WO2013023535A1 - 天线校准方法和设备 - Google Patents

天线校准方法和设备 Download PDF

Info

Publication number
WO2013023535A1
WO2013023535A1 PCT/CN2012/079663 CN2012079663W WO2013023535A1 WO 2013023535 A1 WO2013023535 A1 WO 2013023535A1 CN 2012079663 W CN2012079663 W CN 2012079663W WO 2013023535 A1 WO2013023535 A1 WO 2013023535A1
Authority
WO
WIPO (PCT)
Prior art keywords
calibration
terminal device
base station
pilot
information
Prior art date
Application number
PCT/CN2012/079663
Other languages
English (en)
French (fr)
Inventor
高秋彬
彭莹
孙韶辉
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Publication of WO2013023535A1 publication Critical patent/WO2013023535A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/11Monitoring; Testing of transmitters for calibration
    • H04B17/12Monitoring; Testing of transmitters for calibration of transmit antennas, e.g. of the amplitude or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an antenna calibration method and apparatus. Background technique
  • a MIMO (Multiple Input Multiple Output) system refers to a system in which multiple antennas are installed at both the transmitting end and the receiving end.
  • the MIMO system adds spatial domain processing based on the traditional time-frequency processing, and the array processing gain and diversity gain can be further obtained.
  • the transmitter can know the channel information in some way, the transmitted signal can be optimized according to the channel characteristics to improve the reception quality and reduce the complexity of the receiver.
  • Linear precoding/beamforming technology is one of the optimization methods, which is an effective means to combat fading channels, reduce the probability of errors, and improve system performance.
  • the channel information from the base station to the UE is an important factor affecting system performance.
  • the UE User Equipment, ie, the terminal equipment
  • FDD Frequency Division Duplexing
  • the UE feeds back the estimated channel information to the base station through the uplink channel, occupies a large amount of uplink channel resources, and introduces quantization errors and the like.
  • TDD Time Division Duplexing
  • uplink and downlink signals are transmitted on the same frequency band, so the reciprocity of the uplink and downlink channels is established.
  • the so-called reciprocity means that the uplink channel and the downlink channel are the same.
  • the uplink and downlink channel reciprocity can be used to estimate the uplink channel by the uplink signal sent by the UE, thereby obtaining downlink channel information, and a large amount of feedback overhead is saved.
  • the reciprocity of the channel is established for the spatially propagated physical channel.
  • the signal is transmitted to the antenna through the transmitting circuit, and the signal received from the antenna is also received.
  • the road is transported to the base belt.
  • the transmitting circuit and the receiving circuit are two different circuits, so the delay and amplitude gain introduced by the transmitting circuit and the receiving circuit are not the same, that is, the transmitting and receiving circuits do not match.
  • the mismatch between the transmitting circuit and the receiving circuit results in the reciprocity of the uplink and downlink channels is not strictly established.
  • the uplink and downlink circuits do not match, especially when the delays are different, it is impossible to ensure that the signals of the antennas are superimposed in phase, so that the signal-to-noise ratio of the received signals is reduced, resulting in performance degradation.
  • a method for canceling the influence caused by the mismatch between the uplink and downlink circuits is to perform antenna calibration: calculating a calibration factor according to the information reported by the UE or the information measured by the base station, performing compensation adjustment on the channel estimated by the uplink signal, or sending the signal The data is adjusted for compensation.
  • Coordinated Multi-Point (CoMP) technology is a collaboration between multiple transmission points that are geographically separated.
  • a plurality of transmission points are base stations of different cells or separate transmission points within one cell.
  • Multi-point coordinated transmission technology is divided into downlink coordinated transmission and uplink joint reception.
  • Downlink multipoint coordinated transmission technology solutions are mainly divided into two categories: cooperative scheduling and joint transmission.
  • Co-scheduling is to avoid or reduce interference between each other through the coordination of time, frequency and space resources between cells.
  • the interference of the small interval is the main factor that restricts the performance of the cell edge UE. Therefore, cooperative scheduling can improve the performance of the cell edge UE by reducing the interference between cells.
  • FIG 1 through the coordinated scheduling of three cells, resources may be mutually mutual, and interference between cells is effectively avoided.
  • multiple cells simultaneously transmit data to the UE to enhance the UE receiving the signal.
  • three cells transmit data to one UE on the same resource, and the UE simultaneously receives signals of multiple cells.
  • the superposition of useful signals from multiple cells can improve the signal quality received by the UE, and on the other hand, reduce the interference experienced by the UE, thereby improving system performance.
  • the coordinated multi-point transmission technology can effectively implement the channel state information that can be obtained depending on the transmitting end.
  • the linear precoding (beamforming) technique can be used to improve the signal. Quality and suppression of interference between users.
  • the transmitting end can obtain the channel state information through the feedback of the terminal, but the feedback channel occupies valuable uplink spectrum resources, thereby reducing the uplink spectrum efficiency. This is especially true in multipoint coordinated transmission.
  • Each cell (transmission point) participating in cooperative transmission needs to obtain channel state information to the terminal, so its feedback overhead increases linearly with the number of cooperation points.
  • the accuracy required for channel state information may also be higher, which means that more uplink bandwidth resources are occupied. This already very tight uplink transmission resource is even more stretched at this time.
  • the feedback channel state information inevitably has quantization error. Quantization errors reduce the performance of coordinated multi-point transmissions. Obtaining channel state information using channel reciprocity in a TDD system does not introduce additional feedback overhead, and there is no quantization error introduced by feedback, which is a very competitive solution.
  • the CoMP scheme using channel reciprocity also faces the requirement of antenna calibration.
  • the air interface calibration involved in the terminal as described above requires uplink and downlink pilot signals.
  • the uplink pilot signal can be SRS (Sounding Reference Signal).
  • the downlink pilot signals include a CSI-RS (Channel State Information Reference Signal), a CRS (Cell-Specific Reference Signal), a DMRS (Demodulation Reference Signal), and a PRS. (Positioning Reference Signals, etc.) can be selected, however, DM-RS is not full-bandwidth transmission, and has undergone precoding, which is not suitable for calibration. CRS is transmitted at full bandwidth, without precoding, and can be used for calibration. However, considering the trend of standard development, the role of CRS is gradually weakened. In addition, CRS may be the result of antenna virtualization, so it is not suitable for calibration with CRS.
  • the frequency domain density of CSI-RS is relatively low, which is difficult to achieve for calibration. Channel estimation accuracy, PRS density is high enough, but does not distinguish between multiple antenna ports, not suitable for calibration measurements.
  • the embodiment of the invention provides an antenna calibration method and device, which solves the problem that the antenna calibration cannot be accurately realized when the uplink and downlink reciprocity is not strictly established in the prior art solution.
  • an embodiment of the present invention provides an antenna calibration method, which includes at least the following steps:
  • the base station sends a calibration pilot to the terminal device
  • the base station determines a calibration factor according to the calibration parameter and an uplink pilot signal sent by the terminal device, and performs antenna calibration according to the calibration factor.
  • the embodiment of the present invention further provides a base station, where the method further includes: a sending module, configured to send a calibration pilot to the terminal device;
  • a receiving module configured to receive a calibration parameter returned by the terminal device, where the calibration parameter is determined by the terminal device according to a downlink channel measurement result in a range corresponding to the calibration pilot sent by the sending module;
  • an embodiment of the present invention further provides an antenna calibration method, including at least the following steps:
  • the terminal device receives the calibration pilot sent by the base station
  • the terminal device measures the downlink channel according to the calibration pilot, and determines a calibration parameter according to the corresponding measurement result;
  • the embodiment of the present invention further provides a terminal device, where the method further includes: a receiving module, configured to receive a calibration pilot sent by a base station;
  • a determining module configured to measure a downlink channel according to the calibration pilot received by the receiving module, and determine a calibration parameter according to the corresponding measurement result
  • a sending module configured to send the calibration parameter and the uplink pilot signal to the base station, so that the base station determines a corresponding calibration factor, and performs antenna calibration according to the calibration factor.
  • the base station sends a calibration pilot to the terminal device, so that the terminal device performs channel measurement and information feedback of the antenna calibration according to the calibration pilot, and the terminal device can perform the compliance according to the processing.
  • the pilot signal required by the multi-antenna scene is matched with the base station for antenna calibration, and the antenna calibration can be accurately realized even when the uplink and downlink reciprocity is not strictly established.
  • FIG. 1 is a schematic diagram of a scenario of a collaborative scheduling solution in the prior art
  • FIG. 2 is a schematic diagram of an implementation scenario of a joint transmission scheme in the prior art
  • FIG. 3 is a schematic flowchart of an antenna calibration method according to an embodiment of the present invention
  • FIG. 4 is a specific scenario according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a calibration pilot according to an embodiment of the present invention
  • FIG. 6 is a schematic flowchart diagram of an antenna calibration method in a specific scenario according to an embodiment of the present invention
  • FIG. 7 is a schematic flowchart diagram of an antenna calibration method in a specific scenario according to an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart diagram of an antenna calibration method in a specific scenario according to an embodiment of the present invention
  • FIG. 9 is a schematic flowchart diagram of an antenna calibration method in a specific scenario according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a terminal device according to an embodiment of the present invention. detailed description
  • multi-antenna technology has become one of the key technologies of the next generation wireless communication system.
  • the linear precoding/beamforming technology in the multi-antenna technology is an effective means for combating fading channels, reducing the probability of errors, and improving system performance. .
  • the TDD system utilizes the reciprocity of the uplink and downlink channels, and obtains the downlink channel information of the base station to the UE according to the estimated uplink channel information of the UE to the base station, thereby calculating the precoding matrix/beamforming weight.
  • the reciprocity of uplink and downlink in the actual system is not strictly established, which affects the implementation of the inter-antenna standard.
  • an embodiment of the present invention provides an antenna calibration method, in which a terminal device performs corresponding channel measurement and information feedback according to a dedicated calibration pilot transmitted by a base station, and then the base station performs antenna calibration accordingly, thereby The smooth implementation of antenna calibration in multi-antenna scenarios is guaranteed.
  • FIG. 3 it is a schematic flowchart of an antenna calibration method according to an embodiment of the present invention, where the method specifically includes the following steps:
  • Step S301 The base station sends a calibration pilot to the terminal device.
  • the base station receives the capability information reported by the terminal device.
  • the base station may receive the capability information report of the multiple terminal devices, and select the terminal device participating in the calibration according to the information.
  • the base station Determining, by the base station, the terminal according to the received capability information of each terminal device
  • the base station sends a notification message confirming that the terminal device participates in the calibration to the terminal device selected to participate in the calibration.
  • the base station may notify the terminal device to calibrate the position information of the pilot by:
  • Manner 1 The base station sends frequency domain information and/or subframe information corresponding to the calibration pilot to the terminal device.
  • the frequency domain information corresponding to the calibration pilot may be configured by the base station to be semi-static through high-layer signaling or dynamically configured by the physical layer control signaling.
  • the subframe information corresponding to the calibration pilot may be configured by the base station to be semi-static through the high layer signaling, or dynamically configured by the physical layer control signaling, and the content of the configured specific subframe information may be The corresponding period and subframe offset.
  • Manner 2 The base station and the terminal device pre-agreed frequency domain information and/or subframe information corresponding to the calibration pilot.
  • the frequency domain information corresponding to the calibration pilot may be information that directly pre-arranges the fixed frequency domain range in which the calibration pilot is located in the base station and the terminal device.
