WO2013022260A2 - Method and user equipment for transmitting uplink control information - Google Patents

Method and user equipment for transmitting uplink control information Download PDF

Info

Publication number
WO2013022260A2
WO2013022260A2 PCT/KR2012/006266 KR2012006266W WO2013022260A2 WO 2013022260 A2 WO2013022260 A2 WO 2013022260A2 KR 2012006266 W KR2012006266 W KR 2012006266W WO 2013022260 A2 WO2013022260 A2 WO 2013022260A2
Authority
WO
WIPO (PCT)
Prior art keywords
bit sequence
antenna port
symbols
modulation symbols
channel
Prior art date
Application number
PCT/KR2012/006266
Other languages
French (fr)
Korean (ko)
Other versions
WO2013022260A3 (en
Inventor
한승희
손혁민
최혜영
이현우
김진민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2013022260A2 publication Critical patent/WO2013022260A2/en
Publication of WO2013022260A3 publication Critical patent/WO2013022260A3/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0064Rate requirement of the data, e.g. scalable bandwidth, data priority
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing

Definitions

  • the present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for transmitting / receiving uplink control information.
  • M2M machine-to-machine
  • MTC machine type communication
  • smart phones and tablet PCs that require high data transfer rates
  • CA carrier aggregation
  • cognitive radio technology etc.
  • a communication environment is evolving in the direction of increasing the density of nodes that can be accessed by the user equipment in the vicinity.
  • a node is a fixed point capable of transmitting / receiving a radio signal with a user device having one or more antennas.
  • a communication system having a high density of nodes can provide higher performance communication services to user equipment by cooperation between nodes.
  • a method and apparatus for transmitting / receiving an uplink control signal for efficient communication between a user equipment and a base station are provided.
  • the user equipment when the user equipment transmits the uplink control information of a predetermined size or more to the base station, by generating the output bit sequence by channel coding the input bit sequence corresponding to the uplink control information; And modulating the output bit sequence to produce a plurality of modulation symbols; Mapping the plurality of modulation symbols to a first antenna port and a second antenna port; A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port.
  • first modulation symbols A first frequency resource and a second frequency in modulation symbols
  • second modulation symbols hereinafter, referred to as second modulation symbols
  • Mapping resources respectively; Transmitting the first modulated symbols to the base station through the first frequency resource on the first antenna port and the second modulated symbols to the base station through the second frequency resource on the second antenna port.
  • a plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, and the first frequency resource and the second frequency resource are orthogonal to each other.
  • a channel encoder for generating an output bit sequence by channel coding the bit sequence corresponding to the uplink control information; And a modulation mapper for modulating the output bit sequence to produce a plurality of modulation symbols.
  • a divider for mapping the plurality of modulation symbols to a first antenna port and a second antenna port; A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port.
  • a resource mapper that maps resources respectively;
  • the plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, and wherein the first frequency resource and the second frequency resource are orthogonal to each other.
  • generating the output bit sequence comprises: dividing the input bit sequence into a first bit sequence and a second bit sequence; And channel encoding the first bit sequence and the second bit sequence, respectively, and output a second bit sequence obtained by encoding an encoded first bit sequence. And alternately connecting the encoded first bit sequence and the encoded second bit sequence.
  • dual Reed-Muller (RM) codes may be used for the channel encoding.
  • a large amount of uplink control signal can be efficiently transmitted / received.
  • FIG. 1 shows an example of a radio frame structure used in a wireless communication system.
  • FIG. 2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
  • FIG. 3 illustrates a DL subframe structure used in a 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) / LTE-A (Advanced) system.
  • 3GPP 3rd Generation Partnership Project
  • LTE Long Term Evolution
  • LTE-A Advanced
  • FIG. 4 shows an example of an uplink subframe structure used in a 3GPP LTE / LTE-A system.
  • 5 to 8 illustrate UCI transmission using a physical uplink control channel (PUCCH) format 1 series and a PUCCH format 2 series.
  • PUCCH physical uplink control channel
  • FIG. 9 illustrates a PUCCH format based on block-spreading.
  • RM Dual Reed-Muller
  • 11 is a diagram illustrating a bit sequence of uplink control information to which dual RM encoding is applied.
  • FIG. 12 shows an example of mapping a modulation symbol to a frequency domain by using a frequency switched transmit diversity (FSTD) technique.
  • FSTD frequency switched transmit diversity
  • FIG. 13 shows an example of transmission of PUCCH format 3 to which FSTD is applied.
  • FIG. 14 illustrates transmission of uplink control information to which a simple combination of dual RM encoding and FSTD scheme is applied.
  • FIG. 15 illustrates an embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • 16 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • FIG. 17 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • FIG. 18 is a block diagram showing components of a transmitter 10 and a receiver 20 for carrying out the present invention.
  • FIG. 19 shows an example of a signal processing process in a transmission apparatus.
  • a user equipment may be fixed or mobile, and various devices that communicate with the BS to transmit and receive user data and / or various control information belong to the same.
  • the UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like.
  • a base station generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information.
  • the BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
  • ABS Advanced Base Station
  • NB Node-B
  • eNB evolved-NodeB
  • BTS Base Transceiver System
  • Access Point Access Point
  • PS Processing Server
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • DCI Downlink Control Information
  • CFI Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH).
  • Uplink Shared CHannel / PACH Physical Random Access CHannel refers to a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively.
  • Resource elements (REs) are referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources, respectively.
  • the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used as the same meaning as transmitting uplink control information / uplink data / random access signal on or through the PUSCH / PUCCH / PRACH, respectively.
  • the expression that the BS transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on or through the PDCCH / PCFICH / PHICH / PDSCH, respectively.
  • Figure 1 illustrates an example of a radio frame structure used in a wireless communication system.
  • Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system
  • Figure 1 (b) is used in the 3GPP LTE / LTE-A system
  • the frame structure for time division duplex (TDD) is shown.
  • a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame.
  • Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long.
  • the time for transmitting one subframe is defined as a transmission time interval (TTI).
  • the time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
  • the radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
  • Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe.
  • the singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS).
  • DwPTS is a time interval reserved for downlink transmission
  • UpPTS is a time interval reserved for uplink transmission.
  • Table 2 illustrates the configuration of a singular frame.
  • FIG. 2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system.
  • FIG. 2 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
  • a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain.
  • An OFDM symbol may mean a symbol period.
  • a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols.
  • N DL RB represents the number of resource blocks (RBs) in the downlink slot
  • N UL RB represents the number of RBs in the UL slot.
  • N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively.
  • N DL symb represents the number of OFDM symbols in the downlink slot
  • N UL symb represents the number of OFDM symbols in the UL slot.
  • N RB sc represents the number of subcarriers constituting one RB.
  • the OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme.
  • the number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols.
  • FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG.
  • each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain.
  • the types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band, and direct current (DC) components.
  • the null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process.
  • the carrier frequency is also called the center frequency.
  • One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined.
  • N DL / UL symb e.g., seven
  • N RB sc e.g., twelve
  • a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements.
  • Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot.
  • k is an index given from 0 to N DL / UL RB * N RB sc ⁇ 1 in the frequency domain
  • l is an index given from 0 to N DL / UL symb ⁇ 1 in the time domain.
  • Two RBs each occupying N RB sc consecutive subcarriers in one subframe and one located in each of two slots of the subframe, are called a physical resource block (PRB) pair.
  • Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
  • 3 illustrates a DL subframe structure used in 3GPP LTE / LTE-A system.
  • a DL subframe is divided into a control region and a data region in the time domain.
  • up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated.
  • a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region.
  • the remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated.
  • PDSCH Physical Downlink Shared CHannel
  • a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region.
  • Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like.
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
  • HARQ Hybrid Automatic Repeat Request
  • DCI downlink control information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • paging channel a downlink shared channel
  • the transmission format and resource allocation information of a downlink shared channel may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH).
  • the transmission format and resource allocation information is also called UL scheduling information or UL grant.
  • the PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs).
  • CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs.
  • REGs resource element groups
  • a CCE set in which a PDCCH can be located is defined for each UE.
  • the set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS).
  • SS search space
  • PDCCH candidate An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate.
  • the collection of PDCCH candidates that the UE will monitor is defined as a search space.
  • a search space for each DCI format may have a different size, and a dedicated search space and a common search space are defined.
  • the dedicated search space is a UE-specific search space and is configured for each individual UE.
  • the common search space is set for a plurality of UEs.
  • One PDCCH candidate corresponds to 1, 2, 4, or 8 CCEs according to a CCE aggregation level.
  • the BS sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI).
  • monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats.
  • the UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every Pframe attempts to decode the PDCCH until every PDCCH of the corresponding DCI format has detected a PDCCH having its own identifier. It is called blind detection (blind decoding).
  • the BS may transmit data for the UE or the UE group through the data area.
  • Data transmitted through the data area is also called user data.
  • a physical downlink shared channel (PDSCH) may be allocated to the data area.
  • Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH.
  • the UE may read data transmitted through the PDSCH by decoding control information transmitted through the PDCCH.
  • the DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate.
  • Information indicating to which UE or UE group data of the PDSCH is transmitted, how the UE or UE group should receive and decode PDSCH data, and the like are included in the PDCCH and transmitted.
  • a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B” and a transmission of "C”.
  • RNC Radio Network Temporary Identity
  • RNTI Radio Network Temporary Identity
  • format information eg, transport block size, modulation scheme, coding information, etc.
  • FIG. 4 shows an example of an uplink subframe structure used in a 3GPP LTE / LTE-A system.
  • the UL subframe may be divided into a control region and a data region in the frequency domain.
  • One or several physical uplink control channels may be allocated to the control region to carry uplink control information (UCI).
  • One or several physical uplink shared channels may be allocated to a data region of a UL subframe to carry user data.
  • the control region and data region in the UL subframe may also be called a PUCCH region and a PUSCH region, respectively.
  • a sounding reference signal (SRS) may be allocated to the data area.
  • the SRS is transmitted in the OFDM symbol located at the end of the UL subframe in the time domain and in the data transmission band of the UL subframe, that is, in the data domain, in the frequency domain.
  • SRSs of several UEs transmitted / received in the last OFDM symbol of the same subframe may be distinguished according to frequency location / sequence.
  • SC-FDMA Single Carrier Frequency Division Multiplexing Access
  • PUCCH and PUSCH are performed on one carrier. Can't send at the same time.
  • whether to support simultaneous transmission of a PUCCH and a PUSCH may be indicated in a higher layer.
  • subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region.
  • subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information.
  • the DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion.
  • the PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots.
  • the PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
  • PUCCH may be used to transmit the following control information.
  • SR Service Request: Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
  • HARQ-ACK A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received.
  • One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords.
  • HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX.
  • NACK negative ACK
  • DTX discontinuous Transmission
  • HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
  • CSI Channel State Information
  • MIMO Multiple Input Multiple Output
  • RI rank indicator
  • PMI precoding matrix indicator
  • the amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission.
  • SC-FDMA available for UCI means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last SC of the subframe
  • SRS Sounding Reference Signal
  • the -FDMA symbol is also excluded.
  • the reference signal is used for coherent detection of the PUCCH.
  • PUCCH supports various formats according to the transmitted information.
  • Table 3 shows a mapping relationship between PUCCH format and UCI in LTE / LTE-A system.
  • the PUCCH format 1 series is mainly used to transmit ACK / NACK information
  • the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI
  • the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
  • 5 to 8 illustrate UCI transmission using PUCCH format 1 series and PUCCH format 2 series.
  • a DL / UL subframe with a regular CP consists of two slots, each slot containing seven OFDM symbols, and a DL / UL subframe with an extended CP, each slot It consists of two slots containing these six OFDM symbols. Since the number of OFDM symbols per subframe varies according to the CP length, the structure in which the PUCCH is transmitted in the UL subframe also varies according to the CP length. Accordingly, depending on the PUCCH format and the CP length, a method of transmitting a UCI in a UL subframe may vary.
  • FIG. 5 illustrates an example of transmitting ACK / NACK information using a PUCCH format 1a / 1b in a UL slot having a regular CP
  • FIG. 6 illustrates ACK / NACK using PUCCH format 1a / 1b in a UL slot having an extended CP.
  • An example of transmitting NACK information is shown.
  • the ACK / NACK signal has a different cyclic shift (CS) (frequency domain code) and orthogonal cover code (OC) or orthogonal in a computer-generated constant amplitude zero auto correlation (CG-CAZAC) sequence.
  • cover code (OCC)) time domain spreading code.
  • Orthogonal cover codes are also called orthogonal sequences.
  • OC includes, for example, Walsh / Discrete Fourier Transform (DFT) orthogonal code.
  • a total of 18 PUCCHs may be multiplexed in the same physical resource block (PRB) based on a single antenna port.
  • Orthogonal sequences w 0 , w 1 , w 2 , w 3 may be applied in any time domain (after Fast Fourier Transform (FFT) modulation) or in any frequency domain (before FFT modulation).
  • FFT Fast Fourier Transform
  • the PUCCH resource for ACK / NACK transmission includes the location of time-frequency resources (e.g., PRB), cyclic shift of a sequence for frequency spreading, and Expressed as a combination of orthogonal codes, each PUCCH resource is indicated using a PUCCH resource index (also called a PUCCH index).
  • PUCCH resource index also called a PUCCH index.
  • the slot level structure of the PUCCH format 1 series for SR (Scheduling Request) transmission is the same as that of the PUCCH formats 1a and 1b, and only its modulation method is different.
  • FIG. 7 shows an example of transmitting channel state information (CSI) using a PUCCH format 2 / 2a / 2b in a UL slot having a regular CP
  • FIG. 8 shows a PUCCH format in a UL slot having an extended CP.
  • An example of transmitting channel state information using 2 / 2a / 2b is shown.
  • one UL subframe includes 10 OFDM symbols except for a symbol carrying a UL reference signal (RS).
  • the channel state information is coded into 10 transmission symbols (also called complex-valued modulation symbols) through block coding.
  • the 10 transmission symbols are respectively mapped to the 10 OFDM symbols and transmitted to the BS.
  • PUCCH format 1 / 1a / 1b and PUCCH format 2 / 2a / 2b can carry UCI up to a certain number of bits.
  • PUCCH format 1 / 1a / 1b and PUCCH format 2 / 2a / 2b can carry UCI up to a certain number of bits.
  • PUCCH format 3 is introduced, which is called PUCCH format 3.
  • PUCCH format 3 may be used when a UE configured with carrier aggregation transmits a plurality of ACK / NACKs for a plurality of PDSCHs received from a BS through a plurality of downlink carriers through a specific uplink carrier.
  • Carrier aggregation refers to carrier aggregation or bandwidth aggregation using a larger uplink / downlink bandwidth by collecting a plurality of uplink / downlink frequency blocks to use a wider frequency band than a frequency band operating in one carrier.
  • a typical wireless communication system performs data transmission / reception through one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode).
  • FDD frequency division duplex
  • a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units. time division duplex (TDD) mode).
  • the BS and the UE transmit and receive the scheduled data and / or control information in units of a predetermined time unit, for example, a subframe (SF).
  • carrier aggregation refers to a plurality of uplink / downlink frequency blocks that are used to use a wider frequency band. This technique uses a larger uplink / downlink bandwidth.
  • DL and / or UL communication is performed using a plurality of carrier frequencies, an OFDM that performs DL or UL communication by putting a fundamental frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency It is distinguished from technology.
  • Each of the plurality of carriers aggregated is called a component carrier (CC).
  • CC may be adjacent to each other or non-adjacent in the frequency domain, and the bandwidth of each CC may be determined independently.
  • Asymmetrical carrier aggregation in which the number of UL CCs and the number of DL CCs are different is also possible.
  • the UL CC and the DL CC are also called UL resources and DL resources, respectively.
  • the 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC.
  • the cell may be configured of DL resources alone or a combination of DL resources and UL resources.
  • the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information.
  • system information can be.
  • a combination of a DL resource and a UL resource may be indicated by a system information block type 2 (SIB2) linkage.
  • SIB2 system information block type 2
  • the SIB2 linkage uses a different frequency from that of the DL CC to which the UE is connected. It is indicated as the frequency of.
  • the DL CC constituting one cell and the UL CC linked with the DL CC operate at different frequencies.
  • the SIB2 linkage uses the same frequency as that of the DL CC to which the UE is connected.
  • the carrier frequency means a center frequency of each cell or CC.
  • a cell operating on a primary frequency is referred to as a primary cell (PCell) or a PCC
  • a cell operating on a secondary frequency is referred to as a secondary cell (SCell).
  • SCC secondary cell
  • PCell refers to a cell used by a UE to perform an initial connection establishment process or to initiate a connection reestablishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the PCell may refer to a DL CC which is initially synchronized with a UE by receiving a DL synchronization signal (SS) and an UL CC linked to the DL CC.
  • DL PCC downlink primary CC
  • DL PCC downlink main CC
  • SCell refers to a cell that can be configured after RRC (Radio Resource Control) connection establishment and can be used to provide additional radio resources.
  • RRC Radio Resource Control
  • the SCell may form a set of serving cells for the UE with the PCell.
  • the serving cell may be called a serving CC.
  • the carrier corresponding to the SCell in downlink is called DL Supplementary CC (DL SCC), and the carrier corresponding to the SCell in uplink is called UL Supplementary CC (UL SCC).
  • DL SCC DL Supplementary CC
  • UL SCC UL Supplementary CC
  • one or more serving cells may exist, and the entire serving cell may include one PCell and one or more SCells.
  • the network may configure a UE in which carrier aggregation is supported by adding one or more SCells to an initially configured PCell during a connection establishment process. However, even if the UE supports carrier aggregation, the network may configure only the PCell for the UE without adding the SCell.
  • the PDCCH carrying the UL / DL grant and the corresponding PUSCH / PDSCH are transmitted in the same cell.
  • the PDCCH for the DL grant for the PDSCH to be transmitted in a specific DL CC is transmitted in the specific CC
  • the PDCCH for the UL grant for the PUSCH to be transmitted in the specific UL CC is specified in the specific CC. It is transmitted on the DL CC linked with the UL CC.
  • UL / DL grant can be allowed to be transmitted in a serving cell having a good channel condition.
  • this is called cross-carrier scheduling.
  • aggregation of a plurality of CCs and a cross-carrier scheduling operation based on the same may be supported for data rate improvement and stable control signaling.
  • the PCell may carry scheduling information about itself and the SCell, and the SCell may carry scheduling information about itself and the other SCell. However, SCell is not allowed to carry the scheduling information for the PCell.
  • the term cell used in carrier aggregation is distinguished from a term cell which refers to a certain geographic area where communication service is provided by one BS or one antenna group.
  • the downlink signal of a specific cell which refers to the coverage of a communication service, means a signal transmitted by a BS or an antenna group of the specific cell to a UE, and is an uplink of the specific cell.
  • the signal means a signal transmitted by the UE to the BS or the antenna group of the specific cell.
  • a downlink / uplink signal of a cell of a carrier aggregation refers to a radio signal transmitted / received using resources constituting the cell.
  • a cell of a carrier aggregation is hereinafter referred to as a CC, and a cell of a geographic area is called a cell.
  • a CC a cell of a carrier aggregation
  • a cell of a geographic area is called a cell.
  • the UE may use UCI bundling, channel selection to select any of a plurality of PUCCH resources, dual Reed-Muller code, block-spreading Can be transmitted to the BS at a time. For example, when the UE wants to transmit ACK / NACK information for a plurality of PDSCHs received from a BS through a plurality of DL CCs, the amount of ACK / NACK information for a plurality of PDSCHs is equal to PUCCH format 1a.
  • the UE Since there are too many to transmit using / 1b, the UE sends a plurality of ACK / NACK transmission bits to a channel code (e.g., a Reed-Muller code, a tail-biting convolutional code). tail-biting convolution code (TBCC), turbo code, etc.) and then to the BS using PUCCH format 2 or to the BS using block-spreading based PUCCH format 3 have.
  • a channel code e.g., a Reed-Muller code, a tail-biting convolutional code
  • tail-biting convolution code (TBCC), turbo code, etc.) then to the BS using PUCCH format 2 or to the BS using block-spreading based PUCCH format 3 have.
  • the block-spreading technique modulates control information / signals (eg, ACK / NACK, etc.) using the SC-FDMA scheme, unlike the PUCCH format 1 series or the PUCCH format 2 series.
  • FIG. 9 illustrates a PUCCH format based on block-spreading.
  • the block-spreading technique transmits a symbol sequence by time-domain spreading by an orthogonal cover code (OCC) (also called an orthogonal sequence).
  • OCC orthogonal cover code
  • control signals of several UEs may be multiplexed on the same RB and transmitted to the BS by the OCC.
  • PUCCH format 2 one symbol sequence is transmitted over a time-domain, but UCIs of UEs are multiplexed using a cyclic shift (CCS) of a CAZAC sequence and transmitted to a BS.
  • CCS cyclic shift
  • one symbol sequence is transmitted across a frequency-domain, where UCIs of UEs use OCC based time-domain spreading of UEs. UCIs are multiplexed and sent to the BS.
  • the RS symbol may be generated from a CAZAC sequence having a specific cyclic shift, and may be transmitted from the UE to the BS in a specific OCC applied / multiplied to a plurality of RS symbols in the time domain.
  • the DFT may be applied before the OCC, and a Fast Fourier Transform (FFT) may be applied instead of the DFT.
  • FFT Fast Fourier Transform
  • bit blocks b (0), ..., (M bit -1) are scrambled by the UE-specific scrambling sequence.
  • Bit blocks b (0), ..., (M bit- 1) is a UCI containing at least one of the ACK / NACK bits, CSI bits, SR bits, Reed-Muller (RM) code, TBCC, It may correspond to a value encoded by a turbo code.
  • Scrambled bit block Can be generated by the following equation.
  • c (i) represents a scrambling sequence
  • c (i) may be generated according to the following equation using a pseudo-random sequence defined by a length-31 gold sequence.
  • the second m-sequence is given by the value depending on the application of the sequence:
  • the scrambling sequence generator for generating the scrambling sequence c (i) may be initialized at the beginning of every subframe according to the following equation.
  • n s is a slot number in a radio frame
  • N Cell ID is a physical layer cell identifier
  • n RNTI represents a cell RNTI (C-RNTI).
  • the complex modulation symbols d (0), ..., d (M sym -1) are orthogonal sequences And Is spread in block-wise using N PUCCH SF, 0 + N PUCCH SF, and one set of complex-valued symbols is generated according to the following equation.
  • Each complex symbol set corresponds to one SC-FDM symbol and has N RB sc (eg, 12) complex modulation values.
  • N PUCCH SF, 0 and N PUCCH SF, 1 correspond to the number of SC-FDM symbols used for PUCCH transmission in slot 0 and slot 1, respectively.
  • Resources for transmission of PUCCH format 3 may be identified by resource index n (3, p) PUCCH .
  • n p oc, 0 and n p oc, 1 can be given according to the following equation.
  • Each complex symbol set is cyclically shifted according to the following equation.
  • n cell cs (n s , l) is a cell-specific cyclic shift, and is changed according to the following equation by SC-FDM symbol number l in one slot and slot number n s in a radio frame.
  • the pseudo-random sequence c (i) may be defined by Equation 2.
  • the transitioned sets of complex symbols are transform precoded as follows. As a result, blocks z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) of complex symbols are generated.
  • P represents the number of antenna ports used for PUCCH transmission.
  • the complex symbols z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) are mapped to the physical resource after power control.
  • PUCCH uses one resource block in each slot in a subframe.
  • Z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) in the corresponding resource block is not used for RS transmission (k, l M), starting with the first slot of the subframe, followed by increasing k, then increasing l, and then increasing slot number.
  • the resource for PUCCH format 3 for antenna port p is identified by resource index n (3, p) PUCCH .
  • Resource allocation in PUCCH format 3 is basically based on explicit resource allocation. That is, a UE in which PUCCH format 3 is configured may explicitly receive an orthogonal resource for PUCCH format 3 from the BS. Meanwhile, the resource for PUCCH format 3 may be determined in conjunction with an ACK (ACK / NACK Resource Indicator) in the PDCCH for the PDSCH transmitted through the SCC.
  • ACK ACK / NACK Resource Indicator
  • An ARI means an offset based on a PUCCH resource index explicitly signaled from a BS to a UE, or a resource to be used for actual PUCCH transmission among PUCCH resources in a PUCCH resource set explicitly signaled from a BS to a UE. Can be used as an indication.
  • the transmit power control (TPC) field in the DCI transmitted from the BS to the UE through the PDCCH of the SCC may be reused as an ARI, and the TPC field in the DCI transmitted from the BS to the UE via the PDCCH of the PCC is originally used. Can be used for PUCCH power control.
  • the UE and BS may operate in a fall-back mode in which ACK / NACK is transmitted / received using PUCCH resources of existing PUCCH formats 1a / 1b.
  • the UCI payload transmitted by PUCCH format 3 may be channel encoded by a (32, O) RM code.
  • O represents the number of input bits and 32 represents the number of output bits.
  • up to 11 RM encoding using a (32, O) block code can encode up to 11.
  • dual RM encoding is applied to PUCCH format 3. That is, the following channel coding may be applied to the PUCCH format 3.
  • UCI payload size 11 bits: Dual RM encoding using (32, O) block code
  • the UCI bit sequence a_0, a_1, a_2, ..., a_ (N PUCCHformat3) for N PUCCHformat3 A / N ⁇ 11 A / N -1) is encoded according to the following equation.
  • the base sequences M i, n may be defined, for example, as follows.
  • the output bit sequence b 0 , b 1 , b 2 , ..., b B-1 can be obtained by the circular repetition of the sequence encoded by equation (11). Same as
  • FIG. 10 is a block diagram illustrating dual Reed-Muller (RM) encoding
  • FIG. 11 is a diagram illustrating a bit sequence of uplink control information to which dual RM encoding is applied.
  • FIGS. 10 and 11 illustrate channel encoding of UCI having a payload size greater than 11.
  • ACK / NACK bits to be transmitted at one time are ordered according to a specific rule, and thus an ACK / NACK bit sequence o ACK _0, o ACK _1, ..., o ACK _ (N PUCCHformat3 A / N- 1 may be generated (S1110).
  • ACK / NACK bit sequence of N PUCCHformat3 A / N bits o ACK _0, o ACK _1, ..., o ACK _ (N PUCCHformat3 A / N- 1) is the input bit sequence a_0, a_1, to the dual RM encoder. It may correspond to..., a_ (N PUCCHformat3 A / N ⁇ 1) (S1110).
  • the input bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N- 1) is divided into two segments for dual RM encoding (S1120).
  • bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N -1) has two RM coding segments [a_0, a_2, ..., a_ (ceil (N PUCCHformat3 A / N / 2)). -1)] (hereafter Segment 1) and [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N -1)] (hereinafter referred to as segment 2).
  • RM encoding is applied to segments 1 and 2, respectively (S1130).
  • (32, O) channel coding is applied for each segment, 32 bits of encoded bits are generated for each segment, resulting in a total of 64 bits of encoded bits for two segments.
  • the subcarriers before the two RB precodings eg, DFT
  • the number of subcarriers is 24.
  • QPSK quadrature phase shift keying
  • the UCI bit sequence [a_0, a_1, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] is a UCI bit sequence [a_ceil (N PUCCHformat3 A / N ) according to Equation 13. / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N- 1)] may be channel coded according to Equation 14, respectively.
  • the encoded 24 bits of each segment thus generated are modulated by QPSK and interleaved in a virtual subcarrier domain (DFT front end) for mapping to virtual subcarriers (S1140).
  • the output bits of Equation 13 and the output bits of Equation 14 may be interleaved by alternately connecting on the basis of the QPSK constellation, that is, in units of two bits.
  • the output bit sequence may be QPSK modulated and mapped to subcarriers (ie, virtual subcarriers) preceding the DFT.
  • subcarriers ie, virtual subcarriers
  • QPSK symbols of segment 1 may be mapped to even-numbered subcarriers
  • QPSK symbols of segment 2 may be mapped to odd-numbered subcarriers.
  • the QPSK symbols of segment 1 may be mapped to odd-numbered subcarriers
  • the QPSK symbols of segment 2 may be mapped to even-numbered subcarriers.
  • the subcarriers to which the interleaved QPSK symbols are mapped are DFT precoded and mapped to a PRB, and are converted into a radio signal by an inverse fast fourier transform (IFFT) and transmitted from a transmitting device to a receiving device.
  • IFFT inverse fast fourier transform
  • a transmission diversity scheme may be applied to the PUCCH format 3.
  • Spatial orthogonal resource transmit diversity (SORTD) scheme may be considered as a transmit diversity scheme that may be applied to PUCCH format 3.
  • SORTD refers to a transmission scheme for transmitting the same information using a plurality of physical resources (code and / or time / frequency region, etc.). Unlike the 3GPP LTE system, in which the UE supports only one transmit antenna port, in the 3GPP LTE-A system, the UE can also support more than one transmit antenna port. Accordingly, in the 3GPP LTE-A system, SORTD may support a plurality of transmit antenna ports for PUCCH transmission. When SORTD is transmitted for PUCCH transmission, twice as much PUCCH resources are used for PUCCH transmission as compared to PUCCH transmission by a single antenna port.
  • ACK / NACK information b0, b1, b2, b3 when ACK / NACK information b0, b1, b2, b3 is transmitted without SORTD, the ACK / NACK information b0, b1, b2, b3 is divided into four PUCCH resources n0, n1, n2, n3) is transmitted through a single antenna port using either.
  • ACK / NACK information b0, b1, b2, b3 is transmitted to SORTD
  • the ACK / NACK information b0, b1, b2, b3 is divided into four PUCCH resources n0, n1, n2, n3.
  • the present invention proposes to apply a frequency switched transmit diversity (FSTD) scheme to a PUCCH format 3 as a transmit diversity scheme.
  • FSTD frequency switched transmit diversity
  • FIG. 12 shows an example of mapping a modulation symbol to a frequency domain by using a frequency switched transmit diversity (FSTD) technique.
  • FSTD frequency switched transmit diversity
  • the FSTD scheme alternately distributes bits or modulation symbols encoded by channel encoding to a plurality of antenna ports, and transmits modulation symbols per antenna port on resources orthogonal in the frequency domain.
  • encoded bits or modulation symbols by channel coding are alternately distributed for each antenna port, and the distributed bits or modulation symbols are transmitted orthogonally in the frequency domain through the corresponding antenna port, so that the channel coding gain is reduced.
  • modulation symbols obtained by QPSK modulation of the above-described output bit sequence by dual RM encoding are sequentially distributed to a plurality of antenna ports, and modulation symbols for each antenna port are mapped to the frequency domain by DFT precoding.
  • the QPSK modulated symbol sequence corresponding to the 48-bit output bit sequence [b 0 , b 1 , b 2 , b 3 , ..., b 47 ] is replaced by [y (0), y (1), y (2) , y (3), ..., y (23)], the QPSK modulated symbols (hereinafter referred to as QPSK symbols) are mapped to the frequency domain for each of the two antenna ports through six units of DFT precoding.
  • QPSK symbols are mapped to the frequency domain for each of the two antenna ports through six units of DFT precoding.
  • Each of Z (0) , Z (1) , Z (2) and Z (3) may be DFT precoded by a six-point DFT precoder, mapped to two antenna ports, and transmitted through the corresponding antenna port .
  • Z (0) , Z (1) , Z (2) and Z (3) may be mapped and transmitted to antenna port 0 and antenna port 1, for example, as follows.
  • even complex symbols are mapped to antenna port 0
  • odd complex symbols are mapped to antenna port 1
  • even complex symbols and odd multiple symbols are mapped to different subcarriers.
  • modulation symbols mapped to even subcarriers ie, even subcarriers
  • modulation symbols mapped to odd subcarriers ie, odd subcarriers
  • FIG. 13 shows an example of transmission of PUCCH format 3 to which FSTD is applied.
  • the output bits b (0), b (1), ..., b (B-1) by dual RM encoding are divided into two slots of one subframe through scrambling and modulation, and described above in the divided bit sequence.
  • One spreading is applied to obtain blocks y (0), ..., y (M symb- 1) of complex symbols.
  • the output bit sequence [b 0 , b 1 , b 2 , b 3 , ..., b 47 ] of FIG. 11 corresponds to b (0), b (1), ..., b (B-1). Can be.
  • Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
  • the complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
  • the odd modulation symbol is mapped to antenna port 1.
  • DFT is applied to demodulated symbols of each antenna port to output complex symbols, and complex symbols of each antenna port are mapped to even subcarriers or odd subcarriers.
  • IFFT is applied to the subcarriers of each antenna port to generate a complex-valued time-domain SC-FDM symbol for each antenna port.
  • Each SC-FDM symbol is transmitted through the corresponding antenna port.
  • FIG. 14 illustrates transmission of uplink control information to which a simple combination of dual RM encoding and FSTD scheme is applied.
  • channel-coded ACK / NACK information may be evenly distributed to antenna ports.
  • dual RM encoding is applied to ACK / NACK information of 12 bits or more, if the above-described FSTD technique is simply extended, an output bit sequence of dual RM encoding is mapped to subcarriers by 2 bits and the subcarrier is used. Are distributed to antenna port 0 and antenna port 1 in turn by some subcarriers. In other words, the output bit sequence of dual RM encoding is alternately distributed to antenna port 0 and antenna port 1 by 2 bits.
  • the entire encoded bit sequence obtained by RM encoding from ACK / NACK segment 1 is transmitted through antenna port 0 and the entire encoded bit sequence obtained by RM encoding from ACK / NACK segment 2 by another RM encoding is the antenna. Transmitted through port 1.
  • One modulation symbol is mapped to an odd subcarrier assigned to antenna port 1 and transmitted through the antenna port 1.
  • segment 1 is transmitted through antenna port 0 and segment 2 is transmitted through antenna port 1.
  • simply applying the dual RM encoding and the FSTD technique to UCI eliminates the effect that the bit sequences encoded by the dual RM encoding are permuted in the antenna domain, so that the transmission diversity gain by the FSTD technique is not obtained. can not do it.
  • each of the RM coding segments is evenly spread in the antenna domain.
  • the even distribution of the RM coding segments into the antenna domain can be achieved by arranging the ACK / NACK bits (S1110 in FIG. 11) (O ACK _i), the previous step (a_i) in channel coding (S1130 in FIG. 11), and channel coding (FIG. 11).
  • embodiments of the present invention will be described based on the pre-DFT precoding step (y (p) n (i)), but using an equivalent representation (e.g., mapping relationship from O ACK _i to a_i). In other steps, even distribution of the RM coding segments to the antenna domain may be implemented.
  • embodiments of the present invention will be described with reference to FIGS. 15, 16, and 17. Since the steps up to the pre-DFT precoding in FIG. 15, 16, and 17 are the same as the steps up to the pre-DFT precoding in FIG. 10 described above, they will not be described again.
  • FIG. 15 illustrates an embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • This embodiment does not alternately distribute the output bit sequence of the dual RM encoding by 2 bits or one modulation symbol to the antenna ports, but by successive 2 * m (where m is a positive integer greater than 1) bits. Or it is distributed to the antenna ports in a unit of a plurality of consecutive modulation symbols. For example, referring to FIG. 15, six QPSK symbols corresponding to an output bit sequence of dual RM encoding are distributed to antenna port 0 and antenna port 1. The six QPSK symbols are transmitted through the corresponding antenna port of antenna port 0 and antenna port 1 in one of slot 0 and slot 1 via a six-point DFT, respectively.
  • the output bit sequence of the dual RM encoding distributes the modulated modulation symbols to the antenna ports in units of a plurality of consecutive modulation symbols.
  • the output bit sequence may be alternately distributed to the antenna ports in units of a plurality of consecutive modulation symbols.
  • FIG. 15 may be described as follows.
  • Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
  • the complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
  • 16 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • FIG. 16 may be viewed as an aspect of the embodiment of FIG. 15.
  • demodulation symbols corresponding to an output bit sequence of dual RM encoding are alternately distributed to two antenna demodulation symbols in succession.
  • the output bit sequence of the dual RM encoding distributes the modulated modulation symbols to the antenna ports in units of a plurality of consecutive modulation symbols.
  • 24 QPSK symbols based on an output bit sequence of dual RM encoding are distributed to antenna port 0 and antenna port 1 in units of two consecutive QPSK symbols. Twelve consecutive QPSK symbols of the 24 QPSK symbols are transmitted in slot 0, and the remaining 12 consecutive QPSK symbols are transmitted in slot 1, and 12 QPSK symbols transmitted in one of slot 0 and slot 1 are 2 Are alternately mapped to antenna port 0 and antenna port 1. Accordingly, six QPSK symbols are mapped to one antenna port in one slot, and the six QPSK symbols are transmitted through the corresponding antenna port in the corresponding slot via a six-point DFT.
  • FIG. 16 may be described as follows.
  • Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
  • the complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
  • FIG. 17 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
  • the embodiment of FIG. 17 may be viewed as an embodiment generalizing the embodiment of FIG. 15 and the embodiment of FIG. 16.
  • the mapper distributes an output bit sequence by channel coding to each antenna port.
  • the mapper of FIG. 17 maps an output bit sequence to a plurality of antenna ports by a plurality of consecutive bits or by a plurality of consecutive modulation symbols according to a randomly formed pattern or a specific pattern to optimize UCI transmission performance.
  • the specific pattern may be a pattern defined to alternately map the output bit sequence by a plurality of consecutive bits or by a plurality of consecutive modulation symbols to the plurality of antenna ports.
  • mod denotes a modulo operation
  • (A) mod (B) denotes the remainder of A to B
  • embodiments of the present invention have been described as UCI bits mapped to antenna port 0 mapped to even subcarriers and UCI bits mapped to antenna port 1 mapped to odd subcarriers.
  • this is merely an example, and the present invention may be implemented as long as UCI bits or UCI modulation / complex symbols transmitted through a plurality of antenna ports are transmitted through orthogonal frequency resources.
  • a frequency resource mapped to an antenna port used for UCI transmission may be orthogonal to a resource allocated to another antenna port used for UCI transmission.
  • FIG. 18 is a block diagram showing components of a transmitter 10 and a receiver 20 for carrying out the present invention.
  • the transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system.
  • the device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components.
  • a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
  • the memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information.
  • the memories 12 and 22 may be utilized as buffers.
  • the processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention.
  • the processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like.
  • the processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof.
  • application specific integrated circuits ASICs
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the firmware or software when implementing the present invention using firmware or software, may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention.
  • the firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
  • the processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation.
  • the coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer.
  • One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers.
  • the RF unit 13 may include an oscillator for frequency upconversion.
  • the RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10.
  • the RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. .
  • the RF unit 23 may include an oscillator for frequency downconversion.
  • the processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
  • the RF units 13, 23 have one or more antennas.
  • the antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23).
  • Antennas are also called antenna ports.
  • Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements.
  • the signal transmitted from each antenna can no longer be decomposed by the receiver 20.
  • a reference signal (RS) transmitted corresponding to the corresponding antenna defines an antenna viewed from the perspective of the receiving apparatus 20, and includes a channel or whether the channel is a single radio channel from one physical antenna.
  • RS reference signal
  • the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered.
  • the antenna In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
  • MIMO multi-input multi-output
  • the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink.
  • the BS operates as the receiving device 20 in the uplink and the transmitting device 10 in the downlink.
  • the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the BS will be referred to as a BS processor, a BS RF unit and a BS memory, respectively.
  • the BS processor controls the BS RF unit to transmit the PDCCH and / or PDSCH
  • the UE processor controls the UE RF unit to receive the PDCCH and / or PDSCH.
  • the UE processor controls the BS RF unit to transmit the PUCCH and the PUSCH
  • the BS processor controls the BS RF unit to receive the PUCCH and the PUSCH.
  • the UE processor of the present invention channel-codes the bit sequence corresponding to the UCI to generate an output bit sequence. For example, if the payload size of the UCI is larger than a specific size (eg, 11), the UE processor may perform bit sequence a_0, a_1, corresponding to the UCI (eg, ACK / NACK, SR, RI, etc.). ..., a_ (N PUCCHformat3 A / N- 1) is divided into two segments. Referring to FIG.
  • the UE processor inputs an input bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N- 1) corresponding to a UCI to be transmitted at one time, using two RM encoding segments [a_0, a_2, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] (hereafter segment 1) and [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) ) +1), ..., a_ (N PUCCHformat3 A / N- 1)] (hereinafter referred to as segment 2), and RM coding may be applied to segments 1 and 2, respectively.
  • the UE processor is a UCI bit sequence [a_0, a_1, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] is a UCI bit sequence [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N- 1)] may be channel coded according to Equation 14, respectively. have.
  • the UE processor may modulate the output bit sequence to generate modulation symbols and map the modulation symbols to a plurality of antenna ports by a predetermined number of consecutive modulation symbols. Since each of the antenna ports is associated with one transform precoder, the UE processor distributes the modulation symbols to the plurality of transform precoders by a predetermined number of consecutive modulation symbols, thereby distributing the modulation symbols to a predetermined number of consecutive. Each modulation symbol may be mapped to the plurality of antenna ports.
  • the UE processor may apply complex precoding to modulation symbols mapped to each antenna port, output complex symbols, and map the complex symbols to time-frequency resources.
  • the UE processor may be configured to map complex symbols mapped to different antenna ports to orthogonal frequency resources in the frequency domain. That is, the UE processor may be configured to allocate frequency resources orthogonal to each other to antenna ports participating in the transmission of UCI. For example, the UE processor may be configured to map frequency resources orthogonal to each other on a collection of complex symbols mapped to antenna port 0 and a collection of complex symbols mapped to antenna port 1.
  • the UE processor generates a complex time-domain SC-FDM signal by applying IFFT to complex symbols per antenna port, and transmits the SC-FDM signal on a corresponding antenna port through a corresponding frequency resource within a corresponding time resource.
  • the RF unit can be controlled.
  • the processor 11 in the transmitter 100 includes a channel encoder (not shown), a scrambler 301 and a modulation mapper 302, a layer mapper 303, a precoder 304, and a resource element mapper. 305, an OFDM signal generator 306.
  • the transmitter 10 may include one or more channel encoders (not shown) for channel encoding the UCI.
  • the channel encoder may output an encoded bit sequence by applying a (30, O) RM code to the UCI.
  • the transmitter 10 may include a plurality of channel encoders for channel encoding of each of a plurality of segments obtained by splitting UCI.
  • the transmitter 10 may transmit one or more codewords. Coded bits in each codeword are scrambled by the scrambler 301 and transmitted on a physical channel. Codewords are also referred to as data streams and are equivalent to data blocks provided by the MAC layer. The data block provided by the MAC layer may also be referred to as a transport block.
  • the scrambled bits are modulated into complex-valued modulation symbols by the modulation mapper 302.
  • the modulation mapper 302 may modulate the scrambled bits according to a predetermined modulation scheme and place them as complex modulation symbols representing positions on a signal constellation. There is no restriction on a modulation scheme, and m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM) may be used to modulate the encoded data.
  • m-PSK m-Phase Shift Keying
  • m-QAM m-Quadrature Amplitude Modulation
  • the complex modulation symbol is mapped to one or more transport layers by the layer mapper 303.
  • the layer mapper 303 may correspond to a divider for dividing the complex modulation symbols into a plurality of antenna ports according to an embodiment of the present invention.
  • SC-FDM access SC-FDMA
  • SC-FDMA SC-FDM access
  • the processor 11 of the transmitter 10 may include a conversion precoder.
  • a Discrete Fourier Transform (DFT) module 307 (or a Fast Fourier Transform (FFT) module) may be used as the transform precoder.
  • the transform precoder generates complex symbols by performing a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT) (hereinafter referred to as DFT / FFT) on the complex modulation symbols divided for mapping to each antenna port.
  • DFT Discrete Fourier Transform
  • FFT Fast Fourier Transform
  • the complex symbols are precoded by the precoder 304 for transmission on the antenna port.
  • the precoder 304 processes the complex symbols in a MIMO scheme according to a multiple transmit antenna to output antenna specific symbols and distributes the antenna specific symbols to the corresponding resource element mapper 305. That is, mapping of the transport layer to the antenna port is performed by the precoder 304.
  • the precoder 304 may be output to the matrix z of the layer mapper 303, an output x N t ⁇ M t precoding matrix W is multiplied with N t ⁇ M F of the.
  • the precoder 304 may distribute complex symbols input from one transform precoder to one resource element mapper associated with one antenna port. That is, the precoder 304 of the present invention may be configured to map all the complex symbols input from one transform precoder to the same antenna port.
  • the resource element mapper 305 maps / assigns the complex modulation symbol for each antenna port to the appropriate resource elements.
  • the resource element mapper 305 may assign a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user.
  • the resource element mapper 305 may be configured to map different orthogonal frequency resources to complex symbol sequences from different transform precoders.
  • An OFDM signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by an OFDM or SC-FDM scheme, to perform a complex-valued time domain (OFDM) orthogonal frequency division multiplexing (OFDM).
  • a symbol signal or a complex time domain SC-FDM (Single Carrier Frequency Division Multiplexing) symbol signal is generated.
  • the OFDM signal generator 306 may perform an inverse fast fourier transform (IFFT) on an antenna specific symbol, and a cyclic prefix (CP) may be inserted into a time domain symbol on which the IFFT is performed.
  • the OFDM symbol is transmitted to the receiving apparatus through each transmit antenna through digital-to-analog conversion, frequency upconversion, and the like.
  • the OFDM signal generator 306 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency up-converter, and the like.
  • the signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10.
  • the processor 21 of the receiving device 20 performs decoding and demodulation on the radio signal received through the RF unit 23 from the outside.
  • the RF unit 23 may include N r multiple receive antennas, and each of the signals received through the receive antennas are restored to a baseband signal, and then transmitted by the transmitter 10 through multiplexing and MIMO demodulation.
  • the data string is restored to the intended data sequence.
  • the processor 21 may include a signal restorer for restoring a received signal to a baseband signal, a multiplexer for combining and multiplexing the received processed signal, and a channel demodulator for demodulating the multiplexed signal sequence with a corresponding codeword. .
  • the signal restorer, the multiplexer, and the channel demodulator may be composed of one integrated module or each independent module for performing their functions. More specifically, the signal restorer is an analog-to-digital converter (ADC) for converting an analog signal into a digital signal, a CP remover for removing a CP from the digital signal, and a fast fourier transform (FFT) to the signal from which the CP is removed.
  • FFT module for outputting a frequency domain symbol by applying a, and may include a resource element demapper (equalizer) to restore the frequency domain symbol to an antenna-specific symbol (equalizer).
  • the antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by the transmission apparatus 10 by a channel demodulator.
  • the processor 21 when the receiver 20 receives a signal transmitted by the SC-FDMA method, the processor 21 further includes an Inverse Discrete Fourier Transform (IDFT) module (or IFFT module). Include.
  • IDFT Inverse Discrete Fourier Transform
  • the IDFT / IFFT module performs IDFT / IFFT on the antenna specific symbol recovered by the resource element demapper and outputs the IDFT / IFFT symbol to the multiplexer.
  • the scrambler 301, the modulation mapper 302, the layer mapper 303, the transform precoder 307, the precoder 304, the resource element mapper 305, and the OFDM signal generator 306 are provided.
  • the RF unit 13 of the transmitter 10 includes these components.
  • the signal restorer, the multiplexer, the channel demodulator, etc. are described as being included in the processor 21 of the receiver 20, but these components are included in the RF unit 23 of the receiver 20. It is also possible.
  • orthogonal frequency resources are mapped to complex symbols assigned to different antenna ports.
  • QPSK symbols from segment 1 and QPSK symbols from segment 2 are evenly distributed to each antenna port. Since antenna ports use frequency resources that are orthogonal to each other, according to the present invention, transmit diversity gain can be obtained by applying FSTD to dual RM encoded UCI.
  • FIG. 20 shows an experimental example of ACK / NACK transmission performance according to the present invention.
  • FIG. 20 illustrates a simulation result of ACK / NACK transmission according to a simple combination of dual RM encoding and FSTD (hereinafter referred to as FSTD1) and an FSTD (hereinafter referred to as FSTD2) according to the present invention.
  • FSTD1 dual RM encoding and FSTD
  • FSTD2 an FSTD
  • a probability ie, DTX to ACK error rate in which DTX (Discontinuous Transmission) is determined as ACK is defined as follows.
  • Detector type A also called joint ML (Maximum Likelihood) detector using RS and data
  • signals from RS and data are coherently accumulated.
  • the signals for each slot and transmit / secure antenna port accumulate non-coherently.
  • ML detection is performed by:
  • N RX , N slot and N TX represent the number of receive antenna ports, the number of slots in a subframe, and the number of transmit antenna ports, respectively.
  • h c n_tx h n_tx, RS + h c n_tx, Data .
  • h n_tx, RS denotes a channel estimated for antenna port n_tx on an RS symbol
  • h c n_tx, Data denotes a channel estimated for antenna port n_tx by a codeword c on a data symbol.
  • Normal ML detection is applied at the data symbols after channel estimation for the RS symbols. For each slot and transmission (Tx) / reception (Rx) antenna port, the detector coherently accumulates each codeword output.
  • Table 6 lists the remaining parameters used in the simulation.
  • SNR Signal to Noise Ratio
  • the FSTD i.e., FSTD2
  • the FSTD has better transmission performance than 1Tx when the number of ACK / NACK bits is 11 bits or less, and has similar performance to that of FSTD1. It can be seen that it has excellent performance.
  • Embodiments of the present invention may be used in a base station, relay or user equipment, and other equipment in a wireless communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

