WO2013018942A1 - 피로도 산출 방법 및 그 장치 - Google Patents

피로도 산출 방법 및 그 장치 Download PDF

Info

Publication number
WO2013018942A1
WO2013018942A1 PCT/KR2011/005669 KR2011005669W WO2013018942A1 WO 2013018942 A1 WO2013018942 A1 WO 2013018942A1 KR 2011005669 W KR2011005669 W KR 2011005669W WO 2013018942 A1 WO2013018942 A1 WO 2013018942A1
Authority
WO
WIPO (PCT)
Prior art keywords
vector
acceleration
fatigue
component
calculating
Prior art date
Application number
PCT/KR2011/005669
Other languages
English (en)
French (fr)
Inventor
왕현민
Original Assignee
주식회사 나름
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 나름 filed Critical 주식회사 나름
Priority to PCT/KR2011/005669 priority Critical patent/WO2013018942A1/ko
Publication of WO2013018942A1 publication Critical patent/WO2013018942A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0818Inactivity or incapacity of driver
    • B60W2040/0827Inactivity or incapacity of driver due to sleepiness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • B60W2520/105Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/14Yaw
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/18Roll

Definitions

  • the present invention relates to a method and apparatus for measuring fatigue or load generated by a moving object.
  • the present invention also relates to a device that numerically represents the riding comfort (load) of a passenger on board a moving object.
  • Conventional instruments used for moving objects include speedometers, engine speed gauges, engine thermometers, fuel level measurements, and mileage indicators. These devices are not directly acting on the occupants of the moving object, but information about the moving object. It is necessary to set the motion of the object to measure the force acting on the occupant during the exercise and make the occupant more comfortable based on the force acting on the occupant.
  • An object of the present invention is to enable a passenger to ride on a moving object as a numerical value. It also allows you to control moving objects to give your passengers a better ride.
  • the riding comfort acting on the passenger can be used in the same concept as the fatigue of the moving object. Therefore, it is another object of the present invention to provide a fatigue measurement method that can accumulate fatigue and predict the life of the fuselage.
  • Computer fatigue method comprises the steps of measuring the acceleration vector, angular velocity vector, pitch angle, and roll angle of the object in the measuring unit included in the moving object on the ground, Calculating a velocity vector from an acceleration vector, calculating a component of the disturbance vector that affects the component of the acceleration vector from the component of the velocity vector and the component of the angular velocity vector, and gravity affects the body coordinate system of the object. Calculating an impact body gravity system component, and calculating a fatigue vector applied to the object by summing components of the acceleration vector, components of the disturbance vector, and components of the body coordinate system gravity vector.
  • the fatigue calculation apparatus of the fuselage is a measuring unit for measuring the acceleration vector, the angular velocity vector, the pitch angle, and the roll angle of the object, calculates the velocity vector from the acceleration vector, the component of the velocity vector Compute a component of the disturbance vector affecting the component of the acceleration vector from the component, calculate a body coordinate system gravity vector component in which gravity affects the body coordinate system of the object, and the component of the acceleration vector, the component of the interference vector. And a control unit for calculating a fatigue vector on the object by summing components of the body coordinate system gravity vector, and a storage unit for storing the fatigue vector.
  • the fatigue degree calculation method it is possible to grasp numerically the degree of the load (ride comfort or fatigue) acting on the moving object or the occupant.
  • the body's movement can be controlled based on the load value so that the passenger can feel a better ride.
  • This load value also acts as a fatigue degree of the moving object to predict the life of the moving object.
  • 1 is a coordinate system representing a coordinate axis in a moving object
  • FIG. 2 is a block diagram showing a load measuring apparatus according to an embodiment of the present invention.
  • 3 to 5 are detailed block diagrams illustrating the controller of FIG. 2.
  • acceleration component When an object moves in a physical system in three-dimensional space, it consists of an acceleration component at the center of mass of the object and a component that rotates about this mass point. Since these acceleration components and angular velocity components act on the gravitational system, they can be expressed in relation to all the forces N acting on the moving object and the moving object weight, which is the load (fatigue or ride comfort). This is different from the number of gravity, which is the acceleration divided by the gravity value.
  • the load acting on the occupant by the object (body) moving in three-dimensional space can be measured through the acceleration of the body and the angle change of each axis.
  • the load, all the force exerted on the occupant, is the measure of comfort for the occupant.
  • the load also acts on the fuselage itself as well as the occupant. Accordingly, the load is a measure of the degree of fatigue in the fuselage.
  • the fuselage In three-dimensional space, the fuselage has acceleration values of x-, y-, and z-axis components, and the coordinate axis changes during the movement due to the angle of attack and the path angle (oiler angle). It has an angular velocity that rotates around each axis. This acceleration, angular velocity, and angle values cause the fuselage itself to generate forces.
