WO2013024937A1 - Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same - Google Patents

Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same Download PDF

Info

Publication number
WO2013024937A1
WO2013024937A1 PCT/KR2011/007603 KR2011007603W WO2013024937A1 WO 2013024937 A1 WO2013024937 A1 WO 2013024937A1 KR 2011007603 W KR2011007603 W KR 2011007603W WO 2013024937 A1 WO2013024937 A1 WO 2013024937A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen separation
separation membrane
vanadium
carbon dioxide
Prior art date
Application number
PCT/KR2011/007603
Other languages
French (fr)
Korean (ko)
Inventor
박정훈
프루어리에릭
전성일
진홍석
백일현
남성찬
윤여일
Original Assignee
한국에너지기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국에너지기술연구원 filed Critical 한국에너지기술연구원
Publication of WO2013024937A1 publication Critical patent/WO2013024937A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0221Group 4 or 5 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/501Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion
    • C01B3/503Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by diffusion characterised by the membrane
    • C01B3/505Membranes containing palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/304Hydrogen sulfide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/20Specific permeability or cut-off range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0405Purification by membrane separation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/047Composition of the impurity the impurity being carbon monoxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0475Composition of the impurity the impurity being carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/048Composition of the impurity the impurity being an organic compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0485Composition of the impurity the impurity being a sulfur compound
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity
    • C01B2203/0495Composition of the impurity the impurity being water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry

Definitions

  • the present invention relates to a vanadium-based alloy hydrogen separation membrane and a carbon dioxide capture and hydrogen separation method using the same.
  • Pre-combustion capture technology a representative carbon dioxide capture and storage technology, produces synthetic gas (H 2 + CO) by partially oxidizing various fossil fuels, and then generates greenhouse gases in hydrogen and carbon dioxide produced by water gas shift (WGS). It is a technology for capturing carbon dioxide, which is the main culprit.
  • the pre-combustion CO 2 capture technology using hydrogen separation membrane is regarded as one of the technologies for the future hydrogen economy society because it can capture carbon dioxide and produce hydrogen [JH Park and IH Baek, and prospect of pre-combustion CO2 capture technology, KIC News, 12, 3 (2009)].
  • As the interest in core carbon dioxide capture from the environmental side and future hydrogen separation core technology from the economic side is heightened, research on the development of various hydrogen / carbon dioxide separation technologies is being actively conducted.
  • Hydrogen / carbon dioxide separation technologies include membrane, pressure swing adsorption, and deep cold fractional distillation.
  • Hydrogen separation method by pressure swing adsorption method which is widely used at present, is able to obtain 99% high purity hydrogen and shows recovery rate of 65-90%, but the large capacity hydrogen separation process requires a large investment cost and energy.
  • the deep cooling method can obtain hydrogen of 90-95% purity and shows a high recovery rate of 90-95%, but has a disadvantage of high facility investment cost [J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, and R. Leysen, of LaSrCoFeO3-x membranes, Solid State Ion., 135, 637 (2000)].
  • Membrane method is superior to other two processes in terms of economy and ease of operation, so it can be used as a process that simultaneously performs reaction and separation in the form of CMR (Catalytic membrane reactor) linking WGS catalyst and membrane in CO2 capture process.
  • CMR Catalytic membrane reactor
  • the membrane applicable to this process must not only have high permeability and selectivity for hydrogen, but also chemical and mechanical strength. And thermal stability. Therefore, it is necessary to develop a separator having excellent heat resistance and mechanical strength for use in such extreme conditions.
  • Carbon dioxide capture / hydrogen separation using membranes is considered to be a suitable method for increasing hydrogen demand due to low cost, high selectivity, high production rate, large capacity and process convenience.
  • a palladium alloy which has excellent catalytic ability, hydrogen permeability, and resistance to other corrosive gases H 2 O, CO, CO 2 and H 2 S.
  • palladium has a practical difficulty in commercialization due to its scarcity and requires the development of a film containing a metal to replace it.
  • the rate of hydrogen permeation is inversely proportional to the thickness of the membrane, so that the membrane must be made very thin in order to increase the permeability of the membrane. In this case, however, the mechanical strength of the membrane is significantly reduced. , 103 (2006).
  • the present invention has been made to solve the above-mentioned conventional problems, to provide a vanadium-based alloy carbon dioxide and a hydrogen separation membrane, which has high permeability to hydrogen as well as high mechanical stability at high temperatures and excellent economic efficiency without using palladium.
  • the present application is doped with yttrium of V 100-xy M x Y y (I) where M is a metal or transition metal, x is 0 ⁇ x ⁇ 20% and y is 0 ⁇ y ⁇ 0.25%.
  • a vanadium-based alloy hydrogen separation membrane is provided.
  • the present disclosure also provides a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein x is 0 ⁇ x ⁇ 15% and y is 0 ⁇ y ⁇ 0.2%.
  • the present invention also relates to a vanadium-based alloy doped with yttrium, wherein M is nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver (Ag), palladium (Pd) or chromium (Cr). It provides a hydrogen separation membrane.
  • the present invention also provides a vanadium-based alloy hydrogen separation membrane doped with yttrium, the vanadium-based alloy hydrogen separation membrane is coated on one side or both sides with palladium.
  • the present invention is also used for the separation of the hydrogen separation membrane, the mixed gas for carbon dioxide capture, the mixed gas for hydrogen purification, the gas mixture generated after the methane reforming reaction, the gas mixture generated after the water gas transition reaction, itrium It provides a vanadium-based alloy hydrogen separation membrane doped with.
  • the present application also provides a composite hydrogen separation membrane comprising a vanadium-based alloy hydrogen separation membrane and a porous support doped with yttrium according to the present application.
  • the present application also provides a method of separating hydrogen from a mixed gas, comprising passing the mixed gas through a vanadium-based alloy hydrogen separation membrane doped with itrium according to the present application.
  • the present application also provides a method of separating hydrogen from a mixed gas, wherein the mixed gas comprises at least two gases of hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane and water vapor.
  • the present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium according to the present invention, the method comprising the steps of performing a gasification reaction of the fuel with pure oxygen to produce a synthesis gas; Performing a gas shift reaction with the generated syngas to generate a gas mixture; Passing the gas mixture through a vanadium-based alloy hydrogen separator system doped with yttrium; And separating hydrogen passing through the membrane and collecting carbon dioxide.
  • the present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the syngas includes hydrogen and carbon monoxide, optionally carbon dioxide or hydrogen sulfide, or carbon dioxide and hydrogen sulfide. do.
  • the present application also relates to vanadium doped with yttrium, wherein the gas mixture comprises hydrogen and carbon dioxide and optionally comprises carbon monoxide, hydrogen sulfide, water vapor, respectively, or carbon monoxide and water vapor, hydrogen sulfide and water vapor, or carbon monoxide and hydrogen sulfide, and water vapor. It provides a carbon dioxide capture and hydrogen separation method using a base alloy hydrogen separation membrane.
  • the present invention also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the vanadium-based alloy hydrogen separation membrane system comprises one or two hydrogen separation membrane.
  • the present invention also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the hydrogen is separated by 99% or more purity, the carbon dioxide is 90% or more purity.
  • the vanadium-based alloy hydrogen separation membrane doped with yttrium of the present application has high hydrogen permeability at high temperature, as well as excellent mechanical stability, and thus may be useful for carbon dioxide capture and hydrogen separation using a membrane in pre-combustion carbon dioxide capture technology. Furthermore, the carbon dioxide / hydrogen separator of the present application can satisfy the DOE (Department of Energy (US)) criteria for commercially available hydrogen separators, especially in terms of hydrogen permeability, durability against carbon monoxide, hydrogen purity, stability / durability. It is an excellent carbon dioxide / hydrogen separator.
  • DOE Department of Energy
  • Figure 1a is the XRD results before the hydrogen permeation experiment of the hydrogen separation membrane (V 99 Y 1 ).
  • FIG. 1B is a graph showing the hydrogen permeation rate according to pressure at 100% of hydrogen of the hydrogen separation membrane (V 99 Y 1 ).
  • Figure 1c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 99 Y 1 ) and ( ⁇ P feed - ⁇ P sweep ).
  • Figure 1d is a graph showing the relationship between the hydrogen permeability of the hydrogen separation membrane (V 99 Y 1 ) and ( ⁇ P feed - ⁇ P sweep ) at 100% hydrogen without using argon gallbladder gas.
  • FIG. 1E is a graph showing the relationship between the hydrogen permeability of the hydrogen separation membrane (V 99 Y 1 ) and ( ⁇ P feed ⁇ P sweep ) in a hydrogen supply gas containing 5% CO without argon gallbladder gas.
  • FIG. 1F is an XRD analysis result of the hydrogen separation membrane surface of the feed gas portion after the hydrogen permeation experiment using hydrogen and carbon monoxide of the hydrogen separation membrane (V 99 Y 1 ) as the supply gas.
  • Figure 1g is the XRD analysis of the surface of the hydrogen separation membrane of the gallbladder gas after hydrogen permeation experiment using hydrogen and carbon monoxide of the hydrogen separation membrane (V 99 Y 1 ) as the feed gas.
  • Figure 2a is a graph showing the hydrogen permeation amount according to the pressure at 100% hydrogen of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ).
  • Figure 2b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ) and ( ⁇ P feed - ⁇ P sweep ) in the permeation experiment with 100% hydrogen feed gas.
  • Figure 2c is a graph showing the hydrogen permeation rate with temperature at 1.5 bar, 100% hydrogen of the hydrogen separation membrane (V 89.8 Al 10 Y 0.2 ).
  • FIG 3 is a graph showing the hydrogen permeation rate according to temperature at 100% hydrogen in a hydrogen separation membrane (V 89.8 Ni 10 Y 0.2 ).
  • 4A is a graph showing the hydrogen permeation rate according to pressure at 100% of hydrogen of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
  • Figure 4b is a graph showing the relationship between the hydrogen permeation rate ( ⁇ P feed - ⁇ P sweep ) in 100% hydrogen of the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
  • 4C is a graph showing the hydrogen permeation rate according to pressure when hydrogen and carbon dioxide of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are supplied at a ratio of 6: 4.
  • 4d is a graph showing the relationship between hydrogen permeation rate and ( ⁇ P feed ⁇ P sweep ) when hydrogen and carbon dioxide of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are supplied at a ratio of 6: 4.
  • 4E is a graph showing the hydrogen permeation amount when various mixed gases indicated on the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are used as the supply gas.
  • 4F is an XRD analysis result of the surface of the hydrogen separation membrane after permeation experiment using a mixed gas such as hydrogen, carbon dioxide, and hydrogen sulfide as a supply gas to a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
  • Figure 5c is a graph showing the relationship between the hydrogen permeability ( ⁇ P feed - ⁇ P sweep ) of the V 89.8 Cr 10 Y 0.2, V 90 Al 9.75 Y 0.25 alloy membrane showing the addition effect of Cr and Al in the VY separator.
  • the present invention relates to a hydrogen separation membrane of a vanadium-based alloy composition used for hydrogen purification and separation having a high hydrogen permeability and mechanical safety, and a trace amount of yttrium and other transitions for reducing solubility in hydrogen and improving stability of the membrane.
  • An alloy was prepared by adding metal.
  • M nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver).
  • Au palladium (Pd) or chromium (Cr), and 0? X? 20% and 0 ⁇ y? 0.25%).
  • the role of constituents such as metals and transition metals, for example, is to lower the hydrogen solubility of vanadium below the critical hydrogen concentration, which transitions from ductile to brittle.
  • the addition of yttrium improved the resistance to hydrogen embrittlement of the grain boundaries. The test was performed at 300-400 ° C.
  • the developed vanadium-based alloy had superior performance compared to that of the palladium-based one.
  • the addition of low concentrations of yttrium resulted in better hydrogen permeation characteristics compared to binary V-Ni and V-Al alloys.
  • the present application relates to a vanadium-based alloy hydrogen separation membrane doped with yttrium of V 100-xy M x Y y (I), wherein M is a metal or transition metal, x is 0 ⁇ x ⁇ 20%, and y is 0 ⁇ y ⁇ 0.25%, a binary or ternary alloy film.
  • x is 0 ⁇ x ⁇ 15% and y is 0 ⁇ y ⁇ 0.2%.
  • the M may include, but is not limited to, nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver (Ag), palladium (Pd), or chromium (Cr).
  • Ni nickel
  • Al aluminum
  • Co cobalt
  • Fe iron
  • Ag silver
  • Pd palladium
  • Cr chromium
  • M is nickel (Ni), aluminum (Al) or chromium (Cr).
  • the vanadium-based alloy hydrogen separation membrane of the present application may be used in the form of a disk itself, and may also be used in the form of a composite separation membrane used by coating the separator in the form of a film on a porous support.
  • the vanadium-based alloy hydrogen separation membrane of the present application may be used alone or by coating one or both sides with palladium in order to further increase the adsorptivity.
  • Porous supports used in alloy hydrogen separation membranes are known in the art and include, for example, ceramics, metals, cermets, and specifically, stainless steels, micro wafers, silicon wafers and micro fabrication techniques.
  • Nickel support, and the like but is not limited thereto.
  • the vanadium-based alloy hydrogen separation membrane doped with yttrium of the present invention is, for example, a mixed gas for carbon dioxide capture, a mixed gas for hydrogen purification, a gas mixture generated after a methane reforming reaction, a gas mixture generated after a water gas transition reaction, and the like. It can be useful for the separation of.
  • the present application also provides a method for separating hydrogen from a mixed gas using the vanadium-based alloy hydrogen separation membrane of the present application, including passing the mixed gas through the vanadium-based alloy hydrogen separation membrane doped with the yttrium of the present application.
  • This method is characterized by using a vanadium-based alloy doped with yttrium of the present application.
  • the mixed gas may vary in specific components depending on the use and type of raw materials.
  • hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane and water vapor may include two or more gases, but is not limited thereto.
  • the main component is hydrogen ( ⁇ 60%), carbon dioxide ( ⁇ 40%), but carbon monoxide ( ⁇ 5%), hydrogen sulfide ( ⁇ 20 ppm), and a small amount of water vapor may be included.
  • carbon dioxide and hydrogen may be included in other embodiments, carbon dioxide and hydrogen.
  • the present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium according to the present invention, the method comprising the steps of performing a gasification reaction of the fuel with pure oxygen to generate a synthesis gas; Performing a gas shift reaction with the generated syngas to generate a gas mixture; Passing the gas mixture through a vanadium-based alloy hydrogen separator system doped with yttrium; And separating hydrogen through the membrane and collecting carbon dioxide.
  • the syngas contains hydrogen (30%) and carbon monoxide (65%) as main components, and may optionally include carbon dioxide (5%) or hydrogen sulfide ( ⁇ 3000 ppm, ⁇ 20 ppm in highly purified), or carbon dioxide and hydrogen sulfide. have.
  • the gas mixture is produced through a water gas transition reaction, and the main components are carbon dioxide ( ⁇ 40%) and hydrogen ( ⁇ 60%), and unreacted water vapor is condensed and removed, but may include a small amount of water vapor.
  • the ratio of carbon dioxide and hydrogen is about 6 to 4.
  • the vanadium-based alloy hydrogen separation membrane system includes one or two hydrogen separation membranes, and may include one or two in consideration of hydrogen separation efficiency according to the kind of components constituting the membrane, the specific ratio thereof, and the thickness of the membrane. .
  • Hydrogen (permeate) separated by this method can be about 99% or more pure, and carbon dioxide (non-permeate, retentate) can be collected to about 90% or higher.
  • the dense metal film was produced by vacuum arc-melting method.
  • pure vanadium and pure yttrium were mixed with 19.8 g of V and 0.2 g of yttrium, respectively, to prepare an ingot by an arc melting method in a copper heart (Cu hearth) having a conical space.
  • the produced ingot was cut into 0.5-0.6 mm thickness in the direction perpendicular to the axis of the inverted cone to prepare a flake.
  • the flakes were polished polished.
  • RIE reactive ion etching
  • the concentration of gas permeated through the membrane was analyzed by GC (Agilent 7890, Hewlett-Packard, USA), the detector was used for the thermal conductivity detector (TCD), the carboxen 1000 (Supelco Co.). After confirming the 100% sealing of the separator at room temperature, high pressure and high temperature experiments were performed, and the leakage of carbon dioxide during the experiment was measured using GC. The amount of carbon dioxide leaked during the permeation experiment from the carbon dioxide and hydrogen mixture gas was very small and was about 0.01 ml / min ⁇ cm 2 at 5 bar.
  • FIGS. 1B-1E The results are in FIGS. 1B-1E.
  • Figure 1b shows the hydrogen permeation rate according to time and pressure when supplying only hydrogen to the raw material gas at 400 °C, referring to Figure 1b permeation increases with increasing pressure, up to 32.24 ml / mincm 2 at 3 bar It can be seen that the value of.
  • Hydrogen permeation values vary considerably with temperature and vary moderately with incoming hydrogen pressure.
  • the temperature dependence of the hydrogen flux is the Arrhenius law (Q o : material constant, Ea: activation energy). It was also shown that the hydrogen flux has a linear dependence on P H2 1/2 , indicating that the V 99 Y 1 membrane satisfies Sievert's law and that the hydrogen flux is controlled by the diffusion mechanism.
  • Figure 1c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane ( ⁇ P feed - ⁇ P sweep ).
  • Sieverts' law [F Q / t * ( ⁇ P feed - ⁇ P sweep ), where F is the hydrogen permeability, Q is the hydrogen permeability, t is the membrane thickness, P feed is the hydrogen partial pressure of the feed gas, and P sweep is the gallbladder gas
  • the hydrogen permeation rate increases in proportion to the difference of the square root of the partial pressure of hydrogen of feed gas and gallbladder gas, and the result shows good agreement with the regression result. Therefore, it can be seen that the rate determining step of hydrogen permeation through the V 99 Y 1 membrane when hydrogen is supplied only is a hydrogen diffusion process in the membrane.
  • Figure 1d is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane ( ⁇ P feed - ⁇ P sweep ) without using argon gallbladder gas.
  • it is very important to analyze the hydrogen permeation rate without using the gallbladder gas because the gallbladder gas is not used to separate hydrogen and carbon dioxide in the water gas shift reactor.
  • the permeation rate decreased by 32.24 ml / min ⁇ cm 2 when the gallbladder gas was used and 17.74 ml / min ⁇ cm 2 when the gallbladder gas was not used.
  • Figure 1e is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane ( ⁇ P feed - ⁇ P sweep ) without using argon gallbladder gas. As shown in FIG. 1D, when the pure hydrogen was used as the feed gas, the hydrogen permeation amount was 17.74 ml / min ⁇ cm 2 and when the hydrogen containing 5% carbon monoxide was used as the feed gas, it was found that 13.83 ml / min ⁇ cm 2 . have.
  • 1F and 1G are XRD analysis results of a hydrogen separation membrane (V 99 Y 1 ) using hydrogen and carbon monoxide as a mixed gas as a feed gas, and then a hydrogen separation membrane surface of a feed gas portion and a gallbladder gas portion of the separator. Although mixed gas was used, no impurities were generated on both surfaces of the separator. Hydrogen separation membrane (V 99 Y 1 ) It can be seen that the membrane is excellent in durability that can withstand carbon monoxide gas well.
  • the ternary V-Al-Y alloy is made of pure V, Al and Y in proportion to 20g in total (V 90 Al 9.75 Y 0.25 In the case of, V 18g, Al 1.95g, Y 0.05g) were mixed in the same amount as in Example 1, and both sides were coated with palladium and used.
  • FIG. 2A is a graph showing the hydrogen permeation rate according to time and pressure of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ).
  • V 90 Al 9.75 Y 0.25 the permeation amount according to time and pressure is shown.
  • the pressure here is the absolute pressure, which is converted to the gauge pressure by subtracting 1 from each pressure value.
  • Figure 2b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ) ( ⁇ P feed - ⁇ P sweep ).
  • the linear dependence of hydrogen permeability on (P H2, feed 1/2 -P H2, sweep 1/2 ) means that the V 90 Al 9.75 Y 0.25 membrane satisfies the Sivert law. It is shown that the amount of permeation is controlled by the bulk diffusion rate determinating step.
  • an increase in permeation amount may be predicted according to the trend line of FIG. 2B. Therefore, it is possible to predict the hydrogen partial pressure on the supply and sweep sides to obtain the desired permeation amount from FIG. 2b.
  • Figure 2c is a graph showing the hydrogen permeation rate according to the temperature of the V 89.8 Al 10 Y 0.2 hydrogen separation membrane at a pressure of 1.5 bar when supplying 100% hydrogen. It can be seen that as the temperature increases, the permeation amount increases and shows a value of about 3.5 ml / min ⁇ cm 2 at 500 ° C.
  • Comparing Figures 2a and 2c shows that the permeability can vary considerably even with a slight compositional change with a 0.05% decrease in Y and a 0.25% increase in Al (400 ° C, 1.5 bar, V 90 Al 9.75 Y 0.25 permeability of 6 ml / min ⁇ cm 2, V 89.8 permeation amount of the Al 10 Y 0.2 1.7 ml / min ⁇ cm 2 in the case).
  • the ternary V 89.8 Ni 10 Y 0.2 alloy was prepared by vacuum arc-melting as described in Example 1 by mixing the above metals in proportion and analyzed for hydrogen permeation characteristics as described in Example 1.
  • the results are shown in FIG. 3 and show the hydrogen permeation rate according to temperature when 100% hydrogen was used as the feed gas.
  • the permeation amount increased with increasing temperature, and the hydrogen permeation amount was about 6.7 ml / min ⁇ cm 2 at 1.5 bar and 350 ° C., and the hydrogen permeation amount was about 3.3 ml / min ⁇ cm 2 at 1.5 bar and 300 ° C.
  • V 89.8 Cr 10 Y 0.2 alloy was prepared by vacuum arc-melting as described in Example 1 by mixing the above metals in proportion. In order to determine the crystal structure after the hydrogen permeation experiment of the cast alloy, it was analyzed by X-ray diffractometer (XRD, Rigaku Co Model D / Max 2200-Ultimaplus, Japan) in the range of 10 o ⁇ 2 ⁇ ⁇ 90 o . The results are shown in Figure 4f.
  • Figure 4f is a result of XRD analysis of the surface of the hydrogen separation membrane after the experiment using a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) mixed gas such as hydrogen, carbon dioxide, hydrogen sulfide as a supply gas. Although various mixed gases were used, no impurities were generated on both surfaces of the separator.
  • Hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) is a durable membrane that can withstand gas such as carbon dioxide and hydrogen sulfide well.
  • FIGS. 4A-4E Hydrogen permeation experiments were performed in the same manner as described in Example 1. The results are in FIGS. 4A-4E.
  • 4A is a graph showing the hydrogen permeation rate according to time and pressure of the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ). When only hydrogen is supplied to the raw material gas at 400 ° C., the permeation rate is shown according to time and pressure. It can be seen that as the pressure is reduced, the permeation rate decreases and the maximum value is 6.26 ml / min ⁇ cm 2 at 3 bar.
  • Figure 4b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane ( ⁇ P feed - ⁇ P sweep ). It can be seen that the hydrogen permeation rate increases in proportion to the square root difference of the partial pressure of hydrogen between the feed gas and the gallbladder gas.
  • FIG. 4c shows the permeation rate according to time and pressure when the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) is supplied with hydrogen and carbon dioxide at a ratio of 6: 4 at 400 ° C.
  • FIG. As a result of supplying a ratio of carbon dioxide to 6: 4 (hydrogen: 24 ml / min, carbon dioxide: 16 ml / min) as feed gas, the permeation increased with increasing pressure, and a value of up to 4.63 ml / mincm 2 at 3 bar. It can be seen that.
  • FIG. 4d is a graph showing a relationship between hydrogen permeation rate and ( ⁇ P feed ⁇ P sweep ) when hydrogen and carbon dioxide in a 6: 4 ratio of a hydrogen separation membrane are supplied.
  • the hydrogen permeation rate increases in proportion to the square root difference of the partial pressure of hydrogen between the feed gas and the gallbladder gas.
  • the linear dependence of hydrogen permeability on (P H2, feed 1/2 -P H2, sweep 1/2 ) means that the V 89.8 Cr 10 Y 0.2 membrane satisfies the Sievert's law, which is hydrogen It is shown that the permeation amount is controlled by the bulk diffusion rate determinating step even when a mixed gas of hydrogen and carbon dioxide is supplied.
  • an increase in permeation amount may be predicted according to the trend line of FIG. 4D. Therefore, it is possible to predict the hydrogen partial pressure on the supply and sweep sides to obtain the desired permeation amount from FIG. 4D.
  • Figure 4e shows the permeation rate according to time and pressure when the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) at 400 °C to supply a mixed gas of hydrogen, carbon dioxide, hydrogen sulfide and the like.
  • the experiment was conducted to investigate the durability of carbon dioxide and trace hydrogen sulfide which may occur in the actual water gas shift reaction.
  • the hydrogen permeation was gradually reduced, but the initial hydrogen permeation was shown as a result of recovering the hydrogen separation membrane by supplying helium. It was confirmed.
  • V 99 Y 1 alloy shows a level of permeability similar to that of the pure V alloy
  • the V 89.8 Al 10 Y 0.2 alloy also shows higher hydrogen permeability than pure Pd at a temperature of 400 ° C. or higher. Therefore, it can be confirmed that the doping of Y enables the production of an alloy having high stability and high transmittance.
  • V 89.8 Ni 10 Y 0.2 shows pure V, pure Pd, cast binary V 99.8 B 0.2, V 90 Ni 10 alloy, ternary V 89.8 Ni 10 B 0.2 , V 89.8 Ni 10 Y 0.2 showing the effect of yttrium on V-Ni separator This is a result of comparing the hydrogen permeability characteristics according to the temperature of the alloy. It can be seen that the V 89.8 Ni 10 Y 0.2 alloy has a high permeability and stability in the temperature range of 300 ⁇ 350 °C level, the permeability is lower than the pure V membrane, but higher than the Pd membrane.
  • Figure 5c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane of the VMY composition ( ⁇ P feed - ⁇ P sweep ).
  • V 99.9 Y 0 . 1 The hydrogen separation membrane showed excellent results in both the case of using the gallbladder gas and the case of not using the hydrogen permeability.
  • V 90 Al 9.75 Y 0.25 hydrogen separation membrane and V 89.8 Cr 10 Y 0.2 hydrogen separation membrane the permeation amount was reduced but improved in stability and durability.
  • the membrane was broken even after more than one month of operation. Did not appear.
  • the vanadium based hydrogen separation membranes doped with yttrium of the present application as described above set the DOE (Department of Energy, USA) criteria for commercially available hydrogen separation membranes in particular hydrogen permeability, hydrogen purity, stability / It is an excellent hydrogen separation membrane that is satisfied in terms of durability and the like.

Abstract

Provided are a vanadium-based alloy hydrogen separation membrane doped with yttrium, and a hydrogen separation method using same. The hydrogen separation membrane of the present invention provides superior mechanical stability as well as high hydrogen permeability at high temperatures, and can thus be valuably used for capturing carbon dioxide and separating hydrogen in pre-combustion carbon dioxide capturing.

