WO2013021910A1 - 空隙率測定装置および空隙率測定方法 - Google Patents

空隙率測定装置および空隙率測定方法 Download PDF

Info

Publication number
WO2013021910A1
WO2013021910A1 PCT/JP2012/069697 JP2012069697W WO2013021910A1 WO 2013021910 A1 WO2013021910 A1 WO 2013021910A1 JP 2012069697 W JP2012069697 W JP 2012069697W WO 2013021910 A1 WO2013021910 A1 WO 2013021910A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersoid
porosity
dispersion medium
magnetic field
volume
Prior art date
Application number
PCT/JP2012/069697
Other languages
English (en)
French (fr)
Inventor
河野 誠
仁 渡會
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2013527992A priority Critical patent/JP5754575B2/ja
Priority to US14/237,153 priority patent/US9366614B2/en
Priority to EP12822219.7A priority patent/EP2741079B1/en
Publication of WO2013021910A1 publication Critical patent/WO2013021910A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects

Definitions

  • the present invention relates to a porosity measuring device and a porosity measuring method.
  • a gas adsorption method or a mercury injection method is known as a method for measuring the porosity of a sample of powder particles.
  • the surface area of the sample in a dry state is evaluated, and the average porosity of the material is calculated from the relationship with the average particle diameter or mass (see, for example, Patent Documents 1 and 2).
  • a technique for measuring the average porosity using NMR is also known.
  • the above-mentioned method cannot measure the individual porosity of particles.
  • the inventor of the present application has found a novel technique capable of measuring the porosity of each particle using the magnetic modulus.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a porosity measuring device and a porosity measuring method capable of measuring individual porosity of a dispersoid dispersed in a dispersion medium. .
  • a porosity measuring device includes a magnetic field generation unit, a dispersoid measurement unit that measures movement of a dispersoid dispersed in a dispersion medium in a state where a magnetic field is generated by the magnetic field generation unit, and the dispersoid measurement unit And a calculation unit that acquires the porosity of the dispersoid based on the measurement result.
  • the calculation unit obtains the magnetophoretic velocity of the dispersoid from the measurement result of the dispersoid measurement unit.
  • the computing unit obtains the volume magnetic susceptibility of the dispersoid from the magnetophoretic velocity of the dispersoid, and obtains the porosity of the dispersoid from the volume magnetic susceptibility of the dispersoid.
  • the dispersoid measurement unit includes an optical lens for enlarging the dispersoid dispersed in the dispersion medium, and an imaging unit for imaging the dispersoid expanded by the optical lens.
  • the magnetic field generation unit generates a magnetic field according to a volume magnetic susceptibility of the dispersoid so that a position of the dispersoid dispersed in the dispersion medium is different.
  • the porosity measurement method includes a step of measuring movement of a dispersoid dispersed in a dispersion medium in a state where a magnetic field is generated, and a porosity of the dispersoid based on a measurement result of the movement of the dispersoid. Obtaining.
  • the step of obtaining the porosity of the dispersoid includes the step of obtaining the magnetophoretic velocity of the dispersoid from the measurement result of the movement of the dispersoid.
  • the step of obtaining the porosity of the dispersoid includes the step of obtaining the volume magnetic susceptibility of the dispersoid from the magnetophoretic velocity of the dispersoid, and the dispersoid from the volume magnetic susceptibility of the dispersoid. Obtaining the porosity.
  • the magnetic field is generated so that the position of the dispersoid dispersed in the dispersion medium differs according to the volume magnetic susceptibility of the dispersoid.
  • the dispersoid includes silica gel particles.
  • the dispersion medium includes acetonitrile.
  • the individual porosity of the dispersoid dispersed in the dispersion medium can be measured.
  • FIG. 1 It is a schematic diagram of an embodiment of a porosity measuring device according to the present invention.
  • (A) And (b) is a schematic diagram for demonstrating the porosity measuring method by this invention.
  • (A) And (b) is a schematic diagram for demonstrating the relationship between the volume magnetic susceptibility of a dispersoid and a dispersion medium, and the moving direction of a dispersoid in the porosity measuring apparatus of this embodiment.
  • FIG. 1 shows a schematic diagram of a porosity measuring device 10 of the present embodiment.
  • the porosity measurement device 10 includes a magnetic field generation unit 20, a dispersoid measurement unit 30, and a calculation unit 40.
  • a dispersion system D in which the dispersoid s is dispersed in the dispersion medium m is disposed in the vicinity of the magnetic field generation unit 20.
  • the dispersion system D is placed in, for example, a tubular member.
  • a magnetic field is generated in the dispersion system D by the magnetic field generation unit 20, the dispersoid s moves in a predetermined direction. Such a phenomenon is also called magnetophoresis.
  • the dispersoid measurement unit 30 measures the movement of the dispersoid s in a state where the magnetic field generation unit 20 generates a magnetic field.
  • the dispersoid measurement unit 30 may be simply referred to as the measurement unit 30.
  • FIG. 1 shows that one dispersoid s exists in the dispersion medium m
  • a plurality of dispersoids s may exist in the dispersion medium m.
  • the dispersion medium m may be a liquid or a gas.
  • the dispersion medium m is acetonitrile.
  • the dispersion medium m may be methanol or water.
  • the dispersion medium m may be air, for example.
  • the dispersoid s may be fine particles.
  • the dispersoid s may be a cell (eg, red blood cell).
  • the diameter of the dispersoid s is 10 nm or more, and preferably 100 nm or more and 100 ⁇ m or less.
  • the specific gravity of the dispersoid s is twice or more than the specific gravity of the dispersion medium m, the sedimentation of the dispersoid s is relatively fast.
  • the measurement system (the direction of magnetic field migration by the magnetic field generation unit 20 and the direction in which the dispersion system D extends) is installed in the vertical direction to change the velocity due to the magnetic field against the gravity drop of the dispersoid s. Is preferably measured.
  • the dispersoid s moves in a predetermined direction by the generation of the magnetic field.
  • the degree of movement of the dispersoid s varies depending on the magnitude of the magnetic field.
  • the calculation unit 40 acquires the porosity of the dispersoid s based on the measurement result of the measurement unit 30. Although details will be described later, for example, the calculation unit 40 acquires the magnetophoretic velocity of the dispersoid s from the measurement result of the measurement unit 30. In this case, the calculation unit 40 may acquire the magnetophoretic velocity of the dispersoid s from the temporal change in the position information indicating the position of the dispersoid s measured by the measurement unit 30. As an example, the measurement unit 30 may image the dispersoid s at predetermined time intervals, and the calculation unit 40 may acquire the magnetophoretic velocity of the dispersoid s from the imaging results.
  • the calculation unit 40 acquires the porosity of the dispersoid s from the magnetophoretic velocity of the dispersoid s. Specifically, the calculation unit 40 acquires the volume magnetic susceptibility of the dispersoid s from the magnetophoretic velocity of the dispersoid s, and acquires the porosity of the dispersoid s from the volume magnetic susceptibility of the dispersoid s.
  • the calculation unit 40 for example, a personal computer is used.
  • the porosity of the dispersoid s can be obtained directly from the movement of one dispersoid s, and the porosity for each dispersoid s can be measured. Further, the uniformity of the porosity of the plurality of dispersoids s dispersed in the dispersion medium m can be examined.
  • the porosity measured by the porosity measuring device 10 is not simply defined only by the shape of the dispersoid s, but is an index indicating the relationship between the dispersoid s and the dispersion medium m.
  • the porosity may be different depending on the dispersion medium m. For this reason, the state of the dispersion medium m that has penetrated into the dispersoid s can be grasped by the porosity.
  • the dispersoid s may be dispersed in the dispersion medium m to swell.
  • the movement of the dispersoid s is determined according to the volume magnetic susceptibility of the dispersoid s and the dispersion medium m.
  • the volume magnetic susceptibility is a parameter that depends on the electronic state, and is a physically reliable index. Further, according to the porosity measuring device 10, information on the inside and the surface of the dispersoid s can be obtained without destroying the dispersoid s.
  • the motion of the dispersoid s dispersed in the dispersion medium m is measured in a state where a magnetic field is generated.
  • the magnetophoretic velocity of the dispersoid s is obtained from the movement of the dispersoid s.
  • the porosity of the dispersoid s is obtained based on the measurement result of the motion of the dispersoid s.
  • the volume magnetic susceptibility of the dispersoid s is acquired from the measurement result of the motion of the dispersoid s, and then the porosity of the dispersoid s is acquired from the volume magnetic susceptibility of the dispersoid s.
  • the dispersoid s may be magnetic particles used for the ink toner.
  • the dispersoid s may be a material used for cosmetics (for example, a foundation) or a material applied to a DDS (drug delivery system).
  • the dispersoid s may be a cell. When the dispersoid s is a cell, the shape of the dispersoid s may change with time.
  • the magnetic field generation unit 20 generates a strong magnetic field and a large magnetic field gradient with a pole piece.