  • an acceleration and angle measuring device (a device for measuring acceleration and angle) may be installed to be parallel to each axis of the body.
  • the load is calculated based on the acceleration, the velocity and the components created according to the angular velocity, and the angle.
  • the load according to an embodiment of the present invention may be calculated by Equation 1.
  • A represents the acceleration (a) of the fuselage.
  • B is a component ( ⁇ V) generated according to the speed (V) of the moving object and the rotational angular velocity ( ⁇ ). Since B is a component that interferes with the acceleration component of the object, it takes a negative operation.
  • A is , V is , And ⁇ It can be represented by the matrix.
  • is a well-known equation in which the body coordinate system of a moving object in a ground coordinate system represents a rotation with respect to the ground coordinate system.
  • C is the component (g ⁇ ij ) for the acceleration of the moving object due to the gravitational component (g) expressed in the ground coordinate system.
  • ⁇ ij is the trigonometric matrix of Euler angles
  • the x-axis represents the movement direction 20 of the body 10
  • the y-axis represents the vertical movement direction perpendicular to the x-axis
  • the z-axis represents the left and right direction perpendicular to the x-axis.
  • the load measuring apparatus includes a measuring unit 100, a control unit 200, a storage unit 300, an output unit 400, and a communication unit 500.
  • the measuring unit 100 measures the acceleration (a) and the angular velocity ( ⁇ ) of the fuselage, which are the basis of the load measurement, and the angle ( ⁇ , ⁇ ) between the fuselage coordinate system on the basis of the moving object and the ground coordinate system on the ground. Measure To this end, the measurement unit 100 may include an acceleration measurement module 110, an angular velocity measurement module 120, and an angle measurement module 130. Acceleration and angular velocity are measured values based on the body coordinate system of a moving object.
  • the angle measuring module 230 measures a pitch angle ⁇ and a roll angle ⁇ based on the ground coordinate system.
  • the control unit 200 calculates a load based on the value measured by the measuring unit.
  • the controller 200 calculates a speed based on the acceleration measured by the acceleration measurement module 110.
  • the controller 200 calculates the load n based on the components generated according to the acceleration, the speed and the angular velocity, the pitch angle, and the roll angle.
  • the measuring unit of the load measuring apparatus may further include a gravity measuring module (not shown) for measuring the magnitude of gravity.
  • the gravity value measured in the gravity measurement module may be used when calculating the load.
  • the control unit 200 is the acceleration (a) of the body, the angular velocity ( ⁇ ), the pitch angle ( ⁇ ), and the roll angle ( ⁇ ) of the body so that the calculated load (n) approaches 0 At least one can be adjusted. Acceleration (a) can be adjusted by controlling the driving force, the angular velocity ( ⁇ ), pitch angle ( ⁇ ), and roll angle ( ⁇ ) can be adjusted by controlling the steering device of the body. In another embodiment, when the body is an automobile, the control unit 200 controls each suspension device (suspension) to adjust at least one of the pitch angle ⁇ or the roll angle ⁇ , so that the vehicle body and the ground and You can also adjust the angle.
  • the storage unit 300 may include a volatile memory or a nonvolatile memory such as a volatile random access memory (RAM) having a cache area for temporarily storing data.
  • Non-volatile memory may be embedded in the load measurement device and may be removable.
  • the storage unit may store the calculated load.
  • the load may be calculated using measured values measured at regular intervals.
  • the controller 200 may store the calculated load every cycle, and may add up the magnitudes of the calculated load every cycle.
  • the output unit 400 may include a display module that displays the magnitude of the calculated load or the magnitude of the accumulated load, and the communication unit 500 may transmit the calculated load to an external device.
  • 3 to 5 are detailed block diagrams illustrating the controller of FIG. 2 according to an exemplary embodiment of the present invention.
  • Equation 3 is a detailed block diagram of a control unit for calculating the load on the x-axis.
  • the y-axis acceleration values and the z-axis acceleration values pass through integrators 610 and 620. Equation 1 may be embodied as Equation 2 below.
  • Equation 3 is derived from Equation 2, which is an x-axis load value calculated by the control unit of FIG.
  • Equation 4 is a detailed block diagram of a control unit for obtaining a load value on the y-axis.
  • the load value of the y-axis has the same value as in Equation 5 derived from Equation 4.
  • Equation 5 is a detailed block diagram of a control unit for obtaining a load value on the z-axis.
  • the load value of the z-axis has the same value as in Equation 7 derived from Equation 6.
  • the present invention can also be embodied as computer readable code on a computer readable recording medium.
  • the computer-readable recording medium includes all kinds of recording devices in which data that can be read by a computer system is stored. Examples of computer-readable recording media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage devices, and the like, which are also implemented in the form of carrier waves (for example, transmission over the Internet). Include.
  • the computer readable recording medium can also be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion. And functional programs, codes and code segments for implementing the present invention can be easily inferred by programmers in the art to which the present invention belongs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mathematical Physics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