According to the present invention, a predetermined number of consecutive modulation symbols of a modulation symbol sequence corresponding to uplink control information are mapped to antenna ports, and frequency resources which are orthogonal to each other are mapped to antenna ports which are different from each other. According to the present invention, transmission diversity gains may be obtained during a transmission of a large amount of uplink control information.

Description

상향링크 제어정보 전송방법 및 사용자기기Uplink control information transmission method and user equipment
본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 상향링크 제어정보를 전송/수신하는 방법 및 장치에 관한 것이다.The present invention relates to a wireless communication system. Specifically, the present invention relates to a method and apparatus for transmitting / receiving uplink control information.
기기간(machine-to-machine, M2M) 통신, 기계 타입 통신(machine type communication, MTC), 높은 데이터 전송량을 요구하는 스마트폰, 태블릿 PC 등의 다양한 장치 및 기술이 출현 및 보급되고 있다. 이에 따라, 셀룰러 망에서 처리될 것이 요구되는 데이터 양이 매우 빠르게 증가하고 있다. 이와 같이 빠르게 증가하는 데이터 처리 요구량을 만족시키기 위해, 더 많은 주파수 대역을 효율적으로 사용하기 위한 반송파 집성(carrier aggregation, CA) 기술, 인지무선(cognitive radio) 기술 등과, 한정된 주파수 내에서 전송되는 데이터 용량을 높이기 위한 다중 안테나 기술, 다중 기지국 협력 기술 등이 발전하고 있다. 또한, 사용자기기가 주변에서 엑세스할 수 있는 노드의 밀도가 높아지는 방향으로 통신 환경이 진화하고 있다. 노드라 함은 하나 이상의 안테나를 구비하여 사용자기기와 무선 신호를 전송/수신할 수 있는 고정된 지점(point)을 말한다. 높은 밀도의 노드를 구비한 통신 시스템은 노드들 간의 협력에 의해 더 높은 성능의 통신 서비스를 사용자기기에게 제공할 수 있다. Various devices and technologies, such as machine-to-machine (M2M) communication, machine type communication (MTC), and smart phones and tablet PCs that require high data transfer rates, are emerging and spread. As a result, the amount of data required to be processed in a cellular network is growing very quickly. To meet this rapidly growing data processing demand, carrier aggregation (CA) technology, cognitive radio technology, etc., to efficiently use more frequency bands, and data capacity transmitted within a limited frequency Multiple antenna technology, multi base station cooperation technology, etc. to improve the performance is being developed. In addition, the communication environment is evolving in the direction of increasing the density of nodes that can be accessed by the user equipment in the vicinity. A node is a fixed point capable of transmitting / receiving a radio signal with a user device having one or more antennas. A communication system having a high density of nodes can provide higher performance communication services to user equipment by cooperation between nodes.
새로운 무선 통신 기술의 도입에 따라, 기지국이 소정 자원영역에서 서비스를 제공해야 하는 사용자기기들의 개수가 증가할 뿐만 아니라, 상기 기지국이 서비스를 제공하는 사용자기기들로부터 수신해야 하는 상향링크 데이터와 상향링크 제어정보의 양이 증가하고 있다. 기지국과 사용자기기(들)과의 통신에 이용가능한 무선 자원의 양은 유한하므로, 유한한 무선 자원을 이용하여 상/하향링크 신호를 효율적으로 전송/수신하기 위한 새로운 방안이 요구된다.With the introduction of a new wireless communication technology, not only the number of user equipments for which a base station should provide a service in a predetermined resource area increases, but also the uplink data and uplink data that the base station should receive from user equipments for providing a service. The amount of control information is increasing. Since the amount of radio resources available for communication between the base station and the user equipment (s) is finite, a new method for efficiently transmitting / receiving uplink / downlink signals using finite radio resources is required.
사용자기기와 기지국 간의 효율적인 통신을 위한 상향링크 제어 신호의 전송/수신 방법 및 장치를 제공한다.Provided are a method and apparatus for transmitting / receiving an uplink control signal for efficient communication between a user equipment and a base station.
본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be achieved by the present invention are not limited to the above-mentioned technical problems, and other technical problems not mentioned above are apparent to those skilled in the art from the following detailed description. Can be understood.
본 발명의 일 양상으로, 사용자기기가 일정 크기 이상의 상향링크 제어정보를 기지국에 전송함에 있어서, 상기 상향링크 제어정보에 대응하는 입력 비트 시퀀스에 채널 부호화하여 출력 비트 시퀀스를 생성; 및 상기 출력 비트 시퀀스를 변조하여 복수의 변조 심볼들을 생성; 상기 복수의 변조 심볼들을 제1안테나 포트와 제2안테나 포트에 맵핑; 상기 제1안테나 포트에 맵핑된 변조 심볼들(이하, 제1변조 심볼들) 및 상기 제2안테나 포트에 맵핑된 변조 심볼들(이하, 제2변조 심볼들)에 제1주파수 자원 및 제2주파수 자원을 각각 맵핑; 상기 제1변조 심볼들을 상기 제1안테나 포트 상에서 상기 제1주파수 자원을 통해, 상기 제2변조 심볼들을 상기 제2안테나 포트 상에서 상기 제2주파수 자원을 통해, 상기 기지국으로 전송하는 것을 포함하되, 상기 복수의 변조 심볼들은 소정 개수의 연속하는 변조 심볼들 단위로 상기 복수의 안테나 포트들에 맵핑되고, 상기 제1주파수 자원과 상기 제2주파수 자원은 직교하는, 상향링크 제어정보 전송방법이 제공된다.In one aspect of the present invention, when the user equipment transmits the uplink control information of a predetermined size or more to the base station, by generating the output bit sequence by channel coding the input bit sequence corresponding to the uplink control information; And modulating the output bit sequence to produce a plurality of modulation symbols; Mapping the plurality of modulation symbols to a first antenna port and a second antenna port; A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port. Mapping resources respectively; Transmitting the first modulated symbols to the base station through the first frequency resource on the first antenna port and the second modulated symbols to the base station through the second frequency resource on the second antenna port. A plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, and the first frequency resource and the second frequency resource are orthogonal to each other.
본 발명의 다른 양상으로, 사용자기기가 일정 크기 이상의 상향링크 제어정보를 기지국에 전송함에 있어서, 상기 상향링크 제어정보에 대응하는 비트 시퀀스에 채널 부호화하여 출력 비트 시퀀스를 생성하는 채널 부호기; 및 상기 출력 비트 시퀀스를 변조하여 복수의 변조 심볼들을 생성하는 변조 맵퍼; 상기 복수의 변조 심볼들을 제1안테나 포트와 제2안테나 포트에 맵핑하는 분주기; 상기 제1안테나 포트에 맵핑된 변조 심볼들(이하, 제1변조 심볼들) 및 상기 제2안테나 포트에 맵핑된 변조 심볼들(이하, 제2변조 심볼들)에 제1주파수 자원 및 제2주파수 자원을 각각 맵핑하는 자원 맵퍼; 상기 제1변조 심볼들을 상기 제1안테나 포트 상에서 상기 제1주파수 자원을 통해, 상기 제2변조 심볼들을 상기 제2안테나 포트 상에서 상기 제2주파수 자원을 통해, 상기 기지국으로 전송하는 전송기를 포함하되, 상기 복수의 변조 심볼들은 소정 개수의 연속하는 변조 심볼들 단위로 상기 복수의 안테나 포트들에 맵핑되고, 상기 제1주파수 자원과 상기 제2주파수 자원은 직교하는, 사용자기기가 제공된다.In another aspect of the present invention, in the user equipment transmits the uplink control information of a predetermined size or more to the base station, a channel encoder for generating an output bit sequence by channel coding the bit sequence corresponding to the uplink control information; And a modulation mapper for modulating the output bit sequence to produce a plurality of modulation symbols. A divider for mapping the plurality of modulation symbols to a first antenna port and a second antenna port; A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port. A resource mapper that maps resources respectively; A transmitter for transmitting the first modulated symbols to the base station through the first frequency resource on the first antenna port and the second modulated symbols to the base station through the second frequency resource on the second antenna port, The plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, and wherein the first frequency resource and the second frequency resource are orthogonal to each other.
본 발명의 각 양상에 있어서, 상기 출력 비트 시퀀스의 생성은, 상기 입력 비트 시퀀스를 제1비트 시퀀스와 제2비트 시퀀스로 분할; 및 상기 제1비트 시퀀스와 상기 제2비트 시퀀스를 각각 채널 부호화하여 부호화된 제1비트 시퀀스를 부호화된 제2비트 시퀀스를 출력; 상기 부호화된 제1비트 시퀀스와 상기 부호화된 제2비트 시퀀스를 교번 연결하는 것을 포함할 수 있다.In each aspect of the invention, generating the output bit sequence comprises: dividing the input bit sequence into a first bit sequence and a second bit sequence; And channel encoding the first bit sequence and the second bit sequence, respectively, and output a second bit sequence obtained by encoding an encoded first bit sequence. And alternately connecting the encoded first bit sequence and the encoded second bit sequence.
본 발명의 각 양상에 있어서, 듀얼 리드-뮬러(Reed-Muller, RM) 부호가 상기 채널 부호화에 이용될 수 있다.In each aspect of the invention, dual Reed-Muller (RM) codes may be used for the channel encoding.
상기 과제 해결방법들은 본 발명의 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.The problem solving methods are only a part of embodiments of the present invention, and various embodiments reflecting the technical features of the present invention are based on the detailed description of the present invention described below by those skilled in the art. Can be derived and understood.
본 발명에 의하면, 많은 양의 상향링크 제어 신호가 효율적으로 전송/수신될 수 있다.According to the present invention, a large amount of uplink control signal can be efficiently transmitted / received.
본 발명에 따른 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급되지 않은 또 다른 효과는 이하의 발명의 상세한 설명으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The effects according to the present invention are not limited to the above-mentioned effects, and other effects not mentioned above may be clearly understood by those skilled in the art from the detailed description of the present invention. There will be.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings, which are included as part of the detailed description in order to provide a thorough understanding of the present invention, provide an embodiment of the present invention and together with the description, illustrate the technical idea of the present invention.
도 1 무선 통신 시스템에서 사용되는 무선 프레임(radio frame) 구조의 일 예를 나타낸 것이다. 1 shows an example of a radio frame structure used in a wireless communication system.
도 2는 무선 통신 시스템에서 하향링크(downlink, DL)/상향링크(Uplink, UL) 슬롯(slot) 구조의 일례를 나타낸 것이다.2 illustrates an example of a downlink (DL) / uplink (UL) slot structure in a wireless communication system.
도 3은 3GPP(3rd Generation Partnership Project) LTE(Long Term Evoluntion)/LTE-A(Advanced) 시스템에서 사용되는 DL 서브프레임(subframe) 구조를 예시한 것이다.FIG. 3 illustrates a DL subframe structure used in a 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) / LTE-A (Advanced) system.
도 4는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.4 shows an example of an uplink subframe structure used in a 3GPP LTE / LTE-A system.
도 5부터 도 8은 PUCCH(Physical Uplink Control Channel) 포맷 1 계열 및 PUCCH 포맷 2 계열을 이용한 UCI 전송을 예시한 것이다. 5 to 8 illustrate UCI transmission using a physical uplink control channel (PUCCH) format 1 series and a PUCCH format 2 series.
도 9는 블록-확산을 기반으로 한 PUCCH 포맷을 예시한 것이다.9 illustrates a PUCCH format based on block-spreading.
도 10은 듀얼 리드-뮬러(dual Reed-Muller, RM) 부호화를 설명하는 블록도이다.10 is a block diagram illustrating Dual Reed-Muller (RM) coding.
도 11은 듀열 RM 부호화가 적용된 상향링크 제어정보의 비트 시퀀스를 설명하는 도면이다. 11 is a diagram illustrating a bit sequence of uplink control information to which dual RM encoding is applied.
도 12는 변조 심볼을 주파수 전환 전송 다이버시티(frequency switched transmit diversity, FSTD) 기법을 이용하여 주파수 도메인에 맵핑하는 예를 나타낸 것이다. 12 shows an example of mapping a modulation symbol to a frequency domain by using a frequency switched transmit diversity (FSTD) technique.
도 13은 FSTD를 적용한 PUCCH 포맷 3의 전송 예를 나타낸 것이다.13 shows an example of transmission of PUCCH format 3 to which FSTD is applied.
도 14는 듀얼 RM 부호화와 FSTD 기법의 단순 조합(combination)이 적용된 상향링크 제어정보의 전송을 예시한 것이다.FIG. 14 illustrates transmission of uplink control information to which a simple combination of dual RM encoding and FSTD scheme is applied.
도 15는 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 일 실시예를 나타낸 것이다.FIG. 15 illustrates an embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
도 16은 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 다른 실시예를 나타낸 것이다.16 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
도 17은 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 또 다른 실시예를 나타낸 것이다.17 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
도 18은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.18 is a block diagram showing components of a transmitter 10 and a receiver 20 for carrying out the present invention.
도 19는 전송장치 내 신호 처리 과정의 일 예를 도시한 것이다. 19 shows an example of a signal processing process in a transmission apparatus.
도 20은 본 발명에 따른 ACK/NACK(ACKnowledgement/Negative ACK) 전송 성능(performance)에 관한 실험 예를 나타낸 것이다. 20 shows an experimental example of performance of ACK / NACK (ACKnowledgement / Negative ACK) transmission according to the present invention.
이하, 본 발명에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 발명의 예시적인 실시형태를 설명하고자 하는 것이며, 본 발명이 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 발명의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 발명이 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. The detailed description, which will be given below with reference to the accompanying drawings, is intended to explain exemplary embodiments of the present invention and is not intended to represent the only embodiments in which the present invention may be practiced. The following detailed description includes specific details in order to provide a thorough understanding of the present invention. However, one of ordinary skill in the art appreciates that the present invention may be practiced without these specific details.
몇몇 경우, 본 발명의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다. 또한, 본 명세서 전체에서 동일한 구성요소에 대해서는 동일한 도면 부호를 사용하여 설명한다.In some instances, well-known structures and devices may be omitted or shown in block diagram form centering on the core functions of the structures and devices in order to avoid obscuring the concepts of the present invention. In addition, the same components will be described with the same reference numerals throughout the present specification.
본 발명에 있어서, 사용자기기(User Equipment, UE)는 고정되거나 이동성을 가질 수 있으며, BS와 통신하여 사용자데이터 및/또는 각종 제어정보를 송수신하는 각종 기기들이 이에 속한다. UE는 단말(Terminal Equipment), MS(Mobile Station), MT(Mobile Terminal), UT(User Terminal), SS(Subscribe Station), 무선기기(wireless device), PDA(Personal Digital Assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등으로 불릴 수 있다. 또한, 본 발명에 있어서, 기지국(Base Station, BS)은 일반적으로 UE 및/또는 다른 BS와 통신하는 고정국(fixed station)을 말하며, UE 및 타 BS과 통신하여 각종 데이터 및 제어정보를 교환한다. BS는 ABS(Advanced Base Station), NB(Node-B), eNB(evolved-NodeB), BTS(Base Transceiver System), 엑세스 포인트(Access Point), PS(Processing Server) 등 다른 용어로 불릴 수 있다. In the present invention, a user equipment (UE) may be fixed or mobile, and various devices that communicate with the BS to transmit and receive user data and / or various control information belong to the same. The UE may be a terminal equipment (MS), a mobile station (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, a personal digital assistant (PDA), or a wireless modem. It may be called a modem, a handheld device, or the like. In addition, in the present invention, a base station (BS) generally refers to a fixed station communicating with the UE and / or another BS, and communicates with the UE and another BS to exchange various data and control information. The BS may be referred to in other terms such as ABS (Advanced Base Station), NB (Node-B), eNB (evolved-NodeB), BTS (Base Transceiver System), Access Point (Access Point), and Processing Server (PS).
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, BS가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다. In the present invention, Physical Downlink Control CHannel (PDCCH) / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Means a set of time-frequency resources or a set of resource elements that carry downlink format ACK / ACK / NACK (ACKnowlegement / Negative ACK) / downlink data, and also a physical uplink control channel (PUCCH) / physical (PUSCH). Uplink Shared CHannel / PACH (Physical Random Access CHannel) refers to a set of time-frequency resources or a set of resource elements that carry uplink control information (UCI) / uplink data / random access signals, respectively. A time-frequency resource assigned to or belonging to PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH; Resource elements (REs) are referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources, respectively. Hereinafter, the expression that the user equipment transmits PUCCH / PUSCH / PRACH is used as the same meaning as transmitting uplink control information / uplink data / random access signal on or through the PUSCH / PUCCH / PRACH, respectively. In addition, the expression that the BS transmits PDCCH / PCFICH / PHICH / PDSCH is used in the same sense as transmitting downlink data / control information on or through the PDCCH / PCFICH / PHICH / PDSCH, respectively.
도 1 무선 통신 시스템에서 사용되는 무선 프레임 구조의 일 예를 나타낸 것이다. 특히, 도 1(a)는 3GPP LTE/LTE-A 시스템에서 사용되는 주파수분할듀플렉스(frequency division duplex, FDD)용 프레임 구조를 나타낸 것이고, 도 1(b)는 3GPP LTE/LTE-A 시스템에서 사용되는 시분할듀플렉스(time division duplex, TDD)용 프레임 구조를 나타낸 것이다. 1 illustrates an example of a radio frame structure used in a wireless communication system. In particular, Figure 1 (a) shows a frame structure for frequency division duplex (FDD) used in the 3GPP LTE / LTE-A system, Figure 1 (b) is used in the 3GPP LTE / LTE-A system The frame structure for time division duplex (TDD) is shown.
도 1을 참조하면, 3GPP LTE/LTE-A 시스템에서 사용되는 무선프레임은 10ms(307200Ts)의 길이를 가지며, 10개의 균등한 크기의 서브프레임(subframe, SF)으로 구성된다. 일 무선프레임 내 10개의 서브프레임에는 각각 번호가 부여될 수 있다. 여기에서, Ts는 샘플링 시간을 나타내고, Ts=1/(2048*15kHz)로 표시된다. 각각의 서브프레임은 1ms의 길이를 가지며 2개의 슬롯으로 구성된다. 일 무선프레임 내에서 20개의 슬롯들은 0부터 19까지 순차적으로 넘버링될 수 있다. 각각의 슬롯은 0.5ms의 길이를 가진다. 일 서브프레임을 전송하기 위한 시간은 전송시간간격(transmission time interval, TTI)로 정의된다. 시간 자원은 무선프레임 번호(혹은 무선 프레임 인덱스라고도 함)와 서브프레임 번호(혹은 서브프레임 번호라고도 함), 슬롯 번호(혹은 슬롯 인덱스) 등에 의해 구분될 수 있다. Referring to FIG. 1, a radio frame used in a 3GPP LTE / LTE-A system has a length of 10 ms (307200 T s ) and consists of 10 equally sized subframes (subframes). Numbers may be assigned to 10 subframes in one radio frame. Here, T s represents the sampling time and is expressed as T s = 1 / (2048 * 15 kHz). Each subframe has a length of 1 ms and consists of two slots. 20 slots in one radio frame may be sequentially numbered from 0 to 19. Each slot is 0.5ms long. The time for transmitting one subframe is defined as a transmission time interval (TTI). The time resource may be classified by a radio frame number (also called a radio frame index), a subframe number (also called a subframe number), a slot number (or slot index), and the like.
무선 프레임은 듀플레스(duplex) 모드에 따라 다르게 설정(configure)될 수 있다. 예를 들어, FDD 모드에서, 하향링크 전송 및 상향링크 전송은 주파수에 의해 구분되므로, 무선 프레임은 특정 주파수 대역에 대해 하향링크 서브프레임 또는 상향링크 서브프레임 중 하나만을 포함한다. TDD 모드에서 하향링크 전송 및 상향링크 전송은 시간에 의해 구분되므로, 특정 주파수 대역에 대해 무선 프레임은 하향링크 서브프레임과 상향링크 서브프레임을 모두 포함한다. The radio frame may be configured differently according to the duplex mode. For example, in the FDD mode, since downlink transmission and uplink transmission are divided by frequency, a radio frame includes only one of a downlink subframe or an uplink subframe for a specific frequency band. In the TDD mode, since downlink transmission and uplink transmission are separated by time, a radio frame includes both a downlink subframe and an uplink subframe for a specific frequency band.
표 1은 TDD 모드에서, 무선 프레임 내 서브프레임들의 DL-UL 설정(configuration)을 예시한 것이다.Table 1 illustrates a DL-UL configuration of subframes in a radio frame in the TDD mode.
표 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 1 2 3 4 5 6 7 8 9
0 5ms D S U U U D S U U U
1 5ms D S U U D D S U U D
2 5ms D S U D D D S U D D
3 10ms D S U U U D D D D D
4 10ms D S U U D D D D D D
5 10ms D S U D D D D D D D
6 5ms D S U U U D S U U D
Table 1
DL-UL configuration Downlink-to-Uplink Switch-point periodicity Subframe number
0 One 2 3 4 5 6 7 8 9
0 5 ms D S U U U D S U U U
One
5 ms D S U U D D S U U D
2 5 ms D S U D D D S U D D
3 10 ms D S U U U D D D D D
4 10 ms D S U U D D D D D D
5 10 ms D S U D D D D D D D
6 5 ms D S U U U D S U U D
표 1에서, D는 하향링크 서브프레임을, U는 상향링크 서브프레임을, S는 특이(special) 서브프레임을 나타낸다. 특이 서브프레임은 DwPTS(Downlink Pilot TimeSlot), GP(Guard Period), UpPTS(Uplink Pilot TimeSlot)의 3개 필드를 포함한다. DwPTS는 하향링크 전송용으로 유보되는 시간 구간이며, UpPTS는 상향링크 전송용으로 유보되는 시간 구간이다. 표 2는 특이 프레임의 설정(configuration)을 예시한 것이다.In Table 1, D represents a downlink subframe, U represents an uplink subframe, and S represents a special subframe. The singular subframe includes three fields of Downlink Pilot TimeSlot (DwPTS), Guard Period (GP), and Uplink Pilot TimeSlot (UpPTS). DwPTS is a time interval reserved for downlink transmission, and UpPTS is a time interval reserved for uplink transmission. Table 2 illustrates the configuration of a singular frame.
표 2
Special subframe configuration Normal cyclic prefix in downlink Extended cyclic prefix in downlink
DwPTS UpPTS DwPTS UpPTS
Normal cyclic prefix in uplink Extended cyclic prefix in uplink Normal cyclic prefix in uplink Extended cyclic prefix in uplink
0 6592·Ts 2192·Ts 2560·Ts 7680·Ts 2192·Ts 2560·Ts
1 19760·Ts 20480·Ts
2 21952·Ts 23040·Ts
3 24144·Ts 25600·Ts
4 26336·Ts 7680·Ts 4384·Ts 5120·Ts
5 6592·Ts 4384·Ts 5120·Ts 20480·Ts
6 19760·Ts 23040·Ts
7 21952·Ts - - -
8 24144·Ts - - -
TABLE 2
Special subframe configuration Normal cyclic prefix in downlink Extended cyclic prefix in downlink
DwPTS UpPTS DwPTS UpPTS
Normal cyclic prefix in uplink Extended cyclic prefix in uplink Normal cyclic prefix in uplink Extended cyclic prefix in uplink
0 6592T s 2192T s 2560T s 7680T s 2192T s 2560T s
One 19760T s 20480T s
2 21952T s 23040T s
3 24144T s 25600T s
4 26336T s 7680T s 4384T s 5120T s
5 6592T s 4384T s 5120T s 20480T s
6 19760T s 23040T s
7 21952T s - - -
8 24144T s - - -
도 2는 무선 통신 시스템에서 하향링크/상향링크(DL/UL) 슬롯 구조의 일례를 나타낸 것이다. 특히, 도 2는 3GPP LTE/LTE-A 시스템의 자원격자(resource grid)의 구조를 나타낸다. 안테나 포트당 1개의 자원격자가 있다.2 illustrates an example of a downlink / uplink (DL / UL) slot structure in a wireless communication system. In particular, FIG. 2 shows a structure of a resource grid of a 3GPP LTE / LTE-A system. There is one resource grid per antenna port.
도 2를 참조하면, 슬롯은 시간 도메인(time domain)에서 복수의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함하고, 주파수 도메인에서 복수의 자원블록(resource block, RB)을 포함한다. OFDM 심볼은 일 심볼 구간을 의미하기도 한다. 도 2를 참조하면, 각 슬롯에서 전송되는 신호는 NDL/UL RB*NRB sc개의 부반송파(subcarrier)와 NDL/UL symb개의 OFDM 심볼로 구성되는 자원격자(resource grid)로 표현될 수 있다. 여기서, NDL RB은 하향링크 슬롯에서의 자원블록(resource block, RB)의 개수를 나타내고, NUL RB은 UL 슬롯에서의 RB의 개수를 나타낸다. NDL RB와 NUL RB은 DL 전송 대역폭과 UL 전송 대역폭에 각각 의존한다. NDL symb은 하향링크 슬롯 내 OFDM 심볼의 개수를 나타내며, NUL symb은 UL 슬롯 내 OFDM 심볼의 개수를 나타낸다. NRB sc는 하나의 RB를 구성하는 부반송파의 개수를 나타낸다. Referring to FIG. 2, a slot includes a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols in a time domain and a plurality of resource blocks (RBs) in a frequency domain. An OFDM symbol may mean a symbol period. Referring to FIG. 2, a signal transmitted in each slot may be represented by a resource grid including N DL / UL RB * N RB sc subcarriers and N DL / UL symb OFDM symbols. . Here, N DL RB represents the number of resource blocks (RBs) in the downlink slot, and N UL RB represents the number of RBs in the UL slot. N DL RB and N UL RB depend on DL transmission bandwidth and UL transmission bandwidth, respectively. N DL symb represents the number of OFDM symbols in the downlink slot, and N UL symb represents the number of OFDM symbols in the UL slot. N RB sc represents the number of subcarriers constituting one RB.
OFDM 심볼은 다중 접속 방식에 따라 OFDM 심볼, SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 등으로 불릴 수 있다. 하나의 슬롯에 포함되는 OFDM 심볼의 수는 채널 대역폭, CP(cyclic prefix)의 길이에 따라 다양하게 변경될 수 있다. 예를 들어, 정규(normal) CP의 경우에는 하나의 슬롯이 7개의 OFDM 심볼을 포함하나, 확장(extended) CP의 경우에는 하나의 슬롯이 6개의 OFDM 심볼을 포함한다. 도 2에서는 설명의 편의를 위하여 하나의 슬롯이 7 OFDM 심볼로 구성되는 서브프레임을 예시하였으나, 본 발명의 실시예들은 다른 개수의 OFDM 심볼을 갖는 서브프레임들에도 마찬가지의 방식으로 적용될 수 있다. 도 2를 참조하면, 각 OFDM 심볼은, 주파수 도메인에서, NDL/UL RB*NRB sc개의 부반송파를 포함한다. 부반송파의 유형은 데이터 전송을 위한 데이터 부반송파, 참조신호(reference signal)의 전송 위한 참조신호 부반송파, 가드 밴드(guard band) 및 직류(Direct Current, DC) 성분을 위한 널(null) 부반송파로 나뉠 수 있다. DC 성분을 위한 널 부반송파는 미사용인 채 남겨지는 부반송파로서, OFDM 신호 생성 과정 혹은 주파수 상향변환 과정에서 반송파 주파수(carrier frequency, f0)로 맵핑된다. 반송파 주파수는 중심 주파수(center frequency)라고도 한다. The OFDM symbol may be called an OFDM symbol, a Single Carrier Frequency Division Multiplexing (SC-FDM) symbol, or the like according to a multiple access scheme. The number of OFDM symbols included in one slot may vary depending on the channel bandwidth and the length of the cyclic prefix (CP). For example, in case of a normal CP, one slot includes 7 OFDM symbols, whereas in case of an extended CP, one slot includes 6 OFDM symbols. Although FIG. 2 illustrates a subframe in which one slot includes 7 OFDM symbols for convenience of description, embodiments of the present invention can be applied to subframes having other numbers of OFDM symbols in the same manner. Referring to FIG. 2, each OFDM symbol includes N DL / UL RB * N RB sc subcarriers in the frequency domain. The types of subcarriers may be divided into data subcarriers for data transmission, reference signal subcarriers for transmission of reference signals, null subcarriers for guard band, and direct current (DC) components. . The null subcarrier for the DC component is a subcarrier left unused and is mapped to a carrier frequency f 0 during an OFDM signal generation process or a frequency upconversion process. The carrier frequency is also called the center frequency.
일 RB는 시간 도메인에서 NDL/UL symb개(예를 들어, 7개)의 연속하는 OFDM 심볼로서 정의되며, 주파수 도메인에서 NRB sc개(예를 들어, 12개)의 연속하는 부반송파에 의해 정의된다. 참고로, 하나의 OFDM 심볼과 하나의 부반송파로 구성된 자원을 자원요소(resource element, RE) 혹은 톤(tone)이라고 한다. 따라서, 하나의 RB는 NDL/UL symb*NRB sc개의 자원요소로 구성된다. 자원격자 내 각 자원요소는 일 슬롯 내 인덱스 쌍 (k, 1)에 의해 고유하게 정의될 수 있다. k는 주파수 도메인에서 0부터 NDL/UL RB*NRB sc-1까지 부여되는 인덱스이며, l은 시간 도메인에서 0부터 NDL/UL symb-1까지 부여되는 인덱스이다. One RB is defined as N DL / UL symb (e.g., seven) consecutive OFDM symbols in the time domain and is defined by N RB sc (e.g., twelve) consecutive subcarriers in the frequency domain. Is defined. For reference, a resource composed of one OFDM symbol and one subcarrier is called a resource element (RE) or tone. Therefore, one RB is composed of N DL / UL symb * N RB sc resource elements. Each resource element in the resource grid may be uniquely defined by an index pair (k, 1) in one slot. k is an index given from 0 to N DL / UL RB * N RB sc −1 in the frequency domain, and l is an index given from 0 to N DL / UL symb −1 in the time domain.
일 서브프레임에서 NRB sc개의 연속하는 동일한 부반송파를 점유하면서, 상기 서브프레임의 2개의 슬롯 각각에 1개씩 위치하는 2개의 RB를 물리자원블록(physical resource block, PRB) 쌍(pair)이라고 한다. PRB 쌍을 구성하는 2개의 RB는 동일한 PRB 번호(혹은, PRB 인덱스(index)라고도 함)를 갖는다. Two RBs , each occupying N RB sc consecutive subcarriers in one subframe and one located in each of two slots of the subframe, are called a physical resource block (PRB) pair. Two RBs constituting a PRB pair have the same PRB number (or also referred to as a PRB index).
도 3은 3GPP LTE/LTE-A 시스템에서 사용되는 DL 서브프레임 구조를 예시한 것이다.3 illustrates a DL subframe structure used in 3GPP LTE / LTE-A system.
도 3을 참조하면, DL 서브프레임은 시간 도메인에서 제어영역(control region)과 데이터영역(data region)으로 구분된다. 도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(혹은 4)개의 OFDM 심볼은 제어 채널이 할당되는 제어영역(control region)에 대응한다. 이하, DL 서브프레임에서 PDCCH 전송에 이용가능한 자원영역을 PDCCH 영역이라 칭한다. 제어영역으로 사용되는 OFDM 심볼(들)이 아닌 남은 OFDM 심볼들은 PDSCH(Physical Downlink Shared CHannel)가 할당되는 데이터영역(data region)에 해당한다. 이하, DL 서브프레임에서 PDSCH 전송에 이용가능한 자원영역을 PDSCH 영역이라 칭한다. 3GPP LTE에서 사용되는 DL 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심볼에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM 심볼의 개수에 관한 정보를 나른다. PHICH는 UL 전송에 대한 응답으로 HARQ(Hybrid Automatic Repeat Request) ACK/NACK(acknowledgment/negative-acknowledgment) 신호를 나른다.Referring to FIG. 3, a DL subframe is divided into a control region and a data region in the time domain. Referring to FIG. 3, up to three (or four) OFDM symbols located in the first slot of a subframe correspond to a control region to which a control channel is allocated. Hereinafter, a resource region available for PDCCH transmission in a DL subframe is called a PDCCH region. The remaining OFDM symbols other than the OFDM symbol (s) used as the control region correspond to a data region to which a Physical Downlink Shared CHannel (PDSCH) is allocated. Hereinafter, a resource region available for PDSCH transmission in a DL subframe is called a PDSCH region. Examples of DL control channels used in 3GPP LTE include a physical control format indicator channel (PCFICH), a physical downlink control channel (PDCCH), a physical hybrid ARQ indicator channel (PHICH), and the like. The PCFICH is transmitted in the first OFDM symbol of a subframe and carries information about the number of OFDM symbols used for transmission of a control channel within the subframe. The PHICH carries a Hybrid Automatic Repeat Request (HARQ) ACK / NACK (acknowledgment / negative-acknowledgment) signal in response to the UL transmission.
