WO2013014828A1 - Filter unit and cleaner provided with same - Google Patents

Filter unit and cleaner provided with same Download PDF

Info

Publication number
WO2013014828A1
WO2013014828A1 PCT/JP2012/002350 JP2012002350W WO2013014828A1 WO 2013014828 A1 WO2013014828 A1 WO 2013014828A1 JP 2012002350 W JP2012002350 W JP 2012002350W WO 2013014828 A1 WO2013014828 A1 WO 2013014828A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter unit
filter
porous membrane
filter medium
support material
Prior art date
Application number
PCT/JP2012/002350
Other languages
French (fr)
Japanese (ja)
Inventor
志穂 内山
百合 堀江
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2013014828A1 publication Critical patent/WO2013014828A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47LDOMESTIC WASHING OR CLEANING; SUCTION CLEANERS IN GENERAL
    • A47L9/00Details or accessories of suction cleaners, e.g. mechanical means for controlling the suction or for effecting pulsating action; Storing devices specially adapted to suction cleaners or parts thereof; Carrying-vehicles specially adapted for suction cleaners
    • A47L9/10Filters; Dust separators; Dust removal; Automatic exchange of filters
    • A47L9/12Dry filters
    • A47L9/122Dry filters flat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • B01D39/1692Other shaped material, e.g. perforated or porous sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/54Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms
    • B01D46/543Particle separators, e.g. dust precipitators, using ultra-fine filter sheets or diaphragms using membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2239/00Aspects relating to filtering material for liquid or gaseous fluids
    • B01D2239/06Filter cloth, e.g. knitted, woven non-woven; self-supported material
    • B01D2239/065More than one layer present in the filtering material
    • B01D2239/0668The layers being joined by heat or melt-bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/55Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for cleaning appliances, e.g. suction cleaners