본 발명은 운동하는 물체에서 측정되는 가속도, 속도, 각속도, 및 각도로부터 하중을 산출하는 하중 측정 방법과 하중 측정 장치에 대한 것이다. 본 발명에 따른 하중 측정 방법은 운동하는 물체에 포함된 측정부에서 상기 물체의 가속도, 각속도, 피치(pitch)각, 및 롤(roll)각을 측정하는 단계, 상기 가속도로부터 속도를 산출하는 단계, 및 상기 가속도, 상기 속도와 상기 각속도에 따라 생성되는 성분, 상기 피치각, 및 상기 롤각으로부터 상기 운동하는 물체가 생성하는 하중을 산출하는 단계를 포함한다. 이와 같이 얻어진 하중은 운동하는 물체가 운동하면서 생성하는 하중을 수치상으로 알 수 있도록 해 주며, 이 수치는 운동하는 물체가 받는 피로도(degree of fatigue)를 판별하는 척도가 된다. 또한 운동하는 물체에 탑승한 승객의 승차감을 나타내는 척도가 된다.

Description

피로도 산출 방법 및 그 장치
본 발명은 운동하는 물체가 운동함으로써 발생하는 피로도 또는 하중을 측정하는 방법 및 그 장치에 관한 것이다. 또한 운동하는 물체에 탑승한 승객의 승차감(하중)을 수치상으로 나타내는 장치에 관한 것이다.
기존의 운동하는 물체에 사용되는 계측기는 속도계, 엔진 회전수 측정기, 엔진 온도계, 연료량 측정, 운행거리 표시기 등이 있다. 이러한 장치들은 운동하는 물체에 탑승한 탑승자에 대해 직접 작용하는 수치가 아니고 운동하는 물체에 대한 정보이다. 운동시 탑승자에게 작용하는 힘을 측정하여 탑승자에게 작용하는 힘을 기초로 탑승자가 더 편안해지도록 물체의 운동을 설정할 필요가 있다.
또한 운동하는 물체가 받는 피로도(degree of fatigue)를 측정하여, 운동하는 물체의 수명을 예측할 필요가 있다.
본 발명의 목적은 운동하는 물체에 탑승한 승객에게 승차감을 수치로 나타낼 수 있도록 하는 데 있다. 또한 탑승자에게 더 나은 승차감을 제공할 수 있도록 운동하는 물체를 제어할 수 있도록 한다.
승객에게 작용하는 승차감은 운동하는 물체의 피로도와 동일한 개념으로 사용될 수 있다. 따라서 피로도를 누적하여 동체의 수명을 예측할 수 있는 피로도 측정 방법을 제공하는 것이 본 발명의 또 다른 목적이다.
본 발명에 따른 컴퓨터에 의한 동체의 피로도 산출 방법은 지상에서 움직이는 물체에 포함된 측정부에서 상기 물체의 가속도 벡터, 각속도 벡터, 피치(pitch)각, 및 롤(roll)각을 측정하는 단계, 상기 가속도 벡터로부터 속도 벡터를 산출하는 단계, 상기 속도 벡터의 성분과 상기 각속도 벡터의 성분으로부터 상기 가속도 벡터의 성분에 영향을 미치는 방해 벡터의 성분을 산출하는 단계, 중력이 상기 물체의 동체좌표계에 영향을 미치는 동체좌표계 중력 벡터 성분을 산출하는 단계, 및 상기 가속도 벡터의 성분, 상기 방해 벡터의 성분, 및 상기 동체좌표계 중력 벡터의 성분을 합산하여 상기 물체에 미치는 피로도 벡터를 산출하는 단계를 포함한다.
본 발명에 따른 동체의 피로도 산출 장치는 상기 물체의 가속도 벡터, 각속도 벡터, 피치각, 및 롤각을 측정하는 측정부, 상기 가속도 벡터로부터 속도 벡터를 산출하고, 상기 속도 벡터의 성분과 상기 각속도 벡터의 성분으로부터 상기 가속도 벡터의 성분에 영향을 미치는 방해 벡터의 성분을 산출하고, 중력이 상기 물체의 동체좌표계에 영향을 미치는 동체좌표계 중력 벡터 성분을 산출하고, 상기 가속도 벡터의 성분, 상기 방해 벡터의 성분, 및 상기 동체좌표계 중력 벡터의 성분을 합산하여 상기 물체에 미치는 피로도 벡터를 산출하는 제어부, 및 상기 피로도 벡터를 저장하는 저장부를 포함한다.
본 발명에 따른 피로도 산출 방법으로, 운동하는 물체 또는 탑승자에게 작용하는 하중(승차감 또는 피로도)의 정도를 수치상으로 파악할 수 있다. 또한 탑승자가 더 나은 승차감을 느낄 수 있도록, 하중 값을 기초로 동체의 움직임을 제어할 수 있다. 이러한 하중값은 운동하는 물체의 피로도로도 작용하여 운동하는 물체의 수명을 예측할 수 있다.
도 1은 운동하는 물체에서의 좌표축을 나타내는 좌표계,
도 2는 본 발명의 실시예에 따른 하중 측정 장치를 나타내는 블럭도, 및
도 3 내지 도 5는 도 2의 제어부를 나타내는 세부 블럭도이다.
3차원 공간의 물리계에서 물체가 움직일 때는 물체의 질량 중점에서의 가속도 성분과 이 질량 점을 중심으로 회전하는 성분으로 구성된다. 이러한 가속도성분과 각속도성분은 중력계 상에서 작용하므로 움직이는 물체에 작용하는 모든 힘 N과 움직이는 물체 무게에 관한 관계식으로 나타낼 수 있고, 이것이 하중(피로도 또는 승차감)이다. 이것은 가속도를 중력 값으로 나눈 값인 중력수와 다른 값이다.
3차원 공간상에서 운동하는 물체(동체)가 탑승자에게 작용하는 하중은 동체의 가속도와 각 축의 각도 변화 등을 통해 측정될 수 있다. 탑승자에게 미치는 모든 힘인 하중은 탑승자에게 승차감의 척도가 된다. 또한 하중은 탑승자 뿐만 아니라 동체 자체에도 작용한다. 이에 따라, 하중은 동체에게 피로도(degree of fatigue)의 척도가 된다.
3차원 공간에서 동체는 x축, y축, 및 z축 성분의 가속도 값을 갖게 되고, 운동하면서 좌표축은 받음각과 경로각으로 인하여 좌표축이 변한다(오일러각). 그리고 각 축을 중심으로 회전하는 각속도를 갖게 된다. 이러한 가속도, 각속도, 및 각도 값에 의하여 동체 자체는 힘을 발생시킨다. 이러한 가속도 값과 각도변화를 측정하기 위해 동체의 각축에 평행하도록 가속도 및 각도 측정 장치(가속도와 각도를 측정하는 장치)가 설치될 수 있다.
가속도, 속도와 각속도에 따라 생성되는 성분, 및 각도를 기초로 하중이 산출된다. 본 발명의 일실시예 따른 하중은 수학식 1에 의해 산출될 수 있다.
수학식 1
Figure PCTKR2011005669-appb-M000001
여기서 A는 동체의 가속도(a)를 나타낸다. B는 움직이는 물체의 속도(V)와 회전각속도(Ω)에 따라 생성되는 성분(ΩV)이다. B는 물체의 가속도 성분을 방해하는 성분이므로 음(-)의 연산을 취한다. A는
Figure PCTKR2011005669-appb-I000001
, V는
Figure PCTKR2011005669-appb-I000002
, 및 Ω는