  • the subframe information corresponding to the calibration pilot may be implemented by pre-agreed the period and the subframe offset in the base station and the terminal device, and both the base station and the terminal device may refer to the period and the subframe offset.
  • the shift determines the subframe information corresponding to the calibration pilot.
  • the frequency domain information and the subframe information are specific indication manners for calibrating the pilot position information, and the two may be used separately or in combination, for example, the base station may be specific.
  • the calibration pilot is transmitted within a specific frequency domain of the subframe, and the terminal device performs reception of the calibration pilot within the corresponding range.
  • the method for indicating the location information of the calibration pilot is specifically used, and the specific location information of the specific calibration pilot is notified to the terminal device by using the method, and the setting may be performed according to actual needs.
  • the base station Before sending the corresponding calibration pilot, the base station may first notify the terminal device of the number of antennas to be calibrated, and calibrate the pilot pattern.
  • the base station sends the calibration pilot to the terminal device with a transmission density higher than the transmission density of the CRS and the CSI-RS.
  • the multiple antennas are specifically multiple antennas corresponding to the same transmission point (specifically, a base station), or corresponding to multiple transmission points (specifically, base stations) Multiple antennas.
  • Step S302 The base station receives a calibration parameter returned by the terminal device, where the calibration parameter is determined by the terminal device according to a downlink channel measurement result in a range corresponding to the calibration pilot.
  • Step S303 The base station determines a calibration factor according to the calibration parameter and the uplink pilot signal sent by the terminal device, and performs antenna calibration according to the calibration factor.
  • the calibration pilot transmitted by the receiving base station is received, and the downlink channel is measured according to the corresponding calibration pilot, and then the calibration parameter determined according to the corresponding measurement result is fed back to the base station, and The uplink pilot signal is sent according to the indication of the base station, so that the base station determines the corresponding calibration factor accordingly, and the antenna is calibrated.
  • the transmission manner of the specific calibration pilot is described in the above description, and is not repeated here.
  • the calibration parameter determined by the terminal device may be a quantized value of the channel coefficient, or may be other parameters calculated by the channel, such changes do not affect the protection scope of the present invention.
  • the technical solution provided by the embodiment of the present invention has the following advantages: by applying the technical solution of the embodiment of the present invention, the base station sends a calibration pilot to the terminal device, so that the terminal device performs the calibration pilot according to the calibration pilot. Channel measurement and information feedback for antenna calibration. Through such processing, the terminal device can perform antenna calibration according to the pilot signal required for the multi-antenna scene, even if the uplink and downlink reciprocity is not strictly established. Accurate antenna calibration is possible.
  • the technical solutions proposed in the embodiments of the present invention are described below in conjunction with specific application scenarios.
  • An embodiment of the present invention provides an antenna calibration method. According to a UE-specific calibration pilot transmitted by a base station to a terminal device, the terminal device performs corresponding channel measurement and information feedback, so that the base station can determine a corresponding calibration factor according to the same.
  • the antenna is calibrated to achieve antenna calibration in a multi-antenna scenario. When the reciprocity of the uplink and downlink channels is not strictly established, the antenna can be calibrated.
  • FIG. 4 it is a schematic flowchart of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
  • the first mode is used, that is, the base station sends a notification message to the terminal device to perform notification of the location information of the calibration pilot.
  • the frequency domain information is used as the location information of the calibration pilot in this embodiment.
  • Step S401 Each UE reports its own capability information to the base station.
  • each UE needs to report whether the measurements and feedback required for calibration are supported.
  • Step S402 The base station selects a UE participating in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
  • the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
  • UE1 is selected to participate in antenna calibration.
  • the UEs in the following steps refer to UE1, and the description is not repeated.
  • Step S403 The base station notifies the UE to measure a downlink channel in a certain frequency domain range, where the pilot frequency sent by the base station and used for calibration measurement exists in the frequency domain range.
  • the base station semi-statically configures the frequency domain range by using high-layer signaling, or dynamically indicates the frequency domain range by using physical layer control signaling, or the UE measures the downlink channel in a predetermined fixed frequency domain range.
  • pilots in the frequency domain that are sent by the base station and are dedicated to calibration measurements.
  • the method in which the base station directly sends the frequency domain information to the UE participating in the calibration is taken as an example, and the corresponding description is performed.
  • the frequency domain information sent by the base station may be combined with the message informing the UE to participate in the calibration to be sent as a message, or may be sent to the UE in the form of a separate message before or after the message indicating that the UE participates in the calibration is sent. Changes in the manner do not affect the scope of protection of the present invention.
  • the message informing the UE to participate in the calibration and the frequency domain information are respectively sent through steps S402 and S403.
  • the base station also needs to notify the UE of the number of antennas to be calibrated, and the REs occupied by the calibration pilot of each antenna in the resource range determined in the foregoing step S403, that is, The pilot pattern is calibrated so that the UE can accurately make the corresponding channel measurements based on the calibration pilot.
  • Step S404 The base station sends a calibration pilot to the UE in a corresponding frequency domain range.
  • the calibration pilots can be transmitted with higher density than CRS and CSI-RS to ensure the quality of the channel estimation.
  • a calibration pilot diagram of four antennas in one PRB is used. The calibration pilot of each antenna occupies 4 REs, and the pilots of the four antennas occupy different REs. Each antenna does not transmit any signals on the REs of other antennas that transmit calibration pilots.
  • the multiple antennas that calibrate the pilots can be antennas of the same transmission point (base station) or antennas from different transmission points.
  • the four antennas shown in Fig. 5 may be four antennas of one base station or two antennas of two antenna base stations.
  • the terminal can make measurements without distinguishing which transmission point each antenna comes from.
  • Step S405 The UE receives the calibration pilot in the corresponding frequency domain range, and performs measurement on the downlink channel.
  • Step S406 The UE calculates a calibration parameter according to the measured channel information, and feeds back to the base station through the uplink channel.
  • FIG. 6 is a schematic flowchart diagram of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
  • the first method is used, that is, the base station sends a notification message to the terminal device to perform notification of the location information of the calibration pilot.
  • the subframe information is used as the location information of the calibration pilot in this embodiment.
  • the specific processing procedure is as follows: Step S601: Each UE reports its own capability information to the base station.
  • each UE needs to report whether the measurements and feedback required for calibration are supported.
  • Step S602 The base station selects a UE that participates in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
  • the UE selected by the base station may be a channel with good quality and moving.
  • a terminal with low speed may be a channel with good quality and moving.
  • UE1 is selected to participate in antenna calibration.
  • the UEs in the following steps refer to UE1, and the description is not repeated.
  • Step S603 The base station notifies the UE to measure the downlink channel within a certain subframe range, and the pilot frame is sent by the base station and is dedicated to the calibration measurement.
  • the base station semi-statically configures the subframe range by using high-layer signaling, or dynamically indicates the subframe range by using physical layer control signaling, or the UE measures the downlink channel within a predetermined fixed subframe range. There are pilots transmitted by the base station dedicated to calibration measurements within this sub-frame range.
  • the manner in which the base station directly sends the subframe information to the UE participating in the calibration is taken as an example, and the corresponding description is performed.
  • the specific form of the subframe information may be that the base station sends the period and the subframe offset to the UE, and the UE may determine the corresponding subframe information according to the basis.
  • the subframe information sent by the base station may be combined with the message informing the UE to participate in the calibration to be sent as a message, or may be sent to the UE in the form of a separate message before or after the message indicating that the UE participates in the calibration is sent. Changes in the manner do not affect the scope of protection of the present invention.
  • the message and the subframe information informing the UE to participate in the calibration are respectively sent through steps S602 and S603.
  • the base station also needs to notify the UE of the number of antennas to be calibrated, and the REs occupied by the calibration pilot of each antenna in the resource range determined in the foregoing step S603, that is, The pilot pattern is calibrated so that the UE can accurately make the corresponding channel measurements based on the calibration pilot.
  • Step S604 The base station sends a calibration pilot to the UE in the corresponding subframe.
  • the calibration pilots can be transmitted with higher density than CRS and CSI-RS to ensure the quality of the channel estimation.
  • the specific transmission example is also shown in FIG. 5, and the description will not be repeated here.
  • Step S605 The UE receives the calibration pilot in the corresponding subframe range, and performs measurement on the downlink channel.
  • Step S606 The UE calculates a calibration parameter according to the measured channel information, and feeds back to the base station through the uplink channel.
  • FIG. 7 is a schematic flowchart diagram of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
  • the second method is adopted, that is, the base station and the UE pre-arrange the location information of the calibration pilot.
  • the frequency domain information is used as the location information of the calibration pilot in the embodiment.
  • Step S701 The base station and each UE pre-agreed frequency domain information.
  • Step S702 Each UE reports its own capability information to the base station.
  • each UE needs to report whether the measurements and feedback required for calibration are supported.
  • Step S703 The base station selects a UE that participates in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
  • the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
  • UE1 is selected to participate in antenna calibration.
  • the UEs in the following steps refer to UE1, and the description is not repeated.
  • Step S704 The UE determines location information of the calibration pilot according to the preset frequency domain information. It should be further noted that in a specific implementation scenario, the base station may notify the UE. The number of antennas to be calibrated, and the RE occupied by the calibration pilot of each antenna in the resource range corresponding to the preset frequency domain information, that is, the pattern of the calibration pilot, so that the UE can accurately perform the corresponding calibration pilot. Channel measurement.
  • Step S705 The base station sends a calibration pilot to the UE in a corresponding frequency domain range.
  • the calibrated pilots can be transmitted at a higher density than CRS and CSI-RS to ensure the quality of the channel estimate.
  • the multiple antennas that calibrate the pilots can be antennas of the same transmission point (base station) or antennas from different transmission points.
  • Step S706 The terminal device receives the calibration pilot on the corresponding frequency domain range, and performs measurement on the downlink channel.
  • Step S707 The terminal device calculates a calibration parameter according to the measured channel information, and feeds back to the base station through the uplink channel.
  • FIG. 8 is a schematic flowchart diagram of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
  • the second method is adopted, that is, the base station and the UE pre-arrange the location information of the calibration pilot.
  • the subframe information is used as the location information of the calibration pilot in the embodiment, and the specific processing procedure is as follows:
  • Step S801 The base station and each UE pre-agreed the location information of the calibration pilot.
  • Step S802 Each UE reports its own capability information to the base station.
  • each UE needs to report whether the measurements and feedback required for calibration are supported.
  • Step S803 The base station selects a participating antenna according to the received capability information of each UE.
  • the UE is calibrated and the UE is notified to participate in antenna calibration.
  • the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
  • UE1 is selected to participate in antenna calibration.
  • the UEs in the following steps refer to UE1, and the description is not repeated.
  • the subframe information may be determined by a period+subframe offset.
  • the location information of the calibration pilot may be pre-agreed.