  • the dispersoid s moves in a direction away from the magnetic field.
  • the dispersoid s receives a force in the vicinity of the end of the magnet.
  • the dispersoid s receives a force in the range of about ⁇ 200 ⁇ m from the vicinity of the end of the magnet.
  • the dispersoid s moves in a direction approaching the magnetic field.
  • FIG. 4 shows a schematic diagram of the porosity measuring device 10 of the present embodiment.
  • the capillary C in which the dispersion system D is placed is disposed in the vicinity of the magnetic field generation unit 20.
  • the capillary C has a substantially square shape with a cross section orthogonal to the axial direction of about 100 ⁇ m.
  • the measurement unit 30 includes an enlargement unit 32 and an imaging unit 34.
  • the enlargement unit 32 includes an objective lens
  • the imaging unit 34 includes a charge coupled device (CCD).
  • CCD charge coupled device
  • the imaging unit 34 can measure not only the position of the particle s but also the size thereof, but the imaging unit 34 may not measure the size of the particle s.
  • the imaging unit 34 may measure the position of the dispersoid s by detecting light scattered from the dispersoid s.
  • FIG. 5 shows an example of the measurement result of the movement of the dispersoid in the porosity measuring device 10.
  • the dispersoid s is polystyrene particles, and each point is shown by overlapping images taken at intervals of 0.3 seconds.
  • the calculation unit 40 obtains the magnetophoretic velocity v based on the measurement result of the measurement unit 30.
  • ⁇ s is the volume magnetic susceptibility of the dispersoid s
  • ⁇ m is the volume magnetic susceptibility of the dispersion medium m
  • r is the radius of the dispersoid s
  • is the viscosity of the dispersion medium m
  • ⁇ o is the vacuum permeability
  • B the magnetic flux density
  • (dB / dx) is the gradient of the magnetic flux density.
  • the above equation is derived from the fact that the difference in magnetic force between the dispersoid s and the dispersion medium m received in the axial direction of the capillary C is
  • the migration direction of the dispersoid s is determined according to the volume magnetic susceptibility ⁇ s of the dispersoid s and the volume magnetic susceptibility ⁇ m of the dispersion medium m. Further, as understood from the above formula, the magnetophoretic velocity v of the dispersoid s varies depending on the magnetic flux density B and / or the gradient (dB / dx) of the magnetic flux density.
  • the calculation unit 40 acquires the volume magnetic susceptibility ⁇ s of the dispersoid s using the magnetophoretic velocity v obtained from the measurement result of the measurement unit 30.
  • the dispersoid s has a void portion p filled with the dispersion medium m, and the dispersoid s is divided into a main body portion b and a void portion p.
  • V s is the volume of the dispersoid s
  • V b is the volume of the main body portion b of the dispersoid s
  • V p is the volume of the void portion p of the dispersoid s.
  • the volume V s of the dispersoid s is expressed as the sum of the volume V b of the main body portion b of the dispersoid s and the volume V p of the void portion p.
  • V s V b + V p
  • the magnetic susceptibility of the dispersoid s is expressed as the sum of the magnetic susceptibility of the main body portion b of the dispersoid s and the magnetic susceptibility of the void portion p of the dispersoid s.
  • the volume magnetic susceptibility ⁇ p of the void portion p of the dispersoid s is equal to the volume magnetic susceptibility ⁇ m of the dispersion medium m.
  • silica gel is generally used as a filler.
  • the configuration of the silica gel can be examined using the porosity measuring device 10 of the present embodiment.
  • silica gel particles having a diameter of about 5 ⁇ m as dispersoid s the result of measurement using acetonitrile as a dispersion medium m, when the magnetic migration speed v is 27.4Myums -1, from the magnetic migration speed v, chi s Is determined to be ⁇ 7.20 ⁇ 0.02 ⁇ 10 ⁇ 6 .
  • the dispersoid s is silica gel, when the dispersion medium m is acetonitrile, chi b is -1.36 ⁇ 10 -5, ⁇ m is -6.76 ⁇ 10 -6 is there. In this case, the porosity P is 93.3%. From the volume V s of silica gel particles, V p is determined to be 4.65 ⁇ 10 ⁇ 11 cm 3 .
  • the dispersoid s a known material may be used, or the diameter of the dispersoid s may be measured.
  • the diameter of the dispersoid s may be measured using the measurement unit 30.
  • the porosity measuring device 10 has the light source 50 as shown in FIG.
  • dispersion is performed by utilizing interference of light between two optical members in a state where the dispersoid s is trapped by a gap formed between the convex lens and the flat glass or between the flat glass and the flat glass.
  • the diameter of the material s may be measured. Or you may measure the diameter of the dispersoid s using the scattered light from the dispersoid s which carries out Brownian motion.
  • the capillary C in which the dispersion system D is placed is arranged vertically, but the present invention is not limited to this.
  • the capillary C in which the dispersion system D is placed may be arranged horizontally.
  • the magnetic field generation unit 20 generates a magnetic field having a magnetic flux density of 3T.
  • FIG. 9 shows the measurement results of the porosity when acetonitrile is used as the dispersion medium and porous silica gel particles are used as the dispersoid in the porosity measurement apparatus 10 of the present embodiment.
  • the average porosity is 69.7%.
  • the porosity of the porous silica gel particles indicates the ratio of the volume of acetonitrile that has entered the pores of the porous silica gel particles to the total volume of the porous silica gel particles.
  • an average porosity is 70% and it corresponds substantially with the measurement result of FIG.
  • the porosity measuring apparatus 10 of this embodiment can measure the porosity for each particle, the porosity distribution is easily obtained. Typically, obtaining one average porosity requires measurement of about 1000 particles, which takes approximately 20 minutes. When particles having a substantially constant particle size are used, it can be seen that the pore volume of the particles varies when the distribution of the porosity is wide.
  • Table 1 shows the measurement results of the porosity of the porous silica gel particles when methanol and ethanol are used in addition to acetonitrile as the dispersion medium in the porosity measuring device 10 of the present embodiment. As can be seen from Table 1, almost the same results were obtained with these three organic solvents. Thus, the porosity of the dispersoid s can be measured using different solutions.
  • the magnetophoresis direction of the dispersoid s with respect to the flow of the dispersion medium m may change.
  • the entire dispersoid s is radicalized due to a chemical change, the dispersoid s becomes paramagnetic, and the magnitude of the volume magnetic susceptibility of the dispersoid s with respect to the volume magnetic susceptibility of the dispersion medium m may be reversed.
  • the magnetophoresis direction of the dispersoid s is reversed by the change of the dispersoid s.
  • the reversal of the magnetophoretic direction of the dispersoid s occurs when the density of the dispersoid s changes significantly and the volume magnetic susceptibility of the dispersoid s and the volume magnetic susceptibility of the dispersion medium m are reversed. May also occur. However, whether or not the density of the dispersoid s has greatly changed can be checked by the measurement unit 30 monitoring the change of the dispersoid s.
  • the radicalization timing of the dispersoid s can be specified and the change to radicals can be visualized.
  • the change (for example, chemical change) of the dispersoid s may be performed in the state in which the porosity measuring device 10 is installed, or may be performed outside the porosity measuring device 10.
  • the dispersoid s is divided into two parts, a main body part b and a void part p, but the present invention is not limited to this.
  • the dispersoid s may be divided into three or more parts.
  • the dispersoid s may be subjected to a surface treatment to improve hydrophilicity. In this case, a portion different from the main body of the dispersoid s is formed on the surface of the dispersoid s. Is done.
  • the dispersoid s is divided into three parts: a main body part b, a surface part c, and a gap part p.
  • the dispersoid s having such three parts corresponds to, for example, a surface of the silica gel provided with voids modified with an Octa Decyl Silyl (ODS) group (C 18 H 37 Si).
  • ODS Octa Decyl Silyl
  • V s is the volume of the dispersoid s
  • V b is the volume of the main body portion b of the dispersoid s
  • V c is the volume of the surface portion c of the dispersoid s
  • V p is the dispersoid s. Is the volume of the void portion p.
  • the magnetic susceptibility of the dispersoid s is expressed by the sum of the magnetic susceptibility of the main body portion b of the dispersoid s, the magnetic susceptibility of the surface portion c of the dispersoid s, and the magnetic susceptibility of the void portion p of the dispersoid s.
  • ⁇ s V s ⁇ b V b + ⁇ c V c + ⁇ p V p
  • ⁇ s is the volume susceptibility of the dispersoid s
  • ⁇ b is the volume susceptibility of the main body portion b of the dispersoid s
  • ⁇ c is the volume susceptibility of the surface portion c of the dispersoid s
  • ⁇ p is the volume magnetic susceptibility of the void portion p of the dispersoid s.
  • V c V s ⁇ V b ⁇ V p It is expressed.
  • a measured value can be used for V b .
  • ⁇ s is determined to be ⁇ 7.82 ⁇ 10 ⁇ 6 from the magnetophoretic velocity of the dispersoid s.
  • the volume magnetic susceptibility chi p air gap portions p of the dispersoid s is -6.76 ⁇ 10 -6 equal to the volume magnetic susceptibility chi m of the dispersion medium m, also from literature values, the ⁇ b -1.56 ⁇ 10 ⁇ 5 and ⁇ c is ⁇ 8.43 ⁇ 10 ⁇ 6 .
  • the volume V b of the main body portion b of the dispersoid s is 6.06 ⁇ 10 ⁇ 11 cm 3
  • the volume V s of the dispersoid s is 9.04 ⁇ . 10 ⁇ 10 cm 3
  • the volume V c of the surface portion c of the surface-modified dispersoid s is 2.66 ⁇ 10 ⁇ 10 cm 3
