WO2013018694A1 - 糖液の製造方法 - Google Patents

糖液の製造方法 Download PDF

Info

Publication number
WO2013018694A1
WO2013018694A1 PCT/JP2012/069137 JP2012069137W WO2013018694A1 WO 2013018694 A1 WO2013018694 A1 WO 2013018694A1 JP 2012069137 W JP2012069137 W JP 2012069137W WO 2013018694 A1 WO2013018694 A1 WO 2013018694A1
Authority
WO
WIPO (PCT)
Prior art keywords
sugar
membrane
sugar solution
fermentation
cellulose
Prior art date
Application number
PCT/JP2012/069137
Other languages
English (en)
French (fr)
Inventor
淳 南野
栗原 宏征
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to ES12820603.4T priority Critical patent/ES2567325T3/es
Priority to EP12820603.4A priority patent/EP2749656B1/en
Priority to JP2012538527A priority patent/JP6007791B2/ja
Priority to RU2014107687/13A priority patent/RU2597199C2/ru
Priority to US14/235,943 priority patent/US9163294B2/en
Priority to CA2842151A priority patent/CA2842151C/en
Priority to AU2012291169A priority patent/AU2012291169B9/en
Priority to BR112014002091A priority patent/BR112014002091A2/pt
Priority to CN201280036546.1A priority patent/CN103717759B/zh
Priority to DK12820603.4T priority patent/DK2749656T3/en
Publication of WO2013018694A1 publication Critical patent/WO2013018694A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K1/00Glucose; Glucose-containing syrups
    • C13K1/02Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
    • C13K1/04Purifying
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13KSACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
    • C13K13/00Sugars not otherwise provided for in this class
    • C13K13/002Xylose
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a method for producing a sugar liquid from cellulose-containing biomass.
  • the fermentation production process of chemicals using sugar as a raw material is used for the production of various industrial raw materials.
  • sugar derived from edible raw materials such as sugar cane, starch and sugar beet is used industrially as sugar for this fermentation raw material.
  • a process for producing sugar solution more efficiently than renewable non-edible resources, ie cellulose-containing biomass, or a process for efficiently converting the obtained sugar solution as a fermentation raw material into an industrial raw material The future is a future challenge.
  • Patent Documents 1 and 2 Conventional techniques for obtaining sugar from biomass include a method of hydrolyzing cellulose and hemicellulose in biomass to monosaccharides typified by glucose and xylose using concentrated sulfuric acid (Patent Documents 1 and 2), and biomass reactivity A method of hydrolyzing by an enzymatic reaction after performing a pretreatment for improving the pH is generally known (Patent Documents 3 and 4).
  • Patent Documents 3 and 4 A method of hydrolyzing by an enzymatic reaction after performing a pretreatment for improving the pH is generally known.
  • furan compounds such as furfural and hydroxymethylfurfural, formic acid, acetic acid, etc.
  • furan compounds such as furfural and hydroxymethylfurfural, formic acid, acetic acid, etc.
  • by-products such as organic acids.
  • the present inventor found that when the fermentation inhibitor contained in the sugar solution derived from cellulose-containing biomass was removed with a nanofiltration membrane or a reverse osmosis membrane, the fermentation inhibitor was not completely removed. It was presumed that unidentified fermentation-inhibiting substances that are difficult to remove with nanofiltration membranes and reverse osmosis membranes can be contained in sugar solution derived from cellulose-containing biomass. It is an object of the present invention to provide a method for producing a sugar solution having an extremely small amount of fermentation inhibiting substances by removing fermentation inhibiting substances that have been difficult to remove by conventional methods from sugar solutions derived from cellulose-containing biomass.
  • the present invention includes the following [1] to [6].
  • [1] A method for producing a sugar solution using cellulose-containing biomass as a raw material, Step (1): Hydrolyzing cellulose-containing biomass to produce an aqueous sugar solution, Step (2): The aqueous saccharide solution obtained in step (1) is filtered through an ultrafiltration membrane having a molecular weight cut off of 600 to 2,000 to remove the fermentation inhibitor on the permeate side and remove the sugar solution from the non-permeate side.
  • a method for producing a sugar solution comprising: [2] The method for producing a sugar solution according to [1], wherein the fermentation inhibitor contains one or more selected from the group consisting of coumaric acid, ferulic acid and 2,3-dihydrobenzofuran. . [3] The method for producing a sugar liquid according to [1] or [2], wherein in the step (2), the aqueous sugar solution is adjusted to pH 5 or lower and filtered. [4] The method for producing a sugar liquid according to [1] to [3], wherein the material of the functional layer of the ultrafiltration membrane used in the step (2) is polyethersulfone.
  • step (2) The sugar solution obtained in step (2) and / or the permeate containing the fermentation inhibitor is filtered through a nanofiltration membrane and / or a reverse osmosis membrane to recover the concentrated sugar solution from the non-permeation side.
  • a method for producing a chemical product wherein the sugar solution obtained by the method for producing a sugar solution according to any one of [1] to [5] is used as a fermentation raw material.
  • a sugar solution containing sugars such as glucose and xylose can be produced with high purity and high yield.
  • the efficiency of fermentation production of various chemical products can be improved by using the purified sugar solution obtained in the present invention as a fermentation raw material.
  • FIG. 1 shows the results of a fermentation test using a sugar solution obtained by concentrating an aqueous sugar solution obtained by dilute sulfuric acid treatment of cellulose-containing biomass using an ultrafiltration membrane or a nanofiltration membrane, using the glucose consumption rate as an index.
  • FIG. 2 shows the results of a fermentation test using as an index the glucose consumption rate of a sugar solution obtained by concentrating an aqueous sugar solution obtained by steaming and explosion treatment of cellulose-containing biomass using an ultrafiltration membrane or a nanofiltration membrane.
  • FIG. 3 shows the result of improving the fermentability using the xylose consumption rate as an index by concentrating the permeate of the ultrafiltration membrane with a sugar aqueous solution obtained by hydrothermal treatment of cellulose-containing biomass.
  • FIG. 3 shows the result of improving the fermentability using the xylose consumption rate as an index by concentrating the permeate obtained by ultrafiltration membranes of a sulfuric acid aqueous solution obtained from dilute sulfuric acid of cellulose-containing biomass.
  • the cellulose-containing biomass in the present invention refers to a biological resource containing 5% by weight or more of cellulose.
  • Specific examples include herbaceous biomass such as bagasse, switchgrass, napiergrass, Eliansus, corn stover, rice straw, and straw, and woody biomass such as trees and waste building materials.
  • These cellulose-containing biomass is also called lignocellulose because it contains lignin and cellulose / hemicellulose which are aromatic polymers.
  • hydrolysis treatment of cellulose-containing biomass is carried out by chemical treatment methods such as acid treatment with high-temperature and high-pressure dilute sulfuric acid or sulfite, and alkali treatment with an alkaline aqueous solution such as calcium hydroxide or sodium hydroxide.
  • chemical treatment methods such as acid treatment with high-temperature and high-pressure dilute sulfuric acid or sulfite, and alkali treatment with an alkaline aqueous solution such as calcium hydroxide or sodium hydroxide.
  • alkali treatment with an alkaline aqueous solution such as calcium hydroxide or sodium hydroxide.
  • alkali treatment with an alkaline aqueous solution
  • hydrothermal treatment treating with pressurized hot water.
  • hydrolysis treatment with a saccharifying enzyme may be performed.
  • the acid treatment is characterized by dissolving lignin, first hydrolyzing from the hemicellulose component having low crystallinity, and then decomposing the cellulose component having high crystallinity, and thus contains a large amount of xylose derived from hemicellulose. It is possible to obtain a liquid.
  • the number of treatments is not particularly limited, but by setting two or more acid treatment steps, hydrolysis conditions suitable for hemicellulose and cellulose can be selectively set, improving degradation efficiency and sugar yield. It becomes possible to make it.
  • the acid used in the acid treatment is not particularly limited as long as it causes hydrolysis, but sulfuric acid is desirable from the viewpoint of economy.
  • the acid concentration is preferably 0.1 to 100% by weight, more preferably 0.5 to 15% by weight.
  • the reaction temperature can be set in the range of 100 to 300 ° C., and the reaction time can be set in the range of 1 second to 60 minutes.
  • the liquid component after the acid treatment contains a large amount of monosaccharides and oligosaccharides whose main components are components derived from hemicellulose obtained by hydrolysis.
  • both hemicellulose and cellulose can be hydrolyzed and hydrolyzed in one step.
  • the solid content and liquid component obtained after acid treatment may be performed separately, or may be performed while the solid content and liquid component are mixed.
  • the used acid is contained in the solid content and liquid component obtained by an acid treatment, in order to perform a hydrolysis reaction by a saccharifying enzyme, it is preferable to neutralize an acid-treated material beforehand.
  • Alkali treatment is a treatment method in which cellulose-containing biomass is reacted with an aqueous alkali solution, specifically, an aqueous solution of a hydroxide salt (excluding ammonium hydroxide).
  • a hydroxide salt excluding ammonium hydroxide
  • the hydroxide salt used is preferably sodium hydroxide or calcium hydroxide.
  • the concentration of the alkaline aqueous solution is preferably in the range of 0.1 to 60% by weight, and this is added to the cellulose-containing biomass and is usually treated at a temperature range of 100 to 200 ° C, preferably 110 to 180 ° C.
  • the number of treatments is not particularly limited, and may be performed once or a plurality of times. When performing twice or more, you may implement each process on different conditions.
  • the pre-processed product obtained by the alkali treatment contains an alkali, it is preferable to neutralize beforehand, when hydrolyzing by a saccharifying enzyme further.
  • Ammonia treatment is a treatment method in which an aqueous ammonia solution or 100% ammonia (liquid or gas) is reacted with cellulose-derived biomass.
  • a method described in JP2008-161125A or JP2008-535664A can be used.
  • the reaction efficiency with the saccharifying enzyme is greatly improved by the fact that the crystallinity of cellulose is lost due to the reaction of ammonia with the cellulose component.
  • ammonia is added to the cellulose-containing biomass so as to have a concentration in the range of 0.1 to 15% by weight with respect to the cellulose-containing biomass, and the treatment is performed at 4 to 200 ° C., preferably 60 to 150 ° C.
  • the number of treatments is not particularly limited, and may be performed once or a plurality of times.
  • Hydrothermal treatment is a method of treating cellulose-containing biomass with pressurized hot water at 100 to 400 ° C. for 1 second to 60 minutes.
  • the cellulose-containing biomass which is insoluble in water at a normal temperature of 25 ° C. after the treatment, is adjusted to a concentration of 0.1 to 50% by weight with respect to the total total weight of the cellulose-containing biomass and water.
  • the pressure is not particularly limited because it depends on the treatment temperature, but it is preferably 0.01 to 10 MPa.
  • the elution component into hot water differs depending on the temperature of the pressurized hot water.
  • the first group of tannin and lignin flows out from the cellulose-containing biomass first, and then the second group of hemicellulose flows out at 140 to 150 ° C. or higher.
  • the temperature exceeds about 230 ° C. the third group of cellulose flows out.
  • the hydrolysis reaction of hemicellulose and cellulose may occur simultaneously with the outflow.
  • the treatment temperature may be changed to perform multi-stage treatment.
  • an aqueous solution containing a component eluted into pressurized hot water is referred to as a hot water-soluble component