PDCCH를 통해 전송되는 제어 정보를 DCI(Downlink Control Information)라고 지칭한다. DCI는 UE 또는 UE 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다. 예를 들어, DCI는 DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷 및 자원 할당 정보, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널(paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 임의 접속 응답과 같은 상위 계층(upper layer) 제어 메시지의 자원 할당 정보, UE 그룹 내의 개별 UE들에 대한 전송 전력 제어 명령(Transmit Control Command Set), 전송 전력 제어(Transmit Power Control) 명령, VoIP(Voice over IP)의 활성화(activation) 지시 정보, DAI(Downlink Assignment Index) 등을 포함한다. DL 공유 채널(downlink shared channel, DL-SCH)의 전송 포맷(Transmit Format) 및 자원 할당 정보는 DL 스케줄링 정보 혹은 DL 그랜트(DL grant)라고도 불리며, UL 공유 채널(uplink shared channel, UL-SCH)의 전송 포맷 및 자원 할당 정보는 UL 스케줄링 정보 혹은 UL 그랜트(UL grant)라고도 불린다.Control information transmitted through the PDCCH is referred to as downlink control information (DCI). DCI includes resource allocation information and other control information for the UE or UE group. For example, the DCI includes a transmission format and resource allocation information of a downlink shared channel (DL-SCH), a transmission format and resource allocation information of an uplink shared channel (UL-SCH), and a paging channel. channel, PCH) paging information, system information on the DL-SCH, resource allocation information of an upper layer control message such as a random access response transmitted on the PDSCH, transmission power control command for individual UEs in the UE group ( It includes a Transmit Control Command Set, a Transmit Power Control command, activation indication information of Voice over IP (VoIP), a Downlink Assignment Index (DAI), and the like. The transmission format and resource allocation information of a downlink shared channel (DL-SCH) may also be called DL scheduling information or a DL grant, and may be referred to as an uplink shared channel (UL-SCH). The transmission format and resource allocation information is also called UL scheduling information or UL grant.
PDCCH는 하나 또는 복수의 연속된 제어 채널 요소(control channel element, CCE)들의 집성(aggregation) 상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 부호화율(coding rate)를 제공하기 위해 사용되는 논리적 할당 유닛(unit)이다. CCE는 복수의 자원 요소 그룹(resource element group, REG)에 대응한다. 예를 들어, 하나의 CCE는 9개의 REG에 대응되고 하나의 REG는 4개의 RE에 대응한다. 3GPP LTE 시스템의 경우, 각각의 UE을 위해 PDCCH가 위치할 수 있는 CCE 세트를 정의하였다. UE가 자신의 PDCCH를 발견할 수 있는 CCE 세트를 PDCCH 탐색 공간, 간단히 탐색 공간(Search Space, SS)라고 지칭한다. 탐색 공간 내에서 PDCCH가 전송될 수 있는 개별 자원을 PDCCH 후보(candidate)라고 지칭한다. UE가 모니터링(monitoring)할 PDCCH 후보들의 모음은 탐색 공간으로 정의된다. 3GPP LTE/LTE-A 시스템에서 각각의 DCI 포맷을 위한 탐색 공간은 다른 크기를 가질 수 있으며, 전용(dedicated) 탐색 공간과 공통(common) 탐색 공간이 정의되어 있다. 전용 탐색 공간은 UE-특정(specific) 탐색 공간이며, 각각의 개별 UE를 위해 설정(configuration)된다. 공통 탐색 공간은 복수의 UE들을 위해 설정된다. 하나의 PDCCH 후보는 CCE 집성 레벨(aggregation level)에 따라 1, 2, 4 또는 8개의 CCE에 대응한다. BS는 탐색 공간 내의 임의의 PDCCH 후보 상에서 실제 PDCCH (DCI)를 전송하고, UE는 PDCCH (DCI)를 찾기 위해 탐색 공간을 모니터링한다. 여기서, 모니터링이라 함은 모든 모니터링되는 DCI 포맷들에 따라 해당 탐색 공간 내의 각 PDCCH의 복호를 시도(attempt)하는 것을 의미한다. UE는 상기 복수의 PDCCH를 모니터링하여, 자신의 PDCCH를 검출할 수 있다. 기본적으로 UE는 자신의 PDCCH가 전송되는 위치를 모르기 때문에, 매 서브프레임마다 해당 DCI 포맷의 모든 PDCCH를 자신의 식별자를 가진 PDCCH를 검출할 때까지 PDCCH의 복호를 시도하는데, 이러한 과정을 블라인드 검출(blind detection)(블라인드 복호(blind decoding, BD))이라고 한다.The PDCCH is transmitted on an aggregation of one or a plurality of consecutive control channel elements (CCEs). CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions. The CCE corresponds to a plurality of resource element groups (REGs). For example, one CCE corresponds to nine REGs and one REG corresponds to four REs. In the 3GPP LTE system, a CCE set in which a PDCCH can be located is defined for each UE. The set of CCEs in which a UE can discover its PDCCH is referred to as a PDCCH search space, simply a search space (SS). An individual resource to which a PDCCH can be transmitted in a search space is called a PDCCH candidate. The collection of PDCCH candidates that the UE will monitor is defined as a search space. In the 3GPP LTE / LTE-A system, a search space for each DCI format may have a different size, and a dedicated search space and a common search space are defined. The dedicated search space is a UE-specific search space and is configured for each individual UE. The common search space is set for a plurality of UEs. One PDCCH candidate corresponds to 1, 2, 4, or 8 CCEs according to a CCE aggregation level. The BS sends the actual PDCCH (DCI) on any PDCCH candidate in the search space, and the UE monitors the search space to find the PDCCH (DCI). Here, monitoring means attempting decoding of each PDCCH in a corresponding search space according to all monitored DCI formats. The UE may detect its own PDCCH by monitoring the plurality of PDCCHs. Basically, since the UE does not know where its PDCCH is transmitted, every Pframe attempts to decode the PDCCH until every PDCCH of the corresponding DCI format has detected a PDCCH having its own identifier. It is called blind detection (blind decoding).
BS는 데이터영역을 통해 UE 혹은 UE 그룹을 위한 데이터를 전송할 수 있다. 상기 데이터영역을 통해 전송되는 데이터를 사용자데이터라 칭하기도 한다. 사용자데이터의 전송을 위해, 데이터영역에는 PDSCH(Physical Downlink Shared CHannel)가 할당될 수 있다. PCH(Paging channel) 및 DL-SCH(Downlink-shared channel)는 PDSCH를 통해 전송된다. UE는 PDCCH를 통해 전송되는 제어정보를 복호하여 PDSCH를 통해 전송되는 데이터를 읽을 수 있다. 일 PDCCH가 나르는 DCI는 DCI 포맷에 따라서 그 크기와 용도가 다르며, 부호화율에 따라 그 크기가 달라질 수 있다. PDSCH의 데이터가 어떤 UE 혹은 UE 그룹에게 전송되는지, 상기 UE 혹은 UE 그룹이 어떻게 PDSCH 데이터를 수신하고 복호해야 하는지 등을 나타내는 정보가 PDCCH에 포함되어 전송된다. 예를 들어, 특정 PDCCH가 "A"라는 RNTI(Radio Network Temporary Identity)로 CRC(cyclic redundancy check) 마스킹(masking)되어 있고, "B"라는 무선자원(예, 주파수 위치) 및 "C"라는 전송형식정보(예, 전송 블록 사이즈, 변조 방식, 코딩 정보 등)를 이용해 전송되는 데이터에 관한 정보가 특정 DL 서브프레임을 통해 전송된다고 가정한다. UE는 자신이 가지고 있는 RNTI 정보를 이용하여 PDCCH를 모니터링하고, "A"라는 RNTI를 가지고 있는 UE는 PDCCH를 검출하고, 수신한 PDCCH의 정보를 통해 "B"와 "C"에 의해 지시되는 PDSCH를 수신한다. The BS may transmit data for the UE or the UE group through the data area. Data transmitted through the data area is also called user data. For transmission of user data, a physical downlink shared channel (PDSCH) may be allocated to the data area. Paging channel (PCH) and downlink-shared channel (DL-SCH) are transmitted through PDSCH. The UE may read data transmitted through the PDSCH by decoding control information transmitted through the PDCCH. The DCI carried by one PDCCH has a different size and use depending on the DCI format, and its size may vary depending on a coding rate. Information indicating to which UE or UE group data of the PDSCH is transmitted, how the UE or UE group should receive and decode PDSCH data, and the like are included in the PDCCH and transmitted. For example, a specific PDCCH is masked with a cyclic redundancy check (CRC) with a Radio Network Temporary Identity (RNTI) of "A", a radio resource (eg, a frequency location) of "B" and a transmission of "C". It is assumed that information about data transmitted using format information (eg, transport block size, modulation scheme, coding information, etc.) is transmitted through a specific DL subframe. The UE monitors the PDCCH using its own RNTI information, and the UE having the RNTI "A" detects the PDCCH, and the PDSCH indicated by "B" and "C" through the received PDCCH information. Receive
도 4는 3GPP LTE/LTE-A 시스템에서 사용되는 상향링크 서브프레임 구조의 일례를 나타낸 것이다.4 shows an example of an uplink subframe structure used in a 3GPP LTE / LTE-A system.
도 4를 참조하면, UL 서브프레임은 주파수 도메인에서 제어영역과 데이터영역으로 구분될 수 있다. 하나 또는 여러 PUCCH(physical uplink control channel)가 UCI(uplink control information)를 나르기 위해, 상기 제어영역에 할당될 수 있다. 하나 또는 여러 PUSCH(physical uplink shared channel)가 사용자 데이터를 나르기 위해, UL 서브프레임의 데이터영역에 할당될 수 있다. UL 서브프레임 내 제어영역과 데이터영역은 PUCCH 영역과 PUSCH 영역으로 각각 불리기도 한다. 상기 데이터영역에는 사운딩 참조신호(sounding reference signal, SRS)가 할당될 수도 있다. SRS는 시간 도메인에서는 UL 서브프레임의 가장 마지막에 위치하는 OFDM 심볼, 주파수 도메인에서는 상기 UL 서브프레임의 데이터 전송 대역, 즉, 데이터영역 상에서 전송된다. 동일한 서브프레임의 마지막 OFDM 심볼에서 전송/수신되는 여러 UE들의 SRS들은 주파수 위치/시퀀스에 따라 구분이 가능하다.Referring to FIG. 4, the UL subframe may be divided into a control region and a data region in the frequency domain. One or several physical uplink control channels (PUCCHs) may be allocated to the control region to carry uplink control information (UCI). One or several physical uplink shared channels (PUSCHs) may be allocated to a data region of a UL subframe to carry user data. The control region and data region in the UL subframe may also be called a PUCCH region and a PUSCH region, respectively. A sounding reference signal (SRS) may be allocated to the data area. The SRS is transmitted in the OFDM symbol located at the end of the UL subframe in the time domain and in the data transmission band of the UL subframe, that is, in the data domain, in the frequency domain. SRSs of several UEs transmitted / received in the last OFDM symbol of the same subframe may be distinguished according to frequency location / sequence.
UE가 UL 전송에 SC-FDMA(Single Carrier Frequency Division Multiplexing Access) 방식을 채택하는 경우, 단일 반송파 특성을 유지하기 위해, 3GPP LTE 릴리즈(release) 8 혹은 릴리즈 9 시스템에서는, 일 반송파 상에서는 PUCCH와 PUSCH를 동시에 전송할 수 없다. 3GPP LTE 릴리즈 10 시스템에서는, PUCCH와 PUSCH의 동시 전송 지원 여부가 상위 계층에서 지시될 수 있다.  When the UE adopts a Single Carrier Frequency Division Multiplexing Access (SC-FDMA) scheme for UL transmission, in order to maintain a single carrier characteristic, in a 3GPP LTE release 8 or release 9 system, PUCCH and PUSCH are performed on one carrier. Can't send at the same time. In the 3GPP LTE Release 10 system, whether to support simultaneous transmission of a PUCCH and a PUSCH may be indicated in a higher layer.
UL 서브프레임에서는 DC(Direct Current) 부반송파를 기준으로 거리가 먼 부반송파들이 제어영역으로 활용된다. 다시 말해, UL 전송 대역폭의 양쪽 끝부분에 위치하는 부반송파들이 상향링크 제어정보의 전송에 할당된다. DC 부반송파는 신호 전송에 사용되지 않고 남겨지는 성분으로서, 주파수 상향변환 과정에서 반송파 주파수 f0로 맵핑된다. 일 UE에 대한 PUCCH는 일 서브프레임에서, 일 반송파 주파수에서 동작하는 자원들에 속한 RB 쌍에 할당되며, 상기 RB 쌍에 속한 RB들은 두 개의 슬롯에서 각각 다른 부반송파를 점유한다. 이와 같이 할당되는 PUCCH를, PUCCH에 할당된 RB 쌍이 슬롯 경계에서 주파수 호핑된다고 표현한다. 다만, 주파수 호핑이 적용되지 않는 경우에는, RB 쌍이 동일한 부반송파를 점유한다. In the UL subframe, subcarriers having a long distance based on a direct current (DC) subcarrier are used as a control region. In other words, subcarriers located at both ends of the UL transmission bandwidth are allocated for transmission of uplink control information. The DC subcarrier is a component that is not used for signal transmission and is mapped to a carrier frequency f 0 during frequency upconversion. The PUCCH for one UE is allocated to an RB pair belonging to resources operating at one carrier frequency in one subframe, and the RBs belonging to the RB pair occupy different subcarriers in two slots. The PUCCH allocated in this way is expressed as that the RB pair allocated to the PUCCH is frequency hopped at the slot boundary. However, if frequency hopping is not applied, RB pairs occupy the same subcarrier.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.PUCCH may be used to transmit the following control information.
- SR(Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. OOK(On-Off Keying) 방식을 이용하여 전송된다.SR (Scheduling Request): Information used for requesting an uplink UL-SCH resource. It is transmitted using OOK (On-Off Keying) method.
- HARQ-ACK: PDCCH에 대한 응답 및/또는 PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. PDCCH 혹은 PDSCH가 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송된다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(이하, NACK), DTX(Discontinuous Transmission) 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.HARQ-ACK: A response to a PDCCH and / or a response to a downlink data packet (eg, codeword) on a PDSCH. This indicates whether the PDCCH or PDSCH is successfully received. One bit of HARQ-ACK is transmitted in response to a single downlink codeword, and two bits of HARQ-ACK are transmitted in response to two downlink codewords. HARQ-ACK response includes a positive ACK (simple, ACK), negative ACK (hereinafter, NACK), DTX (Discontinuous Transmission) or NACK / DTX. Here, HARQ-ACK is mixed with HARQ ACK / NACK, ACK / NACK.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보(feedback information)이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다. Channel State Information (CSI): Feedback information for the downlink channel. Multiple Input Multiple Output (MIMO) -related feedback information includes a rank indicator (RI) and a precoding matrix indicator (PMI).
UE가 서브프레임에서 전송할 수 있는 상향링크 제어정보(UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. UCI에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우에는 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히런트(coherent) 검출에 사용된다. PUCCH는 전송되는 정보에 따라 다양한 포맷을 지원한다.The amount of uplink control information (UCI) that a UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission. SC-FDMA available for UCI means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last SC of the subframe The -FDMA symbol is also excluded. The reference signal is used for coherent detection of the PUCCH. PUCCH supports various formats according to the transmitted information.
표 3은 LTE/LTE-A 시스템에서 PUCCH 포맷과 UCI의 맵핑 관계를 나타낸다.Table 3 shows a mapping relationship between PUCCH format and UCI in LTE / LTE-A system.
표 3
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
1 N/A N/A (exist or absent) SR (Scheduling Request)
1a BPSK 1 ACK/NACK orSR + ACK/NACK One codeword
1b QPSK 2 ACK/NACK orSR + ACK/NACK Two codeword
2 QPSK 20 CQI/PMI/RI Joint coding ACK/NACK (extended CP)
2a QPSK+BPSK 21 CQI/PMI/RI + ACK/NACK Normal CP only
2b QPSK+QPSK 22 CQI/PMI/RI + ACK/NACK Normal CP only
3 QPSK 48 ACK/NACK orSR + ACK/NACK orCQI/PMI/RI + ACK/NACK
TABLE 3
PUCCH format Modulation scheme Number of bits per subframe Usage Etc.
One N / A N / A (exist or absent) SR (Scheduling Request)
1a BPSK One ACK / NACK orSR + ACK / NACK One codeword
1b QPSK
2 ACK / NACK orSR + ACK / NACK Two codeword
2 QPSK 20 CQI / PMI / RI Joint coding ACK / NACK (extended CP)
2a QPSK + BPSK 21 CQI / PMI / RI + ACK / NACK Normal CP only
2b QPSK + QPSK 22 CQI / PMI / RI + ACK / NACK Normal CP only
3 QPSK 48 ACK / NACK orSR + ACK / NACK orCQI / PMI / RI + ACK / NACK
표 3을 참조하면, PUCCH 포맷 1 계열은 주로 ACK/NACK 정보를 전송하는 데 사용되며, PUCCH 포맷 2 계열은 주로 CQI/PMI/RI 등의 채널상태정보(channel state information, CSI)를 나르는 데 사용되고, PUCCH 포맷 3 계열은 주로 ACK/NACK 정보를 전송하는 데 사용된다. Referring to Table 3, the PUCCH format 1 series is mainly used to transmit ACK / NACK information, and the PUCCH format 2 series is mainly used to carry channel state information (CSI) such as CQI / PMI / RI. In particular, the PUCCH format 3 series is mainly used to transmit ACK / NACK information.
도 5부터 도 8은 PUCCH 포맷 1 계열 및 PUCCH 포맷 2 계열을 이용한 UCI 전송을 예시한 것이다. 5 to 8 illustrate UCI transmission using PUCCH format 1 series and PUCCH format 2 series.
3GPP LTE/LTE-A 시스템에서 정규 CP를 갖는 DL/UL 서브프레임은, 각 슬롯이 7개의 OFDM 심볼을 포함하는, 2개의 슬롯으로 구성되며, 확장 CP를 갖는 DL/UL 서브프레임은, 각 슬롯이 6개의 OFDM 심볼을 포함하는, 2개의 슬롯으로 구성된다. CP 길이에 따라 서브프레임 별 OFDM 심볼의 개수가 달라지므로, CP 길이에 따라 UL 서브프레임에서 PUCCH가 전송되는 구조도 달라지게 된다. 따라서, PUCCH 포맷과 CP 길이에 따라, UE가 UL 서브프레임에서 UCI를 전송하는 방법이 달라지게 된다.In a 3GPP LTE / LTE-A system, a DL / UL subframe with a regular CP consists of two slots, each slot containing seven OFDM symbols, and a DL / UL subframe with an extended CP, each slot It consists of two slots containing these six OFDM symbols. Since the number of OFDM symbols per subframe varies according to the CP length, the structure in which the PUCCH is transmitted in the UL subframe also varies according to the CP length. Accordingly, depending on the PUCCH format and the CP length, a method of transmitting a UCI in a UL subframe may vary.
도 5는 정규 CP를 갖는 UL 슬롯에서 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK 정보를 전송하는 예를 나타낸 것이고, 도 6은 확장 CP를 갖는 UL 슬롯에서 PUCCH 포맷 1a/1b를 이용하여 ACK/NACK 정보를 전송하는 예를 나타낸 것이다. FIG. 5 illustrates an example of transmitting ACK / NACK information using a PUCCH format 1a / 1b in a UL slot having a regular CP, and FIG. 6 illustrates ACK / NACK using PUCCH format 1a / 1b in a UL slot having an extended CP. An example of transmitting NACK information is shown.
도 5 및 도 6을 참조하면, PUCCH 포맷 1a와 1b를 사용하여 전송되는 제어정보는, 동일한 내용의 제어정보가 서브프레임 내에서 슬롯 단위로 반복된다. 각 UE에서 ACK/NACK 신호는 CG-CAZAC(Computer-Generated Constant Amplitude Zero Auto Correlation) 시퀀스의 서로 다른 순환 천이(cyclic shift, CS)(주파수 도메인 코드)와 직교 커버 코드(orthogonal cover(OC) or orthogonal cover code(OCC))(시간 도메인 확산 코드)로 구성된 서로 다른 자원을 통해 전송된다. 직교 커버 코드는 직교 시퀀스라고도 한다. OC는 예를 들어 왈쉬(Walsh)/DFT(Discrete Fourier Transform) 직교 코드를 포함한다. CS의 개수가 6개이고 OC의 개수가 3개이면, 단일 안테나 포트를 기준으로 총 18개의 PUCCH가 동일한 PRB(Physical Resource Block) 안에서 다중화될 수 있다. 직교 시퀀스 w0,w1,w2,w3는 (FFT(Fast Fourier Transform) 변조 후에) 임의의 시간 도메인에서 또는 (FFT 변조 전에) 임의의 주파수 도메인에서 적용될 수 있다. 3GPP LTE/LTE-A 시스템에서 ACK/NACK 전송을 위한 PUCCH 자원은 시간-주파수 자원(예를 들어, PRB)의 위치, 주파수 확산을 위한 시퀀스의 순환 천이(cyclic shift) 및 시간 확산을 위한 (준)직교 코드의 조합으로 표현되며, 각 PUCCH 자원은 PUCCH 자원 인덱스(PUCCH 인덱스라고도 함)를 이용하여 지시된다. SR(Scheduling Request) 전송을 위한 PUCCH 포맷 1 계열의 슬롯 레벨 구조는 PUCCH 포맷 1a 및 1b와 동일하며 그 변조방법만이 다르다.5 and 6, in the control information transmitted using the PUCCH formats 1a and 1b, control information having the same content is repeated in a slot unit in a subframe. At each UE, the ACK / NACK signal has a different cyclic shift (CS) (frequency domain code) and orthogonal cover code (OC) or orthogonal in a computer-generated constant amplitude zero auto correlation (CG-CAZAC) sequence. cover code (OCC)) (time domain spreading code). Orthogonal cover codes are also called orthogonal sequences. OC includes, for example, Walsh / Discrete Fourier Transform (DFT) orthogonal code. If the number of CSs is 6 and the number of OCs is 3, a total of 18 PUCCHs may be multiplexed in the same physical resource block (PRB) based on a single antenna port. Orthogonal sequences w 0 , w 1 , w 2 , w 3 may be applied in any time domain (after Fast Fourier Transform (FFT) modulation) or in any frequency domain (before FFT modulation). In 3GPP LTE / LTE-A system, the PUCCH resource for ACK / NACK transmission includes the location of time-frequency resources (e.g., PRB), cyclic shift of a sequence for frequency spreading, and Expressed as a combination of orthogonal codes, each PUCCH resource is indicated using a PUCCH resource index (also called a PUCCH index). The slot level structure of the PUCCH format 1 series for SR (Scheduling Request) transmission is the same as that of the PUCCH formats 1a and 1b, and only its modulation method is different.
도 7은 정규 CP를 갖는 UL 슬롯에서 PUCCH 포맷 2/2a/2b를 이용하여 채널상태정보(channel state information, CSI)를 전송하는 예를 나타낸 것이고, 도 8은 확장 CP를 갖는 UL 슬롯에서 PUCCH 포맷 2/2a/2b를 이용하여 채널상태정보를 전송하는 예를 나타낸 것이다.FIG. 7 shows an example of transmitting channel state information (CSI) using a PUCCH format 2 / 2a / 2b in a UL slot having a regular CP, and FIG. 8 shows a PUCCH format in a UL slot having an extended CP. An example of transmitting channel state information using 2 / 2a / 2b is shown.
도 7 및 도 8을 참조하면, 정규 CP의 경우, 하나의 UL 서브프레임은 UL 참조신호(reference signal, RS)를 나르는 심볼을 제외하면 10개의 OFDM 심볼로 구성된다. 채널상태정보는 블록코딩을 통해 10개의 전송심볼(복소 변조 심볼(complex-valued modulation symbol)이라고도 함)로 부호화(coding)된다. 상기 10개의 전송 심볼은 각각 상기 10개의 OFDM 심볼로 맵핑되어 BS로 전송된다.7 and 8, in the case of a normal CP, one UL subframe includes 10 OFDM symbols except for a symbol carrying a UL reference signal (RS). The channel state information is coded into 10 transmission symbols (also called complex-valued modulation symbols) through block coding. The 10 transmission symbols are respectively mapped to the 10 OFDM symbols and transmitted to the BS.
PUCCH 포맷 1/1a/1b 및 PUCCH 포맷 2/2a/2b는 일정 비트 수까지만 UCI를 나를 수 있다. 그러나, 반송파 집성 및 안테나 개수의 증가, TDD 시스템, 릴레이 시스템, 다중 노드 시스템의 도입에 따라 UCI의 양이 늘어나게 됨에 따라 PUCCH 포맷 1/1a/1b/2/2a/2b보다 많은 양의 UCI를 나를 수 있는 PUCCH 포맷이 도입되었으며, 이를 PUCCH 포맷 3라고 한다. 예를 들어, PUCCH 포맷 3는 반송파 집성이 설정된 UE가 복수의 하향링크 반송파를 통해 BS로부터 수신한 복수의 PDSCH에 대한 복수의 ACK/NACK을 특정 상향링크 반송파를 통해 전송할 때 사용될 수 있다. PUCCH format 1 / 1a / 1b and PUCCH format 2 / 2a / 2b can carry UCI up to a certain number of bits. However, with the increase of carrier aggregation and the number of antennas, the introduction of TDD system, relay system, and multi-node system, the amount of UCI increases, so that the UCI can carry more UCI than PUCCH format 1 / 1a / 1b / 2 / 2a / 2b. PUCCH format is introduced, which is called PUCCH format 3. For example, PUCCH format 3 may be used when a UE configured with carrier aggregation transmits a plurality of ACK / NACKs for a plurality of PDSCHs received from a BS through a plurality of downlink carriers through a specific uplink carrier.
반송파 집성이라 함은 하나의 반송파에서 동작하는 주파수 대역보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록들을 모아 더 큰 상/하향링크 대역폭을 사용하는 반송파 집성(carrier aggregation 또는 bandwidth aggregation) 기술을 말한다. 일반적인 무선 통신 시스템은 하나의 하향링크(downlink, DL) 대역과 이에 대응하는 하나의 상향링크(uplink, UL) 대역을 통해 데이터 송/수신을 수행(주파수분할듀플렉스(frequency division duplex, FDD) 모드의 경우)하거나, 소정 무선 프레임(Radio Frame)을 시간 도메인(time domain)에서 상향링크 시간 유닛과 하향링크 시간 유닛으로 구분하고, 상/하향링크 시간 유닛을 통해 데이터 송/수신을 수행(시분할듀플렉스(time division duplex, TDD) 모드의 경우)한다. BS와 UE는 소정 시간 유닛, 예를 들어, 서브프레임(subframe, SF) 단위로 스케줄링된 데이터 및/또는 제어 정보를 송수신한다. 이와 같이 하나의 DL 대역과 이에 대응하는 하나의 UL 대역이 통신에 사용되는 단일 반송파 기술과 달리, 반해, 반송파 집성이라 함은 보다 넓은 주파수 대역을 사용하기 위하여 복수의 상/하향링크 주파수 블록들을 모아 더 큰 상/하향링크 대역폭을 사용하는 기술이다. 반송파 집성 기술은 복수의 반송파 주파수들을 사용하여 DL 및/또는 UL 통신을 수행한다는 점에서, 복수의 직교하는 부반송파들로 분할된 기본 주파수 대역을 하나의 반송파 주파수에 실어 DL 혹은 UL 통신을 수행하는 OFDM 기술과 구분된다. 집성되는 복수의 반송파들 각각은 콤퍼넌트 반송파(component carrier, CC)라 칭해진다. 각각의 CC들은 주파수 도메인에서 서로 인접하거나 비-인접할 수 있으며, 각 CC의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭적 반송파 집성도 가능하다. 여기서, UL CC와 DL CC는 각각 UL 자원들(UL resources)와 DL 자원들(DL resources)라고 불리기도 한다.Carrier aggregation refers to carrier aggregation or bandwidth aggregation using a larger uplink / downlink bandwidth by collecting a plurality of uplink / downlink frequency blocks to use a wider frequency band than a frequency band operating in one carrier. Says technology. A typical wireless communication system performs data transmission / reception through one downlink (DL) band and one uplink (UL) band corresponding thereto (frequency division duplex (FDD) mode). Or a predetermined radio frame divided into an uplink time unit and a downlink time unit in a time domain, and perform data transmission / reception through uplink / downlink time units. time division duplex (TDD) mode). The BS and the UE transmit and receive the scheduled data and / or control information in units of a predetermined time unit, for example, a subframe (SF). Unlike a single carrier technology in which one DL band and one UL band corresponding thereto are used for communication, carrier aggregation refers to a plurality of uplink / downlink frequency blocks that are used to use a wider frequency band. This technique uses a larger uplink / downlink bandwidth. In the carrier aggregation technology, DL and / or UL communication is performed using a plurality of carrier frequencies, an OFDM that performs DL or UL communication by putting a fundamental frequency band divided into a plurality of orthogonal subcarriers on one carrier frequency It is distinguished from technology. Each of the plurality of carriers aggregated is called a component carrier (CC). Each CC may be adjacent to each other or non-adjacent in the frequency domain, and the bandwidth of each CC may be determined independently. Asymmetrical carrier aggregation in which the number of UL CCs and the number of DL CCs are different is also possible. Here, the UL CC and the DL CC are also called UL resources and DL resources, respectively.
3GPP LTE/LTE-A 시스템은 무선 자원을 관리하기 위해 셀(Cell)의 개념을 사용한다. 셀(Cell)이라 함은 하향링크 자원(DL resources)와 상향링크 자원(UL resources)의 조합, 즉, DL CC와 UL CC의 조합으로 정의된다. 셀(Cell)은 DL 자원 단독, 또는 DL 자원과 UL 자원의 조합으로 구성될 수 있다. 반송파 집성이 지원되는 경우, DL 자원(또는, DL CC)의 반송파 주파수(carrier frequency)와 UL 자원(또는, UL CC)의 반송파 주파수(carrier frequency) 사이의 링키지(linkage)는 시스템 정보에 의해 지시될 수 있다. 예를 들어, 시스템 정보 블록 타입2(System Information Block Type2, SIB2) 링키지(linkage)에 의해서 DL 자원과 UL 자원의 조합이 지시될 수 있다. FDD의 경우, UL 동작 대역과 DL 동작 대역이 서로 다르므로, 서로 다른 반송파 주파수가 링크되어 하나의 셀(Cell)을 이루며, SIB2 링키지는 UE가 접속한 DL CC의 주파수와는 다른 주파수를 UL CC의 주파수로서 지시하게 된다. 다시 말해, FDD의 경우, 일 셀(Cell)을 구성하는 DL CC 및 상기 DL CC와 링크된 UL CC는 서로 다른 주파수에서 동작한다. TDD의 경우, UL 동작 대역과 DL 동작 대역이 서로 같으므로, 하나의 반송파 주파수가 하나의 셀(Cell)을 이루며, SIB2 링키지는 UE가 접속한 DL CC의 주파수와 동일한 주파수를 해당 UL CC의 주파수로서 지시하게 된다. 다시 말해, TDD의 경우, 일 셀(Cell)을 구성하는 DL CC 및 상기 DL CC와 링크된 UL CC는 동일한 주파수에서 동작한다. 여기서, 반송파 주파수라 함은 각 셀(Cell) 혹은 CC의 중심 주파수(center frequency)를 의미한다. 주 주파수(Primary frequency) 상에서 동작하는 셀(Cell)을 주 셀(Primary Cell, PCell) 혹은 PCC로 지칭하고, 보조 주파수(Secondary frequency)(또는 SCC) 상에서 동작하는 셀을 보조 셀(Secondary Cell, SCell) 혹은 SCC로 지칭할 수 있다. PCell이라 함은 UE가 초기 연결 설정(initial connection establishment) 과정을 수행하거나 연결 재-설정(connection re-establishment) 과정을 시작하는 데 사용하는 셀(Cell)을 의미한다. PCell은 핸드오버 과정에서 지시된 셀(Cell)을 지칭할 수도 있다. 다른 예로, PCell은 UE가 DL 동기 시그널(synchronization signal, SS)을 수신하여 초기 동기를 맞춘 DL CC 및 상기 DL CC와 링크된 UL CC를 의미하기도 한다. 하향링크에서 PCell에 대응하는 반송파는 하향링크 주 CC(DL PCC)라고 하며, 상향링크에서 PCell에 대응하는 반송파는 UL 주 CC(DL PCC)라고 한다. SCell이라 함은 RRC(Radio Resource Control) 연결 설정이 이루어진 이후에 설정 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있는 셀(Cell)을 의미한다. UE의 성능(capabilities)에 따라, SCell이 PCell과 함께 상기 UE를 위한 서빙 셀(Cell)의 모음(set)를 형성할 수 있다. 서빙(serving) 셀(Cell)은 서빙 CC로 불릴 수 있다. 하향링크에서 SCell에 대응하는 반송파는 DL 보조 CC(DL SCC)라 하며, 상향링크에서 상기 SCell에 대응하는 반송파는 UL 보조 CC(UL SCC)라 한다. RRC_CONNECTED 상태에 있지만 반송파 집성이 설정되지 않았거나 반송파 집성을 지원하지 않는 UE의 경우, PCell로만 설정된 서빙 셀(Cell)이 단 하나 존재한다. 반면, RRC_CONNECTED 상태에 있고 반송파 집성이 설정된 UE의 경우, 하나 이상의 서빙 셀(Cell)이 존재할 수 있고, 전체 서빙 셀(Cell)에는 하나의 PCell과 하나 이상의 SCell이 포함될 수 있다. 반송파 집성을 위해, 네트워크는 초기 보안 활성화(initial security activation) 과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 하나 이상의 SCell을 부가하여 반송파 집성이 지원되는 UE를 구성할 수 있다. 그러나, UE가 반송파 집성을 지원하더라도, 네트워크는 SCell을 부가하지 않고, PCell만을 상기 UE를 위해 설정할 수도 있다. The 3GPP LTE / LTE-A system uses the concept of a cell to manage radio resources. A cell is defined as a combination of DL resources and UL resources, that is, a combination of a DL CC and a UL CC. The cell may be configured of DL resources alone or a combination of DL resources and UL resources. If carrier aggregation is supported, the linkage between the carrier frequency of the DL resource (or DL CC) and the carrier frequency of the UL resource (or UL CC) is indicated by system information. Can be. For example, a combination of a DL resource and a UL resource may be indicated by a system information block type 2 (SIB2) linkage. In the case of FDD, since the UL operating band and the DL operating band are different from each other, different carrier frequencies are linked to form one cell, and the SIB2 linkage uses a different frequency from that of the DL CC to which the UE is connected. It is indicated as the frequency of. In other words, in the case of FDD, the DL CC constituting one cell and the UL CC linked with the DL CC operate at different frequencies. In the case of TDD, since the UL operating band and the DL operating band are the same, one carrier frequency forms one cell, and the SIB2 linkage uses the same frequency as that of the DL CC to which the UE is connected. It is indicated as In other words, in the case of TDD, the DL CC constituting one cell and the UL CC linked with the DL CC operate at the same frequency. Here, the carrier frequency means a center frequency of each cell or CC. A cell operating on a primary frequency is referred to as a primary cell (PCell) or a PCC, and a cell operating on a secondary frequency (or SCC) is referred to as a secondary cell (SCell). Or SCC. PCell refers to a cell used by a UE to perform an initial connection establishment process or to initiate a connection reestablishment process. PCell may refer to a cell indicated in the handover process. As another example, the PCell may refer to a DL CC which is initially synchronized with a UE by receiving a DL synchronization signal (SS) and an UL CC linked to the DL CC. In the downlink, the carrier corresponding to the PCell is called a downlink primary CC (DL PCC), and the carrier corresponding to the PCell in the uplink is called a UL main CC (DL PCC). SCell refers to a cell that can be configured after RRC (Radio Resource Control) connection establishment and can be used to provide additional radio resources. Depending on the capabilities of the UE, the SCell may form a set of serving cells for the UE with the PCell. The serving cell may be called a serving CC. The carrier corresponding to the SCell in downlink is called DL Supplementary CC (DL SCC), and the carrier corresponding to the SCell in uplink is called UL Supplementary CC (UL SCC). In case of the UE that is in the RRC_CONNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell configured only for the PCell. On the other hand, in case of a UE in RRC_CONNECTED state and carrier aggregation is configured, one or more serving cells may exist, and the entire serving cell may include one PCell and one or more SCells. For carrier aggregation, after the initial security activation process is initiated, the network may configure a UE in which carrier aggregation is supported by adding one or more SCells to an initially configured PCell during a connection establishment process. However, even if the UE supports carrier aggregation, the network may configure only the PCell for the UE without adding the SCell.