Description

이트리움으로 도핑된 바나듐 기재 합금 수소 분리막과 이를 이용한 수소 분리방법Yttrium-doped vanadium-based alloy hydrogen separation membrane and hydrogen separation method using the same
본 발명은 바나듐 기재 합금 수소 분리막과 이를 이용한 이산화탄소 포집 및 수소 분리 방법에 관한 것이다. The present invention relates to a vanadium-based alloy hydrogen separation membrane and a carbon dioxide capture and hydrogen separation method using the same.
지구온난화 방지를 위해 2005년 2월 교토의정서가 발효되면서 그 해 12월부터 이산화탄소 포집 및 저장(Carbon dioxide Capture and Storage, CCS) 기술에 대한 CDM (Clean Development Mechanism) 사업화 논의가 시작되었다. 하지만 개발도상국의 산업발전과 세계 인구증가로 인해 이산화탄소 발생의 주범인 화석연료의 사용은 좀처럼 줄어들지 않고 있는 실정이다. 이에 따라 선진국을 중심으로 이산화탄소를 비롯한 온실가스 저감을 위한 많은 노력을 기울이고 있다[K. H. Lee, separation of carbon dioxide, Membrane Journal, 4, 78 (1994).]. The Kyoto Protocol came into force in February 2005 to prevent global warming, and in December, discussions on the commercial development of Clean Development Mechanism (CDM) on Carbon Dioxide Capture and Storage (CCS) technology began. However, the use of fossil fuels, the main culprit of carbon dioxide emissions, is seldom diminishing due to industrial development in the developing world and global population growth. Accordingly, much effort is being made to reduce greenhouse gases, including carbon dioxide, in developed countries [K. H. Lee, separation of carbon dioxide, Membrane Journal, 4, 78 (1994).].
대표적인 이산화탄소 포집, 저장 기술인 연소전 포집기술은 다양한 화석연료를 부분 산화시켜 합성가스 (H2+CO)를 제조한 후 수성가스 전이반응(water gas shift, WGS)으로 생성된 수소와 이산화탄소 중에서 온실가스의 주범인 이산화탄소를 포집하는 기술이다. 수소분리막을 이용한 연소전 CO2 포집 기술은 이산화탄소를 포집하면서 동시에 수소를 생산할 수 있기 때문에 미래 수소경제사회로 가기 위한 기술 중의 하나로 평가되고 있으며 석유고갈 및 고유가를 대비한 미래 발전 기술이다[J. H. Park and I. H. Baek, and prospect of pre- combustion CO2 capture technology, KIC News, 12, 3 (2009)]. 이와 같이 환경적 측면에서의 이산화탄소 포집과 경제적 측면에서의 미래 수소 분리 핵심기술에 대한 관심이 고조됨에 따라 다양한 수소/이산화탄소 분리기술 개발에 대한 연구가 활발히 진행되고 있다. Pre-combustion capture technology, a representative carbon dioxide capture and storage technology, produces synthetic gas (H 2 + CO) by partially oxidizing various fossil fuels, and then generates greenhouse gases in hydrogen and carbon dioxide produced by water gas shift (WGS). It is a technology for capturing carbon dioxide, which is the main culprit. The pre-combustion CO 2 capture technology using hydrogen separation membrane is regarded as one of the technologies for the future hydrogen economy society because it can capture carbon dioxide and produce hydrogen [JH Park and IH Baek, and prospect of pre-combustion CO2 capture technology, KIC News, 12, 3 (2009)]. As the interest in core carbon dioxide capture from the environmental side and future hydrogen separation core technology from the economic side is heightened, research on the development of various hydrogen / carbon dioxide separation technologies is being actively conducted.
수소/이산화탄소 분리기술로는 분리막법, 압력스윙 흡착법, 심냉분별증류법이 있다. 현재 가장 널리 사용되고 있는 압력스윙 흡착법에 의한 수소분리 방법은 99% 높은 순도의 수소를 얻을 수 있으며 65-90%의 회수율을 보이나 대용량의 수소 분리 공정에는 설비특성상 많은 투자비와 에너지가 필요한 단점이 있다. 또한 심냉법은 90-95% 순도의 수소를 얻을 수 있으며 90-95%의 높은 회수율을 보이나 설비 투자비가 많은 단점을 가지고 있다[J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, and R. Leysen, of LaSrCoFeO3- x membranes, Solid State Ion., 135, 637 (2000)].  Hydrogen / carbon dioxide separation technologies include membrane, pressure swing adsorption, and deep cold fractional distillation. Hydrogen separation method by pressure swing adsorption method, which is widely used at present, is able to obtain 99% high purity hydrogen and shows recovery rate of 65-90%, but the large capacity hydrogen separation process requires a large investment cost and energy. In addition, the deep cooling method can obtain hydrogen of 90-95% purity and shows a high recovery rate of 90-95%, but has a disadvantage of high facility investment cost [J. Luyten, A. Buekenhoudt, W. Adriansens, J. Cooymans, H. Weyten, F. Servaes, and R. Leysen, of LaSrCoFeO3-x membranes, Solid State Ion., 135, 637 (2000)].
분리막법은 다른 두 공정에 비해 경제성이나 공정상 운전의 용이성 등에서 우수한 특성을 보이고 있어 이산화탄소 포집공정에서 WGS 촉매와 분리막을 연계한 CMR(Catalystic membrane reactor) 형태의 반응과 분리를 동시에 진행하는 공정으로 활용될 수 있다[M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L.D. Morpeth, and K. G. Mclennan, and operation of hydrogen- selective amorphous alloy membranes, J. Membr. Sci., 285, 30 (2006)]. 하지만 WGS 후단에서 생성되는 가스들은 대부분 150-600℃의 고온을 유지하고 있으며 반응성이 높은 혼합가스이기 때문에 이 공정에 적용 가능한 분리막은 수소에 대한 높은투과도와 선택도를 가져야 할 뿐만 아니라 화학적, 기계적 강도 및 열적 안정성을 갖추어야 한다. 따라서 이와 같은 극한 조건에 사용하기 위해 내열성과 기계적 강도가 뛰어난 분리막의 개발이 필요하다.  Membrane method is superior to other two processes in terms of economy and ease of operation, so it can be used as a process that simultaneously performs reaction and separation in the form of CMR (Catalytic membrane reactor) linking WGS catalyst and membrane in CO2 capture process. Can be [M. D. Dolan, N. C. Dave, A. Y. Ilyushechkin, L.D. Morpeth, and K. G. Mclennan, and operation of hydrogen-selective amorphous alloy membranes, J. Membr. Sci., 285, 30 (2006)]. However, since most of the gases generated after the WGS are maintained at a high temperature of 150-600 ° C and are highly reactive mixed gases, the membrane applicable to this process must not only have high permeability and selectivity for hydrogen, but also chemical and mechanical strength. And thermal stability. Therefore, it is necessary to develop a separator having excellent heat resistance and mechanical strength for use in such extreme conditions.
분리막을 이용한 이산화탄소포집/수소 분리의 경우, 저렴한 비용, 높은 선택도, 높은 생산률, 대용량 생산능 및 공정의 편리성으로 인해 늘어나는 수소 수요에 적합한 방법으로 여겨지고 있다.  Carbon dioxide capture / hydrogen separation using membranes is considered to be a suitable method for increasing hydrogen demand due to low cost, high selectivity, high production rate, large capacity and process convenience.
현재 이러한 분리막의 재료로 사용되는 것은 팔라듐 합금으로 이는 우수한 촉매능, 수소 투과능, 다른 부식성 가스 H2O, CO, CO2 및 H2S에 대한 저항성을 가지고 있다. 하지만, 팔라듐은 희소성으로 인해 상용화하기에는 현실적 어려움이 따르고, 이를 대체할 금속을 포함하는 막의 개발이 요구된다. 또한 수소 투과 속도는 막 두께에 반비례하므로 막의 투과도를 높이기 위해 막을 매우 얇게 제조하여야 하나 이 경우 막의 기계적 강도가 현저히 저하되는 단점이 있다[J. W. Phair and S. P. S. Badwal, of proton conductors for hydrogen separation, Ionics, 12, 103 (2006)].Currently used as a material of the separator is a palladium alloy, which has excellent catalytic ability, hydrogen permeability, and resistance to other corrosive gases H 2 O, CO, CO 2 and H 2 S. However, palladium has a practical difficulty in commercialization due to its scarcity and requires the development of a film containing a metal to replace it. In addition, the rate of hydrogen permeation is inversely proportional to the thickness of the membrane, so that the membrane must be made very thin in order to increase the permeability of the membrane. In this case, however, the mechanical strength of the membrane is significantly reduced. , 103 (2006).
따라서 팔라듐을 대체할 수 있으면서도 연소전 이산화탄소 포집 기술에서, 이산화탄소를 포집하면서 동시에 수소를 생산할 수 있도록 높은 온도에서의 안정성 및 수소에 대한 취성에 강한 합금 기재의 수소 분리막의 개발이 요구된다.  Therefore, in the pre-combustion carbon dioxide capture technology that can replace palladium, it is required to develop a hydrogen-based membrane based on an alloy having a high stability and high brittleness to hydrogen so as to capture carbon dioxide and produce hydrogen at the same time.
본원은 전술한 종래의 문제점을 해결하기 위해 안출된 것으로 수소에 대한 높은 투과성은 물론 고온에서의 기계적 안정성이 높고, 팔라듐을 사용하지 않아 경제성도 우수한, 바나듐계 합금 이산화탄소 및 수소 분리막을 제공하고자 한다. The present invention has been made to solve the above-mentioned conventional problems, to provide a vanadium-based alloy carbon dioxide and a hydrogen separation membrane, which has high permeability to hydrogen as well as high mechanical stability at high temperatures and excellent economic efficiency without using palladium.
본원은 V100-x-yMxYy (I)(상기 식에서 M은 금속 또는 전이금속이고, x는 0 ≤ x ≤ 20% 이고, y는 0 < y ≤ 0.25% 임)의 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 제공한다. The present application is doped with yttrium of V 100-xy M x Y y (I) where M is a metal or transition metal, x is 0 ≦ x ≦ 20% and y is 0 <y ≦ 0.25%. A vanadium-based alloy hydrogen separation membrane is provided.
본원은 또한 상기 x는 0 ≤ x ≤ 15% 이고, y는 0 < y ≤ 0.2%인 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 제공한다.  The present disclosure also provides a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein x is 0 ≦ x ≦ 15% and y is 0 <y ≦ 0.2%.
본원은 또한 상기 M은, 니켈 (Ni), 알루미늄(Al), 코발트 (Co), 철(Fe), 은(Ag), 팔라듐(Pd) 또는 크로뮴(Cr)인 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 제공한다.  The present invention also relates to a vanadium-based alloy doped with yttrium, wherein M is nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver (Ag), palladium (Pd) or chromium (Cr). It provides a hydrogen separation membrane.
본원은 또한 상기 바나듐계 합금 수소 분리막은 한 측 또는 양 측이 팔라듐으로 코팅된 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 제공한다.  The present invention also provides a vanadium-based alloy hydrogen separation membrane doped with yttrium, the vanadium-based alloy hydrogen separation membrane is coated on one side or both sides with palladium.
본원은 또한 상기 수소 분리막은 이산화탄소포집용 혼합가스, 수소정제용 혼합가스, 메탄 리포밍 반응이후에 생성된 가스 혼합물, 수성가스전이반응 이후에 생성된 가스 혼합물의 분리에 사용되는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 제공한다.  The present invention is also used for the separation of the hydrogen separation membrane, the mixed gas for carbon dioxide capture, the mixed gas for hydrogen purification, the gas mixture generated after the methane reforming reaction, the gas mixture generated after the water gas transition reaction, itrium It provides a vanadium-based alloy hydrogen separation membrane doped with.
본원은 또한 본원에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막 및 다공성 지지체를 포함하는 복합 수소 분리막을 제공한다.  The present application also provides a composite hydrogen separation membrane comprising a vanadium-based alloy hydrogen separation membrane and a porous support doped with yttrium according to the present application.
본원은 또한 본원에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막에 혼합가스를 통과시키는 단계를 포함하는, 혼합가스로부터 수소를 분리하는 방법을 제공한다.  The present application also provides a method of separating hydrogen from a mixed gas, comprising passing the mixed gas through a vanadium-based alloy hydrogen separation membrane doped with itrium according to the present application.
본원은 또한 상기 혼합가스는 수소, 이산화탄소, 일산화탄소, 황화수소, 메탄 및 수증기 중 둘 이상의 가스를 포함하는 것인, 혼합가스로부터 수소를 분리하는 방법을 제공한다.  The present application also provides a method of separating hydrogen from a mixed gas, wherein the mixed gas comprises at least two gases of hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane and water vapor.
본원은 또한 본원에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공하며, 상기 방법은 연료를 순수 산소와 가스화 반응을 수행하여 합성가스를 생성하는 단계; 생성된 합성가스로 수성가스전이반응을 수행하여 가스 혼합물을 생성하는 단계; 상기 가스 혼합물을 이트리움으로 도핑된 바나듐계 합금 수소 분리막 시스템을 통과시키는 단계; 및 상기 막을 통과한 수소를 분리하고, 이산화탄소를 포집하는 단계를 포함한다 The present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium according to the present invention, the method comprising the steps of performing a gasification reaction of the fuel with pure oxygen to produce a synthesis gas; Performing a gas shift reaction with the generated syngas to generate a gas mixture; Passing the gas mixture through a vanadium-based alloy hydrogen separator system doped with yttrium; And separating hydrogen passing through the membrane and collecting carbon dioxide.
본원은 또한 상기 합성가스는 수소 및 일산화탄소를 포함하고, 선택적으로 이산화탄소 또는 황화수소, 또는 이산화탄소 및 황화수소를 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공한다. The present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the syngas includes hydrogen and carbon monoxide, optionally carbon dioxide or hydrogen sulfide, or carbon dioxide and hydrogen sulfide. do.
본원은 또한 상기 가스 혼합물은 수소 및 이산화탄소를 포함하고, 선택적으로 일산화탄소, 황화수소, 수증기 각각, 또는 일산화탄소 및 수증기, 황화수소 및 수증기, 또는 일산화탄소 및 황화수소 및 수증기를 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공한다.  The present application also relates to vanadium doped with yttrium, wherein the gas mixture comprises hydrogen and carbon dioxide and optionally comprises carbon monoxide, hydrogen sulfide, water vapor, respectively, or carbon monoxide and water vapor, hydrogen sulfide and water vapor, or carbon monoxide and hydrogen sulfide, and water vapor. It provides a carbon dioxide capture and hydrogen separation method using a base alloy hydrogen separation membrane.
본원은 또한 상기 바나듐계 합금 수소 분리막 시스템은 한 개 또는 두 개의 수소 분리막을 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공한다.  The present invention also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the vanadium-based alloy hydrogen separation membrane system comprises one or two hydrogen separation membrane.
본원은 또한 상기 수소는 99% 이상의 순도, 상기 이산화탄소는 90% 이상의 순도로 분리되는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공한다. The present invention also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, wherein the hydrogen is separated by 99% or more purity, the carbon dioxide is 90% or more purity.
본원의 이트리움으로 도핑된 바나듐 기재의 합금 수소분리막은 고온에서의 높은 수소 투과도는 물론 우수한 기계적 안정성을 가져와 연소전 이산화탄소 포집기술에서 분리막을 이용한 이산화탄소 포집 및 수소 분리에 유용하게 사용될 수 있다. 나아가 본원의 이산화탄소/수소 분리막은 상용화 가능한 수소 분리막에 대한 DOE (Department of Energy, 미국)의 기준을 특히 수소투과도, 일산화탄소에 대한 내구성, 수소순도(purity), 안정성/내구성 측면과 같은 부분에서 만족할 수 있는 우수한 이산화탄소/수소 분리막이다. The vanadium-based alloy hydrogen separation membrane doped with yttrium of the present application has high hydrogen permeability at high temperature, as well as excellent mechanical stability, and thus may be useful for carbon dioxide capture and hydrogen separation using a membrane in pre-combustion carbon dioxide capture technology. Furthermore, the carbon dioxide / hydrogen separator of the present application can satisfy the DOE (Department of Energy (US)) criteria for commercially available hydrogen separators, especially in terms of hydrogen permeability, durability against carbon monoxide, hydrogen purity, stability / durability. It is an excellent carbon dioxide / hydrogen separator.