Figure PCTKR2011005669-appb-I000003
인 행렬로 표현될 수 있다. Ω는 지상 좌표계상에서, 움직이는 물체의 동체 좌표계가 지상좌표계에 대한 회전을 나타내는 행렬로 널리 알려져 있는 식이다. C는 지상좌표계에서 나타내지는 중력성분(g)에 의한 움직이는 물체의 가속도에 대한 성분(gεij)이다. εij은 오일러 각의 삼각함수 행렬로,
Figure PCTKR2011005669-appb-I000004
로 표현될 수 있다. 중력계에서 중력은 지구 무게 중심이므로 지상좌표계에서 지구 무게 중심을 나타내는 수직축인 i=2인 ε2j 행렬,
Figure PCTKR2011005669-appb-I000005
을 취한다. 이때 j={1, 2, 3} 이고, j=1 일 때 움직이는 물체의 x축, j=2 일 때 움직이는 물체의 y축, 및 j=3 일 때 움직이는 물체의 z성분이다. 이와 같이 A,B,C의 연산에 중력가속도 g로 나눈값으로 하중(승차감)값
Figure PCTKR2011005669-appb-I000006
을 산출할 수 있다.
도 1은 동체에서의 좌표축을 나타내는 좌표계이다. x축은 동체(10)의 운동 방향(20), y축은 x 축에 수직으로 상하운동방향 및 z축은 x축에 수직 좌우방향을 나타낸다.
도 2은 본 발명의 실시예에 따른 하중 측정 장치를 나타내는 블럭도이다. 도 1을 참조하면, 본 실시예에 따른 하중 측정 장치는 측정부(100), 제어부(200), 저장부(300), 출력부(400), 및 통신부(500)를 포함한다.
측정부(100)는 하중 측정의 기초가 되는 동체의 가속도(a)와 각속도(ω), 및 움직이는 물체를 기준으로 한 동체좌표계와 지상을 기준으로 한 지상좌표계 사이의 각도(θ, γ)를 측정한다. 이를 위해 측정부(100)는 가속도 측정 모듈(110), 각속도 측정 모듈(120), 및 각도 측정 모듈(130)을 포함할 수 있다. 가속도와 각속도는 움직이는 물체의 동체좌표계를 기준으로 측정된 값이다. 각도 측정 모듈(230)은 지상좌표계를 기준으로 피치(picth)각(θ)과 롤(roll)각(γ)을 측정한다.
제어부(200)는 측정부에서 측정된 값을 기초로 하중을 산출한다. 제어부(200)는 가속도 측정 모듈(110)에서 측정된 가속도를 기초로 속도를 산출한다. 제어부(200)는 가속도, 속도와 각속도에 따라 생성되는 성분, 피치각, 및 롤각을 기초로 하중(n)을 산출한다.
본 실시에에서 중력은 크게 변하지 않는 값이어서 기설정된 중력값을 사용하였다. 그러나 다른 실시예로, 본 발명에 따른 하중 측정 장치의 측정부는 중력의 크기를 측정하는 중력 측정 모듈(미도시)를 더 포함할 수도 있다. 이렇게 중력 측정 모듈에서 측정된 중력 값은 하중 산출 시에 사용될 수 있다.
본 발명의 다른 실시예에 따른 제어부(200)는 산출된 하중(n)이 0에 가까워지도록 동체의 가속도(a), 동체의 각속도(ω), 피치각(θ), 및 롤각(γ) 중 적어도 하나를 조절할 수 있다. 가속도(a)는 추진력을 제어하여 조절할 수 있으며, 각속도(ω), 피치각(θ), 및 롤각(γ)은 동체의 조향장치를 제어하여 조절할 수 있다. 또 다른 실시예로, 동체가 자동차인 경우, 제어부(200)는 피치각(θ) 또는 롤각(γ) 중 적어도 하나를 조절하기 위해, 각각의 현가장치(서스펜션)를 제어하여, 차체와 지면과의 각도를 조절할 수도 있다.