  • the subframe information is used to determine, but the specific period and subframe offset may be configured by the base station to the terminal device.
  • the period is . d
  • the subframe offset is S. ⁇
  • the condition for calibrating the pilot in the sub-frame S is ( S ) mod.
  • the sub-frame information can also be dynamically indicated by the physical layer signaling.
  • the physical layer signaling For details, refer to the foregoing method in step S403, which is not further described in this embodiment.
  • the foregoing frequency domain information can also be pre-arranged in the base station and the UE in advance by using a method similar to this step.
  • Such a change can also be applied to the solution in this embodiment, which is also within the protection scope of the present invention.
  • Step S804 The UE determines location information of the calibration pilot according to the preset information.
  • the base station may notify the UE of the number of antennas to be calibrated, and the RE occupied by the calibration pilot of each antenna in the resource range corresponding to the preset subframe information, that is, The pilot pattern is calibrated so that the UE can accurately make the corresponding channel measurements based on the calibration pilot.
  • Step S805 The base station sends a calibration pilot to the UE in the corresponding subframe.
  • the calibration pilots can be transmitted with higher density than CRS and CSI-RS to ensure the quality of the channel estimation.
  • the multiple antennas that calibrate the pilots may be antennas of the same transmission point (base station) or antennas from different transmission points. The specific transmission example is also shown in FIG. 5, and the description will not be repeated here.
  • Step S806 The terminal device receives the calibration pilot on the corresponding subframe, and performs measurement on the downlink channel.
  • Step S807 The terminal device calculates a calibration parameter according to the measured channel information, and feeds back to the base station through the uplink channel.
  • the calibration parameters may be quantized values of channel coefficients, or other parameters calculated from the channel.
  • the line pilot signal calculates the calibration factor and calibrates it.
  • the foregoing frequency domain information and subframe information may also be combined as position information of the calibration pilot, that is, there are calibration pilots in a specific frequency domain range of a specific subframe, and specific frequency domain information and subframes.
  • the information can be sent in the same or different ways, for example:
  • the base station high layer signaling configures frequency domain information and subframe information.
  • the base station high layer signaling configures the frequency domain information, and the physical layer control signaling dynamically indicates the subframe information.
  • Physical layer signaling dynamically indicates frequency domain information and subframe information.
  • FIG. 9 is a schematic flowchart diagram of an antenna calibration method in a specific application scenario according to an embodiment of the present invention.
  • the first method is used, that is, the base station sends a notification message to the terminal device to notify the location information of the calibration pilot.
  • the base station sends the terminal information to the terminal.
  • the frequency domain information and the subframe information are sent as the location information of the calibration pilot, and the specific processing procedure is as follows:
  • Step S901 Each UE reports its own capability information to the base station.
  • each UE needs to report whether the measurements and feedback required for calibration are supported.
  • Step S902 The base station selects a UE that participates in antenna calibration according to the received capability information of each UE, and notifies the UE to participate in antenna calibration.
  • the UE selected by the base station may be a terminal with good channel quality and low mobile speed.
  • UE1 is selected to participate in antenna calibration.
  • the UEs in the following steps refer to UE1, and the description is not repeated.
  • Step S903 The base station notifies the UE to measure the downlink channel within a certain time-frequency range (within a certain frequency range within a certain subframe range), and the pilot station in the time-frequency range is specially used for calibration measurement.
  • the base station configures frequency domain information and subframe information through high layer signaling, or the base station configures frequency domain information through high layer signaling, and dynamically indicates subframe information by using physical layer control signaling, or the base station passes the physical layer information. Let the dynamic frequency domain information and subframe information be indicated.
  • the specific form of the subframe information may be that the base station sends the period and the subframe offset to the UE, and the UE may determine the corresponding subframe information accordingly.
  • the sub-frame information may be calculated by the subframe in which the physical layer control signaling is located. If the physical layer control signaling is sent in the nth subframe, the corresponding subframe information may be determined as the n+kth subframe, where k is A pre-agreed parameter, or a parameter that the base station notifies the terminal.
  • the subframe information can be sent in one message with the frequency domain information, or can be sent separately in a separate message.
  • the subframe information and the frequency domain information sent by the base station may be used to notify the UE to participate in the calibration.
  • the message is combined and sent as a message. It can also be sent to the UE in the form of a separate message before or after the message is sent to the UE to notify the calibration.
  • the change of the specific transmission mode does not affect the protection scope of the present invention.
  • the base station also needs to notify the UE of the number of antennas to be calibrated, and the REs occupied by the calibration pilot of each antenna in the resource range determined in the foregoing step 903, that is, The pilot pattern is calibrated so that the UE can accurately make the corresponding channel measurements based on the calibration pilot.
  • Step S904 The base station sends a calibration pilot to the UE in a corresponding frequency domain within the corresponding subframe range.
  • the calibrated pilots can be transmitted at a higher density than CRS and CSI-RS to ensure the quality of the channel estimate.
  • Step S905 The UE receives the calibration pilot in a corresponding frequency domain within the corresponding subframe range, and performs measurement on the downlink channel.
  • Step S906 The UE calculates a calibration parameter according to the measured channel information and feeds back to the base station through the uplink channel.
  • the calibration parameters may be quantized values of channel coefficients, or other parameters calculated from the channel.
  • the frequency signal calculates the calibration factor and calibrates it.
  • the UE estimates the downlink channel in the corresponding range.
  • the technical solution proposed by the embodiment of the present invention has the following advantages:
  • the base station sends a calibration pilot to the terminal device, so that the terminal device performs channel measurement and information feedback of the antenna calibration according to the calibration pilot, and the terminal device can perform the compliance according to the processing.
  • the pilot signal required by the multi-antenna scene is matched with the base station for antenna calibration, and the antenna calibration can be accurately realized even when the uplink and downlink reciprocity is not strictly established.
  • an embodiment of the present invention further provides a base station, and a schematic structural diagram thereof is shown in FIG. 10, and at least includes:
  • a sending module 101 configured to send a calibration pilot to the terminal device
  • the receiving module 102 is configured to receive a calibration parameter returned by the terminal device, where the calibration parameter is determined by the terminal device according to a downlink channel measurement result in a range corresponding to the calibration pilot sent by the sending module 101.
  • the determining module 103 is configured to determine a calibration factor according to the calibration parameter received by the receiving module 102 and an uplink pilot signal sent by the terminal device, and perform antenna calibration according to the calibration factor.
  • the receiving module 102 is further configured to: before the sending module 101 sends the calibration pilot to the terminal device, receive the capability information reported by the terminal device;
  • the sending module 101 is further configured to determine that the terminal device participates in the calibration according to the capability information of each terminal device received by the receiving module 102, and send a corresponding notification message to the terminal device.
  • the sending module 101 is further configured to notify the terminal device of location information of the calibration pilot by:
  • the base station and the terminal device pre-arrange the frequency domain correspondence corresponding to the calibration pilot Information and/or subframe information, and when determining that the terminal device participates in the calibration, notifying the terminal device to receive the calibration pilot within a range corresponding to the pre-agreed frequency domain information and/or subframe information .
  • sending module 101 is specifically configured to:
  • the frequency domain information corresponding to the calibration pilot is dynamically configured to the terminal device by using high layer signaling semi-static or by physical layer control signaling; and/or,
  • the subframe information corresponding to the calibration pilot is dynamically configured to the terminal device by physical layer control signaling.
  • the sending module 101 is specifically configured to:
  • the base station and the terminal device pre-arrange information of a fixed frequency range in which the calibration pilot is located, if it is determined that the terminal device participates in calibration, notify the terminal device to pre-agreed the Receiving the calibration pilot within a range corresponding to the frequency domain information; and/or,
  • the terminal device In the case that the period and the subframe offset are pre-agreed in the base station and the terminal device, if it is determined that the terminal device participates in the calibration, the terminal device is notified to determine the calibration according to the period and the subframe offset.
  • the sending module 101 is further configured to notify the terminal device of the number of antennas to be calibrated and the pattern of the calibration pilot before transmitting the calibration pilot to the terminal device.
  • the embodiment of the present invention further provides a terminal device, and a schematic structural diagram thereof is shown in FIG.
  • the receiving module 111 is configured to receive a calibration pilot sent by the base station
  • a determining module 112 configured to measure a downlink channel according to the calibration pilot received by the receiving module 111, and determine a calibration parameter according to the corresponding measurement result;
  • the sending module 113 is configured to send the calibration parameter and the uplink pilot signal to the base station, so that the base station determines a corresponding calibration factor, and performs antenna calibration according to the calibration factor.
  • the sending module 113 is further configured to: before the receiving module 111 receives the calibration pilot sent by the base station, the capability information of the terminal device reported by the base station; the receiving module 111 is further configured to receive A notification message sent by the base station to confirm that the terminal device participates in calibration.
  • the receiving module 111 is specifically configured to determine location information of the calibration pilot sent by the base station by:
  • the base station and the terminal device pre-agreed frequency domain information and/or subframe information corresponding to the calibration pilot, and when the base station determines that the terminal device participates in calibration, receiving the base station to send the The notification message of the calibration pilot is received within a range corresponding to the agreed frequency domain information and/or subframe information.
  • the receiving module 111 is specifically configured to:
  • the receiving module 111 is specifically configured to:
  • Predetermining the period and subframe offset in the base station and the terminal device And receiving, by the base station, the subframe information corresponding to the calibration pilot according to the period and the subframe offset, and receiving the calibration pilot in a range corresponding to the subframe information. Message.
  • the receiving module 111 is further configured to: before receiving the calibration pilot sent by the base station, determine, according to the received message sent by the base station, the number of antennas to be calibrated, and the pattern of the calibration pilot.
  • determining module 112 is specifically configured to:
  • the technical solution provided by the embodiment of the present invention has the following advantages: by applying the technical solution of the embodiment of the present invention, the base station sends a calibration pilot to the terminal device, so that the terminal device performs the calibration pilot according to the calibration pilot. Channel measurement and information feedback for antenna calibration. Through such processing, the terminal device can perform antenna calibration according to the pilot signal required for the multi-antenna scene, even if the uplink and downlink reciprocity is not strictly established. Accurate antenna calibration is possible.
  • the technical solution of the embodiment of the present invention may be embodied in the form of a software product, which may be stored in a non-volatile storage medium (which may be a CD-ROM, a USB flash drive, a mobile hard disk, etc.).
  • a computer device which may be a personal computer, a server, or a network side device, etc.
  • modules in the apparatus in the implementation scenario may be distributed in the apparatus for implementing the scenario according to the implementation scenario description, or may be correspondingly changed in one or more devices different from the implementation scenario.
  • the modules of the above implementation scenarios may be combined into one module, or may be further split into multiple sub-modules.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种天线校准方法和设备,通过应用本发明实施例的技术方案,由基站向终端设备发送校准导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息反馈,通过这样的处理,使终端设备可以根据符合多天线场景需要的导频信号,配合基站进行天线校准,在上下行互易性不严格成立的情况下,能够准确的实现天线校准。

Description

天线校准方法和设备 本申请要求于 2011 年 8 月 12 日提交中国专利局, 申请号为 201110231311.5 , 发明名称为 "天线校准方法和设备" 的中国专利申 请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及通信技术领域, 特别涉及一种天线校准方法和设备。 背景技术
MIMO ( Multiple-Input Multiple-Output, 多输入多输出) ***指 在发射端和接收端都装有多根天线的***。 MIMO***在传统的时频 处理的基础上增加了空域的处理,可以进一步获得阵列处理增益和分 集增益。 MIMO***中, 如果发射机能够以某种方式获知信道信息, 就可以根据信道特性对发送信号进行优化,以提高接收质量并降低对 接收机复杂度的要求。 线性预编码 /波束赋形技术就是其中一种优化 方法, 是对抗衰落信道, 降低差错概率, 提高***性能的有效手段。
多天线线性预编码 /波束赋形传输技术中, 基站到 UE ( User Equipment, 用户设备, 即终端设备) 的信道信息是影响***性能的 一个重要因素。 FDD ( Frequency Division Duplexing, 频分双工) 系 统中, UE通过上行信道将估计得到的信道信息反馈给基站, 占用了 大量的上行信道资源, 且会引入量化误差等。 在 TDD ( Time Division Duplexing, 时分双工) ***中, 上行和下行的信号在相同的频段上 发送, 因此上下行信道的互易性成立。
所谓互易性是指上行信道和下行信道相同。利用上下行信道互易 性可以由 UE发送的上行信号估计出上行信道, 从而获得下行信道信 息, 省去了大量的反馈开销。
信道的互易性对空间传播的物理信道成立。信号在基带处理完成 后要经过发射电路输送到天线,而从天线接收的信号也要经过接收电 路输送到基带。 一般来说, 发射电路和接收电路是两个不同的电路, 因此由发射电路和接收电路引入的时延以及幅度增益并不相同,也就 是说收发电路不匹配。发射电路和接收电路的不匹配导致上下行信道 互易性并不严格成立。
如果上下行电路不匹配, 尤其是时延不同时, 则无法保证各天线 的信号同相叠加, 使得接收信号的信噪比降低, 造成性能恶化。
一种抵消上下行电路不匹配造成的影响的方法是进行天线校准: 根据 UE上报的信息以 或基站测量到的信息计算出校准因子,对由 上行信号估计出来的信道进行补偿调整,或者对待发送的数据进行补 偿调整。
另一方面, 多点协作传输 ( Coordinated Multi-Point, CoMP )技 术是地理位置上分离的多个传输点之间的协作。多个传输点是不同小 区的基站或者一个小区内部的分离的多个传输点。多点协作传输技术 分下行的协作传输和上行的联合接收。下行多点协作传输技术方案主 要分为两类: 协同调度和联合发送。
协同调度是通过小区之间的时间、 频率和空间资源的协调, 避免 或者降低相互之间的干扰。 小区间的干扰是制约小区边缘 UE性能的 主要因素, 因此协同调度通过降低小区间的干扰, 可以提高小区边缘 UE的性能。 如图 1所示, 通过 3个小区的协同调度, 将可能会相互 的资源 ), 有效的避免了小区之间的干扰。
联合发送方案中多个小区同时向 UE发送数据, 以增强 UE接收 信号。 如图 2所示, 三个小区在相同的资源上向一个 UE发送数据, UE同时接收多个小区的信号。 一方面, 来自多个小区的有用信号叠 加可以提升 UE接收的信号质量, 另一方面, 降低了 UE受到的干扰, 从而提高***性能。
类似于单点(单小区)多天线传输方案, 多点协作传输技术是否 可以有效实施依赖于发射端所能获得的信道状态信息。发射端获得理 想的信道状态信息后, 可以用线性预编码(波束赋形 )技术来提高信 号质量以及抑制用户彼此之间的干扰。发射端可以通过终端的反馈获 得信道状态信息, 但是反馈信道会占用宝贵的上行频谱资源, 从而降 低上行的频谱效率。 这点在多点协作传输中尤为明显, 参与协作传输 的每个小区(传输点)都需要获得到终端的信道状态信息, 因此其反 馈开销是随着协作点的数目而线性增加的。 考虑到具体的传输方案, 对信道状态信息要求的精度也可能更高,这就意味着占用更多的上行 带宽资源。 本已经很紧张的上行传输资源此时更加显得捉襟见肘。 同 时, 因为上行信道的容量受限,反馈的信道状态信息不可避免的存在 量化误差。 量化误差则会降低多点协作传输的性能。 TDD ***中利 用信道互易性获得信道状态信息不会带来额外的反馈开销,且不存在 因反馈而引入的量化误差, 是十分有竟争力的解决方案。
在实现本发明的过程中,发明人发现现有技术中至少存在以下问 题:
利用信道互易性的 CoMP方案同样面临着天线校准的要求,如前 所述的终端参与的空中接口校准需要上下行的导频信号。
上行导频信号用 SRS( Sounding Reference Signal,探测参考信号) 即可。而下行导频信号有 CSI-RS ( Channel State Information Reference Signal,信道状态信息参考信号 )、 CRS ( Cell- specific Reference Signal, 小区专用参考信号)、 DMRS ( Demodulation Reference Signal, 解调参 考信号)和 PRS ( Positioning Reference Signals, 定位参考信号)等可 以选择, 但是, DM-RS 不是全带宽发送, 且经历过预编码, 不适合 用于校准, CRS在全带宽发送, 没有预编码, 可以用于校准, 但是考 虑标准发展的趋势是逐渐弱化 CRS的作用, 另外, CRS有可能是天 线虚拟化的结果, 因此也不适合用 CRS进行校准, CSI-RS的频域密 度比较低, 难以达到校准所需的信道估计精度, PRS的密度足够高, 但是没有区分多天线端口, 不适合用于校准测量。
由此, 可以看出, 在多点协作传输场景下, 现有技术对于天线校 准并没有合适的解决方案。 发明内容
本发明实施例提供一种天线校准方法和设备,解决现有的技术方 案中, 在上下行互易性并不严格成立的情况下, 不能准确实现天线校 准的问题。
为达到上述目的, 本发明实施例一方面提供了一种天线校准方 法, 至少包括以下步骤:
基站向终端设备发送校准导频;
所述基站接收所述终端设备返回的校准参数,所述校准参数为所 述终端设备根据所述校准导频所对应范围内的下行信道测量结果所 确定的;
所述基站根据所述校准参数和所述终端设备发送的上行导频信 号确定校准因子, 并根据所述校准因子进行天线校准。 另一方面, 本发明实施例还提供了一种基站, 至少包括: 发送模块, 用于向终端设备发送校准导频;
接收模块, 用于接收所述终端设备返回的校准参数, 所述校准参 数为所述终端设备根据所述发送模块所发送的校准导频所对应范围 内的下行信道测量结果所确定的;
确定模块,用于根据所述接收模块所接收到的校准参数和所述终 端设备发送的上行导频信号确定校准因子,并根据所述校准因子进行 天线校准。 另一方面, 本发明实施例还提供了一种天线校准方法, 至少包括 以下步骤:
终端设备接收基站发送的校准导频;
所述终端设备根据所述校准导频对下行信道进行测量,并根据相 应的测量结果确定校准参数;
所述终端设备向所述基站发送所述校准参数和上行导频信号,以 使所述基站确定相应的校准因子, 并根据校准因子进行天线校准。 另一方面, 本发明实施例还提供了一种终端设备, 至少包括: 接收模块, 用于接收基站发送的校准导频;
确定模块,用于根据所述接收模块所接收到的校准导频对下行信 道进行测量, 并根据相应的测量结果确定校准参数;
发送模块, 用于向所述基站发送所述校准参数和上行导频信号, 以使所述基站确定相应的校准因子, 并根据校准因子进行天线校准。
与现有技术相比, 本发明实施例所提出的技术方案具有以下优 点:
通过应用本发明实施例的技术方案,由基站向终端设备发送校准 导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息 反馈, 通过这样的处理, 使终端设备可以根据符合多天线场景需要的 导频信号, 配合基站进行天线校准, 即使在上下行互易性不严格成立 的情况下, 也能够准确的实现天线校准。 附图说明
图 1为现有技术中的协同调度方案的场景示意图;
图 2为现有技术中的联合发送方案的实施场景示意图; 图 3为本发明实施例所提出的一种天线校准方法的流程示意图; 图 4 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 5为本发明实施例所提出的一种校准导频的示意图; 图 6 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 7 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 8 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图; 图 9 为本发明实施例所提出的一种具体场景中的天线校准方法 的流程示意图;
图 10为本发明实施例提出的一种基站的结构示意图;
图 11为本发明实施例提出的一种终端设备的结构示意图。 具体实施方式
如背景技术所述, 多天线技术已经成为下一代无线通信***的关 键技术之一, 多天线技术中的线性预编码 /波束赋形技术是对抗衰落 信道, 降低差错概率, 提高***性能的有效手段。
TDD***利用上下行信道的互易性, 根据基站估计出的 UE到基 站的上行信道信息可以得到基站到 UE的下行信道信息, 从而计算出 预编码矩阵 /波束赋形权值。 然而, 实际***中上下行互易性并不严 格成立, 这影响了天线间准的实现。
为了克服这样的缺陷, 本发明实施例提出了一种天线校准方法, 由终端设备根据基站发送的专用的校准导频进行相应的信道测量和 信息反馈, 然后基站据此进行天线校准, 由此, 保证了多天线场景下 天线校准的顺利实现。
如图 3所示, 为本发明实施例所提出的一种天线校准方法的流程 示意图, 该方法具体包括以下步骤:
步骤 S301、 基站向终端设备发送校准导频。
在本步骤之前, 还包括参与校准的终端设备的选择过程, 具体说 明如下:
首先, 所述基站接收所述终端设备上报的自身的能力信息, 当然, 在实际的处理过程中, 基站可以接收到多个终端设备的能力信息上 报, 并根据这些信息选择参与校准的终端设备。
当所述基站根据接收到的各终端设备的能力信息, 确定所述终端 设备参与校准时,基站向被选中参与校准的终端设备发送确认所述终 端设备参与校准的通知消息。
另一方面, 为了使终端设备能够顺利接收到基站所发送的校准导 频, 在基站发送校准导频之前,基站可以通过以下方式通知终端设备 校准导频的位置信息:
方式一、 所述基站将所述校准导频所对应的频域信息和 /或子帧信 息发送给所述终端设备。
在实际的应用场景中, 对于此种方式, 校准导频所对应的频域信 息可以是由基站通过高层信令半静态,或通过物理层控制信令动态对 所述终端设备进行配置的。
而校准导频所对应的子帧信息则可以是由基站通过高层信令半静 态, 或通过物理层控制信令动态对所述终端设备配置的, 所配置的具 体的子帧信息的内容可以是相应的周期和子帧偏移量。
方式二、 所述基站与所述终端设备预先约定所述校准导频所对应 的频域信息和 /或子帧信息。
在实际的应用场景中, 对于此种方式, 校准导频所对应的频域信 息可以是直接在所述基站和所述终端设备中预先约定校准导频所在 的固定频域范围的信息。
而校准导频所对应的子帧信息则可以是通过在所述基站和所述终 端设备中预先约定周期和子帧偏移量来实现,基站和终端设备都可以 才艮据所述周期和子帧偏移量确定所述校准导频所对应的子帧信息。