  • the volume V p of the void portion p of the dispersoid s is 5.83 ⁇ 10 ⁇ 10 cm. 3 is determined.
  • the dispersoid s may have another part in addition to the main body part b and the gap part p.
  • the uniformity of the surface modification can be examined by comparing the porosity distribution of the dispersoid s after the surface modification and the porosity distribution of the dispersoid s before the surface modification. Specifically, when the dispersion of the porosity distribution of the dispersoid s after the surface modification is substantially the same as the dispersion of the porosity distribution of the dispersoid s before the surface modification, it is considered that the surface modification was performed almost uniformly. It is done.
  • the dispersoid s can be separated according to the magnetic susceptibility or porosity.
  • the porosity measuring device 10 capable of separating the dispersoid s according to the magnetic susceptibility or the porosity will be described.
  • FIG. 11 shows a schematic diagram of the porosity measuring device 10 of the present embodiment.
  • the porosity measurement apparatus 10 includes a magnetic field generation unit 20, a dispersoid measurement unit 30, and a calculation unit 40.
  • the dispersoid measurement unit 30 includes an enlargement unit 32 and an imaging unit 34. Yes.
  • the porosity measuring device 10 shown in FIG. 11 is except that the magnetic field forming unit 20 generates a magnetic field so that the position of the dispersoid s dispersed in the dispersion medium m differs according to the volume magnetic susceptibility of the dispersoid s.
  • the configuration is the same as that of the porosity measuring apparatus 10 described above with reference to FIGS. 1 and 4, and redundant description is omitted for the purpose of avoiding redundancy.
  • a dispersion system D in which the dispersoid s is dispersed in the dispersion medium m is in the capillary C.
  • the volume magnetic susceptibility of the dispersoid s is smaller than the volume magnetic susceptibility of the dispersion medium m.
  • the dispersoid s is polystyrene particles
  • the dispersion medium m is a MnCl 2 solution.
  • the magnetic field generator 20 has pole pieces 20a and 20b.
  • the pole pieces 20a and 20b sandwich the capillary C, and the capillary C is disposed across the space defined by the pole pieces 20a and 20b.
  • the pole pieces 20a and 20b form a magnetic field in the capillary C.
  • the pole pieces 20a and 20b form magnetic fields having different strengths depending on the position along the width direction (y direction) of the capillary C.
  • each of the pole pieces 20a and 20b has a triangular shape, and the shape and size of both are substantially equal.
  • the overlapping area between the pole pieces 20a and 20b and the capillary C changes almost monotonously along the width direction of the capillary C.
  • FIG. 12 shows an enlarged schematic diagram of a part of the porosity measuring device 10 shown in FIG.
  • the capillary C is connected to the dispersion medium introduction tube Ca and the dispersoid introduction tube Cb via the sealing portion Cc.
  • the diameter of the capillary C is larger than the diameters of the dispersion medium introduction pipe Ca and the dispersoid introduction pipe Cb, and typically, the diameter of the dispersion medium introduction pipe Ca is larger than the dispersoid introduction pipe Cb.
  • the dispersoid introduction tube Cb is disposed in the width direction of the capillary C so as to correspond to a region where the overlapping area between the pole pieces 20a and 20b and the capillary C is relatively large.
  • the pole pieces 20a and 20b have one of two sides defining a right angle parallel to the longitudinal direction of the capillary C (flow direction of the dispersion medium m: x direction) and the other of the two sides defining the right angle. Are arranged so that their sides are parallel to the width direction of the capillary C.
  • the pole pieces 20a and 20b apply different magnetic fields according to positions along the vertical direction (width direction of the capillary C). For example, the diameter (length in the width direction) of the capillary C is 300 ⁇ m, and the pole pieces 20a and 20b are right triangles having sides of 3 mm, 4 mm, and 5 mm, respectively.
  • the dispersion medium m moves from the dispersion medium introduction tube Ca to the capillary C and flows along the longitudinal direction (x direction) of the capillary C.
  • the dispersoid s moves from the dispersoid introduction pipe Cb to the capillary C.
  • the dispersoid s flowing into the capillary C through the dispersoid introduction pipe Cb joins with the dispersion medium m flowing into the capillary C through the dispersion medium introduction pipe Ca. Thereafter, the dispersoid s moves together with the dispersion medium m and reaches the vicinity of the magnetic field forming region formed by the pole pieces 20a and 20b.
  • FIG. 13 shows an enlarged schematic view of a part of the porosity measuring device 10 shown in FIGS.
  • FIG. 13 schematically shows a magnetic field forming region MR formed by the pole pieces 20a and 20b inside the capillary C.
  • the dispersion medium m flows along the longitudinal direction (x direction) of the capillary C, and the dispersoid s receives the fluid driving force F f from the dispersion medium m.
  • the dispersoid s moves at a flow velocity V f and moves to the vicinity of the pole pieces 20a and 20b. Strictly speaking, it is preferable to consider the flow of the dispersion medium m in the capillary C as a laminar flow.
  • the dispersoid s When the dispersoid s reaches the vicinity of the pole pieces 20a and 20b, the dispersoid s receives the magnetic force by the pole pieces 20a and 20b.
  • the magnetic force acts in a direction to push the dispersoid s back against the flow of the dispersion medium m.
  • the magnetic force received by the dispersoid s varies depending on the position of the capillary C in the width direction.
  • a component F mx in the x direction of the magnetic force is expressed as follows.
  • F mx ⁇ ⁇ 4 ( ⁇ s ⁇ m ) ⁇ r 3 ⁇ / (3 ⁇ o ) ⁇ B (dB / dx)
  • the size of B (dB / dx) varies depending on the position of the capillary C in the width direction. For this reason, in the width direction of the capillary C, at a position where the area where the pole pieces 20a, 20b overlap the capillary C is large, the value of B (dB / dx) is large, and the area where the pole pieces 20a, 20b overlap the capillary C is large. In the position where is small, the value of B (dB / dx) is small.
  • the component F mx in the x direction of the magnetic force increases as the overlapping area between the pole pieces 20a and 20b and the capillary C increases.
  • the dispersoid s reaches the vicinity of the magnetic field formation region MR formed by the pole pieces 20a and 20b, and receives a magnetic force larger than the fluid driving force F f .
  • the dispersoid s receives a magnetic force from the magnetic field forming region MR in a direction orthogonal to the hypotenuse of the magnetic field forming region MR, and the dispersoid s is a vector of the fluid driving force F f and the magnetic force. Proceed in the direction represented by the sum.
  • the direction of the vector sum is substantially parallel to the hypotenuse of the pole pieces 20a and 20b, and the dispersoid s moves in an oblique direction substantially parallel to the hypotenuse of the pole pieces 20a and 20b.
  • the dispersoid s moves obliquely, the component F mx in the x direction of the magnetic force received by the dispersoid s decreases.
  • the magnetic force F mx received by the dispersoid s becomes substantially equal to the fluid driving force F f from the dispersion medium m, the dispersoid s passes through the magnetic field formation region MR formed by the pole pieces 20a and 20b.
  • the magnetic force F mx becomes relatively large. Therefore, the dispersoid s cannot pass through the magnetic field forming region MR unless it moves a relatively long distance in the width direction of the capillary C.
  • the volume magnetic susceptibility of the dispersoid s is relatively large, that is, when the difference between the volume magnetic susceptibility of the dispersion medium m and the volume magnetic susceptibility of the dispersoid s is relatively small, the magnetic force F mx is relatively small.
  • the dispersoid s can pass through the magnetic field forming region MR even if the distance of movement in the width direction of the capillary C is relatively short.
  • the capillary C may be connected to at least one dispersoid take-out tube for separating and taking out the separated dispersoid s.
  • the porosity measuring apparatus 10 separates the dispersoid s by moving the dispersoid s in the width direction of the capillary C in accordance with the volume magnetic susceptibility of the dispersoid s.
  • the magnetic field forming region MR formed by the pole pieces 20a and 20b functions as a sorting region for the dispersoid s.
  • the dispersoid s can be efficiently separated even if the width of the capillary C is relatively short.
  • the dispersoid s moves together with the dispersion medium m, so that a relatively large amount of dispersoid s can be easily separated.
  • the volume magnetic susceptibility of the dispersoid s is related to the porosity of the dispersoid s. For this reason, by separating the dispersoid s according to the volume magnetic susceptibility, the dispersoid s can be separated according to the porosity. For example, when the dispersoid s having the same composition and the substantially same particle size is separated, the dispersoid s is separated by the volume magnetic susceptibility of the dispersoid s. It will be sorted into different positions. Therefore, the dispersoid s having a desired porosity can be obtained according to different positions in the capillary C in the width direction.
  • the porosity of each dispersoid can be measured.
  • the porosity measuring device and / or the porosity measuring method according to the present invention can be applied to the cosmetics field, the medical field, the environment field, and the production of nanoparticles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