단일 반송파를 이용한 통신의 경우, 단 하나의 서빙 셀(Cell)만이 존재하므로, UL/DL 그랜트를 나르는 PDCCH와 해당 PUSCH/PDSCH는 동일한 셀(Cell)에서 전송된다. 다시 말해, 단일 반송파 상황 하의 FDD의 경우, 특정 DL CC에서 전송될 PDSCH에 대한 DL 그랜트를 위한 PDCCH는 상기 특정 CC에서 전송되며, 특정 UL CC에서 전송될 PUSCH에 대한 UL 그랜트를 위한 PDCCH는 상기 특정 UL CC와 링크된 DL CC에서 전송된다. 이에 반해, 다중 반송파 시스템에서는, 복수의 서빙 셀(Cell)이 구성될 수 있으므로, 채널상황이 좋은 서빙 셀(Cell)에서 UL/DL 그랜트가 전송되는 것이 허용될 수 있다. 이와 같이, 스케줄링 정보인 UL/DL 그랜트를 나르는 셀(Cell)과 UL/DL 그랜트에 대응하는 UL/DL 전송이 수행되는 셀(Cell)이 다른 경우, 이를 크로스-반송파 스케줄링이라 한다. 3GPP LTE-A 시스템에서는 데이터 전송률 개선 및 안정적인 제어 시그널링을 위하여 복수 CC의 집성 및 이를 기반으로 한 크로스-반송파 스케줄링 동작이 지원될 수 있다. PCell은 자기 자신 및 SCell에 대한 스케줄링 정보를 나를 수 있으며, SCell은 자기 자신 및 다른 SCell에 대한 스케줄링 정보를 나를 수 있다. 다만, SCell이 PCell에 대한 스케줄링 정보를 나르는 것은 허용되지 않는다.In the case of communication using a single carrier, since only one serving cell exists, the PDCCH carrying the UL / DL grant and the corresponding PUSCH / PDSCH are transmitted in the same cell. In other words, in the case of FDD under a single carrier situation, the PDCCH for the DL grant for the PDSCH to be transmitted in a specific DL CC is transmitted in the specific CC, and the PDCCH for the UL grant for the PUSCH to be transmitted in the specific UL CC is specified in the specific CC. It is transmitted on the DL CC linked with the UL CC. In contrast, in a multi-carrier system, since a plurality of serving cells can be configured, UL / DL grant can be allowed to be transmitted in a serving cell having a good channel condition. As such, when a cell carrying UL / DL grant, which is scheduling information, and a cell in which UL / DL transmission corresponding to a UL / DL grant is performed, this is called cross-carrier scheduling. In the 3GPP LTE-A system, aggregation of a plurality of CCs and a cross-carrier scheduling operation based on the same may be supported for data rate improvement and stable control signaling. The PCell may carry scheduling information about itself and the SCell, and the SCell may carry scheduling information about itself and the other SCell. However, SCell is not allowed to carry the scheduling information for the PCell.
참고로, 반송파 집성에서 사용되는 셀(Cell)이라는 용어는 일 BS 혹은 일 안테나 그룹에 의해 통신 서비스가 제공되는 일정 지리적 영역을 지칭하는 셀(cell)이라는 용어와 구분된다. 통신 서비스의 범위(coverage)를 지칭하는 특정 셀(cell)의 하향링크 신호는 상기 특정 셀(cell)의 BS 또는 안테나 그룹이 UE에게 전송하는 신호를 의미하며 상기 특정 셀의(cell)의 상향링크 신호는 UE가 상기 특정 셀(cell)의 BS 혹은 안테나 그룹에게 전송하는 신호를 의미한다. 이에 반해, 반송파 집성의 셀(Cell)의 하향링크/상향링크 신호는 해당 셀(Cell)을 구성하는 자원들을 이용하여 전송/수신되는 무선 신호를 의미한다. 일정 지리적 영역을 지칭하는 셀(cell)과 반송파 집성의 셀(Cell)을 구분하기 위하여, 이하에서는 반송파 집성의 셀(Cell)을 CC로 칭하고, 지리적 영역의 셀(cell)을 셀(cell)이라 칭하여, 본 발명의 실시예들을 설명한다. For reference, the term cell used in carrier aggregation is distinguished from a term cell which refers to a certain geographic area where communication service is provided by one BS or one antenna group. The downlink signal of a specific cell, which refers to the coverage of a communication service, means a signal transmitted by a BS or an antenna group of the specific cell to a UE, and is an uplink of the specific cell. The signal means a signal transmitted by the UE to the BS or the antenna group of the specific cell. In contrast, a downlink / uplink signal of a cell of a carrier aggregation refers to a radio signal transmitted / received using resources constituting the cell. In order to distinguish a cell indicating a certain geographic area from a cell of a carrier aggregation, a cell of a carrier aggregation is hereinafter referred to as a CC, and a cell of a geographic area is called a cell. Hereinafter, embodiments of the present invention will be described.
많은 양의 UCI가 한꺼번에 전송되어야 하는 경우, UE는 UCI 번들링, 복수의 PUCCH 자원들 중 어느 하나를 선택하는 채널 선택, 듀얼 리드-뮬러 부호(dual Reed-Muller code), 블록-확산(block-spreading) 등을 이용하여 상기 많은 양의 UCI를 한 번에 BS에 전송할 수 있다. 예를 들어, UE가 복수의 DL CC를 통해 BS로부터 수신한 복수의 PDSCH에 대한 ACK/NACK 정보를 BS에 전송하자 하는 경우, 복수의 PDSCH에 대한 상기 ACK/NACK 정보는 그 양이 PUCCH 포맷 1a/1b를 이용하여 전송되기에 너무 많기 때문에, UE는 복수의 ACK/NACK 전송 비트를 채널 부호(code)(예를 들어, 리드-뮬러 부호(Reed-Muller code), 테일-바이팅 길쌈 부호(tail-biting convolution code, TBCC), 터보 부호(turbo code) 등)화한 후에 PUCCH 포맷 2를 이용하여 BS에게 전송하거나, 블록-확산(block-spreading) 기반의 PUCCH 포맷 3를 이용하여 BS에게 전송할 수 있다. 블록-확산 기법은 제어 정보/신호(예를 들어, ACK/NACK 등)를, PUCCH 포맷 1 계열 또는 PUCCH 포맷 2 계열과 달리, SC-FDMA 방식을 이용하여 변조한다.If a large amount of UCI is to be transmitted at the same time, the UE may use UCI bundling, channel selection to select any of a plurality of PUCCH resources, dual Reed-Muller code, block-spreading Can be transmitted to the BS at a time. For example, when the UE wants to transmit ACK / NACK information for a plurality of PDSCHs received from a BS through a plurality of DL CCs, the amount of ACK / NACK information for a plurality of PDSCHs is equal to PUCCH format 1a. Since there are too many to transmit using / 1b, the UE sends a plurality of ACK / NACK transmission bits to a channel code (e.g., a Reed-Muller code, a tail-biting convolutional code). tail-biting convolution code (TBCC), turbo code, etc.) and then to the BS using PUCCH format 2 or to the BS using block-spreading based PUCCH format 3 have. The block-spreading technique modulates control information / signals (eg, ACK / NACK, etc.) using the SC-FDMA scheme, unlike the PUCCH format 1 series or the PUCCH format 2 series.
도 9는 블록-확산을 기반으로 한 PUCCH 포맷을 예시한 것이다.9 illustrates a PUCCH format based on block-spreading.
블록-확산 기법은 심볼 시퀀스를 OCC(Orthogonal Cover Code)(직교 시퀀스(orthogonal sequence)라고도 함)에 의해 시간-도메인 확산하여 전송한다. 블록-확산 기법에 의하면, OCC에 의해 여러 UE들의 제어 신호들이 동일한 RB에 다중화되어 BS에게 전송될 수 있다. PUCCH 포맷 2의 경우, 하나의 심볼 시퀀스가 시간-도메인에 걸쳐 전송되되, UE들의 UCI들이 CAZAC 시퀀스의 순환천이(CCS)를 이용하여 다중화되어 BS에게 전송된다. 반면에, 블록-확산 기반의 새로운 PUCCH 포맷(이하, PUCCH 포맷 3)의 경우, 하나의 심볼 시퀀스가 주파수-도메인에 걸쳐 전송되되, UE들의 UCI들이 OCC 기반의 시간-도메인 확산을 이용하여 UE들의 UCI들이 다중화되어 BS에게 전송된다. 예를 들어, 도 9를 참조하면, 하나의 심볼 시퀀스가 길이-5(즉, SF=5)의 OCC에 의해 확산되어 5개의 SC-FDMA 심볼들에게 맵핑된다. 도 9에서는 1개의 슬롯 동안 총 2개의 RS 심볼들이 사용되는 경우가 예시되었으나, 3개의 RS 심볼들이 사용되고 SF=4의 OCC가 심볼 시퀀스의 확산 및 UE 다중화에 이용될 수도 있다. 여기서, RS 심볼은 특정 순환천이를 갖는 CAZAC 시퀀스로부터 생성될 수 있으며, 시간 도메인에서 복수의 RS 심볼들에 특정 OCC가 적용된/곱해진 형태로 UE로부터 BS에게 전송될 수도 있다. 도 9에서 DFT는 OCC 전에 미리 적용될 수도 있으며, DFT 대신 FFT(Fast Fourier Transform)이 적용될 수도 있다.The block-spreading technique transmits a symbol sequence by time-domain spreading by an orthogonal cover code (OCC) (also called an orthogonal sequence). According to the block-spreading technique, control signals of several UEs may be multiplexed on the same RB and transmitted to the BS by the OCC. In the case of PUCCH format 2, one symbol sequence is transmitted over a time-domain, but UCIs of UEs are multiplexed using a cyclic shift (CCS) of a CAZAC sequence and transmitted to a BS. On the other hand, in the case of a block-spread based new PUCCH format (hereinafter, PUCCH format 3), one symbol sequence is transmitted across a frequency-domain, where UCIs of UEs use OCC based time-domain spreading of UEs. UCIs are multiplexed and sent to the BS. For example, referring to FIG. 9, one symbol sequence is spread by an OCC of length-5 (ie SF = 5) and mapped to five SC-FDMA symbols. In FIG. 9, a case in which a total of two RS symbols are used during one slot is illustrated, but three RS symbols are used and an OCC of SF = 4 may be used for spreading a symbol sequence and UE multiplexing. Here, the RS symbol may be generated from a CAZAC sequence having a specific cyclic shift, and may be transmitted from the UE to the BS in a specific OCC applied / multiplied to a plurality of RS symbols in the time domain. In FIG. 9, the DFT may be applied before the OCC, and a Fast Fourier Transform (FFT) may be applied instead of the DFT.
PUCCH 포맷 3의 신호 처리 과정을 수학식을 이용하여 설명한다. 편의상 길이-5의 OCC를 사용하는 경우를 가정한다. 먼저, 비트 블록 b(0),...,(Mbit-1)이 UE-특정적 스크램블링 시퀀스에 의해 스크램블링된다. 비트 블록 b(0),...,(Mbit-1)은 ACK/NACK 비트, CSI 비트, SR 비트 중 적어도 하나를 포함하는 UCI가 리드-뮬러(Reed-Muller, RM) 부호, TBCC, 터보 부호에 의해 부호화된 값에 대응할 수 있다. 스크램블링된 비트 블록
Figure PCTKR2012006266-appb-I000001
은 다음 식에 의해 생성될 수 있다.
The signal processing procedure of the PUCCH format 3 will be described using an equation. For convenience, the case of using an OCC of length-5 is assumed. First, bit blocks b (0), ..., (M bit -1) are scrambled by the UE-specific scrambling sequence. Bit blocks b (0), ..., (M bit- 1) is a UCI containing at least one of the ACK / NACK bits, CSI bits, SR bits, Reed-Muller (RM) code, TBCC, It may correspond to a value encoded by a turbo code. Scrambled bit block
Figure PCTKR2012006266-appb-I000001
Can be generated by the following equation.
수학식 1
Figure PCTKR2012006266-appb-M000001
Equation 1
Figure PCTKR2012006266-appb-M000001
여기서, c(i)는 스크램블링 시퀀스를 나타내며, c(i)는 길이-31 골드 시퀀스에 의해 정의되는 의사-랜덤(pseudo-random) 시퀀스를 이용하여 다음 식에 따라 생성될 수 있다. Here, c (i) represents a scrambling sequence, and c (i) may be generated according to the following equation using a pseudo-random sequence defined by a length-31 gold sequence.
수학식 2
Figure PCTKR2012006266-appb-M000002
Equation 2
Figure PCTKR2012006266-appb-M000002
수학식 2에서, NC=1600일 수 있으며, 첫 번째 m-시퀀스는 x1(0)=1, x1(n)=0, n=1,2,...,30으로 초기화된다. 두 번째 m-시퀀스는 해당 시퀀스의 적용(application)에 의존하는 값에 의해 다음 식으로 주어진다.In Equation 2, N C = 1600, and the first m-sequence is initialized to x 1 (0) = 1, x 1 (n) = 0, n = 1,2, ..., 30. The second m-sequence is given by the value depending on the application of the sequence:
수학식 3
Figure PCTKR2012006266-appb-M000003
Equation 3
Figure PCTKR2012006266-appb-M000003
상기 스크램블링 시퀀스 c(i)를 생성하는 스크램블링 시퀀스 생성기는 매 서브프레임의 시작 시에 다음 식에 따라 초기화될 수 있다.The scrambling sequence generator for generating the scrambling sequence c (i) may be initialized at the beginning of every subframe according to the following equation.
수학식 4
Figure PCTKR2012006266-appb-M000004
Equation 4
Figure PCTKR2012006266-appb-M000004
여기서, ns는 무선 프레임 내 슬롯 번호이며, NCell ID는 물레 계층 셀 식별자(physical layer cell identifier)이고, nRNTI는 셀 RNTI(C-RNTI)를 나타낸다.Here, n s is a slot number in a radio frame, N Cell ID is a physical layer cell identifier, and n RNTI represents a cell RNTI (C-RNTI).
스크램블링된 비트 블록
Figure PCTKR2012006266-appb-I000002
은 변조 맵퍼(modulation mapper)(변조기(modulator)라고도 함)에 의해 변조되어, 복소 변조 심볼들(complex-valued modulation symbols)의 블록 d(0),...,d(Msym-1)이 생성된다. 여기서, Msym=Mbit/2=2NRB sc이다. 상기 복소 변조 심볼들 d(0),...,d(Msym-1)은 직교 시퀀스
Figure PCTKR2012006266-appb-I000003
Figure PCTKR2012006266-appb-I000004
를 이용하여 블록-단위(block-wise)로 확산되어, 다음 식에 따라 NPUCCH SF,0+NPUCCH SF,1개 세트의 복소 심볼들(complex-valued symbols)이 생성된다. 각각의 복소 심볼 세트는 하나의 SC-FDM 심볼에 대응하며, NRB sc(예, 12)개의 복소 변조 값을 갖는다.
Scrambled bit block
Figure PCTKR2012006266-appb-I000002
Is modulated by a modulation mapper (also called a modulator) so that blocks d (0), ..., d (M sym -1) of complex-valued modulation symbols are Is generated. Here, M sym = M bit / 2 = 2N RB sc . The complex modulation symbols d (0), ..., d (M sym -1) are orthogonal sequences
Figure PCTKR2012006266-appb-I000003
And
Figure PCTKR2012006266-appb-I000004
Is spread in block-wise using N PUCCH SF, 0 + N PUCCH SF, and one set of complex-valued symbols is generated according to the following equation. Each complex symbol set corresponds to one SC-FDM symbol and has N RB sc (eg, 12) complex modulation values.
수학식 5
Figure PCTKR2012006266-appb-M000005
Equation 5
Figure PCTKR2012006266-appb-M000005
여기서, NPUCCH SF,0와 NPUCCH SF,1은 각각 슬롯 0 및 슬롯 1에서 PUCCH 전송에 사용되는 SC-FDM 심볼의 개수에 해당한다. 따라서, 정규(normal) PUCCH 포맷 3가 사용되는 경우, NPUCCH SF,0=NPUCCH SF,1=5이며, 단축(shortened) PUCCH 포맷 3가 사용되는 경우, NPUCCH SF,0=NPUCCH SF,1=4이다.
Figure PCTKR2012006266-appb-I000005
Figure PCTKR2012006266-appb-I000006
는 안테나 포트 p에 대해 각각 슬롯 0 및 슬롯 1에 적용되는 직교 시퀀스를 각각 나타내며, 다음 표와 같이 주어질 수 있다.
Here, N PUCCH SF, 0 and N PUCCH SF, 1 correspond to the number of SC-FDM symbols used for PUCCH transmission in slot 0 and slot 1, respectively. Thus, when normal PUCCH format 3 is used, N PUCCH SF, 0 = N PUCCH SF, 1 = 5, and when shortened PUCCH format 3 is used, N PUCCH SF, 0 = N PUCCH SF , 1 = 4.
Figure PCTKR2012006266-appb-I000005
And
Figure PCTKR2012006266-appb-I000006
Denotes an orthogonal sequence applied to slot 0 and slot 1 for antenna port p, respectively, and may be given as shown in the following table.
표 4
Figure PCTKR2012006266-appb-T000001
Table 4
Figure PCTKR2012006266-appb-T000001
표 4에서, NPUCCH SF=5를 위한 직교 시퀀스(혹은 OCC)는 다음 식에 의해 생성된다.In Table 4, an orthogonal sequence (or OCC) for N PUCCH SF = 5 is generated by the following equation.
수학식 6
Figure PCTKR2012006266-appb-M000006
Equation 6
Figure PCTKR2012006266-appb-M000006
PUCCH 포맷 3의 전송을 위한 자원은 자원 인덱스 n(3,p) PUCCH에 의해 식별될 수 있다. 예를 들어, np oc,0 및 np oc,1는 다음 식에 따라 주어질 수 있다. Resources for transmission of PUCCH format 3 may be identified by resource index n (3, p) PUCCH . For example, n p oc, 0 and n p oc, 1 can be given according to the following equation.
수학식 7
Figure PCTKR2012006266-appb-M000007
Equation 7
Figure PCTKR2012006266-appb-M000007
각 복소 심볼 세트는 다음 식에 따라 순환 천이된다.Each complex symbol set is cyclically shifted according to the following equation.
수학식 8
Figure PCTKR2012006266-appb-M000008
Equation 8
Figure PCTKR2012006266-appb-M000008
여기서, ncell cs(ns,l)는 셀-특정적 순환 천이로서, 일 슬롯 내 SC-FDM 심볼 번호 l 및 무선 프레임 내 슬롯 번호 ns에 의해 다음 식에 따라 변한다.Here, n cell cs (n s , l) is a cell-specific cyclic shift, and is changed according to the following equation by SC-FDM symbol number l in one slot and slot number n s in a radio frame.
수학식 9
Figure PCTKR2012006266-appb-M000009
Equation 9
Figure PCTKR2012006266-appb-M000009
수학식 9에서, 의사-랜덤 시퀀스 c(i)는 수학식 2에 의해 정의될 수 있다. 상기 의사-랜덤 시퀀스 c(i)를 생성하는 의사-랜덤 시퀀스 생성기는 각 무선 프레임의 시작에서 PCC에 해당하는 cinit=Ncell ID로 초기화된다.In Equation 9, the pseudo-random sequence c (i) may be defined by Equation 2. The pseudo-random sequence generator for generating the pseudo-random sequence c (i) is initialized with c init = N cell ID corresponding to the PCC at the beginning of each radio frame.
복소 심볼들의 천이된 세트들은 다음 식과 같이 변환 프리코딩된다. 그 결과, 복소 심볼들의 블록 zp(0),...,zp((NPUCCH SF,0+NPUCCH SF,1)NRB sc-1)이 생성된다.The transitioned sets of complex symbols are transform precoded as follows. As a result, blocks z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) of complex symbols are generated.
수학식 10
Figure PCTKR2012006266-appb-M000010
Equation 10
Figure PCTKR2012006266-appb-M000010
여기서, P는 PUCCH 전송에 사용되는 안테나 포트의 개수를 나타낸다.Here, P represents the number of antenna ports used for PUCCH transmission.
복소 심볼들 zp(0),...,zp((NPUCCH SF,0+NPUCCH SF,1)NRB sc-1)는 전력 제어 이후에 물리 자원에 맵핑된다. PUCCH는 서브프레임 내의 각 슬롯에서 하나의 자원 블록을 사용한다. 해당 자원 블록 내에서 zp(0),...,zp((NPUCCH SF,0+NPUCCH SF,1)NRB sc-1)는 RS 전송에 사용되지 않는 자원 요소 (k,l)에 맵핑되되, 서브프레임의 첫 번째 슬롯부터 시작해서 k가 증가하는 순으로, 다음으로 l이 증가하는 순으로, 다음으로 슬롯 번호가 증가하는 순으로 맵핑된다.The complex symbols z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) are mapped to the physical resource after power control. PUCCH uses one resource block in each slot in a subframe. Z p (0), ..., z p ((N PUCCH SF, 0 + N PUCCH SF, 1 ) N RB sc -1) in the corresponding resource block is not used for RS transmission (k, l M), starting with the first slot of the subframe, followed by increasing k, then increasing l, and then increasing slot number.
안테나 포트 p에 대한 PUCCH 포맷 3를 위한 자원은 자원 인덱스 n(3,p) PUCCH에 의해 식별된다. 예를 들어, noc는 noc=n(3,p) PUCCH mod NPUCCH SF,1으로 주어질 수 있다. PUCCH 포맷 3의 자원 할당(resource allocation)은 기본적으로 명시적 자원 할당을 기본으로 한다. 즉, PUCCH 포맷 3가 설정(configure)되어 있는 UE는 PUCCH 포맷 3를 위한 직교 자원을 BS로부터 명시적으로 시그널링받을 수 있다. 한편, PUCCH 포맷 3를 위한 자원은 SCC를 통해 전송되는 PDSCH를 위한 PDCCH 내의 ARI(ACK/NACK Resource Indicator)와 결부되어 결정될 수도 있다. ARI는 명시적으로 BS로부터 UE에게 시그널링된 PUCCH 자원 인덱스를 기준으로 한 오프셋(offset)을 의미하거나, BS로부터 UE에게 명시적으로 시그널링된 PUCCH 자원 세트 내 PUCCH 자원들 중에서 실제 PUCCH 전송에 사용될 자원을 지시하는 용도로서 사용될 수 있다. SCC의 PDCCH를 통해 BS로부터 UE에게 전송되는 DCI 내 전송전력제어(transmit power control, TPC) 필드가 ARI로서 재사용될 수 있으며, PCC의 PDCCH를 통해 BS로부터 UE에게 전송되는 DCI 내 TPC 필드는 본래 용도인 PUCCH 전력 제어 용도로 사용될 수 있다. 이 때, UE가 PCC 상에서만 PDSCH를 수신(혹은 PCC 상에서만 PDCCH)를 수신하는 경우, ARI와 결부된 자원 인덱스를 알 수가 없는 문제가 발생한다. 이 경우, UE 및 BS는 기존 PUCCH 포맷 1a/1b의 PUCCH 자원을 이용하여 ACK/NACK을 전송/수신하는 폴백(fall-back) 모드로 동작할 수 있다.The resource for PUCCH format 3 for antenna port p is identified by resource index n (3, p) PUCCH . For example, n oc may be given as n oc = n (3, p) PUCCH mod N PUCCH SF, 1 . Resource allocation in PUCCH format 3 is basically based on explicit resource allocation. That is, a UE in which PUCCH format 3 is configured may explicitly receive an orthogonal resource for PUCCH format 3 from the BS. Meanwhile, the resource for PUCCH format 3 may be determined in conjunction with an ACK (ACK / NACK Resource Indicator) in the PDCCH for the PDSCH transmitted through the SCC. An ARI means an offset based on a PUCCH resource index explicitly signaled from a BS to a UE, or a resource to be used for actual PUCCH transmission among PUCCH resources in a PUCCH resource set explicitly signaled from a BS to a UE. Can be used as an indication. The transmit power control (TPC) field in the DCI transmitted from the BS to the UE through the PDCCH of the SCC may be reused as an ARI, and the TPC field in the DCI transmitted from the BS to the UE via the PDCCH of the PCC is originally used. Can be used for PUCCH power control. At this time, when the UE receives the PDSCH only on the PCC (or PDCCH only on the PCC), a problem arises in that the resource index associated with the ARI is unknown. In this case, the UE and BS may operate in a fall-back mode in which ACK / NACK is transmitted / received using PUCCH resources of existing PUCCH formats 1a / 1b.
이하, PUCCH 포맷 3에 의해 전송되는 UCI 페이로드(payload)는 (32,O) RM 부호에 의해 채널 부호화될 수 있다. 여기서, O는 입력 비트의 개수를 나타내며, 32는 출력 비트의 개수를 나타낸다. 다만, (32,O) 블록 부호를 이용한 RM 부호화는 최대 11까지만 부호화할 수 있는 바, UCI 정보 비트의 수가 11을 초과하는 경우에는 PUCCH 포맷 3에 듀얼 RM 부호화가 적용된다. 즉, PUCCH 포맷 3에는 다음과 같은 채널 부호화가 적용될 수 있다.Hereinafter, the UCI payload transmitted by PUCCH format 3 may be channel encoded by a (32, O) RM code. Here, O represents the number of input bits and 32 represents the number of output bits. However, up to 11 RM encoding using a (32, O) block code can encode up to 11. When the number of UCI information bits exceeds 11, dual RM encoding is applied to PUCCH format 3. That is, the following channel coding may be applied to the PUCCH format 3.
- UCI 페이로드 크기 ≤ 11 비트: (32,O) 블록 부호를 이용한 RM 부호화UCI payload size ≤ 11 bits: RM coding using (32, O) block code
- UCI 페이로드 크기 > 11 비트: (32,O) 블록 부호를 이용한 듀얼 RM 부호화UCI payload size> 11 bits: Dual RM encoding using (32, O) block code
PUCCH 포맷 3에 의해 한 번에 전송될 UCI 페이로드의 크기를 NPUCCHformat3 A/N이라고 하면, NPUCCHformat3 A/N ≤ 11에 대해 UCI 비트 시퀀스 a_0,a_1,a_2,...,a_(NPUCCHformat3 A/N-1)은 다음 식에 따라 인코딩(encoding)된다.If the size of the UCI payload to be transmitted at one time by PUCCH format 3 is N PUCCHformat3 A / N , the UCI bit sequence a_0, a_1, a_2, ..., a_ (N PUCCHformat3) for N PUCCHformat3 A / N ≤ 11 A / N -1) is encoded according to the following equation.
수학식 11
Figure PCTKR2012006266-appb-M000011
Equation 11
Figure PCTKR2012006266-appb-M000011
여기서, i=0,1,2,...,31이다. 수학식 11에서, 기본(basis) 시퀀스들 Mi,n은, 예를 들어, 다음과 같이 정의될 수 있다.Where i = 0,1,2, ..., 31. In Equation 11, the base sequences M i, n may be defined, for example, as follows.
표 5
i Mi,0 Mi,1 Mi,2 Mi,3 Mi,4 Mi,5 Mi,6 Mi,7 Mi,8 Mi,9 Mi,10
0 1 1 0 0 0 0 0 0 0 0 1
1 1 1 1 0 0 0 0 0 0 1 1
2 1 0 0 1 0 0 1 0 1 1 1
3 1 0 1 1 0 0 0 0 1 0 1
4 1 1 1 1 0 0 0 1 0 0 1
5 1 1 0 0 1 0 1 1 1 0 1
6 1 0 1 0 1 0 1 0 1 1 1
7 1 0 0 1 1 0 0 1 1 0 1
8 1 1 0 1 1 0 0 1 0 1 1
9 1 0 1 1 1 0 1 0 0 1 1
10 1 0 1 0 0 1 1 1 0 1 1
11 1 1 1 0 0 1 1 0 1 0 1
12 1 0 0 1 0 1 0 1 1 1 1
13 1 1 0 1 0 1 0 1 0 1 1
14 1 0 0 0 1 1 0 1 0 0 1
15 1 1 0 0 1 1 1 1 0 1 1
16 1 1 1 0 1 1 1 0 0 1 0
17 1 0 0 1 1 1 0 0 1 0 0
18 1 1 0 1 1 1 1 1 0 0 0
19 1 0 0 0 0 1 1 0 0 0 0
20 1 0 1 0 0 0 1 0 0 0 1
21 1 1 0 1 0 0 0 0 0 1 1
22 1 0 0 0 1 0 0 1 1 0 1
23 1 1 1 0 1 0 0 0 1 1 1
24 1 1 1 1 1 0 1 1 1 1 0
25 1 1 0 0 0 1 1 1 0 0 1
26 1 0 1 1 0 1 0 0 1 1 0
27 1 1 1 1 0 1 0 1 1 1 0
28 1 0 1 0 1 1 1 0 1 0 0
29 1 0 1 1 1 1 1 1 1 0 0
30 1 1 1 1 1 1 1 1 1 1 1
31 1 0 0 0 0 0 0 0 0 0 0
Table 5
i M i, 0 M i, 1 M i, 2 M i, 3 M i, 4 M i, 5 M i, 6 M i, 7 M i, 8 M i, 9 M i, 10
0 One One 0 0 0 0 0 0 0 0 One
One One One One 0 0 0 0 0 0 One One
2 One 0 0 One 0 0 One 0 One One One
3 One 0 One One 0 0 0 0 One 0 One
4 One One One One 0 0 0 One 0 0 One
5 One One 0 0 One 0 One One One 0 One
6 One 0 One 0 One 0 One 0 One One One
7 One 0 0 One One 0 0 One One 0 One
8 One One 0 One One 0 0 One 0 One One
9 One 0 One One One 0 One 0 0 One One
10 One 0 One 0 0 One One One 0 One One
11 One One One 0 0 One One 0 One 0 One
12 One 0 0 One 0 One 0 One One One One
13 One One 0 One 0 One 0 One 0 One One
14 One 0 0 0 One One 0 One 0 0 One
15 One One 0 0 One One One One 0 One One
16 One One One 0 One One One 0 0 One 0
17 One 0 0 One One One 0 0 One 0 0
18 One One 0 One One One One One 0 0 0
19 One 0 0 0 0 One One 0 0 0 0
20 One 0 One 0 0 0 One 0 0 0 One
21 One One 0 One 0 0 0 0 0 One One
22 One 0 0 0 One 0 0 One One 0 One
23 One One One 0 One 0 0 0 One One One
24 One One One One One 0 One One One One 0
25 One One 0 0 0 One One One 0 0 One
26 One 0 One One 0 One 0 0 One One 0
27 One One One One 0 One 0 One One One 0
28 One 0 One 0 One One One 0 One 0 0
29 One 0 One One One One One One One 0 0
30 One One One One One One One One One One One
31 One 0 0 0 0 0 0 0 0 0 0
출력 비트 시퀀스 b0,b1,b2,...,bB-1은 수학식 11에 의해 인코딩된 시퀀스의 원환 반복(circular repetition)에 의해 얻어질 수 있으며, 이를 수학식으로 표현하면 다음과 같다.The output bit sequence b 0 , b 1 , b 2 , ..., b B-1 can be obtained by the circular repetition of the sequence encoded by equation (11). Same as
수학식 12
Figure PCTKR2012006266-appb-M000012
Equation 12
Figure PCTKR2012006266-appb-M000012
도 10은 듀얼 리드-뮬러(Reed-Muller, RM) 부호화를 설명하는 블록도이며, 도 11은 듀열 RM 부호화가 적용된 상향링크 제어정보의 비트 시퀀스를 설명하는 도면이다. 다시 말해, 도 10 및 도 11은 페이로드 크기가 11보다 큰 UCI의 채널 부호화를 설명하는 도면이다.FIG. 10 is a block diagram illustrating dual Reed-Muller (RM) encoding, and FIG. 11 is a diagram illustrating a bit sequence of uplink control information to which dual RM encoding is applied. In other words, FIGS. 10 and 11 illustrate channel encoding of UCI having a payload size greater than 11.
도 10을 참조하면, UCI 비트들(예를 들어, ACK/NACK, SR, RI 등) a_0,a_1,...,a_(NPUCCHformat3 A/N-1)은 2개의 세그먼트(segment)로 분주(divide)된다. UCI 비트 크기가 N이면, 세그먼트 1으로는 ceil(N/2)개 비트가 분주되고 세그먼트 2로는 N-ceil(N/2)개 비트가 분주된다. 예를 들어, N=15이면, 세그먼트 1으로는 8 비트가 분주되고 세그먼트 2로는 7 비트가 분주된다. 도 11을 참조하면, 한 번에 전송될 ACK/NACK 비트들이 특정 규칙에 따라 배치(ordering)되어 ACK/NACK 비트 시퀀스 oACK_0,oACK_1,...,oACK_(NPUCCHformat3 A/N-1)가 생성될 수 있다(S1110). NPUCCHformat3 A/N 비트의 ACK/NACK 비트 시퀀스 oACK_0,oACK_1,...,oACK_(NPUCCHformat3 A/N-1)가 듀얼 RM 부호기로의 입력 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)에 대응될 수 있다(S1110). 상기 입력 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)는 듀얼 RM 부호화를 위해 2개의 세그먼트로 분주된다(S1120). 예를 들어, 입력 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)는 i가 짝수(even)이면 a_(i/2)=oACK_i로 세팅(setting)하고 i가 홀수(odd)이면 a_(ceil(NPUCCHformat3 A/N/2)+(i-1)/2)=oACK_i로 세팅함으로써 2개의 RM 부호화 세그먼트가 얻어질 수 있다(S1120). 이에 따라, 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)가 2개의 RM 부호화 세그먼트 [a_0, a_2,..., a_(ceil(NPUCCHformat3 A/N/2)-1)](이하, 세그먼트 1) 및 [a_ceil(NPUCCHformat3 A/N/2), a_(ceil(NPUCCHformat3 A/N/2)+1),..., a_(NPUCCHformat3 A/N-1)](이하, 세그먼트 2)로 분주된다.Referring to FIG. 10, UCI bits (eg, ACK / NACK, SR, RI, etc.) a_0, a_1, ..., a_ (N PUCCHformat3 A / N- 1) are divided into two segments. (divide) If the UCI bit size is N, segment 1 is divided into ceil (N / 2) bits and segment 2 is divided into N-ceil (N / 2) bits. For example, if N = 15, 8 bits are divided into segment 1 and 7 bits are divided into segment 2. Referring to FIG. 11, ACK / NACK bits to be transmitted at one time are ordered according to a specific rule, and thus an ACK / NACK bit sequence o ACK _0, o ACK _1, ..., o ACK _ (N PUCCHformat3 A / N- 1 may be generated (S1110). ACK / NACK bit sequence of N PUCCHformat3 A / N bits o ACK _0, o ACK _1, ..., o ACK _ (N PUCCHformat3 A / N- 1) is the input bit sequence a_0, a_1, to the dual RM encoder. It may correspond to..., a_ (N PUCCHformat3 A / N −1) (S1110). The input bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N- 1) is divided into two segments for dual RM encoding (S1120). For example, the input bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N -1) is set to a_ (i / 2) = o ACK _i if i is even and i If is odd, two RM coding segments may be obtained by setting a_ (ceil (N PUCCHformat3 A / N / 2) + (i-1) / 2) = o ACK _i (S1120). Accordingly, the bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N -1) has two RM coding segments [a_0, a_2, ..., a_ (ceil (N PUCCHformat3 A / N / 2)). -1)] (hereafter Segment 1) and [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N -1)] (hereinafter referred to as segment 2).
세그먼트 1와 세그먼트 2에 대해 각각 RM 부호화가 적용된다(S1130). 각 세그먼트에 대해 (32,O) 채널 부호화가 적용되면 각 세그먼트에 대해 32 비트의 인코딩된 비트가 생성되어, 2개 세그먼트에 대해 총 64 비트의 인코딩된 비트가 생성된다. 3GPP LTE/LTE-A 시스템에서 일 RB에 포함된 부반송파의 개수는 12개이므로, 일 서브프레임의 2개 슬롯에 걸쳐 2개의 RB 내 변환(예, DFT) 프리코딩 전의 부반송파(이하, 가상(virtual) 부반송파)의 개수는 24개가 된다. 인코딩된 비트에 QPSK(Quadrature Phase Shift Keying) 변조가 적용된다고 가정하면, 총 48 비트가 일 서브프레임에서 PUCCH 포맷 3를 이용하여 전송될 수 있다. 따라서, 총 48 비트의 인코딩된 비트를 출하기 위해 세그먼트 1에서 생성된 32 비트와 세그먼트 2에서 생성된 32 비트의 마지막 8 비트가 각각 잘라져(truncate), 각각 24 비트로 레이트-매칭된다. RM encoding is applied to segments 1 and 2, respectively (S1130). When (32, O) channel coding is applied for each segment, 32 bits of encoded bits are generated for each segment, resulting in a total of 64 bits of encoded bits for two segments. In the 3GPP LTE / LTE-A system, since the number of subcarriers included in one RB is 12, the subcarriers before the two RB precodings (eg, DFT) precoding are spread over two slots of one subframe (hereinafter, referred to as virtual). The number of subcarriers) is 24. Assuming that quadrature phase shift keying (QPSK) modulation is applied to the encoded bits, a total of 48 bits may be transmitted using PUCCH format 3 in one subframe. Thus, to output a total of 48 bits of encoded bits, the 32 bits generated in segment 1 and the last 8 bits of 32 bits generated in segment 2 are each truncate and rate-matched to 24 bits each.
예를 들어, UCI 비트 시퀀스 [a_0, a_1,..., a_(ceil(NPUCCHformat3 A/N/2)-1)]은 수학식 13에 따라, UCI 비트 시퀀스 [a_ceil(NPUCCHformat3 A/N/2), a_(ceil(NPUCCHformat3 A/N/2)+1),..., a_(NPUCCHformat3 A/N-1)]는 수학식 14에 따라 각각 채널 부호화될 수 있다.For example, the UCI bit sequence [a_0, a_1, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] is a UCI bit sequence [a_ceil (N PUCCHformat3 A / N ) according to Equation 13. / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N- 1)] may be channel coded according to Equation 14, respectively.
수학식 13
Figure PCTKR2012006266-appb-M000013
Equation 13
Figure PCTKR2012006266-appb-M000013
수학식 14
Figure PCTKR2012006266-appb-M000014
Equation 14
Figure PCTKR2012006266-appb-M000014
수학식 13 및 수학식 14에서, i=0,1,2,...,23이고, 기본(basis) 시퀀스들 Mi,n은, 예를 들어, 표 5와 같이 정의될 수 있다. In Equations 13 and 14, i = 0,1,2, ..., 23, and the base sequences M i, n may be defined as shown in Table 5, for example.
이렇게 생성된 각 세그먼트의 인코딩된 24 비트는 가상 부반송파들로의 맵핑을 위해 QPSK로 변조되어 가상 부반송파 도메인(DFT 전단)에서 인터리빙된다(S1140). 수학식 13의 출력 비트들 및 수학식 14의 출력 비트들은 QPSK 성상(constellation)을 기준으로, 즉, 2 비트 단위로 교번하여 연결됨으로써 인터리빙될 수 있다. 예를 들어, 수학식 13에 따라 인코딩된 비트들과 수학식 14에 따라 인코딩된 비트들이 다음과 같이 교번 연결(alternate concatenation)됨으로써 출력 비트 시퀀스 b0,b1,b2,...,bB-1(여기서, B=4·NRB sc)가 얻어질 수 있다. The encoded 24 bits of each segment thus generated are modulated by QPSK and interleaved in a virtual subcarrier domain (DFT front end) for mapping to virtual subcarriers (S1140). The output bits of Equation 13 and the output bits of Equation 14 may be interleaved by alternately connecting on the basis of the QPSK constellation, that is, in units of two bits. For example, bits encoded according to Equation 13 and bits encoded according to Equation 14 are alternately concatenated as follows to output an output bit sequence b 0 , b 1 , b 2 , ..., b B-1 (where B = 4.N RB sc ) can be obtained.
수학식 15
Figure PCTKR2012006266-appb-M000015
Equation 15
Figure PCTKR2012006266-appb-M000015
도 11을 참조하면, B=4·NRB sc=4·12=48이므로, 수학식 15에 따라 출력 비트 시퀀스
Figure PCTKR2012006266-appb-I000007
가 얻어질 수 있다.
Referring to FIG. 11, since B = 4 · N RB sc = 4 · 12 = 48, the output bit sequence according to equation (15)
Figure PCTKR2012006266-appb-I000007
Can be obtained.
상기 출력 비트 시퀀스는 QPSK 변조되어 DFT 전단의 부반송파들(즉, 가상 부반송파들)에 맵핑될 수 있다. 도 10을 참조하면, 예를 들어, 세그먼트 1의 QPSK 심볼들은 짝수 번호의 부반송파들로 세그먼트 2의 QPSK 심볼들은 홀수 번호의 부반송파들 맵핑될 수 있다. 혹은, 세그먼트 1의 QPSK 심볼들은 홀수 번호의 부반송파들로, 세그먼트 2의 QPSK 심볼들은 짝수 번호의 부반송파들 맵핑될 수 있다. The output bit sequence may be QPSK modulated and mapped to subcarriers (ie, virtual subcarriers) preceding the DFT. Referring to FIG. 10, for example, QPSK symbols of segment 1 may be mapped to even-numbered subcarriers, and QPSK symbols of segment 2 may be mapped to odd-numbered subcarriers. Alternatively, the QPSK symbols of segment 1 may be mapped to odd-numbered subcarriers, and the QPSK symbols of segment 2 may be mapped to even-numbered subcarriers.