저장부(300)는 데이터 임시 저장을 위한 캐시 영역을 구비한 휘발성 랜덤 액세스 메모리(RAM)와 같은 휘발성 메모리 또는 비휘발성 메모리를 포함할 수 있다. 비휘발성 메모리는 하중 측정 장치에 내장될 수 있고 탈부착 가능할 수도 있다. 저장부는 산출된 하중을 저장할 수 있다.
하중은 일정 주기로 측정된 측정 값을 이용하여 산출될 수 있다. 이 때, 제어부(200)는 매 주기마다 산출된 하중을 저장할 수 있으며, 매 주기마다 산출된 하중의 크기를 합산할 수 있다.
출력부(400)는 산출된 하중의 크기 또는 누적된 하중의 크기를 표시하는 디스플레이 모듈을 포함할 수 있으며, 통신부(500)는 산출된 하중을 외부 장치에 전송할 수 있다.
도 3 내지 도 5는 본 발명의 실시예에 따른 도 2의 제어부를 나타내는 세부 블럭도이다.
도 3은 x축의 하중을 산출하는 제어부의 세부 블럭도이다. 속도의 y축 성분과 z축 성분을 산출하기 위해, y축 가속도 값과 z축 가속도 값은 적분기(610, 620)를 통과한다. 수학식 1은 아래 수학식 2와 같이 구체화될 수 있다.
수학식 2
Figure PCTKR2011005669-appb-M000002
수학식 2로부터 수학식 3이 도출되며, 도 3의 제어부에 의해 산출된 x축 하중 값이된다.
수학식 3
Figure PCTKR2011005669-appb-M000003
도 4는 y축의 하중 값을 구하는 제어부의 세부 블럭도이다. y축의 하중 값은 수학식 4에서 도출된 수학식 5와 같은 값을 가진다.
수학식 4
Figure PCTKR2011005669-appb-M000004
수학식 5
Figure PCTKR2011005669-appb-M000005
도 5는 z축의 하중 값을 구하는 제어부의 세부 블럭도이다. z축의 하중 값은 수학식 6에서 도출된 수학식 7와 같은 값을 가진다.
수학식 6
Figure PCTKR2011005669-appb-M000006
수학식 7
Figure PCTKR2011005669-appb-M000007
상기 본 발명은 또한 컴퓨터로 읽을 수 있는 기록매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 기록매체는 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 기록매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다. 또한 컴퓨터가 읽을 수 있는 기록매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고 본 발명을 구현하기 위한 기능적인(functional) 프로그램, 코드 및 코드 세그먼트들은 본 발명이 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.