Definitions

  • the present invention relates to a filter unit having a filter medium in which a fluororesin porous membrane and a breathable support material are laminated, and particularly useful for vacuum cleaner applications.
  • the present invention also relates to a vacuum cleaner with a dust wiping-off function provided with the filter unit.
  • the filter medium is a filter medium having a fluororesin porous film such as a polytetrafluoroethylene (PTFE) porous film, or a filter medium made by adding a binder to glass fiber (glass filter medium).
  • PTFE polytetrafluoroethylene
  • a filter medium (electret filter medium) obtained by electretizing a melotoblon nonwoven fabric is used.
  • the filter medium provided with a fluororesin porous membrane has characteristics such as few problems such as generation of microfibers and self-dusting, and a small increase in pressure loss due to use. Further, as a property of the fluororesin, there is a property that the friction coefficient is small and the slip property is good, and the collected dust can be easily removed by giving an impact to the porous film. Due to such many advantageous features, it is expected that the amount of the filter medium provided with the fluororesin porous membrane (particularly PTFE porous membrane) will increase in the future.
  • Fluoropolymer porous membrane is generally a material with high flexibility.
  • a filter unit that transmits a large air volume such as a filter unit for a vacuum cleaner
  • a certain degree of rigidity is required for the filter medium so that the filter medium is not greatly deformed by the air volume.
  • the filter medium provided with the fluororesin porous membrane has a configuration in which a breathable support material as a reinforcing material is laminated on a fluororesin porous membrane as a ventilation member.
  • a breathable support material as a reinforcing material is laminated on a fluororesin porous membrane as a ventilation member.
  • a mesh, a nonwoven fabric or the like using thermoplastic resin fibers is frequently used.
  • the breathable support material is laminated by being adhered to the fluororesin porous film by thermal lamination or the like (see, for example, Patent Documents 1 and 2).
  • the filter unit has a structure in which a pleated filter medium is supported by a non-woven fabric, resin or metal frame.
  • dust collected on a filter medium is subjected to an impact from the downstream side, and is removed from the filter medium to be removed.
  • the filter medium of the filter unit has a small initial pressure loss (pressure loss before dust collection). Further, when the collected dust is removed, if the dust remains on the filter medium, the pressure loss increases. For this reason, it is desired that the filter medium of the filter unit has a high dust separation property. Further, since dust removal in the filter unit for a vacuum cleaner is performed by giving an impact to the filter medium, high impact resistance is desired for the filter medium of the filter unit without causing damage or deterioration. On the other hand, the conventional filter unit has room for improvement in the initial pressure loss, dust separation, and impact resistance.
  • An object of the present invention is to provide a filter unit having a small initial pressure loss, high dust separation and high impact resistance.
  • the present invention provides a filter medium having a fluororesin porous membrane, and a breathable support material laminated on at least one surface of the fluororesin porous membrane,
  • a filter unit comprising a frame that supports the peripheral edge of the filter medium, In the filter area of the filter medium of the filter unit, the area ratio of the area where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filter area is 10% or less.
  • the fluororesin porous membrane of the filter medium and the air-permeable support material are not bonded.
  • the fluororesin porous membrane is a polytetrafluoroethylene porous membrane.
  • the fluororesin porous membrane has an average pore diameter of 0.01 to 100 ⁇ m, a pressure loss generated when air is permeated at a flow rate of 5.3 cm / sec, and 10 to 300 Pa.
  • the flow rate of the gas to be filtered is 5 It is preferable that the collection efficiency is 60% or more when the particle size of the collection target particle is 0.3 to 0.5 ⁇ m.
  • the filter unit of the present invention 11 g of Kanto Loam soil specified in JIS Z 8901 is supplied to the upstream side of the filter unit at 3 g per 100 cm 2 of the opening of the filter unit frame, and the flow rate is 2.4 m 3 / If the filter unit is dropped 5 times from a height of 10 cm and the Kanto Loam soil is wiped off with the upstream side of the filter unit facing down and the upstream side of the filter unit facing down, The increase in pressure loss is preferably 2 Pa or less.
  • the filter medium of the filter unit has a breathable support material on the outermost surface, and the breathable support material of the filter medium of the filter unit is a nylon brush (brush diameter: 200 ⁇ m, hair feet: 25 mm). ),
  • the reduction in the collection efficiency before and after the brushing is preferably 0.2% or less.
  • the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to each other outside the filtration region of the filter medium of the filter unit.
  • the filter unit of the present invention is suitable for vacuum cleaner applications.
  • the present invention is also a vacuum cleaner equipped with the above-mentioned filter unit and having a dust removal function.
  • the filter unit of the present invention has a low initial pressure loss, high dust separation and high impact resistance.
  • the filter unit of the present invention is suitable for vacuum cleaner applications, and particularly suitable for vacuum cleaner applications with a dust removal function.
  • the filter unit of the present invention includes a filter medium having a fluororesin porous membrane and a breathable support material laminated on at least one surface of the fluororesin porous membrane, and a frame that supports a peripheral portion of the filter media. With body.
  • fluororesin constituting the fluororesin porous membrane used in the present invention examples include polyvinylidene fluoride, polytetrafluoroethylene (PTFE), an ethylene-tetrafluoroethylene copolymer, and a tetrafluoroethylene-hexafluoropropylene copolymer. And tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer.
  • PTFE is most suitable from the viewpoint of versatility.
  • fluororesin porous membrane those having an average pore diameter of 0.01 to 100 ⁇ m are preferably used, and those having 0.01 to 50 ⁇ m are more preferably used.
  • the fluororesin porous membrane one having a pressure loss of 10 to 300 Pa generated when air is permeated at a flow rate of 5.3 cm / sec is preferably used, and one having 10 to 100 Pa is more preferably used. .
  • the fluororesin porous membrane has a collection efficiency of 60% or more when the flow rate of the gas to be filtered is 5.3 cm / second and the particle size of the particles to be collected is in the range of 0.3 to 0.5 ⁇ m. Some are preferably used, and more preferably 70 to 99.99%.
  • the fluororesin porous membrane having the above pressure loss and collection efficiency can be obtained by appropriately setting the average pore diameter, porosity, and thickness of the fluororesin porous membrane.
  • the thickness of the fluororesin porous membrane is preferably 1 to 300 ⁇ m, more preferably 2 to 100 ⁇ m.
  • the fluororesin porous membrane is available as a commercial product and can be manufactured according to a known method.
  • the PTFE porous membrane can be produced by stretching a PTFE sheet obtained by paste extrusion using PTFE fine powder as a raw material.
  • the area stretching ratio of the PTFE sheet integrated of the stretching ratio in the uniaxial direction and the stretching ratio in the direction perpendicular thereto may be about 50 to 900 times.
  • breathable support material used in the present invention those having higher strength and breathability than the fluororesin porous membrane are suitable, and examples of the material include metals, polyolefins (eg, polyethylene (PE), Polypropylene (PP) and the like, polyester (eg, polyethylene terephthalate (PET) and the like), polyamide (aliphatic polyamide and aromatic polyamide), and composites thereof.
  • the form of the air-permeable support material include felt, nonwoven fabric, woven fabric, mesh (mesh-like sheet), porous material, and the like.
  • the filter medium may be liquid repellent (water repellent and / or oil repellent).
  • the filter medium has liquid repellency. In such a filter medium, it becomes easy to remove a substance collected by the filter medium by washing or mechanically remove it.
  • the filter medium may be laminated with a material other than the fluororesin porous membrane and the air-permeable support material as necessary, as long as the object of the present invention is not impaired.
  • a plurality of fluororesin porous membranes may be used, and similarly, a plurality of breathable support materials may be used. At this time, either the fluororesin porous membrane or the air-permeable support material may be on the outermost surface (exposed surface side).
  • the filter medium may be pleated if necessary, and the shape of the pleat is not particularly limited.
  • a flat filter medium may be fed out and continuously processed, or a filter medium (single plate) cut out to an appropriate size may be processed into a pleated shape.
  • a known pleating machine rotary pleating machine, reciprocating pleating machine, creasing pleating machine or the like
  • rotary pleating machine reciprocating pleating machine, creasing pleating machine or the like
  • a reciprocating pleating machine From the viewpoint of suppressing damage to the filter medium during pleating, it is preferable to use a reciprocating pleating machine.
  • the fluororesin porous membrane or the air-permeable support material may be colored. Coloring can be performed by a known method such as kneading a pigment with a raw material of a fluororesin porous membrane or a breathable support material.
  • the shape of the frame used in the present invention is not particularly limited as long as it supports the peripheral edge of the filter medium and has an opening for filtration, and is similar to the shape applied to a known normal filter unit. Good.
  • the material of the frame include nonwoven fabric, resin, paper, metal, and the like. Resin is preferable because it is easy to manufacture the filter unit by insert molding.
  • Specific examples of the resin include acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate, polypropylene, and various elastomers. Generally, polypropylene and ABS are used, but it is easy to ensure dimensional accuracy. Since the deformation during use can be suppressed, ABS is preferable.
  • the resin used for the frame may contain other materials for the purpose of improving functions or adding new functions.
  • a filler such as glass fiber may be included.
  • the area ratio of the region where the fluororesin porous membrane of the filter filter material and the air-permeable support material are bonded to the filter region in the filter region of the filter unit is 10% or less. It has the characteristic of being.
  • the filter medium is manufactured by thermally bonding the fluororesin porous membrane and the filter medium on the entire surface by thermal lamination, etc.
  • the passage of fluid is restricted, which contributes to pressure loss and the application of compressive force during thermal lamination.
  • the present inventors have found that the dust separation property is poor at an adhesion point where passage of fluid is restricted.
  • the filter medium may be damaged or deteriorated at the adhesion point.
  • the initial pressure loss of the filter unit is reduced. Can be reduced, and dust separation and impact resistance can be increased.
  • the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filter region is 5% or less. Preferably, it is 3% or less, more preferably 0%. That is, it is most preferable that the fluororesin porous membrane of the filter medium and the air-permeable support material are not bonded in the filtration region of the filter medium of the filter unit.
  • the “filtering region of the filter medium” refers to a region where filtration is performed in the filter medium of the filter unit, that is, a region where the filter medium is exposed.
  • the filter medium has a pleated shape, the entire area of the exposed filter medium becomes a filtration region, and the filtration region is larger than the area of the opening of the filter unit frame.
  • pressure loss refers to a pressure difference between before and after passage when a fluid passes through the filter medium.
  • initial pressure loss means pressure loss in a state where dust collection has never been performed.
  • the fluororesin porous membrane and the breathable support material are bonded means that only when the fluororesin porous membrane and the breathable support material are bonded by an adhesive or a hot melt agent.
  • a case where a part of the breathable support material is melted and the fluororesin porous membrane and the breathable support material are thermally bonded is also included.
  • the “region where the fluororesin porous membrane and the breathable support material of the filter medium are bonded” refers to a region where the bonding operation between the fluororesin porous membrane and the breathable support material is performed.
  • the breathable support is a mesh-like fiber
  • the fibers are arranged with a space therebetween, so that when the fluororesin porous membrane and the breathable support material are thermally bonded on the entire surface, the adhesion point However, there is a gap, but the bonded area is 100% by area.
  • the breathable support material when the breathable support material is laminated on both surfaces of the fluororesin porous membrane, the fluororesin porous membrane of the filter medium and the breathable support material are bonded to the filtration region of the filter medium.
  • the area ratio of the existing area is evaluated for each surface. Therefore, when the air-permeable support material is laminated on both surfaces of the fluororesin porous membrane, if the area ratio is 10% or less on one surface, it is included in the scope of the present invention. In this case, however, the area ratio on both surfaces is preferably 10% or less.
  • the fluororesin porous membrane of the filter medium and the air-permeable support material are preferably bonded at the peripheral edge. In this case, in the filtration region, it is easy to reduce the area of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded.
  • the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to each other outside the filtration region of the filter medium of the filter unit. That is, it is preferable that the fluororesin porous membrane and the air-permeable support material are bonded in a region where the filter medium is fixed in the frame.
  • the filter unit of the present invention can be manufactured, for example, as follows. After the fluororesin porous membrane and the breathable support material are pressure-bonded by a nip roll, the fluororesin porous membrane and a part of the breathable support material are thermally laminated and thermally bonded. At this time, in the region exposed as the filter medium (region to be the filtration region), the area of the region to be thermally bonded is set to 10 area% or less.
  • the region to be thermally bonded may be dot-shaped, linear or grid-shaped.
  • the peripheral portion of the fluororesin porous membrane and the air-permeable support material is thermally bonded by thermal lamination so that the entire region to be thermally bonded is accommodated in the frame and is not exposed.
  • a frame is formed by insert molding. In this way, a filter unit in which the peripheral edge of the filter medium enters the frame body and is integrated can be obtained.
  • the filter unit can be manufactured by preparing a pair of frames in advance and sandwiching the filter medium.
  • Examples of the form of the filter unit of the present invention include a filter bag, a filter tube, a filter panel unit, and a filter cartridge.
  • the filter unit of the present invention 11 g of Kanto Loam soil specified in JIS Z 8901 is supplied to the upstream side of the filter unit at a rate of 2.4 m 3 / min per 100 cm 2 of the opening of the filter unit frame. If the filter unit is dropped 5 times from a height of 10 cm and the Kanto Loam soil is wiped down with the upstream side of the filter unit facing down, the pressure before and after the removal
  • the increase in loss is preferably 2 Pa or less, more preferably 1 Pa or less, and further preferably 0.5 Pa or less.
  • Such a characteristic is obtained by reducing the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filtration region in the filtration region of the filter medium of the filter unit. .
  • the filter medium of the filter unit has a breathable support material on the outermost surface (exposed surface side), and the breathable support material of the filter medium of the filter unit is a nylon brush (brush diameter: 200 ⁇ m).
  • the brushing pressure is 0.05 reciprocating with a brushing pressure of 0.05 MPa
  • the reduction in the collection efficiency before and after the brushing is preferably 0.2% or less, and 0.1% or less. Is more preferably 0.05% or less.
  • Such a characteristic is obtained by reducing the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filtration region in the filtration region of the filter medium of the filter unit. .
  • FIG. 1 shows an example of the filter unit of the present invention.
  • a filter unit 3 is configured by supporting the periphery of the pleated filter medium 1 by a frame 2. It is also possible to use a filter medium 1 that is not pleated.
  • the frame body 2 is formed by insert molding using a resin containing a filler, and supports the filter medium 1 by taking the peripheral edge of the filter medium 1 into the frame body.
  • the filter medium 1 is a laminate of a fluororesin porous membrane such as a PTFE porous membrane and a breathable support material.
  • the fluororesin porous membrane and the air-permeable support material are bonded only at the peripheral portion, but the bonded area is all taken into the frame body 2, and in the exposed portion of the filter medium 1. There is no glued area. For example, if the bonded region is 10 area% or less of the filtration region, the entire bonded peripheral edge of the filter medium 1 is not taken into the frame body 2 and a part thereof is exposed. It doesn't matter.
  • the filter unit of the present invention has a low initial pressure loss, high dust separation and high impact resistance. Therefore, it is suitable for a filter unit that is used while removing dust, particles, and the like collected by the filter material by removing or washing.
  • the filter unit of the present invention can be used, for example, as a clean room air filter unit, a household appliance filter unit, and the like, and particularly preferably as a vacuum cleaner filter unit.
  • the present invention is also a vacuum cleaner equipped with the above filter unit and having a dust removal function.
  • the said vacuum cleaner with a dust wiping-off function can be comprised by replacing the filter unit of the well-known vacuum cleaner with a dust wiping-down function with said filter unit.
  • Example 1 First, for 100 parts by weight of PTFE fine powder (trade name “Polyflon F-104”, manufactured by Daikin Industries, Ltd.), 25 parts by weight of hydrocarbon oil (product item “Isopar M”, manufactured by Esso Petroleum) is used as a liquid lubricant. Were mixed uniformly. Next, the obtained mixture was subjected to compression preforming at a pressure of 20 MPa, and then the preform was extruded into a rod shape, and the rod-shaped extrudate was rolled through a pair of metal rolls to a thickness of 0. A strip-shaped PTFE sheet having a width of 2 mm and a width of 150 mm was obtained.
  • PTFE fine powder trade name “Polyflon F-104”, manufactured by Daikin Industries, Ltd.
  • hydrocarbon oil product item “Isopar M”, manufactured by Esso Petroleum
  • the obtained sheet was heated to 220 ° C. to remove the liquid lubricant contained in the sheet, and then stretched in the MD direction (machine direction) at a magnification of 20 times while remaining unfired, and then at a magnification of 30 times. Then, the film was stretched in the TD direction (transverse direction), and further fired at a temperature equal to or higher than the melting point of PTFE with the dimensions fixed, to obtain a band-like PTFE porous membrane.
  • the average pore diameter of this PTFE porous membrane is 10 ⁇ m
  • the pressure loss generated when air is permeated at a flow rate of 5.3 cm / sec is 40 Pa
  • the flow rate of the gas to be filtered is 5.3 cm / sec
  • the collection efficiency was 80% when the particle size of the collection target particles was in the range of 0.3 to 0.5 ⁇ m.
  • PE polyethylene
  • the both sides of the PTFE porous membrane produced above were sandwiched between two PE mesh webs and nipped at a pressure of about 0.1 to 0.5 kPa at room temperature to obtain a laminate having a three-layer structure. Further, only 1 cm of each end of the laminate was thermally laminated at 128 ° C. and bonded to obtain a filter medium.
  • the obtained filter medium was pleated at a height of 20 mm using a pleating machine.
  • the filter unit as shown in FIG. 1 was obtained by insert-molding the filter media after pleating with ABS containing 30% by weight of glass fiber using a vertical molding machine.
  • the size of the opening of the frame was 100 mm ⁇ 100 mm
  • the width of the exposed filter medium was 100 mm
  • the pleat height was 20 mm
  • the number of pleat peaks was 25.
  • the insert molding conditions were an injection resin temperature of 275 ° C., an injection pressure of 8.0 MPa, a cooling temperature of 60 ° C., a cooling time of 30 seconds, and a holding pressure of 5%.
  • the area where the PTFE porous membrane and the PE mesh web were bonded was contained in the frame, and there was no area bonded in the filtration area. That is, in the filtration area, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded was 0 area%.
  • Example 2 A filter unit was obtained in the same manner as in Example 1 except that the filter medium was made into a two-layer structure in which a PE mesh web was laminated only on one side of the PTFE porous membrane. In this filter unit, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded in the filtration area was 0 area%.
  • Example 1 In the same manner as in Example 1, a laminate having a three-layer structure in which both sides of the PTFE porous membrane were sandwiched between two PE mesh webs was obtained. The laminate is passed through a pair of rolls heated to 180 ° C. so that the entire surface is thermally laminated (line speed 10 m / min), and a PTFE porous membrane and a PE mesh web are bonded to the entire surface. A filter medium was obtained. Using this filter medium, a filter unit was obtained in the same manner as in Example 1. In this filter unit, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded in the filtration area was 100 area%.
  • the filter media used in the filter units of the example and the comparative example are set in a cylindrical holder having an effective area of 100 cm 2 , and a pressure difference is generated on both sides of the filter media to allow gas to permeate the filter media.
  • the linear velocity was adjusted to 5.3 cm / sec (flow rate 31.8 m 3 / min).
  • polydisperse dioctyl phthalate (DOP) particles defined in JIS Z 8901 are arranged upstream of the filter medium so that the concentration of particles having a particle size range of 0.3 to 0.5 ⁇ m is 10 6 particles / liter.
  • the concentration of DOP particles on the downstream side of the filter medium was measured with a particle counter.
  • the particle size range of the particles to be measured by the particle counter is 0.3 to 0.5 ⁇ m
  • the filter unit of the example had no change in pressure loss before and after the test. This is thought to be because the collected dust was sufficiently removed.
  • an increase in pressure loss was observed after the test. This is probably because the collected dust was not removed enough.
  • the filter unit of the example had no change in the collection efficiency before and after the test, and there was no deterioration of the film against the impact.
  • the filter unit of the comparative example a decrease in collection efficiency after the test was observed. This is presumably because some film breakage occurred due to the impact.
  • the filter unit of the present invention can be used as an air filter unit for clean rooms, a filter unit for home appliances, and the like, and can be particularly preferably used as a filter unit for a vacuum cleaner.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filters For Electric Vacuum Cleaners (AREA)