  • a hot water-soluble component is referred to as a hot water-insoluble component.
  • the hot water insoluble content is a solid content mainly containing a disaccharide or higher cellulose (C6) component obtained as a result of elution of many lignin and hemicellulose components.
  • C6 disaccharide or higher cellulose
  • hemicellulose components and lignin components may be included. These content ratios change with the temperature of the pressurized hot water of hydrothermal treatment, and the kind of process biomass.
  • the water content of the hot water insoluble component is 10% to 90%, more preferably 20% to 80%.
  • the hot water soluble component is an aqueous solution containing hemicellulose, lignin, tannin and a part of cellulose components eluted in pressurized hot water in a liquid state or a slurry state, and is in a liquid state or a slurry state.
  • the hot water-soluble component contains a large amount of hydrolyzed polysaccharides, oligosaccharides and monosaccharides. These can be used as an aqueous sugar solution as they are or after further hydrolysis with a saccharifying enzyme.
  • a cutter mill before the hydrolysis treatment method, a cutter mill, a pulverization process that mechanically cuts the fiber using a hammer mill, a fine pulverization process using a ball mill, a jet mill, etc., a wet process using a grinder, A pretreatment such as a mechanochemical treatment, steaming with steam for a short time, and steaming and explosion treatment in which the pressure is instantaneously released and pulverized by volume expansion may be performed. This is because by pulverizing, the exposed area of cellulose / hemicellulose increases and the efficiency of the hydrolysis reaction by the saccharifying enzyme increases.
  • the saccharifying enzyme is not particularly limited as long as it has an activity of degrading cellulose or hemicellulose, but a saccharifying enzyme produced by a filamentous fungus belonging to the genus Trichoderma is preferable.
  • Trichoderma filamentous fungi are microorganisms that are secreted extracellularly into various saccharifying enzymes, and are preferably saccharifying enzymes derived from Trichoderma reesei.
  • those containing enzymes that assist the degradation of cellulose or hemicellulose are also suitable.
  • Examples of the enzyme that assists in the decomposition of cellulose or hemicellulose include cellobiohydrolase, endoglucanase, exoglucanase, ⁇ -glucosidase, xylanase, xylosidase, and biomass swelling enzyme.
  • the hydrolysis reaction using a saccharifying enzyme is preferably performed at a pH of around 3 to 7, more preferably around pH 5.
  • the reaction temperature is preferably 40 to 70 ° C.
  • Examples of the solid content removal method include a centrifugal separation method and a membrane separation method, but are not particularly limited. Moreover, you may use such solid-liquid separation combining multiple types.
  • the aqueous sugar solution obtained in the step (1) is solid, oligosaccharide, polysaccharide, tannin, saccharifying enzyme before being subjected to the step (2). It is preferable to remove water-soluble polymers such as protein components derived from biomass.
  • the method for removing these components is not particularly limited, but as a preferable method for removing these components, the aqueous sugar solution is filtered through a microfiltration membrane and / or an ultrafiltration membrane having a fractional molecular weight of more than 2,000, A method of filtering solid content and water-soluble polymer on the permeate side is mentioned. Is preferably removed.
  • the filtration method examples include pressure filtration, vacuum filtration, and centrifugal filtration, but are not particularly limited.
  • the filtration operation is broadly classified into constant pressure filtration, constant flow filtration, and non-constant pressure non-constant flow filtration, but is not particularly limited. Further, the filtration operation may be multistage filtration using a microfiltration membrane or an ultrafiltration membrane having a fractional molecular weight larger than 2,000 twice or more in order to efficiently remove a solid content.
  • a microfiltration membrane is a membrane with an average pore diameter of 0.01 ⁇ m to 5 mm, and is abbreviated as a microfiltration membrane, MF membrane, etc., and removes solids contained in an aqueous sugar solution. It is preferably used when The microfiltration membrane used here may be an inorganic membrane or an organic membrane, cellulose, cellulose ester, polysulfone, polyethersulfone, chlorinated polyethylene, polypropylene, polyolefin, polyvinyl alcohol, polymethyl methacrylate, polyvinylidene fluoride, Examples thereof include organic materials such as polytetrafluoroethylene, metals such as stainless steel, and inorganic materials such as ceramic.
  • the ultrafiltration membrane is described in detail in the step (2) described later.
  • an ultrafiltration membrane having a fractional molecular weight of more than 2,000 the water-soluble high concentration contained in the aqueous sugar solution is increased. It is preferably used when removing molecules, particularly saccharifying enzymes.
  • Step (2) It is known that when the cellulose-containing biomass is hydrolyzed in step (1), a fermentation inhibitor is generated in addition to sugar.
  • Fermentation inhibitor is a compound produced by hydrolysis of cellulose-containing biomass, and in the fermentation process for producing chemicals using sugar solution as a raw material, the production amount, accumulation amount, or production rate of chemical products It refers to a substance that has the effect of causing a decrease phenomenon.
  • the degree of fermentation inhibition by the fermentation inhibitor varies depending on the type of fermentation inhibitor present in the sugar aqueous solution and the amount of inhibition by the microorganism depending on the amount of these substances, and the microbial species used or the chemical product that is the product of the microorganism. Since the degree of inhibition also varies depending on the type, it is not particularly limited in the present invention.
  • step (2) the aqueous sugar solution obtained in step (1) is filtered through an ultrafiltration membrane having a specific molecular weight cut off to remove the fermentation inhibitor on the permeate side and from the non-permeate side. The sugar solution is collected.
  • an ultrafiltration membrane is a separation membrane having a molecular weight cut-off of 600 to 200,000, and is abbreviated as an ultrafiltration membrane, a UF membrane, or the like.
  • the molecular weight cut-off refers to the Membrane Society of Japan, Membrane Experiment Series Volume III, Artificial Membrane Editor / ist Kimura, Shinichi Nakao, Haruhiko Ohya, Tsutomu Nakagawa (Kyoritsu Publishing, 1993), page 92
  • a plot of data with the molecular weight on the horizontal axis and the rejection rate on the vertical axis is called a fractionated molecular weight curve.
  • the molecular weight at which the blocking rate is 90% is called the fractional molecular weight of the membrane. ”Is well known to those skilled in the art as an index representing the membrane performance of the ultrafiltration membrane.
  • separation membranes with a molecular weight cut-off in the range of 600 to 1,000 are recognized as boundary regions between nanofiltration membranes and ultrafiltration membranes.
  • a separation membrane having a molecular weight in the range of 600 to 1,000 may be called a nanofiltration membrane or an ultrafiltration membrane.
  • a separation membrane having a fractional molecular weight in the range of 600 to 200,000 is referred to as an ultrafiltration membrane and has a fractional molecular weight of less than 600, and “monovalent ions are transmitted and divalent What is applied to a membrane that is generally defined as “a membrane that blocks the ions of” is referred to as a nanofiltration membrane.
  • an ultrafiltration membrane having a molecular weight cut off of 600 to 2,000 is used.
  • ultrafiltration membranes with a molecular weight cut-off greater than 2,000 most of the sugar and fermentation-inhibiting substances escape to the permeate side, and fermentation inhibition newly identified as a membrane with a cut-off molecular weight of less than 600. This is not preferable because the removal performance of the substances coumaric acid, ferulic acid, and 2,3-dihydrobenzofuran to the permeate side is lowered.
  • the material of the ultrafiltration membrane is not particularly limited, but cellulose, cellulose ester, polysulfone, sulfonated polysulfone, polyethersulfone, sulfonated polyethersulfone, chlorinated polyethylene, polypropylene, polyolefin, polyvinyl alcohol, poly Examples thereof include organic materials such as methyl methacrylate, polyvinylidene fluoride, and polytetrafluoroethylene, metals such as stainless steel, and inorganic materials such as ceramic. Among these, an organic film is preferable from the viewpoint of removing hydrophobic substances. Of these, polyethersulfone is preferred.
  • the polyethersulfone membrane has good separation performance between the desired sugar and the fermentation inhibitor. More preferably, it is a sulfonated polyethersulfone. This is because the sugar rejection is increased compared to the case of not being sulfonated.
  • the form of the ultrafiltration membrane to be used is not particularly limited, and any of a spiral type, a hollow fiber type, a tubular type, and a flat membrane type may be used.
  • ultrafiltration membrane used in the present invention examples include DESAL G-5 type, GH type, GK type, Sinder 1 SPE1, KOCH PM1000, PM2000, MPS-36, SR2, and Alpha.
  • GR95Pp, ETNA01PP manufactured by Laval NTR-7450 manufactured by Nitto Denko Corporation (fractionated molecular weight 600-800, see WaterResearch 37 (2003) 864-872), NTR-7410 (fractionated molecular weight 1,000-2,000, Hygiene Engineering Symposium Proceedings, 5: 246-251 (1997)).
  • the filtration pressure in the filtration treatment of the ultrafiltration membrane depends on the concentration of the aqueous sugar solution, but is preferably in the range of 0.1 MPa to 8 MPa. If the filtration pressure is lower than 0.1 MPa, the membrane permeation rate decreases, and if it is higher than 8 MPa, the membrane may be damaged. Moreover, since a membrane permeation
  • the membrane permeation flux in the filtration treatment of the ultrafiltration membrane is preferably 0.2 m / D or more and 4.0 m / D or less. This is because if it is 0.2 m / D or less, concentration with an ultrafiltration membrane cannot be performed, and if it is 2.0 m / D or less, fouling of the membrane becomes remarkable. Moreover, if it is 0.5 m / D or more and 2.0 m / D or more, since it becomes easy to perform filtration by an ultrafiltration membrane, it is more preferable.
  • the pH of the aqueous sugar solution in the filtration treatment of the ultrafiltration membrane is not particularly limited, but is preferably 5 or less, more preferably 4 or less from the viewpoint of permeability of the fermentation inhibitor. If the pH is 1 or less, a large amount of acid is required at the time of pH adjustment. Therefore, it is preferable to set the lower limit of pH to 1 from the viewpoint of economy.
  • the pH adjustment of the aqueous sugar solution is particularly effective when an aromatic compound such as coumaric acid or ferulic acid and a substance having a carboxylic acid group are included as a fermentation inhibitor.
  • the sugar solution recovered from the non-permeating side of the filtration treatment of the ultrafiltration membrane may be used as it is as a raw material for the fermentation process described later, and the sugar solution is further subjected to nanofiltration described in WO2010 / 067785.
  • the concentrated sugar solution may be used as a raw material for the fermentation step described later after the sugar is concentrated on the non-permeation side by subjecting it to filtration through a membrane and / or reverse osmosis membrane.
  • the concentrated sugar solution can be recovered from the non-permeating side.
  • the concentrated sugar solution obtained by this step is also used as a raw material for the fermentation step described later. Note that the concentrated sugar solution obtained by the filtration process using the nanofiltration membrane and / or the reverse osmosis membrane is also subjected to the filtration process when it is previously filtered through an ultrafiltration membrane having a fractional molecular weight of 600 to 2,000.
  • the tendency which the fermentation performance in the below-mentioned fermentation process improves is compared with the case where it is not, and the case where it is filtered with the ultrafiltration membrane whose fraction molecular weight exceeds 2,000. This is thought to be because the sugar-containing biomass-derived sugar aqueous solution contains a trace amount of an unknown fermentation inhibitor having a molecular weight of about 2,000, and is concentrated by a nanofiltration membrane or a reverse osmosis membrane.