 本発明による空隙率測定装置(10)は、磁場生成部(20)と、磁場生成部(20)によって磁場を生成した状態で、分散媒(m)に分散された分散質(s)の動きを測定する分散質測定部(30)と、分散質測定部(30)の測定結果に基づいて分散質(s)の空隙率を取得する演算部(40)とを備える。演算部(40)は、分散質測定部(30)の測定結果から分散質(s)の磁気泳動速度を取得する。演算部(40)は、分散質測定部(30)の測定結果から分散質(s)の磁気泳動速度を取得することが好ましい。

Description

空隙率測定装置および空隙率測定方法
 本発明は、空隙率測定装置および空隙率測定方法に関する。
 粉体粒子の試料の空隙率を測定する手法として、気体吸着法または水銀注入法が知られている。これらの方法では、乾燥状態での試料の表面積を評価し、平均粒径または質量との関係から資料の平均空隙率を算出する(例えば、特許文献1、2参照)。また、NMRを用いて平均空隙率を測定する手法も知られている。
特開平07-249218号公報 特開平11-229232号公報
 しかしながら、上述した手法では粒子の個々の空隙率を測定することはできない。これに対して、本願発明者は、磁気率を用いて、粒子1つずつの空隙率を測定可能な新規な手法を見出した。
 本発明は上記課題を鑑みてなされたものであり、その目的は、分散媒に分散された分散質の個々の空隙率を測定可能な空隙率測定装置および空隙率測定方法を提供することにある。
 本発明による空隙率測定装置は、磁場生成部と、前記磁場生成部によって磁場を生成した状態で、分散媒に分散された分散質の動きを測定する分散質測定部と、前記分散質測定部の測定結果に基づいて前記分散質の空隙率を取得する演算部とを備える。
 ある実施形態において、前記演算部は、前記分散質測定部の測定結果から前記分散質の磁気泳動速度を取得する。
 ある実施形態において、前記演算部は、前記分散質の磁気泳動速度から前記分散質の体積磁化率を取得し、前記分散質の前記体積磁化率から前記分散質の空隙率を取得する。
 ある実施形態において、前記分散質測定部は、前記分散媒に分散された前記分散質を拡大するための光学レンズと、前記光学レンズによって拡大された分散質を撮像する撮像部とを有する。
 ある実施形態において、前記磁場生成部は、前記分散質の体積磁化率に応じて、前記分散媒に分散される前記分散質の位置が異なるように磁場を生成する。
 本発明による空隙率測定方法は、磁場の生成された状態で、分散媒に分散された分散質の動きを測定する工程と、前記分散質の動きの測定結果に基づいて前記分散質の空隙率を取得する工程とを包含する。
 ある実施形態において、前記分散質の空隙率を取得する工程は、前記分散質の動きの測定結果から前記分散質の磁気泳動速度を取得する工程を含む。
 ある実施形態において、前記分散質の空隙率を取得する工程は、前記分散質の磁気泳動速度から前記分散質の体積磁化率を取得する工程と、前記分散質の前記体積磁化率から前記分散質の前記空隙率を取得する工程とを含む。
 ある実施形態では、前記分散質の動きを測定する工程において、前記分散質の体積磁化率に応じて、前記分散媒に分散される前記分散質の位置が異なるように前記磁場を生成する。
 ある実施形態において、前記分散質はシリカゲル粒子を含む。
 ある実施形態において、前記分散媒はアセトニトリルを含む。
 本発明によれば、分散媒に分散された分散質の個々の空隙率を測定することができる。
本発明による空隙率測定装置の実施形態の模式図である。 (a)および(b)は本発明による空隙率測定方法を説明するための模式図である。 (a)および(b)は本実施形態の空隙率測定装置における分散質及び分散媒の体積磁化率と分散質の移動方向の関係を説明するための模式図である。 本実施形態の空隙率測定装置の模式図である。 本実施形態の空隙率測定装置における分散質の動きの測定結果を示す模式的な図である。 空隙の設けられた分散質を示す模式図である。 本実施形態の空隙率測定装置の模式図である。 本実施形態の空隙率測定装置の模式図である。 本実施形態の空隙率測定装置において、分散媒としてアセトニトリルを用い、分散質として多孔質シリカゲル粒子を用いた場合の空隙率の測定結果を示すグラフである。 空隙の設けられた分散質を示す模式図である。 本実施形態の空隙率測定装置の模式図である。 本実施形態の空隙率測定装置の一部を拡大した模式図である。 本実施形態の空隙率測定装置の一部を拡大した模式図である。
 以下、図面を参照して本発明による空隙率測定装置の実施形態を説明する。ただし、本発明は以下の実施形態に限定されない。
 図1に、本実施形態の空隙率測定装置10の模式図を示す。空隙率測定装置10は、磁場生成部20と、分散質測定部30と、演算部40とを備える。磁場生成部20の近傍には分散媒mに分散質sが分散された分散系Dが配置されている。分散系Dは、例えば、管状部材に入れられている。磁場生成部20によって分散系Dに磁場が生成される場合、分散質sは所定の方向に移動する。このような現象は磁気泳動とも呼ばれる。
 分散質測定部30は、磁場生成部20によって磁場が生成された状態で分散質sの動きを測定する。なお、以下の説明において、分散質測定部30を単に測定部30と呼ぶことがある。
 なお、図1には、分散媒mに1つの分散質sが存在しているように示されているが、もちろん、分散媒mに複数の分散質sが存在していてもよい。分散媒mは液体であってもよく、気体であってもよい。例えば、分散媒mはアセトニトリルである。あるいは、分散媒mはメタノールであってもよく、水であってもよい。あるいは、分散媒mは、例えば空気であってもよい。また、分散質sは微粒子であってもよい。あるいは、分散質sは細胞(例えば、赤血球)であってもよい。分散質sの直径は10nm以上であり、100nm以上100μm以下であることが好ましい。なお、分散質sの比重が分散媒mの比重に対して2倍以上であると、分散質sの沈降が比較的早い。この場合、分散媒mを比重の比較的高いものに変更するか、または、ポンプ等によって分散媒mを流動させることが好ましい。また、ポンプでの流動に加えて、測定系(磁場生成部20による磁場泳動方向および分散系Dの延びている方向)を鉛直方向に設置することで分散質sの重力落下に対する磁場による速度変化を測定することが好ましい。
 分散質sの磁化率は分散媒mの磁化率とは異なるため、磁場の生成により、分散質sは所定の方向に移動する。分散質sの移動の程度は、磁場の大きさに応じて変化する。
 演算部40は、測定部30の測定結果に基づいて分散質sの空隙率を取得する。詳細は後述するが、例えば、演算部40は、測定部30の測定結果から分散質sの磁気泳動速度を取得する。この場合、演算部40は、測定部30によって測定された分散質sの位置を示す位置情報の時間的な変化から、分散質sの磁気泳動速度を取得してもよい。その一例として、測定部30は、所定の時間間隔ごとに分散質sを撮像し、演算部40は、それらの撮像結果から分散質sの磁気泳動速度を取得してもよい。
 その後、演算部40は、分散質sの磁気泳動速度から分散質sの空隙率を取得する。具体的には、演算部40は、分散質sの磁気泳動速度から分散質sの体積磁化率を取得し、分散質sの体積磁化率から分散質sの空隙率を取得する。演算部40として、例えば、パーソナルコンピュータが用いられる。
 空隙率測定装置10によれば、1つの分散質sの動きから、分散質sの空隙率を直接的に求めることができ、分散質s毎の空隙率を測定することができる。また、分散媒mに分散された複数の分散質sの空隙率の均一性を調べることができる。
 なお、空隙率測定装置10で測定される空隙率は、単純に分散質sの形状のみによって規定されるものではなく、分散質sと分散媒mとの関係をも示す指標である。例えば、仮に分散質sが同じものであっても、分散媒mが異なることにより、空隙率は異なる値を示すことがある。このため、空隙率により、分散質s内に浸透した分散媒mの状況を把握することができる。なお、分散質sは、分散媒mに分散されて膨潤してもよい。
 分散質sの動きは、分散質sおよび分散媒mの体積磁化率に応じて決定される。なお、体積磁化率は、電子状態に依存するパラメータであり、物理学的に信頼性の高い指標である。また、空隙率測定装置10によれば、分散質sを破壊することなく分散質sの内部および表面の情報を得ることができる。
 以下、図2を参照して本実施形態の空隙率測定方法を説明する。
 まず、図2(a)に示すように、磁場を生成した状態で、分散媒mに分散された分散質sの動きを測定する。例えば、分散質sの動きから、分散質sの磁気泳動速度が求められる。
 次に、図2(b)に示すように、分散質sの動きの測定結果に基づいて分散質sの空隙率を取得する。例えば、分散質sの動きの測定結果から分散質sの体積磁化率を取得し、その後、分散質sの体積磁化率から分散質sの空隙率を取得する。
 このようにして、分散質sの磁気泳動を利用して分散質sを破壊することなく分散質sの空隙率を測定できる。なお、分散質sはインクトナーに用いられる磁性粒子であってもよい。また、分散質sは化粧品(例えば、ファウンデーション)に用いられる材料であってもよく、DDS(ドラッグデリバリーシステム)に適用される材料であってもよい。なお、上述したように、分散質sは細胞であってもよい。分散質sが細胞の場合、分散質sの形状が時間とともに変化することがある。
 以下、図3を参照して、分散質sの動きを説明する。例えば、磁場生成部20はポールピースによって強い磁場および大きな磁場勾配を生成することが好ましい。
 図3(a)に示すように、分散質sの体積磁化率が分散媒mの体積磁化率よりも小さい場合、分散質sは磁場から遠ざかる方向に移動する。なお、分散質sは磁石の端部の近傍において力を受ける。例えば、分散質sは磁石の端部の近傍から±200μm程度の範囲で力を受ける。
 図3(b)に示すように、分散質sの体積磁化率が分散媒mの体積磁化率よりも大きい場合、分散質sは磁場に近づく方向に移動する。
 図4に、本実施形態の空隙率測定装置10の模式図を示す。図4に示した空隙率測定装置10において分散系Dの入れられたキャピラリCは磁場生成部20の近傍に配置されている。例えば、キャピラリCは、軸方向に直交する断面が約100μmのほぼ正方形状に構成されている。
 測定部30は、拡大部32および撮像部34を有している。例えば、拡大部32は対物レンズを含み、撮像部34は電荷結合素子(Charge Coupled Device:CCD)を含む。なお、撮像部34は一般に分散質sの位置だけでなく大きさも併せて測定可能であるが、撮像部34は分散質sの大きさを測定しなくてもよい。例えば、撮像部34は分散質sから散乱する光を検出することによって分散質sの位置を測定してもよい。
 図5に、空隙率測定装置10における分散質の動きの測定結果の一例を示す。ここでは、分散質sはポリスチレン粒子であり、各点は0.3秒間隔で撮像した画像を重ねて示している。
 例えば、演算部40は、測定部30の測定結果に基づいて磁気泳動速度vを求める。分散質sの磁気泳動速度vは以下のように表される。
 v={2(χs-χm)r2}/(9ημo)×B(dB/dx)
ここで、χsは分散質sの体積磁化率であり、χmは分散媒mの体積磁化率であり、rは分散質sの半径であり、ηは分散媒mの粘性率であり、μoは真空の透磁率であり、Bは磁束密度であり、(dB/dx)は磁束密度の勾配である。なお、上記式は、キャピラリCの軸方向に受ける分散質sおよび分散媒mの磁気力の差と、粘性抵抗力とがほぼ等しいことから導かれる。
 上述したように、分散質sの泳動方向は、分散質sの体積磁化率χsと分散媒mの体積磁化率χmの大きさに応じて決定される。また、上記の式から理解されるように、分散質sの磁気泳動速度vは磁束密度Bおよび/または磁束密度の勾配(dB/dx)に依存して変化する。
 演算部40は、測定部30の測定結果から求めた磁気泳動速度vを利用して、分散質sの体積磁化率χsを取得する。例えば、図6に示すように、分散質sには分散媒mの充填された空隙部分pがあり、分散質sは、本体部分bと、空隙部分pとに分けられる。
 この場合、空隙率Pは、
  P=Vp/Vs=Vp/(Vb+Vp
と表される。ここで、Vsは分散質sの体積であり、Vbは分散質sの本体部分bの体積であり、Vpは分散質sの空隙部分pの体積である。このように、分散質sの体積Vsは、分散質sの本体部分bの体積Vbと、空隙部分pの体積Vpとの和で表される。
  Vs=Vb+Vp
 なお、分散質sの磁化率は、分散質sの本体部分bの磁化率と、分散質sの空隙部分pの磁化率との和で表される。図6に示すように、分散質sの空隙部分pに分散媒mが充填されている場合、磁化の関係は、
 χss=χbb+χpp
と表される。この場合、上述した式は、
 P=Vp/(Vb+Vp)=(χs-χb)/(χp-χb
と表される。なお、分散質sの空隙部分pに分散媒mが充填されている場合、分散質sの空隙部分pの体積磁化率χpは分散媒mの体積磁化率χmに等しい。
 なお、化学分析においてしばしば用いられる液体クロマトグラフィーでは、充填剤として一般にシリカゲルが用いられる。本実施形態の空隙率測定装置10を用いてシリカゲルの構成を調べることができる。
 例えば、分散質sとして直径約5μmのシリカゲル粒子を用い、分散媒mとしてアセトニトリルを用いた測定の結果、磁気泳動速度vが27.4μms-1である場合、この磁気泳動速度vから、χsは-7.20±0.02×10-6と求められる。また、上述したように、分散質sがシリカゲルであり、分散媒mがアセトニトリルである場合、χbは-1.36×10-5であり、χmは-6.76×10-6である。この場合、空隙率Pは93.3%である。また、シリカゲル粒子の体積Vsから、Vpは4.65×10-11cm3と求められる。
 なお、分散質sは、大きさの既知の材料を用いてもよく、あるいは、分散質sの直径を測定してもよい。例えば、分散質sの直径は測定部30を用いて測定してもよい。なお、測定部30が分散質sの直径を直接的に測定する場合、図7に示すように、空隙率測定装置10は光源50を有することが好ましい。
 あるいは、凸レンズと平板ガラスとの間、または、平板ガラスと平板ガラスとの間に形成される空隙によって分散質sをトラップさせた状態で2つの光学部材に間における光の干渉を利用して分散質sの直径を測定してもよい。あるいは、ブラウン運動を行う分散質sからの散乱光を利用して分散質sの直径を測定してもよい。
 なお、図4および図7に示した空隙率測定装置10では、分散系Dの入れられたキャピラリCは垂直に配置されていたが、本発明はこれに限定されない。図8に示すように、空隙率測定装置10において、分散系Dの入れられたキャピラリCは水平に配置されてもよい。例えば、磁場生成部20は磁束密度3Tの磁場を生成する。
 図9に、本実施形態の空隙率測定装置10において、分散媒としてアセトニトリルを用い、分散質として多孔質シリカゲル粒子を用いた場合の空隙率の測定結果を示す。図9に示した測定結果において平均空隙率は69.7%である。ここでは、多孔質シリカゲル粒子の空隙率は、多孔質シリカゲル粒子の全体体積に対して、多孔質シリカゲル粒子の細孔に侵入したアセトニトリルの体積の割合を示している。なお、従来の窒素ガス吸着による多孔質シリカゲル粒子の空隙率を測定したところ、平均空隙率は70%であり、図9の測定結果とほぼ一致している。これは、窒素ガスと同じ程度の量のアセトニトリルが多孔質シリカゲル粒子の細孔へ侵入したことを示しており、分散質sの体積磁化率から分散質sの空隙率を取得する本実施形態の手法の妥当性が理解される。
 また、本実施形態の空隙率測定装置10では、粒子ごとの空隙率を測定できるため、空隙率分布が容易に取得される。典型的には、1つの平均空隙率の取得には、約1000個の粒子の測定が必要であり、これに要する時間はおおよそ約20分である。ほぼ一定の粒径を有する粒子を用いた場合、空隙率の分布が広いと、粒子の細孔体積にバラツキがあることがわかる。
 表1に、本実施形態の空隙率測定装置10において、分散媒としてアセトニトリル以外に、メタノールおよびエタノールを用いた場合の多孔質シリカゲル粒子の空隙率の測定結果を示す。
Figure JPOXMLDOC01-appb-T000001
 表1から理解されるように、これら3種類の有機溶媒では、ほぼ同じ結果が得られている。このように、異なる溶液を用いても、分散質sの空隙率を測定できる。
 なお、分散質sを化学的に変化させて分散質sの体積磁化率が変化することにより、分散媒mの流れに対する分散質sの磁気泳動方向が変化することがある。例えば、化学変化によって分散質s全体がラジカル化すると、分散質sは常磁性化するため、分散媒mの体積磁化率に対する分散質sの体積磁化率の大きさが反転することがある。この場合、分散質sの変化により、分散質sの磁気泳動方向が反転する。一方、分散質sの多くの箇所で化学変化することなく、一部の箇所でのみラジカル化が起きる場合、分散質s全体としては反磁性のままであり、分散質sの磁化率が減少することがある。このため、分散質sの磁気泳動の動き、すなわち、分散質sの磁化率の変化により、分散質sのラジカル化の進行の程度をモニタすることができる。
 なお、厳密には、分散質sの磁気泳動方向の反転は、分散質sの密度が大きく変化して分散質sの体積磁化率および分散媒mの体積磁化率の大きさが反転する場合にも起きることがある。ただし、分散質sの密度が大きく変化したか否かは、測定部30が分散質sの変化をモニタすることにより、調べることができる。
 このように、本実施形態の空隙率測定装置10により、分散質sのラジカル化のタイミングを特定できるとともにラジカルへの変化を可視化できる。なお、分散質sの変化(例えば、化学変化)は、空隙率測定装置10を設置した状態で行われてもよく、空隙率測定装置10の外部で行われてもよい。
 なお、上述した説明では、分散質sは、本体部分bおよび空隙部分pの2つの部分に分けられたが、本発明はこれに限定されない。分散質sは、3以上の部分に分けられてもよい。例えば、分散質sには、親水性を向上させるために、分散質sに表面処理を行うことがあり、この場合、分散質sの表面に、分散質sの本体部分とは異なる部分が形成される。
 図10に示すように、分散質sは、本体部分bと、表面部分cと、空隙部分pの3つの部分に分けられる。このような3つの部分を有する分散質sは、例えば、空隙の設けられたシリカゲルの表面がオクタデシルシリル(Octa Decyl Silyl:ODS)基(C1837Si)で修飾されたものに相当する。この場合、分散質sの体積は、
  Vs=Vb+Vc+Vp
と表される。ここで、Vsは分散質sの体積であり、Vbは分散質sの本体部分bの体積であり、Vcは分散質sの表面部分cの体積であり、Vpは分散質sの空隙部分pの体積である。
 また、分散質sの磁化率は、分散質sの本体部分bの磁化率と、分散質sの表面部分cの磁化率と、分散質sの空隙部分pの磁化率との和で表される。
  χss=χbb+χcc+χpp
ここで、χsは分散質sの体積磁化率であり、χbは分散質sの本体部分bの体積磁化率であり、χcは分散質sの表面部分cの体積磁化率であり、χpは分散質sの空隙部分pの体積磁化率である。
 なお、上述の体積の関係は、
  Vc=Vs-Vb-Vp
と表される。Vbは測定値を用いることができる。
 また、空隙率Pは、
  P=Vp/Vs=Vp/(Vb+Vc+Vp