需要进一步指出的是, 无论采用上述的哪种方式, 频域信息和子 帧信息均是校准导频位置信息的一种具体指示方式,两者可以单独使 用, 也可以组合使用, 例如基站可以在特定子帧的特定频域范围内发 送校准导频, 终端设备则在相应的范围内进行校准导频的接收。 在实际的应用场景中, 具体采用上述的哪种方式表示校准导频的 位置信息,以及具体通过哪种方式将具体的校准导频的位置信息通知 给终端设备, 均可以根据实际需要进行设置, 这样的变化并不影响本 发明的保护范围。 送相应的校准导频之前,基站可以先通知所述终端设备需要校准的天 线数量, 以及校准导频的图样。
在具体的实施场景中, 基站向终端设备发送校准导频的发送密度 高于 CRS和 CSI-RS的发送密度。
当所述校准导频对应多个天线时, 所述多个天线, 具体为对应同 一个传输点(具体可以为基站)的多个天线, 或分别对应多个传输点 (具体可以为基站) 的多个天线。
步骤 S302、 所述基站接收所述终端设备返回的校准参数, 所述校 准参数为所述终端设备根据所述校准导频所对应范围内的下行信道 测量结果所确定的。
步骤 S303、 所述基站根据所述校准参数和所述终端设备发送的上 行导频信号确定校准因子, 并根据所述校准因子进行天线校准。 相对应的, 在终端设备侧, 则是接收基站发送的校准导频, 并根 据相应的校准导频进行下行信道的测量, 然后, 将根据相应的测量结 果所确定的校准参数反馈给基站,并根据基站的指示发送上行导频信 号, 使基站据此确定相应的校准因子, 实现天线的校准, 具体的校准 导频的传输方式参见上述说明, 与之相类似, 在此, 不再重复说明。
需要指出的是, 终端设备所确定的校准参数可以是信道系数的量 化值, 也可以是由信道计算出来的其它参数, 这样的变化并不影响本 发明的保护范围、 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 由基站向终端设备发送校准 导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息 反馈, 通过这样的处理, 使终端设备可以根据符合多天线场景需要的 导频信号, 配合基站进行天线校准, 即使在上下行互易性不严格成立 的情况下, 也能够准确的实现天线校准。 下面, 结合具体的应用场景, 对本发明实施例所提出的技术方案 进行说明。
本发明实施例提出了一种天线校准方法, 根据基站发送给终端设 备的 UE-specific 的校准导频, 终端设备进行相应的信道测量及信息 反馈, 使基站可以据此确定相应的校准因子, 对天线进行校准, 实现 了多天线场景下的天线校准,在上下行信道互易性不严格成立的情况 下, 可以实现天线的校准。
参照前述的方式一和方式二, 本发明实施例分别通过以下的实施 例来具体说明分别采用方式一和方式二的应用场景下的天线校准处 理流程。
如图 4所示, 为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中, 采用方式一, 即基站向终端设备直接发送通知消 息的方式进行校准导频的位置信息的通知, 为了方便说明, 本实施例 中采用频域信息作为校准导频的位置信息, 具体处理过程如下:
步骤 S401、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S402、 基站根据接收到的各 UE的能力信息, 选择参与天线 校准的 UE, 并通知该 UE参与天线校准。 在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中, 选择 UE1参与天线校准, 以下各步骤的 UE均指 UE1 , 不再重复说明。
步骤 S403、 基站通知该 UE在一定的频域范围内测量下行信道, 该频域范围内存在基站发送的专门用于校准测量的导频。
在具体的实施场景中,基站通过高层信令半静态配置该频域范围, 或者通过物理层控制信令动态指示该频域范围, 或者 UE在预先约定 好的固定频域范围内测量下行信道,该频域范围内存在基站发送的专 门用于校准测量的导频。
在本实施例中, 本步骤中以基站直接向参与校准的 UE发送频域 信息的方式为例, 进行相应的说明。
基站所发送的频域信息可以与通知该 UE参与校准的消息合并为 一条消息进行发送, 也可以在通知该 UE参与校准的消息发送之前或 之后, 以单独的消息的形式发送给 UE, 具体发送方式的变化并不影 响本发明的保护范围。
在本步骤中, 通知该 UE参与校准的消息与频域信息分别通过步 骤 S402和步骤 S403发送。
需要进一步指出的是,在具体的实施场景中,基站还需要通知 UE 需要校准的天线数目, 以及每根天线的校准导频在前述的步骤 S403 中所确定的资源范围内所占用的 RE, 即校准导频的图样, 以便 UE 可以准确的根据校准导频进行相应的信道测量。
步骤 S404、 基站在相应的频域范围内向 UE发送校准导频。
在具体的实施场景中, 校准导频可以用比 CRS以及 CSI-RS等更 高的密度发送, 以保证信道估计的质量。 如图 5所示为 1个 PRB内四根天线的校准导频示意图,每根天线 的校准导频占用 4个 RE, 四根天线的导频占用不同的 RE。每根天线 在其他天线发送校准导频的 RE上不发送任何信号。
校准导频的多根天线可以是同一个传输点 (基站) 的天线, 也可 以是来自不同传输点的天线。 例如, 图 5所示的 4根天线, 可以是一 个基站的 4根天线, 或者分别是两个 2天线基站的天线。 终端在进行 测量时可以不区分每根天线分别来自哪个传输点。
步骤 S405、 UE在相应的频域范围内接收校准导频, 并对下行信 道进行测量。
步骤 S406、 UE根据测量出的信道信息计算校准参数并通过上行 信道反馈到基站。
在实际应用中, 校准参数可以是信道系数的量化值, 或者由信道 计算出来的其他参数。 频信号计算校准因子, 并进行校准。 如图 6所示, 为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中, 采用方式一, 即基站向终端设备直接发送通知消 息的方式进行校准导频的位置信息的通知, 为了方便说明, 本实施例 中采用子帧信息作为校准导频的位置信息, 具体处理过程如下: 步骤 S601、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S602、 基站根据接收到的各 UE的能力信息, 选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中, 选择 UE1参与天线校准, 以下各步骤的 UE均指 UE1 , 不再重复说明。
步骤 S603、 基站通知该 UE在一定的子帧范围内测量下行信道, 该子帧范围内存在基站发送的专门用于校准测量的导频。
在具体的实施场景中,基站通过高层信令半静态配置该子帧范围, 或者通过物理层控制信令动态指示该子帧范围, 或者 UE在预先约定 好的固定子帧范围内测量下行信道,该子帧范围内存在基站发送的专 门用于校准测量的导频。
在本实施例中, 本步骤中以基站直接向参与校准的 UE发送子帧 信息的方式为例, 进行相应的说明。 而子帧信息的具体形式可以是基 站向 UE发送周期和子帧偏移量, UE可以据此确定相应的子帧信息。
基站所发送的子帧信息可以与通知该 UE参与校准的消息合并为 一条消息进行发送, 也可以在通知该 UE参与校准的消息发送之前或 之后, 以单独的消息的形式发送给 UE, 具体发送方式的变化并不影 响本发明的保护范围。
在本步骤中, 通知该 UE参与校准的消息与子帧信息分别通过步 骤 S602和步骤 S603发送。
需要进一步指出的是,在具体的实施场景中,基站还需要通知 UE 需要校准的天线数目, 以及每根天线的校准导频在前述的步骤 S603 中所确定的资源范围内所占用的 RE, 即校准导频的图样, 以便 UE 可以准确的根据校准导频进行相应的信道测量。
步骤 S604、 基站在相应的子帧上向 UE发送校准导频。
在具体的实施场景中, 校准导频可以用比 CRS以及 CSI-RS等更 高的密度发送, 以保证信道估计的质量。 具体的传输示例同样如图 5所示, 在此不再重复说明。
步骤 S605、 UE在相应的子帧范围内接收校准导频, 并对下行信 道进行测量。
步骤 S606、 UE根据测量出的信道信息计算校准参数并通过上行 信道反馈到基站。
在实际应用中, 校准参数可以是信道系数的量化值, 或者由信道 计算出来的其他参数。 频信号计算校准因子, 并进行校准。 如图 7所示, 为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中, 采用方式二, 即基站与 UE预先约定校准导频的 位置信息, 为了方便说明, 本实施例中采用频域信息作为校准导频的 位置信息, 具体处理过程如下:
步骤 S701、 基站和各 UE预先约定频域信息。
步骤 S702、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S703、 基站根据接收到的各 UE的能力信息, 选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中, 选择 UE1参与天线校准, 以下各步骤的 UE均指 UE1 , 不再重复说明。
步骤 S704、 UE根据预设频域信息确定校准导频的位置信息。 需要进一步指出的是, 在具体的实施场景中, 基站可以通知 UE 需要校准的天线数目,以及每根天线的校准导频在预设的频域信息所 对应的资源范围内所占用的 RE, 即校准导频的图样, 以便 UE可以 准确的根据校准导频进行相应的信道测量。
步骤 S705、 基站在相应的频域范围内向 UE发送校准导频。 在具体的实施场景中, 校准导频可以用比 CRS以及 CSI-RS等更 高的密度发送, 以保证信道估计的质量。校准导频的多根天线可以是 同一个传输点 (基站) 的天线, 也可以是来自不同传输点的天线。
具体的传输示例同样如图 5所示, 在此不再重复说明。
步骤 S706、 终端设备在相应的频域范围上接收校准导频, 并对下 行信道进行测量。
步骤 S707、 终端设备根据测量出的信道信息计算校准参数并通过 上行信道反馈到基站。
在实际应用中, 校准参数可以是信道系数的量化值, 或者由信道 计算出来的其他参数。 行导频信号计算校准因子, 并进行校准。 如图 8所示, 为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中, 采用方式二, 即基站与 UE预先约定校准导频的 位置信息, 为了方便说明, 本实施例中采用子帧信息作为校准导频的 位置信息, 具体处理过程如下:
步骤 S801、 基站和各 UE预先约定校准导频的位置信息。
步骤 S802、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S803、 基站根据接收到的各 UE的能力信息, 选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE 可以是信道质量好且移动 速度低的终端。
在本实施例中, 选择 UE1参与天线校准, 以下各步骤的 UE均指 UE1 , 不再重复说明。
在本实施例中, 由于校准导频的位置信息实际为子帧信息, 子帧 信息可以以周期 +子帧偏移的方式确定, 在实际的应用场景中, 校准 导频的位置信息可以预先约定采用子帧信息来确定,但具体的周期和 子帧偏移量可以由基站配置给终端设备。
例如周期为 。d , 子帧偏移为 S。^, 则在子帧 S 内存在校准导频 的条件为(S ) mod 。
当然, 子帧信息也可以通过物理层信令动态指示, 具体参照前述 的步骤 S403中的方式, 在本实施例中不再另行说明。