도 1a는 수소분리막(V99Y1)의 수소투과량 실험 전의 XRD 결과이다.Figure 1a is the XRD results before the hydrogen permeation experiment of the hydrogen separation membrane (V 99 Y 1 ).
도 1b는 수소분리막(V99Y1)의 수소 100%에서 압력에 따른 수소 투과량을 나타내는 그래프이다. FIG. 1B is a graph showing the hydrogen permeation rate according to pressure at 100% of hydrogen of the hydrogen separation membrane (V 99 Y 1 ).
도 1c는 수소분리막(V99Y1)의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Figure 1c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 99 Y 1 ) and (√P feed -√P sweep ).
도 1d는 아르곤 쓸개가스를 사용하지 않고 수소 100%에서 수소분리막(V99Y1)의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Figure 1d is a graph showing the relationship between the hydrogen permeability of the hydrogen separation membrane (V 99 Y 1 ) and (√P feed -√P sweep ) at 100% hydrogen without using argon gallbladder gas.
도 1e는 아르곤 쓸개가스를 사용하지 않고 5% CO를 함유한 수소 공급가스에서 수소분리막(V99Y1)의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다.FIG. 1E is a graph showing the relationship between the hydrogen permeability of the hydrogen separation membrane (V 99 Y 1 ) and (√P feed −√P sweep ) in a hydrogen supply gas containing 5% CO without argon gallbladder gas.
도 1f는 수소분리막(V99Y1)의 수소 및 일산화탄소를 공급가스로 사용하여 수소투과 실험 후 공급가스 부분의 수소 분리막 표면에 대한 XRD 분석 결과이다.FIG. 1F is an XRD analysis result of the hydrogen separation membrane surface of the feed gas portion after the hydrogen permeation experiment using hydrogen and carbon monoxide of the hydrogen separation membrane (V 99 Y 1 ) as the supply gas.
도 1g는 수소분리막(V99Y1)의 수소 및 일산화탄소를 공급가스로 사용하여 수소 투과 실험 후 쓸개가스 부분의 수소 분리막 표면에 대한 XRD 분석 결과이다.Figure 1g is the XRD analysis of the surface of the hydrogen separation membrane of the gallbladder gas after hydrogen permeation experiment using hydrogen and carbon monoxide of the hydrogen separation membrane (V 99 Y 1 ) as the feed gas.
도 2a는 수소분리막(V90Al9.75Y0.25)의 수소 100%에서 압력에 따른 수소 투과량을 나타내는 그래프이다. Figure 2a is a graph showing the hydrogen permeation amount according to the pressure at 100% hydrogen of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ).
도 2b는 수소 100%의 공급가스로 투과실험 시 수소분리막(V90Al9.75Y0.25)의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Figure 2b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ) and (√P feed -√P sweep ) in the permeation experiment with 100% hydrogen feed gas.
도 2c는 수소분리막(V89.8Al10Y0.2)의 1.5 bar, 수소 100%에서 온도에 따른 수소투과량을 나타내는 그래프이다. Figure 2c is a graph showing the hydrogen permeation rate with temperature at 1.5 bar, 100% hydrogen of the hydrogen separation membrane (V 89.8 Al 10 Y 0.2 ).
도 3은 수소분리막(V89.8Ni10Y0.2)의 수소 100%에서 온도에 따른 수소투과량을 나타내는 그래프이다.3 is a graph showing the hydrogen permeation rate according to temperature at 100% hydrogen in a hydrogen separation membrane (V 89.8 Ni 10 Y 0.2 ).
도 4a는 수소분리막(V89.8Cr10Y0.2)의 수소 100%에서 압력에 따른 수소투과량을 나타내는 그래프이다.4A is a graph showing the hydrogen permeation rate according to pressure at 100% of hydrogen of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
도 4b는 수소분리막(V89.8Cr10Y0.2)의 수소 100%에서 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Figure 4b is a graph showing the relationship between the hydrogen permeation rate (√P feed -√P sweep ) in 100% hydrogen of the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
도 4c는 수소분리막(V89.8Cr10Y0.2)의 수소와 이산화탄소를 6:4의 비율로 공급할 때 압력에 따른 수소투과량을 나타내는 그래프이다.4C is a graph showing the hydrogen permeation rate according to pressure when hydrogen and carbon dioxide of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are supplied at a ratio of 6: 4.
도 4d는 수소분리막(V89.8Cr10Y0.2)의 수소와 이산화탄소를 6:4의 비율로 공급할 때 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 4d is a graph showing the relationship between hydrogen permeation rate and (√P feed −√P sweep ) when hydrogen and carbon dioxide of a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are supplied at a ratio of 6: 4.
도 4e는 수소분리막 (V89.8Cr10Y0.2)에 표시된 다양한 혼합가스를 공급가스로 사용한 경우 수소 투과량을 나타내는 그래프이다. 4E is a graph showing the hydrogen permeation amount when various mixed gases indicated on the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) are used as the supply gas.
도 4f는 수소분리막 (V89.8Cr10Y0.2)에 수소, 이산화탄소, 황화수소 등의 혼합가스를 공급가스로 사용하여 투과 실험한 후 수소분리막의 표면에 대한 XRD 분석 결과이다. 4F is an XRD analysis result of the surface of the hydrogen separation membrane after permeation experiment using a mixed gas such as hydrogen, carbon dioxide, and hydrogen sulfide as a supply gas to a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ).
도 5a는 바나듐기재 수소 분리막에서 이트리움의 효과를 보여주는, 순수 V, 순수 Pd, 주조된 이원계 V99Y1, V90Al10 합금, 삼원계 V89.8Al10Y0.2 합금의 온도에 따른 수소 투과도 특성을 비교한 결과이다. 5a shows hydrogen permeability according to temperature of pure V, pure Pd, cast binary V 99 Y 1, V 90 Al 10 alloy, ternary V 89.8 Al 10 Y 0.2 alloy, showing the effect of yttrium on vanadium based hydrogen separation membrane The result of comparing the characteristics.
도 5b는 V-Ni 분리막에서 이트리움의 효과를 보여주는, 순수 V, 순수 Pd, 주조된 이원계 V99.8B0.2, V90Ni10 합금, 삼원계 V89.8Ni10B0.2, V89.8Ni10Y0.2 합금의 온도에 따른 수소 투과도 특성을 비교한 결과이다. 5B shows pure V, pure Pd, cast binary V 99.8 B 0.2, V 90 Ni 10 alloy, ternary V 89.8 Ni 10 B 0.2 , V 89.8 Ni 10 Y 0.2 showing the effect of yttrium on V-Ni separator This is a result of comparing the hydrogen permeability characteristics according to the temperature of the alloy.
도 5c는 V-Y 분리막에서 Cr 및 Al의 첨가효과를 보여주는, V89.8Cr10Y0.2, V90Al9.75Y0.25 합금 분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Figure 5c is a graph showing the relationship between the hydrogen permeability (√P feed -√P sweep ) of the V 89.8 Cr 10 Y 0.2, V 90 Al 9.75 Y 0.25 alloy membrane showing the addition effect of Cr and Al in the VY separator.
본 발명은 높은 수소투과량과 기계적 안전성을 갖는 수소 정제, 분리에 사용되는 바나듐 기재 합금 조성의 수소 분리막에 관한 것으로, 수소에 대한 용해도를 감소시키고 분리막의 안정성을 향상시키기 위해 미량의 이트리움 및 다른 전이금속을 첨가하여 합금을 제조하였다.  The present invention relates to a hydrogen separation membrane of a vanadium-based alloy composition used for hydrogen purification and separation having a high hydrogen permeability and mechanical safety, and a trace amount of yttrium and other transitions for reducing solubility in hydrogen and improving stability of the membrane. An alloy was prepared by adding metal.
본원의 높은 수소투과도 및 높은 기계적 안정성을 갖는 새로운 수소분리용 금속막은 V100-x-yMxYy (여기서 M = 니켈 (Ni), 알루미늄(Al), 코발트 (Co), 철(Fe), 은(Ag), 팔라듐(Pd) 또는 크로뮴(Cr) 이고, 0 ≤ x ≤ 20% 및 0 < y ≤ 0.25%)의 식으로 표시할 수 있다. 예컨대 금속 및 전이금속과 같은 구성성분의 역할은 바나듐의 수소 용해도를 연성(ductile)에서 취성(brittle)으로 전이되는 임계 수소농도보다 낮게하는 것이다. 이트리움의 추가로 입경계의 수소 취성화에 대한 저항성이 향상되었다. 300-400℃에서 최대 한 달까지 테스트를 수행한 결과 수소 분리막의 분해 및 파손이 일어나지 않았으며, 개발된 바나듐 기재의 합금은 팔라듐 기재의 것과 비교하여 우수한 성능을 가졌다. 저 농도의 이트리움을 첨가한 결과 수소 투과 특성이 이원계 V-Ni 및 V-Al 합금과 비교하여 월등하였다. The new hydrogen separation metal film having high hydrogen permeability and high mechanical stability of the present invention is V 100-xy M x Y y (where M = nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver). (Ag), palladium (Pd) or chromium (Cr), and 0? X? 20% and 0 <y? 0.25%). The role of constituents such as metals and transition metals, for example, is to lower the hydrogen solubility of vanadium below the critical hydrogen concentration, which transitions from ductile to brittle. The addition of yttrium improved the resistance to hydrogen embrittlement of the grain boundaries. The test was performed at 300-400 ° C. for up to one month, and no decomposition and breakage of the hydrogen separation membrane occurred. The developed vanadium-based alloy had superior performance compared to that of the palladium-based one. The addition of low concentrations of yttrium resulted in better hydrogen permeation characteristics compared to binary V-Ni and V-Al alloys.
본원은 V100-x-yMxYy (I)의 이트리움으로 도핑된 바나듐계 합금 수소 분리막에 관한 것으로, 상기 식에서 M은 금속 또는 전이금속이고, x는 0 ≤ x ≤ 20% 이고, y는 0 < y≤ 0.25%으로, 이원계 또는 삼원계 합금막이다. The present application relates to a vanadium-based alloy hydrogen separation membrane doped with yttrium of V 100-xy M x Y y (I), wherein M is a metal or transition metal, x is 0 ≦ x ≦ 20%, and y is 0 <y ≤ 0.25%, a binary or ternary alloy film.
한 구현예에서, x는 0 ≤ x ≤ 15%이고, y는 0 < y ≤ 0.2%이다. In one embodiment, x is 0 ≦ x ≦ 15% and y is 0 <y ≦ 0.2%.
상기 M은, 니켈 (Ni), 알루미늄(Al), 코발트 (Co), 철(Fe), 은(Ag), 팔라듐(Pd) 또는 크로뮴(Cr)을 사용할 수 있으나 이로 제한하는 것은 아니며, 한 구현예에서 상기 M은 니켈(Ni), 알루미늄(Al) 또는 크롬(Cr)이다.  The M may include, but is not limited to, nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver (Ag), palladium (Pd), or chromium (Cr). In the example M is nickel (Ni), aluminum (Al) or chromium (Cr).
본원의 바나듐계 합금 수소 분리막은 디스크 형태로 그 자체로 사용될 수 있으며, 또한 다공성 지지체 위에 필름의 형태로 분리막을 코팅하여 사용하는 복합 분리막의 형태로 사용될 수 있다.  The vanadium-based alloy hydrogen separation membrane of the present application may be used in the form of a disk itself, and may also be used in the form of a composite separation membrane used by coating the separator in the form of a film on a porous support.
본원의 바나듐계 합금 수소 분리막은 단독으로 또는 흡착성을 더욱 증가시키기 위하여 한측 또는 양측면을 팔라듐으로 코팅하여 사용할 수 있다.  The vanadium-based alloy hydrogen separation membrane of the present application may be used alone or by coating one or both sides with palladium in order to further increase the adsorptivity.
합금 수소 분리막에 사용되는 다공성 지지체는 당업계에 공지되어 있으며, 예를 들면 세라믹, 금속, 서멧(Cermet)을 포함하며, 구체적으로, 스테인레스 스틸, 마이크로기법으로 제조된 실리콘 웨이퍼 및 마이크로 가공기법으로 제조된 니켈 지지체 등을 들 수 있으나 이로 제한하는 것은 아니다.  Porous supports used in alloy hydrogen separation membranes are known in the art and include, for example, ceramics, metals, cermets, and specifically, stainless steels, micro wafers, silicon wafers and micro fabrication techniques. Nickel support, and the like, but is not limited thereto.
본원의 이트리움으로 도핑된 바나듐계 합금 수소 분리막은, 예를 들면 이산화탄소포집용 혼합가스, 수소정제용 혼합가스, 메탄 리포밍 반응이후에 생성된 가스 혼합물, 수성가스전이반응 이후에 생성된 가스 혼합물의 분리에 유용하게 사용될 수 있다.  The vanadium-based alloy hydrogen separation membrane doped with yttrium of the present invention is, for example, a mixed gas for carbon dioxide capture, a mixed gas for hydrogen purification, a gas mixture generated after a methane reforming reaction, a gas mixture generated after a water gas transition reaction, and the like. It can be useful for the separation of.
이러한 관점에서 본원은 또한 본원의 이트리움으로 도핑된 바나듐계 합금 수소 분리막에 혼합가스를 통과시키는 단계를 포함하는, 본원의 바나듐계 합금 수소 분리막을 사용한 혼합가스로부터 수소를 분리하는 방법을 제공한다. 이러한 방법은 본원의 이트리움으로 도핑된 바나듐계 합금을 사용하는 것을 특징으로 한다.  In this regard, the present application also provides a method for separating hydrogen from a mixed gas using the vanadium-based alloy hydrogen separation membrane of the present application, including passing the mixed gas through the vanadium-based alloy hydrogen separation membrane doped with the yttrium of the present application. This method is characterized by using a vanadium-based alloy doped with yttrium of the present application.
상기 혼합가스는 용도 및 원료 종류에 따라 그 구체적 성분이 달라질 수 있다. 예를 들면 수소, 이산화탄소, 일산화탄소, 황화수소, 메탄 및 수증기 중 둘 이상의 가스를 포함할 수 있으나, 이로 제한하는 것은 아니다. 한 구현예에서는 수소(~60%), 이산화탄소(~40%)를 주성분으로 하되 일산화탄소(~5%), 황화수소(~20 ppm), 수증기가 소량 포함될 수 있다. 다른 구현예에서는 이산화탄소와 수소를 포함한다. The mixed gas may vary in specific components depending on the use and type of raw materials. For example, hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane and water vapor may include two or more gases, but is not limited thereto. In one embodiment, the main component is hydrogen (~ 60%), carbon dioxide (~ 40%), but carbon monoxide (~ 5%), hydrogen sulfide (~ 20 ppm), and a small amount of water vapor may be included. In other embodiments, carbon dioxide and hydrogen.
본원은 또한 본원에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법을 제공하며, 상기 방법은 연료를 순산소와 가스화 반응을 수행하여 합성가스를 생성하는 단계; 생성된 합성가스로 수성가스전이반응을 수행하여 가스 혼합물을 생성하는 단계; 상기 가스 혼합물을 이트리움으로 도핑된 바나듐계 합금 수소 분리막 시스템을 통과시키는 단계; 및 상기 막을 통과하여 수소를 분리하고, 이산화탄소를 포집하는 단계를 포함한다.  The present application also provides a carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium according to the present invention, the method comprising the steps of performing a gasification reaction of the fuel with pure oxygen to generate a synthesis gas; Performing a gas shift reaction with the generated syngas to generate a gas mixture; Passing the gas mixture through a vanadium-based alloy hydrogen separator system doped with yttrium; And separating hydrogen through the membrane and collecting carbon dioxide.
상기 합성가스는 수소(30%) 및 일산화탄소(65%)를 주성분으로 포함하고, 선택적으로 이산화탄소(5%) 또는 황화수소(<3000ppm, 고도정제 시 <20 ppm), 또는 이산화탄소 및 황화수소를 포함할 수 있다.  The syngas contains hydrogen (30%) and carbon monoxide (65%) as main components, and may optionally include carbon dioxide (5%) or hydrogen sulfide (<3000 ppm, <20 ppm in highly purified), or carbon dioxide and hydrogen sulfide. have.
상기 가스 혼합물은 수성가스전이반응을 통해 생성된 것으로 주성분은 이산화탄소(~40%)와 수소(~60%)이며, 미반응 수증기는 응축하여 제거하나 미량의 수증기를 포함할 수 있다. 한 구현예에서 상기 이산화탄소와 수소의 비율은 약 6 대 4이다.  The gas mixture is produced through a water gas transition reaction, and the main components are carbon dioxide (~ 40%) and hydrogen (~ 60%), and unreacted water vapor is condensed and removed, but may include a small amount of water vapor. In one embodiment, the ratio of carbon dioxide and hydrogen is about 6 to 4.
상기 바나듐계 합금 수소 분리막 시스템은 한 개 또는 두 개의 수소 분리막을 포함하며, 막을 구성하는 성분의 종류, 그 구체적 비율 및 막의 두께 등에 따른 수소 분리 효율을 고려하여 한 개 또는 두 개를 포함할 수 있다.  The vanadium-based alloy hydrogen separation membrane system includes one or two hydrogen separation membranes, and may include one or two in consideration of hydrogen separation efficiency according to the kind of components constituting the membrane, the specific ratio thereof, and the thickness of the membrane. .
이러한 방법을 이용하여 분리된 수소(투과측 가스, permeate)는 약 99% 이상의 순도가 가능하며, 이산화탄소(비투과측 가스, retentate)는 약 90% 이상의 순도로 포집 가능하다.  Hydrogen (permeate) separated by this method can be about 99% or more pure, and carbon dioxide (non-permeate, retentate) can be collected to about 90% or higher.