Claims (8)

  1. 지상에서 움직이는 물체에 포함된 측정부에서 상기 물체의 가속도 벡터, 각속도 벡터, 피치(pitch)각, 및 롤(roll)각을 측정하는 단계;
    상기 가속도 벡터로부터 속도 벡터를 산출하는 단계;
    상기 속도 벡터의 성분과 상기 각속도 벡터의 성분으로부터 상기 가속도 벡터의 성분에 영향을 미치는 방해 벡터의 성분을 산출하는 단계;
    중력이 상기 물체의 동체좌표계에 영향을 미치는 동체좌표계 중력 벡터 성분을 산출하는 단계; 및
    상기 가속도 벡터의 성분, 상기 방해 벡터의 성분, 및 상기 동체좌표계 중력 벡터의 성분을 합산하여 상기 물체에 미치는 피로도 벡터를 산출하는 단계를 포함하는 컴퓨터에 의한 동체의 피로도 산출 방법.
  2. 제 1 항에 있어서,
    상기 동체좌표계는 x축, y축 및 z축으로 표현되는 직교좌표계이고,
    상기 가속도 벡터는
    Figure PCTKR2011005669-appb-I000007
    인 행렬이고,
    상기 방해 벡터는
    Figure PCTKR2011005669-appb-I000008
    인 행렬식이고,
    상기 동체좌표계 중력 벡터는
    Figure PCTKR2011005669-appb-I000009
    인 행렬인 것을 특징으로 하는 동체의 피로도 산출 방법.
    (단 ax, ay, 및 az는 동체좌표계에서 각 축의 가속도 성분을, ωx, ωy, 및 ωz는 동체좌표계에서 각 축의 각속도 성분을, Vx, Vy, 및 Vz는 동체좌표계에서 각 축의 속도 성분을, g는 중력 가속도 크기를, θ는 피치각을, γ는 롤각을 나타낸다.)
  3. 제 1 항에 있어서,
    상기 측정부에서 상기 물체가 위치한 곳에서의 중력 가속도 크기를 측정하는 단계를 더 포함하고,
    상기 중력은 상기 측정된 중력 가속도의 크기인 것을 특징으로 하는 동체의 피로도 산출 방법.
  4. 제 1 항 또는 제 3 항에 있어서,
    상기 측정부는 일정한 주기로 측정하고,
    상기 피로도 벡터를 산출하는 단계는 매 주기마다 산출하는 것을 특징으로 하는 동체의 피로도 산출 방법.
  5. 제 4 항에 있어서,
    상기 매 주기마다 산출된 피로도 벡터를 저장하는 단계; 및
    상기 매 주기마다 산출된 피로도 벡터를 디스플레이하는 단계를 더 포함하는 동체의 피로도 산출 방법.
  6. 제 4 항에 있어서,
    상기 매 주가마다 산출된 각각의 피로도 벡터의 크기를 합산하는 단계; 및
    상기 피로도 벡터의 합산 값을 디스플레이하는 단계를 더 포함하는 동체의 피로도 산출 방법.
  7. 제 4 항에 있어서,
    특정 주기에 산출된 피로도 벡터의 크기보다 다음 주기에 산출될 피로도 벡터의 크기가 더 작아지도록, 상기 가속도 벡터, 상기 각속도 벡터, 상기 피치각 및 상기 롤각 중 적어도 하나를 조절하는 단계를 더 포함하는 동체의 피로도 산출 방법.
  8. 지상에서 운동하는 물체에 구비되는 피로도 산출 장치에 있어서,
    상기 물체의 가속도 벡터, 각속도 벡터, 피치각, 및 롤각을 측정하는 측정부;
    상기 가속도 벡터로부터 속도 벡터를 산출하고, 상기 속도 벡터의 성분과 상기 각속도 벡터의 성분으로부터 상기 가속도 벡터의 성분에 영향을 미치는 방해 벡터의 성분을 산출하고, 중력이 상기 물체의 동체좌표계에 영향을 미치는 동체좌표계 중력 벡터 성분을 산출하고, 상기 가속도 벡터의 성분, 상기 방해 벡터의 성분, 및 상기 동체좌표계 중력 벡터의 성분을 합산하여 상기 물체에 미치는 피로도 벡터를 산출하는 제어부; 및
    상기 피로도 벡터를 저장하는 저장부를 포함하는 피로도 산출 장치.
PCT/KR2011/005669 2011-08-02 2011-08-02 피로도 산출 방법 및 그 장치 WO2013018942A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005669 WO2013018942A1 (ko) 2011-08-02 2011-08-02 피로도 산출 방법 및 그 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/005669 WO2013018942A1 (ko) 2011-08-02 2011-08-02 피로도 산출 방법 및 그 장치