상기 인터리빙된 QPSK 심볼들이 맵핑된 부반송파들은 DFT 프리코딩되어 PRB에 맵핑되며 IFFT(Inverse Fast Fourier Transform)에 의해 무선 신호로 변환되어 전송 장치로부터 수신 장치에게 전송된다. PUCCH 포맷 3에 의한 UCI의 UE로부터 BS로의 전송 정확도를 높이기 위하여, PUCCH 포맷 3에 전송 다이버시티 기법이 적용될 수 있다. PUCCH 포맷 3에 적용될 수 있는 전송 다이버시티 기법으로 공간 직교 자원 전송 다이버시티(spatial orthogonal resource transmit diversity, SORTD) 기법이 고려될 수 있다. The subcarriers to which the interleaved QPSK symbols are mapped are DFT precoded and mapped to a PRB, and are converted into a radio signal by an inverse fast fourier transform (IFFT) and transmitted from a transmitting device to a receiving device. In order to improve transmission accuracy of the UE to the BS of the UCI according to the PUCCH format 3, a transmission diversity scheme may be applied to the PUCCH format 3. Spatial orthogonal resource transmit diversity (SORTD) scheme may be considered as a transmit diversity scheme that may be applied to PUCCH format 3.
SORTD라 함은 동일한 정보를 복수의 물리 자원들(부호 및/또는 시간/주파수 영역(region) 등)을 이용하여 전송하는 전송 기법을 의미한다. UE가 1개의 전송 안테나 포트만을 지원하던 3GPP LTE 시스템과 달리, 3GPP LTE-A 시스템에서 UE는 1개보다 많은 전송 안테나 포트도 지원할 수 있게 된다. 이에 따라, 3GPP LTE-A 시스템에서는 PUCCH 전송을 위해 다수의 전송 안테나 포트까지 지원하는 SORTD가 사용될 수 있다. PUCCH 전송에 SORTD가 전송되는 경우, 단일 안테나 포트에 의한 PUCCH 전송에 비해, 2배의 PUCCH 자원이 PUCCH 전송에 사용된다. 예를 들어, ACK/NACK 정보(b0,b1,b2,b3)가 SORTD없이 전송되는 경우에는 상기 ACK/NACK 정보(b0,b1,b2,b3)는 4개의 PUCCH 자원(n0,n1,n2,n3) 중 하나를 사용하여 단일 안테나 포트를 통해 전송된다. 이에 반해, ACK/NACK 정보(b0,b1,b2,b3)가 SORTD로 전송되는 경우에는 상기 ACK/NACK 정보(b0,b1,b2,b3)가 4개의 PUCCH 자원(n0,n1,n2,n3) 중 하나를 사용하여 제1안테나 포트를 통해 전송되는 한편, 다른 4개의 PUCCH 자원(n4,n5,n6,n7) 중 하나를 사용하여 제2안테나 포트를 통해 전송된다. 이와 같이, PUCCH 포맷 3에 SORTD가 적용되는 경우, 전송 다이버시티 이득은 높아지지만 PUCCH 포맷 3를 위해 예약(reserved)되는 자원의 개수가 많아짐에 따라 일정 시간-주파수 자원 영역에 다중화될 수 있는 UE의 개수가 줄어들게 되는 단점이 있다. 즉, SORTD는 UE 다중화 용량(capacity)의 감소를 수반한다. UE 다중화 용량을 고려하여, 본 발명은 PUCCH 포맷 3에 주파수 전환 전송 다이버시티(frequency switched transmit diversity, FSTD) 기법을 전송 다이버시티 기법으로 적용할 것을 제안한다.SORTD refers to a transmission scheme for transmitting the same information using a plurality of physical resources (code and / or time / frequency region, etc.). Unlike the 3GPP LTE system, in which the UE supports only one transmit antenna port, in the 3GPP LTE-A system, the UE can also support more than one transmit antenna port. Accordingly, in the 3GPP LTE-A system, SORTD may support a plurality of transmit antenna ports for PUCCH transmission. When SORTD is transmitted for PUCCH transmission, twice as much PUCCH resources are used for PUCCH transmission as compared to PUCCH transmission by a single antenna port. For example, when ACK / NACK information b0, b1, b2, b3 is transmitted without SORTD, the ACK / NACK information b0, b1, b2, b3 is divided into four PUCCH resources n0, n1, n2, n3) is transmitted through a single antenna port using either. In contrast, when ACK / NACK information b0, b1, b2, b3 is transmitted to SORTD, the ACK / NACK information b0, b1, b2, b3 is divided into four PUCCH resources n0, n1, n2, n3. Is transmitted through the first antenna port using one of the other antennas, while using one of the other four PUCCH resources (n4, n5, n6, n7). As described above, when SORTD is applied to PUCCH format 3, the transmission diversity gain is increased, but as the number of resources reserved for PUCCH format 3 increases, the UE may be multiplexed in a certain time-frequency resource region. There is a disadvantage that the number is reduced. That is, SORTD entails a reduction in UE multiplexing capacity. In consideration of the UE multiplexing capacity, the present invention proposes to apply a frequency switched transmit diversity (FSTD) scheme to a PUCCH format 3 as a transmit diversity scheme.
도 12는 변조 심볼을 주파수 전환 전송 다이버시티(frequency switched transmit diversity, FSTD) 기법을 이용하여 주파수 도메인에 맵핑하는 예를 나타낸 것이다. 12 shows an example of mapping a modulation symbol to a frequency domain by using a frequency switched transmit diversity (FSTD) technique.
기본적으로 FSTD 기법은 채널 부호화에 의해 인코딩된 비트들 내지 변조 심볼들을 복수의 안테나 포트들에 교대로 분배하고, 주파수 도메인에서 직교하는 자원 상에서 안테나 포트별 변조 심볼들을 전송한다. FSTD 기법에서, 채널 부호화에 의한 인코딩된 비트들 내지는 변조 심볼들이 안테나 포트별로 교대로 분배되고, 분배된 비트들 내지 변조 심볼들이 해당 안테나 포트를 통해 주파수 도메인에서 직교적으로 전송되어, 채널 부호화 이득이 안테나 다이버시티 이득으로 확산된다. Basically, the FSTD scheme alternately distributes bits or modulation symbols encoded by channel encoding to a plurality of antenna ports, and transmits modulation symbols per antenna port on resources orthogonal in the frequency domain. In the FSTD scheme, encoded bits or modulation symbols by channel coding are alternately distributed for each antenna port, and the distributed bits or modulation symbols are transmitted orthogonally in the frequency domain through the corresponding antenna port, so that the channel coding gain is reduced. Spread with antenna diversity gain.
예를 들어, 전술한 듀얼 RM 부호화에 의한 출력 비트 시퀀스를 QPSK 변조하여 얻어진 변조 심볼들이 복수의 안테나 포트들에 순차적으로 분배되고, 각 안테나 포트별 변조 심볼들은 DFT 프리코딩에 의해 주파수 도메인에 맵핑될 수 있다. 48 비트의 출력 비트 시퀀스 [b0,b1,b2,b3,...,b47]에 대응하는 QPSK 변조된 심볼 시퀀스를 [y(0), y(1), y(2), y(3),..., y(23)]이라고 하면, 상기 QPSK 변조된 심볼(이하, QPSK 심볼)들은 6개 단위의 DFT 프리코딩을 통해 2개의 안테나 포트 각각을 위한 주파수 도메인에 맵핑될 수 있다. 상기 QPSK 심볼들에 DFT 프리코딩이 적용되어 얻어진 복소 심볼 시퀀스를 [z(0), z(1), z(2), z(3),..., z(23)]라고 하고, Z(0)=[z(0), z(2), z(4), z(6), z(8), z(10)], Z(1)=[z(1), z(3), z(5), z(7), z(9), z(11)], Z(2)=[z(12), z(14), z(16), z(18), z(20), z(22)], Z(3)=[z(13), z(15), z(17), z(19), z(21), z(23)]이라고 하자. Z(0), Z(1), Z(2) 및 Z(3) 각각은 6-포인트 DFT 프리코더에 의해 DFT 프리코딩되어 2개의 안테나 포트에 맵핑되고, 해당 안테나 포트를 통해 전송될 수 있다. Z(0), Z(1), Z(2) 및 Z(3)는 예를 들어, 다음과 같이 안테나 포트 0 및 안테나 포트 1에 맵핑되어 전송될 수 있다.For example, modulation symbols obtained by QPSK modulation of the above-described output bit sequence by dual RM encoding are sequentially distributed to a plurality of antenna ports, and modulation symbols for each antenna port are mapped to the frequency domain by DFT precoding. Can be. The QPSK modulated symbol sequence corresponding to the 48-bit output bit sequence [b 0 , b 1 , b 2 , b 3 , ..., b 47 ] is replaced by [y (0), y (1), y (2) , y (3), ..., y (23)], the QPSK modulated symbols (hereinafter referred to as QPSK symbols) are mapped to the frequency domain for each of the two antenna ports through six units of DFT precoding. Can be. A complex symbol sequence obtained by applying DFT precoding to the QPSK symbols is called [z (0), z (1), z (2), z (3), ..., z (23)], and Z (0) = [z (0), z (2), z (4), z (6), z (8), z (10)], Z (1) = [z (1), z (3 ), z (5), z (7), z (9), z (11)], Z (2) = [z (12), z (14), z (16), z (18), z (20), z (22)], Z (3) = [z (13), z (15), z (17), z (19), z (21), z (23)]. Each of Z (0) , Z (1) , Z (2) and Z (3) may be DFT precoded by a six-point DFT precoder, mapped to two antenna ports, and transmitted through the corresponding antenna port . Z (0) , Z (1) , Z (2) and Z (3) may be mapped and transmitted to antenna port 0 and antenna port 1, for example, as follows.
- Z(0): 짝수 부반송파들에 맵핑되고 슬롯 0에서 안테나 포트 0를 통해 전송Z (0) : mapped to even subcarriers and transmitted through antenna port 0 in slot 0
- Z(1): 홀수 부반송파들에 맵핑되고 슬롯 0에서 안테나 포트 1을 통해 전송Z (1) : mapped to odd subcarriers and transmitted through antenna port 1 in slot 0
- Z(2): 짝수 부반송파들에 맵핑되고 슬롯 1에서 안테나 포트 0를 통해 전송Z (2) : mapped to even subcarriers and transmitted through antenna port 0 in slot 1
- Z(3): 홀수 부반송파들에 맵핑되고 슬롯 1에서 안테나 포트 1을 통해 전송Z (3) : mapped to odd subcarriers and transmitted through antenna port 1 in slot 1
즉, 짝수 복소 심볼은 안테나 포트 0에 맵핑되고 홀수 복소 심볼은 안테나 포트 1에 맵핑되며, 짝수 복소 심볼과 홀수 복수 심볼은 서로 다른 부반송파에 맵핑된다. 도 12를 참조하면, 짝수 부반송파들(즉, 짝수 번째 부반송파들)에 맵핑된 변조 심볼들은 안테나 포트 0를 통해 전송되고 홀수 부반송파들(즉, 홀수 번째 부반송파들)에 맵핑된 변조 심볼들은 안테나 포트 1을 통해 전송된다.That is, even complex symbols are mapped to antenna port 0, odd complex symbols are mapped to antenna port 1, and even complex symbols and odd multiple symbols are mapped to different subcarriers. Referring to FIG. 12, modulation symbols mapped to even subcarriers (ie, even subcarriers) are transmitted through antenna port 0 and modulation symbols mapped to odd subcarriers (ie, odd subcarriers) are antenna port 1. Is sent through.
도 13은 FSTD를 적용한 PUCCH 포맷 3의 전송 예를 나타낸 것이다.13 shows an example of transmission of PUCCH format 3 to which FSTD is applied.
듀얼 RM 부호화에 의한 출력 비트들 b(0),b(1),...,b(B-1)는 스크램블링과 변조 거쳐 일 서브프레임의 2개 슬롯으로 분주되며, 분주된 비트 시퀀스에 전술한 확산이 적용되어 복소 심볼들의 블록 y(0),...,y(Msymb-1)이 얻어진다. 도 11의 출력 비트 시퀀스 [b0,b1,b2,b3,...,b47]가 b(0),b(1),...,b(B-1)에 해당할 수 있다. 상기 복소 심볼들 y(0),...,y(Msymb-1)은 각각의 세트가 일 SC-FDM 심볼에 대응하는 Msym/MPUCCH sc개 세트(여기서, MPUCCH sc=NRB sc)로 분주된다. 변환 프리코딩이 다음에 따라 상기 복소 심볼들의 블록 y(0),...,y(Msymb-1)에 적용될 수 있다.The output bits b (0), b (1), ..., b (B-1) by dual RM encoding are divided into two slots of one subframe through scrambling and modulation, and described above in the divided bit sequence. One spreading is applied to obtain blocks y (0), ..., y (M symb- 1) of complex symbols. The output bit sequence [b 0 , b 1 , b 2 , b 3 , ..., b 47 ] of FIG. 11 corresponds to b (0), b (1), ..., b (B-1). Can be. The complex symbols y (0), ..., y (M symb -1) are M sets of M sym / M PUCCH scs, each set corresponding to one SC-FDM symbol, where M PUCCH sc = N RB sc ). Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
수학식 16
Figure PCTKR2012006266-appb-M000016
Equation 16
Figure PCTKR2012006266-appb-M000016
수학식 16에 의하면 P개 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)이 생성되며, 여기서 p=0,...,P-1이다. p-번째 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)은 안테나 포트 p 상에서 전송된다.According to Equation 16, complex symbols z (p) (0), ..., z (p) (M symb -1) of P blocks are generated, where p = 0, ..., P-1. to be. The complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
다시 말해, 도 12 및 도 13을 참조하면, QPSK 심볼 y(i)(여기서, i=0,1,2,...,23) 중 i가 짝수인 변조 심볼은 안테나 포트 0에 맵핑되고 i가 홀수인 변조 심볼은 안테나 포트 1에 맵핑된다. 각 안테나 포트의 복조 심볼들에 DFT가 적용되어 복소 심볼들이 출력되며, 각 안테나 포트의 복소 심볼들은 짝수 부반송파들 혹은 홀수 부반송파들에 맵핑된다. 각 안테나 포트의 부반송파들에 IFFT가 적용되어 각 안테나 포트를 위한 복소 시간 도메인(complex-valued time-domain) SC-FDM 심볼이 생성된다. 각 SC-FDM 심볼은 해당 안테나 포트를 통해 전송된다.In other words, referring to FIG. 12 and FIG. 13, modulation symbols in which i is an even number of QPSK symbols y (i) (where i = 0,1,2, ..., 23) are mapped to antenna port 0 and i The odd modulation symbol is mapped to antenna port 1. DFT is applied to demodulated symbols of each antenna port to output complex symbols, and complex symbols of each antenna port are mapped to even subcarriers or odd subcarriers. IFFT is applied to the subcarriers of each antenna port to generate a complex-valued time-domain SC-FDM symbol for each antenna port. Each SC-FDM symbol is transmitted through the corresponding antenna port.
도 14는 듀얼 RM 부호화와 FSTD 기법의 단순 조합(combination)이 적용된 상향링크 제어정보의 전송을 예시한 것이다.FIG. 14 illustrates transmission of uplink control information to which a simple combination of dual RM encoding and FSTD scheme is applied.
11 비트 이하의 ACK/NACK 정보에 전술한 RM 부호화 및 전술한 FSTD이 그대로 적용되면 안테나 포트들에 채널 부호화된 ACK/NACK 정보가 고르게 분포될 수 있다. 그러나, 도 14를 참조하면, 12 비트 이상의 ACK/NACK 정보에는 듀얼 RM 부호화가 적용되므로, 전술한 FSTD 기법을 단순 확장하면, 듀얼 RM 부호화의 출력 비트 시퀀스가 부반송파들에 2 비트씩 맵핑되고 상기 부반송파들이 일 부반송파씩 교대로 안테나 포트 0와 안테나 포트 1에 분배된다. 다시 말해, 듀얼 RM 부호화의 출력 비트 시퀀스가 2 비트씩 안테나 포트 0과 안테나 포트 1에 교대로 분배된다. 이 경우, ACK/NACK 세그먼트 1로부터 RM 부호화에 의해 얻어진 인코딩된 비트 시퀀스 전체는 안테나 포트 0를 통해서 전송되고 다른 RM 부호화에 의해 ACK/NACK 세그먼트 2로부터 RM 부호화에 의해 얻어진 인코딩된 비트 시퀀스 전체는 안테나 포트 1을 통해서 전송된다. 예를 들어, 도 12를 참조하면, QPSK 심볼 y(i)(여기서, i=0,1,2,...,23) 중 i가 짝수인 변조 심볼은 세그먼트 1을 기반으로 한 변조 심볼이고 i가 홀수인 변조 심볼은 세그먼트 2를 기반으로 한 변조 심볼이므로, 세그먼트 1을 기반으로 한 변조 심볼은 안테나 포트 0에 할당된 짝수 부반송파에 맵핑되어 상기 안테나 포트 0를 통해 전송되고 세그먼트 2를 기반으로 한 변조 심볼은 안테나 포트 1에 할당된 홀수 부반송파에 맵핑되어 상기 안테나 포트 1을 통해 전송된다. 결국, 세그먼트 1은 안테나 포트 0를 통해서 전송되고 세그먼트 2는 안테나 포트 1을 통해서 전송된다. 즉, UCI에 듀얼 RM 부호화와 FSTD 기법을 단순 적용하면, 듀얼 RM 부호화에 의해 인코딩된 비트 시퀀스들이 안테나 도메인에서 퍼뮤트(permute)되는 효과가 없어지게 되어, FSTD 기법에 의한 전송 다이버시티 이득을 얻지 못한다. When the above-described RM encoding and the above-described FSTD are applied to ACK / NACK information of 11 bits or less, channel-coded ACK / NACK information may be evenly distributed to antenna ports. However, referring to FIG. 14, since dual RM encoding is applied to ACK / NACK information of 12 bits or more, if the above-described FSTD technique is simply extended, an output bit sequence of dual RM encoding is mapped to subcarriers by 2 bits and the subcarrier is used. Are distributed to antenna port 0 and antenna port 1 in turn by some subcarriers. In other words, the output bit sequence of dual RM encoding is alternately distributed to antenna port 0 and antenna port 1 by 2 bits. In this case, the entire encoded bit sequence obtained by RM encoding from ACK / NACK segment 1 is transmitted through antenna port 0 and the entire encoded bit sequence obtained by RM encoding from ACK / NACK segment 2 by another RM encoding is the antenna. Transmitted through port 1. For example, referring to FIG. 12, a modulation symbol whose i is an even number among QPSK symbols y (i) (where i = 0,1,2, ..., 23) is a modulation symbol based on segment 1 Since the modulation symbol with i being odd is a modulation symbol based on segment 2, the modulation symbol based on segment 1 is mapped to an even subcarrier assigned to antenna port 0 and transmitted through the antenna port 0 and based on segment 2. One modulation symbol is mapped to an odd subcarrier assigned to antenna port 1 and transmitted through the antenna port 1. As a result, segment 1 is transmitted through antenna port 0 and segment 2 is transmitted through antenna port 1. In other words, simply applying the dual RM encoding and the FSTD technique to UCI eliminates the effect that the bit sequences encoded by the dual RM encoding are permuted in the antenna domain, so that the transmission diversity gain by the FSTD technique is not obtained. can not do it.
전송 다이버시티 이득이 극대화되기 위해서는 채널 부호화가 수행되는 하나의 부호 블록(code block)이 안테나 포트들로 균일하게 분배되어야 한다. 따라서, 본 발명은 특별히 RM 부호화 세그먼트 각각을 안테나 도메인에서 골고루 퍼트리도록 하는 실시예들을 제안한다. RM 부호화 세그먼트들의 안테나 도메인으로의 고른 분산은 ACK/NACK 비트들의 배치 단계(도 11의 S1110)(OACK_i), 채널 부호화(도 11의 S1130)의 전 단계(a_i), 채널 부호화(도 11의 S1130)의 후 단계(bi), DFT 프리코딩 전 단계(수학식 5의 y(p) n(i)), DFT 프리코딩 후 단계(수학식 16의 z(p)(i))들 중 어느 한 단계에서 구현될 수 있다. 이하, 편의상 DFT 프리코딩 전 단계 (y(p) n(i))를 기준으로 본 발명의 실시예들이 설명되나, 이와 등가적인 표현(예를 들어, OACK_i에서 a_i로의 맵핑 관계)을 이용하여 다른 단계에서도 RM 부호화 세그먼트들의 안테나 도메인으로의 고른 분산이 구현될 수 있다. 이하, 도 15, 도 16 및 도 17을 참조하여 본 발명의 실시예들을 설명한다. 도 15, 도 16 및 도 17에서 DFT 프리코딩 이전 단계까지는 앞서 설명한 도 10에서의 DFT 프리코딩 이전 단계까지와 동일하므로, 다시 설명하지 않는다.In order to maximize the transmission diversity gain, one code block in which channel coding is performed should be uniformly distributed to antenna ports. Accordingly, the present invention particularly proposes embodiments in which each of the RM coding segments is evenly spread in the antenna domain. The even distribution of the RM coding segments into the antenna domain can be achieved by arranging the ACK / NACK bits (S1110 in FIG. 11) (O ACK _i), the previous step (a_i) in channel coding (S1130 in FIG. 11), and channel coding (FIG. 11). Post step b i of step S1130), pre-DFT precoding step (y (p) n (i) of Equation 5), post-DFT precoding step (z (p) (i) of Equation 16) It can be implemented at either stage. Hereinafter, for convenience, embodiments of the present invention will be described based on the pre-DFT precoding step (y (p) n (i)), but using an equivalent representation (e.g., mapping relationship from O ACK _i to a_i). In other steps, even distribution of the RM coding segments to the antenna domain may be implemented. Hereinafter, embodiments of the present invention will be described with reference to FIGS. 15, 16, and 17. Since the steps up to the pre-DFT precoding in FIG. 15, 16, and 17 are the same as the steps up to the pre-DFT precoding in FIG. 10 described above, they will not be described again.
도 15는 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 일 실시예를 나타낸 것이다.FIG. 15 illustrates an embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
본 실시예는 듀얼 RM 부호화의 출력 비트 시퀀스를 2 비트씩 혹은 일 변조 심볼씩 안테나 포트들에 교대로 분배하는 것이 아니라, 연속하는 2*m(여기서, m은 1보다 큰 양의 정수) 비트씩 혹은 복수의 연속하는 변조 심볼들의 묶음 단위로 안테나 포트들에 분배한다. 예를 들어, 도 15를 참조하면, 듀얼 RM 부호화의 출력 비트 시퀀스에 대응하는 QPSK 심볼들이 6개씩 안테나 포트 0와 안테나 포트 1에 분배된다. 상기 6개의 QPSK 심볼들은 각각 6-포인트 DFT를 거쳐 슬롯 0과 슬롯 1 중 하나에서 안테나 포트 0와 안테나 포트 1 중 해당 안테나 포트를 통해 전송된다. 다시 말해, 달리 본 실시예는 듀얼 RM 부호화의 출력 비트 시퀀스가 변조된 변조 심볼들을 연속하는 복수의 변조 심볼 단위로 안테나 포트들에 분배한다. 이때, 상기 출력 비트 시퀀스는 연속하는 복수의 변조 심볼 단위로 교대로 안테나 포트들에 분배될 수 있다.This embodiment does not alternately distribute the output bit sequence of the dual RM encoding by 2 bits or one modulation symbol to the antenna ports, but by successive 2 * m (where m is a positive integer greater than 1) bits. Or it is distributed to the antenna ports in a unit of a plurality of consecutive modulation symbols. For example, referring to FIG. 15, six QPSK symbols corresponding to an output bit sequence of dual RM encoding are distributed to antenna port 0 and antenna port 1. The six QPSK symbols are transmitted through the corresponding antenna port of antenna port 0 and antenna port 1 in one of slot 0 and slot 1 via a six-point DFT, respectively. In other words, in another embodiment, the output bit sequence of the dual RM encoding distributes the modulated modulation symbols to the antenna ports in units of a plurality of consecutive modulation symbols. In this case, the output bit sequence may be alternately distributed to the antenna ports in units of a plurality of consecutive modulation symbols.
도 15의 실시예는 다음과 같이 설명될 수 있다. 듀얼 RM 부호화에 의한 출력 비트들 b(0),b(1),...,b(B-1)에 스크램블링, 변조, 확산 과정이 적용되어 얻어지는 복소 심볼들의 블록 y(0),...,y(Msymb-1)은 각각의 세트가 일 SC-FDM 심볼에 대응하는 Msym/MPUCCH sc개 세트(여기서, MPUCCH sc=NRB sc)로 분주된다. 변환 프리코딩이 다음에 따라 상기 복소 심볼들의 블록 y(0),...,y(Msymb-1)에 적용될 수 있다.The embodiment of FIG. 15 may be described as follows. Block y (0) of complex symbols obtained by applying scrambling, modulation, and spreading to output bits b (0), b (1), ..., b (B-1) by dual RM encoding. ., y (M symb −1) is divided into M sym / M PUCCH sc sets, where each set corresponds to one SC-FDM symbol, where M PUCCH sc = N RB sc . Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
수학식 17
Figure PCTKR2012006266-appb-M000017
Equation 17
Figure PCTKR2012006266-appb-M000017
수학식 17에 의해 P개 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)이 생성되며, 여기서 p=0,...,P-1이다. p-번째 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)은 안테나 포트 p 상에서 전송된다. Equation 17 produces complex blocks z (p) (0), ..., z (p) (M symb- 1) of P blocks, where p = 0, ..., P-1 to be. The complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
도 16은 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 다른 실시예를 나타낸 것이다.16 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission.
도 16의 실시예는 도 15의 실시예의 일 양태로 볼 수 있다. 본 실시예는 듀얼 RM 부호화의 출력 비트 시퀀스에 대응하는 복조 심볼들을 연속하는 2개의 복조 심볼들씩 번갈아가며 안테나 포트들에 분배한다. The embodiment of FIG. 16 may be viewed as an aspect of the embodiment of FIG. 15. In this embodiment, demodulation symbols corresponding to an output bit sequence of dual RM encoding are alternately distributed to two antenna demodulation symbols in succession.
예를 들어, 도 15를 참조하면, 듀얼 RM 부호화의 출력 비트 시퀀스에 대응하는 QPSK 심볼들이 6개씩 안테나 포트 0와 안테나 포트 1에 분배된다. 상기 6개의 QPSK 심볼들은 각각 6-포인트 DFT를 거쳐 슬롯 0과 슬롯 1 중 하나에서 안테나 포트 0와 안테나 포트 1 중 해당 안테나 포트를 통해 전송된다. 다시 말해, 달리 본 실시예는 듀얼 RM 부호화의 출력 비트 시퀀스가 변조된 변조 심볼들을 연속하는 복수의 변조 심볼 단위로 안테나 포트들에 분배한다.For example, referring to FIG. 15, six QPSK symbols corresponding to an output bit sequence of dual RM encoding are distributed to antenna port 0 and antenna port 1. The six QPSK symbols are transmitted through the corresponding antenna port of antenna port 0 and antenna port 1 in one of slot 0 and slot 1 via a six-point DFT, respectively. In other words, in another embodiment, the output bit sequence of the dual RM encoding distributes the modulated modulation symbols to the antenna ports in units of a plurality of consecutive modulation symbols.
도 16을 참조하면, 예를 들어, 듀얼 RM 부호화의 출력 비트 시퀀스를 기반으로 한 24개 QPSK 심볼들이 연속한 2개의 QPSK 심볼들 단위로 안테나 포트 0와 안테나 포트 1에 분배된다. 상기 24개 QPSK 심볼들 중 연속하는 12개의 QPSK 심볼들은 슬롯 0에서 전송되고, 나머지 연속하는 12개의 QPSK 심볼들은 슬롯 1에서 전송되되, 슬롯 0와 슬롯 1 중 하나에서 전송되는 12개 QPSK 심볼들은 2개씩 안테나 포트 0와 안테나 포트 1에 번갈아가며 맵핑된다. 이에 따라, 일 슬롯에서 일 안테나 포트에 6개의 QPSK 심볼이 맵핑되며, 상기 6개 QPSK 심볼들은 6-포인트 DFT를 거쳐 해당 슬롯에서 해당 안테나 포트를 통해 전송된다.Referring to FIG. 16, for example, 24 QPSK symbols based on an output bit sequence of dual RM encoding are distributed to antenna port 0 and antenna port 1 in units of two consecutive QPSK symbols. Twelve consecutive QPSK symbols of the 24 QPSK symbols are transmitted in slot 0, and the remaining 12 consecutive QPSK symbols are transmitted in slot 1, and 12 QPSK symbols transmitted in one of slot 0 and slot 1 are 2 Are alternately mapped to antenna port 0 and antenna port 1. Accordingly, six QPSK symbols are mapped to one antenna port in one slot, and the six QPSK symbols are transmitted through the corresponding antenna port in the corresponding slot via a six-point DFT.
도 16의 실시예는 다음과 같이 설명될 수 있다. 듀얼 RM 부호화에 의한 출력 비트들 b(0),b(1),...,b(B-1)에 스크램블링, 변조, 확산 및 변환 프리코딩 과정이 적용되어 얻어지는 복소 심볼들의 블록 y(0),...,y(Msymb-1)은 각각의 세트가 일 SC-FDM 심볼에 대응하는 Msym/MPUCCH sc개 세트(여기서, MPUCCH sc=NRB sc)로 분주된다. 변환 프리코딩이 다음에 따라 상기 복소 심볼들의 블록 y(0),...,y(Msymb-1)에 적용될 수 있다.The embodiment of FIG. 16 may be described as follows. Block y (0) of complex symbols obtained by applying scrambling, modulation, spreading, and transform precoding to output bits b (0), b (1), ..., b (B-1) by dual RM encoding ), ..., y (M symb -1) is divided into M sym / M PUCCH sc sets, where M PUCCH sc = N RB sc , each set corresponding to one SC-FDM symbol. Transform precoding may be applied to the blocks y (0), ..., y (M symb- 1) of the complex symbols according to the following.
수학식 18
Figure PCTKR2012006266-appb-M000018
Equation 18
Figure PCTKR2012006266-appb-M000018
수학식 18에 의해 P개 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)이 생성되며, 여기서 p=0,...,P-1이다. p-번째 블록의 복소 심볼들 z(p)(0),...,z(p)(Msymb-1)은 안테나 포트 p 상에서 전송된다. Equation 18 generates complex symbols z (p) (0), ..., z (p) (M symb- 1) of P blocks, where p = 0, ..., P-1 to be. The complex symbols z (p) (0), ..., z (p) (M symb -1) of the p -th block are transmitted on antenna port p.
도 17은 듀얼 RM 부호화 및 FSTD 기법을 신호 전송에 함께 적용하는 본 발명의 또 다른 실시예를 나타낸 것이다. 특히, 도 17의 실시예는 도 15의 실시예 및 도 16의 실시예를 일반화한 실시예로 볼 수 있다.17 shows another embodiment of the present invention in which dual RM encoding and FSTD techniques are applied together to signal transmission. In particular, the embodiment of FIG. 17 may be viewed as an embodiment generalizing the embodiment of FIG. 15 and the embodiment of FIG. 16.
도 17에서 맵퍼는 채널 부호화에 의한 출력 비트 시퀀스를 각 안테나 포트로 분포시키는 역할을 한다. 도 17의 맵퍼는 랜덤하게 형성된 패턴에 따라 혹은 UCI 전송 성능을 최적화하는 특정 패턴에 따라 출력 비트 시퀀스를 연속하는 복수의 비트 만큼씩 혹은 연속하는 복수의 변조 심볼 만큼씩 복수의 안테나 포트들에 맵핑한다. 이때, 상기 특정 패턴은 상기 복수의 안테나 포트들에 상기 출력 비트 시퀀스를 연속하는 복수의 비트 만큼씩 혹은 연속하는 복수의 변조 심볼 만큼씩 교번하여 맵핑되도록 정의된 패턴일 수 있다.In FIG. 17, the mapper distributes an output bit sequence by channel coding to each antenna port. The mapper of FIG. 17 maps an output bit sequence to a plurality of antenna ports by a plurality of consecutive bits or by a plurality of consecutive modulation symbols according to a randomly formed pattern or a specific pattern to optimize UCI transmission performance. . In this case, the specific pattern may be a pattern defined to alternately map the output bit sequence by a plurality of consecutive bits or by a plurality of consecutive modulation symbols to the plurality of antenna ports.
전술한 본 발명의 실시예들은 듀얼 RM 부호화의 경우(즉, UCI가 12 비트 이상인 경우)에 적용될 수 있으나, 단일 RM 부호화의 경우(즉, UCI가 11 비트 이하인 경우)에도 적용될 수 있다.The above-described embodiments of the present invention may be applied in the case of dual RM encoding (ie, when the UCI is 12 bits or more), but may also be applied in the case of single RM encoding (ie, when the UCI is 11 bits or less).
전술한 수학식들에서 mod는 모듈로(modulo) 연산을 나타내는 것으로서, (A) mod (B)는 A를 B로 나는 나머지를 의미하며,
Figure PCTKR2012006266-appb-I000008
은 올림(ceil) 연산을 나타내는 것으로,
Figure PCTKR2012006266-appb-I000009
는 n보다 크거나 같은 정수들 중 최소 정수를 의미한다.
Figure PCTKR2012006266-appb-I000010
는 내림(floor) 연산을 나타내며,
Figure PCTKR2012006266-appb-I000011
는 A/B보다 작거나 같은 정수 중 최대 정수, 즉, A를 B로 나눈 몫을 의미한다.
In the above equations, mod denotes a modulo operation, (A) mod (B) denotes the remainder of A to B,
Figure PCTKR2012006266-appb-I000008
Represents a cease operation,
Figure PCTKR2012006266-appb-I000009
Means the smallest integer greater than or equal to n.
Figure PCTKR2012006266-appb-I000010
Represents a floor operation,
Figure PCTKR2012006266-appb-I000011
Is the largest integer less than or equal to A / B, that is, the quotient of A divided by B.
이제까지, 안테나 포트 0에 맵핑된 UCI 비트들은 짝수 부반송파들에 맵핑되고 안테나 포트 1에 맵핑된 UCI 비트들은 홀수 부반송파들에 맵핑되는 것으로 본 발명의 실시예들이 설명되었다. 그러나, 이는 예시에 불과하며, 복수의 안테나 포트들을 통해 전송되는 UCI 비트들 혹은 UCI 변조/복소 심볼들이 서로 직교하는 주파수 자원을 통해 전송되기만 하면 본 발명이 구현될 수 있다. 다시 말해, 본 발명에서는, UCI 전송에 사용되는 안테나 포트에 맵핑된 주파수 자원이 상기 UCI 전송에 사용되는 다른 안테나 포트에 할당된 자원과 직교하면 된다.Thus far, embodiments of the present invention have been described as UCI bits mapped to antenna port 0 mapped to even subcarriers and UCI bits mapped to antenna port 1 mapped to odd subcarriers. However, this is merely an example, and the present invention may be implemented as long as UCI bits or UCI modulation / complex symbols transmitted through a plurality of antenna ports are transmitted through orthogonal frequency resources. In other words, in the present invention, a frequency resource mapped to an antenna port used for UCI transmission may be orthogonal to a resource allocated to another antenna port used for UCI transmission.
도 18은 본 발명을 수행하는 전송장치(10) 및 수신장치(20)의 구성요소를 나타내는 블록도이다.18 is a block diagram showing components of a transmitter 10 and a receiver 20 for carrying out the present invention.
전송장치(10) 및 수신장치(20)는 정보 및/또는 데이터, 신호, 메시지 등을 나르는 무선 신호를 전송 또는 수신할 수 있는 RF(Radio Frequency) 유닛(13, 23)과, 무선통신 시스템 내 통신과 관련된 각종 정보를 저장하는 메모리(12, 22), 상기 RF 유닛(13, 23) 및 메모리(12, 22)등의 구성요소와 동작적으로 연결되어, 상기 구성요소를 제어하여 해당 장치가 전술한 본 발명의 실시예들 중 적어도 하나를 수행하도록 메모리(12, 22) 및/또는 RF 유닛(13,23)을 제어하도록 구성된 프로세서(11, 21)를 각각 포함한다. The transmitter 10 and the receiver 20 are radio frequency (RF) units 13 and 23 capable of transmitting or receiving radio signals carrying information and / or data, signals, messages, and the like, and in a wireless communication system. The device is operatively connected to components such as the memory 12 and 22 storing the communication related information, the RF units 13 and 23 and the memory 12 and 22, and controls the components. And a processor 11, 21 configured to control the memory 12, 22 and / or the RF units 13, 23, respectively, to perform at least one of the embodiments of the invention described above.
메모리(12, 22)는 프로세서(11, 21)의 처리 및 제어를 위한 프로그램을 저장할 수 있고, 입/출력되는 정보를 임시 저장할 수 있다. 메모리(12, 22)가 버퍼로서 활용될 수 있다. The memories 12 and 22 may store a program for processing and controlling the processors 11 and 21, and may temporarily store input / output information. The memories 12 and 22 may be utilized as buffers.
프로세서(11, 21)는 통상적으로 전송장치 또는 수신장치 내 각종 모듈의 전반적인 동작을 제어한다. 특히, 프로세서(11, 21)는 본 발명을 수행하기 위한 각종 제어 기능을 수행할 수 있다. 프로세서(11, 21)는 컨트롤러(controller), 마이크로 컨트롤러(microcontroller), 마이크로 프로세서(microprocessor), 마이크로 컴퓨터(microcomputer) 등으로도 불릴 수 있다. 프로세서(11, 21)는 하드웨어(hardware) 또는 펌웨어(firmware), 소프트웨어, 또는 이들의 결합에 의해 구현될 수 있다. 하드웨어를 이용하여 본 발명을 구현하는 경우에는, 본 발명을 수행하도록 구성된 ASICs(application specific integrated circuits) 또는 DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays) 등이 프로세서(400a, 400b)에 구비될 수 있다. 한편, 펌웨어나 소프트웨어를 이용하여 본 발명을 구현하는 경우에는 본 발명의 기능 또는 동작들을 수행하는 모듈, 절차 또는 함수 등을 포함하도록 펌웨어나 소프트웨어가 구성될 수 있으며, 본 발명을 수행할 수 있도록 구성된 펌웨어 또는 소프트웨어는 프로세서(11, 21) 내에 구비되거나 메모리(12, 22)에 저장되어 프로세서(11, 21)에 의해 구동될 수 있다. The processors 11 and 21 typically control the overall operation of the various modules in the transmitter or receiver. In particular, the processors 11 and 21 may perform various control functions for carrying out the present invention. The processors 11 and 21 may also be called controllers, microcontrollers, microprocessors, microcomputers, or the like. The processors 11 and 21 may be implemented by hardware or firmware, software, or a combination thereof. When implementing the present invention using hardware, application specific integrated circuits (ASICs) or digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays) may be provided in the processors 400a and 400b. Meanwhile, when implementing the present invention using firmware or software, the firmware or software may be configured to include a module, a procedure, or a function for performing the functions or operations of the present invention, and configured to perform the present invention. The firmware or software may be provided in the processors 11 and 21 or stored in the memory 12 and 22 to be driven by the processors 11 and 21.