而另一方面, 前述的频域信息也可以采用本步骤类似的方法预先 在基站和 UE中预先约定, 这样的变化同样可以应用本实施例中的方 案来处理, 同样属于本发明的保护范围。
步骤 S804、 UE根据预设信息确定校准导频的位置信息。
需要进一步指出的是, 在具体的实施场景中, 基站可以通知 UE 需要校准的天线数目, 以及每根天线的校准导频在预设的子帧信息所 对应的资源范围内所占用的 RE, 即校准导频的图样, 以便 UE可以 准确的根据校准导频进行相应的信道测量。
步骤 S805、 基站在相应的子帧上向 UE发送校准导频。
在具体的实施场景中, 校准导频可以用比 CRS以及 CSI-RS等更 高的密度发送, 以保证信道估计的质量。校准导频的多根天线可以是 同一个传输点 (基站) 的天线, 也可以是来自不同传输点的天线。 具体的传输示例同样如图 5所示, 在此不再重复说明。
步骤 S806、 终端设备在相应的子帧上接收校准导频, 并对下行信 道进行测量。
步骤 S807、 终端设备根据测量出的信道信息计算校准参数并通过 上行信道反馈到基站。
在实际应用中, 校准参数可以是信道系数的量化值, 或者由信道 计算出来的其他参数。 行导频信号计算校准因子, 并进行校准。 需要进一步指出的是, 上述的频域信息和子帧信息也可以结合起 来作为校准导频的位置信息,即在特定子帧的特定频域范围内存在校 准导频,而具体的频域信息和子帧信息的发送方式可以相同也可以不 同, 例如:
1、 基站高层信令配置频域信息和子帧信息。
2、基站高层信令配置频域信息, 而采用物理层控制信令动态指示 子帧信息。
3、 物理层信令动态指示频域信息和子帧信息。
具体的发送方式还有其他的组合方式, 以上三种组合方式只是本 发明实施例给出的优选示例,具体组合方式的变化并不会影响本发明 的保护范围。 如图 9所示, 为本发明实施例所提出的一种具体应用场景下的天 线校准方法的流程示意图。
在本实施例中, 采用方式一, 即基站向终端设备直接发送通知消 息的方式进行校准导频的位置信息的通知,本实施例中基站向终端发 送频域信息和子帧信息作为校准导频的位置信息, 具体处理过程如 下:
步骤 S901、 各 UE向基站上报自身的能力信息。
即各 UE需要上报是否支持校准所需的测量和反馈。
步骤 S902、 基站根据接收到的各 UE的能力信息, 选择参与天线 校准的 UE, 并通知该 UE参与天线校准。
在具体的实施场景中, 基站选择的 UE可以是信道质量好且移动 速度低的终端。
在本实施例中, 选择 UE1参与天线校准, 以下各步骤的 UE均指 UE1 , 不再重复说明。
步骤 S903、 基站通知该 UE在一定的时频范围内 (一定子帧范围 内的一定频域内)测量下行信道, 该时频范围内的存在基站发送的专 门用于校准测量的导频。
在具体的实施场景中, 基站通过高层信令配置频域信息和子帧 信息, 或者基站通过高层信令配置频域信息, 而采用物理层控制信令 动态指示子帧信息,或者基站通过物理层信令动态指示频域信息和子 帧信息。
子帧信息的具体形式可以是基站向 UE发送周期和子帧偏移量, UE可以据此确定相应的子帧信息。 子帧信息的可以由物理层控制信 令所在的子帧计算得到, 如物理层控制信令在第 n个子帧发送, 则相 应的子帧信息可以确定为第 n+k个子帧, 其中 k是预先约定好的参 数, 或者是基站通知给终端的参数。
子帧信息可以与频域信息可以在一条消息内发送, 也可以放在单 独的消息内各自发送。
基站所发送的子帧信息与频域信息可以与通知该 UE参与校准的 消息合并为一条消息进行发送, 也可以在通知该 UE参与校准的消息 发送之前或之后, 以单独的消息的形式发送给 UE, 具体发送方式的 变化并不影响本发明的保护范围。
需要进一步指出的是,在具体的实施场景中,基站还需要通知 UE 需要校准的天线数目, 以及每根天线的校准导频在前述的步骤 903中 所确定的资源范围内所占用的 RE, 即校准导频的图样, 以便 UE可 以准确的根据校准导频进行相应的信道测量。
步骤 S904、 基站在相应的子帧范围内的相应的频域内向 UE发送 校准导频。
在具体的实施场景中, 校准导频可以用比 CRS以及 CSI-RS等更 高的密度发送, 以保证信道估计的质量。
具体的传输示例同样如图 5所示, 在此不再重复说明。
步骤 S905、 UE在相应的子帧范围内的相应频域内接收校准导频, 并对下行信道进行测量。
步骤 S906、 UE根据测量出的信道信息计算校准参数并通过上行 信道反馈到基站。
在实际应用中, 校准参数可以是信道系数的量化值, 或者由信道 计算出来的其他参数。 频信号计算校准因子, 并进行校准。 无论采用上述的哪种方式, UE在接收到相应的校准导频的位置信 息后, 在相应的范围内估计下行信道, 具体的实现方式可以参照前述 实施例的说明, 在此不再重复叙述, 这样的位置信息具体类型的变化 并不会影响本发明的保护范围。
与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 由基站向终端设备发送校准 导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息 反馈, 通过这样的处理, 使终端设备可以根据符合多天线场景需要的 导频信号, 配合基站进行天线校准, 即使在上下行互易性不严格成立 的情况下, 也能够准确的实现天线校准。 为了实现本发明实施例的技术方案, 本发明实施例还提供了一种 基站, 其结构示意图如图 10所示, 至少包括:
发送模块 101 , 用于向终端设备发送校准导频;
接收模块 102, 用于接收所述终端设备返回的校准参数, 所述校 准参数为所述终端设备根据所述发送模块 101 所发送的校准导频所 对应范围内的下行信道测量结果所确定的;
确定模块 103, 用于根据所述接收模块 102所接收到的校准参数 和所述终端设备发送的上行导频信号确定校准因子,并根据所述校准 因子进行天线校准。
具体的,
所述接收模块 102, 还用于在所述发送模块 101 向终端设备发送 校准导频之前, 接收所述终端设备上报的自身的能力信息;
所述发送模块 101 , 还用于根据所述接收模块 102所接收到的各 终端设备的能力信息, 确定所述终端设备参与校准, 并向所述终端设 备发送相应的通知消息。
其中, 所述发送模块 101 , 还用于通过以下方式将所述校准导频 的位置信息通知给所述终端设备:
将所述校准导频所对应的频域信息和 /或子帧信息发送给所述终 端设备; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域信 息和 /或子帧信息, 并在确定所述终端设备参与校准时, 通知所述终 端设备在预先约定的所述频域信息和 /或子帧信息所对应的范围内接 收所述校准导频。
进一步的, 所述发送模块 101 , 具体用于:
通过高层信令半静态, 或通过物理层控制信令动态对所述终端设 备配置所述校准导频所对应的频域信息; 和 /或,
通过物理层控制信令动态对所述终端设备配置所述校准导频所对 应的子帧信息。
在实际的应用场景中, 所述发送模块 101 , 具体用于:
在所述基站和所述终端设备中预先约定所述校准导频所在的固定 频域范围的信息的情况下, 如果确定所述终端设备参与校准, 则通知 所述终端设备在预先约定的所述频域信息所对应的范围内接收所述 校准导频; 和 /或,
在所述基站和所述终端设备中预先约定周期和子帧偏移量的情况 下, 如果确定所述终端设备参与校准, 则通知所述终端设备根据所述 周期和子帧偏移量确定所述校准导频所对应的子帧信息,并在所述子 帧信息所对应的范围内接收所述校准导频。
进一步的, 所述发送模块 101 , 还用于在向终端设备发送校准导 频之前, 通知所述终端设备需要校准的天线数量, 以及校准导频的图 样。 进一步的, 本发明实施例还提出了一种终端设备, 其结构示意图 如图 11所示, 至少包括:
接收模块 111 , 用于接收基站发送的校准导频;
确定模块 112,用于根据所述接收模块 111所接收到的校准导频对 下行信道进行测量, 并根据相应的测量结果确定校准参数; 发送模块 113 , 用于向所述基站发送所述校准参数和上行导频信 号, 以使所述基站确定相应的校准因子, 并根据校准因子进行天线校 准。
其中,所述发送模块 113,还用于在所述接收模块 111接收基站发 送的校准导频之前, 向所述基站上报的所述终端设备的能力信息; 所述接收模块 111 ,还用于接收所述基站发送的确认所述终端设备 参与校准的通知消息。
另一方面,所述接收模块 111 ,具体用于通过以下方式确定所述基 站所发送的校准导频的位置信息:
接收所述基站发送的所述校准导频所对应的频域信息和 /或子帧 信息; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域信 息和 /或子帧信息, 并在所述基站确定所述终端设备参与校准时, 接 收所述基站发送的在预先约定的所述频域信息和 /或子帧信息所对应 的范围内接收所述校准导频的通知消息。
具体的, 所述接收模块 111 , 具体用于:
接收所述基站通过高层信令半静态, 或通过物理层控制信令动态 配置的所述校准导频所对应的频域信息; 和 /或,
接收所述基站物理层控制信令动态配置的所述校准导频所对应的 子帧信息。
另一方面, 所述接收模块 111 , 具体用于:
在所述基站和所述终端设备中预先约定所述校准导频所在的固定 频域范围的信息的情况下,接收所述基站发送的在预先约定的所述频 域信息所对应的范围内接收所述校准导频的通知消息; 和 /或,
在所述基站和所述终端设备中预先约定周期和子帧偏移量的情况 下,接收所述基站发送的根据所述周期和子帧偏移量确定所述校准导 频所对应的子帧信息,并在所述子帧信息所对应的范围内接收所述校 准导频的通知消息。
在实际的应用场景中,
所述接收模块 111 , 还用于在接收所述基站发送的校准导频之前, 根据所接收到的所述基站发送的消息, 确定需要校准的天线数量, 以 及校准导频的图样。
需要进一步指出的是, 所述确定模块 112, 具体用于:
根据所述测量结果所对应的信道系数的量化值, 确定所述校准参 数; 或,
将根据所述测量结果所得到的其他参数, 确定所述校准参数。 与现有技术相比,本发明实施例所提出的技术方案具有以下优点: 通过应用本发明实施例的技术方案, 由基站向终端设备发送校准 导频,以使终端设备根据该校准导频进行天线校准的信道测量和信息 反馈, 通过这样的处理, 使终端设备可以根据符合多天线场景需要的 导频信号, 配合基站进行天线校准, 即使在上下行互易性不严格成立 的情况下, 也能够准确的实现天线校准。 通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解 到本发明实施例可以通过硬件实现,也可以借助软件加必要的通用硬 件平台的方式来实现。基于这样的理解, 本发明实施例的技术方案可 以以软件产品的形式体现出来,该软件产品可以存储在一个非易失性 存储介质 (可以是 CD-ROM, U盘, 移动硬盘等) 中, 包括若干指 令用以使得一台计算机设备(可以是个人计算机, 服务器, 或网络侧 设备等)执行本发明实施例各个实施场景所述的方法。
本领域技术人员可以理解附图只是一个优选实施场景的示意图, 附图中的模块或流程并不一定是实施本发明实施例所必须的。
本领域技术人员可以理解实施场景中的装置中的模块可以按照实 施场景描述进行分布于实施场景的装置中,也可以进行相应变化位于 不同于本实施场景的一个或多个装置中。上述实施场景的模块可以合 并为一个模块, 也可以进一步拆分成多个子模块。
上述本发明实施例序号仅仅为了描述, 不代表实施场景的优劣。 明实施例并非局限于此,任何本领域的技术人员能思之的变化都应落 入本发明实施例的业务限制范围。

Claims

权利要求
1、 一种天线校准方法, 其特征在于, 至少包括以下步骤: 基站向终端设备发送校准导频;
所述基站接收所述终端设备返回的校准参数,所述校准参数为所 述终端设备根据所述校准导频所对应范围内的下行信道测量结果所 确定的;
所述基站根据所述校准参数和所述终端设备发送的上行导频信 号确定校准因子, 并根据所述校准因子进行天线校准。
2、 如权利要求 1所述的方法, 其特征在于, 所述基站向终端设 备发送校准导频之前, 还包括:
所述基站接收所述终端设备上报的自身的能力信息;
所述基站根据接收到的各终端设备的能力信息,确定所述终端设 知消息。
3、 如权利要求 1所述的方法, 其特征在于, 所述校准导频的位 置信息具体通过以下方式通知所述终端设备:
所述基站将所述校准导频所对应的频域信息和 /或子帧信息发送 给所述终端设备; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域 信息和 /或子帧信息, 并在所述基站确定所述终端设备参与校准时, 通知所述终端设备在预先约定的所述频域信息和 /或子帧信息所对应 的范围内接收所述校准导频。
4、 如权利要求 3所述的方法, 其特征在于, 所述基站将所述校 准导频所对应的频域信息和 /或子帧信息发送给所述终端设备, 具体 包括:
所述基站通过高层信令半静态,或通过物理层控制信令动态对所 述终端设备配置所述校准导频所对应的频域信息; 和 /或,
所述基站通过物理层控制信令动态对所述终端设备配置所述校 准导频所对应的子帧信息。
5、 如权利要求 4所述的方法, 其特征在于, 所述基站通过物理 层控制信令动态对所述终端设备配置所述校准导频所对应的子帧信 息, 具体为:
所述基站向所述终端设备发送周期和子帧偏移量,以使所述终端 设备根据所述周期和子帧偏移量确定所述校准导频所对应的子帧信
6、 如权利要求 3所述的方法, 其特征在于, 所述基站与所述终 端设备预先约定所述校准导频所对应的频域信息和 /或子帧信息, 具 体包括:
所述基站和所述终端设备中预先约定所述校准导频所在的固定 频域范围的信息; 和 /或,
所述基站和所述终端设备中预先约定周期和子帧偏移量,在所述 基站确定所述终端设备参与校准后,所述基站通知所述终端设备根据 所述周期和子帧偏移量确定所述校准导频所对应的子帧信息。
7、 如权利要求 1所述的方法, 其特征在于, 所述基站向终端设 备发送校准导频之前, 还包括:
所述基站通知所述终端设备需要校准的天线数量,以及校准导频 的图样。
8、 如权利要求 1所述的方法, 其特征在于, 当所述校准导频对 应多个天线时, 所述多个天线, 具体为:
对应同一个基站的多个天线; 或,
分别对应多个基站的多个天线。
9、 一种基站, 其特征在于, 至少包括:
发送模块, 用于向终端设备发送校准导频;
接收模块, 用于接收所述终端设备返回的校准参数, 所述校准参 数为所述终端设备根据所述发送模块所发送的校准导频所对应范围 内的下行信道测量结果所确定的; 确定模块,用于根据所述接收模块所接收到的校准参数和所述终 端设备发送的上行导频信号确定校准因子,并根据所述校准因子进行 天线校准。
10、 如权利要求 9所述的基站, 其特征在于,
所述接收模块,还用于在所述发送模块向终端设备发送校准导频 之前, 接收所述终端设备上报的自身的能力信息;
所述发送模块,还用于根据所述接收模块所接收到的各终端设备 的能力信息, 确定所述终端设备参与校准, 并向所述终端设备发送相 应的通知消息。
11、 如权利要求 9所述的基站, 其特征在于, 所述发送模块, 还 用于通过以下方式将所述校准导频的位置信息通知给所述终端设备: 将所述校准导频所对应的频域信息和 /或子帧信息发送给所述终 端设备; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域 信息和 /或子帧信息, 并在确定所述终端设备参与校准时, 通知所述 终端设备在预先约定的所述频域信息和 /或子帧信息所对应的范围内 接收所述校准导频。
12、 如权利要求 11所述的基站, 其特征在于, 所述发送模块, 具体用于:
通过高层信令半静态,或通过物理层控制信令动态对所述终端设 备配置所述校准导频所对应的频域信息; 和 /或,
通过物理层控制信令动态对所述终端设备配置所述校准导频所 对应的子帧信息。
13、 如权利要求 11所述的基站, 其特征在于, 所述发送模块, 具体用于:
在所述基站和所述终端设备中预先约定所述校准导频所在的固 定频域范围的信息的情况下, 如果确定所述终端设备参与校准, 则通 知所述终端设备在预先约定的所述频域信息所对应的范围内接收所 述校准导频; 和 /或, 在所述基站和所述终端设备中预先约定周期和子帧偏移量的情 况下, 如果确定所述终端设备参与校准, 则通知所述终端设备根据所 述周期和子帧偏移量确定所述校准导频所对应的子帧信息,并在所述 子帧信息所对应的范围内接收所述校准导频。
14、 如权利要求 9所述的基站, 其特征在于, 所述发送模块, 还 用于:
在向终端设备发送校准导频之前,通知所述终端设备需要校准的 天线数量, 以及校准导频的图样。
15、 一种天线校准方法, 其特征在于, 至少包括以下步骤: 终端设备接收基站发送的校准导频;
所述终端设备根据所述校准导频对下行信道进行测量,并根据相 应的测量结果确定校准参数;
所述终端设备向所述基站发送所述校准参数和上行导频信号,以 使所述基站确定相应的校准因子, 并根据校准因子进行天线校准。
16、 如权利要求 15所述的方法, 其特征在于, 所述终端设备接 收基站发送的校准导频之前, 还包括:
所述终端设备向所述基站上报的自身的能力信息;
所述终端设备接收所述基站发送的确认自身参与校准的通知消
17、 如权利要求 15所述的方法, 其特征在于, 所述终端设备通 过以下方式确定所述基站所发送的校准导频的位置信息:
所述终端设备接收所述基站发送的所述校准导频所对应的频域 信息和 /或子帧信息; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域 信息和 /或子帧信息, 并在所述基站确定所述终端设备参与校准时, 所述终端设备接收所述基站发送的在预先约定的所述频域信息和 /或 子帧信息所对应的范围内接收所述校准导频的通知消息。
18、 如权利要求 17所述的方法, 其特征在于, 所述终端设备接 收所述基站发送的所述校准导频所对应的频域信息和 /或子帧信息, 具体包括:
所述终端设备接收所述基站通过高层信令半静态,或通过物理层 控制信令动态配置的所述校准导频所对应的频域信息; 和 /或,
所述终端设备接收所述基站物理层控制信令动态配置的所述校 准导频所对应的子帧信息。
19、 如权利要求 18所述的方法, 其特征在于, 所述终端设备接 收所述基站物理层控制信令动态配置的所述校准导频所对应的子帧 信息, 具体为:
所述终端设备接收所述基站发送的周期和子帧偏移量,并根据所 述周期和子帧偏移量确定所述校准导频所对应的子帧信息。
20、 如权利要求 17所述的方法, 其特征在于, 所述基站与所述 终端设备预先约定所述校准导频所对应的频域信息和 /或子帧信息, 具体包括:
所述基站和所述终端设备中预先约定所述校准导频所在的固定 频域范围的信息; 和 /或,
所述基站和所述终端设备中预先约定周期和子帧偏移量,在所述 基站确定所述终端设备参与校准后,所述终端设备接收所述基站发送 的根据所述周期和子帧偏移量确定所述校准导频所对应的子帧信息 的通知消息。
21、 如权利要求 15所述的方法, 其特征在于, 所述终端设备接 收基站发送的校准导频之前, 还包括:
所述终端设备根据所述基站发送的消息,确定需要校准的天线数 量, 以及校准导频的图样。
22、 如权利要求 15所述的方法, 其特征在于, 当所述校准导频 对应多个天线时, 所述多个天线, 具体为:
对应同一个基站的多个天线; 或,
分别对应多个基站的多个天线。
23、 如权利要求 15所述的方法, 其特征在于, 所述根据相应的 测量结果确定校准参数, 具体为:
所述终端设备根据所述测量结果所对应的信道系数的量化值,确 定所述校准参数; 或,
所述终端设备将根据所述测量结果所得到的其他参数,确定所述 校准参数。
24、 一种终端设备, 其特征在于, 至少包括:
接收模块, 用于接收基站发送的校准导频;
确定模块,用于根据所述接收模块所接收到的校准导频对下行信 道进行测量, 并根据相应的测量结果确定校准参数;
发送模块, 用于向所述基站发送所述校准参数和上行导频信号, 以使所述基站确定相应的校准因子, 并根据校准因子进行天线校准。
25、 如权利要求 24所述的终端设备, 其特征在于,
所述发送模块,还用于在所述接收模块接收基站发送的校准导频 之前, 向所述基站上报的所述终端设备的能力信息;
所述接收模块,还用于接收所述基站发送的确认所述终端设备参 与校准的通知消息。
26、 如权利要求 24所述的终端设备, 其特征在于, 所述接收模 块,具体用于通过以下方式确定所述基站所发送的校准导频的位置信 接收所述基站发送的所述校准导频所对应的频域信息和 /或子帧 信息; 或,
所述基站与所述终端设备预先约定所述校准导频所对应的频域 信息和 /或子帧信息, 并在所述基站确定所述终端设备参与校准时, 接收所述基站发送的在预先约定的所述频域信息和 /或子帧信息所对 应的范围内接收所述校准导频的通知消息。
27、 如权利要求 26所述的终端设备, 其特征在于, 所述接收模 块, 具体用于:
接收所述基站通过高层信令半静态,或通过物理层控制信令动态 配置的所述校准导频所对应的频域信息; 和 /或,
接收所述基站物理层控制信令动态配置的所述校准导频所对应 的子帧信息。
28、 如权利要求 26所述的终端设备, 其特征在于, 所述接收模 块, 具体用于:
在所述基站和所述终端设备中预先约定所述校准导频所在的固 定频域范围的信息的情况下,接收所述基站发送的在预先约定的所述 频域信息所对应的范围内接收所述校准导频的通知消息; 和 /或, 在所述基站和所述终端设备中预先约定周期和子帧偏移量的情 况下,接收所述基站发送的根据所述周期和子帧偏移量确定所述校准 导频所对应的子帧信息,并在所述子帧信息所对应的范围内接收所述 校准导频的通知消息。
29、 如权利要求 24所述的终端设备, 其特征在于,
所述接收模块, 还用于在接收所述基站发送的校准导频之前, 根 据所接收到的所述基站发送的消息, 确定需要校准的天线数量, 以及 校准导频的图样。
30、 如权利要求 24所述的终端设备, 其特征在于, 所述确定模 块, 具体用于:
根据所述测量结果所对应的信道系数的量化值,确定所述校准参 数; 或,
将根据所述测量结果所得到的其他参数, 确定所述校准参数。
PCT/CN2012/079663 2011-08-12 2012-08-03 天线校准方法和设备 WO2013023535A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110231311.5A CN102291189B (zh) 2011-08-12 2011-08-12 天线校准方法和设备
CN201110231311.5 2011-08-12