Abstract

The invention provides a filter unit with low initial pressure loss and high dust-releasing properties and shock resistance. The invention is a filter unit provided with: a filter material having a porous fluorine resin membrane and a gas-permeable support material laminated on at least one surface of the porous fluorine resin membrane; and a frame that supports the rim of the filter material. In the filtration region of the filter material of the filter unit, the ratio of the area of the region where the porous fluorine resin membrane and the gas-permeable support material of the filter material are bonded together with respect to the area of the filtration region is 10% or less.

Description

フィルタユニットおよびそれを備えた掃除機Filter unit and vacuum cleaner provided with the same
 本発明は、フッ素樹脂多孔質膜と通気性支持材が積層されたフィルタ濾材を備えた、特に掃除機用途に有用なフィルタユニットに関する。本発明はまた、当該フィルタユニットを備えた、塵払い落とし機能付き掃除機に関する。 The present invention relates to a filter unit having a filter medium in which a fluororesin porous membrane and a breathable support material are laminated, and particularly useful for vacuum cleaner applications. The present invention also relates to a vacuum cleaner with a dust wiping-off function provided with the filter unit.
 ガス流から粒子などを濾過するために、フィルタ濾材を有するフィルタユニットが用いられている。高い捕集効率が求められる用途においては、フィルタ濾材には、ポリテトラフルオロエチレン(PTFE)多孔質膜等のフッ素樹脂多孔質膜を備える濾材、ガラス繊維にバインダーを加えて抄紙した濾材(ガラス濾材)、メロトブローン不織布をエレクトレット化した濾材(エレクトレット濾材)などが用いられている。 In order to filter particles and the like from the gas stream, a filter unit having a filter medium is used. In applications where high collection efficiency is required, the filter medium is a filter medium having a fluororesin porous film such as a polytetrafluoroethylene (PTFE) porous film, or a filter medium made by adding a binder to glass fiber (glass filter medium). ), A filter medium (electret filter medium) obtained by electretizing a melotoblon nonwoven fabric is used.
 なかでも、フッ素樹脂多孔質膜を備える濾材は、微小繊維の発生や自己発塵といった問題が少なく、使用に伴う圧力損失の上昇が少ないなどの特徴を有している。また、フッ素樹脂の性質として、摩擦係数が小さく滑り性が良好であり、捕集した塵を、多孔質膜に衝撃を与えることにより容易に除塵することができるといった性質なども有している。このような多くの有利な特徴から、フッ素樹脂多孔質膜(特にPTFE多孔質膜)を備える濾材は、今後ますます使用量が増大すると期待されている。 Among them, the filter medium provided with a fluororesin porous membrane has characteristics such as few problems such as generation of microfibers and self-dusting, and a small increase in pressure loss due to use. Further, as a property of the fluororesin, there is a property that the friction coefficient is small and the slip property is good, and the collected dust can be easily removed by giving an impact to the porous film. Due to such many advantageous features, it is expected that the amount of the filter medium provided with the fluororesin porous membrane (particularly PTFE porous membrane) will increase in the future.
 フッ素樹脂多孔質膜は、一般に柔軟性に富む材料である。一方で、特に掃除機用フィルタユニットなど、大きな風量が透過するフィルタユニットにおいては、その風量によってフィルタ濾材が大きく変形しないように、フィルタ濾材にある程度の剛性が要求される。このため、フッ素樹脂多孔質膜を備えるフィルタ濾材は、通気部材としてのフッ素樹脂多孔質膜に、補強材としての通気性支持材を積層した構成を有している。通気性支持材には、熱可塑性樹脂繊維を用いた、メッシュ、不織布等が多用されている。通気性支持材は、熱ラミネート等によって、フッ素樹脂多孔質膜と接着されて積層される(例えば、特許文献1および2参照)。 Fluoropolymer porous membrane is generally a material with high flexibility. On the other hand, particularly in a filter unit that transmits a large air volume, such as a filter unit for a vacuum cleaner, a certain degree of rigidity is required for the filter medium so that the filter medium is not greatly deformed by the air volume. For this reason, the filter medium provided with the fluororesin porous membrane has a configuration in which a breathable support material as a reinforcing material is laminated on a fluororesin porous membrane as a ventilation member. As the air-permeable support material, a mesh, a nonwoven fabric or the like using thermoplastic resin fibers is frequently used. The breathable support material is laminated by being adhered to the fluororesin porous film by thermal lamination or the like (see, for example, Patent Documents 1 and 2).
 掃除機用途においては、フィルタユニットは、プリーツ加工されたフィルタ濾材が、不織布、樹脂または金属製の枠体に支持された構造を有している。掃除機用フィルタユニットにおいては、フィルタ濾材に集めた塵等を、下流側から衝撃を与え、フィルタ濾材より剥離させて除塵するということが行われている。 In vacuum cleaner applications, the filter unit has a structure in which a pleated filter medium is supported by a non-woven fabric, resin or metal frame. In a vacuum cleaner filter unit, dust collected on a filter medium is subjected to an impact from the downstream side, and is removed from the filter medium to be removed.
 フィルタユニットを用い、濾過に必要な力を最小にするためには、圧力損失は可能なだけ小さくすることが好ましい。従って、フィルタユニットのフィルタ濾材には、初期の圧力損失(集塵前の圧力損失)が小さいことが望まれている。また、集めた塵を除塵した際に、塵がフィルタ濾材に残ると、圧力損失が大きくなる。このため、フィルタユニットのフィルタ濾材には、塵離れ性が高いことが望まれている。また、掃除機用フィルタユニットにおける除塵は、フィルタ濾材に衝撃を与えることにより行われるため、フィルタユニットのフィルタ濾材には、破損や劣化の起こらない高い耐衝撃性が望まれている。それに対し、従来のフィルタユニットにおいては、初期の圧力損失、塵離れ性、および耐衝撃性に改善の余地があった。 In order to minimize the force required for filtration using a filter unit, it is preferable to reduce the pressure loss as much as possible. Therefore, it is desired that the filter medium of the filter unit has a small initial pressure loss (pressure loss before dust collection). Further, when the collected dust is removed, if the dust remains on the filter medium, the pressure loss increases. For this reason, it is desired that the filter medium of the filter unit has a high dust separation property. Further, since dust removal in the filter unit for a vacuum cleaner is performed by giving an impact to the filter medium, high impact resistance is desired for the filter medium of the filter unit without causing damage or deterioration. On the other hand, the conventional filter unit has room for improvement in the initial pressure loss, dust separation, and impact resistance.
特開2005-253711号公報JP 2005-253711 A 特表2002-542010号公報Special Table 2002-542010
 本発明は、初期の圧力損失が小さく、塵離れ性および耐衝撃性が高いフィルタユニットを提供することを目的とする。 An object of the present invention is to provide a filter unit having a small initial pressure loss, high dust separation and high impact resistance.
 本発明は、フッ素樹脂多孔質膜、および当該フッ素樹脂多孔質膜の少なくとも一方の表面上に積層された通気性支持材を有するフィルタ濾材と、
 当該フィルタ濾材の周縁部を支持する枠体とを備えるフィルタユニットであって、
 当該フィルタユニットのフィルタ濾材の濾過領域において、当該濾過領域に対する前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比が、10%以下であるフィルタユニットである。
The present invention provides a filter medium having a fluororesin porous membrane, and a breathable support material laminated on at least one surface of the fluororesin porous membrane,
A filter unit comprising a frame that supports the peripheral edge of the filter medium,
In the filter area of the filter medium of the filter unit, the area ratio of the area where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filter area is 10% or less. .
 前記フィルタユニットのフィルタ濾材の濾過領域においては、前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されてないことが好ましい。 In the filtration region of the filter medium of the filter unit, it is preferable that the fluororesin porous membrane of the filter medium and the air-permeable support material are not bonded.
 前記フッ素樹脂多孔質膜が、ポリテトラフルオロエチレン多孔質膜であることが好ましい。前記フッ素樹脂多孔質膜の、平均孔径が0.01~100μmであり、空気を流速5.3cm/秒で透過させたときに生じる圧力損失が10~300Paであり、被濾過気体の流速を5.3cm/秒とし、捕集対象粒子の粒径を0.3~0.5μmの範囲としたときの捕集効率が60%以上であることが好ましい。 It is preferable that the fluororesin porous membrane is a polytetrafluoroethylene porous membrane. The fluororesin porous membrane has an average pore diameter of 0.01 to 100 μm, a pressure loss generated when air is permeated at a flow rate of 5.3 cm / sec, and 10 to 300 Pa. The flow rate of the gas to be filtered is 5 It is preferable that the collection efficiency is 60% or more when the particle size of the collection target particle is 0.3 to 0.5 μm.
 本発明のフィルタユニットにおいては、フィルタユニットの上流側にJIS Z 8901に規定の関東ローム層土11種を、前記フィルタユニットの枠体の開口部100cm2あたり3g供給し、流量2.4m3/分で下流側から吸引し、フィルタユニットの上流側の面を下にした状態でフィルタユニットを10cmの高さから5回落下させて関東ローム層土を払い落とした場合に、払い落とし前後での圧力損失の上昇が2Pa以下であることが好ましい。 In the filter unit of the present invention, 11 g of Kanto Loam soil specified in JIS Z 8901 is supplied to the upstream side of the filter unit at 3 g per 100 cm 2 of the opening of the filter unit frame, and the flow rate is 2.4 m 3 / If the filter unit is dropped 5 times from a height of 10 cm and the Kanto Loam soil is wiped off with the upstream side of the filter unit facing down and the upstream side of the filter unit facing down, The increase in pressure loss is preferably 2 Pa or less.
 本発明のフィルタユニットにおいては、フィルタユニットのフィルタ濾材が、最表面に通気性支持材を有し、前記フィルタユニットのフィルタ濾材の通気性支持材をナイロンブラシ(ブラシ径:200μm、毛足:25mm)を用いてブラッシング圧0.05MPaで50往復ブラッシングした場合に、ブラッシング前後の捕集効率の低下が0.2%以下であることが好ましい。 In the filter unit of the present invention, the filter medium of the filter unit has a breathable support material on the outermost surface, and the breathable support material of the filter medium of the filter unit is a nylon brush (brush diameter: 200 μm, hair feet: 25 mm). ), The reduction in the collection efficiency before and after the brushing is preferably 0.2% or less.
 本発明のフィルタユニットにおいては、フィルタユニットのフィルタ濾材の濾過領域以外において、前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されていることが好ましい。 In the filter unit of the present invention, it is preferable that the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to each other outside the filtration region of the filter medium of the filter unit.
 本発明のフィルタユニットは、掃除機用途に好適である。 The filter unit of the present invention is suitable for vacuum cleaner applications.
 本発明はまた、上記のフィルタユニットを備えた、塵払い落とし機能付き掃除機である。 The present invention is also a vacuum cleaner equipped with the above-mentioned filter unit and having a dust removal function.
 本発明のフィルタユニットは、初期の圧力損失が小さく、塵離れ性および耐衝撃性が高い。本発明のフィルタユニットは、掃除機用途に好適であり、特に塵払い落とし機能付き掃除機用途に好適である。 The filter unit of the present invention has a low initial pressure loss, high dust separation and high impact resistance. The filter unit of the present invention is suitable for vacuum cleaner applications, and particularly suitable for vacuum cleaner applications with a dust removal function.
本発明のフィルタユニットの一例を示す斜視図である。It is a perspective view which shows an example of the filter unit of this invention.
 本発明のフィルタユニットは、フッ素樹脂多孔質膜、および当該フッ素樹脂多孔質膜の少なくとも一方の表面上に積層された通気性支持材を有するフィルタ濾材と、当該フィルタ濾材の周縁部を支持する枠体とを備える。 The filter unit of the present invention includes a filter medium having a fluororesin porous membrane and a breathable support material laminated on at least one surface of the fluororesin porous membrane, and a frame that supports a peripheral portion of the filter media. With body.
 本発明で用いられるフッ素樹脂多孔質膜を構成するフッ素樹脂としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン(PTFE)、エチレン-テトラフルオロエチレン共重合体、テトラフルオロエチレン-へキサフルオロプロピレン共重合体、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体等が挙げられ、中でも、汎用性の観点からPTFEが最適である。 Examples of the fluororesin constituting the fluororesin porous membrane used in the present invention include polyvinylidene fluoride, polytetrafluoroethylene (PTFE), an ethylene-tetrafluoroethylene copolymer, and a tetrafluoroethylene-hexafluoropropylene copolymer. And tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer. Among them, PTFE is most suitable from the viewpoint of versatility.