기타 본원의 막을 이용한 상기 이산화탄소/수소분리 방법은 당업자의 지식수준, 및/또는 하기 실시예에 기재된 조건을 참조하여 결정할 수 있을 것이다. Other methods for separating carbon dioxide / hydrogen using the membrane of the present application may be determined by referring to the level of knowledge of those skilled in the art, and / or the conditions described in the Examples below.
이하, 본 발명의 이해를 돕기 위해서 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐 본 발명이 하기의 실시예에 한정되는 것은 아니다.Hereinafter, examples are provided to help understand the present invention. However, the following examples are provided only to more easily understand the present invention, and the present invention is not limited to the following examples.
실시예 1 이원계 바나듐-이트리움 수소분리막의 제조 및 수소 투과도Example 1 Preparation of binary vanadium-itrium hydrogen separation membrane and hydrogen permeability
1.1 이원계 바나듐-이트리움 V99Y1 수소분리막의 제조 1.1 Preparation of Binary Vanadium-Ethrium V 99 Y 1 Hydrogen Separator
치밀 금속막은 진공 아크-용융법으로 제조하였다. 우선 순수 바나듐 및 순수 이트리움을 각각 V 19.8 g과 이트리움을 0.2g으로 혼합하여 역원뿔 모양의 공간이 있는 구리 노(Cu hearth)에서 아크 용융법으로 잉곳을 제조하였다. 생산된 잉곳을 역원뿔의 축에 수직방향으로 0.5 - 0.6 mm 두께로 잘라 박편을 제조하였다. 상기 박편을 광택이 나게 연마하였다. 이어 스퍼터링 기계에서 박편에 반응성 이온 에칭 (reactive ion etching, RIE) 처리를 한 후, 스퍼터링 기술을 이용해서 박막의 양 측을 팔라듐 ( ~ 150 nm) 으로 코팅하였다. 이어 주조된 합금의 결정구조 및 수소 투과 실험 후 결정구조를 알아보기 위해 10o< 2θ <90o 범위에서 X- ray 회절분석기(XRD, Rigaku Co Model D/Max 2200-Ultimaplus, Japan)로 분석하였다. 결과는 도 1a, 1f 및 1g에 나타내었다. The dense metal film was produced by vacuum arc-melting method. First, pure vanadium and pure yttrium were mixed with 19.8 g of V and 0.2 g of yttrium, respectively, to prepare an ingot by an arc melting method in a copper heart (Cu hearth) having a conical space. The produced ingot was cut into 0.5-0.6 mm thickness in the direction perpendicular to the axis of the inverted cone to prepare a flake. The flakes were polished polished. Subsequently, after the reactive ion etching (RIE) treatment was performed on the flakes in a sputtering machine, both sides of the thin film were coated with palladium (˜150 nm) using a sputtering technique. Then, the crystal structure of the cast alloy and the crystal structure after hydrogen permeation experiment were analyzed by X-ray diffractometer (XRD, Rigaku Co Model D / Max 2200-Ultimaplus, Japan) in the range of 10 o <2θ <90 o. . The results are shown in Figures 1a, 1f and 1g.
1-2 수소투과 실험  1-2 Hydrogen Permeation Experiment
투과 실험 장치는 기존 문헌에[전 성일외 2인, 멤브레인 Vol.21, No. 2;pp148-154 (2011)] 기재된 것과 동일한 것을 사용하였다. 단, 스테인레스 스틸 링에 분리막을 접합하여 밀봉한 분리막 실험은 많은 불순물로 인해 수소투과량이 적거나 안정성의 문제가 있어, 본 실시예의 분리막은 반응기 내부의 knife- edge 타입을 이용하여 압력을 가해 밀봉하였다. 분리막의 치밀성 여부와 밀봉이 잘 됐는지 알아보기 위해 헬륨 검출기(He mass spectrometer leak detection, Varian)를 사용하여 가스 누출 실험을 수행하였다. 수소투과실험 전에 진공 펌프를 이용하여 석영 튜브관과 투과 셀 내부의 공기 및 불순물을 제거한 다음 각 도면에서 설명한 것과 같은 공급가스와 쓸개가스를 주입하였다. 투과 실험 시 온도 조건은 400℃이며, 압력은 1 bar에서 5 bar까지 0.5 bar 간격으로 측정하였다. 공급가스로 H2 (99.9999%) 또는 He (99.9999%) 가스를 사용하거나, 또는 각 해당 도면에 기재된 가스의 비율로 공급하였다. He 가스는 가압 조건에서 분리막이 잘 밀봉되었는지 확인하기 위해 사용하였다. 쓸개가스는 Ar가스(99.9999%)를 이용하였다. 원료가스와 쓸개가스의 유량은 MFC(MKS 247C, U.S.A)를 이용하여 각각 40mL/min으로 유지하였다. 분리막을 통해 투과된 가스의 농도는 GC (Agilent 7890, Hewlett- Packard, U.S.A)를 통해 분석하였으며, 검출기는 TCD (thermal conductivity detector), 컬럼은 carboxen 1000 (Supelco Co.)를 사용하였다. 분리막의 100% 씰링을 상온에서 확인한 후 고압, 고온 실험을 수행하였고, 실험 도중에 이산화탄소의 누출 여부는 G.C.를 이용하여 측정하였다. 이산화탄소, 수소 혼합가스로부터 투과 실험 시 누출된 이산화탄소의 양은 매우 작았으며 5 bar에서 약 0.01 ml/min·cm2이하 수준이었다.Permeation experimental apparatus is described in the existing literature [Sung Il et al. 2, Membrane Vol. 21, No. 2; pp148-154 (2011)] the same as described. However, the separator experiment in which a separator was bonded to a stainless steel ring was sealed and there was a problem of low hydrogen permeability or stability due to many impurities. Thus, the separator of this embodiment was sealed by applying pressure using a knife-edge type inside the reactor. . Gas leak experiments were performed using a helium detector (Varian) to check the density and sealing of the membrane. Before the hydrogen permeation experiment, air and impurities inside the quartz tube tube and the permeation cell were removed using a vacuum pump, and then the feed gas and the gallbladder gas as described in each drawing were injected. Temperature conditions in the permeation experiment was 400 ℃, pressure was measured at 0.5 bar intervals from 1 bar to 5 bar. H 2 (99.9999%) or He (99.9999%) gas was used as the feed gas, or the gas was supplied at a ratio of the gas described in the respective figures. He gas was used to confirm that the separator was well sealed under pressurized conditions. Gall gas was used as Ar gas (99.9999%). The flow rates of the source gas and the gallbladder gas were maintained at 40 mL / min using MFC (MKS 247C, USA), respectively. The concentration of gas permeated through the membrane was analyzed by GC (Agilent 7890, Hewlett-Packard, USA), the detector was used for the thermal conductivity detector (TCD), the carboxen 1000 (Supelco Co.). After confirming the 100% sealing of the separator at room temperature, high pressure and high temperature experiments were performed, and the leakage of carbon dioxide during the experiment was measured using GC. The amount of carbon dioxide leaked during the permeation experiment from the carbon dioxide and hydrogen mixture gas was very small and was about 0.01 ml / min · cm 2 at 5 bar.
결과는 도 1b 내지 도 1e에 있다. 도 1b는 400℃에서 수소만을 원료가스로 공급할 때 시간 및 압력에 따른 수소 투과량을 나타낸 것으로, 도 1b를 참고하면 압력이 증가함에 따라 투과량은 증가하고, 3 bar에서 최대 32.24 ml/min·cm2의 값을 보임을 알 수 있다. The results are in FIGS. 1B-1E. Figure 1b shows the hydrogen permeation rate according to time and pressure when supplying only hydrogen to the raw material gas at 400 ℃, referring to Figure 1b permeation increases with increasing pressure, up to 32.24 ml / mincm 2 at 3 bar It can be seen that the value of.
수소 투과량 값은 온도에 따라 상당히 변하고, 유입 수소 압력에 따라서는 중간정도로 변한다. 수소 플럭스의 온도 의존성은 아레니우스 법칙 (Arrhenius law)인
Figure PCTKR2011007603-appb-I000001
(Qo: 물질 상수, Ea: 활성화 에너지)을 따른다. 또한 수소 플럭스는 PH2 1/2 에 대하여 선형의존성을 가지는 것으로 나타났는데, 이는 V99Y1 막이 시버트 범칙(Sievert's law)을 만족한다는 것을 나타내고, 수소 플럭스가 확산 기전에 의해 조절된다는 것을 나타낸다.
Hydrogen permeation values vary considerably with temperature and vary moderately with incoming hydrogen pressure. The temperature dependence of the hydrogen flux is the Arrhenius law
Figure PCTKR2011007603-appb-I000001
(Q o : material constant, Ea: activation energy). It was also shown that the hydrogen flux has a linear dependence on P H2 1/2 , indicating that the V 99 Y 1 membrane satisfies Sievert's law and that the hydrogen flux is controlled by the diffusion mechanism.
도 1c는 수소분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. Sieverts' law [F=Q/t*(√Pfeed-√Psweep), 여기서 F는 수소투과량, Q는 수소투과도, t는 분리막 두께, Pfeed는 공급가스의 수소 분압, Psweep은 쓸개가스의 수소분압에 따라 수소투과량은 공급가스(feed)와 쓸개가스(sweep)의 수소분압 제곱근 차에 비례하여 증가하며, 리그레션(regression) 결과와도 잘 일치함을 알 수 있다. 따라서 수소만을 공급할 때 V99Y1 분리막을 통한 수소 투과의 속도결정단계는 분리막 내부에서의 수소 확산 과정이라는 것을 확인할 수 있다.Figure 1c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (√P feed -√P sweep ). Sieverts' law [F = Q / t * (√P feed -√P sweep ), where F is the hydrogen permeability, Q is the hydrogen permeability, t is the membrane thickness, P feed is the hydrogen partial pressure of the feed gas, and P sweep is the gallbladder gas According to the partial pressure of hydrogen, the hydrogen permeation rate increases in proportion to the difference of the square root of the partial pressure of hydrogen of feed gas and gallbladder gas, and the result shows good agreement with the regression result. Therefore, it can be seen that the rate determining step of hydrogen permeation through the V 99 Y 1 membrane when hydrogen is supplied only is a hydrogen diffusion process in the membrane.
도 1d는 아르곤 쓸개가스를 사용하지 않고 수소분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 실제 수성가스 전이반응기에서 수소와 이산화탄소를 분리할 때 쓸개가스를 사용하지 않기 때문에 쓸개가스를 사용하지 않고 수소투과량을 분석하는 것은 매우 큰 의미가 있다. 같은 조건에서 쓸개가스를 사용하는 경우 32.24 ml/min·cm2이고 쓸개가스를 사용하지 않는 경우 17.74 ml/min·cm2 로 약 45% 투과량이 감소하였음을 알 수 있다.Figure 1d is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (√P feed -√P sweep ) without using argon gallbladder gas. In fact, it is very important to analyze the hydrogen permeation rate without using the gallbladder gas because the gallbladder gas is not used to separate hydrogen and carbon dioxide in the water gas shift reactor. Under the same conditions, it was found that the permeation rate decreased by 32.24 ml / min · cm 2 when the gallbladder gas was used and 17.74 ml / min · cm 2 when the gallbladder gas was not used.
도 1e는 아르곤 쓸개가스를 사용하지 않고 수소분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 도 1d에서 보는 바와 같이 순수 수소를 공급가스로 사용하였을 때 수소투과량은 17.74 ml/min·cm2 이고 일산화탄소가 5% 함유된 수소를 공급가스로 사용하였을 때는 13.83 ml/min·cm2 임을 확인할 수 있다. Figure 1e is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (√P feed -√P sweep ) without using argon gallbladder gas. As shown in FIG. 1D, when the pure hydrogen was used as the feed gas, the hydrogen permeation amount was 17.74 ml / min · cm 2 and when the hydrogen containing 5% carbon monoxide was used as the feed gas, it was found that 13.83 ml / min · cm 2 . have.
도 1f 및 1g는 수소분리막(V99Y1)을 수소 및 일산화탄소를 혼합가스를 공급가스로 사용하여 실험한 후 분리막의 공급가스 부분, 쓸개가스 부분의 수소분리막 표면에 대한 XRD 분석 결과이다. 혼합가스를 사용하였음에도 분리막의 양 표면에는 어떠한 불순물도 발생하지 않았다. 수소분리막(V99Y1)은 일산화탄소 가스에도 잘 견딜 수 있는 내구성이 우수한 막임을 알 수 있다.1F and 1G are XRD analysis results of a hydrogen separation membrane (V 99 Y 1 ) using hydrogen and carbon monoxide as a mixed gas as a feed gas, and then a hydrogen separation membrane surface of a feed gas portion and a gallbladder gas portion of the separator. Although mixed gas was used, no impurities were generated on both surfaces of the separator. Hydrogen separation membrane (V 99 Y 1 ) It can be seen that the membrane is excellent in durability that can withstand carbon monoxide gas well.
실시예 2 삼원계 V-Al-Y의 수소분리막의 제조 및 수소 투과 특성 Example 2 Preparation and Hydrogen Permeation of Hydrogen Separation Membranes of Ternary V-Al-Y
2-1 삼원계 V90Al9.75Y0.25 V89.8Al10Y0.2 수소분리막의 제조 2-1 Ternary V90Al9.75Y0.25And V89.8Al10Y0.2Preparation of Hydrogen Separator
삼원계 V-Al-Y 합금은 총 20g에 맞추어 순수한 V, Al 및 Y을 각각 비율대로 (V90Al9.75Y0.25의 경우, V 18g, Al 1.95g, Y 0.05g)의 양으로 혼합하여 실시예 1과 같이 제조하고, 양측을 팔라듐으로 코팅하여 사용하였다.  The ternary V-Al-Y alloy is made of pure V, Al and Y in proportion to 20g in total (V90Al9.75Y0.25In the case of,  V 18g, Al 1.95g, Y 0.05g) were mixed in the same amount as in Example 1, and both sides were coated with palladium and used.
2-2 수소 투과 실험 2-2 Hydrogen Permeation Experiment
수소투과 실험은 실시예 1에 기재된 것과 동일하게 수행하였다. 결과는 도 2a에 있다. 도 2a는 수소분리막(V90Al9.75Y0.25)의 시간과 압력에 따른 수소투과량을 나타내는 그래프이다. 400℃ 에서 수소만을 원료가스로 공급할 때 시간 및 압력에 따른 투과량을 나타내었다. 압력이 증가함에 따라 투과량은 증가하고, 3 bar(절대압력)에서 최대 6.63 ml/min·cm2 의 값을 보임을 알 수 있다. 여기서의 압력은 절대압력으로 gauge 압력으로 환산하면 각 압력값에 1을 빼면 된다. Hydrogen permeation experiments were performed in the same manner as described in Example 1. The result is in FIG. 2A. 2A is a graph showing the hydrogen permeation rate according to time and pressure of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ). When only hydrogen is supplied to the raw material gas at 400 ° C., the permeation amount according to time and pressure is shown. As the pressure increases, the permeation rate increases, and it can be seen that the maximum value is 6.63 ml / min · cm 2 at 3 bar (absolute pressure). The pressure here is the absolute pressure, which is converted to the gauge pressure by subtracting 1 from each pressure value.
도 2b는 수소분리막(V90Al9.75Y0.25)의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 수소 투과량이 (PH2,feed 1/2-PH2,sweep 1/2)에 대하여 선형의존성을 가지는 것은 V90Al9.75Y0.25 분리막이 시버트 법칙(Sievert law)을 만족한다는 것을 의미하며, 이는 수소 투과량이 확산 기전(Bulk diffusion rate determinating step)에 의해 조절된다는 것을 나타낸다. 또한 도 2b를 통해 수소 분압을 증가시키면 도 2b의 추세선에 따라 투과량의 증가를 예측할 수 있다. 따라서 도 2b로부터 원하는 투과량을 얻기 위한 공급 및 sweep 측 수소 분압 값을 예측할 수 있다. Figure 2b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (V 90 Al 9.75 Y 0.25 ) (√P feed -√P sweep ). The linear dependence of hydrogen permeability on (P H2, feed 1/2 -P H2, sweep 1/2 ) means that the V 90 Al 9.75 Y 0.25 membrane satisfies the Sivert law. It is shown that the amount of permeation is controlled by the bulk diffusion rate determinating step. In addition, if the partial pressure of hydrogen is increased through FIG. 2B, an increase in permeation amount may be predicted according to the trend line of FIG. 2B. Therefore, it is possible to predict the hydrogen partial pressure on the supply and sweep sides to obtain the desired permeation amount from FIG. 2b.
도 2c는 100% 수소를 공급할 때 1.5 bar의 압력에서 V89.8Al10Y0.2 수소분리막의 온도에 따른 수소투과량을 나타내는 그래프이다. 온도가 증가함에 따라 투과량이 증가하며 500℃에서 약 3.5 ml/min·cm2의 값을 보임을 알 수 있다. 도 2a와 2c를 비교하면 Y이 0.05% 감소하고 Al이 0.25% 증가하는 미량의 조성변화로도 투과도는 상당히 많이 변할 수 있다는 것을 보여준다 (400℃ , 1.5 bar 기준, V90Al9.75Y0.25의 경우 6 ml/min·cm2의 투과량, V89.8Al10Y0.2의 경우 1.7 ml/min·cm2의 투과량). Figure 2c is a graph showing the hydrogen permeation rate according to the temperature of the V 89.8 Al 10 Y 0.2 hydrogen separation membrane at a pressure of 1.5 bar when supplying 100% hydrogen. It can be seen that as the temperature increases, the permeation amount increases and shows a value of about 3.5 ml / min · cm 2 at 500 ° C. Comparing Figures 2a and 2c shows that the permeability can vary considerably even with a slight compositional change with a 0.05% decrease in Y and a 0.25% increase in Al (400 ° C, 1.5 bar, V 90 Al 9.75 Y 0.25 permeability of 6 ml / min · cm 2, V 89.8 permeation amount of the Al 10 Y 0.2 1.7 ml / min · cm 2 in the case).
실시예 3 삼원계 V-Ni-Y 수소분리막의 제조 및 수소 투과 특성 Example 3 Preparation of Ternary V-Ni-Y Hydrogen Separator and Hydrogen Permeation Characteristics