전송장치(10)의 프로세서(11)는 상기 프로세서(11) 또는 상기 프로세서(11)와 연결된 스케줄러로부터 스케줄링되어 외부로 전송될 신호 및/또는 데이터에 대하여 소정의 부호화(coding) 및 변조(modulation)를 수행한 후 RF 유닛(13)에 전송한다. 예를 들어, 프로세서(11)는 전송하고자 하는 데이터 열을 역다중화 및 채널 부호화, 스크램블링, 변조과정 등을 거쳐 K개의 레이어로 변환한다. 부호화된 데이터 열은 코드워드로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록인 전송 블록과 등가이다. 일 전송블록(transport block, TB)은 일 코드워드로 부호화되며, 각 코드워드는 하나 이상의 레이어의 형태로 수신장치에 전송되게 된다. 주파수 상향 변환을 위해 RF 유닛(13)은 오실레이터(oscillator)를 포함할 수 있다. RF 유닛(13)은 Nt개(Nt는 1보다 이상의 양의 정수)의 전송 안테나를 포함할 수 있다. The processor 11 of the transmission apparatus 10 is predetermined from the processor 11 or a scheduler connected to the processor 11 and has a predetermined encoding and modulation on a signal and / or data to be transmitted to the outside. After performing the transmission to the RF unit 13. For example, the processor 11 converts the data sequence to be transmitted into K layers through demultiplexing, channel encoding, scrambling, and modulation. The coded data string is also called a codeword and is equivalent to a transport block, which is a data block provided by the MAC layer. One transport block (TB) is encoded into one codeword, and each codeword is transmitted to a receiving device in the form of one or more layers. The RF unit 13 may include an oscillator for frequency upconversion. The RF unit 13 may include N t transmit antennas, where N t is a positive integer greater than or equal to one.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 프로세서(21)의 제어 하에, 수신장치(20)의 RF 유닛(23)은 전송장치(10)에 의해 전송된 무선 신호를 수신한다. 상기 RF 유닛(23)은 Nr개의 수신 안테나를 포함할 수 있으며, 상기 RF 유닛(23)은 수신 안테나를 통해 수신된 신호 각각을 주파수 하향 변환하여(frequency down-convert) 기저대역 신호로 복원한다. RF 유닛(23)은 주파수 하향 변환을 위해 오실레이터를 포함할 수 있다. 상기 프로세서(21)는 수신 안테나를 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행하여, 전송장치(10)가 본래 전송하고자 했던 데이터를 복원할 수 있다. The signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10. Under the control of the processor 21, the RF unit 23 of the receiving device 20 receives a radio signal transmitted by the transmitting device 10. The RF unit 23 may include N r receive antennas, and the RF unit 23 frequency down-converts each of the signals received through the receive antennas to restore the baseband signal. . The RF unit 23 may include an oscillator for frequency downconversion. The processor 21 may decode and demodulate a radio signal received through a reception antenna to restore data originally transmitted by the transmission apparatus 10.
RF 유닛(13, 23)은 하나 이상의 안테나를 구비한다. 안테나는, 프로세서(11, 21)의 제어 하에 본 발명의 일 실시예에 따라, RF 유닛(13, 23)에 의해 처리된 신호를 외부로 전송하거나, 외부로부터 무선 신호를 수신하여 RF 유닛(13, 23)으로 전달하는 기능을 수행한다. 안테나는 안테나 포트로 불리기도 한다. 각 안테나는 하나의 물리 안테나에 해당하거나 하나보다 많은 물리 안테나 요소(element)의 조합에 의해 구성될 수 있다. 각 안테나로부터 전송된 신호는 수신장치(20)에 의해 더 이상 분해될 수 없다. 해당 안테나에 대응하여 전송된 참조신호(reference signal, RS)는 수신장치(20)의 관점에서 본 안테나를 정의하며, 채널이 일 물리 안테나로부터의 단일(single) 무선 채널인지 혹은 상기 안테나를 포함하는 복수의 물리 안테나 요소(element)들로부터의 합성(composite) 채널인지에 관계없이, 상기 수신장치(20)로 하여금 상기 안테나에 대한 채널 추정을 가능하게 한다. 즉, 안테나는 상기 안테나 상의 심볼을 전달하는 채널이 상기 동일 안테나 상의 다른 심볼이 전달되는 상기 채널로부터 도출될 수 있도록 정의된다. 복수의 안테나를 이용하여 데이터를 송수신하는 다중 입출력(Multi-Input Multi-Output, MIMO) 기능을 지원하는 RF 유닛의 경우에는 2개 이상의 안테나와 연결될 수 있다. The RF units 13, 23 have one or more antennas. The antenna transmits a signal processed by the RF units 13 and 23 to the outside or receives a radio signal from the outside according to an embodiment of the present invention under the control of the processors 11 and 21. , 23). Antennas are also called antenna ports. Each antenna may correspond to one physical antenna or may be configured by a combination of more than one physical antenna elements. The signal transmitted from each antenna can no longer be decomposed by the receiver 20. A reference signal (RS) transmitted corresponding to the corresponding antenna defines an antenna viewed from the perspective of the receiving apparatus 20, and includes a channel or whether the channel is a single radio channel from one physical antenna. Regardless of whether it is a composite channel from a plurality of physical antenna elements, the receiver 20 enables channel estimation for the antenna. That is, the antenna is defined such that a channel carrying a symbol on the antenna can be derived from the channel through which another symbol on the same antenna is delivered. In the case of an RF unit supporting a multi-input multi-output (MIMO) function for transmitting and receiving data using a plurality of antennas, two or more antennas may be connected.
본 발명의 실시예들에 있어서, UE는 상향링크에서는 전송장치(10)로 동작하고, 하향링크에서는 수신장치(20)로 동작한다. 본 발명의 실시예들에 있어서, BS는 상향링크에서는 수신장치(20)로 동작하고, 하향링크에서는 전송장치(10)로 동작한다. 이하, UE에 구비된 프로세서, RF 유닛 및 메모리를 UE 프로세서, UE RF 유닛 및 UE 메모리라 각각 칭하고, BS에 구비된 프로세서, RF 유닛 및 메모리를 BS 프로세서, BS RF 유닛 및 BS 메모리라 각각 칭한다.In the embodiments of the present invention, the UE operates as the transmitter 10 in the uplink and the receiver 20 in the downlink. In the embodiments of the present invention, the BS operates as the receiving device 20 in the uplink and the transmitting device 10 in the downlink. Hereinafter, the processor, the RF unit and the memory provided in the UE will be referred to as a UE processor, the UE RF unit and the UE memory, respectively, and the processor, the RF unit and the memory provided in the BS will be referred to as a BS processor, a BS RF unit and a BS memory, respectively.
본 발명의 실시예들에 따라, BS 프로세서는 PDCCH 및/또는 PDSCH를 전송하도록 BS RF 유닛을 제어하며, UE 프로세서는 PDCCH 및/또는 PDSCH를 수신하도록 UE RF 유닛을 제어한다. 본 발명의 실시예들에 따라, UE 프로세서는 PUCCH 및 PUSCH를 전송하도록 BS RF 유닛을 제어하며, BS 프로세서는 PUCCH 및 PUSCH를 수신하도록 BS RF 유닛을 제어한다.According to embodiments of the present invention, the BS processor controls the BS RF unit to transmit the PDCCH and / or PDSCH, and the UE processor controls the UE RF unit to receive the PDCCH and / or PDSCH. According to embodiments of the present invention, the UE processor controls the BS RF unit to transmit the PUCCH and the PUSCH, and the BS processor controls the BS RF unit to receive the PUCCH and the PUSCH.
본 발명의 UE 프로세서는 UCI에 대응하는 비트 시퀀스를 채널 부호화하여 출력 비트 시퀀스를 생성한다. 예를 들어, UCI의 페이로드 크기가 특정 크기(예, 11)보다 큰 경우, 상기 UE 프로세서는 상기 UCI(예를 들어, ACK/NACK, SR, RI 등)에 대응하는 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)를 2개의 세그먼트(segment)로 분주(divide)한다. 도 11을 참조하면, UE 프로세서는 한 번에 전송될 UCI에 대응하는 입력 비트 시퀀스 a_0,a_1,...,a_(NPUCCHformat3 A/N-1)를 2개의 RM 부호화 세그먼트 [a_0, a_2,..., a_(ceil(NPUCCHformat3 A/N/2)-1)](이하, 세그먼트 1) 및 [a_ceil(NPUCCHformat3 A/N/2), a_(ceil(NPUCCHformat3 A/N/2)+1),..., a_(NPUCCHformat3 A/N-1)](이하, 세그먼트 2)로 분주하고, 상기 세그먼트 1과 세그먼트 2에 대해 각각 RM 부호화를 적용할 수 있다. 예를 들어, 상기 UE 프로세서는 UCI 비트 시퀀스 [a_0, a_1,..., a_(ceil(NPUCCHformat3 A/N/2)-1)]는 수학식 13에 따라, UCI 비트 시퀀스 [a_ceil(NPUCCHformat3 A/N/2), a_(ceil(NPUCCHformat3 A/N/2)+1),..., a_(NPUCCHformat3 A/N-1)]는 수학식 14에 따라 각각 채널 부호화할 수 있다. 상기 UE 프로세서는 각각의 채널 부호화에 의해 인코딩된 비트들을, 예를 들어, 수학식 15와 같이, 교번 연결(alternate concatenation)함으로써 출력 비트 시퀀스 b0,b1,b2,...,bB-1(여기서, B=4·NRB sc)를 얻을 수 있다. The UE processor of the present invention channel-codes the bit sequence corresponding to the UCI to generate an output bit sequence. For example, if the payload size of the UCI is larger than a specific size (eg, 11), the UE processor may perform bit sequence a_0, a_1, corresponding to the UCI (eg, ACK / NACK, SR, RI, etc.). ..., a_ (N PUCCHformat3 A / N- 1) is divided into two segments. Referring to FIG. 11, the UE processor inputs an input bit sequence a_0, a_1, ..., a_ (N PUCCHformat3 A / N- 1) corresponding to a UCI to be transmitted at one time, using two RM encoding segments [a_0, a_2, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] (hereafter segment 1) and [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) ) +1), ..., a_ (N PUCCHformat3 A / N- 1)] (hereinafter referred to as segment 2), and RM coding may be applied to segments 1 and 2, respectively. For example, the UE processor is a UCI bit sequence [a_0, a_1, ..., a_ (ceil (N PUCCHformat3 A / N / 2) -1)] is a UCI bit sequence [a_ceil (N PUCCHformat3 A / N / 2), a_ (ceil (N PUCCHformat3 A / N / 2) +1), ..., a_ (N PUCCHformat3 A / N- 1)] may be channel coded according to Equation 14, respectively. have. The UE processor outputs the bit sequence b 0 , b 1 , b 2 , ..., b B by alternating concatenation of the bits encoded by each channel encoding, for example, as shown in Equation 15 below. -1 (where B = 4N RB sc ) can be obtained.
상기 UE 프로세서는 상기 출력 비트 시퀀스를 변조하여 변조 심볼들을 생성하고 상기 변조 심볼들을 소정 개수의 연속하는 변조 심볼들 만큼씩 복수의 안테나 포트들에 맵핑할 수 있다. 상기 안테나 포트들 각각은 일 변환 프리코더에 연관되어 있으므로, 상기 UE 프로세서는 상기 변조 심볼들을 소정 개수의 연속하는 변조 심볼들 만큼씩 복수의 변환 프리코더들에 분배함으로써 상기 변조 심볼들을 소정 개수의 연속하는 변조 심볼들 만큼씩 상기 복수의 안테나 포트들에 맵핑할 수 있다.The UE processor may modulate the output bit sequence to generate modulation symbols and map the modulation symbols to a plurality of antenna ports by a predetermined number of consecutive modulation symbols. Since each of the antenna ports is associated with one transform precoder, the UE processor distributes the modulation symbols to the plurality of transform precoders by a predetermined number of consecutive modulation symbols, thereby distributing the modulation symbols to a predetermined number of consecutive. Each modulation symbol may be mapped to the plurality of antenna ports.
상기 UE 프로세서는 각 안테나 포트에 맵핑된 변조 심볼들에 변환 프리코딩을 적용하여 복소 심볼들을 출력하고, 상기 복소 심볼들을 시간-주파수 자원에 맵핑할 수 있다. 이때, 상기 UE 프로세서는 서로 다른 안테나 포트들에 맵핑된 복소 심볼들은 주파수 도메인에서 직교하는 주파수 자원에 맵핑하도록 구성될 수 있다. 즉, 상기 UE 프로세서는 UCI의 전송에 참여하는 안테나 포트들에 서로 직교하는 주파수 자원을 할당하도록 구성될 수 있다. 예를 들어, 상기 UE 프로세서는 안테나 포트 0에 맵핑된 복소 심볼들의 모음과 안테나 포트 1에 맵핑된 복소 심볼들의 모음에 서로 직교하는 주파수 자원들을 맵핑하도록 구성될 수 있다.The UE processor may apply complex precoding to modulation symbols mapped to each antenna port, output complex symbols, and map the complex symbols to time-frequency resources. In this case, the UE processor may be configured to map complex symbols mapped to different antenna ports to orthogonal frequency resources in the frequency domain. That is, the UE processor may be configured to allocate frequency resources orthogonal to each other to antenna ports participating in the transmission of UCI. For example, the UE processor may be configured to map frequency resources orthogonal to each other on a collection of complex symbols mapped to antenna port 0 and a collection of complex symbols mapped to antenna port 1.
상기 UE 프로세서는 안테나 포트별 복소 심볼들에 IFFT를 적용하여 복소 시간-도메인 SC-FDM 신호를 생성하고, 상기 SC-FDM 신호를 해당 시간 자원 내에 해당 주파수 자원을 통해 해당 안테나 포트 상에서 전송하도록 상기 UE RF 유닛을 제어할 수 있다. The UE processor generates a complex time-domain SC-FDM signal by applying IFFT to complex symbols per antenna port, and transmits the SC-FDM signal on a corresponding antenna port through a corresponding frequency resource within a corresponding time resource. The RF unit can be controlled.
도 19는 전송장치(10) 내 신호 처리 과정의 일 예를 도시한 것이다. 19 illustrates an example of a signal processing process in the transmitter 10.
도 19를 참조하면, 전송장치(100) 내 프로세서(11)는 채널 부호기(미도시), 스크램블러(301) 및 변조맵퍼(302), 레이어 맵퍼(303), 프리코더(304), 자원 요소 맵퍼(305), OFDM 신호생성기(306)를 포함할 수 있다.Referring to FIG. 19, the processor 11 in the transmitter 100 includes a channel encoder (not shown), a scrambler 301 and a modulation mapper 302, a layer mapper 303, a precoder 304, and a resource element mapper. 305, an OFDM signal generator 306.
전송장치(10)는 UCI를 채널 부호화하는 채널 부호기(미도시)를 하나 이상 포함할 수 있다. 상기 채널 부호기는 (30,O) RM 부호를 UCI에 적용하여 인코딩된 비트 시퀀스를 출력할 수 있다. 상기 전송장치(10)는 UCI가 분할되어 얻어진 복수의 세그먼트들 각각의 채널 부호화를 위해 복수의 채널 부호기를 포함할 수 있다. The transmitter 10 may include one or more channel encoders (not shown) for channel encoding the UCI. The channel encoder may output an encoded bit sequence by applying a (30, O) RM code to the UCI. The transmitter 10 may include a plurality of channel encoders for channel encoding of each of a plurality of segments obtained by splitting UCI.
전송장치(10)는 하나 이상의 코드워드(codeword)를 전송할 수 있다. 각 코드워드 내 부호화된 비트(coded bits)는 각각 상기 스크램블러(301)에 의해 스크램블링되어 물리채널 상에서 전송된다. 코드워드는 데이터열로 지칭되기도 하며, MAC 계층이 제공하는 데이터 블록과 등가이다. MAC 계층이 제공하는 데이터 블록은 전송 블록으로 지칭되기도 한다. The transmitter 10 may transmit one or more codewords. Coded bits in each codeword are scrambled by the scrambler 301 and transmitted on a physical channel. Codewords are also referred to as data streams and are equivalent to data blocks provided by the MAC layer. The data block provided by the MAC layer may also be referred to as a transport block.
스크램블링된 비트는 상기 변조 맵퍼(302)에 의해 복소 변조 심볼(complex-valued modulation symbols)로 변조된다. 상기 변조 맵퍼(302)는 상기 스크램블링된 비트를 기결정된 변조 방식에 따라 변조하여 신호 성상(signal constellation) 상의 위치를 표현하는 복소 변조 심볼로 배치할 수 있다. 변조 방식(modulation scheme)에는 제한이 없으며, m-PSK(m-Phase Shift Keying) 또는 m-QAM(m-Quadrature Amplitude Modulation) 등이 상기 부호화된 데이터의 변조에 이용될 수 있다. The scrambled bits are modulated into complex-valued modulation symbols by the modulation mapper 302. The modulation mapper 302 may modulate the scrambled bits according to a predetermined modulation scheme and place them as complex modulation symbols representing positions on a signal constellation. There is no restriction on a modulation scheme, and m-Phase Shift Keying (m-PSK) or m-Quadrature Amplitude Modulation (m-QAM) may be used to modulate the encoded data.
상기 복소 변조 심볼은 상기 레이어 맵퍼(303)에 의해 하나 이상의 전송 레이어로 맵핑된다. 상기 레이어 맵퍼(303)는 상기 복소 변조 심볼들을 본 발명의 일 실시예에 따라 복수의 안테나 포트들로 분주하는 분주기(divider)에 해당할 수 있다. The complex modulation symbol is mapped to one or more transport layers by the layer mapper 303. The layer mapper 303 may correspond to a divider for dividing the complex modulation symbols into a plurality of antenna ports according to an embodiment of the present invention.
본 발명에서는 UCI 전송에 SC-FDM 접속(SC-FDMA) 방식이 사용된다. 코드워드의 전송에 SC-FDM 접속(SC-FDMA) 방식이 채택되는 경우, 전송장치(10)의 프로세서(11)는 변환 프리코더를 포함할 수 있다. 이산푸리에변환(Discrete Fourier Transform, DFT) 모듈(307)(혹은 고속푸리에변환(Fast Fourier Transform, FFT) 모듈)이 상기 변환 프리코더로 사용될 수 있다. 상기 변환 프리코더는 각 안테나 포트로의 맵핑을 위해 분주된 상기 복소 변조 심볼들에 DFT(Discrete Fourier Transform) 혹은 FFT(Fast Fourier Transform)(이하, DFT/FFT)를 수행하여 복소 심볼들을 생성한다.In the present invention, SC-FDM access (SC-FDMA) is used for UCI transmission. When the SC-FDM connection (SC-FDMA) scheme is adopted for the transmission of the codeword, the processor 11 of the transmitter 10 may include a conversion precoder. A Discrete Fourier Transform (DFT) module 307 (or a Fast Fourier Transform (FFT) module) may be used as the transform precoder. The transform precoder generates complex symbols by performing a Discrete Fourier Transform (DFT) or a Fast Fourier Transform (FFT) (hereinafter referred to as DFT / FFT) on the complex modulation symbols divided for mapping to each antenna port.
상기 복소 심볼들은 안테나 포트 상에서의 전송을 위해 프리코더(304)에 의해 프리코딩된다. 구체적으로, 프리코더(304)는 상기 복소 심볼들을 다중 전송 안테나에 따른 MIMO 방식으로 처리하여 안테나 특정 심볼들을 출력하고 상기 안테나 특정 심볼들을 해당 자원 요소 맵퍼(305)로 분배한다. 즉, 전송 레이어의 안테나 포트로의 맵핑은 프리코더(304)에 의해 수행된다. 프리코더(304)는 레이어 맵퍼(303)의 출력 x를 Nt×Mt의 프리코딩 행렬 W와 곱해 Nt×MF의 행렬 z로 출력할 수 있다. 본 발명의 실시예들에 있어서, 프리코더(304)는 일 변환 프리코더로부터 입력된 복소 심볼들을 일 안테나 포트에 연관된 일 자원 요소 맵퍼로 분배할 수 있다. 즉, 본 발명의 프리코더(304)는 일 변환 프리코더로부터의 입력된 복소 심볼들은 모두 동일한 안테나 포트로 맵핑하도록 구성될 수 있다.The complex symbols are precoded by the precoder 304 for transmission on the antenna port. In detail, the precoder 304 processes the complex symbols in a MIMO scheme according to a multiple transmit antenna to output antenna specific symbols and distributes the antenna specific symbols to the corresponding resource element mapper 305. That is, mapping of the transport layer to the antenna port is performed by the precoder 304. The precoder 304 may be output to the matrix z of the layer mapper 303, an output x N t × M t precoding matrix W is multiplied with N t × M F of the. In embodiments of the present invention, the precoder 304 may distribute complex symbols input from one transform precoder to one resource element mapper associated with one antenna port. That is, the precoder 304 of the present invention may be configured to map all the complex symbols input from one transform precoder to the same antenna port.
상기 자원 요소 맵퍼(305)는 각 안테나 포트에 대한 복소 변조 심볼을 적절한 자원요소(resource elements)에 맵핑/할당한다. 상기 자원 요소 맵퍼(305)는 상기 각 안테나 포트에 대한 복소 변조 심볼을 적절한 부반송파에 할당하고, 사용자에 따라 다중화할 수 있다. 본 발명의 실시예들에 있어서, 상기 자원 요소 맵퍼(305)는 서로 다른 변환 프리코더로부터의 복소 심볼 시퀀스들에는 직교하는 서로 다른 주파수 자원들을 맵핑하도록 구성될 수 있다.The resource element mapper 305 maps / assigns the complex modulation symbol for each antenna port to the appropriate resource elements. The resource element mapper 305 may assign a complex modulation symbol for each antenna port to an appropriate subcarrier and multiplex it according to a user. In embodiments of the present invention, the resource element mapper 305 may be configured to map different orthogonal frequency resources to complex symbol sequences from different transform precoders.
OFDM 신호생성기(306)는 상기 각 안테나 포트에 대한 복소 변조 심볼, 즉, 안테나 특정 심볼을 OFDM 또는 SC-FDM 방식으로 변조하여, 복소시간도메인(complex-valued time domain) OFDM(Orthogonal Frequency Division Multiplexing) 심볼 신호 또는 복소시간도메인 SC-FDM(Single Carrier Frequency Division Multiplexing) 심볼 신호를 생성한다. OFDM 신호생성기(306)는 안테나 특정 심볼에 대해 IFFT(Inverse Fast Fourier Transform)을 수행할 수 있으며, IFFT가 수행된 시간 도메인 심볼에는 CP(Cyclic Prefix)가 삽입될 수 있다. OFDM 심볼은 디지털-아날로그(digital-to-analog) 변환, 주파수 상향변환 등을 거쳐, 각 전송 안테나를 통해 수신장치로 전송된다. OFDM 신호생성기(306)는 IFFT 모듈 및 CP 삽입기, DAC(Digital-to-Analog Converter), 주파수 상향 변환기(frequency up-converter) 등을 포함할 수 있다.An OFDM signal generator 306 modulates a complex modulation symbol for each antenna port, that is, an antenna specific symbol by an OFDM or SC-FDM scheme, to perform a complex-valued time domain (OFDM) orthogonal frequency division multiplexing (OFDM). A symbol signal or a complex time domain SC-FDM (Single Carrier Frequency Division Multiplexing) symbol signal is generated. The OFDM signal generator 306 may perform an inverse fast fourier transform (IFFT) on an antenna specific symbol, and a cyclic prefix (CP) may be inserted into a time domain symbol on which the IFFT is performed. The OFDM symbol is transmitted to the receiving apparatus through each transmit antenna through digital-to-analog conversion, frequency upconversion, and the like. The OFDM signal generator 306 may include an IFFT module and a CP inserter, a digital-to-analog converter (DAC), a frequency up-converter, and the like.
수신장치(20)의 신호 처리 과정은 전송장치(10)의 신호 처리 과정의 역으로 구성된다. 구체적으로, 수신장치(20)의 프로세서(21)는 외부에서 RF 유닛(23)을 통하여 수신된 무선 신호에 대한 복호(decoding) 및 복조(demodulation)를 수행한다. 상기 RF 유닛(23)은 Nr개의 다중 수신 안테나를 포함할 수 있으며, 수신 안테나를 통해 수신된 신호 각각은 기저대역 신호로 복원된 후 다중화 및 MIMO 복조화를 거쳐 전송장치(10)가 본래 전송하고자 했던 데이터열로 복원된다. 상기 프로세서(21)는 수신된 신호를 기저대역 신호로 복원하기 위한 신호복원기, 수신 처리된 신호를 결합하여 다중화하는 다중화기, 다중화된 신호열을 해당 코드워드로 복조하는 채널복조기를 포함할 수 있다. 상기 신호복원기 및 다중화기, 채널복조기는 이들의 기능을 수행하는 통합된 하나의 모듈 또는 각각의 독립된 모듈로 구성될 수 있다. 조금 더 구체적으로, 상기 신호복원기는 아날로그 신호를 디지털 신호로 변환하는 ADC(analog-to-digital converter), 상기 디지털 신호로부터 CP를 제거하는 CP 제거기, CP가 제거된 신호에 FFT(fast Fourier transform)를 적용하여 주파수 도메인 심볼을 출력하는 FFT 모듈, 상기 주파수 도메인 심볼을 안테나 특정 심볼로 복원하는 자원요소디맵퍼(resource element demapper)/등화기(equalizer)를 포함할 수 있다. 상기 안테나 특정 심볼은 다중화기에 의해 전송레이어로 복원되며, 상기 전송레이어는 채널복조기에 의해 전송장치(10)가 전송하고자 했던 코드워드로 복원된다. The signal processing of the receiver 20 is the reverse of the signal processing of the transmitter 10. In detail, the processor 21 of the receiving device 20 performs decoding and demodulation on the radio signal received through the RF unit 23 from the outside. The RF unit 23 may include N r multiple receive antennas, and each of the signals received through the receive antennas are restored to a baseband signal, and then transmitted by the transmitter 10 through multiplexing and MIMO demodulation. The data string is restored to the intended data sequence. The processor 21 may include a signal restorer for restoring a received signal to a baseband signal, a multiplexer for combining and multiplexing the received processed signal, and a channel demodulator for demodulating the multiplexed signal sequence with a corresponding codeword. . The signal restorer, the multiplexer, and the channel demodulator may be composed of one integrated module or each independent module for performing their functions. More specifically, the signal restorer is an analog-to-digital converter (ADC) for converting an analog signal into a digital signal, a CP remover for removing a CP from the digital signal, and a fast fourier transform (FFT) to the signal from which the CP is removed. FFT module for outputting a frequency domain symbol by applying a, and may include a resource element demapper (equalizer) to restore the frequency domain symbol to an antenna-specific symbol (equalizer). The antenna specific symbol is restored to a transmission layer by a multiplexer, and the transmission layer is restored to a codeword intended to be transmitted by the transmission apparatus 10 by a channel demodulator.
한편, 상기 수신장치(20)가 SC-FDMA 방식에 의해 전송된 신호를 수신하는 경우, 상기 프로세서(21)는 역이산푸리에변환(Inverse Discrete Fourier Transform, IDFT) 모듈(혹은 IFFT 모듈)을 추가로 포함한다. 상기 IDFT/IFFT 모듈은 자원요소디맵퍼에 의해 복원된 안테나 특정 심볼에 IDFT/IFFT를 수행하여, IDFT/IFFT된 심볼을 다중화기에 출력한다. On the other hand, when the receiver 20 receives a signal transmitted by the SC-FDMA method, the processor 21 further includes an Inverse Discrete Fourier Transform (IDFT) module (or IFFT module). Include. The IDFT / IFFT module performs IDFT / IFFT on the antenna specific symbol recovered by the resource element demapper and outputs the IDFT / IFFT symbol to the multiplexer.
참고로, 도 19에서 스크램블러(301) 및 변조맵퍼(302), 레이어 맵퍼(303), 변환 프리코더(307), 프리코더(304), 자원 요소 맵퍼(305), OFDM 신호생성기(306)가 전송장치(10)의 프로세서(11)에 포함되는 것으로 설명하였으나, 상기 전송장치(10)의 RF 유닛(13)이 이들 구성요소를 포함하는 것도 가능하다. 마찬가지로, 도 19에서는 신호복원기 및 다중화기, 채널복조기 등이 수신장치(20)의 프로세서(21)에 포함되는 것으로 설명하였으나, 수신장치(20)의 RF 유닛(23)에 이들 구성요소들이 포함되는 것도 가능하다. For reference, in FIG. 19, the scrambler 301, the modulation mapper 302, the layer mapper 303, the transform precoder 307, the precoder 304, the resource element mapper 305, and the OFDM signal generator 306 are provided. Although described as being included in the processor 11 of the transmitter 10, it is also possible that the RF unit 13 of the transmitter 10 includes these components. Similarly, in FIG. 19, the signal restorer, the multiplexer, the channel demodulator, etc. are described as being included in the processor 21 of the receiver 20, but these components are included in the RF unit 23 of the receiver 20. It is also possible.
전술한 본 발명의 실시예들에 있어서, 서로 다른 안테나 포트에 할당된 복소 심볼들에는 서로 직교하는 주파수 자원이 맵핑된다. 본 발명의 실시예에 의하면, 세그먼트 1으로부터의 QPSK 심볼들과 세그먼트 2로부터의 QPSK 심볼들이 각 안테나 포트에 고르게 배분된다. 안테나 포트들은 서로 직교하는 주파수 자원을 사용하므로, 본 발명에 의하면 듀얼 RM 부호화된 UCI에 FSTD를 적용함으로써 전송 다이버시티 이득을 얻을 수 있다. In the above-described embodiments of the present invention, orthogonal frequency resources are mapped to complex symbols assigned to different antenna ports. According to an embodiment of the present invention, QPSK symbols from segment 1 and QPSK symbols from segment 2 are evenly distributed to each antenna port. Since antenna ports use frequency resources that are orthogonal to each other, according to the present invention, transmit diversity gain can be obtained by applying FSTD to dual RM encoded UCI.
도 20은 본 발명에 따른 ACK/NACK 전송 성능(performance)에 관한 실험 예를 나타낸 것이다. 특히, 도 20은 듀얼 RM 부호화와 FSTD의 단순 조합(이하, FSTD1)과 본 발명에 따른 FSTD(이하, FSTD2)에 따른 ACK/NACK 전송의 모의실험(simulation) 결과를 나타낸 것이다.20 shows an experimental example of ACK / NACK transmission performance according to the present invention. In particular, FIG. 20 illustrates a simulation result of ACK / NACK transmission according to a simple combination of dual RM encoding and FSTD (hereinafter referred to as FSTD1) and an FSTD (hereinafter referred to as FSTD2) according to the present invention.
도 20의 모의 실험에서 DTX(Discontinuous Transmission)가 ACK으로 판단되는 확률(즉, DTX to ACK 오류율)은 다음과 같이 정의된다.In the simulation of FIG. 20, a probability (ie, DTX to ACK error rate) in which DTX (Discontinuous Transmission) is determined as ACK is defined as follows.
수학식 19
Figure PCTKR2012006266-appb-M000019
Equation 19
Figure PCTKR2012006266-appb-M000019
다음의 2가지 검출기 타입이 모의실험에 사용되었다.The following two detector types were used for the simulation.
ㆍ검출기 타입 A(RS 및 데이터를 사용하는 조인트 ML(Maximum Likelihood)검출기라고 불리기도 함)Detector type A (also called joint ML (Maximum Likelihood) detector using RS and data)
데이터 심볼의 각 코드워드에 대해 RS 및 데이터로부터의 신호들이 코히런트하게(coherently) 누적(accumulate)된다. 각 슬롯 및 전송/수산 안테나 포트에 대한 신호들은 비-코히런트하게(non=coherently) 누적된다.For each codeword of a data symbol, signals from RS and data are coherently accumulated. The signals for each slot and transmit / secure antenna port accumulate non-coherently.
2가지 전송 다이버시티 기법에 대해, ML 검출은 다음에 의해 수행된다.For the two transmit diversity schemes, ML detection is performed by:
수학식 20
Figure PCTKR2012006266-appb-M000020
Equation 20
Figure PCTKR2012006266-appb-M000020
여기서, NRX, Nslot 및 NTX는 각각 수신 안테나 포트의 개수, 서브프레임 내 슬롯의 개수 및 전송 안테나 포트의 개수를 나타낸다. hc n_tx=hn_tx,RS+hc n_tx,Data이다. 여기서, hn_tx,RS는 RS 심볼 상에서 안테나 포트 n_tx에 대해 추정된 채널을 나타내며, hc n_tx,Data는 데이터 심볼 상에서 코드워드 c에 의해 안테나 포트 n_tx에 대해 추정된 채널을 나타낸다.Here, N RX , N slot and N TX represent the number of receive antenna ports, the number of slots in a subframe, and the number of transmit antenna ports, respectively. h c n_tx = h n_tx, RS + h c n_tx, Data . Here, h n_tx, RS denotes a channel estimated for antenna port n_tx on an RS symbol, and h c n_tx, Data denotes a channel estimated for antenna port n_tx by a codeword c on a data symbol.
ㆍ검출기 타입 BDetector Type B
정규 ML 검출이 RS 심볼들에 대한 채널 추정 이후에 데이터 심볼들에서 적용된다. 각 슬롯 및 전송(transmission, Tx)/수신(reception, Rx) 안테나 포트에 대해 검출기는 각 코드워드 출력을 코히런트하게 누적한다.Normal ML detection is applied at the data symbols after channel estimation for the RS symbols. For each slot and transmission (Tx) / reception (Rx) antenna port, the detector coherently accumulates each codeword output.
표 6는 모의 실험에 사용된 나머지 파라미터들을 나열한 것이다.Table 6 lists the remaining parameters used in the simulation.
표 6
Parameters Value
Carrier frequency 2GHz
System bandwidth 5MHz
Channel model ETU
Velocity 3km/h
Frequency hopping At slot boundary
Antenna setup 1Tx-2Rx, 2Tx-2Rx
Tx/Rx antenna correlation Uncorrelated
Channel estimation Practical
CP type Normal CP
Signal bandwidth 18kHz
Noise estimation Ideal
Number of UEs 1
Number of PRBs for PUCCH 1
ACK/NACK bits 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 bits
Transmit Diversity schemes 1Tx, FSTD1, FSTD2
Channel coding (32,O) RM for <= 11 ACK/NACK bits, (32,O) dual RM for > 11 ACK/NACK bits
Table 6
Parameters Value
Carrier frequency
2 GHz
System bandwidth
5 MHz
Channel model ETU
Velocity 3km / h
Frequency hopping At slot boundary
Antenna setup 1Tx-2Rx, 2Tx-2Rx
Tx / Rx antenna correlation Uncorrelated
Channel estimation Practical
CP type Normal CP
Signal bandwidth
18 kHz
Noise estimation Ideal
Number of UEs One
Number of PRBs for PUCCH One
ACK / NACK bits 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 bits
Transmit Diversity schemes 1Tx, FSTD1, FSTD2
Channel coding (32, O) RM for <= 11 ACK / NACK bits, (32, O) dual RM for> 11 ACK / NACK bits
도 20(a) 및 도 20(b)는 DTX-to-ACK 확률 < 1%, ACK-to-NACK/DTX 확률 < 1%, NACK-to-ACK 확률 < 0.1%라는 조건을 만족시키기 위해 요구되는 SNR(Signal to Noise Ratio)를 검출기 타입 A와 검출기 타입 B에 대해 각각 나타낸 것이다.20 (a) and 20 (b) are required to satisfy conditions of DTX-to-ACK probability <1%, ACK-to-NACK / DTX probability <1%, and NACK-to-ACK probability <0.1%. Signal to Noise Ratio (SNR) is shown for detector type A and detector type B, respectively.
전송 성능이 좋을수록 소정 오류 확률을 만족시키기 위해 요구되는 SNR이 낮아진다. 도 20을 참조하면, ACK/NACK 비트 수가 11 비트를 초과하는 경우, FSTD1의 ACK/NACK 전송 성능은 단일 안테나 전송(1Tx)의 ACK/NACK 전송 성능보다도 오히려 나쁨을 알 수 있다. 이에 반해, 본 발명에 따른 FSTD(즉, FSTD2)는 ACK/NACK 비트 수가 11 비트 이하이면 1Tx보다 전송 성능이 좋고 FSTD1와는 유사한 성능을 가지며, ACK/NACK 비트 수가 11 비트를 초과하면 1Tx 및 FSTD1보다 우수한 성능을 가짐을 알 수 있다.The better the transmission performance, the lower the SNR required to satisfy the predetermined error probability. Referring to FIG. 20, when the number of ACK / NACK bits exceeds 11 bits, it can be seen that ACK / NACK transmission performance of FSTD1 is worse than ACK / NACK transmission performance of single antenna transmission 1Tx. In contrast, the FSTD (i.e., FSTD2) according to the present invention has better transmission performance than 1Tx when the number of ACK / NACK bits is 11 bits or less, and has similar performance to that of FSTD1. It can be seen that it has excellent performance.
상술한 바와 같이 개시된 본 발명의 바람직한 실시예들에 대한 상세한 설명은 당업자가 본 발명을 구현하고 실시할 수 있도록 제공되었다. 상기에서는 본 발명의 바람직한 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명은 여기에 나타난 실시형태들에 제한되려는 것이 아니라, 여기서 개시된 원리들 및 신규한 특징들과 일치하는 최광의 범위를 부여하려는 것이다.The detailed description of the preferred embodiments of the invention disclosed as described above is provided to enable those skilled in the art to implement and practice the invention. Although the above has been described with reference to preferred embodiments of the present invention, those skilled in the art will variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. I can understand that you can. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.
본 발명의 실시예들은 무선 통신 시스템에서, 기지국, 릴레이 또는 사용자기기, 기타 다른 장비에 사용될 수 있다.Embodiments of the present invention may be used in a base station, relay or user equipment, and other equipment in a wireless communication system.