 フッ素樹脂多孔質膜としては、平均孔径が0.01~100μmであるものが好適に用いられ、0.01~50μmであるものがより好適に用いられる。 As the fluororesin porous membrane, those having an average pore diameter of 0.01 to 100 μm are preferably used, and those having 0.01 to 50 μm are more preferably used.
 フッ素樹脂多孔質膜としては、空気を流速5.3cm/秒で透過させたときに生じる圧力損失が10~300Paであるものが好適に用いられ、10~100Paであるものがより好適に用いられる。 As the fluororesin porous membrane, one having a pressure loss of 10 to 300 Pa generated when air is permeated at a flow rate of 5.3 cm / sec is preferably used, and one having 10 to 100 Pa is more preferably used. .
 フッ素樹脂多孔質膜としては、被濾過気体の流速を5.3cm/秒とし、捕集対象粒子の粒径を0.3~0.5μmの範囲としたときの捕集効率が60%以上であるものが好適に用いられ、70~99.99%であるものがより好適に用いられる。 The fluororesin porous membrane has a collection efficiency of 60% or more when the flow rate of the gas to be filtered is 5.3 cm / second and the particle size of the particles to be collected is in the range of 0.3 to 0.5 μm. Some are preferably used, and more preferably 70 to 99.99%.
 上記の圧力損失および捕集効率を有するフッ素樹脂多孔質膜は、フッ素樹脂多孔質膜の平均孔径、空隙率、および厚さを適切に設定することにより、得ることができる。 The fluororesin porous membrane having the above pressure loss and collection efficiency can be obtained by appropriately setting the average pore diameter, porosity, and thickness of the fluororesin porous membrane.
 フッ素樹脂多孔質膜の厚さとしては、1~300μmが好ましく、2~100μmがより好ましい。 The thickness of the fluororesin porous membrane is preferably 1 to 300 μm, more preferably 2 to 100 μm.
 フッ素樹脂多孔質膜は、市販品として入手可能であり、また、公知方法に従い製造することができる。一例として、PTFE多孔質膜は、PTFEファインパウダーを原料とするペースト押出しによって得られたPTFEシートを延伸することによって製造することができる。延伸の際、PTFEシートの面積延伸倍率(一軸方向の延伸倍率とそれに垂直な方向の延伸倍率の積算)は、50~900倍程度とすればよい。 The fluororesin porous membrane is available as a commercial product and can be manufactured according to a known method. As an example, the PTFE porous membrane can be produced by stretching a PTFE sheet obtained by paste extrusion using PTFE fine powder as a raw material. At the time of stretching, the area stretching ratio of the PTFE sheet (integration of the stretching ratio in the uniaxial direction and the stretching ratio in the direction perpendicular thereto) may be about 50 to 900 times.
 本発明に用いられる通気性支持材としては、フッ素樹脂多孔質膜よりも高い強度と通気性を有するものが好適であり、その材料の例としては、金属、ポリオレフィン(例、ポリエチレン(PE)、ポリプロピレン(PP)など)、ポリエステル(例、ポリエチレンテレフタレート(PET)など)、ポリアミド(脂肪族ポリアミドおよび芳香族ポリアミド)、およびこれらの複合材が挙げられる。通気性支持材の形態の例としては、フェルト、不織布、織布、メッシュ(網目状シート)、多孔質材等が挙げられる。 As the breathable support material used in the present invention, those having higher strength and breathability than the fluororesin porous membrane are suitable, and examples of the material include metals, polyolefins (eg, polyethylene (PE), Polypropylene (PP) and the like, polyester (eg, polyethylene terephthalate (PET) and the like), polyamide (aliphatic polyamide and aromatic polyamide), and composites thereof. Examples of the form of the air-permeable support material include felt, nonwoven fabric, woven fabric, mesh (mesh-like sheet), porous material, and the like.
 フィルタ濾材は、撥液処理(撥水処理および/または撥油処理)されていてもよい。この場合、撥液性能を有するフィルタ濾材となる。このようなフィルタ濾材では、フィルタ濾材が捕集した物質を洗浄によって除去したり、機械的に払い落としたりすることが容易となる。 The filter medium may be liquid repellent (water repellent and / or oil repellent). In this case, the filter medium has liquid repellency. In such a filter medium, it becomes easy to remove a substance collected by the filter medium by washing or mechanically remove it.
 フィルタ濾材は、本発明の目的を阻害しない範囲において、必要に応じて、フッ素樹脂多孔質膜および通気性支持材以外のものが積層されていてもよい。 The filter medium may be laminated with a material other than the fluororesin porous membrane and the air-permeable support material as necessary, as long as the object of the present invention is not impaired.
 フィルタ濾材には、複数枚のフッ素樹脂多孔質膜を用いてもよく、同様に、複数枚の通気性支持材を用いてもよい。このとき、フッ素樹脂多孔質膜と通気性支持材のいずれが最表面(露出面側)にあってもよい。 As the filter medium, a plurality of fluororesin porous membranes may be used, and similarly, a plurality of breathable support materials may be used. At this time, either the fluororesin porous membrane or the air-permeable support material may be on the outermost surface (exposed surface side).
 フィルタ濾材は、必要に応じて、プリーツ加工されていてもよく、プリーツの形状には特に制限はない。プリーツ加工は、平板状のフィルタ濾材を繰り出して連続加工してもよく、適当な寸法に切り出したフィルタ濾材(単板)をプリーツ状に加工してもよい。平板状のフィルタ濾材のプリーツ加工には、公知のプリーツ加工機(ロータリープリーツ機、レシプロプリーツ機、筋付けプリーツ機等)を用いることができる。プリーツ加工時におけるフィルタ濾材へのダメージを抑制する観点からは、レシプロプリーツ機を用いることが好ましい。 The filter medium may be pleated if necessary, and the shape of the pleat is not particularly limited. In the pleating process, a flat filter medium may be fed out and continuously processed, or a filter medium (single plate) cut out to an appropriate size may be processed into a pleated shape. A known pleating machine (rotary pleating machine, reciprocating pleating machine, creasing pleating machine or the like) can be used for pleating the flat filter medium. From the viewpoint of suppressing damage to the filter medium during pleating, it is preferable to use a reciprocating pleating machine.
 フィルタ濾材においては、フッ素樹脂多孔質膜または通気性支持材が着色されていてもよい。着色は、フッ素樹脂多孔質膜または通気性支持材の原料に顔料を混練する等の公知方法により行うことができる。 In the filter medium, the fluororesin porous membrane or the air-permeable support material may be colored. Coloring can be performed by a known method such as kneading a pigment with a raw material of a fluororesin porous membrane or a breathable support material.
 本発明において用いられる枠体の形状は、フィルタ濾材の周縁部を支持し、濾過のための開口部を有する限り特に制限はなく、公知の通常のフィルタユニットに適用される形状と同様のものでよい。枠体の材質としては、不織布、樹脂、紙、金属などが挙げられ、インサート成形によってフィルタユニットを製造することが容易であることから、樹脂が好ましい。樹脂の具体例としては、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)、ポリカーボネート、ポリプロピレン、各種のエラストマーなどを用いることができ、一般には、ポリプロピレン、ABSが用いられるが、寸法精度の確保が容易であり、使用時における変形を抑制できることから、ABSが好適である。 The shape of the frame used in the present invention is not particularly limited as long as it supports the peripheral edge of the filter medium and has an opening for filtration, and is similar to the shape applied to a known normal filter unit. Good. Examples of the material of the frame include nonwoven fabric, resin, paper, metal, and the like. Resin is preferable because it is easy to manufacture the filter unit by insert molding. Specific examples of the resin include acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate, polypropylene, and various elastomers. Generally, polypropylene and ABS are used, but it is easy to ensure dimensional accuracy. Since the deformation during use can be suppressed, ABS is preferable.
 枠体に用いられる樹脂は、機能の向上または新たな機能の付加を目的として、その他の材料を含んでいてもよい。例えば、強度向上を目的として、ガラス繊維等のフィラーなどを含んでいてもよい。 The resin used for the frame may contain other materials for the purpose of improving functions or adding new functions. For example, for the purpose of improving the strength, a filler such as glass fiber may be included.
 本発明のフィルタユニットは、フィルタユニットのフィルタ濾材の濾過領域において、当該濾過領域に対する、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比が、10%以下であるという特徴を有する。 In the filter unit of the filter unit of the present invention, the area ratio of the region where the fluororesin porous membrane of the filter filter material and the air-permeable support material are bonded to the filter region in the filter region of the filter unit is 10% or less. It has the characteristic of being.
 従来のフィルタユニットにおいては、フィルタ濾材は、フッ素樹脂多孔質膜とフィルタ濾材とを全面において熱ラミネートにより熱接着させること等により製造されており、本発明者らの詳細な検討により、フッ素樹脂多孔質膜と不織布の界面において接着がなされている部分(接着点)では、流体の通過が制限されており、これが圧力損失の一因となっていること、および熱ラミネート時の圧縮力の印加が圧力損失の一因となっていることを見出した。また、流体の通過が制限されている接着点においては、塵離れ性が悪いことを見出した。さらに、衝撃により除塵を行う際には、接着点において、フィルタ濾材の破損や劣化が起こる場合があることを見出した。 In the conventional filter unit, the filter medium is manufactured by thermally bonding the fluororesin porous membrane and the filter medium on the entire surface by thermal lamination, etc. In the part where the film is bonded to the nonwoven fabric (bonding point), the passage of fluid is restricted, which contributes to pressure loss and the application of compressive force during thermal lamination. We found that it contributed to pressure loss. Further, the present inventors have found that the dust separation property is poor at an adhesion point where passage of fluid is restricted. Furthermore, it has been found that when removing dust by impact, the filter medium may be damaged or deteriorated at the adhesion point.
 従って、フィルタユニットのフィルタ濾材の濾過領域において、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域を10面積%以下に制限することによって、フィルタユニットの初期の圧力損失を小さくすることができ、また、塵離れ性および耐衝撃性を高くすることができる。 Therefore, by limiting the area where the fluororesin porous membrane and the breathable support material of the filter medium are bonded to 10 area% or less in the filter area of the filter medium of the filter unit, the initial pressure loss of the filter unit is reduced. Can be reduced, and dust separation and impact resistance can be increased.
 本発明のフィルタユニットのフィルタ濾材の濾過領域において、当該濾過領域に対する、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比は、5%以下であることが好ましく、3%以下であることがより好ましく、0%であることが最も好ましい。すなわち、フィルタユニットのフィルタ濾材の濾過領域において、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されてないことが最も好ましい。 In the filter region of the filter medium of the filter unit of the present invention, the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filter region is 5% or less. Preferably, it is 3% or less, more preferably 0%. That is, it is most preferable that the fluororesin porous membrane of the filter medium and the air-permeable support material are not bonded in the filtration region of the filter medium of the filter unit.
 本発明において、「フィルタ濾材の濾過領域」とは、フィルタユニットのフィルタ濾材において、濾過の行われる領域のことをいい、すなわち、フィルタ濾材が露出している領域のことをいう。例えば、フィルタ濾材がプリーツ形状を有する場合には、露出したフィルタ濾材の全面積が濾過領域となり、濾過領域は、フィルタユニットの枠体の開口部の面積よりも大きくなる。 In the present invention, the “filtering region of the filter medium” refers to a region where filtration is performed in the filter medium of the filter unit, that is, a region where the filter medium is exposed. For example, when the filter medium has a pleated shape, the entire area of the exposed filter medium becomes a filtration region, and the filtration region is larger than the area of the opening of the filter unit frame.
 なお、本発明において「圧力損失」とは、流体がフィルタ濾材を通過するときに生じる、通過前後での圧力差のことをいう。 In the present invention, “pressure loss” refers to a pressure difference between before and after passage when a fluid passes through the filter medium.
 本発明において「初期の圧力損失」とは、集塵が一度も行われていない状態での圧力損失のことをいう。 In the present invention, “initial pressure loss” means pressure loss in a state where dust collection has never been performed.
 本発明において「フッ素樹脂多孔質膜と通気性支持材とが接着されている」とは、フッ素樹脂多孔質膜と通気性支持材とが接着剤やホットメルト剤によって接着されている場合のみならず、通気性支持材の一部が溶融してフッ素樹脂多孔質膜と通気性支持材が熱接着されている場合も含む。 In the present invention, “the fluororesin porous membrane and the breathable support material are bonded” means that only when the fluororesin porous membrane and the breathable support material are bonded by an adhesive or a hot melt agent. In addition, a case where a part of the breathable support material is melted and the fluororesin porous membrane and the breathable support material are thermally bonded is also included.