삼원계 V89.8Ni10Y0.2 합금은 상기 금속을 비율대로 혼합하여 실시예 1에 상술한 바와 같이 진공 아크-용융법으로 제조하고, 실시예 1에 상술한 바와 같이 수소투과 특성을 분석하였다. 결과는 도 3에 있으며, 100% 수소를 공급가스로 한 경우, 온도에 따른 수소투과량을 나타낸다. 온도가 증가할수록 투과량이 증가하며, 1.5 bar, 350℃에서 수소투과량은 약 6.7 ml/min·cm2이고 1.5 bar, 300℃에서 수소 투과량은 약 3.3 ml/min·cm2의 수준이었다. The ternary V 89.8 Ni 10 Y 0.2 alloy was prepared by vacuum arc-melting as described in Example 1 by mixing the above metals in proportion and analyzed for hydrogen permeation characteristics as described in Example 1. The results are shown in FIG. 3 and show the hydrogen permeation rate according to temperature when 100% hydrogen was used as the feed gas. The permeation amount increased with increasing temperature, and the hydrogen permeation amount was about 6.7 ml / min · cm 2 at 1.5 bar and 350 ° C., and the hydrogen permeation amount was about 3.3 ml / min · cm 2 at 1.5 bar and 300 ° C.
실시예 4 삼원계 V-Cr-Y 수소분리막의 제조 및 수소 투과 특성 Example 4 Preparation of Ternary V-Cr-Y Hydrogen Separation Membrane and Hydrogen Permeation Characteristics
4-1 V89.8Cr10Y0.2 수소분리막의 제조Preparation of 4-1 V 89.8 Cr 10 Y 0.2 Hydrogen Separator
삼원계 V89.8Cr10Y0.2 합금은 상기 금속을 비율대로 혼합하여 실시예 1에 상술한 바와 같이 진공 아크-용융법으로 제조하였다. 주조된 합금의 수소 투과 실험 후 결정구조를 알아보기 위해 10o< 2θ <90o 범위에서 X- ray 회절분석기(XRD, Rigaku Co Model D/Max 2200-Ultimaplus, Japan)로 분석하였다. 결과는 도 4f에 나타내었다. 도 4f는 수소분리막(V89.8Cr10Y0.2)을 수소, 이산화탄소, 황화수소 등의 혼합가스를 공급가스로 사용하여 실험한 후 수소분리막의 표면에 대한 XRD 분석 결과이다. 여러 혼합가스를 사용하였음에도 분리막의 양 표면에는 어떠한 불순물도 발생하지 않았다. 수소분리막(V89.8Cr10Y0.2)은 이산화탄소나 황화수소 등의 가스에도 잘 견딜 수 있는 내구성이 좋은 막임을 알 수 있다.Ternary V 89.8 Cr 10 Y 0.2 alloy was prepared by vacuum arc-melting as described in Example 1 by mixing the above metals in proportion. In order to determine the crystal structure after the hydrogen permeation experiment of the cast alloy, it was analyzed by X-ray diffractometer (XRD, Rigaku Co Model D / Max 2200-Ultimaplus, Japan) in the range of 10 o <2θ <90 o . The results are shown in Figure 4f. Figure 4f is a result of XRD analysis of the surface of the hydrogen separation membrane after the experiment using a hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) mixed gas such as hydrogen, carbon dioxide, hydrogen sulfide as a supply gas. Although various mixed gases were used, no impurities were generated on both surfaces of the separator. Hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) is a durable membrane that can withstand gas such as carbon dioxide and hydrogen sulfide well.
4.2 수소 투과 실험 4.2 Hydrogen Permeation Experiment
수소투과 실험은 실시예 1에 기재된 것과 동일하게 수행하였다. 결과는 도 4a 내지 도 4e에 있다. 도 4a는 수소분리막(V89.8Cr10Y0.2)의 시간과 압력에 따른 수소투과량을 나타내는 그래프이다. 400℃에서 수소만을 원료가스로 공급할 때 시간 및 압력에 따른 투과량을 나타내었다. 압력이 감소함에 따라 투과량은 감소하고, 3 bar에서 최대 6.26 ml/min·cm2의 값을 보임을 알 수 있다. Hydrogen permeation experiments were performed in the same manner as described in Example 1. The results are in FIGS. 4A-4E. 4A is a graph showing the hydrogen permeation rate according to time and pressure of the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ). When only hydrogen is supplied to the raw material gas at 400 ° C., the permeation rate is shown according to time and pressure. It can be seen that as the pressure is reduced, the permeation rate decreases and the maximum value is 6.26 ml / min · cm 2 at 3 bar.
도 4b는 수소분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 수소투과량은 공급가스(feed)와 쓸개가스(sweep)의 수소분압 제곱근 차에 비례하여 증가함을 알 수 있다.Figure 4b is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane (√P feed -√P sweep ). It can be seen that the hydrogen permeation rate increases in proportion to the square root difference of the partial pressure of hydrogen between the feed gas and the gallbladder gas.
도 4c는 수소분리막(V89.8Cr10Y0.2)을 400℃ 에서 수소와 이산화탄소를 6:4의 비율로 공급할 때 시간 및 압력에 따른 투과량을 나타내었다. 이산화탄소와 6:4의 비율(수소: 24ml/min, 이산화탄소: 16ml/min)을 공급가스로 공급한 결과 압력이 증가함에 따라 투과량은 증가하고, 3 bar에서 최대 4.63 ml/min·cm2의 값을 보임을 알 수 있다. 수소와 이산화탄소를 6:4의 비율로 공급할 때의 수소 분압은 100% 수소만을 공급할 때의 60%에 비례하므로 수소투과량이 Sievert's law에 따른다고 가정하면 Flux(H2:CO2 혼합가스)= √0.6 *Flux(H2 100%)이다. 100% 수소를 공급할 때의 수소 투과량인 도 4a의 값을 이용하여 계산하면 수소와 이산화탄소를 6:4의 비율로 공급할 때의 수소투과량은 Flux(H2:CO2 혼합가스)= √0.6*(6.26 ml/min·cm2)=4.84 ml/min·cm2이다. 이 값과 실재 측정값(4.63 ml/min·cm2)을 비교하면 오차는 5% 미만으로 잘 일치하는 것을 알 수 있다. 따라서 수소투과량은 수소의 분압차에 의해서 투과량이 적어졌을 뿐 V89.8Cr10Y0.2 수소분리막은 이산화탄소에 대해 영향이 거의 없는 것을 확인할 수 있다.4c shows the permeation rate according to time and pressure when the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) is supplied with hydrogen and carbon dioxide at a ratio of 6: 4 at 400 ° C. FIG. As a result of supplying a ratio of carbon dioxide to 6: 4 (hydrogen: 24 ml / min, carbon dioxide: 16 ml / min) as feed gas, the permeation increased with increasing pressure, and a value of up to 4.63 ml / mincm 2 at 3 bar. It can be seen that. Hydrogen and carbon dioxide 6: hydrogen partial pressure to supply at a rate of 4 is proportional to the 60% of the time to supply only 100% hydrogen Assuming that the hydrogen permeation according to Sievert's law Flux (H 2: CO 2 gas mixture) = √ 0.6 * Flux (H 2 100%). Calculating using the value of FIG. 4a, the hydrogen permeation rate when supplying 100% hydrogen, the hydrogen permeation rate when supplying hydrogen and carbon dioxide at a ratio of 6: 4 is Flux (H 2 : CO 2 mixed gas) = √0.6 * ( 6.26 ml / mincm 2 ) = 4.84 ml / mincm 2 . Comparing this value with the actual measured value (4.63 ml / mincm 2 ), it can be seen that the error agrees well with less than 5%. Therefore, the hydrogen permeation amount was reduced by the partial pressure difference of hydrogen, but it can be confirmed that the V 89.8 Cr 10 Y 0.2 hydrogen separation membrane has little effect on carbon dioxide.
도 4d는 수소분리막의 6:4 비율의 수소와 이산화탄소를 공급했을 때 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. 수소투과량은 공급가스(feed)와 쓸개가스(sweep)의 수소분압 제곱근 차에 비례하여 증가한다. 수소 투과량이 (PH2,feed 1/2-PH2,sweep 1/2)에 대하여 선형의존성을 가지는 것은 V89.8Cr10Y0.2 분리막이 시버트 법칙(Sievert's law)을 만족한다는 것을 의미하며, 이는 수소 투과량이 수소와 이산화탄소의 혼합가스를 공급하여도 확산 기전(Bulk diffusion rate determinating step)에 의해 조절된다는 것을 나타낸다. 또한 도 4d를 통해 수소 분압을 증가시키면 도 4d의 추세선에 따라 투과량의 증가를 예측할 수 있다. 따라서 도 4d로부터 원하는 투과량을 얻기 위한 공급 및 sweep 측 수소 분압 값을 예측할 수 있다. 4d is a graph showing a relationship between hydrogen permeation rate and (√P feed −√P sweep ) when hydrogen and carbon dioxide in a 6: 4 ratio of a hydrogen separation membrane are supplied. The hydrogen permeation rate increases in proportion to the square root difference of the partial pressure of hydrogen between the feed gas and the gallbladder gas. The linear dependence of hydrogen permeability on (P H2, feed 1/2 -P H2, sweep 1/2 ) means that the V 89.8 Cr 10 Y 0.2 membrane satisfies the Sievert's law, which is hydrogen It is shown that the permeation amount is controlled by the bulk diffusion rate determinating step even when a mixed gas of hydrogen and carbon dioxide is supplied. In addition, when the partial pressure of hydrogen is increased through FIG. 4D, an increase in permeation amount may be predicted according to the trend line of FIG. 4D. Therefore, it is possible to predict the hydrogen partial pressure on the supply and sweep sides to obtain the desired permeation amount from FIG. 4D.
도 4e는 수소분리막(V89.8Cr10Y0.2)을 400℃에서 수소, 이산화탄소, 황화수소등의 혼합가스를 공급할 때 시간 및 압력에 따른 투과량을 나타내었다. 실제 수성가스 전이반응에서 생길 수 있는 이산화탄소와 미량의 황화수소 등에 대한 내구성을 알아보기 위해 실험하였다. 이산화탄소와 6:4의 비율(수소: 24ml/min, 이산화탄소: 16ml/min)을 원료가스로 공급한 결과 점점 수소투과량이 소량 줄어들었으나 헬륨을 공급하여 수소분리막을 회복시킨 결과 초기의 수소투과량을 보임을 확인하였다. 이 후 이산화탄소와 6:4의 비율(수소: 24ml/min, 이산화탄소: 16ml/min)에 황화수소가 20 ppm함유된 혼합가스를 공급한 결과 수소투과량은 거의 나오지 않았다. 20 ppm 수준 범위에서는 황화수소가 수소분리막 투과유량에 큰 영향을 주는 것을 알 수 있다. 이후 5 ppm 황화수소를 이용하여 투과실험을 수행한 결과 수소투과량은 초기 수소투과량의 약 50% 수준으로 감소(1.8 ml/min·cm2)하였으나 수소투과가 일어나는 것을 알 수 있으며, 따라서 본 분리막은 약 5 ppm의 황화수소에 견디는 것으로 확인되었다. V89.8Cr10Y0.2의 수소분리막을 장기 운전한 결과 수소투과량의 감소는 보이나 분리막의 균열이 생기지 않았으며 오랜 기간 동안 수소투과가 지속함을 확인할 수 있다. 따라서 황화수소 존재 시 분리막의 수소투과량은 감소하나 안정성, 내구성 부분에서는 우수한 기능을 하는 것으로 판단된다. 또한 투과 실험 후 XRD 결과인 4f에서 다른 불순물이 없다는 것은 황화수소가 분리막과 반응하여 투과량이 줄어든 것이 아니라 수소의 흡착면을 황화수소가 차지하여 투과량이 감소했다는 것을 의미한다. 이는 헬륨 purge 후에 투과도가 다시 처음의 수소 투과량으로 돌아가는 도 4e의 결과(단계 2 -> 3, 단계 7->8)와도 잘 일치한다. Figure 4e shows the permeation rate according to time and pressure when the hydrogen separation membrane (V 89.8 Cr 10 Y 0.2 ) at 400 ℃ to supply a mixed gas of hydrogen, carbon dioxide, hydrogen sulfide and the like. The experiment was conducted to investigate the durability of carbon dioxide and trace hydrogen sulfide which may occur in the actual water gas shift reaction. As a result of supplying carbon dioxide to a ratio of 6: 4 (hydrogen: 24 ml / min, carbon dioxide: 16 ml / min) as source gas, the hydrogen permeation was gradually reduced, but the initial hydrogen permeation was shown as a result of recovering the hydrogen separation membrane by supplying helium. It was confirmed. Thereafter, a mixture of carbon dioxide and 6: 4 (hydrogen: 24 ml / min, carbon dioxide: 16 ml / min) was supplied with a mixed gas containing 20 ppm of hydrogen sulfide, resulting in little hydrogen permeation. In the 20 ppm level range, it can be seen that hydrogen sulfide has a great influence on the permeate flow rate of the hydrogen separation membrane. After the permeation experiment using 5 ppm hydrogen sulfide, the hydrogen permeation decreased to about 50% of the initial hydrogen permeation rate (1.8 ml / min · cm 2 ), but the hydrogen permeation occurred. It was found to withstand 5 ppm hydrogen sulfide. The long-term operation of the hydrogen separation membrane of V 89.8 Cr 10 Y 0.2 showed a decrease in hydrogen permeation but no cracking of the membrane and hydrogen permeation continued for a long time. Therefore, in the presence of hydrogen sulfide, the hydrogen permeation rate of the membrane decreases, but it is considered to function excellently in terms of stability and durability. In addition, the absence of other impurities in the XRD result of 4RD after the permeation experiment means that the hydrogen sulfide reacts with the separator and the permeate amount is not reduced, but the hydrogen sulfide occupies the adsorption surface of hydrogen, thereby decreasing the permeate amount. This is in good agreement with the result of Fig. 4E (steps 2-> 3, steps 7-> 8), after which helium purge returns to the initial hydrogen permeation amount.
도 5a는 바나듐기재 수소 분리막에서 이트리움의 효과를 보여주는, 순수 V, 순수 Pd, 주조된 이원계 V99Y1, V90Al10 합금, 삼원계 V89.8Al10Y0.2 합금의 온도에 따른 수소 투과도 특성을 비교한 결과이다. V99Y1 합금의 경우 순수 V 합금과 유사한 수준의 투과도를 보이는 것을 알 수 있고, V89.8Al10Y0.2 합금의 경우도 400℃ 이상의 온도에서 순수 Pd보다 높은 수소투과도를 보임을 알 수 있다. 따라서 Y를 도핑함으로써 안정성과 투과량이 높은 합금의 제조가 가능하다는 것을 확인할 수 있다. 5a shows hydrogen permeability according to temperature of pure V, pure Pd, cast binary V 99 Y 1, V 90 Al 10 alloy, ternary V 89.8 Al 10 Y 0.2 alloy, showing the effect of yttrium on vanadium based hydrogen separation membrane The result of comparing the characteristics. It can be seen that the V 99 Y 1 alloy shows a level of permeability similar to that of the pure V alloy, and the V 89.8 Al 10 Y 0.2 alloy also shows higher hydrogen permeability than pure Pd at a temperature of 400 ° C. or higher. Therefore, it can be confirmed that the doping of Y enables the production of an alloy having high stability and high transmittance.
도 5b는 V-Ni 분리막에서 이트리움의 효과를 보여주는, 순수 V, 순수 Pd, 주조된 이원계 V99.8B0.2, V90Ni10 합금, 삼원계 V89.8Ni10B0.2, V89.8Ni10Y0.2 합금의 온도에 따른 수소 투과도 특성을 비교한 결과이다. V89.8Ni10Y0.2 합금의 경우 300~350℃ 수준의 온도 범위에서 투과도와 안정성이 높다는 것을 알 수 있으며, 순수한 V 분리막보다는 투과도가 낮지만 Pd 분리막보다 투과도가 높다는 것을 확인할 수 있다. 5B shows pure V, pure Pd, cast binary V 99.8 B 0.2, V 90 Ni 10 alloy, ternary V 89.8 Ni 10 B 0.2 , V 89.8 Ni 10 Y 0.2 showing the effect of yttrium on V-Ni separator This is a result of comparing the hydrogen permeability characteristics according to the temperature of the alloy. It can be seen that the V 89.8 Ni 10 Y 0.2 alloy has a high permeability and stability in the temperature range of 300 ~ 350 ℃ level, the permeability is lower than the pure V membrane, but higher than the Pd membrane.
도 5c는 V-M-Y 조성의 수소분리막의 수소투과량과 (√Pfeed-√Psweep)의 관계를 나타내는 그래프이다. V99.9Y0.1 수소분리막은 수소투과량 부분에서는 쓸개가스를 쓰는 경우와 쓰지 않는 경우 모두 우수한 결과를 보였다. V90Al9.75Y0.25 수소분리막과 V89.8Cr10Y0.2 수소분리막의 경우 투과량은 줄어드나 안정성이나 내구성에서 향상되었으며, 특히 V89.8Cr10Y0.2 수소분리막의 경우 한 달 이상의 운전에도 분리막의 깨짐현상은 나타나지 않았다.Figure 5c is a graph showing the relationship between the hydrogen permeation of the hydrogen separation membrane of the VMY composition (√P feed -√P sweep ). V 99.9 Y 0 . 1 The hydrogen separation membrane showed excellent results in both the case of using the gallbladder gas and the case of not using the hydrogen permeability. In case of V 90 Al 9.75 Y 0.25 hydrogen separation membrane and V 89.8 Cr 10 Y 0.2 hydrogen separation membrane, the permeation amount was reduced but improved in stability and durability. Especially in case of V 89.8 Cr 10 Y 0.2 hydrogen separation membrane, the membrane was broken even after more than one month of operation. Did not appear.
종합하면, 상기 기술한 바와 같은 본원의 이트리움으로 도핑된 바나듐 기재의 수소 분리막은 상용화 가능한 수소 분리막에 대한 DOE (Department of Energy, 미국)의 기준을 특히 수소투과도, 수소순도(purity), 안정성/내구성 측면 등과 같은 부분에서 만족한 우수한 수소 분리막이다.  In sum, the vanadium based hydrogen separation membranes doped with yttrium of the present application as described above set the DOE (Department of Energy, USA) criteria for commercially available hydrogen separation membranes in particular hydrogen permeability, hydrogen purity, stability / It is an excellent hydrogen separation membrane that is satisfied in terms of durability and the like.
이상, 본 발명의 바람직한 실시예에 대하여 상세히 설명하였으나, 본 발명의 기술적 범위는 전술한 실시예에 한정되지 않고 특허청구범위에 의하여 해석되어야 할 것이다. 이때, 이 기술분야에서 통상의 지식을 습득한 자라면, 본 발명의 범위에서 벗어나지 않으면서도 많은 수정과 변형이 가능함을 고려해야 할 것이다.As mentioned above, although preferred embodiment of this invention was described in detail, the technical scope of this invention is not limited to the above-mentioned embodiment, It should be interpreted by the claim. At this time, one of ordinary skill in the art should consider that many modifications and variations are possible without departing from the scope of the present invention.

Claims (14)

  1. 하기 식 I의 이트리움으로 도핑된 바나듐계 합금 수소 분리막: Vanadium-based alloy hydrogen separation membrane doped with yttrium of Formula I
    V100-x-yMxYy, (I)V 100-xy M x Y y , (I)
    상기 식에서 M은 금속 또는 전이금속이고, x는 0 ≤ x ≤ 20% 이고, y는 0 < y ≤ 0.25% 임. Wherein M is a metal or transition metal, x is 0 ≦ x ≦ 20% and y is 0 <y ≦ 0.25%.
  2. 제 1 항에 있어서, 상기 x는 0 ≤ x ≤ 15% 이고, y는 0 < y ≤ 0.2%인 이트리움으로 도핑된 바나듐계 합금 수소 분리막. The vanadium alloy hydrogen separation membrane of claim 1, wherein x is 0 ≦ x ≦ 15% and y is 0 <y ≦ 0.2%.
  3. 제 1 항에 있어서, 상기 M은, 니켈 (Ni), 알루미늄(Al), 코발트 (Co), 철(Fe), 은(Ag), 팔라듐(Pd) 또는 크로뮴(Cr)인 이트리움으로 도핑된 바나듐계 합금 수소 분리막. The dopant of claim 1, wherein M is nickel (Ni), aluminum (Al), cobalt (Co), iron (Fe), silver (Ag), palladium (Pd), or chromium (Cr). Vanadium-based alloy hydrogen separation membrane.
  4. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 바나듐계 합금 수소 분리막은 한 측 또는 양 측이 팔라듐으로 코팅된 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막. The vanadium-based alloy hydrogen separator according to any one of claims 1 to 3, wherein the vanadium-based alloy hydrogen separator is coated with palladium on one or both sides.
  5. 제 1 항 내지 제 3 항 중 어느 한 항에 있어서, 상기 수소 분리막은 이산화탄소포집용 혼합가스, 수소정제용 혼합가스, 메탄 리포밍 반응이후에 생성된 가스 혼합물, 수성가스전이반응 이후에 생성된 가스 혼합물의 분리에 사용되는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막. According to any one of claims 1 to 3, wherein the hydrogen separation membrane is a mixed gas for carbon dioxide capture, mixed gas for hydrogen purification, gas mixture produced after the methane reforming reaction, gas generated after the water gas transition reaction A vanadium-based alloy hydrogen separation membrane doped with yttrium, which is used for separation of the mixture.
  6. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막 및 다공성 지지체를 포함하는 복합 수소 분리막.  A composite hydrogen separation membrane comprising a vanadium-based alloy hydrogen separation membrane and a porous support doped with yttrium according to any one of claims 1 to 3.
  7. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막에 혼합가스를 통과시키는 단계를 포함하는, 혼합가스로부터 수소를 분리하는 방법. A method of separating hydrogen from a mixed gas comprising passing a mixed gas through a vanadium-based alloy hydrogen separation membrane doped with yttrium according to any one of claims 1 to 3.
  8. 제 7 항에 있어서 상기 혼합가스는 수소, 이산화탄소, 일산화탄소, 황화수소, 메탄 및 수증기 중 둘 이상의 가스를 포함하는 것인, 혼합가스로부터 수소를 분리하는 방법. The method of claim 7, wherein the mixed gas comprises at least two of hydrogen, carbon dioxide, carbon monoxide, hydrogen sulfide, methane, and water vapor.
  9. 제 1 항 내지 제 3 항 중 어느 한 항에 따른 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법으로,  A carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium according to any one of claims 1 to 3,
    연료를 순수 산소와 가스화 반응을 수행하여 합성가스를 생성하는 단계; Performing a gasification reaction of the fuel with pure oxygen to generate syngas;
    생성된 합성가스로 수성가스전이반응을 수행하여 가스 혼합물을 생성하는 단계; Performing a gas shift reaction with the generated syngas to generate a gas mixture;
    상기 가스 혼합물을 이트리움으로 도핑된 바나듐계 합금 수소 분리막 시스템을 통과시키는 단계; 및 Passing the gas mixture through a vanadium-based alloy hydrogen separator system doped with yttrium; And
    상기 막을 통과한 수소를 분리하고, 이산화탄소를 포집하는 단계를 포함하는 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법. Separation of hydrogen passing through the membrane, carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium comprising the step of collecting carbon dioxide.
  10. 제 9 항에 있어서, 상기 합성가스는 수소 및 일산화탄소를 포함하고, 선택적으로 이산화탄소 또는 황화수소, 또는 이산화탄소 및 황화수소를 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법. 10. The method of claim 9, wherein the synthesis gas contains hydrogen and carbon monoxide, and optionally carbon dioxide or hydrogen sulfide, or carbon dioxide capture and hydrogen separation using a vanadium-based alloy hydrogen separation membrane doped with yttrium Way.
  11. 제 9 항에 있어서, 상기 가스 혼합물은 수소 및 이산화탄소를 포함하고, 일산화탄소, 황화수소, 수증기 각각, 또는 일산화탄소 및 수증기, 황화수소 및 수증기, 또는 일산화탄소 및 황화수소 및 수증기를 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법.  10. The method of claim 9, wherein the gas mixture comprises hydrogen and carbon dioxide, Carbon monoxide, hydrogen sulfide, water vapor, respectively, or carbon monoxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium, including carbon monoxide and water vapor, hydrogen sulfide and water vapor, or carbon monoxide and hydrogen sulfide and water vapor.
  12. 제 9 항에 있어서, 상기 바나듐계 합금 수소 분리막 시스템은 한 개 또는 두 개의 수소 분리막을 포함하는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법. 10. The method of claim 9, wherein the vanadium-based alloy hydrogen separation membrane system comprises one or two hydrogen separation membranes.
  13. 제 9 항에 있어서, 수소는 99% 이상의 순도로 분리되는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법. 10. The method of claim 9, wherein the hydrogen is separated by at least 99% purity. The method of carbon dioxide capture and hydrogen separation using a vanadium-based alloy hydrogen separation membrane doped with yttrium.
  14. 제 9 항에 있어서, 상기 이산화탄소는 90% 이상의 순도로 분리되는 것인, 이트리움으로 도핑된 바나듐계 합금 수소 분리막을 사용한 이산화탄소 포집 및 수소분리 방법. The method of claim 9, wherein the carbon dioxide is separated by a purity of 90% or more, carbon dioxide capture and hydrogen separation method using a vanadium-based alloy hydrogen separation membrane doped with yttrium.
PCT/KR2011/007603 2011-08-18 2011-10-13 Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same WO2013024937A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0082155 2011-08-18
KR1020110082155A KR101284115B1 (en) 2011-08-18 2011-08-18 Yttrium-doped vanadium based metallic membranes for separation of hydrogen and method of separating hydrogen using the same