Publications (1)

Publication Number Publication Date
WO2013023535A1 true WO2013023535A1 (zh) 2013-02-21

Family

ID=45337318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/079663 WO2013023535A1 (zh) 2011-08-12 2012-08-03 天线校准方法和设备

Country Status (2)

Country Link
CN (1) CN102291189B (zh)
WO (1) WO2013023535A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784952A2 (en) 2013-03-26 2014-10-01 Krea Icerik Hizmetleri Ve Produksiyon Anonim Sirketi A method and system for signal measurement and approval over controlled environment

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102291189B (zh) * 2011-08-12 2016-03-23 电信科学技术研究院 天线校准方法和设备
CN103259581B (zh) * 2012-02-16 2016-08-03 电信科学技术研究院 一种进行天线校准的方法、***和设备
CN102684800B (zh) * 2012-03-16 2016-12-14 南京中兴软件有限责任公司 有源天线***下行、上行无线指标的测试方法及装置
CN103595514B (zh) 2012-08-13 2018-02-16 中兴通讯股份有限公司 一种对协作ap点发送的数据进行校准的方法和基站
CN103873122B (zh) * 2012-12-11 2019-02-19 中兴通讯股份有限公司 天线信号的发送方法、装置及设备
CN105093147B (zh) * 2014-05-20 2018-11-23 中国人民解放军63973部队 一种电磁脉冲电场探头时域校准方法
CN104467933B (zh) * 2014-10-29 2017-11-28 清华大学 时分双工多天线***中基于叠加转发的中继信道校准方法
CN105634658A (zh) * 2014-10-31 2016-06-01 ***通信集团公司 一种进行发送处理的方法、设备及***
US10348422B2 (en) 2015-04-10 2019-07-09 Mitsubishi Electric Corporation Communication system
CN108023631B (zh) * 2016-11-04 2023-08-22 华为技术有限公司 传输信息的方法和设备
CN108282211B (zh) * 2017-01-06 2023-11-03 华为技术有限公司 一种信号传输方法和网络设备以及终端设备
CN109150323B (zh) * 2017-06-15 2021-05-25 中兴通讯股份有限公司 一种天线校准方法、待校准无线远程单元及基站
CN115173967A (zh) * 2021-04-02 2022-10-11 华为技术有限公司 通信方法及装置
CN116132006A (zh) * 2021-11-15 2023-05-16 大唐移动通信设备有限公司 天线校准方法、设备、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232314A (zh) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 一种时分双工智能天线***校正的方法及装置
CN101753185A (zh) * 2008-12-15 2010-06-23 大唐移动通信设备有限公司 一种实现多小区多天线校准的方法、装置和***
WO2010147515A1 (en) * 2009-06-17 2010-12-23 Telefonaktiebolage Lm Eriksson (Publ) A method for antenna calibration in a wideband communication system
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101500248B (zh) * 2008-01-31 2011-02-02 大唐移动通信设备有限公司 一种天线校准方法及装置
CN101808409B (zh) * 2010-04-01 2015-03-25 中兴通讯股份有限公司 一种lte-a***中测量参考信号的配置方法和***

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101232314A (zh) * 2008-01-22 2008-07-30 中兴通讯股份有限公司 一种时分双工智能天线***校正的方法及装置
CN101753185A (zh) * 2008-12-15 2010-06-23 大唐移动通信设备有限公司 一种实现多小区多天线校准的方法、装置和***
WO2010147515A1 (en) * 2009-06-17 2010-12-23 Telefonaktiebolage Lm Eriksson (Publ) A method for antenna calibration in a wideband communication system
CN102291189A (zh) * 2011-08-12 2011-12-21 电信科学技术研究院 天线校准方法和设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2784952A2 (en) 2013-03-26 2014-10-01 Krea Icerik Hizmetleri Ve Produksiyon Anonim Sirketi A method and system for signal measurement and approval over controlled environment

Also Published As

Publication number Publication date
CN102291189A (zh) 2011-12-21
CN102291189B (zh) 2016-03-23

Similar Documents

Publication Publication Date Title
WO2013023535A1 (zh) 天线校准方法和设备
AU2021204447B2 (en) Interference measurements and channel state information feedback for multi-user multiple-in multiple-out
KR101452953B1 (ko) 안테나 교정 정보의 보고, 안테나 교정 계수의 확정 방법 및 장치
EP2816739B1 (en) Aerial calibration method, system and device
EP2866361B1 (en) Method and apparatus for reporting channel state information in wireless communication system
US20200204239A1 (en) Method for reporting channel state information in wireless communication system and device therefor
JP6019502B2 (ja) 協調マルチポイント送信のためのチャネルフィードバック
US9432099B2 (en) Method and apparatus for reporting channel state information in wireless communication system
WO2013023534A1 (zh) 数据传输方法和设备
EP2643988B1 (en) Multi-layer beamforming with partial channel state information
WO2016165652A1 (zh) 信道信息反馈方法及装置
WO2016041345A1 (zh) 一种导频信息的反馈方法、装置及终端
CN115836492A (zh) 辅助增强nr类型ii csi反馈的信令传输
WO2018028549A1 (zh) 测量导频的发送方法、信道状态信息的反馈方法及装置
EP3970278A1 (en) Apparatuses and methods for multi-user transmissions
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
WO2016145952A1 (zh) 信道状态测量导频的处理方法及装置
CN117882487A (zh) 报告相干联合传输(cjt)和移动性的频率和多普勒参数

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12823535

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12823535

Country of ref document: EP

Kind code of ref document: A1