  • the sugar solution obtained in step (2) contains glucose and / or xylose, which are carbon sources for the growth of microorganisms or cultured cells that can produce chemicals as metabolites, while coumaric acid, ferula. Since the content of fermentation inhibitors such as acids and 2,3-dihydrobenzofuran is extremely small, it can be effectively used as a fermentation raw material for producing chemicals, particularly as a carbon source.
  • a fermentation process can be implemented according to the fermentation process described in WO2010 / 067875.
  • the chemical product obtained by the fermentation process is not limited as long as it is a substance produced by the microorganism or cultured cell in the culture solution.
  • Specific examples include alcohol, organic acid, amino acid, nucleic acid and the like that are mass-produced in the fermentation industry. Can be mentioned.
  • alcohols include ethanol, butanol, 1,3-propanediol, 2,3-butanediol, 1,4-butanediol, glycerol, and the like
  • organic acids include acetic acid, lactic acid, pyruvic acid, succinic acid, apple
  • the acid, itaconic acid, citric acid, and nucleic acid include nucleosides such as inosine and guanosine, nucleotides such as inosinic acid and guanylic acid, and diamine compounds such as cadaverine.
  • the present invention can also be applied to the production of substances such as enzymes, antibiotics, and recombinant proteins.
  • the medium components were removed in a sterilized state in a clean bench at 16, 24, 40, 48, 64, 72 hours from the start of the culture, and the medium was centrifuged.
  • the glucose concentration was quantified by HPLC analysis described in Reference Example 1 by applying a filter.
  • Example 1 The dilute sulfuric acid-treated sugar aqueous solution described in Reference Example 3 was filtered using a microfiltration membrane having a pore size of 0.08 ⁇ m, and the permeate of the microfiltration membrane was filtered using an ultrafiltration membrane.
  • the ultrafiltration membrane used was “NTR-7450” (manufactured by Nitto Denko Corporation, material: sulfonated polyethersulfone, molecular weight cut off: 600 to 800), “NTR-7410” (manufactured by Nitto Denko Corporation, material : Sulfonated polyethersulfone, molecular weight cut off: 1,000), “SPE1” (manufactured by Synder, material: polyethersulfone, molecular weight cut off: 1,000), GH series manufactured by GE Osmonics (material: polyethylene glycol, Fractionated molecular weight: 1,000), “GR95Pp” (manufactured by Alfa Laval, material: polyethersulfone, fractionated molecular
  • Example 1 “SPE3” (manufactured by Synder, material: polyethersulfone, fractional molecular weight: 3,000), a nanofiltration membrane, which is an ultrafiltration membrane having a higher fractional molecular weight than that of Example 1 in the same filtration treatment as Example "UTC-60” (manufactured by Toray Industries, Inc., material: piperazine polyamide), HL series (GE osmonics, material: composite membrane), DK series (GE osmonics, material: composite membrane) went.
  • Table 14 It was found that when an ultrafiltration membrane having a molecular weight cutoff of 3,000 was used, the monosaccharide concentration rate was extremely deteriorated.
  • Example 1 The glucose consumption rate was slower than when the ultrafiltration membrane was used (AC).
  • Example 2 The permeate of the microfiltration membrane of the steamed and crushed sugar solution described in Reference Example 4 was subjected to the same filtration treatment as in Example 1. The results are shown in Table 15. Furthermore, the fermentation results (EG) performed by the method of Reference Example 7 are shown in FIG.
  • Comparative Example 2 Using the same membrane as in Comparative Example 1, filtration treatment was performed on the permeate of the microfiltration membrane of the steamed saccharified saccharified solution. The results of the liquid composition are shown in Table 15, and the results of the fermentation test are shown in FIG.
  • Example 1 Similar to the comparison results of Example 1 and Comparative Example 1, when an ultrafiltration membrane with a molecular weight cut off of 3,000 was used, the monosaccharide concentration rate was extremely deteriorated, and when a nanofiltration membrane was used, Although there are slight differences in the concentration of the concentrated solution, coumaric acid, ferulic acid, and 2,3-dihydrobenzofuran are concentrated, and glucose is also compared in the fermentation test (H) as compared with the case of using the ultrafiltration membrane of Example 2. The consumption speed was slow.
  • Example 3 The same concentration test as in Example 1 was performed on the permeate of the microfiltration membrane of the ammonia-treated sugar aqueous solution described in Reference Example 5. The results are shown in Table 16.
  • Comparative Example 3 Using the same membrane as that of Comparative Example 1, the permeate of the microfiltration membrane of the ammonia-treated sugar aqueous solution was filtered. The results of the liquid composition are listed in Table 16. Similar to the comparison results of Example 1 and Comparative Example 1, when an ultrafiltration membrane with a molecular weight cut off of 3,000 was used, the monosaccharide concentration rate was extremely deteriorated, and when a nanofiltration membrane was used, Coumaric acid, ferulic acid, and 2,3-dihydrobenzofuran were concentrated although there were some differences in the concentration of the concentrate.
  • Example 4 Before the hydrothermally treated sugar aqueous solution prepared in Reference Example 6 was subjected to filtration treatment with an ultrafiltration membrane “NTR-7450” or “NTR-7410”, a second ultrafiltration membrane was used as a fractional molecular weight: 10,000. The case where it filtered with the ultrafiltration membrane (The product made from an applied membrane, material: Polyethersulfone) was compared with the case where it does not. The results are shown in Table 17. When the second ultrafiltration membrane treatment is performed, the membrane permeation flux (averaged over the treatment time) when performing ultrafiltration membrane treatment with “NTR-7450” or “NTR-7410” is greatly increased. Furthermore, it was found that the concentration rate of the monosaccharide on the non-permeate side was improved.
  • Example 5 The ultrafiltration membrane “NTR-7410” (manufactured by Nitto Denko Corporation, material: sulfonated polyethersulfone, fractional molecular weight: 1, Table 18 shows the composition of fermentation inhibitors and monosaccharides of the non-permeate side concentrate (0.5 L) and the permeate side filtrate (1.0 L) when filtered in the same manner as in Example 1. . Then, the filtrate is filtered through a nanofiltration membrane “UTC-60” (manufactured by Toray Industries, Inc., material: piperazine polyamide) to obtain a composition of fermentation inhibitor and monosaccharide in the non-permeate side concentrate (0.33 L). Table 19 shows.
  • This concentrated solution was prepared by adding reagents so as to have the composition shown in Table 20, and a fermentation test equivalent to that of Reference Example 7 was performed. The result of measuring the xylose consumption rate is shown in FIG. 3 (see J in FIG. 3). .)
  • Comparative Example 4 Composition of 0.75 L of non-permeate concentrated concentrate and monosaccharides obtained by filtering 1.5 L of the microfiltration membrane permeate of hydrothermally treated sugar aqueous solution prepared in Reference Example 6 with a nanofiltration membrane “UTC-60” Is shown in Table 19.
  • the result (xylose consumption rate) prepared by adding a reagent so as to have the composition shown in Table 20 as in Example 5 and subjected to a fermentation test is shown in FIG. 3 (see J in FIG. 3).
  • the sugar solution obtained in Example 5 was found to have a slightly higher concentration of coumaric acid, ferulic acid, and 2,3-dihydrobenzofuran, but the fermentability was better than Comparative Example 4 in terms of xylose consumption rate. This was presumed to be due to the presence of unidentified fermentation inhibitors that do not permeate the ultrafiltration membrane having a molecular weight cut off of 600 to 2,000 in the aqueous sugar solution. Further, according to Example 5, not only the sugar solution on the non-permeation side of the ultrafiltration membrane having a molecular weight cut off of 600 to 2,000 but also the filtrate on the permeation side is filtered through the nanofiltration membrane and / or the reverse osmosis membrane. Thus, the second concentrated sugar solution obtained from the non-permeate side was also found to be a fermentable sugar solution.
  • Membrane “NTR-7410” manufactured by Nitto Denko Corporation, material: sulfonated polyethersulfone, molecular weight cut off: 1,000 is set, and filtration is performed under conditions of a membrane surface linear velocity of 20 cm / sec and a filtration pressure of 2 MPa. Processed. In addition, since it takes time to stabilize the concentration on the filtrate side, the filtrate was returned to the raw water side for 20 minutes, the stable filtrate after 20 minutes was sampled, and the transmittance was obtained. Furthermore, it has been found that by adjusting the pH to 5 or less, the removal performance of the fermentation inhibitor having both the aromatic and carboxylic acids of coumaric acid and ferulic acid is greatly improved.
  • Example 6 The permeate 1.5L obtained by neutralizing the aqueous sulfuric acid solution obtained in Reference Example 3 with ammonia to pH 4.0 and treating with a microfiltration membrane was used as an ultrafiltration membrane “NTR-7450” (manufactured by Nitto Denko Corporation, material: Fermentation of non-permeate concentrate (0.5 L) and permeate filtrate (1.0 L) when subjected to filtration treatment in the same manner as in Example 1 with sulfonated polyethersulfone, fractional molecular weight: 600 to 800)
  • NRR-7450 manufactured by Nitto Denko Corporation, material: Fermentation of non-permeate concentrate (0.5 L) and permeate filtrate (1.0 L) when subjected to filtration treatment in the same manner as in Example 1 with sulfonated polyethersulfone, fractional molecular weight: 600 to 800
  • the composition of inhibitors and monosaccharides is shown in Table 22.
  • the sugar solution obtained in Example 6 was found to have a slightly higher concentration of coumaric acid, ferulic acid, and 2,3-dihydrobenzofuran, but the fermentability was better than Comparative Example 5 in terms of xylose consumption rate. This was presumed to be due to the presence of unidentified fermentation inhibitors that do not permeate the ultrafiltration membrane having a molecular weight cut off of 600 to 2,000 in the aqueous sugar solution. Further, according to Example 6, not only the sugar solution on the non-permeation side of the ultrafiltration membrane having a fractional molecular weight of 600 to 2,000 but also the filtrate on the permeation side is filtered through the nanofiltration membrane and / or the reverse osmosis membrane. Thus, the second concentrated sugar solution obtained from the non-permeate side was also found to be a fermentable sugar solution.
  • fermentation inhibitory substances can be efficiently removed from an aqueous sugar solution derived from cellulose-containing biomass, while a purified sugar solution containing monosaccharides such as glucose and xylose can be obtained with high purity and high yield. Since it can manufacture, when this refined sugar liquid is used as a fermentation raw material, the efficiency of fermentation production of various chemical products can be improved.
  • a Sugar solution obtained by filtering dilute sulfuric acid treated sugar aqueous solution with ultrafiltration membrane “NTR-7450” B Sugar solution obtained by diluting sulfuric acid treated sugar aqueous solution with ultrafiltration membrane “SPE1” C Sugar solution obtained by filtering dilute sulfuric acid treated sugar solution with ultrafiltration membrane “GR95Pp” D Sugar solution E obtained by filtering dilute sulfuric acid treated sugar solution with nanofiltration membrane “UTC-60” Sugar solution F obtained by filtering steamed and crushed sugar aqueous solution with ultrafiltration membrane “NTR-7450” Sugar solution G obtained by filtering steamed and crushed sugar aqueous solution with ultrafiltration membrane “SPE1” Sugar solution H obtained by filtering steamed and crushed sugar aqueous solution with ultrafiltration membrane “GR95Pp” Sugar solution I obtained by filtering steamed and crushed sugar aqueous solution with nanofiltration membrane “UTC-60” Filter the heat-treated sugar aqueous solution with a nanofiltration membrane “UTC-60” Concentrated sugar solution J Concentrated sugar solution obtained by filtering the per