Claims (6)

  1. 사용자기기가 일정 크기 이상의 상향링크 제어정보를 기지국에 전송함에 있어서,In the user equipment transmits uplink control information of a predetermined size or more to the base station,
    상기 상향링크 제어정보에 대응하는 입력 비트 시퀀스에 채널 부호화하여 출력 비트 시퀀스를 생성; 및Generating an output bit sequence by channel encoding the input bit sequence corresponding to the uplink control information; And
    상기 출력 비트 시퀀스를 변조하여 복수의 변조 심볼들을 생성;Modulating the output bit sequence to produce a plurality of modulation symbols;
    상기 복수의 변조 심볼들을 제1안테나 포트와 제2안테나 포트에 맵핑;Mapping the plurality of modulation symbols to a first antenna port and a second antenna port;
    상기 제1안테나 포트에 맵핑된 변조 심볼들(이하, 제1변조 심볼들) 및 상기 제2안테나 포트에 맵핑된 변조 심볼들(이하, 제2변조 심볼들)에 제1주파수 자원 및 제2주파수 자원을 각각 맵핑;A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port. Mapping resources respectively;
    상기 제1변조 심볼들을 상기 제1안테나 포트 상에서 상기 제1주파수 자원을 통해, 상기 제2변조 심볼들을 상기 제2안테나 포트 상에서 상기 제2주파수 자원을 통해, 상기 기지국으로 전송하는 것을 포함하되,Transmitting the first modulated symbols to the base station through the first frequency resource on the first antenna port and the second modulated symbols to the base station through the second frequency resource on the second antenna port,
    상기 복수의 변조 심볼들은 소정 개수의 연속하는 변조 심볼들 단위로 상기 복수의 안테나 포트들에 맵핑되고, 상기 제1주파수 자원과 상기 제2주파수 자원은 직교하는,The plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, wherein the first frequency resource and the second frequency resource are orthogonal to each other.
    상향링크 제어정보 전송방법.Uplink control information transmission method.
  2. 제1항에 있어서,The method of claim 1,
    상기 출력 비트 시퀀스의 생성은,Generation of the output bit sequence,
    상기 입력 비트 시퀀스를 제1비트 시퀀스와 제2비트 시퀀스로 분할; 및Dividing the input bit sequence into a first bit sequence and a second bit sequence; And
    상기 제1비트 시퀀스와 상기 제2비트 시퀀스를 각각 채널 부호화하여 부호화된 제1비트 시퀀스를 부호화된 제2비트 시퀀스를 출력;Channel-encoding the first bit sequence and the second bit sequence, respectively, and output an encoded second bit sequence of the encoded first bit sequence;
    상기 부호화된 제1비트 시퀀스와 상기 부호화된 제2비트 시퀀스를 교번 연결하는 것을 포함하는,And alternately connecting the encoded first bit sequence and the encoded second bit sequence.
    상향링크 제어정보 전송방법.Uplink control information transmission method.
  3. 제1항에 있어서,The method of claim 1,
    상기 채널 부호화는 듀얼 리드-뮬러(Reed-Muller, RM) 부호를 이용하는,The channel encoding uses a dual Reed-Muller (RM) code,
    상향링크 제어정보 전송방법.Uplink control information transmission method.
  4. 사용자기기가 일정 크기 이상의 상향링크 제어정보를 기지국에 전송함에 있어서,In the user equipment transmits uplink control information of a predetermined size or more to the base station,
    상기 상향링크 제어정보에 대응하는 비트 시퀀스에 채널 부호화하여 출력 비트 시퀀스를 생성하는 채널 부호기; 및A channel encoder for generating an output bit sequence by channel encoding the bit sequence corresponding to the uplink control information; And
    상기 출력 비트 시퀀스를 변조하여 복수의 변조 심볼들을 생성하는 변조 맵퍼;A modulation mapper for modulating the output bit sequence to produce a plurality of modulation symbols;
    상기 복수의 변조 심볼들을 제1안테나 포트와 제2안테나 포트에 맵핑하는 분주기;A divider for mapping the plurality of modulation symbols to a first antenna port and a second antenna port;
    상기 제1안테나 포트에 맵핑된 변조 심볼들(이하, 제1변조 심볼들) 및 상기 제2안테나 포트에 맵핑된 변조 심볼들(이하, 제2변조 심볼들)에 제1주파수 자원 및 제2주파수 자원을 각각 맵핑하는 자원 맵퍼;A first frequency resource and a second frequency in modulation symbols (hereinafter, referred to as first modulation symbols) mapped to the first antenna port and modulation symbols (hereinafter, referred to as second modulation symbols) mapped to the second antenna port. A resource mapper that maps resources respectively;
    상기 제1변조 심볼들을 상기 제1안테나 포트 상에서 상기 제1주파수 자원을 통해, 상기 제2변조 심볼들을 상기 제2안테나 포트 상에서 상기 제2주파수 자원을 통해, 상기 기지국으로 전송하는 전송기를 포함하되,A transmitter for transmitting the first modulated symbols to the base station through the first frequency resource on the first antenna port and the second modulated symbols to the base station through the second frequency resource on the second antenna port,
    상기 복수의 변조 심볼들은 소정 개수의 연속하는 변조 심볼들 단위로 상기 복수의 안테나 포트들에 맵핑되고, 상기 제1주파수 자원과 상기 제2주파수 자원은 직교하는,The plurality of modulation symbols are mapped to the plurality of antenna ports in units of a predetermined number of consecutive modulation symbols, wherein the first frequency resource and the second frequency resource are orthogonal to each other.
    사용자기기.User device.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 채널 부호기는 상기 입력 비트 시퀀스를 제1비트 시퀀스와 제2비트 시퀀스로 분할하고; 상기 제1비트 시퀀스와 상기 제2비트 시퀀스를 각각 부호화하여 부호화된 제1비트 시퀀스를 부호화된 제2비트 시퀀스를 출력하며; 상기 부호화된 제1비트 시퀀스와 상기 부호화된 제2비트 시퀀스를 교번 연결하여 상기 출력 비트 시퀀스를 출력하되,The channel encoder divides the input bit sequence into a first bit sequence and a second bit sequence; Encoding the first bit sequence and the second bit sequence, respectively, to output an encoded second bit sequence of the encoded first bit sequence; Output the output bit sequence by alternately connecting the encoded first bit sequence and the encoded second bit sequence,
    상기 채널 부호기는 상기 제1비트 시퀀스를 부호화하는 제1채널 부호기와 상기 제2비트 시퀀스를 부호화하는 제2채널 부호기를 포함하는,The channel encoder includes a first channel encoder for encoding the first bit sequence and a second channel encoder for encoding the second bit sequence.
    사용자기기.User device.
  6. 제4항에 있어서,The method of claim 4, wherein
    상기 채널 부호기는 듀얼 리드-뮬러(Reed-Muller, RM) 부호기인,The channel encoder is a dual Reed-Muller (RM) encoder,
    사용자기기.User device.
PCT/KR2012/006266 2011-08-07 2012-08-07 Method and user equipment for transmitting uplink control information WO2013022260A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161515963P 2011-08-07 2011-08-07
US61/515,963 2011-08-07