 本発明において「フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域」とは、フッ素樹脂多孔質膜と通気性支持材との接着操作が行われた領域のことをいう。例えば、通気性支持体がメッシュ状繊維である場合には、繊維が間隔を空けて配列されているため、フッ素樹脂多孔質膜と通気性支持材が全面において熱接着された場合に、接着点だけを見れば間隔を空けて存在するが、接着されている領域は100面積%となる。 In the present invention, the “region where the fluororesin porous membrane and the breathable support material of the filter medium are bonded” refers to a region where the bonding operation between the fluororesin porous membrane and the breathable support material is performed. Say. For example, when the breathable support is a mesh-like fiber, the fibers are arranged with a space therebetween, so that when the fluororesin porous membrane and the breathable support material are thermally bonded on the entire surface, the adhesion point However, there is a gap, but the bonded area is 100% by area.
 本発明において、フッ素樹脂多孔質膜の両表面に通気性支持材が積層されている場合には、フィルタ濾材の濾過領域に対するフィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比は、それぞれの表面ごとに評価する。従って、フッ素樹脂多孔質膜の両表面に通気性支持材が積層されている場合に、一方の面で前記の面積比が10%以下であれば、本発明の範囲に含まれる。ただしこの場合、両表面において面積比が10%以下であることが好ましい。 In the present invention, when the breathable support material is laminated on both surfaces of the fluororesin porous membrane, the fluororesin porous membrane of the filter medium and the breathable support material are bonded to the filtration region of the filter medium. The area ratio of the existing area is evaluated for each surface. Therefore, when the air-permeable support material is laminated on both surfaces of the fluororesin porous membrane, if the area ratio is 10% or less on one surface, it is included in the scope of the present invention. In this case, however, the area ratio on both surfaces is preferably 10% or less.
 本発明において、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材は、その周縁部において接着されていることが好ましい。この場合、濾過領域において、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積を小さくすることが容易である。 In the present invention, the fluororesin porous membrane of the filter medium and the air-permeable support material are preferably bonded at the peripheral edge. In this case, in the filtration region, it is easy to reduce the area of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded.
 本発明のフィルタユニットは、フィルタ濾材の剛性の観点から、フィルタユニットのフィルタ濾材の濾過領域以外において、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されていることが好ましい。すなわち、フィルタ濾材が枠体中に固定される領域において、フッ素樹脂多孔質膜と通気性支持材とが接着されていることが好ましい。 In the filter unit of the present invention, from the viewpoint of the rigidity of the filter medium, it is preferable that the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to each other outside the filtration region of the filter medium of the filter unit. That is, it is preferable that the fluororesin porous membrane and the air-permeable support material are bonded in a region where the filter medium is fixed in the frame.
 本発明のフィルタユニットは、例えば、次のようにして製造することができる。フッ素樹脂多孔質膜と通気性支持材を、ニップロールによって圧着した後、フッ素樹脂多孔質膜と通気性支持材の一部を熱ラミネートして熱接着する。このとき、フィルタ濾材として露出される領域(濾過領域となるべき領域)において、熱接着される領域の面積が10面積%以下になるようにする。熱接着される領域は、ドット状であっても、線状や格子状であってもよい。好ましくは、フッ素樹脂多孔質膜と通気性支持材の周縁部のみを熱ラミネートにより熱接着して、熱接着される領域がすべて枠体中に納まって、露出しないようにする。フィルタ濾材をプリーツ加工した後、インサート成形によって枠体を形成する。このようにして、フィルタ濾材の周縁部が枠体に入りこんで一体化したフィルタユニットを得ることができる。 The filter unit of the present invention can be manufactured, for example, as follows. After the fluororesin porous membrane and the breathable support material are pressure-bonded by a nip roll, the fluororesin porous membrane and a part of the breathable support material are thermally laminated and thermally bonded. At this time, in the region exposed as the filter medium (region to be the filtration region), the area of the region to be thermally bonded is set to 10 area% or less. The region to be thermally bonded may be dot-shaped, linear or grid-shaped. Preferably, only the peripheral portion of the fluororesin porous membrane and the air-permeable support material is thermally bonded by thermal lamination so that the entire region to be thermally bonded is accommodated in the frame and is not exposed. After the filter medium is pleated, a frame is formed by insert molding. In this way, a filter unit in which the peripheral edge of the filter medium enters the frame body and is integrated can be obtained.
 フィルタユニットは、予め1対の枠体を作製し、それにフィルタ濾材を挟み込んで製造することもできる。 The filter unit can be manufactured by preparing a pair of frames in advance and sandwiching the filter medium.
 なお、フッ素樹脂多孔質膜と通気性支持材の接着方法としては、接着剤やホットメルト剤を使用する方法も可能であるが、これらを使用する場合、製造工程の増加による歩留まりの低下や、加熱時に接着剤からアウトガスが発生するという不利益がある。 In addition, as a method of bonding the fluororesin porous membrane and the breathable support material, a method using an adhesive or a hot melt agent is also possible, but when using these, a decrease in yield due to an increase in the manufacturing process, There is a disadvantage that outgas is generated from the adhesive during heating.
 本発明のフィルタユニットの形態としては、フィルタバッグ、フィルタチューブ、フィルタパネルユニット、フィルタカートリッジ等が挙げられる。 Examples of the form of the filter unit of the present invention include a filter bag, a filter tube, a filter panel unit, and a filter cartridge.
 本発明のフィルタユニットにおいては、フィルタユニットの上流側にJIS Z 8901に規定の関東ローム層土11種を、フィルタユニットの枠体の開口部100cm2あたり3g供給し、流量2.4m3/分で下流側から吸引し、フィルタユニットの上流側の面を下にした状態でフィルタユニットを10cmの高さから5回落下させて関東ローム層土を払い落とした場合に、払い落とし前後での圧力損失の上昇が2Pa以下であることが好ましく、1Pa以下であることがより好ましく、0.5Pa以下であることがさらに好ましい。このような特性は、フィルタユニットのフィルタ濾材の濾過領域において、濾過領域に対する、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比を小さくすることによって得られる。 In the filter unit of the present invention, 11 g of Kanto Loam soil specified in JIS Z 8901 is supplied to the upstream side of the filter unit at a rate of 2.4 m 3 / min per 100 cm 2 of the opening of the filter unit frame. If the filter unit is dropped 5 times from a height of 10 cm and the Kanto Loam soil is wiped down with the upstream side of the filter unit facing down, the pressure before and after the removal The increase in loss is preferably 2 Pa or less, more preferably 1 Pa or less, and further preferably 0.5 Pa or less. Such a characteristic is obtained by reducing the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filtration region in the filtration region of the filter medium of the filter unit. .
 本発明のフィルタユニットにおいては、フィルタユニットのフィルタ濾材が、最表面(露出面側)に通気性支持材を有し、前記フィルタユニットのフィルタ濾材の通気性支持材をナイロンブラシ(ブラシ径:200μm、毛足:25mm)を用いてブラッシング圧0.05MPaで50往復ブラッシングした場合に、ブラッシング前後の捕集効率の低下が0.2%以下であることが好ましく、0.1%以下であることがより好ましく、0.05%以下であることがさらに好ましい。このような特性は、フィルタユニットのフィルタ濾材の濾過領域において、濾過領域に対する、フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比を小さくすることによって得られる。 In the filter unit of the present invention, the filter medium of the filter unit has a breathable support material on the outermost surface (exposed surface side), and the breathable support material of the filter medium of the filter unit is a nylon brush (brush diameter: 200 μm). When the brushing pressure is 0.05 reciprocating with a brushing pressure of 0.05 MPa, the reduction in the collection efficiency before and after the brushing is preferably 0.2% or less, and 0.1% or less. Is more preferably 0.05% or less. Such a characteristic is obtained by reducing the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filtration region in the filtration region of the filter medium of the filter unit. .
 図1に本発明のフィルタユニットの一例を示す。プリーツ加工されたフィルタ濾材1の周囲が枠体2によって支持されてフィルタユニット3が構成されている。フィルタ濾材1は、プリーツ加工されていないものを用いることも可能である。 FIG. 1 shows an example of the filter unit of the present invention. A filter unit 3 is configured by supporting the periphery of the pleated filter medium 1 by a frame 2. It is also possible to use a filter medium 1 that is not pleated.
 枠体2は、フィラーを含む樹脂を用いてインサート成形により形成されており、フィルタ濾材1の周縁部を枠体中に取り込むことによって、フィルタ濾材1を支持している。 The frame body 2 is formed by insert molding using a resin containing a filler, and supports the filter medium 1 by taking the peripheral edge of the filter medium 1 into the frame body.
 フィルタ濾材1は、PTFE多孔質膜等のフッ素樹脂多孔質膜と通気性支持材との積層体である。周縁部のみにおいてフッ素樹脂多孔質膜と通気性支持材とが接着されているが、接着された領域は、枠体2中にすべて取り込まれており、フィルタ濾材1の露出している部分においては、接着された領域がない。なお、例えば、接着された領域が、濾過領域の10面積%以下であれば、フィルタ濾材1の接着された周縁部のすべてが枠体2中に取り込まれずに、その一部が露出していても構わない。 The filter medium 1 is a laminate of a fluororesin porous membrane such as a PTFE porous membrane and a breathable support material. The fluororesin porous membrane and the air-permeable support material are bonded only at the peripheral portion, but the bonded area is all taken into the frame body 2, and in the exposed portion of the filter medium 1. There is no glued area. For example, if the bonded region is 10 area% or less of the filtration region, the entire bonded peripheral edge of the filter medium 1 is not taken into the frame body 2 and a part thereof is exposed. It doesn't matter.
 本発明のフィルタユニットは、初期の圧力損失が小さく、塵離れ性および耐衝撃性が高い。従って、フィルタ濾材により捕集された粉塵、粒子等を払い落としや洗浄などにより除去しながら使用されるフィルタユニットに好適である。 The filter unit of the present invention has a low initial pressure loss, high dust separation and high impact resistance. Therefore, it is suitable for a filter unit that is used while removing dust, particles, and the like collected by the filter material by removing or washing.
 本発明のフィルタユニットは、例えば、クリーンルーム用エアフィルタユニット、家電製品用フィルタユニット等として用いることができ、特に掃除機用フィルタユニットとして好適に用いることができる。 The filter unit of the present invention can be used, for example, as a clean room air filter unit, a household appliance filter unit, and the like, and particularly preferably as a vacuum cleaner filter unit.
 そこで本発明はまた、上記のフィルタユニットを備えた、塵払い落とし機能付き掃除機である。当該塵払い落とし機能付き掃除機は、公知の塵払い落とし機能付き掃除機のフィルタユニットを、上記のフィルタユニットに置き換えることによって構成することができる。 Therefore, the present invention is also a vacuum cleaner equipped with the above filter unit and having a dust removal function. The said vacuum cleaner with a dust wiping-off function can be comprised by replacing the filter unit of the well-known vacuum cleaner with a dust wiping-down function with said filter unit.
 以下、実施例および比較例を挙げて本発明を詳細に説明するが、本発明は、これら実施例に限定されるものではない。 Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.
(実施例1)
 最初に、PTFEファインパウダー(商品名「ポリフロンF-104」、ダイキン工業社製)100重量部に対し、液状潤滑剤として炭化水素油(商品目「アイソパーM」、エッソ石油社製)25重量部を均一に混合した。次に、得られた混合物を圧力20MPaで圧縮予備成形した後、予備成形物をロッド状に押出成形し、さらにこのロッド状の押出成形物を一対の金属ロールを通して圧延して、厚さ0.2mm、幅150mmの帯状のPTFEシートを得た。
Example 1
First, for 100 parts by weight of PTFE fine powder (trade name “Polyflon F-104”, manufactured by Daikin Industries, Ltd.), 25 parts by weight of hydrocarbon oil (product item “Isopar M”, manufactured by Esso Petroleum) is used as a liquid lubricant. Were mixed uniformly. Next, the obtained mixture was subjected to compression preforming at a pressure of 20 MPa, and then the preform was extruded into a rod shape, and the rod-shaped extrudate was rolled through a pair of metal rolls to a thickness of 0. A strip-shaped PTFE sheet having a width of 2 mm and a width of 150 mm was obtained.
 次に、得られたシートを220℃に加熱して、当該シートに含まれる液状潤滑剤を除去した後、未焼成のまま倍率20倍でMD方向(機械方向)に延伸し、ついで倍率30倍でTD方向(横断方向)に延伸し、さらに、寸法を固定した状態でPTFEの融点以上の温度で焼成して、帯状のPTFE多孔質膜を得た。このPTFE多孔質膜の平均孔径は、10μmであり、空気を流速5.3cm/秒で透過させたときに生じる圧力損失は、40Paであり、被濾過気体の流速を5.3cm/秒とし、捕集対象粒子の粒径を0.3~0.5μmの範囲としたときの捕集効率は、80%であった。 Next, the obtained sheet was heated to 220 ° C. to remove the liquid lubricant contained in the sheet, and then stretched in the MD direction (machine direction) at a magnification of 20 times while remaining unfired, and then at a magnification of 30 times. Then, the film was stretched in the TD direction (transverse direction), and further fired at a temperature equal to or higher than the melting point of PTFE with the dimensions fixed, to obtain a band-like PTFE porous membrane. The average pore diameter of this PTFE porous membrane is 10 μm, the pressure loss generated when air is permeated at a flow rate of 5.3 cm / sec is 40 Pa, the flow rate of the gas to be filtered is 5.3 cm / sec, The collection efficiency was 80% when the particle size of the collection target particles was in the range of 0.3 to 0.5 μm.
 次に通気性支持材として、市販のポリエチレン(PE)メッシュ状ウェブ(Applied Extrusion Technologies, Inc社製)を準備した。 Next, a commercially available polyethylene (PE) mesh web (Applied Extrusion Technologies, Inc.) was prepared as a breathable support material.
 上記で作製したPTFE多孔質膜の両側を2枚のPEメッシュ状ウェブで挟み込み、常温で約0.1~0.5kPa程度の圧力でニップして3層構造の積層体とした。さらに、この積層体の両端部各1cmのみにおいて128℃で熱ラミネートして接着し、フィルタ濾材を得た。 The both sides of the PTFE porous membrane produced above were sandwiched between two PE mesh webs and nipped at a pressure of about 0.1 to 0.5 kPa at room temperature to obtain a laminate having a three-layer structure. Further, only 1 cm of each end of the laminate was thermally laminated at 128 ° C. and bonded to obtain a filter medium.
 得られたフィルタ濾材を、プリーツ機を用いて、山高さ20mmでプリーツ加工した。続いて、プリーツ加工後のフィルタ濾材を、縦型成形機を用いて、ガラス繊維を30重量%含むABSとともにインサート成形することにより、図1に示すようなフィルタユニットを得た。このフィルタユニットにおいて、枠体の開口部のサイズは、100mm×100mmであり、露出した濾材の幅を100mm、プリーツ高さを20mmとし、プリーツの山の数は25とした。インサート成形の条件は、射出樹脂温度275℃、射出圧8.0MPa、冷却温度60℃、冷却時間30秒、保圧5%とした。このフィルタユニットにおいて、PTFE多孔質膜とPEメッシュ状ウェブとを接着した領域は枠体中に収まっており、濾過領域において接着された領域はなかった。すなわち、濾過領域において、フィルタ濾材のPTFE多孔質膜と通気性支持材とが接着されている領域は0面積%であった。 The obtained filter medium was pleated at a height of 20 mm using a pleating machine. Then, the filter unit as shown in FIG. 1 was obtained by insert-molding the filter media after pleating with ABS containing 30% by weight of glass fiber using a vertical molding machine. In this filter unit, the size of the opening of the frame was 100 mm × 100 mm, the width of the exposed filter medium was 100 mm, the pleat height was 20 mm, and the number of pleat peaks was 25. The insert molding conditions were an injection resin temperature of 275 ° C., an injection pressure of 8.0 MPa, a cooling temperature of 60 ° C., a cooling time of 30 seconds, and a holding pressure of 5%. In this filter unit, the area where the PTFE porous membrane and the PE mesh web were bonded was contained in the frame, and there was no area bonded in the filtration area. That is, in the filtration area, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded was 0 area%.
(実施例2)
 フィルタ濾材作製の際に、PTFE多孔質膜の片側のみPEメッシュ状ウェブを積層した2層構造とした以外は、実施例1と同様にしてフィルタユニットを得た。このフィルタユニットでは、濾過領域において、フィルタ濾材のPTFE多孔質膜と通気性支持材とが接着されている領域は0面積%であった。
(Example 2)
A filter unit was obtained in the same manner as in Example 1 except that the filter medium was made into a two-layer structure in which a PE mesh web was laminated only on one side of the PTFE porous membrane. In this filter unit, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded in the filtration area was 0 area%.
(比較例1)
 実施例1と同様にして、PTFE多孔質膜の両側を2枚のPEメッシュ状ウェブで挟み込んだ3層構造の積層体を得た。この積層体を180℃に加熱した一対のロール間を通過させることで全面を熱ラミネート(ライン速度10m/分)して、全面においてPTFE多孔質膜とPEメッシュ状ウェブが接着された3層構造のフィルタ濾材を得た。このフィルタ濾材を用いて実施例1と同様の方法により、フィルタユニットを得た。このフィルタユニットでは、濾過領域において、フィルタ濾材のPTFE多孔質膜と通気性支持材とが接着されている領域が100面積%であった。
(Comparative Example 1)
In the same manner as in Example 1, a laminate having a three-layer structure in which both sides of the PTFE porous membrane were sandwiched between two PE mesh webs was obtained. The laminate is passed through a pair of rolls heated to 180 ° C. so that the entire surface is thermally laminated (line speed 10 m / min), and a PTFE porous membrane and a PE mesh web are bonded to the entire surface. A filter medium was obtained. Using this filter medium, a filter unit was obtained in the same manner as in Example 1. In this filter unit, the area where the PTFE porous membrane of the filter medium and the air-permeable support material were bonded in the filtration area was 100 area%.
 上記で得られた実施例および比較例のフィルタユニットについて、下記の方法により特性を評価した。結果を表1に示す。 The characteristics of the filter units of Examples and Comparative Examples obtained above were evaluated by the following methods. The results are shown in Table 1.
[圧力損失の測定]
 有効面積100cm2の円柱状ホルダーに実施例および比較例のフィルタユニットに用いたフィルタ濾材をセットし、フィルタ濾材の両面で圧力差を生じさせて当該フィルタ濾材に空気を透過させた。透過する空気の流速を、流量計で5.3cm/秒(流量31.8m3/分)に調整したときの圧力損失を圧力計(マノメータ)で測定した。
[Measurement of pressure loss]
The filter media used in the filter units of Examples and Comparative Examples were set in a cylindrical holder having an effective area of 100 cm 2 , and a pressure difference was generated on both sides of the filter media to allow air to pass through the filter media. The pressure loss when the flow velocity of the permeating air was adjusted to 5.3 cm / second (flow rate 31.8 m 3 / min) with a flow meter was measured with a pressure meter (manometer).
[捕集効率の測定]
 有効面積100cm2の円柱状ホルダーに実施例および比較例のフィルタユニットに用いたフィルタ濾材をセットし、フィルタ濾材の両面で圧力差を生じさせて当該フィルタ濾材に気体を透過させ、透過する気体の線速度が5.3cm/秒(流量31.8m3/分)となるように調整した。次に、フィルタ濾材の上流側にJIS Z 8901に規定されている多分散ジオクチルフタレート(DOP)粒子を、粒径範囲0.3~0.5μmの粒子の濃度が106個/リットルとなるように気体に混入し、フィルタ濾材の下流側におけるDOP粒子の濃度をパーティクルカウンターで測定した。パーティクルカウンターによる測定対象粒子の粒径範囲は0.3~0.5μmとし、捕集効率は、捕集効率=(1-(下流側DOP粒子濃度/上流側DOP粒子濃度))×100(%)の式より算出した。
[Measurement of collection efficiency]
The filter media used in the filter units of the example and the comparative example are set in a cylindrical holder having an effective area of 100 cm 2 , and a pressure difference is generated on both sides of the filter media to allow gas to permeate the filter media. The linear velocity was adjusted to 5.3 cm / sec (flow rate 31.8 m 3 / min). Next, polydisperse dioctyl phthalate (DOP) particles defined in JIS Z 8901 are arranged upstream of the filter medium so that the concentration of particles having a particle size range of 0.3 to 0.5 μm is 10 6 particles / liter. The concentration of DOP particles on the downstream side of the filter medium was measured with a particle counter. The particle size range of the particles to be measured by the particle counter is 0.3 to 0.5 μm, and the collection efficiency is the collection efficiency = (1− (downstream DOP particle concentration / upstream DOP particle concentration)) × 100 (% ).
[塵離れ性の測定]
 フィルタユニットの上流側にJIS Z 8901に規定の試験用粉体である関東ローム層土11種を3g供給した。この関東ローム層土を、掃除機を用いて流量2.4m3/分の吸引力で下流側から吸引した。吸引後、関東ローム層土が捕集されたフィルタユニットの上流側の面を下にした状態でフィルタユニットを10cmの高さから5回落下させて、フィルタユニット表面の関東ローム層土を払い落とした。関東ローム層土を供給する前の圧力損失と、払い落とし後の圧力損失を上記の方法でそれぞれ測定し、払い落とし試験前後の圧力損失の変動を求めた。
[Measurement of dust separation]
To the upstream side of the filter unit, 3 g of 11 kinds of Kanto Loam soil, which is a powder for testing specified in JIS Z 8901, was supplied. The Kanto loam soil was sucked from the downstream side with a suction force of 2.4 m 3 / min using a vacuum cleaner. After suction, the filter unit is dropped 5 times from a height of 10 cm with the upstream side of the filter unit where the Kanto loam layer is collected facing down, and the Kanto loam layer on the surface of the filter unit is removed. It was. The pressure loss before supplying the Kanto Loam soil and the pressure loss after the drop-off were measured by the above method, and the fluctuation of the pressure loss before and after the drop-off test was obtained.
[耐衝撃性の測定]
 フィルタユニットの通気性支持材側からナイロンブラシ(ブラシ径:200μm、毛足:25mm)でフィルタ濾材全体をブラッシング圧0.05MPaで50往復ブラッシングすることにより、外部から衝撃を与えた。衝撃を与える前の捕集効率と、衝撃を与えた後の捕集効率とを上記の方法でそれぞれ測定し、衝撃を与える前後の捕集効率の変動を求めた。
[Measurement of impact resistance]
The entire filter medium was brushed 50 times with a nylon brush (brush diameter: 200 μm, hair feet: 25 mm) from the air-permeable support material side of the filter unit at a brushing pressure of 0.05 MPa to give an impact from the outside. The collection efficiency before applying the impact and the collection efficiency after applying the impact were measured by the above methods, respectively, and the change in the collection efficiency before and after applying the impact was determined.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示されるように、PTFE多孔質膜と通気性支持材とを全面熱接着した比較例のフィルタユニットに比べ、濾過領域においてPTFE多孔質膜と通気性支持材とが接着されていない実施例のフィルタユニットの方が、8~13Pa程度圧力損失が小さくなった。 As shown in Table 1, in comparison with the filter unit of the comparative example in which the PTFE porous membrane and the air-permeable support material are thermally bonded together, the PTFE porous membrane and the air-permeable support material are not bonded in the filtration region. The pressure loss of the filter unit of the example was reduced by about 8 to 13 Pa.
 塵離れ性に関しては、実施例のフィルタユニットは、試験前後での圧力損失に変化がなかった。これは、捕集した塵が十分に払い落とされたためと考えられる。一方、比較例のフィルタユニットでは、試験後に圧力損失の上昇が見られた。これは、捕集した塵が十分に払い落とされなかったためと考えられる。 Regarding the dust separation, the filter unit of the example had no change in pressure loss before and after the test. This is thought to be because the collected dust was sufficiently removed. On the other hand, in the filter unit of the comparative example, an increase in pressure loss was observed after the test. This is probably because the collected dust was not removed enough.
 耐衝撃性に関しては、実施例のフィルタユニットは、試験前後での捕集効率に変化がなく、衝撃に対する膜の劣化がないことが分かった。一方、比較例のフィルタユニットでは、試験後の捕集効率の低下が見られた。これは、衝撃により、若干の膜破損が生じたためと考えられる。 Regarding the impact resistance, it was found that the filter unit of the example had no change in the collection efficiency before and after the test, and there was no deterioration of the film against the impact. On the other hand, in the filter unit of the comparative example, a decrease in collection efficiency after the test was observed. This is presumably because some film breakage occurred due to the impact.
 本発明のフィルタユニットは、クリーンルーム用エアフィルタユニット、家電製品用フィルタユニット等として用いることができ、特に掃除機用フィルタユニットとして好適に用いることができる。 The filter unit of the present invention can be used as an air filter unit for clean rooms, a filter unit for home appliances, and the like, and can be particularly preferably used as a filter unit for a vacuum cleaner.

Claims (9)

  1.  フッ素樹脂多孔質膜、および当該フッ素樹脂多孔質膜の少なくとも一方の表面上に積層された通気性支持材を有するフィルタ濾材と、
     当該フィルタ濾材の周縁部を支持する枠体とを備えるフィルタユニットであって、
     当該フィルタユニットのフィルタ濾材の濾過領域において、当該濾過領域に対する前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている領域の面積比が、10%以下であるフィルタユニット。
    A filter medium having a fluororesin porous membrane and a breathable support material laminated on at least one surface of the fluororesin porous membrane;
    A filter unit comprising a frame that supports the peripheral edge of the filter medium,
    The filter unit in which the area ratio of the region where the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to the filtration region is 10% or less in the filtration region of the filter medium of the filter unit.
  2.  前記フィルタユニットのフィルタ濾材の濾過領域において、前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されてない請求項1に記載のフィルタユニット。 The filter unit according to claim 1, wherein the fluororesin porous membrane of the filter medium and the air-permeable support material are not bonded in the filtration region of the filter medium of the filter unit.
  3.  前記フッ素樹脂多孔質膜が、ポリテトラフルオロエチレン多孔質膜である請求項1に記載のフィルタユニット。 The filter unit according to claim 1, wherein the fluororesin porous membrane is a polytetrafluoroethylene porous membrane.
  4.  前記フッ素樹脂多孔質膜の、平均孔径が0.01~100μmであり、空気を流速5.3cm/秒で透過させたときに生じる圧力損失が10~300Paであり、被濾過気体の流速を5.3cm/秒とし、捕集対象粒子の粒径を0.3~0.5μmの範囲としたときの捕集効率が60%以上である請求項1に記載のフィルタユニット。 The fluororesin porous membrane has an average pore diameter of 0.01 to 100 μm, a pressure loss generated when air is permeated at a flow rate of 5.3 cm / sec, and 10 to 300 Pa. The flow rate of the gas to be filtered is 5 The filter unit according to claim 1, wherein the collection efficiency is 60% or more when the particle size of the particles to be collected is 0.3 to 0.5 µm in a range of 0.3 cm / second.
  5.  前記フィルタユニットの上流側にJIS Z 8901に規定の関東ローム層土11種を、前記フィルタユニットの枠体の開口部100cm2あたり3g供給し、流量2.4m3/分で下流側から吸引し、フィルタユニットの上流側の面を下にした状態でフィルタユニットを10cmの高さから5回落下させて関東ローム層土を払い落とした場合に、払い落とし前後での圧力損失の上昇が2Pa以下である請求項1に記載のフィルタユニット。 11 g Kanto loam soil specified in JIS Z 8901 is supplied to the upstream side of the filter unit per 100 cm 2 of the opening of the filter unit frame and sucked from the downstream side at a flow rate of 2.4 m 3 / min. When the filter unit is dropped 5 times from a height of 10 cm with the upstream side of the filter unit facing down, and the Kanto loam soil is wiped off, the increase in pressure loss before and after the removal is 2 Pa or less The filter unit according to claim 1.
  6.  前記フィルタユニットのフィルタ濾材が、最表面に通気性支持材を有し、前記フィルタユニットのフィルタ濾材の通気性支持材をナイロンブラシ(ブラシ径:200μm、毛足:25mm)を用いてブラッシング圧0.05MPaで50往復ブラッシングした場合に、ブラッシング前後の捕集効率の低下が0.2%以下である請求項1に記載のフィルタユニット。 The filter medium of the filter unit has an air permeable support material on the outermost surface, and the air permeable support material of the filter medium of the filter unit is brushed using a nylon brush (brush diameter: 200 μm, bristle foot: 25 mm). 2. The filter unit according to claim 1, wherein when 50 reciprocating brushing is performed at 0.05 MPa, the reduction in the collection efficiency before and after the brushing is 0.2% or less.
  7.  前記フィルタユニットのフィルタ濾材の濾過領域以外において、前記フィルタ濾材のフッ素樹脂多孔質膜と通気性支持材とが接着されている請求項1に記載のフィルタユニット。 The filter unit according to claim 1, wherein the fluororesin porous membrane of the filter medium and the air-permeable support material are bonded to each other outside the filtration region of the filter medium of the filter unit.
  8.  掃除機用である請求項1に記載のフィルタユニット。 The filter unit according to claim 1, which is used for a vacuum cleaner.
  9.  請求項8に記載のフィルタユニットを備えた、塵払い落とし機能付き掃除機。 A vacuum cleaner with a dust removal function, comprising the filter unit according to claim 8.
PCT/JP2012/002350 2011-07-25 2012-04-04 Filter unit and cleaner provided with same WO2013014828A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011161934A JP2013022547A (en) 2011-07-25 2011-07-25 Filter unit and cleaner provided with the same
JP2011-161934 2011-07-25

Publications (1)

Publication Number Publication Date
WO2013014828A1 true WO2013014828A1 (en) 2013-01-31

Family

ID=47600706

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002350 WO2013014828A1 (en) 2011-07-25 2012-04-04 Filter unit and cleaner provided with same

Country Status (2)

Country Link
JP (1) JP2013022547A (en)
WO (1) WO2013014828A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109953691A (en) * 2017-12-14 2019-07-02 伊莱克斯公司 Filter for vacuum cleaner
WO2022092161A1 (en) * 2020-10-27 2022-05-05 日東電工株式会社 Filter pleat pack, and air filter unit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123329A (en) * 1995-10-30 1997-05-13 Nitto Denko Corp Manufacture of porous superposed sheet
JP2005288368A (en) * 2004-04-01 2005-10-20 Nitto Denko Corp Dust collecting filter material for cleaner and dust collecting filter unit for cleaner using the same
JP2007260547A (en) * 2006-03-28 2007-10-11 Nitto Denko Corp Method of manufacturing polytetrafluoroethylene porous membrane and filter medium for filter , and filter unit
JP2011105895A (en) * 2009-11-20 2011-06-02 Nitto Denko Corp Method for producing polytetrafluoroethylene porous film, filter medium, and filter unit for dust collector

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09123329A (en) * 1995-10-30 1997-05-13 Nitto Denko Corp Manufacture of porous superposed sheet
JP2005288368A (en) * 2004-04-01 2005-10-20 Nitto Denko Corp Dust collecting filter material for cleaner and dust collecting filter unit for cleaner using the same
JP2007260547A (en) * 2006-03-28 2007-10-11 Nitto Denko Corp Method of manufacturing polytetrafluoroethylene porous membrane and filter medium for filter , and filter unit
JP2011105895A (en) * 2009-11-20 2011-06-02 Nitto Denko Corp Method for producing polytetrafluoroethylene porous film, filter medium, and filter unit for dust collector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109953691A (en) * 2017-12-14 2019-07-02 伊莱克斯公司 Filter for vacuum cleaner
WO2022092161A1 (en) * 2020-10-27 2022-05-05 日東電工株式会社 Filter pleat pack, and air filter unit
EP4238635A1 (en) * 2020-10-27 2023-09-06 Nitto Denko Corporation Filter pleat pack, and air filter unit
EP4238635A4 (en) * 2020-10-27 2024-05-22 Nitto Denko Corporation Filter pleat pack, and air filter unit

Also Published As

Publication number Publication date
JP2013022547A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
TWI568487B (en) Blended nonwovens, filter media and filter units
JP5608323B2 (en) Filter medium, method for manufacturing the same, and filter unit
JP3362730B2 (en) Air filter medium, air filter pack and air filter unit using the same, and method of manufacturing air filter medium
TWI618572B (en) Manufacturing method for air filter medium, air filter medium, and air filter pack
JP2009154150A (en) Air filter
JP5784458B2 (en) Air filter media
JP2005177641A (en) Air filter unit, its manufacturing method and its assembly
JP6725311B2 (en) Filter media and filter unit
KR102527125B1 (en) Filter media and filter units
WO2013014828A1 (en) Filter unit and cleaner provided with same
WO2020137733A1 (en) Filter medium, pleated filter pack, and filter unit
JP2008137009A (en) Air filter unit and its manufacturing method, and air filter unit assembly
JP2005246233A (en) Air filter medium for cleaner, and air filter unit for cleaner using the same
JP2005279554A (en) Air filter unit
JP2008279359A (en) Filter medium and filter unit using this filter medium
JP5013960B2 (en) Filter unit and manufacturing method thereof
WO2020204177A1 (en) Filtering material and filter unit
JP2005279555A (en) Air filter medium, using method therefor and air filter unit using the medium
JP2006075757A (en) Filter unit
JP5094610B2 (en) Air filter medium and air filter unit using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12817788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12817788

Country of ref document: EP

Kind code of ref document: A1