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Emergency Medicine (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 セルロース含有バイオマスを加水分解して得られた糖水溶液を分画分子量600~2,000の限外濾過膜を通じて濾過して、透過側に発酵阻害物質を除去し非透過側から糖液を回収することによって、発酵阻害物質量が極めて少ない糖液を製造することができる。

Description

糖液の製造方法
 本発明は、セルロース含有バイオマスから糖液を製造する方法に関する。
 糖を原料とした化学品の発酵生産プロセスは、種々の工業原料生産に利用されている。この発酵原料となる糖として、現在、さとうきび、澱粉、テンサイなどの食用原料に由来するものが工業的に使用されているが、今後の世界人口の増加による食用原料価格の高騰、あるいは食用と競合するという倫理的な側面から、再生可能な非食用資源、すなわちセルロース含有バイオマスより効率的に糖液を製造するプロセス、あるいは得られた糖液を発酵原料として、効率的に工業原料に変換するプロセスの構築が今後の課題となっている。
 バイオマスから糖を得る従来技術としては、濃硫酸を用いて、バイオマス中のセルロースやヘミセルロースをグルコース、キシロースに代表される単糖まで加水分解する方法(特許文献1、2)や、バイオマスの反応性を向上させる前処理を施した後に、酵素反応により加水分解する方法が一般的に知られている(特許文献3、4)。その場合、セルロース含有バイオマスの加水分解においてセルロースあるいはヘミセルロース成分などの分解と同時に、生成したグルコース、キシロースとした糖の分解物反応も進み、フルフラール、ヒドロキシメチルフルフラールなどのフラン化合物、あるいはギ酸、酢酸など有機酸といった副産物も生成するという課題があった。これらの化合物は、微生物を利用した発酵工程で阻害的に作用し、微生物の増殖阻害を引き起こし、発酵産物の収率を低下させるため、発酵阻害物質と呼ばれ、セルロース含有バイオマス由来の糖液を発酵原料として利用する際に大きな課題であった。このような発酵阻害物質を糖液製造過程で除去する方法として、発酵阻害物質をナノ濾過膜や逆浸透膜で除去する方法が知られている(特許文献5)。
特表平11-506934号公報 特開2005-229821号公報 特開2001-95594号公報 特許第3041380号公報 WO2010/067785号
 本発明者は前述のとおりセルロース含有バイオマス由来の糖液に含まれる発酵阻害物質をナノ濾過膜や逆浸透膜で除去した際、発酵阻害物質が全量除去されない場合があることを見出し、その原因としてナノ濾過膜や逆浸透膜では除去しづらい未同定の発酵阻害物質がセルロース含有バイオマス由来の糖液に含まれうることによるものであると推定した。本発明ではセルロース含有バイオマス由来の糖液から従来の方法では除去困難であった発酵阻害物質を除去して発酵阻害物質量が極めて少ない糖液を製造する方法を提供することを課題とする。
 本発明者は、上記課題を鋭意検討した結果、セルロース含有バイオマスから糖液を製造する工程で生じる発酵阻害物質としてクマル酸、フェルラ酸、コニフェリルアルデヒド、2,3-ジヒドロベンゾフランといったと単糖と同等の分子量、または分子量の大きい物質が含まれることを新たに同定するとともに、それらを限外濾過膜によって効率的に除去できることを見出し、本発明を完成した。
 すなわち、本発明は以下の[1]から[6]で構成される。
[1]セルロース含有バイオマスを原料として糖液を製造する方法であって、
工程(1):セルロース含有バイオマスを加水分解し、糖水溶液を製造する工程、
工程(2):工程(1)で得られた糖水溶液を分画分子量600~2,000の限外濾過膜を通じて濾過して、透過側に発酵阻害物質を除去し非透過側から糖液を回収する工程、
を含むことを特徴とする、糖液の製造方法。
[2]前記発酵阻害物質がクマル酸、フェルラ酸および2,3-ジヒドロベンゾフランからなる群から選択される一種または2種以上を含むことを特徴とする、[1]記載の糖液の製造方法。
[3]前記工程(2)において、糖水溶液をpH5以下に調整して濾過することを特徴とする、[1]または[2]記載の糖液の製造方法。
[4]前記工程(2)で使用する限外濾過膜の機能層の材質がポリエーテルスルホンであることを特徴とする、[1]から[3]に記載の糖液の製造方法。
[5]工程(2)で得られた糖液および/または発酵阻害物質を含む透過液をナノ濾過膜および/または逆浸透膜に通じて濾過して、非透過側から濃縮糖液を回収する工程を含むことを特徴とする、[1]から[4]のいずれかに記載の糖液の製造方法。
[6][1]から[5]のいずれかに記載の糖液の製造方法によって得られた糖液を発酵原料として使用することを特徴とする、化学品の製造方法。
 本発明によって、グルコース、キシロースなどの糖を含有する糖液を高純度・高収率で製造することができる。その結果、本発明で得られた精製糖液を発酵原料として使用することで、種々の化学品の発酵生産の効率を向上させることができる。
図1はセルロース含有バイオマスの希硫酸処理により得られる糖水溶液を限外濾過膜またはナノ濾過膜で濃縮した糖液の、グルコース消費速度を指標とした発酵試験結果である。 図2はセルロース含有バイオマスの蒸煮爆砕処理により得られる糖水溶液を限外濾過膜またはナノ濾過膜で濃縮した糖液の、グルコース消費速度を指標とした発酵試験結果である。 図3はセルロース含有バイオマスの水熱処理により得られる糖水溶液を限外濾過膜の透過液を膜濃縮することによってキシロース消費速度を指標とした発酵性が向上した結果である。 図3はセルロース含有バイオマスの希硫酸により得られる硫酸水溶液を限外濾過膜して得た透過液を膜濃縮することによってキシロース消費速度を指標とした発酵性が向上した結果である。
 [工程(1)]
 本発明におけるセルロース含有バイオマスとは、セルロースを5重量%以上含む生物由来の資源を言う。具体的には、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、稲わら、麦わらなどの草本系バイオマス、樹木、廃建材などの木質系バイオマスなどを例として挙げることができる。これらのセルロース含有バイオマスは、芳香族高分子であるリグニン及びセルロース・ヘミセルロースを含有していることから、リグノセルロースとも呼ばれる。セルロース含有バイオマスに含まれる多糖成分であるセルロースやヘミセルロースを加水分解することにより、化学品を製造するための発酵原料として利用可能な単糖を含む糖液、具体的にはキシロースおよびグルコースを主成分とする糖液を得ることができる。
 セルロース含有バイオマスの加水分解処理は、具体的には、化学的処理方法として、高温高圧の希硫酸、亜硫酸塩等で処理する酸処理、水酸化カルシウム、水酸化ナトリウム等のアルカリ性水溶液で処理するアルカリ処理、液体アンモニア又はアンモニアガス又はアンモニア水溶液で処理するアンモニア処理、加圧熱水で処理する水熱処理が挙げられる。また、これらの加水分解処理に加えて糖化酵素による加水分解処理をしてもよい。
 酸処理は、一般に、リグニンを溶解させ、さらにまず結晶性の低いヘミセルロース成分から加水分解が起き、次いで結晶性の高いセルロース成分が分解されるという特徴を有するので、ヘミセルロース由来のキシロースを多く含有する液を得ることが可能である。また、処理回数は特に限定されないが、2段階以上の酸処理工程を設定することで、ヘミセルロース、セルロースに適した加水分解条件を選択的に設定することができ、分解効率及び糖収率を向上させることが可能になる。酸処理において用いる酸は、加水分解を起こすものであれば特に限定はされないが、経済性の観点から硫酸が望ましい。酸の濃度は、好ましくは0.1~100重量%であり、より好ましくは0.5~15重量%である。反応温度は100~300℃の範囲で、反応時間は1秒~60分の範囲で設定することができる。酸処理後の液成分には加水分解で得られたヘミセルロース由来の成分を主成分とする単糖およびそのオリゴ糖が多量に含まれている。特に50%以上、より好ましくは80%以上の濃硫酸で作用させれば、ヘミセルロース・セルロースがともに加水分解され一段で加水分解処理することも可能である。また、酸処理後に糖化酵素によりさらに加水分解する場合、酸処理後に得られる固形分と液成分とを分けてそれぞれ行っても良いし、固形分と液成分とが混合したまま行っても良い。なお、酸処理によって得られる固形分および液成分には用いた酸が含まれているので、糖化酵素による加水分解反応を行うためにはあらかじめ酸処理物を中和することが好ましい。
 アルカリ処理は、アルカリ水溶液、具体的には水酸化物塩(但し、水酸化アンモニウムを除く)の水溶液でセルロース含有バイオマスを反応させる処理方法である。アルカリ処理により、主にセルロース・ヘミセルロースの糖化酵素による反応を阻害するリグニンを除去することができる。使用する水酸化物塩としては、水酸化ナトリウム又は水酸化カルシウムが好ましい。アルカリ水溶液の濃度は、0.1~60重量%の範囲が好ましく、これをセルロース含有バイオマスに添加し、通常100~200℃、好ましくは110~180℃の温度範囲で処理する。処理回数は特に限定されず、1回又は複数回行ってもよい。2回以上行う場合は、各回の処理を異なる条件で実施してもよい。なお、アルカリ処理によって得られた前処理物はアルカリを含むため、さらに糖化酵素による加水分解を行う場合はあらかじめ中和することが好ましい。
 アンモニア処理は、アンモニア水溶液又は100%アンモニア(液体又は気体)をセルロース由来バイオマスと反応させる処理方法であり、例えば、特開2008-161125又は特開2008-535664に記載の方法を用いることができる。アンモニア処理では、アンモニアがセルロース成分と反応することにより、セルロースの結晶性が崩れることにより、糖化酵素との反応効率が大幅に向上すると言われている。通常、セルロース含有バイオマスに対して0.1~15重量%の範囲の濃度となるようにセルロース含有バイオマスにアンモニアを添加し、4~200℃、好ましくは60~150℃で処理する。処理回数は特に限定されず、1回又は複数回行ってもよい。なお、アンモニア処理によって得られた前処理物をさらに糖化酵素による加水分解反応を行う場合は、あらかじめアンモニアの中和又はアンモニアの除去を行うことが好ましい。
 水熱処理は、セルロース含有バイオマスを100~400℃の加圧熱水で、1秒~60分処理する方法である。通常、処理後の25℃の常温で水に不溶であるセルロース含有バイオマスが、セルロース含有バイオマスと水の合計総重量に対して0.1~50重量%の濃度になるように行われる。圧力は処理温度に依存されるため特に限定されないが、好ましくは0.01~10MPaである。なお、水熱処理では加圧熱水の温度により熱水への溶出成分が異なる。一般に、加圧熱水の温度を上昇させていくと、セルロース含有バイオマスからは最初にタンニン、リグニンの第1グループが流出し、次に140~150℃以上でヘミセルロースの第2グループが流出し、更に約230℃を越えるとセルロースの第3グループが流出する。また、流出と同時にヘミセルロース、セルロースの加水分解反応が起こることもある。加圧熱水の温度による流出成分の違いを利用して、セルロース、ヘミセルロースに対する糖化酵素の反応効率を向上させるために処理温度を変えて多段階の処理をしてもよい。ここで、水熱処理によって得られる画分のうち、加圧熱水へ溶出した成分を含む水溶物を熱水可溶分、熱水可溶分を除いたものを熱水不溶分という。
 熱水不溶分は、多くのリグニンとヘミセルロース成分が溶出された結果得られる、主に二糖以上のセルロース(C6)成分を含んだ固形分である。主成分のセルロースにほか、ヘミセルロース成分、リグニン成分が含まれることもある。これらの含有比率は、水熱処理の加圧熱水の温度や処理バイオマスの種類によって変化する。熱水不溶分の含水率は10%から90%、より好ましくは20%から80%である。
 熱水可溶分は液体状態又はスラリー状態である加圧熱水に溶出したヘミセルロース、リグニン、タンニン、一部のセルロース成分を含む水溶物であり、液体状態又はスラリー状態である。熱水可溶分には加水分解した多糖、オリゴ糖、単糖を多く含んでいる。これらをそのまま、または糖化酵素によりさらに加水分解して糖水溶液として利用することが可能である。
 また、前記加水分解処理方法の前に、カッターミルや、ハンマーミルなどを用いて機械的に繊維を切断する粉砕処理、ボールミル、ジェットミルなどを利用した微粉砕処理、グラインダーを利用した湿式処理、メカノケミカル処理、水蒸気によって短時間蒸煮し、瞬時に圧力を開放して体積膨張により粉砕する蒸煮爆砕処理などの前処理を実施してもよい。粉砕されることによってセルロース・ヘミセルロースの露出面積が増えて糖化酵素による加水分解反応の効率が高まるからである。
 糖化酵素は、セルロースまたはヘミセルロース分解活性を有する酵素であれば特に制限はないが、トリコデルマ属に属する糸状菌が産生する糖化酵素が好適である。トリコデルマ属糸状菌は細胞外に多種の糖化酵素に分泌する微生物であり、好ましくは、トリコデルマ・リーセイ(Trichoderma reesei)由来の糖化酵素である。また、セルロースまたはヘミセルロース分解活性を有する酵素の他に、セルロース又はヘミセルロースの分解を補助する酵素を含んだものも好適である。セルロース又はヘミセルロースの分解を補助する酵素としては、セルビオハイドロラーゼ、エンドグルカナーゼ、エキソグルカナーゼ、βグルコシダーゼ、キシラナーゼ、キシロシダーゼ、バイオマス膨潤酵素などを例示することができる。糖化酵素を使用した加水分解反応は、pHが3~7の付近で行うことが好ましく、より好ましくはpH5付近である。反応温度は、40~70℃であることが好ましい。また酵素による加水分解終了時に固液分離を行い、未分解の固形分を除去することが好ましい。固形分除去の方法としては、遠心分離法、膜分離法などがあるが特に限定されない。またこうした固液分離を複数種組み合わせて使用してもよい。
 工程(1)で得られる糖水溶液は、工程(2)における限外濾過膜の目詰まりやファウリングを防ぐために、工程(2)に供する前に固形分やオリゴ糖、多糖、タンニン、糖化酵素、バイオマス由来のタンパク質成分などの水溶性高分子を除去しておくことが好ましい。これらの成分の除去方法には特に制限はないが、好ましい除去方法として、糖水溶液を精密濾過膜および/または分画分子量が2,000よりも大きい限外濾過膜に通じて濾過して、非透過側に固形分や水溶性高分子を濾別する方法が挙げられる。を除去することが好ましい。濾過の方法としては、圧濾過、真空濾過、遠心濾過などがあるが特に限定されるものではない。また濾過操作として、定圧濾過、定流量濾過、非定圧非定流量濾過に大別されるが特に限定されない。また濾過操作としては、固形分を効率的に除去するために、精密濾過膜あるいは分画分子量が2,000よりも大きい限外濾過膜を2回以上使用する多段的な濾過でもよい。
 精密濾過膜とは、平均細孔径が0.01μm~5mmである膜のことであり、マイクロフィルトレーション膜、MF膜などと略称されるものであって、糖水溶液に含まれる固形分を除去する際に好ましく用いられる。ここで使用される精密濾過膜は無機膜でも有機膜であっても良く、セルロース、セルロースエステル、ポリスルホン、ポリエーテルスルホン、塩素化ポリエチレン、ポリプロピレン、ポリオレフィン、ポリビニルアルコール、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ4フッ化エチレン等の有機材料、あるいはステンレス等の金属、あるいはセラミック等無機材料が挙げられる。
 限外濾過膜とは、後述の工程(2)において詳述されるものであって、分画分子量が2,000より大きい限外濾過膜を使用することによって、糖水溶液に含まれる水溶性高分子、特に糖化酵素を除去する際に好ましく用いられる。
 [工程(2)]
 工程(1)においてセルロース含有バイオマスを加水分解した場合、糖の他に発酵阻害物質が生成することが知られている。発酵阻害物質とは、セルロース含有バイオマスの加水分解で生成する化合物であって、糖液を原料とする化学品を製造するための発酵工程において、化学品の生産量、蓄積量、あるいは生産速度の低下現象を引き起こす作用を有する物質のことを指す。発酵阻害物質による発酵阻害の程度は、糖水溶液中に存在する発酵阻害物質の種類、およびこれらの量により微生物の受ける阻害の程度も異なり、また使用する微生物種、あるいはその生産物である化学品の種類によってもその阻害の程度は異なっているため、本発明においては特段限定されるものではない。
 これまでに、酢酸、ギ酸などの有機酸、フルフラール、ヒドロキシメチルフルフラール(HMF)などのフラン系化合物、バニリン、4-ヒドロキシ安息香酸などのフェノール系化合物が発酵阻害物質として知られていたが、本発明者は、これまで知られていた発酵阻害物質の他に、クマル酸、フェルラ酸、2,3-ジヒドロベンゾフランなどが発酵阻害物質となることを見出した。そして工程(2)では、工程(1)で得られた糖水溶液を特定の分画分子量の限外濾過膜に通じて濾過することによって、透過側に発酵阻害物質を除去し、非透過側から糖液を回収することを特徴とする。
 本明細書にいう限外濾過膜とは、分画分子量が600~200,000となる分離膜のことであり、ウルトラフィルトレーション膜、UF膜などと略称されるものである。また、分画分子量とは、日本膜学会編 膜学実験シリーズ 第III巻 人工膜編 編集委員/木村尚史・中尾真一・大矢晴彦・仲川勤(共立出版、1993年)92頁に、『溶質の分子量を横軸に、阻止率を縦軸にとってデータをプロットしたものを分画分子量曲線とよんでいる。そして阻止率が90%となる分子量を膜の分画分子量とよんでいる。』とあるように、限外濾過膜の膜性能を表す指標として当業者には周知のものである。なお、分離膜の技術分野では、分画分子量が600~1,000の範囲の分離膜はナノ濾過膜と限外濾過膜の境界領域であると認識されているため、文献によっては、分画分子量600~1,000の範囲にある分離膜をナノ濾過膜と呼ぶ場合もあれば、限外濾過膜と呼ぶ場合もある。本明細書では、分画分子量が600~200,000の範囲にある分離膜を限外濾過膜と呼び、分画分子量が600未満のものでかつ、「一価のイオンは透過し、二価のイオンを阻止する膜」と一般に定義される膜に当てはまるものをナノ濾過膜と呼ぶこととする。
 本発明では、分画分子量600~2,000の限外濾過膜を使用することを特徴とする。分画分子量が2,000より大きい限外濾過膜では糖の大部分と発酵阻害物質がともに透過側に抜けてしまい、また、分画分子量が600未満の膜であると新たに同定した発酵阻害物質であるクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランの透過側への除去性能が落ちるため、好ましくない。
 限外濾過膜の材質は、特に限定されるものではないが、セルロース、セルロースエステル、ポリスルホン、スルホン化ポリスルホン、ポリエーテルスルホン、スルホン化ポリエーテルスルホン、塩素化ポリエチレン、ポリプロピレン、ポリオレフィン、ポリビニルアルコール、ポリメチルメタクリレート、ポリフッ化ビニリデン、ポリ4フッ化エチレン等の有機材料、ステンレス等の金属、又はセラミック等無機材料が挙げられる。中でも疎水性物質の除去性から有機性の膜が好ましい。中でもポリエーテルスルホンが好ましい。ポリエーテルスルホンの膜が所望の糖と発酵阻害物質との分離性能が良いことが判明したからである。さらに好ましくはスルホン化ポリエーテルスルホンである。糖の阻止率がスルホン化されていない場合に比べて高まるからである。
 使用する限外濾過膜の形態は特に限定されるものではなく、スパイラル型、中空糸型、チューブラー型、平膜型のいずれであってもよい。
 本発明で使用される限外濾過膜の具体例としては、DESAL社のG-5タイプ、GHタイプ、GKタイプ、Synder社のSPE1、KOCH社製のPM1000、PM2000、MPS-36、SR2、アルファラバル製GR95Pp、ETNA01PP、日東電工株式会社製のNTR-7450(分画分子量600~800、WaterResearch 37(2003) 864-872参照。)、NTR-7410(分画分子量1,000~2,000、衛生工学シンポジウム論文集,5:246-251(1997)参照。)などが挙げられる。
 前記限外濾過膜の濾過処理における濾過圧は糖水溶液の濃度にも依存するが、0.1MPa以上8MPa以下の範囲であることが好ましい。濾過圧が0.1MPaより低ければ膜透過速度が低下し、8MPaより高ければ膜の損傷に影響を与えるおそれがある。また、0.5MPa以上6MPa以下であれば膜透過流束が高いことから、糖溶液を効率的に透過させることができるため、より好ましい。
 前記限外濾過膜の濾過処理における膜透過流束は0.2m/D以上4.0m/D以下が好ましい。0.2m/D以下であると、限外濾過膜での濃縮が行えず2.0m/D以下であると、膜のファウリングが顕著になるからである。また、0.5m/D以上2.0m/D以上であれば、限外濾過膜による濾過が行いやすくなるため、より好ましい。
 前記限外濾過膜の濾過処理における糖水溶液のpHは特に限定はされないが、発酵阻害物質の透過性の観点からpH5以下が好ましく、pH4以下がより好ましい。なお、pHが1以下であるとpH調整時の酸が大量に必要になるため、経済性の見地からpHの下限値を1とすることが好ましい。糖水溶液のpH調整は、特に発酵阻害物質としてクマル酸やフェルラ酸といった芳香族化合物でかつカルボン酸基を有する物質が含まれる場合に効果が顕著である。
 前記限外濾過膜の濾過処理の非透過側から回収される糖液は、後述の発酵工程の原料としてそのまま用いてもよく、また、該糖液をさらにWO2010/067785号に記載されるナノ濾過膜および/または逆浸透膜による濾過処理に供して非透過側に糖を濃縮した後、該濃縮糖液を後述の発酵工程の原料として用いてもよい。
 また、前記限外濾過膜の濾過処理では糖が透過側に一部損失する場合があるが、その場合、透過側から回収される発酵阻害物質を含む透過液をWO2010/067785号に記載されるナノ濾過膜および/または逆浸透膜による濾過処理に供することによって、非透過側から濃縮糖液を回収することできる。本工程によって得られた濃縮糖液についても、後述の発酵工程の原料として用いられる。なお、ナノ濾過膜および/または逆浸透膜による濾過処理によって得られた濃縮糖液についても、あらかじめ分画分子量が600~2,000の限外濾過膜で濾過処理した場合は、濾過処理していない場合や分画分子量が2,000を上回る限外濾過膜で濾過処理した場合に比べて後述の発酵工程での発酵性能が向上する傾向が確認されている。これは、セルロース含有バイオマス由来の糖水溶液には分子量2,000近傍の未知の発酵阻害物質が微量含まれ、それがナノ濾過膜や逆浸透膜によって濃縮されるためであると考えられる。
 [発酵工程]
 工程(2)で得られた糖液は化学品を代謝産物として製造しうる微生物あるいは培養細胞の生育のための炭素源であるグルコースおよび/またはキシロースを含んでおり、一方で、クマル酸、フェルラ酸、2,3-ジヒドロベンゾフランなどの発酵阻害物質の含量が極めて少ないために、化学品を製造するための発酵原料、特に炭素源として有効に使用することが可能である。発酵工程は、WO2010/067785号に記載される発酵工程に準じて実施することができる。
 発酵工程により得られる化学品としては、上記微生物や培養細胞が培養液中に生産する物質であれば制限はなく、具体例としては、アルコール、有機酸、アミノ酸、核酸など発酵工業において大量生産されている物質を挙げることができる。例えば、アルコールとしては、エタノール、ブタノール、1,3-プロパンジオール、2,3-ブタンジオール、1,4-ブタンジオール、グリセロールなど、有機酸としては、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸、核酸であれば、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、またカダベリンなどのジアミン化合物を挙げることができる。また、本発明は、酵素、抗生物質、組換えタンパク質のような物質の生産に適用することも可能である。
 (参考例1)単糖濃度の測定方法
 各実施例、比較例において得られた糖液に含まれる単糖濃度(グルコース濃度、キシロース濃度)は、以下に示す条件でHPLCにより分析し、標品との比較により定量した。
カラム:Luna NH(Phenomenex社製)
移動相:超純水:アセトニトリル=25:75(流速0.6mL/min)
反応液:なし
検出方法:RI(示差屈折率)
温度:30℃。
 (参考例2)発酵阻害物質の濃度の測定方法
 糖液に含まれる発酵阻害物質のうち、フラン系発酵阻害物質(HMF、フルフラール)及びフェノール系発酵阻害物質(クマル酸、フェルラ酸、2,3-ジヒドロベンゾフラン)の濃度は、以下に示す条件でHPLCにより分析し、標品との比較により定量した。
カラム:Synergi HidroRP 4.6mm×250mm(Phenomenex社製)
移動相:アセトニトリル-0.1重量%HPO(流速1.0mL/min)
検出方法:UV(283nm)
温度:40℃。
 糖液に含まれる発酵阻害物質のうち、有機酸(酢酸、ギ酸)は、以下に示す条件でHPLCにより分析し、標品との比較により定量した。
カラム:Shim-Pack SPR-HとShim-Pack SCR101H(株式会社島津製作所製)の直列
移動相:5mM p-トルエンスルホン酸(流速0.8mL/min)
反応液:5mM p-トルエンスルホン酸、20mM ビストリス、0.1mM EDTA・2Na(流速0.8mL/min)
検出方法:電気伝導度
温度:45℃。
 (参考例3)セルロース含有バイオマスの希硫酸処理・酵素処理による加水分解工程
 セルロース含有バイオマスとして、稲藁を使用した。前記セルロース含有バイオマスを硫酸1%水溶液に浸し、150℃で30分オートクレーブ処理(日東高圧製)した。処理後、固液分離を行い、硫酸水溶液と硫酸処理セルロースに分離した。次に硫酸処理セルロースと固形分濃度が10重量%となるように希硫酸処理液と攪拌混合した後、水酸化ナトリウムによって、pHを5付近に調整した。この混合液に、糖化酵素としてトリコデルマ・リーセイ由来の糖化酵素である“アクセルレースデュエット”(ダニスコ・ジャパン株式会社製)を添加し、50℃で1日間攪拌混同しながら、加水分解反応を行った。その後、遠心分離(3000G)を行い、未分解セルロースあるいはリグニンを分離除去し、希硫酸処理糖水溶液を得た。さらに希硫酸処理糖水溶液に含まれる発酵阻害物質および単糖の組成はそれぞれ表1~3の通りであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 (参考例4)セルロース含有バイオマスの蒸煮爆砕処理・酵素処理による加水分解工程
 セルロース含有バイオマスとして、稲藁を使用した。前記セルロース含有バイオマス100gを2L蒸煮爆砕試験機(日本電熱株式会社製)に投入して蒸気を投入し、2.5MPaで2.5分間保持して容器内を一気に大気開放し、爆砕処理を行いサンプルを回収した。この時の容器内の温度は225℃であった。この時の処理物の含水率は84.4%であった。固形分濃度が10重量%となるように水を加えpHを1規定の水酸化ナトリウム水溶液を添加してpHを5.0に調整し、糖化酵素として“アクセルレースデュエット”を添加して50℃に保持し攪拌し1日反応させた。得られた糖水溶液の組成を表4~6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 (参考例5)セルロース含有バイオマスのアンモニア処理・酵素処理による加水分解工程
 セルロース含有バイオマスとして、稲藁を使用した。前記セルロース含有バイオマスを小型反応器(耐圧硝子工業製、TVS-N2 30ml)に投入し、液体窒素で冷却した。この反応器に濃度100%のアンモニアガスを流入し、試料を完全に100%の液体アンモニアに浸漬させた。リアクターの蓋を閉め、室温で15分ほど放置した。次いで、150℃のオイルバス中にて1時間処理した。処理後、反応器をオイルバスから取り出し、ドラフト中で直ちに前記アンモニアガスをリーク後、さらに真空ポンプで反応器内を10Paまで真空引きし前記セルロース含有バイオマスを乾燥させた。この処理セルロース含有バイオマスと固形分濃度が15重量%となるように純水を攪拌混合した後、硫酸によって、pHを5付近に調整した。この混合液に、糖化酵素として“アクセルレースデュエット”を添加し、50℃で3日間攪拌混同しながら、加水分解反応を行った。その後、遠心分離(3000G)を行い、未分解セルロースあるいはリグニンを分離除去した糖水溶液を得た。さらに糖水溶液に含まれる発酵阻害物質および単糖の組成は表7~9の通りであった。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 (参考例6)セルロース含有バイオマスの水熱処理・酵素処理による加水分解工程
 セルロース含有バイオマスとして、稲藁を使用した。前記セルロース含有バイオマスを水に浸し、撹拌しながら180℃で20分間オートクレーブ処理(日東高圧株式会社製)した。その際の圧力は10MPaであった。処理後は溶液成分と処理バイオマス成分に遠心分離(3000G)を用いて固液分離した。溶液成分のpHは4.0であった。次に溶液成分を水酸化ナトリウムを用いてpH5.0に調整し、糖化酵素として“アクセルレースデュエット”を添加し、50℃で1日間攪拌混同しながら、加水分解反応を行って水熱処理液を得た。さらに水熱処理液に含まれる発酵阻害物質および単糖の組成は表10~12の通りであった。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 (参考例7)発酵の評価方法
 酵母株(ピキア・スティピティス、NBRC1687)を用いて発酵試験を行った。グルコース濃度が25g/Lになるよう希釈した後、表13の組成になるように添加物を加えて培地を調製し、フィルター滅菌(ミリポア、ステリカップ0.22μm)したものを発酵に用いた。培養条件は、植菌量は0.5%で、28℃条件下で150rpmでフラスコを振って72時間培養した。発酵阻害性は酵母株のグルコースの消費速度で評価した。酵母株のグルコースの消費速度の評価方法としては、培養開始から16、24、40、48、64、72時間の時点で培地成分をクリーンベンチ内で滅菌状態で取り出し、その培地を遠心分離した後、フィルターをかけて参考例1記載のHPLC分析によりグルコース濃度の定量を行った。
Figure JPOXMLDOC01-appb-T000013
 (実施例1)
 参考例3記載の希硫酸処理糖水溶液を孔径0.08μmの精密ろ過膜を用いて濾過を行い、精密ろ過膜の透過液について限外濾過膜による濾過処理を行った。使用した限外濾過膜は、“NTR-7450”(日東電工株式会社製、材質:スルホン化ポリエーテルスルホン、分画分子量:600~800)、“NTR-7410”(日東電工株式会社製、材質:スルホン化ポリエーテルスルホン、分画分子量:1,000)、“SPE1”(Synder製、材質:ポリエーテルスルホン、分画分子量:1,000)、GEオスモニクス製のGHシリーズ(材質:ポリエチレングリコール、分画分子量:1,000)、 “GR95Pp”(アルファラバル製、材質:ポリエーテルスルホン、分画分子量:2,000)、GE製のGKシリーズ(材質:ポリエチレングリコール、材質:2,000)を使用した。それぞれの膜について希硫酸糖化液の精密ろ過膜の透過液を1.5Lそれぞれ用意し、平膜濾過ユニット“SEPA-II”(GEオスモニクス製)を用いて、膜面線速度20cm/秒、濾加圧3MPaの条件下で非透過側から回収される液量が0.5Lになるまで濾過処理を行った。結果を表14に示す。その結果、限外濾過膜処理で単糖は濃縮されるが、低分子性のギ酸、酢酸、HMF、フルフラールが濃縮されないだけでなく、クマル酸、フェルラ酸、2,3-ジヒドロベンゾフランもほぼ濃縮されないことが判明した。また、限外濾過膜の非透過液側から回収される糖液の中からいくつかピックアップし(A~C)、参考例7の条件で発酵試験を行った。結果を図1に示す。
 (比較例1)
 実施例1と同様の濾過処理を実施例1よりも分画分子量の高い限外濾過膜である“SPE3”(Synder製、材質:ポリエーテルスルホン、分画分子量:3,000)、ナノ濾過膜である“UTC-60”(東レ株式会社製、材質:ピペラジンポリアミド)、HLシリーズ(GEオスモニクス製、材質:複合膜)、DKシリーズ(GEオスモニクス製、材質:複合膜)を用いて濾過試験を行った。結果を表14に示す。分画分子量3,000の限外濾過膜を用いた場合、極端に単糖の濃縮率が悪化することが判明した。また、ナノ濾過膜について濃縮を行ったところ、濃縮液の濃度に若干の差異はあるがクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランは濃縮され、発酵試験(D)においても実施例1の限外濾過膜を用いた場合(A~C)と比べてグルコース消費速度が遅かった。
Figure JPOXMLDOC01-appb-T000014
 (実施例2)
 参考例4記載の蒸煮爆砕処理糖水溶液の精密ろ過膜の透過液について実施例1と同様の濾過処理を実施した。結果を表15に示す。さらに参考例7の方法で行った発酵結果(E~G)を図2に示す。
 (比較例2)
 比較例1と同じ膜を使用して蒸煮爆砕処理糖化液の精密ろ過膜の透過液について濾過処理を行った。液組成の結果を表15に、発酵試験の結果を図2に記載する。実施例1と比較例1の比較結果と同様、分画分子量3,000の限外濾過膜を用いた場合、極端に単糖の濃縮率が悪化し、また、ナノ濾過膜を用いた場合、濃縮液の濃度に若干の差異はあるがクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランは濃縮され、発酵試験(H)においても実施例2の限外濾過膜を用いた場合と比べてグルコース消費速度が遅かった。
Figure JPOXMLDOC01-appb-T000015
 (実施例3)
 参考例5記載のアンモニア処理糖水溶液の精密ろ過膜の透過液について実施例1と同様の濃縮試験を実施した。結果を表16に示す。
 (比較例3)
 比較例1と同じ膜を使用してアンモニア処理糖水溶液の精密ろ過膜の透過液の濾過処理を行った。液組成の結果を表16に記載する。実施例1と比較例1の比較結果と同様、分画分子量3,000の限外濾過膜を用いた場合、極端に単糖の濃縮率が悪化し、また、ナノ濾過膜を用いた場合、濃縮液の濃度に若干の差異はあるがクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランは濃縮された。
Figure JPOXMLDOC01-appb-T000016
 (実施例4)
 参考例6で調製した水熱処理糖水溶液を限外濾過膜“NTR-7450”または“NTR-7410”で濾過処理する前に、第二の限外濾過膜として、分画分子量:10,000の限外濾過膜(アプライドメンブレイン製、材質:ポリエーテルスルホン)を用いて濾過処理する場合としない場合を比較した。結果を表17に示す。第二の限外濾過膜処理を実施した場合、“NTR-7450”または“NTR-7410”で限外濾過膜処理する際の膜透過流束(処理時間中で平均化した)が大幅に増加し、さらに非透過側の単糖の濃縮倍率が改善することが判明した。
Figure JPOXMLDOC01-appb-T000017
 (実施例5)
 参考例6で調製した水熱処理糖水溶液の精密ろ過膜透過液1.5Lを限外濾過膜“NTR-7410”(日東電工株式会社製、材質:スルホン化ポリエーテルスルホン、分画分子量:1,000)にて実施例1と同様に濾過処理した際の非透過側の濃縮液(0.5L)および透過側の濾液(1.0L)の発酵阻害物質と単糖の組成を表18に示す。そして、この濾液をナノ濾過膜“UTC-60”(東レ株式会社製、材質:ピペラジンポリアミド)で濾過処理して非透過側の濃縮液(0.33L)の発酵阻害物質と単糖の組成を表19に示す。この濃縮液を、表20の組成になるよう、試薬を添加して調製し、参考例7と同等の発酵試験を行い、キシロース消費速度を測定した結果を図3に示す(図3のJ参照。)。
 (比較例4)
 参考例6で調製した水熱処理糖水溶液の精密ろ過膜透過液1.5Lをナノ濾過膜“UTC-60”で濾過処理した非透過側の濃縮液0.75Lの発酵阻害物質と単糖の組成を表19に示す。これを実施例5と同様に表20の組成になるよう試薬を添加して調製し、発酵試験に供した結果(キシロース消費速度)を図3に示す(図3のJ参照。)。
 実施例5で得られる糖液はクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランの濃度が少し濃いが、キシロース消費速度において比較例4よりも発酵性が良いことが判明した。これは、糖水溶液中には分画分子量が600~2,000の限外濾過膜を透過しない未同定の発酵阻害物質が存在するためであると推定された。また、実施例5により、分画分子量が600~2,000の限外濾過膜の非透過側の糖液だけでなく、透過側の濾液をナノ濾過膜および/または逆浸透膜に通じて濾過して非透過側から得られる第二の濃縮糖液も発酵性の良い糖液であることが判明した。
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
 (参考例8)糖水溶液pHによる発酵阻害物質除去性能の評価
 参考例6記載の水熱処理液のpHを調整して、糖水溶液中の発酵阻害物質の限外濾過膜による透過率を比較・検討した。発酵阻害物質の透過率とは、各成分の濾液側の濃度を膜処理時の非透過側の濃度で割った値に100をかけた値を割合(%)として示した。水熱処理液に希硫酸または水酸化ナトリウムを添加した後、沈殿が発生するため遠心処理さらに精密ろ過膜処理を行った後、平膜濾過ユニット“SEPA-II”(GEオスモニクス製)に限外濾過膜“NTR-7410”(日東電工株式会社製、材質:スルホン化ポリエーテルスルホン、分画分子量:1,000)をセットし、膜面線速度20cm/秒、濾加圧2MPaの条件下で濾過処理した。なお、濾液側の濃度は安定するのに時間がかかるため、20分間濾液の液を原水側に戻し、20分経過後の安定した濾液をサンプリングし、透過率を求めた結果、表21のように、pHを5以下に調整することによって、クマル酸、フェルラ酸の芳香族とカルボン酸の両方を有する発酵阻害物の除去性能が大幅に向上することを見出した。
Figure JPOXMLDOC01-appb-T000021
 (実施例6)
 参考例3で得られた硫酸水溶液をpH4.0になるようアンモニアで中和し精密ろ過膜処理した透過液1.5Lを限外濾過膜“NTR-7450”(日東電工株式会社製、材質:スルホン化ポリエーテルスルホン、分画分子量:600~800)にて実施例1と同様に濾過処理した際の非透過側の濃縮液(0.5L)および透過側の濾液(1.0L)の発酵阻害物質と単糖の組成を表22に示す。そして、この濾液をナノ濾過膜“UTC-60”(東レ株式会社製、材質:ピペラジンポリアミド)で濾過処理して非透過側の濃縮液(0.33L)の発酵阻害物質と単糖の組成を表23に示す。この濃縮液を、表24の組成になるようになるよう、試薬を添加して調製し、参考例7と同等の発酵試験を行い、キシロース消費速度を測定した結果を図4に示す(図4のL参照。)。
 (比較例5)
 参考例3で得られた硫酸水溶液をpH4.0になるようアンモニアで中和し精密ろ過膜処理した透過液1.5Lをナノ濾過膜“UTC-60”で濾過処理した非透過側の濃縮液0.75Lの発酵阻害物質と単糖の組成を表22に示す。これを実施例6と同様に表24の組成になるよう試薬を添加して調製し、発酵試験に供した結果(キシロース消費速度)を図4に示す(図4のK参照。)。
 実施例6で得られる糖液はクマル酸、フェルラ酸、2,3-ジヒドロベンゾフランの濃度が少し濃いが、キシロース消費速度において比較例5よりも発酵性が良いことが判明した。これは、糖水溶液中には分画分子量が600~2,000の限外濾過膜を透過しない未同定の発酵阻害物質が存在するためであると推定された。また、実施例6により、分画分子量が600~2,000の限外濾過膜の非透過側の糖液だけでなく、透過側の濾液をナノ濾過膜および/または逆浸透膜に通じて濾過して非透過側から得られる第二の濃縮糖液も発酵性の良い糖液であることが判明した。
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
 本発明によって、セルロース含有バイオマスに由来する糖水溶液から発酵阻害物質を効率的に除去することが可能であり、一方でグルコース、キシロースなどの単糖を含む精製糖液を高純度・高収率で製造することができるため、該精製糖液を発酵原料とした場合、種々の化学品の発酵生産の効率を向上させることができる。
A 希硫酸処理糖水溶液を限外濾過膜“NTR-7450”で濾過処理して得られた糖液
B 希硫酸処理糖水溶液を限外濾過膜“SPE1”で濾過処理して得られた糖液
C 希硫酸処理糖水溶液を限外濾過膜“GR95Pp”で濾過処理して得られた糖液
D 希硫酸処理糖水溶液をナノ濾過膜“UTC-60”で濾過処理して得られた糖液
E 蒸煮爆砕処理糖水溶液を限外濾過膜“NTR-7450”で濾過処理して得られた糖液
F 蒸煮爆砕処理糖水溶液を限外濾過膜“SPE1”で濾過処理して得られた糖液
G 蒸煮爆砕処理糖水溶液を限外濾過膜“GR95Pp”で濾過処理して得られた糖液
H 蒸煮爆砕処理糖水溶液をナノ濾過膜“UTC-60”で濾過処理して得られた糖液
I 水熱処理糖水溶液をナノ濾過膜“UTC-60”で濾過処理して得られた濃縮糖液
J 水熱処理糖水溶液を限外濾過膜“NTR-7410”で濾過処理して得られた透過液をナノ濾過膜“UTC-60”で濾過処理して得られた濃縮糖液
K 硫酸水溶液をナノ濾過膜“UTC-60”で濾過処理して得られた濃縮糖液
L 硫酸水溶液を限外濾過膜“NTR-7450”で濾過処理して得られた透過液をナノ濾過膜“UTC-60”で濾過処理して得られた濃縮糖液

Claims (6)

  1.  セルロース含有バイオマスを原料として糖液を製造する方法であって、
    工程(1):セルロース含有バイオマスを加水分解し、糖水溶液を製造する工程、
    工程(2):工程(1)で得られた糖水溶液を分画分子量600~2,000の限外濾過膜を通じて濾過して、透過側に発酵阻害物質を除去し非透過側から糖液を回収する工程、
    を含むことを特徴とする、糖液の製造方法。
  2.  前記発酵阻害物質がクマル酸、フェルラ酸および2,3-ジヒドロベンゾフランからなる群から選択される一種または2種以上を含むことを特徴とする、請求項1記載の糖液の製造方法。
  3.  前記工程(2)において、糖水溶液をpH5以下に調整して濾過することを特徴とする、請求項1または2記載の糖液の製造方法。
  4.  前記工程(2)で使用する限外濾過膜の機能層の材質がポリエーテルスルホンであることを特徴とする、請求項1から3に記載の糖液の製造方法。
  5.  工程(2)で得られた糖液および/または発酵阻害物質を含む透過液をナノ濾過膜および/または逆浸透膜に通じて濾過して、非透過側から濃縮糖液を回収する工程を含むことを特徴とする、請求項1から4のいずれかに記載の糖液の製造方法。
  6.  請求項1から5のいずれかに記載の糖液の製造方法によって得られた糖液を発酵原料として使用することを特徴とする、化学品の製造方法。
PCT/JP2012/069137 2011-07-29 2012-07-27 糖液の製造方法 WO2013018694A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
ES12820603.4T ES2567325T3 (es) 2011-07-29 2012-07-27 Procedimiento para la fabricación de una solución de azúcar
EP12820603.4A EP2749656B1 (en) 2011-07-29 2012-07-27 Method of manufacturing sugar solution
JP2012538527A JP6007791B2 (ja) 2011-07-29 2012-07-27 糖液の製造方法
RU2014107687/13A RU2597199C2 (ru) 2011-07-29 2012-07-27 Способ производства раствора сахара
US14/235,943 US9163294B2 (en) 2011-07-29 2012-07-27 Method of manufacturing sugar solution
CA2842151A CA2842151C (en) 2011-07-29 2012-07-27 Method of manufacturing sugar solution
AU2012291169A AU2012291169B9 (en) 2011-07-29 2012-07-27 Method of manufacturing sugar solution
BR112014002091A BR112014002091A2 (pt) 2011-07-29 2012-07-27 método de produção de um líquido de açucar utilizando uma biomassa contendo celulose como matéria prima e método de produção de um produto químico
CN201280036546.1A CN103717759B (zh) 2011-07-29 2012-07-27 糖液的制造方法
DK12820603.4T DK2749656T3 (en) 2011-07-29 2012-07-27 Process for preparing sugar solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011167542 2011-07-29
JP2011-167542 2011-07-29

Publications (1)

Publication Number Publication Date
WO2013018694A1 true WO2013018694A1 (ja) 2013-02-07

Family

ID=47629218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/069137 WO2013018694A1 (ja) 2011-07-29 2012-07-27 糖液の製造方法

Country Status (12)

Country Link
US (1) US9163294B2 (ja)
EP (1) EP2749656B1 (ja)
JP (1) JP6007791B2 (ja)
CN (1) CN103717759B (ja)
AU (1) AU2012291169B9 (ja)
BR (1) BR112014002091A2 (ja)
CA (1) CA2842151C (ja)
DK (1) DK2749656T3 (ja)
ES (1) ES2567325T3 (ja)
MY (1) MY166315A (ja)
RU (1) RU2597199C2 (ja)
WO (1) WO2013018694A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024989A1 (ja) * 2012-08-10 2014-02-13 東レ株式会社 クマルアミドの製造方法
WO2014103185A1 (ja) * 2012-12-28 2014-07-03 川崎重工業株式会社 濃縮糖化液製造方法
JP2016520093A (ja) * 2013-05-21 2016-07-11 ローディア オペレーションズ 前処理ありのフェルラ酸の最適化抽出方法
WO2017110975A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 キシロオリゴ糖組成物の製造方法
WO2017142000A1 (ja) 2016-02-17 2017-08-24 東レ株式会社 糖アルコールの製造方法
WO2017154955A1 (ja) 2016-03-09 2017-09-14 東レ株式会社 グルコース組成物、微生物発酵原料および化学品の製造方法
JP2020146628A (ja) * 2019-03-13 2020-09-17 三井製糖株式会社 バガスの分解抽出物の製造方法、バガスの分解抽出物の脱色方法、及びバガスの分解抽出物

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170030572A (ko) * 2014-07-21 2017-03-17 질레코 인코포레이티드 바이오매스의 가공처리
WO2016207144A1 (en) * 2015-06-22 2016-12-29 Dsm Ip Assets B.V. Process for enzymatic hydrolysis of lignocellulosic material and fermentation of sugars
US10976155B2 (en) 2016-09-27 2021-04-13 Intuitive Surgical Operations, Inc. Micro optic assemblies and optical interrogation systems
CA3170437A1 (en) * 2020-03-03 2021-09-10 Robert C. CASAD High solids alkaline oxidation and biomethane conversion of residual lignin

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506934A (ja) 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド 強酸加水分解法
JP3041380B2 (ja) 1997-06-02 2000-05-15 工業技術院長 水溶性オリゴ糖類及び単糖類の製造方法
JP2001095594A (ja) 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd グルコース及びセロオリゴ糖の製造方法
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
JP2008161125A (ja) 2006-12-28 2008-07-17 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
JP2008535664A (ja) 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 発酵性糖を得るためのバイオマス処理
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6387994A (ja) * 1986-10-02 1988-04-19 Res Assoc Petroleum Alternat Dev<Rapad> 糖化液から糖液および酵素を得る方法
US4966850A (en) * 1987-01-21 1990-10-30 Forintek Canada Corp. Production of thermostable xylanase and cellulase
JPH0341380A (ja) 1989-07-07 1991-02-21 Matsushita Electric Ind Co Ltd 有限要素法磁界解析装置
US5508183A (en) * 1992-05-15 1996-04-16 Martin Marietta Energy Systems, Inc. Enhanced attrition bioreactor for enzyme hydrolysis or cellulosic materials
FI115919B (fi) * 2002-06-27 2005-08-15 Danisco Sweeteners Oy Menetelmä kiteytysinhibiittoreiden poistamiseksi monosakkaridisokeriliuoksista
US7077953B2 (en) * 2003-09-11 2006-07-18 Harris Group, Inc. Nanofilter system and method of use
CN101023179B (zh) 2004-07-16 2011-11-16 埃欧金能量有限公司 从纤维素生物质获得产物糖流的方法
EP1629730A1 (en) * 2004-08-12 2006-03-01 First-to-Market N.V. Functional sugar replacement
RU2316584C1 (ru) * 2006-04-04 2008-02-10 Аркадий Пантелеймонович Синицын Способ биотехнологического получения сбраживаемых сахаров из лигноцеллюлозных материалов
US20110201091A1 (en) * 2007-08-29 2011-08-18 Board Of Trustees Of Michigan State University Production of microbial growth stimulant with ammonia fiber explosion (AFEX) pretreatment and cellulose hydrolysis
CN101796247B (zh) * 2007-09-03 2014-01-22 诺维信公司 脱毒和再循环在含木素纤维素材料的预处理中使用的洗涤溶液
KR100994594B1 (ko) * 2008-04-21 2010-11-15 지에스칼텍스 주식회사 목질계 바이오매스 전처리 방법 및 이를 이용한 바이오연료의 제조 방법
BRPI1010056A2 (pt) * 2009-06-26 2017-06-27 Cobalt Tech Inc processo para produção de bioproduto e sistema para a produção de bioproduto
CN101659681B (zh) * 2009-09-30 2012-10-03 济南圣泉唐和唐生物科技有限公司 木糖制品的生产方法
CN101787398B (zh) 2010-01-22 2012-07-25 中国科学院过程工程研究所 一种净化、回收和浓缩木质纤维素预水解液中糖分的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11506934A (ja) 1995-06-07 1999-06-22 アーケノール,インコーポレイテッド 強酸加水分解法
JP3041380B2 (ja) 1997-06-02 2000-05-15 工業技術院長 水溶性オリゴ糖類及び単糖類の製造方法
JP2001095594A (ja) 1999-09-30 2001-04-10 Meiji Seika Kaisha Ltd グルコース及びセロオリゴ糖の製造方法
JP2005229821A (ja) 2004-02-17 2005-09-02 Jgc Corp バイオマスから単糖を製造する方法及び単糖製造装置
JP2008535664A (ja) 2005-04-12 2008-09-04 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 発酵性糖を得るためのバイオマス処理
JP2008161125A (ja) 2006-12-28 2008-07-17 Univ Of Tokyo 糖の製造方法、エタノールの製造方法、及び乳酸の製造方法、並びにこれらに用いられる酵素糖化用セルロース及びその製造方法
WO2009110374A1 (ja) * 2008-03-05 2009-09-11 東レ株式会社 多糖類系バイオマス由来化合物の製造方法
WO2010067785A1 (ja) 2008-12-09 2010-06-17 東レ株式会社 糖液の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
COLLECTION OF PAPERS FOR SANITARY ENGINEERING SYMPOSIUM, vol. 5, 1997, pages 246 - 251
MITSUHARU FURUICHI: "Biomass kara no Alcohol Seizo Process ni Okeru Maku Bunri Gijutsu no Riyo", BIOSCIENCE & INDUSTRY, vol. 47, no. 9, 1 September 1989 (1989-09-01), pages 951 - 954, XP055028049 *
SHOJI KIMURA; SHIN-ICHI NAKAO; HARUHIKO OHYA; TSUTOMU NAKAGAWA: "Membrane Experiment Series", vol. III, 1993, KYORITSU SHUPPAN CO., LTD.
WATERRESEARCH, vol. 37, 2003, pages 864 - 872

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9527802B2 (en) 2012-08-10 2016-12-27 Toray Industries, Inc. Method of manufacturing coumaramide
WO2014024989A1 (ja) * 2012-08-10 2014-02-13 東レ株式会社 クマルアミドの製造方法
WO2014103185A1 (ja) * 2012-12-28 2014-07-03 川崎重工業株式会社 濃縮糖化液製造方法
JP2016520093A (ja) * 2013-05-21 2016-07-11 ローディア オペレーションズ 前処理ありのフェルラ酸の最適化抽出方法
JP2019089778A (ja) * 2013-05-21 2019-06-13 ローディア オペレーションズ 前処理ありのフェルラ酸の最適化抽出方法
JPWO2017110975A1 (ja) * 2015-12-25 2018-10-11 東レ株式会社 キシロオリゴ糖組成物の製造方法
WO2017110975A1 (ja) * 2015-12-25 2017-06-29 東レ株式会社 キシロオリゴ糖組成物の製造方法
US10487066B2 (en) 2016-02-17 2019-11-26 Toray Industries, Inc. Method of producing sugar alcohol
WO2017142000A1 (ja) 2016-02-17 2017-08-24 東レ株式会社 糖アルコールの製造方法
WO2017154955A1 (ja) 2016-03-09 2017-09-14 東レ株式会社 グルコース組成物、微生物発酵原料および化学品の製造方法
US11053516B2 (en) 2016-03-09 2021-07-06 Toray Industries, Inc. Glucose composition, microbial fermentation raw material, and method of producing chemical product
JP2020146628A (ja) * 2019-03-13 2020-09-17 三井製糖株式会社 バガスの分解抽出物の製造方法、バガスの分解抽出物の脱色方法、及びバガスの分解抽出物
JP7288318B2 (ja) 2019-03-13 2023-06-07 Dm三井製糖株式会社 バガスの分解抽出物の製造方法、バガスの分解抽出物の脱色方法、及びバガスの分解抽出物
JP7288318B6 (ja) 2019-03-13 2023-06-19 Dm三井製糖株式会社 バガスの分解抽出物の製造方法、バガスの分解抽出物の脱色方法、及びバガスの分解抽出物

Also Published As

Publication number Publication date
AU2012291169B9 (en) 2017-02-02
JPWO2013018694A1 (ja) 2015-03-05
MY166315A (en) 2018-06-25
DK2749656T3 (en) 2016-06-06
CN103717759B (zh) 2016-12-28
US20140178937A1 (en) 2014-06-26
EP2749656A4 (en) 2015-04-15
EP2749656B1 (en) 2016-03-23
AU2012291169B2 (en) 2016-12-15
BR112014002091A2 (pt) 2017-02-21
RU2014107687A (ru) 2015-09-10
CA2842151C (en) 2019-09-24
RU2597199C2 (ru) 2016-09-10
CA2842151A1 (en) 2013-02-07
ES2567325T3 (es) 2016-04-21
JP6007791B2 (ja) 2016-10-12
CN103717759A (zh) 2014-04-09
AU2012291169A1 (en) 2014-03-06
EP2749656A1 (en) 2014-07-02
US9163294B2 (en) 2015-10-20

Similar Documents

Publication Publication Date Title
JP6007791B2 (ja) 糖液の製造方法
EP2840150B1 (en) Method for producing sugar liquid
JP5246379B2 (ja) 糖液の製造方法
JP6167902B2 (ja) 糖液の製造方法
JP6269061B2 (ja) 糖液の製造方法
JP6641628B2 (ja) 糖液の製造方法
US20150329927A1 (en) Sugar Separation and Purification Through Filtration
CA2831543C (en) Method for producing sugar solution
EP2650384A1 (en) Method for producing concentrated aqueous sugar solution
EP2692872B1 (en) Method for manufacturing sugar solution
JP2013255457A (ja) 濃縮糖水溶液およびエタノールの製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012538527

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2842151

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2012820603

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14235943

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014107687

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2012291169

Country of ref document: AU

Date of ref document: 20120727

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014002091

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014002091

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20140128