Publications (1)

Publication Number Publication Date
WO2013024937A1 true WO2013024937A1 (en) 2013-02-21

Family

ID=47715247

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/007603 WO2013024937A1 (en) 2011-08-18 2011-10-13 Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same

Country Status (2)

Country Link
KR (1) KR101284115B1 (en)
WO (1) WO2013024937A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240045808A (en) 2022-09-30 2024-04-08 고등기술연구원연구조합 Catalytic membrane reactor manufacturing method and catalytic membrane reactor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153737A (en) * 2000-08-12 2002-05-28 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method of manufacturing metallic composite film, metallic composite film and its use
JP2005279484A (en) * 2004-03-30 2005-10-13 Mitsubishi Heavy Ind Ltd Hydrogen permeable membrane and its manufacturing method
JP2008237945A (en) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc Hydrogen-separating membrane
KR20110049707A (en) * 2009-11-04 2011-05-12 주식회사 아이티엔지니어링 Metal dense membrane for hydrogen separation and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3273613D1 (en) 1981-12-11 1986-11-13 Kernforschungsanlage Juelich Hydrogen diffusion membrane and process for separating hydrogen from gas mixtures by diffusion
JP4607510B2 (en) 2004-07-26 2011-01-05 トヨタ自動車株式会社 Hydrogen permeable membrane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153737A (en) * 2000-08-12 2002-05-28 Dmc 2 Degussa Metals Catalysts Cerdec Ag Method of manufacturing metallic composite film, metallic composite film and its use
JP2005279484A (en) * 2004-03-30 2005-10-13 Mitsubishi Heavy Ind Ltd Hydrogen permeable membrane and its manufacturing method
JP2008237945A (en) * 2007-03-23 2008-10-09 Toyota Central R&D Labs Inc Hydrogen-separating membrane
KR20110049707A (en) * 2009-11-04 2011-05-12 주식회사 아이티엔지니어링 Metal dense membrane for hydrogen separation and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUN, SEONG IL ET AL.: "Theories and Applications of Chem. Eng., Fabrication and Permeation Characteristic of V99Y1 alloy membrane for hydrogen separation", JOURNAL OF SPRING CONFERENCE, vol. 17, no. 1, 28 April 2011 (2011-04-28), pages 112 *

Also Published As

Publication number Publication date
KR20130019875A (en) 2013-02-27
KR101284115B1 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
US6569226B1 (en) Metal/ceramic composites with high hydrogen permeability
Zhu et al. Oxygen permeation and partial oxidation of methane in dual-phase membrane reactors
Moss et al. Multilayer metal membranes for hydrogen separation
Dolan et al. Composition and operation of hydrogen-selective amorphous alloy membranes
Rosensteel et al. Hydrogen permeation through dense BaCe0. 8Y0. 2O3− δ–Ce0. 8Y0. 2O2− δ composite-ceramic hydrogen separation membranes
US7393384B2 (en) Hydrogen separation using oxygen ion-electron mixed conduction membranes
US6726893B2 (en) Hydrogen production by high-temperature water splitting using electron-conducting membranes
US6468499B1 (en) Method of generating hydrogen by catalytic decomposition of water
Wang et al. Nickel hollow fiber membranes for hydrogen separation from reformate gases and water gas shift reactions operated at high temperatures
Li et al. Oxygen permeability and stability of BaCe0. 1Co0. 4Fe0. 5O3− δ oxygen permeable membrane
Meng et al. H2/CH4/CO2-tolerant properties of SrCo0. 8Fe0. 1Ga0. 1O3− δ hollow fiber membrane reactors for methane partial oxidation to syngas
Wu et al. Mixed-conducting ceramic-carbonate dual-phase membranes: Gas permeation and counter-permeation
Winnick Electrochemical membrane gas separation
US20070246366A1 (en) Composite Oxygen-Permeable Membrane
WO2013024937A1 (en) Vanadium-based alloy hydrogen separation membrane doped with yttrium, and hydrogen separation method using same
KR101275213B1 (en) Boron-doped vanadium based alloy membranes for separation of hydrogen and methods of separating hydrogen using the same
Ryi et al. A new membrane module design with disc geometry for the separation of hydrogen using Pd alloy membranes
CN110844905A (en) CO realization by using mixed conductor oxygen-permeable membrane reactor2Novel system and method for pre-combustion capture
Wang et al. Mixed oxygen ionic and electronic conducting membrane reactors for pure chemicals production
CN115650160A (en) Device for preparing high-purity hydrogen by integrating ammonia decomposition hydrogen production and plate-type membrane reactor
WO2018085500A1 (en) Hydrogen separation membrane
Enick et al. Evaluation and modeling of a high-temperature, high-pressure, hydrogen separation membrane for enhanced hydrogen production from the water-gas shift reaction
Dyer et al. Mixed conducting membranes for syngas production
US20240033680A1 (en) Membrane attachment technique
Doong et al. Mixed protonic-electronic conducting membrane for hydrogen production from solid fuels

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11871079

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11871079

Country of ref document: EP

Kind code of ref document: A1