と表される。この空隙率Pは、また、上述の磁化の関係を用いて、
  P=(χc-χs)/(χc-χm)-(χc-χb)×Vb/((χc-χm)×Vs
と表される。
 例えば、ODS基で表面修飾した直径5μmのシリカゲル粒子をアセトニトリルに分散させた場合、分散質sの磁気泳動速度から、χsは-7.82×10-6と求められる。分散質sの空隙部分pの体積磁化率χpは分散媒mの体積磁化率χmに等しく-6.76×10-6であり、また、文献の値から、χbは-1.56×10-5であり、χcは-8.43×10-6である。また、同様のシリカゲルを表面未修飾で用いた結果、分散質sの本体部分bの体積Vbは6.06×10-11cm3であり、分散質sの体積Vsは9.04×10-10cm3である。以上から、空隙率P(=Vp/Vs)は0.64(64%)と求められる。この結果から、表面修飾された分散質sの表面部分cの体積Vcは2.66×10-10cm3、分散質sの空隙部分pの体積Vpは5.83×10-10cm3と決定される。なお、図6および図10を参照した上述した説明の比較から理解されるように、分散質sは、本体部分bと空隙部分p以外に別の部分を有してもよい。
 また、表面修飾後の分散質sの空隙率分布と、表面修飾前の分散質sの空隙率分布とを比較することにより、表面修飾の均一性を調べることができる。具体的には、表面修飾後の分散質sの空隙率分布の分散が表面修飾前の分散質sの空隙率分布の分散とほぼ同程度であると、表面修飾がほぼ均一に行われたと考えられる。これに対して、表面修飾後の分散質sの空隙率分布の分散が表面修飾前の分散質sの空隙率分布の分散よりもかなり大きいと、表面修飾は不均一に行われたと考えられる。
 なお、分散質sは磁化率または空隙率に応じて分別可能である。ここで、図11~図13を参照して、磁化率または空隙率に応じて分散質sを分別可能な空隙率測定装置10の実施形態を説明する。
 図11に、本実施形態の空隙率測定装置10の模式図を示す。この空隙率測定装置10は、磁場生成部20と、分散質測定部30と、演算部40とを備えており、分散質測定部30は、拡大部32と、撮像部34とを有している。図11に示した空隙率測定装置10は、磁場形成部20が分散質sの体積磁化率に応じて分散媒mに分散される分散質sの位置が異なるように磁場を生成する点を除いて、図1および図4を参照して上述した空隙率測定装置10と同様の構成を有しており、冗長を避ける目的で重複する説明を省略する。
 磁場生成部20の近傍において、分散媒mに分散質sが分散された分散系DがキャピラリCの中に入っている。ここでは、分散質sの体積磁化率は分散媒mの体積磁化率よりも小さい。例えば、分散質sはポリスチレン粒子であり、分散媒mはMnCl2溶液である。
 磁場生成部20は、ポールピース20a、20bを有している。ポールピース20a、20bはキャピラリCを挟んでおり、キャピラリCは、ポールピース20a、20bによって規定される空間を横切るように配置されている。
 ポールピース20a、20bはキャピラリC内に磁場を形成する。ポールピース20a、20bにより、キャピラリCの幅方向(y方向)に沿った位置に応じて異なる強度の磁場が形成される。ここでは、ポールピース20a、20bはそれぞれ三角形状を有しており、両者の形状および大きさはほぼ等しい。ポールピース20a、20bとキャピラリCとの重なる面積は、キャピラリCの幅方向に沿ってほぼ単調に変化する。
 図12に、図11に示した空隙率測定装置10の一部を拡大した模式図を示す。キャピラリCは、分散媒導入管Caおよび分散質導入管Cbと封止部Ccを介して連結している。キャピラリCの径は、分散媒導入管Caおよび分散質導入管Cbの径よりも大きく、また、典型的には、分散媒導入管Caの径は分散質導入管Cbよりも大きい。分散質導入管Cbは、キャピラリCの幅方向において、ポールピース20a、20bとキャピラリCとの重なる面積が比較的大きい領域と対応するように配置されている。
 ポールピース20a、20bは、直角を規定する2つの辺の一方の辺がキャピラリCの長手方向(分散媒mの流れ方向:x方向)に平行で、かつ、直角を規定する2つの辺の他方の辺がキャピラリCの幅方向に平行になるように配置されている。ポールピース20a、20bは、垂直方向(キャピラリCの幅方向)に沿った位置に応じて異なる大きさの磁場を印加する。例えば、キャピラリCの径(幅方向の長さ)は300μmであり、ポールピース20a、20bは、それぞれ、3mm、4mm、5mmの辺を有する直角三角形である。
 分散媒mは分散媒導入管CaからキャピラリCに移動し、キャピラリCの長手方向(x方向)に沿って流れる。分散質sは分散質導入管CbからキャピラリCに移動する。分散質導入管Cbを介してキャピラリCに流れる分散質sは、分散媒導入管Caを介してキャピラリCに流れる分散媒mと合流する。その後、分散質sは分散媒mとともに移動し、ポールピース20a、20bによって形成される磁場形成領域の近傍に到達する。
 図13に、図11および図12に示した空隙率測定装置10の一部を拡大した模式図を示す。図13には、キャピラリCの内部において、ポールピース20a、20bによって形成される磁場形成領域MRを模式的に示している。
 分散媒mはキャピラリCの長手方向(x方向)に沿って流れており、分散質sは分散媒mからの流体駆動力Ffを受けている。分散質sは流速Vfで移動し、ポールピース20a、20bの近傍まで移動する。なお、厳密には、キャピラリC内の分散媒mの流れは層流と考えることが好ましい。
 分散質sは、ポールピース20a、20bの近傍に達すると、ポールピース20a、20bによる磁気力を受ける。ここでは、分散質sの体積磁化率は分散媒mの体積磁化率よりも小さいため、磁気力は、分散媒mの流れに対して分散質sを押し戻す方向に作用する。分散質sの受ける磁気力は、キャピラリCの幅方向の位置に応じて異なる。磁気力のx方向の成分Fmxは以下のように表される。
 Fmx=-{4(χs-χm)πr3}/(3μo)×B(dB/dx)
 図13に示した空隙率測定装置10の磁場形成領域MRにおいて、B(dB/dx)の大きさは、キャピラリCの幅方向の位置に応じて異なる。このため、キャピラリCの幅方向において、ポールピース20a、20bとキャピラリCとの重なる面積が大きい位置では、B(dB/dx)の値は大きく、ポールピース20a、20bとキャピラリCとの重なる面積が小さい位置では、B(dB/dx)の値は小さい。したがって、同一の分散質sであっても、キャピラリCの幅方向において、ポールピース20a、20bとキャピラリCとの重なる面積が大きい位置ほど、磁気力のx方向の成分Fmxは大きく、キャピラリCとの重なる面積が小さくなるほど、磁気力のx方向の成分Fmxは小さくなる。
 分散質sは、ポールピース20a、20bによって形成された磁場形成領域MRの近傍に到達し、流体駆動力Ffよりも大きい磁気力を受ける。厳密には、分散質sは、磁場形成領域MRから、磁場形成領域MRの斜辺に対して直交する方向に磁気力を受け、分散質sは、流体駆動力Ffと磁気力とのベクトルの和で表される方向に進む。典型的には、ベクトルの和の方向はポールピース20a、20bの斜辺とほぼ平行であり、分散質sはポールピース20a、20bの斜辺とほぼ平行に斜め方向に移動する。
 分散質sが斜めに移動していくほど、分散質sの受ける磁気力のx方向の成分Fmxは減少する。分散質sの受ける磁気力Fmxが分散媒mからの流体駆動力Ffとほぼ等しくなると、分散質sは、ポールピース20a、20bによって形成された磁場形成領域MRを通過する。
 例えば、分散質sの体積磁化率が比較的小さい場合、すなわち、分散媒mの体積磁化率と分散質sの体積磁化率との差が比較的大きい場合、磁気力Fmxが比較的大きくなるため、分散質sが、キャピラリCの幅方向に比較的長い距離移動しないと、磁場形成領域MRを通過できない。反対に、分散質sの体積磁化率が比較的大きい場合、すなわち、分散媒mの体積磁化率と分散質sの体積磁化率との差が比較的小さい場合、磁気力Fmxが比較的小さいため、分散質sは、キャピラリCの幅方向に移動する距離が比較的短くても、磁場形成領域MRを通過できる。なお、ここでは図示していないが、キャピラリCには、分別された分散質sを分離して取り出すための少なくとも1本の分散質取出管が連結していてもよい。
 このように、空隙率測定装置10は、分散質sの体積磁化率に応じて分散質sをキャピラリCの幅方向に移動させて分散質sを分別する。この場合、ポールピース20a、20bによって形成される磁場形成領域MRが分散質sの選別領域として機能する。本実施形態の空隙率測定装置10によれば、キャピラリCの幅が比較的短くても分散質sを効率的に分別することができる。また、本実施形態の空隙率測定装置10によれば、分散質sは分散媒mとともに移動するため、比較的多くの分散質sを簡便に分別することができる。
 なお、上述したように、分散質sの体積磁化率は分散質sの空隙率と関連している。このため、体積磁化率に応じて分散質sを分別することにより、分散質sは空隙率に応じて分別することができる。例えば、同じ組成でほぼ同じ粒径の分散質sを分別する場合、分散質sが分散質sの体積磁化率で分別された結果、分散質sは、空隙率に応じてキャピラリC内の幅方向の異なる位置に分別されることになる。したがって、キャピラリC内の幅方向の異なる位置に応じて、所望の空隙率を有する分散質sを取得することができる。
 本発明によれば、各分散質の空隙率を測定することができる。本発明による空隙率測定装置および/または空隙率測定方法は、化粧品分野、医療品分野、環境分野、ナノ粒子の製造に適用可能である。
 10 空隙率測定装置
 20 磁場生成部
 30 分散質測定部
 40 演算部