Publications (2)

Publication Number Publication Date
WO2013022260A2 true WO2013022260A2 (en) 2013-02-14
WO2013022260A3 WO2013022260A3 (en) 2013-05-30

Family

ID=47669070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006266 WO2013022260A2 (en) 2011-08-07 2012-08-07 Method and user equipment for transmitting uplink control information

Country Status (1)

Country Link
WO (1) WO2013022260A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114631A1 (en) * 2015-01-16 2016-07-21 삼성전자 주식회사 Beamforming method and apparatus therefor
WO2018030858A1 (en) * 2016-08-11 2018-02-15 엘지전자 주식회사 Method for terminal for transmitting uplink control information in wireless communication system, and terminal utilizing method
CN111447688A (en) * 2017-07-08 2020-07-24 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for dynamic scheduling
CN116114227A (en) * 2020-09-30 2023-05-12 华为技术有限公司 Diversity communication method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060045660A (en) * 2004-04-14 2006-05-17 삼성전자주식회사 Method and apparatus for uplink control information transmission in orthogonal frequency division multiple access communication systems
KR20100019934A (en) * 2008-08-11 2010-02-19 엘지전자 주식회사 Method for uplink transmitting a control information
KR20110009025A (en) * 2009-07-20 2011-01-27 엘지전자 주식회사 Method and apparatus for transmitting uplink control information
KR20110084471A (en) * 2010-01-17 2011-07-25 엘지전자 주식회사 Method and apparatus for transmitting uplink conrtol information in wireless communication system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060045660A (en) * 2004-04-14 2006-05-17 삼성전자주식회사 Method and apparatus for uplink control information transmission in orthogonal frequency division multiple access communication systems
KR20100019934A (en) * 2008-08-11 2010-02-19 엘지전자 주식회사 Method for uplink transmitting a control information
KR20110009025A (en) * 2009-07-20 2011-01-27 엘지전자 주식회사 Method and apparatus for transmitting uplink control information
KR20110084471A (en) * 2010-01-17 2011-07-25 엘지전자 주식회사 Method and apparatus for transmitting uplink conrtol information in wireless communication system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114631A1 (en) * 2015-01-16 2016-07-21 삼성전자 주식회사 Beamforming method and apparatus therefor
US10454552B2 (en) 2015-01-16 2019-10-22 Samsung Electronics Co., Ltd. Beamforming method and apparatus therefor
WO2018030858A1 (en) * 2016-08-11 2018-02-15 엘지전자 주식회사 Method for terminal for transmitting uplink control information in wireless communication system, and terminal utilizing method
US10880915B2 (en) 2016-08-11 2020-12-29 Lg Electronics Inc. Method for terminal for transmitting uplink control information in wireless communication system, and terminal utilizing method
CN111447688A (en) * 2017-07-08 2020-07-24 上海朗帛通信技术有限公司 Method and device used in user equipment and base station for dynamic scheduling
CN111447688B (en) * 2017-07-08 2023-04-07 上海琦予通信科技服务中心 Method and device used in user equipment and base station for dynamic scheduling
CN116114227A (en) * 2020-09-30 2023-05-12 华为技术有限公司 Diversity communication method and device
EP4210237A4 (en) * 2020-09-30 2023-10-25 Huawei Technologies Co., Ltd. Diversity communication method and apparatus

Also Published As

Publication number Publication date
WO2013022260A3 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
WO2019194619A1 (en) Method of transmitting or receiving signal in wireless communication system and apparatus therefor
WO2018208087A1 (en) Method for transmitting uplink signal in wireless communication system and apparatus therefor
WO2018174450A1 (en) Uplink signal transmission or reception method for terminal supporting plurality of transmission time intervals, plurality of sub-carrier intervals, or plurality of processing times in wireless communication system, and device therefor
WO2020096438A1 (en) Method for generating harq-ack codebook in wireless communication system and device using same
WO2017105135A2 (en) Uplink reference signal transmitting or receiving method in wireless communication system, and apparatus therefor
WO2017171528A1 (en) Method for v2x communication performed by means of terminal in wireless communication system and terminal using same
WO2019216729A1 (en) Method for multiplexing uplink control information in wireless communication system, and apparatus using same
WO2017003265A1 (en) Method and device for transmitting signal in wireless communication system
WO2017078326A1 (en) Method for transmitting uplink control channel in wireless communication system and device therefor
WO2018164452A1 (en) Method for receiving or transmitting downlink signal in wireless communication system and apparatus for same
WO2013122384A1 (en) Device to device communication method and device for performing same
WO2013027963A2 (en) Method for transmitting uplink control information, user equipment, method for receiving uplink control information, and base station
WO2010123331A2 (en) Method and apparatus for transmitting and receiving control signal for merging carriers in transmission
WO2019156466A1 (en) Method for transmitting or receiving signal in wireless communication system and device therefor
WO2017043916A1 (en) Method and apparatus for transmitting signal in wireless communication system
WO2019143131A1 (en) Method and device for transmitting uplink signal in wireless communication system
WO2012144801A2 (en) Signal transmission method and device in a wireless communication system
WO2012169753A2 (en) Method for transmitting uplink control information and user equipment, and method for receiving uplink control information and base station
WO2013043026A2 (en) User equipment and method for transmitting uplink signal, and base station and method for receiving uplink signal
WO2012157987A2 (en) Method for transmitting and receiving control information in a wireless communication system, and apparatus for same
WO2011111977A2 (en) Method for transmitting uplink control information and user device
WO2014123378A1 (en) Method for transreceiving signal and apparatus for same
WO2013002563A2 (en) Channel state information transmitting method and user equipment, and channel state information receiving method and base station
WO2013191519A1 (en) Method for transreceiving control signal and apparatus for same
WO2013006006A2 (en) Method and apparatus for transmitting a signal in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822151

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12822151

Country of ref document: EP

Kind code of ref document: A2