Publications (1)

Publication Number Publication Date
WO2013018942A1 true WO2013018942A1 (ko) 2013-02-07

Family

ID=47629445

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/005669 WO2013018942A1 (ko) 2011-08-02 2011-08-02 피로도 산출 방법 및 그 장치

Country Status (1)

Country Link
WO (1) WO2013018942A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030182028A1 (en) * 2002-03-22 2003-09-25 Nissan Motor Co., Ltd. Information presentation controlling apparatus and method
JP2005067276A (ja) * 2003-08-20 2005-03-17 Hitachi Ltd 鉄道車両の異常検知装置
JP2008546109A (ja) * 2005-06-09 2008-12-18 ダイムラー・アクチェンゲゼルシャフト 疲労を検出する方法及び装置
KR20090069471A (ko) * 2007-12-26 2009-07-01 한국철도기술연구원 철도차량용 대차의 피로도 감시장치 및 이를 이용한철도차량 보호방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030182028A1 (en) * 2002-03-22 2003-09-25 Nissan Motor Co., Ltd. Information presentation controlling apparatus and method
JP2005067276A (ja) * 2003-08-20 2005-03-17 Hitachi Ltd 鉄道車両の異常検知装置
JP2008546109A (ja) * 2005-06-09 2008-12-18 ダイムラー・アクチェンゲゼルシャフト 疲労を検出する方法及び装置
KR20090069471A (ko) * 2007-12-26 2009-07-01 한국철도기술연구원 철도차량용 대차의 피로도 감시장치 및 이를 이용한철도차량 보호방법

Similar Documents

Publication Publication Date Title
Kooijman et al. Experimental validation of a model of an uncontrolled bicycle
US7463953B1 (en) Method for determining a tilt angle of a vehicle
CN101915580A (zh) 一种基于微惯性和地磁技术的自适应三维姿态定位方法
EP1994388A1 (en) Method for determining the centre of gravity for an automotive vehicle
US6618651B1 (en) Estimating vehicle velocities using linear-parameter-varying and gain varying scheduling theories
CN1932444A (zh) 适用于高速旋转体的姿态测量方法
CN101365925B (zh) 用于估计固体的移动的方法
CN105890914A (zh) 电动汽车续航里程测试方法及装置
CN107607111A (zh) 加速度偏置估计方法和装置、视觉惯性里程计及其应用
RU2018107795A (ru) Система определения курса и углового пространственного положения, выполненная с возможностью функционирования в полярной области
KR20150078461A (ko) 관성 및 무게 중심 측정 시스템
KR20200140003A (ko) 관성 측정 유닛에 대한 캘리브레이션 장치 및 방법
CN108663044B (zh) 一种定位方法及装置
JP2024079791A (ja) 変位計測装置及び表示方法
CN102607557B (zh) 一种基于gps/imu的飞行器姿态直接积分校正方法
WO2013018942A1 (ko) 피로도 산출 방법 및 그 장치
KR101194562B1 (ko) 피로도 산출 방법 및 그 장치
CN109506674A (zh) 一种加速度的校正方法及装置
CN207881711U (zh) 基于gnss的惯性导航***
KR101257935B1 (ko) 관성 항법 시스템의 바이어스 추정치를 이용한 정렬 장치 및 그 항법 시스템
JP5444958B2 (ja) ステアリング操作状態推定装置、及びプログラム
KR101268183B1 (ko) 하중 측정 방법 및 하중 측정 장치
CN103076188A (zh) 基于跌落实验单自由度车辆模型的车辆参数识别方法
KR101261324B1 (ko) 동체의 각속도 측정방법
JP6454857B2 (ja) 姿勢検出装置及び姿勢検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11870366

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11870366

Country of ref document: EP

Kind code of ref document: A1