Claims (11)

  1.  磁場生成部と、
     前記磁場生成部によって磁場を生成した状態で、分散媒に分散された分散質の動きを測定する分散質測定部と、
     前記分散質測定部の測定結果に基づいて前記分散質の空隙率を取得する演算部と
    を備える、空隙率測定装置。
  2.  前記演算部は、前記分散質測定部の測定結果から前記分散質の磁気泳動速度を取得する、請求項1に記載の空隙率測定装置。
  3.  前記演算部は、前記分散質の磁気泳動速度から前記分散質の体積磁化率を取得し、前記分散質の前記体積磁化率から前記分散質の空隙率を取得する、請求項2に記載の空隙率測定装置。
  4.  前記分散質測定部は、
     前記分散媒に分散された前記分散質を拡大するための光学レンズと、
     前記光学レンズによって拡大された分散質を撮像する撮像部と
    を有する、請求項1から3のいずれかに記載の空隙率測定装置。
  5.  前記磁場生成部は、前記分散質の体積磁化率に応じて、前記分散媒に分散される前記分散質の位置が異なるように磁場を生成する、請求項1から4のいずれかに記載の空隙率測定装置。
  6.  磁場の生成された状態で、分散媒に分散された分散質の動きを測定する工程と、
     前記分散質の動きの測定結果に基づいて前記分散質の空隙率を取得する工程と
    を包含する、空隙率測定方法。
  7.  前記分散質の空隙率を取得する工程は、
     前記分散質の動きの測定結果から前記分散質の磁気泳動速度を取得する工程を含む、請求項6に記載の空隙率測定方法。
  8.  前記分散質の空隙率を取得する工程は、
     前記分散質の磁気泳動速度から前記分散質の体積磁化率を取得する工程と、
     前記分散質の前記体積磁化率から前記分散質の前記空隙率を取得する工程と
    を含む、請求項7に記載の空隙率測定方法。
  9.  前記分散質の動きを測定する工程において、前記分散質の体積磁化率に応じて、前記分散媒に分散される前記分散質の位置が異なるように前記磁場を生成する、請求項6から8のいずれかに記載の空隙率測定方法。
  10.  前記分散質はシリカゲル粒子を含む、請求項6から9のいずれかに記載の空隙率測定方法。
  11.  前記分散媒はアセトニトリルを含む、請求項6から10のいずれかに記載の空隙率測定方法。
PCT/JP2012/069697 2011-08-05 2012-08-02 空隙率測定装置および空隙率測定方法 WO2013021910A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013527992A JP5754575B2 (ja) 2011-08-05 2012-08-02 空隙率測定装置および空隙率測定方法
US14/237,153 US9366614B2 (en) 2011-08-05 2012-08-02 Porosity measuring device and porosity measuring method
EP12822219.7A EP2741079B1 (en) 2011-08-05 2012-08-02 Porosity measurement apparatus and porosity measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011171650 2011-08-05
JP2011-171650 2011-08-05

Publications (1)

Publication Number Publication Date
WO2013021910A1 true WO2013021910A1 (ja) 2013-02-14

Family

ID=47668419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069697 WO2013021910A1 (ja) 2011-08-05 2012-08-02 空隙率測定装置および空隙率測定方法

Country Status (4)

Country Link
US (1) US9366614B2 (ja)
EP (1) EP2741079B1 (ja)
JP (1) JP5754575B2 (ja)
WO (1) WO2013021910A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030184A1 (ja) 2013-08-30 2015-03-05 国立大学法人大阪大学 分散質分析方法、及び分散質分析装置
JPWO2016208723A1 (ja) * 2015-06-25 2018-05-17 株式会社カワノラボ 分散質分析方法、および分析装置
WO2018105721A1 (ja) 2016-12-08 2018-06-14 株式会社カワノラボ 粒子分析装置、粒子分離装置、粒子分析方法、及び粒子分離方法
WO2019212056A1 (ja) * 2018-05-02 2019-11-07 株式会社フジクラ 構造体、電気化学デバイス、及び構造体の評価支援方法
US10656119B2 (en) 2015-06-26 2020-05-19 Kawano Lab. Inc. Dispersoid particle analyzing method and analyzing apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2011227300A1 (en) 2010-03-16 2012-11-15 Imperial Sugar Company Process for the manufacture of cocrystallized sucrose - polyol natural sweeteners and products thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249218A (ja) 1994-03-11 1995-09-26 Toray Ind Inc 磁気記録媒体用ポリエステルフィルム
JPH0989750A (ja) * 1995-09-19 1997-04-04 Toshiba Corp 導電性多孔質体の気孔率評価方法及びその装置
JPH11229232A (ja) 1998-02-19 1999-08-24 Mitsubishi Rayon Co Ltd 炭素繊維用アクリロニトリル系前駆体繊維の製造方法
JP2002022704A (ja) * 2000-07-04 2002-01-23 Univ Osaka 磁気泳動方式濃度検出方法及び装置
JP2002071645A (ja) * 2000-08-30 2002-03-12 Univ Osaka 懸濁させた磁性微粒子の磁化率測定方法及び装置
JP2007271329A (ja) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The 透磁率測定装置及び透磁率測定方法
JP2010167391A (ja) * 2009-01-26 2010-08-05 Toshiba Corp 粒子凝集体、及び粒子凝集体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4339703B2 (ja) * 2002-04-18 2009-10-07 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド スライダの製造に使用するラッピングキャリヤ
US20040018611A1 (en) * 2002-07-23 2004-01-29 Ward Michael Dennis Microfluidic devices for high gradient magnetic separation
JP2004138464A (ja) 2002-10-17 2004-05-13 Univ Osaka 微粒子の磁気泳動分析法、及び微粒子の磁気泳動分析装置
JP4599538B2 (ja) 2004-08-25 2010-12-15 独立行政法人物質・材料研究機構 磁化測定方法とこの方法を実施する磁化測定装置
JP4318183B2 (ja) 2005-08-11 2009-08-19 ジャパンスーパーコンダクタテクノロジー株式会社 磁化率測定方法、磁化率測定用目盛の作製方法、磁化率測定器及び磁化率測定装置
JP4300317B2 (ja) 2005-09-16 2009-07-22 独立行政法人産業技術総合研究所 磁化率の計測方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07249218A (ja) 1994-03-11 1995-09-26 Toray Ind Inc 磁気記録媒体用ポリエステルフィルム
JPH0989750A (ja) * 1995-09-19 1997-04-04 Toshiba Corp 導電性多孔質体の気孔率評価方法及びその装置
JPH11229232A (ja) 1998-02-19 1999-08-24 Mitsubishi Rayon Co Ltd 炭素繊維用アクリロニトリル系前駆体繊維の製造方法
JP2002022704A (ja) * 2000-07-04 2002-01-23 Univ Osaka 磁気泳動方式濃度検出方法及び装置
JP2002071645A (ja) * 2000-08-30 2002-03-12 Univ Osaka 懸濁させた磁性微粒子の磁化率測定方法及び装置
JP2007271329A (ja) * 2006-03-30 2007-10-18 Furukawa Electric Co Ltd:The 透磁率測定装置及び透磁率測定方法
JP2010167391A (ja) * 2009-01-26 2010-08-05 Toshiba Corp 粒子凝集体、及び粒子凝集体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MASAYORI SUWA ET AL.: "Magnetic Susceptibility Measurement of Single Micro-Particle by Magnetophoretic Velocimetry", JOURNAL OF JAPAN SOCIETY FOR ANALYTICAL CHEMISTRY, vol. 59, no. 10, 2010, pages 895 - 902, XP055146613 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015030184A1 (ja) 2013-08-30 2015-03-05 国立大学法人大阪大学 分散質分析方法、及び分散質分析装置
JP5988120B2 (ja) * 2013-08-30 2016-09-07 国立大学法人大阪大学 分散質分析方法、及び分散質分析装置
US10261050B2 (en) 2013-08-30 2019-04-16 Osaka University Method for measuring characteristics of a particle and device for measuring characteristics of a particle
JPWO2016208723A1 (ja) * 2015-06-25 2018-05-17 株式会社カワノラボ 分散質分析方法、および分析装置
US20180164249A1 (en) * 2015-06-25 2018-06-14 Kawano Lab. Inc. Dispersoid particle analyzing method and analyzing apparatus
US10809228B2 (en) 2015-06-25 2020-10-20 Kawano Lab. Inc. Method and apparatus for quantitatively evaluating amount of dispersion medium adsorbed to dispersoid particles
JP6990403B2 (ja) 2015-06-25 2022-01-12 株式会社カワノラボ 分散質分析方法、および分析装置
US10656119B2 (en) 2015-06-26 2020-05-19 Kawano Lab. Inc. Dispersoid particle analyzing method and analyzing apparatus
WO2018105721A1 (ja) 2016-12-08 2018-06-14 株式会社カワノラボ 粒子分析装置、粒子分離装置、粒子分析方法、及び粒子分離方法
JPWO2018105721A1 (ja) * 2016-12-08 2019-10-31 株式会社カワノラボ 粒子分析装置、粒子分離装置、粒子分析方法、及び粒子分離方法
US11391663B2 (en) 2016-12-08 2022-07-19 Kawano Lab. Inc. Particle analyzing apparatus, particle separating device, particle analysis method, and particle separating method
WO2019212056A1 (ja) * 2018-05-02 2019-11-07 株式会社フジクラ 構造体、電気化学デバイス、及び構造体の評価支援方法

Also Published As

Publication number Publication date
EP2741079B1 (en) 2020-02-12
EP2741079A4 (en) 2015-02-25
EP2741079A1 (en) 2014-06-11
JP5754575B2 (ja) 2015-07-29
US9366614B2 (en) 2016-06-14
JPWO2013021910A1 (ja) 2015-03-05
US20140174157A1 (en) 2014-06-26

Similar Documents

Publication Publication Date Title
JP5754575B2 (ja) 空隙率測定装置および空隙率測定方法
Clayton et al. Physical characterization of nanoparticle size and surface modification using particle scattering diffusometry
Kozak et al. Advances in resistive pulse sensors: devices bridging the void between molecular and microscopic detection
JP5988120B2 (ja) 分散質分析方法、及び分散質分析装置
Zhu et al. Focusing microparticles in a microfluidic channel with ferrofluids
Sinha et al. Single magnetic particle dynamics in a microchannel
Zhu et al. On-chip manipulation of nonmagnetic particles in paramagnetic solutions using embedded permanent magnets
Alves et al. Trends in analytical separations of magnetic (nano) particles
Willmott et al. Resistive pulse sensing of magnetic beads and supraparticle structures using tunable pores
Behdani et al. Shape-based separation of micro-/nanoparticles in liquid phases
Wang et al. Diffusion of thin nanorods in polymer melts
Cervantes-Martínez et al. Colloidal diffusion inside a spherical cell
JP6808200B2 (ja) 粒子分析装置、及び粒子分析方法
Sun et al. An integrated microfluidic system using a micro-fluxgate and micro spiral coil for magnetic microbeads trapping and detecting
Nguyen et al. Magnetic control of graphitic microparticles in aqueous solutions
Uehara et al. Electrokinetic flow dynamics of weakly aggregated λDNA confined in nanochannels
Kayani et al. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics
Jiang et al. Direct matching between the flow factor approach model and molecular dynamics simulation for nanochannel flows
Kostaras et al. Flow through polydisperse pores in an anodic alumina membrane: A new method to measure the mean pore diameter
Qiu et al. Pore‐scale numerical and experimental investigation of colloid retention at the secondary energy minimum
Raboisson-Michel et al. Kinetics of field-induced phase separation of a magnetic colloid under rotating magnetic fields
Höller et al. On-chip transporting arresting and characterizing individual nano-objects in biological ionic liquids
RU2626214C2 (ru) Акустический анализатор для определения размеров и электрокинетического потенциала несферических наноразмерных частиц в жидких средах
Eldridge Nanoparticle Charge and Shape Measurements using Tuneable Resistive Pulse Sensing
Chong et al. Navigating the microenvironment with flip and turn under quadrupole magnetophoretic steering control: Nanosphere‐and nanorod‐coated microbead

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12822219

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2012822219

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013527992

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14237153

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE