WO2013018348A1 - プラズマディスプレイパネルおよびその製造方法 - Google Patents

プラズマディスプレイパネルおよびその製造方法 Download PDF

Info

Publication number
WO2013018348A1
WO2013018348A1 PCT/JP2012/004821 JP2012004821W WO2013018348A1 WO 2013018348 A1 WO2013018348 A1 WO 2013018348A1 JP 2012004821 W JP2012004821 W JP 2012004821W WO 2013018348 A1 WO2013018348 A1 WO 2013018348A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
protective layer
gas
discharge space
oxide
Prior art date
Application number
PCT/JP2012/004821
Other languages
English (en)
French (fr)
Inventor
卓司 辻田
幸弘 森田
上野 巌
貴仁 中山
章伸 岩本
秀司 河原崎
裕介 福井
やよい 奥井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011169848A external-priority patent/JP2013033678A/ja
Priority claimed from JP2011174736A external-priority patent/JP2013037982A/ja
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013018348A1 publication Critical patent/WO2013018348A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/02Manufacture of electrodes or electrode systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/40Layers for protecting or enhancing the electron emission, e.g. MgO layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/52Means for absorbing or adsorbing the gas mixture, e.g. by gettering

Definitions

  • the technology of the present disclosure relates to a plasma display panel used for a display device or the like and a manufacturing method thereof.
  • a plasma display panel (hereinafter referred to as PDP) which is one of display devices has a protective layer.
  • PDP plasma display panel
  • Si silicon
  • Al aluminum
  • the PDP according to the present disclosure includes a front plate and a back plate disposed to face the front plate.
  • a discharge space is provided between the front plate and the back plate, and a gas adsorbent containing zeolite is provided in a region facing the discharge space.
  • the front plate has a dielectric layer and a protective layer covering the dielectric layer.
  • the protective layer includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is magnesium oxide.
  • the second metal oxide is one selected from the group consisting of calcium oxide, strontium oxide and barium oxide.
  • the concentration of the second metal oxide on the discharge space side surface in the protective layer is higher than the concentration of the second metal oxide inside the protective layer.
  • the manufacturing method of the present disclosure is a method for manufacturing a PDP having a discharge space provided between a front plate and a back plate.
  • the front plate has a dielectric layer and a protective layer covering the dielectric layer.
  • the protective layer includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is magnesium oxide.
  • the second metal oxide is one selected from the group consisting of calcium oxide, strontium oxide and barium oxide.
  • the manufacturing method includes disposing a gas adsorbent containing zeolite in a region facing the discharge space, and exposing the reducing organic gas to the surface of the protective layer after forming the protective layer. Making the metal oxide concentration higher than the concentration in the protective layer.
  • FIG. 1 is a perspective view showing the structure of a PDP.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate.
  • FIG. 3 is a diagram illustrating a manufacturing flow of the PDP according to the embodiment.
  • FIG. 4 is a diagram illustrating a first temperature profile example.
  • FIG. 5 is a diagram illustrating a second temperature profile example.
  • FIG. 6 is a diagram illustrating a third temperature profile example.
  • FIG. 7 is a diagram illustrating a result of X-ray diffraction analysis of the surface of the underlayer according to the embodiment.
  • FIG. 8 is a diagram illustrating a result of X-ray diffraction analysis of another underlayer surface according to the embodiment.
  • FIG. 9 is an enlarged view of the aggregated particles according to the embodiment.
  • FIG. 1 is a perspective view showing the structure of a PDP.
  • FIG. 2 is a cross-sectional view showing the configuration of the front plate.
  • FIG. 3 is a
  • FIG. 10 is a diagram showing changes in the calcium concentration of the underlayer.
  • FIG. 11 is another diagram showing a change in the calcium concentration of the underlayer.
  • FIG. 12 is a diagram showing changes in the calcium concentration in the film thickness direction of the underlayer.
  • FIG. 13 is a diagram illustrating a change in the address voltage in the all region white lighting life test.
  • FIG. 14 is a diagram illustrating changes in the address voltage in the red lighting life test.
  • FIG. 15 is a diagram illustrating changes in the address voltage in the complementary color lighting life test.
  • the basic structure of the PDP is a general AC surface discharge type PDP.
  • the PDP 1 includes a front plate 2 made of a front glass substrate 3 and a back plate 10 made of a back glass substrate 11 and the like.
  • the front plate 2 and the back plate 10 are hermetically sealed with a sealing material whose outer peripheral portion is made of glass frit or the like.
  • the discharge space 16 inside the sealed PDP 1 is filled with discharge gas such as neon (Ne) and xenon (Xe) at a pressure of 53 kPa (400 Torr) to 80 kPa (600 Torr).
  • a pair of strip-shaped display electrodes 6 each consisting of a scanning electrode 4 and a sustain electrode 5 and a plurality of black stripes 7 are arranged in parallel to each other.
  • a dielectric layer 8 that functions as a capacitor is formed on the front glass substrate 3 so as to cover the display electrodes 6 and the black stripes 7.
  • a protective layer 9 made of magnesium oxide (MgO) or the like is formed on the surface of the dielectric layer 8. The protective layer 9 will be described later in detail.
  • Scan electrode 4 and sustain electrode 5 are made of Ag on transparent electrodes 4a and 5a made of conductive metal oxide such as indium tin oxide (ITO), tin oxide (SnO 2 ), and zinc oxide (ZnO), respectively. Electrodes 4b and 5b are stacked.
  • ITO indium tin oxide
  • SnO 2 tin oxide
  • ZnO zinc oxide
  • a plurality of data electrodes 12 made of a conductive material mainly composed of silver (Ag) are arranged in parallel to each other in a direction orthogonal to the display electrodes 6.
  • the data electrode 12 is covered with a base dielectric layer 13. Further, a partition wall 14 having a predetermined height is formed on the underlying dielectric layer 13 between the data electrodes 12 to divide the discharge space 16.
  • a phosphor layer 15 that emits red light by ultraviolet rays, a phosphor layer 15 that emits green light, and a phosphor layer 15 that emits blue light are sequentially applied and formed for each data electrode 12. Yes.
  • a discharge cell is formed at a position where the display electrode 6 and the data electrode 12 intersect. Discharge cells having red, green, and blue phosphor layers 15 arranged in the direction of the display electrode 6 serve as pixels for color display.
  • the manufacturing method of the PDP 1 includes a front plate manufacturing step A1, a back plate manufacturing step B1, a frit coating step B2, a sealing step C1, a reducing gas introduction step C2, and an exhaust. It has process C3 and discharge gas supply process C4.
  • Front plate manufacturing process A1 In front plate manufacturing step A1, scan electrodes 4, sustain electrodes 5, and black stripes 7 are formed on front glass substrate 3 by photolithography. Scan electrode 4 and sustain electrode 5 have metal bus electrodes 4b and 5b containing silver (Ag) for ensuring conductivity. Scan electrode 4 and sustain electrode 5 have transparent electrodes 4a and 5a. The metal bus electrode 4b is laminated on the transparent electrode 4a. The metal bus electrode 5b is laminated on the transparent electrode 5a.
  • ITO indium tin oxide
  • lithography For the material of the transparent electrodes 4a and 5a, indium tin oxide (ITO) or the like is used to ensure transparency and electric conductivity.
  • ITO indium tin oxide
  • an ITO thin film is formed on the front glass substrate 3 by sputtering or the like.
  • transparent electrodes 4a and 5a having a predetermined pattern are formed by lithography.
  • an electrode paste containing silver (Ag), a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as the material of the metal bus electrodes 4b and 5b.
  • an electrode paste is applied on the front glass substrate 3 by a screen printing method or the like.
  • the solvent in the electrode paste is removed by a drying furnace.
  • the electrode paste is exposed through a photomask having a predetermined pattern.
  • the electrode paste is developed to form a metal bus electrode pattern.
  • the metal bus electrode pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the metal bus electrode pattern is removed. Further, the glass frit in the metal bus electrode pattern is melted. The molten glass frit is vitrified again after firing.
  • Metal bus electrodes 4b and 5b are formed by the above steps.
  • the black stripe 7 is formed of a material containing a black pigment.
  • the dielectric layer 8 is formed.
  • a dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used.
  • a dielectric paste is applied on the front glass substrate 3 so as to cover the display electrode 6 with a predetermined thickness by a die coating method or the like.
  • the solvent in the dielectric paste is removed by a drying furnace.
  • the dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the dielectric paste is removed.
  • the dielectric glass frit melts and resolidifies.
  • the dielectric layer 8 is formed.
  • a screen printing method, a spin coating method, or the like can be used.
  • the protective layer 9 is formed. Details of the protective layer 9 will be described later.
  • the front plate 2 having predetermined constituent members on the front glass substrate 3 is completed.
  • Data electrodes 12 are formed on the rear glass substrate 11 by photolithography.
  • a data electrode paste containing silver (Ag) for ensuring conductivity, a glass frit for binding silver, a photosensitive resin, a solvent, and the like is used as a material of the data electrode 12.
  • the data electrode paste is applied on the rear glass substrate 11 with a predetermined thickness by a screen printing method or the like.
  • the solvent in the data electrode paste is removed by a drying furnace.
  • the data electrode paste is exposed through a photomask having a predetermined pattern.
  • the data electrode paste is developed to form a data electrode pattern.
  • the data electrode pattern is fired at a predetermined temperature in a firing furnace.
  • the data electrode 12 is formed by the above process.
  • a sputtering method, a vapor deposition method, or the like can be used.
  • the base dielectric layer 13 is formed.
  • a base dielectric paste containing a dielectric glass frit, a resin, a solvent, and the like is used as a material for the base dielectric layer 13.
  • a base dielectric paste is applied by a screen printing method or the like so as to cover the data electrode 12 on the rear glass substrate 11 on which the data electrode 12 is formed with a predetermined thickness.
  • the solvent in the base dielectric paste is removed by a drying furnace.
  • the base dielectric paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the base dielectric paste is removed. Further, the dielectric glass frit is melted. The molten dielectric glass frit is vitrified again after firing.
  • the base dielectric layer 13 is formed.
  • a die coating method, a spin coating method, or the like can be used.
  • a film to be the base dielectric layer 13 can be formed by CVD (Chemical Vapor Deposition) method or the like without using the base dielectric paste.
  • the barrier ribs 14 are formed by photolithography.
  • a partition paste containing a filler, a glass frit for binding the filler, a photosensitive resin, a solvent, and the like is used as a material for the partition wall 14.
  • the barrier rib paste is applied on the underlying dielectric layer 13 with a predetermined thickness by a die coating method or the like.
  • the solvent in the partition wall paste is removed by a drying furnace.
  • the barrier rib paste is exposed through a photomask having a predetermined pattern.
  • the barrier rib paste is developed to form a barrier rib pattern.
  • the partition pattern is fired at a predetermined temperature in a firing furnace. That is, the photosensitive resin in the partition pattern is removed.
  • the partition wall 14 is formed by the above process.
  • a sandblast method or the like can be used.
  • the phosphor layer 15 is formed.
  • a phosphor paste containing phosphor particles, a binder, a solvent, and the like is used as the material of the phosphor layer 15.
  • a phosphor paste is applied on the base dielectric layer 13 between adjacent barrier ribs 14 and on the side surfaces of the barrier ribs 14 by a dispensing method or the like.
  • the solvent in the phosphor paste is removed by a drying furnace.
  • the phosphor paste is fired at a predetermined temperature in a firing furnace. That is, the resin in the phosphor paste is removed.
  • the phosphor layer 15 is formed by the above steps.
  • a screen printing method or the like can be used.
  • the back plate 10 having predetermined constituent members on the back glass substrate 11 is completed.
  • Frit application process B2 A glass frit which is a sealing member is applied outside the image display area of the back plate 10 manufactured by the back plate manufacturing step B1. Thereafter, the glass frit is temporarily fired at a temperature of about 350 ° C. A solvent component etc. are removed by temporary baking.
  • a frit containing bismuth oxide or vanadium oxide as a main component is desirable.
  • the frit mainly composed of bismuth oxide include a Bi 2 O 3 —B 2 O 3 —RO—MO system (where R is any one of Ba, Sr, Ca, and Mg, and M is Any of Cu, Sb, and Fe)) and a filler made of an oxide such as Al 2 O 3 , SiO 2 , and cordierite can be used.
  • a frit containing vanadium oxide as a main component for example, a filler made of an oxide such as Al 2 O 3 , SiO 2 or cordierite is added to a V 2 O 5 —BaO—TeO—WO glass material. Things can be used.
  • the sealing process C1, the reducing gas introduction process C2, the exhaust process C3, and the discharge gas supply process C4 perform the processing of the temperature profile illustrated in FIGS. 4 to 6 in the same apparatus. .
  • the sealing temperature in FIGS. 4 to 6 is a temperature at which the front plate 2 and the back plate 10 are sealed by a frit that is a sealing member.
  • the sealing temperature in the present embodiment is about 490 ° C., for example.
  • the softening point in FIGS. 4 to 6 is the temperature at which the frit as the sealing member softens.
  • the softening point in the present embodiment is about 430 ° C., for example.
  • the exhaust temperature in FIGS. 4 to 6 is a temperature at which a gas containing a reducing organic gas is exhausted from the discharge space.
  • the exhaust temperature in the present embodiment is about 400 ° C., for example.
  • the temperature is maintained at the exhaust temperature for the period cd.
  • a gas containing a reducing organic gas is introduced into the discharge space during the period cd.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the temperature is maintained at the exhaust temperature for the period d1-d2.
  • a gas containing a reducing organic gas is introduced into the discharge space during the period d1-d2.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas during the period d1-d2.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period d2-e, the discharge space is exhausted, so that a gas containing a reducing organic gas is exhausted.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the reducing gas introduction step C2 is performed within the period of the sealing step C1.
  • the temperature is maintained at the sealing temperature for the period b1-b2. Thereafter, during the period b2-c, the temperature falls to the exhaust temperature.
  • a gas containing a reducing organic gas is introduced into the discharge space during the period of b1-b2.
  • the protective layer 9 is exposed to a gas containing a reducing organic gas.
  • the temperature is maintained at the exhaust temperature for a predetermined period. Thereafter, the temperature drops to about room temperature. During the period ce, the gas including the reducing organic gas is discharged by exhausting the discharge space.
  • a discharge gas is introduced into the discharge space. That is, the discharge gas is introduced in a period after e when the temperature drops to about room temperature.
  • the reducing organic gas is preferably a CH-based organic gas having a molecular weight of 58 or less and a large reducing power.
  • a gas containing the reducing organic gas is produced.
  • column C means the number of carbon atoms contained in one molecule of organic gas.
  • the column of H means the number of hydrogen atoms contained in one molecule of the organic gas.
  • “A” is attached to a gas having a vapor pressure of 100 kPa or higher at 0 ° C. Furthermore, “C” is given to the gas whose vapor pressure at 0 ° C. is smaller than 100 kPa.
  • a gas having a boiling point of 0 ° C. or less at 1 atm is marked with “A”. Furthermore, “C” is attached to a gas having a boiling point of greater than 0 ° C. at 1 atmosphere.
  • “A” is given to the gas that is easily decomposed.
  • “B” is attached to a gas that is easily decomposed.
  • “A” is given to the gas having sufficient reducing power.
  • a reducing organic gas that can be supplied in a gas cylinder is desirable. Also, considering the ease of handling in the manufacturing process of PDP, a reducing organic gas having a vapor pressure at 0 ° C. of 100 kPa or higher, a reducing organic gas having a boiling point of 0 ° C. or lower, or a reducing organic gas having a low molecular weight is desirable.
  • part of the gas containing the reducing organic gas may remain in the discharge space even after the exhaust process C3. Therefore, it is desirable that the reducing organic gas has a characteristic that it is easily decomposed.
  • Reducing organic gas is a carbon that does not contain oxygen selected from acetylene, ethylene, methylacetylene, propadiene, propylene and cyclopropane, taking into consideration the ease of handling in the manufacturing process and the property of being easily decomposed. Hydrogen gas is desirable. At least one selected from these reducing organic gases may be mixed with a rare gas or nitrogen gas.
  • the lower limit of the mixing ratio of the rare gas or nitrogen gas and the reducing organic gas is determined according to the combustion ratio of the reducing organic gas used.
  • the upper limit is about several volume%. If the mixing ratio of the reducing organic gas is too high, the organic component is likely to be polymerized to become a polymer. In this case, the polymer remains in the discharge space and affects the characteristics of the PDP. Therefore, it is preferable to appropriately adjust the mixing ratio according to the component of the reducing organic gas to be used.
  • the inventors conducted the same examination using hydrogen gas as another example of the reducing gas, but did not obtain the same effect as the reducing organic gas.
  • MgO, CaO, SrO, BaO, etc. have high reactivity with impurity gas, such as water and a carbon dioxide.
  • impurity gas such as water and a carbon dioxide.
  • the discharge characteristics are likely to deteriorate, and the discharge characteristics of each discharge cell are likely to vary.
  • the sealing step C1 it is preferable to flow an inert gas so that the inside of the discharge space 16 is in a positive pressure state through a through hole opened in the discharge space 16, and then perform sealing. This is because the reaction between the protective layer 9 and the impurity gas can be suppressed. Nitrogen, helium, neon, argon, xenon, etc. can be used as the inert gas.
  • dry air may be flowed instead of the inert gas. This is because at least the reaction with water can be suppressed and the production cost can be reduced compared with the inert gas.
  • nitrogen gas may be flowed at a flow rate of about 2 L / min during the period up to x when the temperature reaches the softening point.
  • the discharge space 16 is maintained at a positive pressure by nitrogen gas.
  • the temperature is maintained at the sealing temperature for the period ab (ab2).
  • the discharge space 16 is filled with nitrogen gas. Thereafter, the temperature falls from the sealing temperature to the exhaust temperature during the period bc (b2-c).
  • the nitrogen gas that has filled the discharge space 16 is exhausted. That is, the discharge space is in a reduced pressure state.
  • the description for the subsequent period is the same as the above description.
  • the protective layer 9 is required to have a function of holding electric charge for generating discharge and a function of emitting secondary electrons during sustain discharge.
  • the applied voltage is reduced by improving the charge retention performance. As the number of secondary electron emission increases, the sustain discharge voltage is reduced.
  • the protective layer 9 includes a base layer 91 and aggregated particles 92.
  • the underlayer 91 includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is MgO
  • the second metal oxide is one selected from the group consisting of CaO, SrO and BaO.
  • the underlayer 91 has at least one peak in the X-ray diffraction analysis. This peak is between the first peak in the X-ray diffraction analysis of the first metal oxide and the second peak in the X-ray diffraction analysis of the second metal oxide.
  • the first peak and the second peak have the same plane orientation as the plane orientation indicated by the peak of the underlayer 91.
  • the (111) plane orientation of CaO alone is indicated by a peak at a diffraction angle of 32.2 degrees.
  • the (111) plane orientation of MgO alone is indicated by a peak with a diffraction angle of 36.9 degrees.
  • the (111) plane orientation of SrO alone is indicated by a peak with a diffraction angle of 30.0 degrees.
  • the (111) plane orientation of BaO alone is indicated by a peak with a diffraction angle of 27.9 degrees.
  • the foundation layer 91 includes MgO and at least two or more metal oxides selected from the group consisting of CaO, SrO, and BaO.
  • the point A is a peak in the (111) plane orientation of the base layer 91 formed of two of MgO and CaO.
  • Point B is a peak in the (111) plane orientation of the underlying layer 91 formed of two of MgO and SrO.
  • Point C is a peak in the (111) plane orientation of the underlying layer 91 formed of two of MgO and BaO.
  • the diffraction angle at point A is 36.1 degrees.
  • Point A exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the CaO simple substance that is the second metal oxide.
  • Point B exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the SrO simple substance that is the second metal oxide.
  • the diffraction angle at point C is 35.4 degrees.
  • the point C exists between the peak of the (111) plane orientation in the MgO simple substance that is the first metal oxide and the peak of the (111) plane orientation in the BaO simple substance that is the second metal oxide.
  • the point D is a peak in the (111) plane orientation of the base layer 91 formed of three of MgO, CaO, and SrO.
  • Point E is a peak in the (111) plane orientation of the base layer 91 formed of three of MgO, CaO, and BaO.
  • the point F is a peak in the (111) plane orientation of the base layer 91 formed of three of BaO, CaO, and SrO.
  • point D has a diffraction angle of 36.9 degrees in the (111) plane orientation of MgO alone, which is the maximum diffraction angle of a single oxide, and SrO, which is the minimum diffraction angle, in the (111) plane orientation as a specific orientation plane.
  • a peak exists at a diffraction angle of 33.4 degrees, which is between the diffraction angle of 30.0 degrees of a single (111) plane orientation.
  • peaks at points E and F exist at 32.8 degrees and 30.2 degrees between the maximum diffraction angle and the minimum diffraction angle, respectively.
  • the plane orientation (111) is exemplified. However, the same applies to other plane orientations.
  • the depth from the vacuum level of CaO, SrO and BaO exists in a shallow region as compared with MgO. Therefore, when driving the PDP, when electrons existing in the energy levels of CaO, SrO, and BaO transition to the ground state of Xe ions, the number of electrons emitted by the Auger effect is less than the energy level of MgO. It is thought that it will increase compared to the case of transition.
  • the peak of the base layer 91 in the X-ray diffraction analysis is between the peak of the first metal oxide and the peak of the second metal oxide. That is, it is considered that the energy level of the base layer 91 exists between single metal oxides, and the number of electrons emitted by the Auger effect is larger than that in the case of transition from the energy level of MgO.
  • the base layer 91 according to the present embodiment can exhibit better secondary electron emission characteristics as compared with MgO alone.
  • the sustain voltage can be reduced.
  • the discharge voltage can be reduced when the Xe partial pressure as the discharge gas is increased in order to increase the luminance. That is, a low-voltage and high-luminance PDP 1 can be realized.
  • the underlayer 91 is formed by a thin film forming method such as a sputtering method or an EB vapor deposition method.
  • the foundation layer 91 is formed by EB vapor deposition.
  • a target vapor deposition source is disposed in the vacuum vapor deposition chamber.
  • An electron beam is irradiated to the deposition source.
  • the components of the evaporation source are evaporated by the energy of the electron beam.
  • the evaporated component adheres on the carried substrate.
  • the degree of vacuum in the vacuum deposition chamber, the atmospheric gas, the irradiation intensity of the electron beam, and the like are appropriately adjusted.
  • the foundation layer 91 in the present embodiment includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is MgO
  • the second metal oxide is one selected from the group consisting of CaO, SrO and BaO.
  • the vapor deposition source is prepared with components having a desired concentration.
  • the base layer 91 made of MgO and CaO is formed, the following procedure is shown. MgO powder and CaO powder are mixed so that it may become a predetermined density
  • a base layer 91 is formed by a target having a desired concentration.
  • Aggregated particles 92 are formed by aggregating a plurality of MgO crystal particles 92a, which are metal oxides.
  • the agglomerated particles 92 are preferably distributed uniformly over the entire surface of the base layer 91. This is because the variation of the discharge voltage in the PDP 1 is reduced.
  • the MgO crystal particles 92a can be manufactured by either a gas phase synthesis method or a precursor firing method.
  • a gas phase synthesis method first, a metal magnesium material having a purity of 99.9% or more is heated in an atmosphere filled with an inert gas. Furthermore, metallic magnesium is directly oxidized by introducing a small amount of oxygen into the atmosphere. In this manner, MgO crystal particles 92a are produced.
  • the MgO precursor is uniformly fired at a high temperature of 700 ° C. or higher.
  • MgO crystal particles 92a are produced.
  • the precursor include magnesium alkoxide (Mg (OR) 2 ), magnesium acetylacetone (Mg (acac) 2 ), magnesium hydroxide (Mg (OH) 2 ), magnesium carbonate (MgCO 2 ), magnesium chloride (MgCl 2 ). ), Magnesium sulfate (MgSO 4 ), magnesium nitrate (Mg (NO 3 ) 2 ), or magnesium oxalate (MgC 2 O 4 ). Depending on the selected compound, it may usually take the form of a hydrate.
  • Hydrate can also be used as a precursor.
  • the compound as the precursor is adjusted so that the purity of magnesium oxide (MgO) obtained after firing is 99.95% or higher, desirably 99.98% or higher. If a certain amount of impurity elements such as various alkali metals, B, Si, Fe, and Al are mixed in the precursor compound, unnecessary interparticle adhesion and sintering occur during heat treatment. As a result, it becomes difficult to obtain highly crystalline MgO crystal particles. Therefore, it is preferable to prepare the precursor in advance, such as removing the impurity element from the compound.
  • the aggregated particles 92 are those in which crystal particles 92a having a predetermined primary particle size are aggregated or necked. In other words, it is not bonded as a solid with a large bonding force, but a plurality of primary particles form an aggregate body due to static electricity, van der Waals force, etc., and due to external stimuli such as ultrasound , Part or all of them are bonded to such a degree that they become primary particles. As shown in FIG. 9, the aggregated particles 92 have a particle size of about 1 ⁇ m, and the crystal particles 92a have a polyhedral shape having seven or more faces such as a tetrahedron and a dodecahedron. desirable.
  • a dispersion is prepared by dispersing the MgO crystal particles 92a obtained by any of the above methods in a solvent.
  • the dispersion is applied to the surface of the base layer 91 by a spray method, a screen printing method, an electrostatic coating method, or the like. Thereafter, the solvent is removed through a drying / firing process.
  • MgO crystal particles 92 a are fixed on the surface of the underlayer 91.
  • the particle size of the primary particles of the crystal particles 92a can be controlled by the generation conditions of the crystal particles 92a.
  • the particle size can be controlled by controlling the firing temperature or firing atmosphere.
  • the firing temperature can be selected in the range of 700 ° C to 1500 ° C.
  • the particle size can be controlled to about 0.3 to 2 ⁇ m.
  • the aggregated particles 92 in which a plurality of MgO crystal particles are agglomerated mainly confirms the effect of suppressing the “discharge delay” in the write discharge and the effect of improving the temperature dependency of the “discharge delay”.
  • Aggregated particles 92 are excellent in initial electron emission characteristics as compared with underlayer 91. Therefore, in the present embodiment, the agglomerated particles 92 are arranged as an initial electron supply unit required at the time of discharge pulse rising.
  • the “discharge delay” is considered to be mainly caused by a shortage of the amount of initial electrons that are triggered from the surface of the underlayer 91 into the discharge space 16 at the start of discharge. Therefore, in order to contribute to the stable supply of initial electrons to the discharge space 16, the agglomerated particles 92 are dispersedly arranged on the surface of the base layer 91. As a result, abundant electrons are present in the discharge space 16 at the rise of the discharge pulse, and the discharge delay can be eliminated. Therefore, such initial electron emission characteristics enable high-speed driving with good discharge response even when the PDP 1 has a high definition.
  • the metal oxide aggregated particles 92 are disposed on the surface of the underlayer 91, in addition to the effect of mainly suppressing the “discharge delay” in the write discharge, the effect of improving the temperature dependency of the “discharge delay” is also achieved. can get.
  • the protective layer 9 includes the base layer 91 and the aggregated particles 92.
  • the underlayer 91 includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is MgO
  • the second metal oxide is one selected from the group consisting of CaO, SrO and BaO.
  • the composition in the vicinity of the surface of the ground layer 91 on the discharge space side is different from the composition in the bulk layer 91 (bulk). Specifically, the concentration of the second metal oxide is higher in the vicinity of the surface of the base layer 91 than in the film (bulk).
  • the bulk of the base layer 91 indicates a region deeper than 200 nm from the discharge space side surface. The above change occurs regardless of the presence or absence of the aggregated particles 92.
  • FIG. 10 and 11 show the measurement results of the concentration change in the base layer 91.
  • FIG. The measurement sample is an underlayer 91 made of MgO and CaO.
  • the underlayer 91 was formed by EB vapor deposition.
  • a mixed pellet of MgO powder and CaO powder was used as a vapor deposition source.
  • Sample 1 is a front plate manufactured by the method described above. Density measurements were made on the underlayer.
  • Sample 2 is a sample in which the PDP is cleaved.
  • the PDP was composed of the front plate of Sample 1 and the back plate produced by the method described above. However, no reducing organic gas has been introduced. That is, the process is the same as that of the present embodiment until the front plate and the back plate are arranged to face each other. Concentration measurement was performed on the ground layer after cleaving.
  • Sample 3 is a sample obtained by cleaving the PDP 1 according to the present embodiment. Note that, similarly to Sample 2, the concentration measurement was performed on the underlying layer after cleaving.
  • Ca concentration was measured by a scanning X-ray photoelectron spectrometer (PHI Quantara SXM type) manufactured by ULVAC-PHI.
  • the Ca concentration was defined as the ratio of Ca and Mg, Ca / (Ca + Mg) [atm%]. There is a measurement error of about ⁇ 0.5 atm%.
  • the Ca concentration on the surface is a value measured as it is with a scanning X-ray photoelectron spectrometer.
  • the bulk Ca concentration is a value measured after sputtering the sample with an Ar ion beam of 1 keV to about 200 nm.
  • both the sample 1 and the sample 2 have a constant Ca concentration on the surface of the underlayer and the bulk. That is, it can be seen that in the PDP similar to the conventional technique, the Ca concentration of the underlayer is constant in the film thickness direction, and there is no change from the state after the underlayer is formed.
  • the protective layer 9 including the base layer 91 was exposed to the reducing organic gas at a high temperature in the sealing / exhaust process, and Ca segregated to the surface. Conceivable.
  • Sample 4-6 having a Ca concentration different from that of Sample 1-3 was produced. Next, the Ca concentration was measured. Sample 4 corresponds to sample 1. Sample 5 corresponds to sample 2. Sample 6 corresponds to sample 3. That is, the sample 6 is a sample obtained by dividing the PDP according to the present embodiment.
  • the inventors confirmed the distribution of Ca concentration in the depth direction of the underlayer 91 of the PDP 1 in the present embodiment.
  • the measurement of Ca concentration is as described above.
  • the film thickness of the underlayer is 700 nm.
  • the Ca concentration of the base layer 91 is substantially constant in a region deeper than 200 nm in the film thickness direction.
  • a gas adsorbent 20 containing zeolite in a discharge space 16 provided between the front plate 2 and the back plate 10 (hereinafter simply referred to as a gas adsorbent). It has. Thereby, the effect of suppressing the life fluctuation of the image display discharge voltage is obtained.
  • life fluctuation refers to a phenomenon in which the voltage required for discharge increases depending on the image display time of the PDP. That is, when the life variation is large, the voltage required for image display increases depending on the usage time of the user. When the voltage rises, an image display area that will eventually become unlit will occur.
  • a plurality of PDPs were manufactured by the manufacturing method shown in the present embodiment.
  • a PDP in which the gas adsorbent 20 was disposed in the discharge space 16 and a PDP in which the gas adsorbent 20 was not disposed in the discharge space 16 were produced.
  • the gas adsorbent 20 similar to the gas adsorbent containing the ZSM-5 type zeolite exchanged with copper (Cu) ion described in Japanese Patent Application Laid-Open No. 2008-218359 is used.
  • the introduction of reducing organic gas in the sealing exhaust process was performed for all PDPs.
  • the gas adsorbent 20 is disposed in the discharge space 16 as follows.
  • the gas adsorbent 20 was disposed on the phosphor layer 15 in the back plate 10.
  • a powder-like (average particle diameter of about 1 to 1.5 ⁇ m) gas adsorbent 20 was dispersed on the phosphor layer 15.
  • the amount of application was determined by the coverage on the glass substrate.
  • the gas adsorbent 20 is dispersed on the glass substrate whose transmittance has been measured.
  • the transmittance of the glass substrate after the gas adsorbent 20 was dispersed was measured.
  • the amount of change in transmittance before and after spraying was taken as the coverage. In the experimental results shown below, the coverage was 33%.
  • Fig. 13 shows the transition of the life fluctuation of the address voltage of PDP1.
  • the protective layer 9 is formed by the same formation method as that of the sample 3.
  • the address voltage is a voltage value applied when a discharge cell for image display is selected in a general PDP driving method.
  • the entire PDP image display area was lit in white.
  • the life test was interrupted at the time indicated on the horizontal axis of the figure, and the address voltage value required to light the entire region in white was measured. The measurement results are described on the basis of the voltage value necessary for white lighting of the entire area at the life time of 0 hours of the PDP in which no gas adsorbent is arranged.
  • the address voltage at the initial stage is lowered by 8V by first disposing the gas adsorbent 20. Further, in the subsequent life test, the address voltage value did not increase.
  • the PDP in which the gas adsorbent 20 is disposed can keep the address voltage lower than the PDP in which the gas adsorbent 20 is not disposed.
  • the monochromatic test is a test in which, for example, an address voltage necessary to turn on red is measured after a life test in which only red is turned on.
  • the complementary color life test is a test for measuring an address voltage value necessary for lighting red other than red, that is, after a life test in which green and blue (cyan) are turned on.
  • Fig. 14 shows the results of the monochromatic life test.
  • FIG. 15 shows the result of the complementary color life test.
  • the PDP used is a PDP manufactured by the same manufacturing method as the PDP used in the life test with white lighting. 14 and 15 show the amount of change with respect to the initial value (address voltage value at 0 hours of life) of the PDP in which the gas adsorbent 20 is arranged and the PDP in which no gas adsorbent is arranged.
  • the address voltage value decreases with the life time regardless of the presence or absence of the gas adsorbent 20 as shown in FIG. That is, the address voltage value did not increase at least. Moreover, the address voltage value was suppressed to be lower by the gas adsorbent 20.
  • the case where the coverage of the gas adsorbent 20 is 33% is shown.
  • the inventors conducted the same kind of experiment on a PDP having a coverage of the gas adsorbent 20 of 5% to 45%. The inventors have confirmed that the same effect can be obtained even when the coverage of the gas adsorbent is 5% to 45%.
  • the gas adsorbent 20 is dispersed on the phosphor layer 15.
  • a phosphor paste in which the gas adsorbent 20 is dispersed may be used.
  • the gas adsorbent 20 can be disposed simultaneously with the formation of the phosphor layer. It has been confirmed that similar effects can be obtained.
  • Activation refers to a phenomenon in which the gas adsorbent 20 starts to adsorb atmospheric gas. Furthermore, the gas adsorbent 20 that adsorbs carbon dioxide or carbon monoxide at an exhaust temperature is desirable.
  • zeolite is made of copper (Cu) ion, cobalt (Co) ion, nickel (Co) ion, sodium (Na) ion, lithium (Li) ion, potassium (K) ion, magnesium (Mg) ion, calcium (Ca And metal ion exchange type zeolite ion-exchanged with at least one selected from the group consisting of ions, barium (Ba) ions and strontium (Sr) ions.
  • the gas adsorbent 20 that preferentially adsorbs water and carbon dioxide over xenon gas is desirable.
  • the gas adsorption material 20 containing a copper ion exchange type zeolite is mentioned.
  • Zeolite is a structure mainly composed of Al 2 O 3 and SiO 2 .
  • a gas adsorbent containing zeolite having a Si ratio higher than the Al concentration in a molar ratio is desirable.
  • Zeolite containing more Al is hydrophilic.
  • increasing the Si concentration makes it more hydrophobic. Therefore, it becomes easy to adsorb carbon dioxide and carbon monoxide.
  • ZSM-5 type and mordenite (MOR) type zeolites have a high Si concentration. Therefore, the gas adsorbent 20 containing ZSM-5 type and mordenite (MOR) type zeolite is a more preferable example.
  • a plurality of PDPs having different underlayer configurations were produced.
  • the PDP was filled with 60 kPa Xe and Ne mixed gas (Xe 15%).
  • Sample A is composed of MgO and CaO.
  • Sample B is composed of MgO and SrO.
  • Sample C is composed of MgO and BaO.
  • Sample D is composed of MgO, CaO and SrO.
  • Sample E is composed of MgO, CaO, and BaO.
  • the comparative example is composed of MgO alone.
  • samples A to E The maintenance voltage was measured for samples A to E.
  • sample A was 90
  • sample B was 87
  • sample C was 85
  • sample D was 81
  • sample E was 82.
  • Samples A to E are PDPs manufactured by a normal manufacturing method. That is, samples A to E are PDPs manufactured by a manufacturing method that does not have a reducing organic gas introduction step.
  • the luminance increases by about 30%, but in the comparative example, the sustain voltage increases by about 10%.
  • PDP 1 having base layer 91 having the same configuration as samples A to E was manufactured by the manufacturing method according to the present embodiment.
  • the first temperature profile was used from the sealing step C1 to the discharge gas supply step C4.
  • the sustain voltage of the PDP 1 according to the present embodiment was about 5% lower than those of the samples A to E.
  • nitrogen gas is allowed to flow as an inert gas so that the inside of the discharge space 16 is in a positive pressure state through the through-hole opened in the discharge space 16, and then When sealing was performed, it was about 5 to 7% lower than the sustain voltage of samples A to E.
  • the PDP 1 of the present disclosure A front plate 2 and a back plate 10 arranged to face the front plate 2 are provided. A discharge space 16 is provided between the front plate 2 and the back plate 10. A gas adsorbent 20 containing zeolite is provided in a region facing the discharge space 16.
  • the front plate 2 has a dielectric layer 8 and a protective layer 9 that covers the dielectric layer 8.
  • the protective layer 9 includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is magnesium oxide.
  • the second metal oxide is one selected from the group consisting of calcium oxide, strontium oxide and barium oxide. The concentration of the second metal oxide on the surface on the discharge space 16 side in the protective layer 9 is higher than the concentration of the second metal oxide in the protective layer 9.
  • the secondary electron emission coefficient of the second metal oxide is higher than the secondary electron emission coefficient of the first metal oxide.
  • concentration of the second metal oxide on the surface of the protective layer 9 on the discharge space 16 side is higher than the concentration of the second metal oxide inside the protective layer 9, the secondary electron emission ability of the protective layer 9 is improved. To do. Moreover, the life fluctuation of the discharge voltage is suppressed by the gas adsorbent. Therefore, the PDP 1 that can be driven at a low voltage can be provided.
  • the manufacturing method of the present disclosure is a manufacturing method of the PDP 1 having the discharge space 16 provided between the front plate 2 and the back plate 10.
  • the front plate 2 has a dielectric layer 8 and a protective layer 9 that covers the dielectric layer 8.
  • the protective layer 9 includes at least a first metal oxide and a second metal oxide.
  • the first metal oxide is magnesium oxide.
  • the second metal oxide is one selected from the group consisting of calcium oxide, strontium oxide and barium oxide.
  • the manufacturing method includes disposing a gas adsorbent 20 containing zeolite in a region facing the discharge space 16, and exposing the reducing organic gas to the surface of the protective layer 9 after forming the protective layer 9, thereby discharging the discharge space of the protective layer 9.
  • the second metal oxide concentration on the 16 side is higher than the concentration in the protective layer 9.
  • the secondary electron emission coefficient of the second metal oxide is higher than the secondary electron emission coefficient of the first metal oxide.
  • concentration of the second metal oxide on the surface of the protective layer 9 on the discharge space 16 side is higher than the concentration of the second metal oxide inside the protective layer 9, the secondary electron emission ability of the protective layer 9 is improved. To do. Therefore, the PDP 1 that can be driven at a low voltage can be provided. Furthermore, oxygen deficiency occurs in the protective layer 9 exposed to the reducing organic gas. Oxygen deficiency is considered to improve the secondary electron emission ability of the protective layer. Therefore, the PDP 1 manufactured by the manufacturing method according to the present embodiment can reduce the sustain voltage. Moreover, the life fluctuation of the discharge voltage is suppressed by the gas adsorbent.
  • the manufacturing method may include discharging the reducing organic gas from the discharge space 16 and enclosing the discharge gas in the discharge space 16.
  • the reducing organic gas is preferably a hydrocarbon-based gas that does not contain oxygen. This is because the reduction ability is enhanced by not containing oxygen.
  • the reducing organic gas is preferably at least one selected from the group consisting of acetylene, ethylene, methylacetylene, propadiene, propylene, cyclopropane, propane and butane. This is because the reducing organic gas is easy to handle in the manufacturing process. Furthermore, it is because said reducing organic gas is easy to decompose
  • a manufacturing method in which a gas containing a reducing organic gas is introduced into the discharge space 16 after the discharge space 16 is exhausted is exemplified.
  • the gas containing the reducing organic gas can be introduced into the discharge space 16 by continuously supplying the gas containing the reducing organic gas to the discharge space 16 without exhausting the discharge space 16.
  • the protective layer 9 includes the metal oxide crystal particles 92a or the aggregated particles 92 in which a plurality of metal oxide crystal particles 92a are aggregated on the base layer 91, the protective layer 9 has a high charge holding ability and a high electron emission ability. Therefore, as a whole PDP 1, high-speed driving can be realized with a low voltage even with a high-definition PDP. In addition, high-quality image display performance with reduced lighting failure can be realized.
  • MgO is exemplified as the metal oxide crystal particle 92a.
  • the metal oxide crystal particles 92a are not limited to MgO.
  • constituent elements described in the accompanying drawings and the detailed description may include constituent elements that are not essential for solving the problem. This is to illustrate the above technique.
  • the non-essential components are described in the accompanying drawings and the detailed description, so that the non-essential components should not be recognized as essential.
  • the technology of the present disclosure is useful for a large screen display device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Abstract

プラズマディスプレイパネル(1)は、前面板(2)と、前面板(2)と対向配置される背面板(10)を備える。前面板(2)と背面板(10)の間に放電空間(16)が設けられる。放電空間(16)に面した領域にゼオライトを含む気体吸着材(20)が設けられる。前面板(2)は、誘電体層(8)と誘電体層(8)を覆う保護層(9)を有する。保護層(9)は、少なくとも第1の金属酸化物と第2の金属酸化物を含む。第1の金属酸化物は、酸化マグネシウムである。第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種である。保護層における放電空間側表面の第2の金属酸化物の濃度は、保護層内部の第2の金属酸化物の濃度より高い。

Description

プラズマディスプレイパネルおよびその製造方法
 本開示の技術は、表示デバイスなどに用いられるプラズマディスプレイパネルおよびその製造方法に関する。
 表示装置の一つであるプラズマディスプレイパネル(以下、PDPと称する)は、保護層を有する。保護層からの初期電子放出数を増加させるために、たとえば保護層のMgOに珪素(Si)やアルミニウム(Al)を添加するなどの試みが行われている(例えば、特許文献1参照)。
特開2002-260535号公報
 本開示のPDPは、前面板と、前面板と対向配置される背面板とを備える。前面板と背面板との間に放電空間が設けられ、かつ、放電空間に面した領域にゼオライトを含む気体吸着材が設けられる。前面板は、誘電体層と誘電体層を覆う保護層を有する。保護層は、少なくとも第1の金属酸化物と第2の金属酸化物を含む。第1の金属酸化物は、酸化マグネシウムである。第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種である。保護層における放電空間側表面の第2の金属酸化物の濃度は、保護層内部の第2の金属酸化物の濃度より高い。
 本開示の製造方法は、前面板と背面板との間に設けられた放電空間を有するPDPの製造方法である。前面板は、誘電体層と誘電体層を覆う保護層を有する。保護層は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物は、酸化マグネシウムである。第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種である。製造方法は、放電空間に面した領域にゼオライトを含む気体吸着材を配置すること、保護層形成後に、保護層表面に還元性有機ガスを曝すことにより、保護層の放電空間側の第2の金属酸化物濃度を、保護層中の濃度よりも高くすること、を含む。
図1は、PDPの構造を示す斜視図である。 図2は、前面板の構成を示す断面図である。 図3は、実施の形態にかかるPDPの製造フローを示す図である。 図4は、第1の温度プロファイル例を示す図である。 図5は、第2の温度プロファイル例を示す図である。 図6は、第3の温度プロファイル例を示す図である。 図7は、実施の形態にかかる下地層表面のX線回折分析結果を示す図である。 図8は、実施の形態にかかる他の下地層表面のX線回折分析結果を示す図である。 図9は、実施の形態にかかる凝集粒子の拡大図である。 図10は、下地層のカルシウム濃度の変化を示す図である。 図11は、下地層のカルシウム濃度の変化を示す他の図である。 図12は、下地層の膜厚方向のカルシウム濃度の変化を示す図である。 図13は、全領域白色点灯ライフ試験において、アドレス電圧の変化を示す図である。 図14は、赤色点灯ライフ試験において、アドレス電圧の変化を示す図である。 図15は、補色点灯ライフ試験において、アドレス電圧の変化を示す図である。
 以下に、実施の形態が詳細に説明される。実施の形態の説明には、適宜図面が参照される。但し、必要以上に詳細な説明は、省略される場合がある。例えば、既によく知られた事項の詳細な説明や、実質的に同一の構成についての重複した説明は、省略される場合がある。説明が冗長になることを避け、当業者の理解を容易にするためである。
 なお、発明者らは、当業者が本開示を十分に理解するために添付図面および以下の説明を提供する。発明者らは、特許請求の範囲に記載された主題が本開示によって限定されることを意図しない。
 [1.PDP1の構造]
 PDPの基本構造は、一般的な交流面放電型PDPである。図1および図2に示されるように、PDP1は前面ガラス基板3などよりなる前面板2と、背面ガラス基板11などよりなる背面板10とが対向して配置されている。前面板2と背面板10とは、外周部がガラスフリットなどからなる封着材によって気密封着されている。封着されたPDP1内部の放電空間16には、ネオン(Ne)およびキセノン(Xe)などの放電ガスが53kPa(400Torr)~80kPa(600Torr)の圧力で封入されている。
 前面ガラス基板3上には、走査電極4および維持電極5よりなる一対の帯状の表示電極6とブラックストライプ7が互いに平行にそれぞれ複数列配置されている。前面ガラス基板3上には表示電極6とブラックストライプ7とを覆うようにコンデンサとしての働きをする誘電体層8が形成される。さらに誘電体層8の表面に酸化マグネシウム(MgO)などからなる保護層9が形成されている。なお、保護層9については、後に詳細に述べられる。
 走査電極4および維持電極5は、それぞれインジウム錫酸化物(ITO)、酸化錫(SnO2)、酸化亜鉛(ZnO)などの導電性金属酸化物からなる透明電極4a、5a上にAgからなるバス電極4b、5bが積層されている。
 背面ガラス基板11上には、表示電極6と直交する方向に、銀(Ag)を主成分とする導電性材料からなる複数のデータ電極12が、互いに平行に配置されている。データ電極12は、下地誘電体層13に被覆されている。さらに、データ電極12間の下地誘電体層13上には放電空間16を区切る所定の高さの隔壁14が形成されている。隔壁14間の溝には、データ電極12毎に、紫外線によって赤色に発光する蛍光体層15、緑色に発光する蛍光体層15および青色に発光する蛍光体層15が順次塗布して形成されている。表示電極6とデータ電極12とが交差する位置に放電セルが形成されている。表示電極6方向に並んだ赤色、緑色、青色の蛍光体層15を有する放電セルがカラー表示のための画素になる。
 [2.PDP1の製造方法]
 図3に示されるように、本実施の形態にかかるPDP1の製造方法は、前面板作製工程A1、背面板作製工程B1、フリット塗布工程B2、封着工程C1、還元性ガス導入工程C2、排気工程C3および放電ガス供給工程C4を有する。
 [2-1.前面板作製工程A1]
 前面板作製工程A1においては、フォトリソグラフィ法によって、前面ガラス基板3上に、走査電極4および維持電極5とブラックストライプ7とが形成される。走査電極4および維持電極5は、導電性を確保するための銀(Ag)を含む金属バス電極4b、5bを有する。また、走査電極4および維持電極5は、透明電極4a、5aを有する。金属バス電極4bは、透明電極4aに積層される。金属バス電極5bは、透明電極5aに積層される。
 透明電極4a、5aの材料には、透明度と電気伝導度を確保するためインジウム錫酸化物(ITO)などが用いられる。まず、スパッタ法などによって、ITO薄膜が前面ガラス基板3上に形成される。次にリソグラフィ法によって所定のパターンの透明電極4a、5aが形成される。
 金属バス電極4b、5bの材料には、銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含む電極ペーストが用いられる。まず、スクリーン印刷法などによって、電極ペーストが、前面ガラス基板3上に塗布される。次に、乾燥炉によって、電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、電極ペーストが露光される。
 次に、電極ペーストが現像され、金属バス電極パターンが形成される。最後に、焼成炉によって、金属バス電極パターンが所定の温度で焼成される。つまり、金属バス電極パターン中の感光性樹脂が除去される。また、金属バス電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、金属バス電極4b、5bが形成される。ブラックストライプ7は、黒色顔料を含む材料により、形成される。
 次に、誘電体層8が形成される。誘電体層8の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む誘電体ペーストが用いられる。まずダイコート法などによって、誘電体ペーストが所定の厚みで表示電極6を覆うように前面ガラス基板3上に塗布される。次に、乾燥炉によって、誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、誘電体ペーストが所定の温度で焼成される。つまり、誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融、再凝固する。以上の工程によって、誘電体層8が形成される。ここで、誘電体ペーストをダイコートする方法以外にも、スクリーン印刷法、スピンコート法などを用いることができる。
 そして保護層9が形成される。保護層9の詳細は、後述される。
 以上の工程により前面ガラス基板3上に所定の構成部材を有する前面板2が完成する。
 [2-2.背面板作製工程B1]
 フォトリソグラフィ法によって、背面ガラス基板11上に、データ電極12が形成される。データ電極12の材料には、導電性を確保するための銀(Ag)と銀を結着させるためのガラスフリットと感光性樹脂と溶剤などを含むデータ電極ペーストが用いられる。まず、スクリーン印刷法などによって、データ電極ペーストが所定の厚みで背面ガラス基板11上に塗布される。次に、乾燥炉によって、データ電極ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、データ電極ペーストが露光される。次に、データ電極ペーストが現像され、データ電極パターンが形成される。最後に、焼成炉によって、データ電極パターンが所定の温度で焼成される。つまり、データ電極パターン中の感光性樹脂が除去される。また、データ電極パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、データ電極12が形成される。ここで、データ電極ペーストをスクリーン印刷する方法以外にも、スパッタ法、蒸着法などを用いることができる。
 次に、下地誘電体層13が形成される。下地誘電体層13の材料には、誘電体ガラスフリットと樹脂と溶剤などを含む下地誘電体ペーストが用いられる。まず、スクリーン印刷法などによって、下地誘電体ペーストが所定の厚みでデータ電極12が形成された背面ガラス基板11上にデータ電極12を覆うように塗布される。次に、乾燥炉によって、下地誘電体ペースト中の溶剤が除去される。最後に、焼成炉によって、下地誘電体ペーストが所定の温度で焼成される。つまり、下地誘電体ペースト中の樹脂が除去される。また、誘電体ガラスフリットが溶融する。溶融していた誘電体ガラスフリットは、焼成後に再びガラス化する。以上の工程によって、下地誘電体層13が形成される。ここで、下地誘電体ペーストをスクリーン印刷する方法以外にも、ダイコート法、スピンコート法などを用いることができる。また、下地誘電体ペーストを用いずに、CVD(Chemical Vapor Deposition)法などによって、下地誘電体層13となる膜を形成することもできる。
 次に、フォトリソグラフィ法によって、隔壁14が形成される。隔壁14の材料には、フィラーと、フィラーを結着させるためのガラスフリットと、感光性樹脂と、溶剤などを含む隔壁ペーストが用いられる。まず、ダイコート法などによって、隔壁ペーストが所定の厚みで下地誘電体層13上に塗布される。次に、乾燥炉によって、隔壁ペースト中の溶剤が除去される。次に、所定のパターンのフォトマスクを介して、隔壁ペーストが露光される。次に、隔壁ペーストが現像され、隔壁パターンが形成される。最後に、焼成炉によって、隔壁パターンが所定の温度で焼成される。つまり、隔壁パターン中の感光性樹脂が除去される。また、隔壁パターン中のガラスフリットが溶融する。溶融していたガラスフリットは、焼成後に再びガラス化する。以上の工程によって、隔壁14が形成される。ここで、フォトリソグラフィ法以外にも、サンドブラスト法などを用いることができる。
 次に、蛍光体層15が形成される。蛍光体層15の材料には、蛍光体粒子とバインダと溶剤などとを含む蛍光体ペーストが用いられる。まず、ディスペンス法などによって、蛍光体ペーストが所定の厚みで隣接する隔壁14間の下地誘電体層13上および隔壁14の側面に塗布される。次に、乾燥炉によって、蛍光体ペースト中の溶剤が除去される。最後に、焼成炉によって、蛍光体ペーストが所定の温度で焼成される。つまり、蛍光体ペースト中の樹脂が除去される。以上の工程によって、蛍光体層15が形成される。ここで、ディスペンス法以外にも、スクリーン印刷法などを用いることができる。
 以上の工程により、背面ガラス基板11上に所定の構成部材を有する背面板10が完成する。
 [2-3.フリット塗布工程B2]
 背面板作製工程B1により作製された背面板10の画像表示領域外に封着部材であるガラスフリットが塗布される。その後、ガラスフリットは、350℃程度の温度で仮焼成される。仮焼成によって、溶剤成分などが除去される。
 封着部材としては、酸化ビスマスや酸化バナジウムを主成分としたフリットが望ましい。この酸化ビスマスを主成分とするフリットとしては、例えば、Bi23-B23-RO-MO系(ここでRは、Ba、Sr、Ca、Mgのいずれかであり、Mは、Cu、Sb、Feのいずれかである。)のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。また、酸化バナジウムを主成分とするフリットとしては、例えば、V25-BaO-TeO-WO系のガラス材料に、Al23、SiO2、コージライト等酸化物からなるフィラーを加えたものを用いることができる。
 本実施の形態にかかる封着工程C1、還元性ガス導入工程C2、排気工程C3、および放電ガス供給工程C4は、同一の装置において、図4から図6に例示された温度プロファイルの処理を行う。
 図4から図6における封着温度とは、前面板2と背面板10とが封着部材であるフリットにより封着されるときの温度である。本実施の形態における封着温度は、例えば約490℃である。また、図4から図6における軟化点とは、封着部材であるフリットが軟化する温度である。本実施の形態における軟化点は、例えば約430℃である。さらに、図4から図6における排気温度とは、還元性有機ガスを含むガスが放電空間から排気されるときの温度である。本実施の形態における排気温度は、例えば約400℃である。
 [2-4.封着工程C1から放電ガス供給工程C4まで]
 前面板2とフリット塗布工程B2を経た背面板10とが対向配置されて周辺部が封着部材により封着される。その後、放電空間16に放電ガスが封入される。
 [2-4-1.第1の温度プロファイル]
 図4に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-bの期間、封着温度に維持される。その後、温度は、b-cの期間に封着温度から排気温度に下降する。b-cの期間において、放電空間内が排気される。つまり、放電空間内は減圧状態になる。
 次に、還元性ガス導入工程C2において、温度は、c-dの期間、排気温度に維持される。c-dの期間に放電空間内に還元性有機ガスを含むガスが導入される。c-dの期間に保護層9は、還元性有機ガスを含むガスに曝される。
 その後、排気工程C3において、温度は所定の期間、排気温度に維持される。その後、温度は、室温程度まで下降する。d-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。
 [2-4-2.第2の温度プロファイル]
 図5に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-bの期間、封着温度に維持される。その後、温度はb-cの期間に封着温度から排気温度に下降する。温度が排気温度に維持されているc-d1の期間において、放電空間内が排気される。つまり、放電空間内は減圧状態になる。
 次に、還元性ガス導入工程C2において、温度は、d1-d2の期間、排気温度に維持される。d1-d2の期間に放電空間内に還元性有機ガスを含むガスが導入される。d1-d2の期間に保護層9は、還元性有機ガスを含むガスに曝される。
 その後、排気工程C3において、所定の期間、温度は排気温度に維持される。その後、温度は、室温程度まで下降する。d2-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。
 [2-4-3.第3の温度プロファイル]
 図6に示されるように、まず、封着工程C1において、温度は、室温から封着温度まで上昇する。次に、温度は、a-b1-b2の期間、封着温度に維持される。a-b1の期間に放電空間内が排気される。つまり、放電空間内は減圧状態になる。その後、温度はb2-cの期間に封着温度から排気温度に下降する。
 還元性ガス導入工程C2は、封着工程C1の期間内に行われる。温度は、b1-b2の期間、封着温度に維持される。その後、b2-cの期間に温度は、排気温度まで下降する。b1-b2の期間に放電空間内に還元性有機ガスを含むガスが導入される。b1-b2の期間に保護層9は、還元性有機ガスを含むガスに曝される。
 その後、排気工程C3において、温度は、所定の期間排気温度に維持される。その後、温度は、室温程度まで下降する。c-eの期間において、放電空間内が排気されることにより、還元性有機ガスを含むガスが排出される。
 次に、放電ガス供給工程C4において、放電空間内に放電ガスが導入される。つまり、温度が室温程度に下がったe以降の期間に放電ガスが導入される。
 なお、いずれの温度プロファイルにおいてもほぼ同等の作用を有する。
 [2-4-4.還元性有機ガスの詳細]
 表1に示されるように、還元性有機ガスとしては、分子量が58以下の還元力の大きいCH系有機ガスが望ましい。種々の還元性有機ガスの中から選ばれる少なくとも一つが希ガスや窒素ガスなどに混合されることにより、還元性有機ガスを含むガスが製造される。
Figure JPOXMLDOC01-appb-T000001
 表1において、Cの列は、有機ガスの一分子に含まれる炭素原子数を意味する。Hの列は、有機ガスの一分子に含まれる水素原子数を意味する。
 蒸気圧の列において、0℃での蒸気圧が100kPa以上のガスには、「A」が付されている。さらに、0℃での蒸気圧が100kPaより小さいガスには、「C」が付されている。沸点の列において、1気圧での沸点が0℃以下のガスには、「A」が付されている。さらに、1気圧での沸点が0℃より大きいガスには、「C」が付されている。分解しやすさの列において、分解しやすいガスには、「A」が付されている。分解しやすさが普通のガスには、「B」が付されている。還元力の列において、還元力が十分であるガスには、「A」が付されている。
 表1において、「A」は良い特性であることを意味する。「B」は普通の特性であることを意味する。「C」は不十分な特性であることを意味する。
 PDPの製造工程における有機ガスの取扱い易さの観点から考えると、ガスボンベに入れて供給できる還元性有機ガスが望ましい。また、PDPの製造工程における取扱い易さから考えると、0℃での蒸気圧が100kPa以上の還元性有機ガス、または沸点が0℃以下の還元性有機ガス、または分子量が小さい還元性有機ガスが望ましい。
 さらに、排気工程C3の後にも還元性有機ガスを含むガスの一部が放電空間内に残留する可能性がある。よって、還元性有機ガスは、分解しやすい特性を有することが望ましい。
 還元性有機ガスは、製造工程上での取扱い易さや、分解しやすい特性などの点を考慮して、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレンおよびシクロプロパンの中から選ばれる酸素を含まない炭化水素系ガスが望ましい。これらの還元性有機ガスの中から選ばれる少なくとも一種を希ガスや窒素ガスに混合して用いればよい。
 なお、希ガスや窒素ガスと還元性有機ガスの混合比率は、使用する還元性有機ガスの燃焼割合に応じて下限が決定される。上限は、数体積%程度である。還元性有機ガスの混合比率が高すぎると、有機成分が重合して高分子となりやすい。この場合、高分子が放電空間に残留し、PDPの特性に影響を与えてしまう。よって、使用する還元性有機ガスの成分に応じて、混合比率を適宜調整することが好ましい。
 発明者等は還元性ガスの他の例として水素ガスを用いて同様の検討を行ったが、還元性有機ガスと同等の効果は得られなかった。
 なお、MgO、CaO、SrO、およびBaOなどは、水、二酸化炭素などの不純物ガスとの反応性が高い。特に水、二酸化炭素と反応することにより放電特性が劣化しやすく、放電セル毎の放電特性にばらつきが発生しやすい。
 そこで、封着工程C1において、放電空間16に開口する貫通孔を通して放電空間16内が陽圧状態となるように不活性ガスを流し、その後、封着を行うことが好ましい。保護層9と不純物ガスとの反応が抑制できるからである。不活性ガスとしては、窒素、ヘリウム、ネオン、アルゴン、キセノンなどが用いられ得る。
 また、不活性ガスの代わりに乾燥空気を流してもよい。少なくとも水との反応が抑制できる上に、不活性ガスより製造コストが低減できるからである。
 具体的には、図4から図6に示される封着工程C1において、温度が軟化点に達するxまでの期間において、例えば窒素ガスを2L/min程度の流量で流してもよい。放電空間16は、窒素ガスによって陽圧に保たれる。温度が軟化点を超えると、窒素ガスの供給が止められる。放電空間16は、窒素ガスによって陽圧に保たれたままである。温度は、a-b(a-b2)の期間、封着温度に維持される。放電空間16は、窒素ガスによって満たされている。その後、温度は、b-c(b2-c)の期間に封着温度から排気温度に下降する。b-c(b2-c)の期間において、放電空間16を満たしていた窒素ガスが排気される。つまり、放電空間内は減圧状態になる。以降の期間についての説明は、前述の説明と同様である。
 [3.保護層9の詳細]
 保護層9は、放電を発生させるための電荷を保持する機能、および、維持放電の際に二次電子を放出する機能が求められる。電荷保持性能が向上することにより、印加電圧が低減される。二次電子放出数が増加することにより、維持放電電圧が低減される。
 [3-1.下地層91]
 本実施の形態にかかる保護層9は、下地層91と凝集粒子92とを含む。下地層91は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物はMgO、であって、第2の金属酸化物は、CaO、SrOおよびBaOからなる群の中から選ばれる1種である。さらに、下地層91は、X線回折分析において少なくとも一つのピークを有する。このピークは、第1金属酸化物のX線回折分析における第1のピークと、第2金属酸化物のX線回折分析における第2のピークとの間にある。第1のピークと第2のピークは、下地層91のピークが示す面方位と同じ面方位を示す。
 図7に示されるように、CaO単体における(111)面方位は、回折角32.2度のピークで示される。MgO単体における(111)面方位は、回折角36.9度のピークで示される。SrO単体における(111)面方位は、回折角30.0度のピークで示される。BaO単体における(111)面方位は、回折角27.9度のピークで示される。
 本実施の形態にかかる下地層91は、MgOと、さらにCaO、SrOおよびBaOからなる群の中から選ばれる少なくとも2つ以上の金属酸化物を含んでいる。
 図7に示されるように、A点は、MgOとCaOの2つから形成された下地層91の(111)面方位におけるピークである。B点は、MgOとSrOの二つから形成された下地層91の(111)面方位におけるピークである。C点は、MgOとBaOの二つから形成された下地層91の(111)面方位におけるピークである。
 図7に示されるように、A点の回折角は36.1度である。A点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるCaO単体における(111)面方位のピークとの間に存在する。
 B点の回折角は35.7度である。B点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるSrO単体における(111)面方位のピークとの間に存在する。
 C点の回折角は35.4度である。C点は、第1の金属酸化物であるMgO単体における(111)面方位のピークと、第2の金属酸化物であるBaO単体における(111)面方位のピークとの間に存在する。
 図8に示されるように、D点は、MgO、CaOおよびSrOの3つから形成された下地層91の(111)面方位におけるピークである。E点は、MgO、CaOおよびBaOの3つから形成された下地層91の(111)面方位におけるピークである。F点は、BaO、CaOおよびSrOの3つから形成された下地層91の(111)面方位におけるピークである。
 すなわち、D点は特定方位面としての(111)面方位において、単体の酸化物の最大回折角となるMgO単体の(111)面方位の回折角36.9度と、最小回折角となるSrO単体の(111)面方位の回折角30.0度との間である回折角33.4度にピークが存在している。同様に、E点、F点もそれぞれ最大回折角と最小回折角との間の32.8度、30.2度にピークが存在している。
 なお、本実施の形態では、面方位(111)について例示された。しかし、他の面方位についても同様である。
 CaO、SrOおよびBaOの真空準位からの深さは、MgOと比較して浅い領域に存在する。そのため、PDPを駆動する場合において、CaO、SrO、BaOのエネルギー準位に存在する電子がXeイオンの基底状態に遷移する際に、オージェ効果により放出される電子数が、MgOのエネルギー準位から遷移する場合と比較して多くなると考えられる。
 また、上述のように、X線回折分析における下地層91のピークは、第1金属酸化物のピークと第2金属酸化物のピークとの間にある。すなわち、下地層91のエネルギー準位は、単体の金属酸化物の間に存在し、オージェ効果により放出される電子数がMgOのエネルギー準位から遷移する場合と比較して多くなると考えられる。
 その結果、本実施の形態にかかる下地層91では、MgO単体と比較して、良好な二次電子放出特性を発揮することができる。結果として、維持電圧を低減できる。特に、輝度を高めるために放電ガスとしてのXe分圧を高めた場合に、放電電圧を低減できる。つまり、低電圧でなおかつ高輝度のPDP1が実現できる。
 下地層91は、スパッタリング法、EB蒸着方法などの薄膜形成方法によって形成される。本実施の形態においては、下地層91はEB蒸着法によって形成された。真空蒸着室にターゲットとなる蒸着源が配置される。蒸着源に対し電子ビームが照射される。電子ビームのエネルギーによって、蒸着源の成分が蒸発する。蒸発した成分は、搬入された基板上に付着する。真空蒸着室の真空度、雰囲気ガス、電子ビームの照射強度等は適宜調整される。
 本実施の形態における下地層91は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物はMgO、であって、第2の金属酸化物は、CaO、SrOおよびBaOからなる群の中から選ばれる1種である。蒸着源は所望の濃度となる成分で準備される。
 例えばMgOおよびCaOからなる下地層91を形成する場合、以下の手順が示される。MgO粉末とCaO粉末とが所定の濃度となるように混合される。次に、MgO粉末とCaO粉末の混合粉末が焼結される。混合粉末は、焼結によって、約2mm厚、直径5mm程度のペレット形状に加工される。ペレット形状に加工された焼結体が蒸着源である。組成が異なる蒸着源によって試験片上に成膜される。それぞれの膜の組成(濃度)が分析される。このようにして、所望の濃度の下地層91が形成される。
 スパッタリング法などにおいても同様である。所望の濃度となるターゲットによって、下地層91が形成される。
 [3-2.凝集粒子92]
 凝集粒子92は、金属酸化物であるMgOの結晶粒子92aが複数凝集したものである。凝集粒子92は、下地層91の全面に亘って、均一に分散配置させると好ましい。PDP1内における、放電電圧のばらつきが減少するからである。
 なお、MgOの結晶粒子92aは、気相合成法または前駆体焼成法のいずれかによって、製造することができる。気相合成法では、まず、不活性ガスが満たされた雰囲気下で純度99.9%以上の金属マグネシウム材料が加熱される。さらに、雰囲気に酸素を少量導入することによって、金属マグネシウムが直接酸化する。このように、MgOの結晶粒子92aが作製される。
 前駆体焼成法では、MgOの前駆体が700℃以上の高温で均一に焼成される。次に、徐冷することにより、MgOの結晶粒子92aが作製される。前駆体としては、例えば、マグネシウムアルコキシド(Mg(OR))、マグネシウムアセチルアセトン(Mg(acac))、水酸化マグネシウム(Mg(OH))、炭酸マグネシウム(MgCO)、塩化マグネシウム(MgCl2)、硫酸マグネシウム(MgSO)、硝酸マグネシウム(Mg(NO))、シュウ酸マグネシウム(MgC)の内のいずれか1種以上の化合物を選ぶことができる。なお選択した化合物によっては、通常、水和物の形態をとることもある。前駆体として、水和物を用いることもできる。前駆体である化合物は、焼成後に得られる酸化マグネシウム(MgO)の純度が99.95%以上、望ましくは99.98%以上になるように調整される。前駆体である化合物中に、各種アルカリ金属、B、Si、Fe、Alなどの不純物元素が一定量以上混じっていると、熱処理時に不要な粒子間癒着や焼結が生じる。その結果、高結晶性のMgOの結晶粒子が得にくくなる。よって、化合物から不純物元素を除去するなど、予め前駆体を調整することが好ましい。
 [3-2-1.凝集粒子92の詳細]
 凝集粒子92とは、所定の一次粒径の結晶粒子92aが凝集またはネッキングした状態のものである。すなわち、固体として大きな結合力を持って結合しているのではなく、静電気やファンデルワールス力などによって複数の一次粒子が集合体の体をなしているもので、超音波などの外的刺激により、その一部または全部が一次粒子の状態になる程度で結合しているものである。図9に示されるように、凝集粒子92の粒径としては、約1μm程度のもので、結晶粒子92aとしては、14面体や12面体などの7面以上の面を持つ多面体形状を有するのが望ましい。
 上記いずれかの方法で得られたMgOの結晶粒子92aを、溶媒に分散させることにより分散液が作製される。次に、分散液がスプレー法やスクリーン印刷法、静電塗布法などによって下地層91の表面に塗布される。その後、乾燥・焼成工程を経て溶媒が除去される。以上の工程によって、MgOの結晶粒子92aが下地層91の表面に定着する。
 また、結晶粒子92aの一次粒子の粒径は、結晶粒子92aの生成条件によって制御できる。例えば、炭酸マグネシウムや水酸化マグネシウムなどの前駆体を焼成して生成する場合、焼成温度や焼成雰囲気を制御することで粒径を制御できる。一般的に、焼成温度は700℃から1500℃の範囲で選択できる。焼成温度を比較的高い1000℃以上にすることで、粒径を0.3~2μm程度に制御できる。さらに、前駆体を加熱することにより、生成過程において、複数個の一次粒子同士が凝集またはネッキングして凝集粒子92を得ることができる。
 本発明者らの実験により、MgOの結晶粒子が複数凝集した凝集粒子92は、主として書込放電における「放電遅れ」を抑制する効果と、「放電遅れ」の温度依存性を改善する効果が確認されている。凝集粒子92は下地層91に比べて初期電子放出特性に優れる。よって、本実施の形態においては、凝集粒子92が放電パルス立ち上がり時に必要な初期電子供給部として配設されている。
 「放電遅れ」は、放電開始時において、トリガーとなる初期電子が下地層91表面から放電空間16中に放出される量が不足することが主原因と考えられる。そこで、放電空間16に対する初期電子の安定供給に寄与するため、凝集粒子92を下地層91の表面に分散配置する。これによって、放電パルスの立ち上がり時に放電空間16中に電子が豊富に存在し、放電遅れの解消が図られる。したがって、このような初期電子放出特性により、PDP1が高精細の場合などにおいても放電応答性の良い高速駆動ができるようになっている。なお下地層91の表面に金属酸化物の凝集粒子92を配設する構成では、主として書込放電における「放電遅れ」を抑制する効果に加え、「放電遅れ」の温度依存性を改善する効果も得られる。
 [4.下地層91の変化]
 上述したように、本実施の形態にかかる保護層9は、下地層91と凝集粒子92とを含む。下地層91は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物はMgO、であって、第2の金属酸化物は、CaO、SrOおよびBaOからなる群の中から選ばれる1種である。
 発明者らの検討により、封着排気時において、保護層9を還元性有機ガスに曝すと、特に下地層91において次のような変化が生じることが判明した。
 下地層91の放電空間側の表面近傍の組成と、下地層91中(バルク)の組成とが異なる。詳細には、第2の金属酸化物の濃度が、下地層91の表面近傍において膜中(バルク)よりも高くなる。
 ここで下地層91のバルクとは、放電空間側表面から、200nm以上深い領域を示す。また上記の変化は凝集粒子92の有無に関わらず生じる。
 図10および図11に、下地層91における濃度変化の測定結果が示される。測定サンプルは、MgOとCaOからなる下地層91である。下地層91は、EB蒸着法により形成された。蒸着源には、MgO粉末とCaO粉末との混合ペレットが用いられた。
 サンプル1は、上述の方法により作製された前面板である。濃度測定は下地層について行われた。
 サンプル2は、PDPが割断されたサンプルである。PDPは、サンプル1の前面板と、上述の方法で作製された背面板とで構成された。しかし、還元性有機ガスの導入はなされていない。すなわち前面板と背面板とを対向配置するまでは本実施の形態と同じである。濃度測定は、割断後の下地層について行われた。
 サンプル3は、本実施の形態にかかるPDP1が割断されたサンプルである。なお、サンプル2と同様に濃度測定は割断後の、下地層について行われた。
 なお、サンプル1-3の前面板は、すべて同時に作製された。サンプル1のCa濃度は、12atm%となるように蒸着源の濃度が調整された。また、いずれのサンプルにおいても隣接放電セルの間隙に相当する領域で測定が行われた。つまり放電による影響を受けていない領域での測定が行われた。
 Ca濃度は、アルバック・ファイ製の走査型X線光電子分光分析装置(PHI Quantera SXM 型)によって測定された。Ca濃度は、CaとMgの割合、Ca/(Ca+Mg)[atm%]と定義された。なお、±0.5atm%程度の測定誤差は存在する。
 また、表面のCa濃度は走査型X線光電子分光分析装置にてそのまま測定された値である。バルクのCa濃度は、上記サンプルを1keVのArイオンビームで200nm程度スパッタリング後、測定された値である。
 図10に示されるように、サンプル1、サンプル2共に、下地層表面およびバルクそれぞれのCa濃度が一定であることがわかる。つまり従来技術と同様のPDPは、下地層のCa濃度は膜厚方向に一定であり、下地層成膜後の状態と変化がないことがわかる。
 これに対し、サンプル3では、下地層表面のCa濃度が、下地層バルクの濃度よりも上昇していることがわかる。サンプル3においては、表面のCa濃度は、バルクのCa濃度より1.4倍程度に高くなっていることが確認された。
 これは、本実施の形態にかかるPDP1では、封着・排気工程にて下地層91を含む保護層9が高温で還元性有機ガスに暴露され、Caが表面へ偏析したことを示していると考えられる。
 同様にサンプル1-3とはCa濃度の異なるサンプル4-6を作製された。次に、Ca濃度が測定された。サンプル4はサンプル1と対応している。サンプル5はサンプル2と対応している。サンプル6はサンプル3と対応している。つまりサンプル6が本実施の形態にかかるPDPが割段されたサンプルである。
 サンプル4-6の前面板は、すべて同時に作製された。サンプル4のCa濃度は、6atm%となるように蒸着源の濃度が調整された。また、いずれのサンプルにおいても隣接放電セルの間隙に相当する領域で測定が行われた。つまり放電による影響を受けていない領域での測定が行われた。図11に示されるように、サンプル6においては、サンプル3と同様に、下地層表面のCa濃度が、下地層バルクの濃度よりも上昇していることがわかる。サンプル6においては、表面のCa濃度は、バルクのCa濃度より1.20倍程度に高くなっていることが確認された。
 サンプル3およびサンプル6の結果から、Ca成分の下地層91表面への偏析は、下地層91に含まれるCa濃度が高いほど、大きくなる。
 さらに、発明者らは、本実施の形態におけるPDP1の下地層91の深さ方向のCa濃度の分布を確認した。Ca濃度の測定は、上述のとおりである。図12に示されるいずれのサンプルにおいても下地層の膜厚は700nmである。
 図12における○印は、図10におけるサンプル3である。図12における△印は、図11におけるサンプル6を示している。図12に示されるように、本実施の形態にかかるPDP1においては、下地層91のCa濃度は膜厚方向200nmより深い領域ではほぼ一定である。
 なお、上記の現象は凝集粒子92の存在の有無に関わらず生じるものである。
 [5.気体吸着材について]
 図1に示されるように、本実施の形態においてはさらに、前面板2と背面板10の間に設けられた放電空間16にゼオライトを含む気体吸着材20(以下、単に気体吸着材と称する)を備えている。これによって、画像表示放電電圧のライフ変動を抑制する効果が得られる。ここでいうライフ変動とはPDPの画像表示時間に依存して、放電に必要な電圧が上昇する現象を示す。すなわちライフ変動が大きい場合、ユーザーの使用時間に依存して画像表示に必要な電圧が上昇する。電圧が上昇すると、いずれは不灯となる画像表示領域が発生することになる。
 本実施の形態にて示されたように、封着排気工程において保護層9を還元性有機ガスにて曝したPDPにおいては放電電圧の低下効果が得られる。さらに、放電空間16に気体吸着材20を備えることによって、放電電圧のライフ特性変動が抑制される。よって、放電電圧を低下させる効果が持続する。次に、効果の確認実験について説明される。
 まず、本実施の形態に示された作製方法によって複数のPDPが作製された。放電空間16に気体吸着材20が配置されたPDPと、放電空間16に気体吸着材20が配置されないPDPが作製された。本実施の形態では、特開2008-218359号公報に記載の銅(Cu)イオン交換されたZSM-5型ゼオライトを含む気体吸着材と同様の気体吸着材20が使用された。封着排気工程での還元性有機ガス導入は、全てのPDPについて実施された。
 本実施の形態において、放電空間16への気体吸着材20の配置は次のように行われた。気体吸着材20は背面板10には蛍光体層15上に配置された。蛍光体層15を形成後、粉末状(平均粒径1~1.5μm程度)の気体吸着材20が蛍光体層15上に散布された。
 散布量はガラス基板上の被覆率によって判断された。本実施の形態においては透過率が測定されたガラス基板上に気体吸着材20が散布された。次に気体吸着材20の散布後のガラス基板の透過率が測定された。散布前後の透過率の変位量が被覆率とされた。以下に示される実験結果において、被覆率は33%であった。
 図13にPDP1のアドレス電圧のライフ変動の推移を示す。保護層9は上記サンプル3と同様の形成方法によるものである。ここでアドレス電圧とは、一般的なPDPの駆動方法において、画像表示を行う放電セルを選択する際に印加する電圧値である。ライフ試験に際しては、PDP画像表示領域全域を白色点灯して行った。そして同図横軸に記載の時間にてライフ試験を中断し、全領域白色点灯するのに必要なアドレス電圧値を測定した。測定結果は、気体吸着材を配置していないPDPのライフ時間0時間での全領域白色点灯に必要な電圧値を基準として、記載されている。
 図13に示されるように、まず気体吸着材20を配置することによって、初期(ライフ時間0時間)でのアドレス電圧が8V低くなることがわかる。さらにその後のライフ試験においてもアドレス電圧値が上昇することはなかった。総じて気体吸着材20を配置していないPDPと比較して、気体吸着材20を配置したPDPはアドレス電圧を低く保つことができる。
 次に単色ライフ試験および補色ライフ試験の結果が示される。単色試験とは、例えば赤色のみ点灯させたライフ試験後に、赤色を点灯させるのに必要なアドレス電圧を測定する試験である。一方、補色ライフ試験とは、例えば赤色以外、すなわち、緑色および青色(シアン色)を点灯させたライフ試験後に、赤色を点灯させるのに必要なアドレス電圧値を測定する試験である。
 図14に単色ライフ試験の結果が示される。図15に補色ライフ試験の結果が示される。使用されたPDPは白色点灯でのライフ試験で使用されたPDPと同じ製造方法にて製造されたPDPである。図14および図15においては気体吸着材20が配置されたPDPおよび気体吸着材が配置されていないPDPそれぞれの初期値(ライフ時間0時間でのアドレス電圧値)に対する変化量が示されている。
 単色ライフ試験の結果は、図14に示されるように気体吸着材20の有無に関わらず、ライフ時間に伴いアドレス電圧値は低下する。つまり、アドレス電圧値は、少なくとも上昇しなかった。また、気体吸着材20によって、アドレス電圧値がより低く抑えられた。
 一方補色ライフ試験の結果は、図15に示されるように、気体吸着材20が配置されていないPDPは、赤色点灯に必要なアドレス電圧値はライフ時間に伴い上昇していく。一方、気体吸着材20が配置されたPDPでは、赤色点灯に必要なアドレス電圧値はライフ時間に伴い下降した。つまり、アドレス電圧値のライフ変動が大幅に抑制できた。
 アドレス電圧の低下やライフ時間に伴うアドレス電圧の上昇の改善は、アドレス電圧の設定電圧の低下に繋がる。よって、消費電力の低減、周辺回路のコスト削減に繋がり、メリットが大きいと言える。
 本開示では、気体吸着材20の被覆率が33%の場合が示された。発明者らは、本開示以外にも気体吸着材20の被覆率が5%~45%のPDPについて、同種の実験を行った。発明者らは、気体吸着材の被覆率が5%~45%においても同様の効果が得られることを確認した。
 なお、本開示では蛍光体層15形成後に気体吸着材20が蛍光体層15上部に散布された。しかし、本開示の形態に限らず、気体吸着材20が分散した蛍光体ペーストを用いてもよい。気体吸着材20を蛍光体層形成と同時に配置できる。同様の効果が得られることが確認されている。
 次に、本実施の形態において気体吸着材20として使用する望ましい条件について述べられる。まず上述した排気温度以上で活性化することが望ましい。活性化とは気体吸着材20が雰囲気ガスの吸着を開始する現象を指す。さらに排気温度未満で、二酸化炭素あるいは一酸化炭素を吸着する気体吸着材20が望ましい。
 例えば、ゼオライトは、銅(Cu)イオン、コバルト(Co)イオン、ニッケル(Co)イオン、ナトリウム(Na)イオン、リチウム(Li)イオン、カリウム(K)イオン、マグネシウム(Mg)イオン、カルシウム(Ca)イオン、バリウム(Ba)イオンおよびストロンチウム(Sr)イオンの群から選ばれる少なくとも一種とイオン交換した金属イオン交換型ゼオライトが挙げられる。
 さらに望ましくは、キセノンガスよりも、水、二酸化炭素を優先的に吸着する気体吸着材20が望ましい。例えば、銅イオン交換型のゼオライトを含む気体吸着材20が挙げられる。
 また、ゼオライトは、AlとSiOとを主成分とした構造体である。本実施の形態においては、モル比率でSi濃度がAl濃度より高いゼオライトを含む気体吸着材が望ましい。Alをより多く含むゼオライトは、親水性である。しかしSi濃度を上げることによって、より疎水性に近くなる。よって、二酸化炭素および一酸化炭素を吸着しやすくなる。例えば、ZSM-5型、モルデナイト(MOR)型のゼオライトは、Si濃度が高い。よって、ZSM-5型、モルデナイト(MOR)型のゼオライトを含む気体吸着材20は、より好ましい例である。
 [6.評価]
 下地層の構成が異なる複数のPDPが作製された。PDPには60kPaのXe、Ne混合ガス(Xe15%)が封入された。サンプルAは、MgOとCaOによって構成されている。サンプルBは、MgOとSrOによって構成されている。サンプルCは、MgOとBaOによって構成されている。サンプルDは、MgO、CaOおよびSrOによって構成されている。サンプルEはMgO、CaOおよびBaOによって構成されている。また、比較例は、MgO単体によって構成されている。
 サンプルAからEについて、維持電圧が測定された。比較例を100とした場合、サンプルAは90、サンプルBは87、サンプルCは85、サンプルDは81、サンプルEは82であった。サンプルAからEは、通常の製造方法で製造されたPDPである。つまり、サンプルAからEは、還元性有機ガス導入工程を有さない製造方法で製造されたPDPである。
 放電ガスのXeの分圧を10%から15%に高めた場合には輝度が約30%上昇するが、比較例では、維持電圧が約10%上昇する。
 一方、サンプルA、サンプルB、サンプルC、サンプルDおよびサンプルEの維持電圧はいずれも、比較例より約10%~20%低減できた。
 次に、本実施の形態にかかる製造方法でサンプルAからEと同じ構成の下地層91を有するPDP1が作製された。封着工程C1から放電ガス供給工程C4には、第1の温度プロファイルが用いられた。
 還元性有機ガスは、一例として、プロピレン、シクロプロパン、アセチレン、およびエチレンが用いられた。本実施の形態にかかるPDP1の維持電圧は、サンプルAからEと比較してさらに5%程度低かった。
 さらに、還元性有機ガスを導入する前に、封着工程C1において、放電空間16に開口する貫通孔を通して放電空間16内が陽圧状態となるように不活性ガスとして窒素ガスを流し、その後、封着を行った場合は、サンプルAからEの維持電圧と比較してさらに5から7%程度低かった。
 [7.効果等]
 本開示のPDP1は。前面板2と、前面板2と対向配置される背面板10とを備える。前面板2と背面板10との間に放電空間16が設けられる。かつ、放電空間16に面する領域にゼオライトを含む気体吸着材20が設けられる。前面板2は、誘電体層8と誘電体層8を覆う保護層9を有する。保護層9は、少なくとも第1の金属酸化物と第2の金属酸化物を含む。第1の金属酸化物は、酸化マグネシウムである。第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種である。保護層9における放電空間16側表面の第2の金属酸化物の濃度は、保護層9内部の第2の金属酸化物の濃度より高い。
 第2の金属酸化物の2次電子放出係数は、第1の金属酸化物の2次電子放出係数より高い。保護層9における放電空間16側表面の第2の金属酸化物の濃度が、保護層9内部の第2の金属酸化物の濃度より高くなることによって、保護層9の2次電子放出能力が向上する。また、気体吸着材によって、放電電圧のライフ変動が抑制される。よって、低電圧駆動が可能なPDP1が提供できる。
 本開示の製造方法は、前面板2と背面板10との間に設けられた放電空間16を有するPDP1の製造方法である。前面板2は、誘電体層8と誘電体層8を覆う保護層9を有する。保護層9は、少なくとも第1の金属酸化物と第2の金属酸化物とを含む。第1の金属酸化物は、酸化マグネシウムである。第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種である。製造方法は、放電空間16に面した領域にゼオライトを含む気体吸着材20を配置すること、保護層9形成後に、保護層9表面に還元性有機ガスを曝すことにより、保護層9の放電空間16側の第2の金属酸化物濃度を、保護層9中の濃度よりも高くすること、を含む。
 第2の金属酸化物の2次電子放出係数は、第1の金属酸化物の2次電子放出係数より高い。保護層9における放電空間16側表面の第2の金属酸化物の濃度が、保護層9内部の第2の金属酸化物の濃度より高くなることによって、保護層9の2次電子放出能力が向上する。よって、低電圧駆動が可能なPDP1が提供できる。さらに、還元性有機ガスに曝された保護層9には、酸素欠損が生じる。酸素欠損が生じることにより、保護層の二次電子放出能力が向上すると考えられる。したがって、本実施の形態にかかる製造方法で製造されたPDP1は、維持電圧を低減することができる。また、気体吸着材によって、放電電圧のライフ変動が抑制される。
 さらに、製造方法は、還元性有機ガスを放電空間16から排出すること、放電ガスを放電空間16に封入すること、を含んでもよい。
 さらに、還元性有機ガスは、酸素を含まない炭化水素系ガスであることが好ましい。酸素を含まないことによって、還元能力が高まるからである。
 さらに、還元性有機ガスは、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレン、シクロプロパン、プロパンおよびブタンの群から選ばれる少なくとも一種であることが好ましい。上記の還元性有機ガスは、製造工程上での取扱いが容易だからである。さらに、上記の還元性有機ガスは、分解が容易だからである。
 なお、本実施の形態においては、放電空間16を排気した後、還元性有機ガスを含むガスを放電空間16に導入する製造方法が例示された。しかし、放電空間16を排気することなく、放電空間16に還元性有機ガスを含むガスを連続的に供給することによって、還元性有機ガスを含むガスを放電空間16に導入することもできる。
 保護層9が、下地層91上に、金属酸化物の結晶粒子92aあるいは金属酸化物の結晶粒子92aが複数凝集した凝集粒子92を備える場合、高い電荷保持能力および高い電子放出能力を有する。したがって、PDP1全体として、高精細なPDPでも高速駆動を低電圧で実現できる。かつ、点灯不良を抑制した高品位な画像表示性能を実現できる。
 また、本実施の形態では、金属酸化物の結晶粒子92aとしてMgOが例示された。しかし、この他の単結晶粒子でも、MgO同様に高い電子放出性能を持つSr、Ca、Ba、Alなどの金属酸化物による結晶粒子を用いても同様の効果を得ることができる。よって、金属酸化物の結晶粒子92aとしてはMgOに限定されるものではない。
 以上のように、本開示における技術の例示として、実施の形態が説明された。そのために、添付図面および詳細な説明が提供された。
 したがって、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。上記技術を例示するためである。必須ではない構成要素が添付図面や詳細な説明に記載されていることによって、それら必須ではない構成要素が必須であるとの認定がなされるべきではない。
 また、上述の実施の形態は、本開示における技術を例示するためのものである。よって、特許請求の範囲またはその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示の技術は、大画面の表示デバイスなどに有用である。
 1  PDP
 2  前面板
 3  前面ガラス基板
 4  走査電極
 4a,5a  透明電極
 4b,5b  金属バス電極
 5  維持電極
 6  表示電極
 8  誘電体層
 9  保護層
 10  背面板
 11  背面ガラス基板
 12  データ電極
 13  下地誘電体層
 14  隔壁
 15  蛍光体層
 16  放電空間
 20  気体吸着材
 91  下地層
 92  凝集粒子
 92a  結晶粒子

Claims (10)

  1. 前面板と、前記前面板と対向配置される背面板を備え、
    前記前面板と前記背面板の間に放電空間が設けられ、かつ、前記放電空間に面した領域にゼオライトを含む気体吸着材が設けられ、
     前記前面板は、誘電体層と前記誘電体層を覆う保護層を有し、
      前記保護層は、少なくとも第1の金属酸化物と第2の金属酸化物を含み、
       前記第1の金属酸化物は、酸化マグネシウムであり、
       前記第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種であり、
       前記保護層における前記放電空間側表面の前記第2の金属酸化物の濃度は、前記保護層内部の前記第2の金属酸化物の濃度より高い、
    プラズマディスプレイパネル。
  2. 前記ゼオライトは、銅イオン、コバルトイオン、ニッケルイオン、ナトリウムイオン、リチウムイオン、カリウムイオン、マグネシウムイオン、カルシウムイオン、バリウムイオンおよびストロンチウムイオンの群から選ばれる少なくとも一種とイオン交換した金属イオン交換型ゼオライトである、
    請求項1に記載のプラズマディスプレイパネル。
  3. 前記ゼオライトは、前記放電空間を排気する温度以上で活性化し、前記放電空間を排気する温度未満で二酸化炭素および一酸化炭素を吸着する、
    請求項1に記載のプラズマディスプレイパネル。
  4. 前記ゼオライトは、アルミニウムおよびシリコンを含み、前記ゼオライトにおけるモル比率でのシリコン濃度は、前記ゼオライトにおけるモル比率でのアルミニウム濃度より高い、
    請求項1に記載のプラズマディスプレイパネル。
  5. 前記前面板は、前記誘電体層に覆われる表示電極対をさらに有し、
    前記保護層は、隣接する前記表示電極対の間隙に相当する領域を含み、前記領域における前記放電空間側表面の前記第2の金属酸化物の濃度は、前記保護層内部の前記第2の金属酸化物の濃度より高い、
    請求項1に記載のプラズマディスプレイパネル。
  6. 前記保護層は、X線回折分析において少なくとも一つのピークを有し、
    前記ピークは、前記第1の金属酸化物のX線回折分析における第1のピークと、前記第2の金属酸化物のX線回折分析における第2のピークと、の間にあり、
    前記第1のピークおよび前記第2のピークは、前記ピークが示す面方位と同じ面方位を示す、請求項1に記載のプラズマディスプレイパネル。
  7. 前面板と背面板の間に設けられた放電空間を有するプラズマディスプレイパネルの製造方法であって、
     前記前面板は、誘電体層と前記誘電体層を覆う保護層を有し、
      前記保護層は、少なくとも第1の金属酸化物と第2の金属酸化物を含み、
       前記第1の金属酸化物は、酸化マグネシウムであり、
       前記第2の金属酸化物は、酸化カルシウム、酸化ストロンチウムおよび酸化バリウムの群から選ばれる1種であり、
    前記放電空間に面した領域にゼオライトを含む気体吸着材を配置すること、
    前記保護層形成後に、前記保護層表面に還元性有機ガスを曝すことにより、前記保護層の前記放電空間側の前記第2の金属酸化物濃度を、前記保護層中の濃度よりも高くすること、を含む、
    プラズマディスプレイパネルの製造方法。
  8. さらに、前記還元性有機ガスを前記放電空間から排出すること、
    放電ガスを前記放電空間に封入すること、を含む、
    請求項7に記載のプラズマディスプレイパネルの製造方法。
  9. 前記還元性有機ガスは、酸素を含まない炭化水素系ガスである、
    請求項7に記載のプラズマディスプレイパネルの製造方法。
  10. 前記還元性有機ガスは、アセチレン、エチレン、メチルアセチレン、プロパジエン、プロピレン、シクロプロパン、プロパンおよびブタンの群から選ばれる少なくとも一種である、
    請求項9に記載のプラズマディスプレイパネルの製造方法。
PCT/JP2012/004821 2011-08-03 2012-07-30 プラズマディスプレイパネルおよびその製造方法 WO2013018348A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-169848 2011-08-03
JP2011169848A JP2013033678A (ja) 2011-08-03 2011-08-03 プラズマディスプレイパネルおよびその製造方法
JP2011-174736 2011-08-10
JP2011174736A JP2013037982A (ja) 2011-08-10 2011-08-10 プラズマディスプレイパネル

Publications (1)

Publication Number Publication Date
WO2013018348A1 true WO2013018348A1 (ja) 2013-02-07

Family

ID=47628899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004821 WO2013018348A1 (ja) 2011-08-03 2012-07-30 プラズマディスプレイパネルおよびその製造方法

Country Status (1)

Country Link
WO (1) WO2013018348A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154027A (ja) * 1997-08-05 1999-02-26 Canon Inc 電子源及び画像形成装置の製造方法
JP2004220968A (ja) * 2003-01-16 2004-08-05 Pioneer Electronic Corp ディスプレイパネルおよびその製造方法
JP2006260992A (ja) * 2005-03-17 2006-09-28 Ube Material Industries Ltd 酸化マグネシウム薄膜の改質方法
WO2007066733A1 (ja) * 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2008218359A (ja) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd ガス放電表示パネル
JP2010092791A (ja) * 2008-10-10 2010-04-22 Panasonic Corp プラズマディスプレイパネル
JP2010186665A (ja) * 2009-02-13 2010-08-26 Panasonic Corp プラズマディスプレイパネル
WO2010140307A1 (ja) * 2009-06-02 2010-12-09 パナソニック株式会社 プラズマディスプレイパネルの製造方法
JP2011060783A (ja) * 2010-12-24 2011-03-24 Panasonic Corp プラズマディスプレイパネルおよびその製造方法
WO2011142138A1 (ja) * 2010-05-13 2011-11-17 パナソニック株式会社 プラズマディスプレイパネル及びその製造方法
JP2012064423A (ja) * 2010-09-16 2012-03-29 Panasonic Corp プラズマディスプレイパネルの製造方法
JP2012064424A (ja) * 2010-09-16 2012-03-29 Panasonic Corp プラズマディスプレイパネル

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1154027A (ja) * 1997-08-05 1999-02-26 Canon Inc 電子源及び画像形成装置の製造方法
JP2004220968A (ja) * 2003-01-16 2004-08-05 Pioneer Electronic Corp ディスプレイパネルおよびその製造方法
JP2006260992A (ja) * 2005-03-17 2006-09-28 Ube Material Industries Ltd 酸化マグネシウム薄膜の改質方法
WO2007066733A1 (ja) * 2005-12-08 2007-06-14 National Institute For Materials Science 蛍光体とその製造方法および発光器具
JP2008218359A (ja) * 2007-03-08 2008-09-18 Matsushita Electric Ind Co Ltd ガス放電表示パネル
JP2010092791A (ja) * 2008-10-10 2010-04-22 Panasonic Corp プラズマディスプレイパネル
JP2010186665A (ja) * 2009-02-13 2010-08-26 Panasonic Corp プラズマディスプレイパネル
WO2010140307A1 (ja) * 2009-06-02 2010-12-09 パナソニック株式会社 プラズマディスプレイパネルの製造方法
WO2011142138A1 (ja) * 2010-05-13 2011-11-17 パナソニック株式会社 プラズマディスプレイパネル及びその製造方法
JP2012064423A (ja) * 2010-09-16 2012-03-29 Panasonic Corp プラズマディスプレイパネルの製造方法
JP2012064424A (ja) * 2010-09-16 2012-03-29 Panasonic Corp プラズマディスプレイパネル
JP2011060783A (ja) * 2010-12-24 2011-03-24 Panasonic Corp プラズマディスプレイパネルおよびその製造方法

Similar Documents

Publication Publication Date Title
JP5161173B2 (ja) プラズマディスプレイパネルの製造方法
WO2011118162A1 (ja) プラズマディスプレイパネルの製造方法
JP5090401B2 (ja) プラズマディスプレイパネルの製造方法
WO2011118152A1 (ja) プラズマディスプレイパネルの製造方法
WO2013018351A1 (ja) プラズマディスプレイパネルおよびその製造方法
WO2011114700A1 (ja) プラズマディスプレイパネル
WO2011118165A1 (ja) プラズマディスプレイパネルの製造方法
WO2013018348A1 (ja) プラズマディスプレイパネルおよびその製造方法
WO2011118164A1 (ja) プラズマディスプレイパネルの製造方法
US8274222B2 (en) Plasma display panel having a protective layer which includes aggregated particles
JP2013033678A (ja) プラズマディスプレイパネルおよびその製造方法
WO2013018336A1 (ja) プラズマディスプレイパネルおよびその製造方法
WO2013018354A1 (ja) プラズマディスプレイパネルおよびその製造方法
JP2013037982A (ja) プラズマディスプレイパネル
WO2013018335A1 (ja) プラズマディスプレイパネルおよびその製造方法
WO2013018355A1 (ja) プラズマディスプレイパネルおよびその製造方法
JP2010192358A (ja) プラズマディスプレイパネルの製造方法
JP2012064423A (ja) プラズマディスプレイパネルの製造方法
JP2010192356A (ja) プラズマディスプレイパネルの製造方法
JP2013037983A (ja) プラズマディスプレイパネル
JP2013033679A (ja) プラズマディスプレイパネルおよびその製造方法
WO2011118154A1 (ja) プラズマディスプレイパネルの製造方法
WO2011118151A1 (ja) プラズマディスプレイパネルの製造方法
WO2011114649A1 (ja) プラズマディスプレイパネル
JP2011198611A (ja) プラズマディスプレイパネルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12820677

Country of ref document: EP

Kind code of ref document: A1