal processing on the demodulated signal and outputs the obtained signal;
    A receiver comprising: an output unit that performs at least one of video display and audio output represented by the signal obtained by the signal processing unit.
PCT/JP2012/004083 2011-08-25 2012-06-25 Automatic adjustment device for tracking filter and receiver using same WO2013027318A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011184111A JP2014212360A (en) 2011-08-25 2011-08-25 Automatic adjuster of tracking filter and receiver using the same
JP2011-184111 2011-08-25

Publications (1)

Publication Number Publication Date
WO2013027318A1 true WO2013027318A1 (en) 2013-02-28

Family

ID=47746093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004083 WO2013027318A1 (en) 2011-08-25 2012-06-25 Automatic adjustment device for tracking filter and receiver using same

Country Status (2)

Country Link
JP (1) JP2014212360A (en)
WO (1) WO2013027318A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005106A1 (en) * 2013-07-12 2015-01-15 デクセリアルズ株式会社 Control circuit, resonance circuit, electronic device, control method, control program, and semiconductor element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145728A (en) * 1990-10-08 1992-05-19 Nec Ic Microcomput Syst Ltd Channel selection device for electronic tuner
JPH0629878A (en) * 1992-04-24 1994-02-04 Hitachi Ltd Radio receiver
JPH10276110A (en) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd Radio receiver
JP2003249863A (en) * 2002-02-26 2003-09-05 Kenwood Corp Method for controlling tracking filter in receiving apparatus
JP2007174367A (en) * 2005-12-22 2007-07-05 Oki Electric Ind Co Ltd Signal detection circuit
JP2008098730A (en) * 2006-10-06 2008-04-24 Seiko Epson Corp Adjustable filter circuit and center frequency adjusting method for filter circuit
JP2009100364A (en) * 2007-10-18 2009-05-07 Sanyo Electric Co Ltd Antenna control apparatus, receiver and antenna control method
JP2011023870A (en) * 2009-07-14 2011-02-03 Sharp Corp Electronic tuner and receiver

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04145728A (en) * 1990-10-08 1992-05-19 Nec Ic Microcomput Syst Ltd Channel selection device for electronic tuner
JPH0629878A (en) * 1992-04-24 1994-02-04 Hitachi Ltd Radio receiver
JPH10276110A (en) * 1997-03-28 1998-10-13 Sanyo Electric Co Ltd Radio receiver
JP2003249863A (en) * 2002-02-26 2003-09-05 Kenwood Corp Method for controlling tracking filter in receiving apparatus
JP2007174367A (en) * 2005-12-22 2007-07-05 Oki Electric Ind Co Ltd Signal detection circuit
JP2008098730A (en) * 2006-10-06 2008-04-24 Seiko Epson Corp Adjustable filter circuit and center frequency adjusting method for filter circuit
JP2009100364A (en) * 2007-10-18 2009-05-07 Sanyo Electric Co Ltd Antenna control apparatus, receiver and antenna control method
JP2011023870A (en) * 2009-07-14 2011-02-03 Sharp Corp Electronic tuner and receiver

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015005106A1 (en) * 2013-07-12 2015-01-15 デクセリアルズ株式会社 Control circuit, resonance circuit, electronic device, control method, control program, and semiconductor element
JP2015018472A (en) * 2013-07-12 2015-01-29 デクセリアルズ株式会社 Control circuit, resonance circuit, electronic apparatus, control method, control program, and semiconductor element
CN105378758A (en) * 2013-07-12 2016-03-02 迪睿合株式会社 Control circuit, resonance circuit, electronic device, control method, control program, and semiconductor element
US9973010B2 (en) 2013-07-12 2018-05-15 Dexerials Corporation Control circuit, resonance circuit, electronic device, control method, control program, and semiconductor element
CN105378758B (en) * 2013-07-12 2019-05-10 迪睿合株式会社 Control circuit, resonance circuit, electronic equipment, control method, control program and semiconductor element

Also Published As

Publication number Publication date
JP2014212360A (en) 2014-11-13

Similar Documents

Publication Publication Date Title
US9954560B2 (en) Adaptive/configurable intermediate frequency (IF) wireless receiver and bluetooth device using the same
US8634793B2 (en) IP2 calibration measurement and signal generation
CN101267215B (en) Low if receiver of rejecting image signal and image signal rejection method
JP2009081839A (en) Fm tuner
US8238865B2 (en) Image calibration and correction for low-IF receivers
US9531484B2 (en) Super-regenerative receiver (SRR) and super-regenerative reception method with increased channel selectivity
US9148184B2 (en) Power detection circuit and power detection method
JPWO2011074193A1 (en) Automatic gain control device and electronic equipment
US9450598B2 (en) Two-stage digital down-conversion of RF pulses
US8238859B2 (en) Radio receiver
US20090170445A1 (en) System and Method for Tuning Baseband Filters in Wireless Transceivers
WO2013027318A1 (en) Automatic adjustment device for tracking filter and receiver using same
US9059774B2 (en) Reduction method and apparatus
US7843257B2 (en) Active filter calibration method and apparatus
WO2011104804A1 (en) Signal processing circuit, wireless communication device, and signal processing method
JP2010252174A (en) Receiving device and tuner
TWI423597B (en) Method for compensating for gain ripple and group delay characteristics of filter and receiving circuit embodying the same
KR20160111115A (en) Radio frequency receiver having mismatching compensation function and method for compensating mismatching of the same
JP2011024145A (en) Radio wave receiver and radio controlled clock
KR101896926B1 (en) Tuner module using lookup table
JP2019009497A (en) Semiconductor device and method thereof
JP2004297574A (en) Signal detection apparatus, and receiver capable of utilizing the apparatus
JP5119965B2 (en) Receiving device and electronic device using the same
US20130251081A1 (en) Adjacent-channel interference reject filter device, wireless communication device, and keyless entry device
JP3617788B2 (en) FM receiver

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12825541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12825541

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP