WO2013013713A1 - Ladekabel - Google Patents

Ladekabel Download PDF

Info

Publication number
WO2013013713A1
WO2013013713A1 PCT/EP2011/062920 EP2011062920W WO2013013713A1 WO 2013013713 A1 WO2013013713 A1 WO 2013013713A1 EP 2011062920 W EP2011062920 W EP 2011062920W WO 2013013713 A1 WO2013013713 A1 WO 2013013713A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
cable
charging cable
conductor
outer conductor
Prior art date
Application number
PCT/EP2011/062920
Other languages
English (en)
French (fr)
Inventor
Roland Brill
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/EP2011/062920 priority Critical patent/WO2013013713A1/de
Publication of WO2013013713A1 publication Critical patent/WO2013013713A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/04Concentric cables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B9/00Power cables
    • H01B9/006Constructional features relating to the conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the invention relates to a charging cable for electrically connecting an electrically driven vehicle and a charging device to charge a traction battery of the vehicle so ⁇ as a method for electrically charging a traction battery of an electrically driven vehicle.
  • Such an electrically powered vehicle includes a traction battery, which provides the Benö for driving ⁇ preferential electrical energy. Discharged traction batteries must be charged if necessary by means of a charging device.
  • Traction batteries can be charged by conductive or inductive means.
  • conductive charging electric current (charging current) is transmitted from the charging device to the vehicle by means of an electric cable (charging cable).
  • inductive charging electric power is wirelessly transmitted from the charging device to the vehicle by means of an electromagnetic alternating field.
  • the invention has for its object to provide a charging cable and a method in which only small undesirable effects on the environment occur.
  • a charging cable for electrically connecting an electrically driven vehicle and a Charging device to charge a driving battery of the vehicle (konduk ⁇ tive), wherein the charging cable is designed as a coaxial cable.
  • this charging cable is advantageous that in the environment of the charging cable when charging in the (theoretical) see ideal neither an electric nor a magnetic field is generated. In practice arise only very low electrical in the area of the charging cable or like ⁇ genetic fields. This prevents or minimizes undesired effects on the environment (for example, the influence on sensitive electronic devices such as cardiac pacemakers or the like).
  • the charging cable according to the invention can be designed so that it has an inner conductor and an outer conductor surrounding the inner conductor (to transmit electrical energy on konduk ⁇ tive way to the vehicle). With the inner conductor and the outer conductor, the charging cable has two electrical Lei ⁇ ter to transfer electrical energy from the charger to the vehicle.
  • the charging cable can also be designed so that the electrically conductive cross-sectional area of the inner conductor is greater than the electrically conductive cross-sectional area of the outer conductor. It is particularly advantageous that ⁇ due to the larger electrically conductive cross-sectional area of the inner conductor in the inner conductor less heat (current heat) is formed as in the outer conductor. This is particularly advantageous because the heat generated in the inner conductor ⁇ on the basis of the central position of the inner conductor can be delivered only poorly to the surface of the coaxial charging cable.
  • the invention further provides a method for electrically charging an (electric) traction battery of an electrically driven vehicle, in which electrical energy is transmitted from a charging device to the vehicle via a charging cable configured as a coaxial cable (to conductively charge the traction battery of the vehicle).
  • a charging cable configured as a coaxial cable (to conductively charge the traction battery of the vehicle).
  • the method may be configured such that electrical energy in the form of electrical current having a frequency of less than 1 kHz is transmitted by means of the La ⁇ deraits.
  • the coaxial cable is surprisingly set for low-frequency charging currents ⁇ sets, ie for charging currents having a frequency less than 1 kHz.
  • such charging currents can be transmitted as direct currents or as currents with the usual mains frequency (for example 50 Hz or 60 Hz).
  • Coaxial cable ⁇ frequency technology where an advantageous characteristic impedance in addition to the shielding is realized by means of these coaxial cables are otherwise usually only at high employed.
  • the method can proceed so that a direct current is transferred from the charger to the vehicle by means of a réellelei ⁇ ters and a surrounding the inner conductor outer conductor of the charging cable.
  • the DC current is transmitted by means of the inner conductor and the outer conductor of the coaxial cable to the vehicle, unusually.
  • the method can also be designed such that (eg, based on the ground potential), the inner conductor has a higher electrical potential than the outer conductor.
  • the safety is significantly increased, especially in the transmission of direct current, as the (possibly dangerous to humans) occurs higher electrical potential inside the coaxial cable and does not reach the cable surface.
  • the method can also be such that the currents flowing in the charging cable are monitored in order to detect a possible presence of a (eg mechanical) damage of a cable sheath surrounding the outer conductor when a fault current occurs.
  • a (eg mechanical) damage of a cable sheath surrounding the outer conductor when a fault current occurs.
  • This can advantageously be detected by a simple monitoring of a fault current out when a cable jacket surrounding the outer conductor has been damaged. In such a damage to the cable sheath namely fault currents due to Leckströ ⁇ men or leakage currents through the cable sheath on.
  • FIG. 1 is a representation of an embodiment of a
  • FIG. 2 a representation of the charging cable with potential input
  • FIG 3 is a schematic representation of anintersbei ⁇ game of a charging device and an electrically driven vehicle, which are electrically connected to a charging cable shown.
  • a charging cable 1 for electrically connecting an electrically driven vehicle is shown with a charging device in a schematic, not to scale representation.
  • This charging cable is designed as a Koaxialka- at 1.
  • the charging cable 1 has an inner conductor 3, which has a circular cylindrical shape.
  • This inner ⁇ conductor 3 is surrounded by a hollow cylindrical insulation (dielectric) 5.
  • the insulation 5 is surrounded by a hollow cylindrical outer conductor 7.
  • the outer conductor 7 is surrounded or covered by a hollow cylindrical cable sheath 9.
  • the inner conductor 3, the insulation 5, the outer conductor 7 and the cable sheath 9 are arranged concentrically with each other.
  • the charging cable 1 has, with the inner conductor 3 and the outer conductor 7, two electrical conductors in order to transmit electrical energy in a conductive manner.
  • electrical and / or magnetic fields occur only in the interior of the charging cable (ie within the space enclosed by the outer conductor 7 space) on; Ideally, in the vicinity of the charging cable, there are no electric and / or magnetic fields or, in practice, at most low electrical and / or magnetic fields.
  • the inner conductor 3 has a circular cross-sectional surface 11, the outer conductor 7 has an annular cross-sectional area 13.
  • the electrically conductive cross ⁇ sectional area 11 of the inner conductor 3 is greater than the elec ⁇ trically conductive cross-sectional area 13 of the outer conductor 7. Since ⁇ by arises in inner conductor 3 at the power line less heat than seventh in the outer conductor This is especially before ⁇ geous because the inner conductor can release heat occurring only very poorly to the Oberflä ⁇ che of the charging cable due to its location in the hold ⁇ cable. Thus, an optimized thermal behavior is achieved even at high load currents to be transmitted.
  • the charging cable 1 is shown in the transmission of a direct current as a charging current.
  • the home 3 a first electrical potential PI and the outer conductor 7 a second electrical potential P2.
  • the first electric potential PI and the second electrical Po ⁇ tential P2 are thereby related to a third electrical potential P3, in the exemplary embodiment it is in the third electrical potential P3 to the ground potential (0 volts).
  • the first electrical potential PI of the inner conductor 3 is higher than the second electrical ⁇ potential P2 of the outer conductor.
  • the first electric potential PI may have a size of 700 volts Betra ⁇ gene and the second electrical potential P2 size of 0 volts.
  • the second electrical ⁇ specific potential P2 of the outer conductor has a size which is small from the surrounding the charger cable potential (in this case from the ground potential P3) is different.
  • the cable sheath 9 of the charging cable 1 are damaged, it would be due to flowing through the cable sheath Creepage currents or leakage currents occur a fault current or flow and are detected by the fault current detection device.
  • the presence of damage to the cable sheath 9 can be detected in a simple manner. This is an important aspect, since the often used high voltages and the large electrical power transmitted via the charging cable damage the cable sheath 9 is a significant security risk.
  • FIG. 3 schematically shows a charging device 20, which is electrically connected to an electrically drivable vehicle 22 by means of the charging cable 1.
  • the charging cable 1 transmits electric energy in the form of electrical ⁇ schem stream 22 from the loader 20 to the electrically powered vehicle is in the electrically powered vehicle 22, the electric current is used to charge a driving battery 24 of the vehicle 22nd
  • direct current can be transmitted to the electrically drivable vehicle 22 by means of the charging cable 1 (direct current charging), or, for example, low-frequency alternating current can be transmitted to the vehicle 22 (alternating current charging).
  • Such low frequency alternating current generally has a frequency less than 1 kHz. For example, this frequency may correspond to the usual mains frequency of 50 Hz or 60 Hz.
  • the fault current detection device 15 is shown, which detects fault currents and thus monitors the charging cable for damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Ladekabel zum elektrischen Verbinden eines elektrisch antreibbaren Fahrzeugs (22) und einer Ladeeinrichtung (24), wobei das Ladekabel ein Koaxialkabel (1) ist. Weiterhin betrifft die Erfindung ein Verfahren zum elektrischen Laden einer Fahrbatterie (24) des elektrisch antreibbaren Fahrzeugs (22).

Description

Beschreibung
Ladekabel
Die Erfindung betrifft ein Ladekabel zum elektrischen Verbinden eines elektrisch antreibbaren Fahrzeugs und einer Ladeeinrichtung, um eine Fahrbatterie des Fahrzeug aufzuladen so¬ wie ein Verfahren zum elektrischen Laden einer Fahrbatterie eines elektrisch antreibbaren Fahrzeugs.
Es wird erwartet, dass in Zukunft elektrisch antreibbare Fahrzeuge in großer Anzahl im Straßenverkehr unterwegs sein werden. Ein solches elektrisch antreibbares Fahrzeug weist eine Fahrbatterie auf, welche die für den Fahrbetrieb benö¬ tigte elektrische Energie zur Verfügung stellt. Entladene Fahrbatterien müssen bei Bedarf mittels einer Ladeeinrichtung aufgeladen werden.
Fahrbatterien können auf konduktivem Weg oder auf induktivem Weg aufgeladen werden. Beim sogenannten konduktiven Laden wird elektrischer Strom (Ladestrom) mittels eines elektrischen Kabels (Ladekabel) von der Ladeeinrichtung zu dem Fahrzeug übertragen. Beim induktiven Laden wird elektrischer Strom mittels eines elektromagnetischen Wechselfelds kabellos von der Ladeeinrichtung zu dem Fahrzeug übertragen.
Der Erfindung liegt die Aufgabe zugrunde, ein Ladekabel und ein Verfahren anzugeben, bei denen nur geringe unerwünschte Beeinflussungen der Umwelt auftreten.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Ladekabel und ein Verfahren nach den unabhängigen Patentansprüchen. Vorteilhafte Ausgestaltungen des Ladekabels und des Verfah¬ rens sind in den jeweiligen abhängigen Patentansprüchen angegeben .
Erfindungsgemäß angegeben wird ein Ladekabel zum elektrischen Verbinden eines elektrisch antreibbaren Fahrzeugs und einer Ladeeinrichtung, um eine Fahrbatterie des Fahrzeugs (konduk¬ tiv) aufzuladen, wobei das Ladekabel als ein Koaxialkabel ausgestaltet ist. Bei diesem Ladekabel ist vorteilhaft, dass in der Umgebung des Ladekabels beim Ladebetrieb im (theoreti- sehen) Idealfall weder ein elektrisches noch ein magnetisches Feld erzeugt wird. In der Praxis entstehen in der Umgebung des Ladekabels allenfalls sehr geringe elektrische bzw. mag¬ netische Felder. Dadurch werden unerwünschte Beeinflussungen der Umwelt (beispielsweise die Beeinflussung von empfindli- chen elektronischen Geräten wie Herzschrittmachern o. ä.) verhindert oder gering gehalten.
Im Unterschied dazu hat sich bei den bisher bekannten Ladeka¬ beln (welche z.B. parallel angeordnete Drähte aufweisen) näm¬ lich gezeigt, dass in der Umgebung dieser bekannten Ladekabel beim konduktiven Laden erhebliche elektrische und/oder magnetische Felder auftreten können, die die Umwelt negativ beeinflussen. Dies liegt daran, dass bei gewünschten kurzen Ladezeiten eine große elektrische Leistung mittels eines hohen elektrischen Stroms von der Ladeeinrichtung über das Ladekabel zu dem Fahrzeug übertragen wird. Dieser hohe elektrische Strom erzeugt die erheblichen Felder, die sich bei den bekannten Ladekabeln auch in der Umgebung der Ladekabel ausbreiten können.
Das erfindungsgemäße Ladekabel kann so ausgestaltet sein, dass es einen Innenleiter und einen den Innenleiter umgebenden Außenleiter aufweist (um elektrische Energie auf konduk¬ tivem Weg zu dem Fahrzeug zu übertragen) . Mit dem Innenleiter und dem Außenleiter weist das Ladekabel zwei elektrische Lei¬ ter auf, um elektrische Energie von der Ladeeinrichtung zu dem Fahrzeug zu übertragen.
Das Ladekabel kann auch so ausgestaltet sein, dass die elektrisch leitende Querschnittsfläche des Innenleiters größer ist als die elektrisch leitende Querschnittsfläche des Außenleiters. Hierbei ist besonders vorteilhaft, dass auf¬ grund der größeren elektrisch leitenden Querschnittsfläche des Innenleiters im Innenleiter weniger Wärme (Stromwärme) entsteht als im Außenleiter. Dies ist insbesondere deshalb vorteilhaft, weil die im Innenleiter entstehende Wärme auf¬ grund der zentralen Lage des Innenleiters nur schlecht an die Oberfläche des Koaxial-Ladekabels abgegeben werden kann.
Erfindungsgemäß angegeben wird weiterhin ein Verfahren zum elektrischen Laden einer (elektrischen) Fahrbatterie eines elektrisch antreibbaren Fahrzeugs, bei dem elektrische Ener- gie von einer Ladeeinrichtung über ein als Koaxialkabel ausgestaltetes Ladekabel zu dem Fahrzeug übertragen wird (um die Fahrbatterie des Fahrzeugs konduktiv aufzuladen) . Bei diesem Verfahren werden unerwünschte Beeinflussungen der Umwelt in der Nähe des Ladekabels deutlich verringert, da in der Umge- bung des Koaxialkabels nur sehr kleine elektrische oder mag¬ netische Felder auftreten.
Das Verfahren kann so ausgestaltet sein, dass mittels des La¬ dekabels elektrische Energie in Form von elektrischem Strom mit einer Frequenz kleiner als 1 kHz übertragen wird. Bei dem Verfahren ist besonders vorteilhaft, dass das Koaxialkabel überraschender Weise für niederfrequente Ladeströme einge¬ setzt wird, also für Ladeströme, die eine Frequenz kleiner als 1 kHz aufweisen. Beispielsweise können gemäß der Erfin- dung mit dem als Koaxialkabel ausgestalteten Ladekabel solche Ladeströme als Gleichströme oder als Ströme mit üblicher Netzfrequenz (beispielsweise 50 Hz oder 60 Hz) übertragen werden. Koaxialkabel werden sonst üblicherweise nur bei Hoch¬ frequenztechnik eingesetzt, wo mit Hilfe dieser Koaxialkabel neben der Abschirmung ein vorteilhafter Wellenwiderstand realisiert wird.
Das Verfahren kann so ablaufen, dass mittels eines Innenlei¬ ters und eines den Innenleiter umgebenden Außenleiters des Ladekabels ein Gleichstrom von der Ladeeinrichtung zu dem Fahrzeug übertragen wird. Hierbei wird ungewöhnlicherweise der Gleichstrom mittels des Innenleiters und des Außenleiters des Koaxialkabels zu dem Fahrzeug übertragen. Das Verfahren kann auch so ausgestaltet sein, dass (z.B. bezogen auf das Erdpotential) der Innenleiter ein höheres elektrisches Potential aufweist als der Außenleiter. Bei die¬ ser Ausgestaltung wird insbesondere bei der Übertragung von Gleichstrom die Sicherheit deutlich erhöht, da das (ggf. für Menschen gefährliche) höhere elektrische Potential im Inneren des Koaxialkabels auftritt und nicht an die Kabeloberfläche gelangt .
Das Verfahren kann auch so ablaufen, dass die im Ladekabel fließenden Ströme überwacht werden, um bei Auftreten eines Fehlerstroms ein mögliches Vorliegen einer (z.B. mechanischen) Beschädigung eines den Außenleiter umgebenden Kabelmantels zu erkennen. Hierbei kann vorteilhafterweise anhand einer einfachen Überwachung auf einen Fehlerstrom hin erkannt werden, wenn ein den Außenleiter umgebender Kabelmantel beschädigt worden ist. Bei einer solchen Beschädigung des Kabelmantels treten nämlich Fehlerströme aufgrund von Leckströ¬ men oder Kriechströmen durch den Kabelmantel auf.
Im Folgenden wird die Erfindung anhand eines Ausführungsbei¬ spiels näher beschrieben. Dazu ist in Figur 1 eine Darstellung eines Ausführungsbeispiels eines
Ladekabels, in
Figur 2 eine Darstellung des Ladekabels mit Potentialanga¬ ben und in
Figur 3 eine schematische Darstellung eines Ausführungsbei¬ spiels einer Ladeeinrichtung und eines elektrisch antreibbaren Fahrzeugs, welche mit einem Ladekabel elektrisch verbunden sind, dargestellt . In Figur 1 ist in einer schematischen, nicht maßstabsgerechten Darstellung ein Ladekabel 1 zum elektrischen Verbinden eines elektrisch antreibbaren Fahrzeugs mit einer Ladeeinrichtung dargestellt. Dieses Ladekabel ist als ein Koaxialka- bei 1 ausgestaltet. Das Ladekabel 1 weist einen Innenleiter 3 auf, der eine kreiszylinderförmige Gestalt hat. Dieser Innen¬ leiter 3 wird von einer hohlzylinderförmigen Isolation (Dielektrikum) 5 umgeben. Die Isolation 5 wird von einem hohlzylinderförmigen Außenleiter 7 umgeben. Der Außenleiter 7 ist von einem hohlzylinderförmigen Kabelmantel 9 umgeben bzw. abgedeckt. Der Innenleiter 3, die Isolation 5, der Außenleiter 7 und der Kabelmantel 9 sind konzentrisch zueinander angeordnet. Das Ladekabel 1 weist mit dem Innenleiter 3 und dem Außenleiter 7 zwei elektrische Leiter auf, um elektrische Energie auf konduktivem Weg zu übertragen. Bei der Übertragung von elektrischem Strom mittels dieses Ladekabels treten vorteilhafterweise elektrische und/oder magnetische Felder lediglich im Inneren des Ladekabels (also innerhalb des von dem Außenleiter 7 umschlossenen Raums) auf; in der Umgebung des Ladekabels bestehen im Idealfall keine elektrischen und/oder magnetischen Felder bzw. in der Praxis höchstens geringe elektrische und/oder magnetische Felder.
Der Innenleiter 3 hat eine runde Querschnittsfläche 11, der Außenleiter 7 hat eine kreisringförmige Querschnittsfläche 13. Bei dem Ladekabel ist die elektrisch leitende Quer¬ schnittsfläche 11 des Innenleiters 3 größer als die elek¬ trisch leitende Querschnittsfläche 13 des Außenleiters 7. Da¬ durch entsteht im Innenleiter 3 bei der Stromleitung weniger Verlustwärme als im Außenleiter 7. Dies ist besonders vor¬ teilhaft, weil der Innenleiter aufgrund seiner Lage im Lade¬ kabel die auftretende Wärme nur sehr schlecht an die Oberflä¬ che des Ladekabels abgeben kann. Somit wird ein optimiertes thermisches Verhalten auch bei hohen zu übertragenden Lade- strömen erreicht.
In Figur 2 ist das Ladekabel 1 bei der Übertragung eines Gleichstroms als Ladestrom dargestellt. Dabei weist der In- nenleiter 3 ein erstes elektrisches Potential PI und der Außenleiter 7 ein zweites elektrisches Potential P2 auf. Das erste elektrische Potential PI und das zweite elektrische Po¬ tential P2 sind dabei bezogen auf ein drittes elektrisches Potential P3, im Ausführungsbeispiel handelt es sich bei dem dritten elektrischen Potential P3 um das Erdpotential (0 Volt) .
Bei der Übertragung von Gleichstrom ist das erste elektrische Potential PI des Innenleiters 3 höher als das zweite elektri¬ sche Potential P2 des Außenleiters. Beispielsweise kann das erste elektrische Potential PI eine Größe von 700 Volt betra¬ gen und das zweite elektrische Potential P2 eine Größe von 0 Volt. Beim übertragen von Gleichstrom wird der Innenleiter 3 also als positiver Leiter und der Außenleiter 7 als negativer Leiter verwendet.
Besonders vorteilhaft ist es jedoch, wenn das zweite elektri¬ sche Potential P2 des Außenleiters eine Größe aufweist, die sich gering von dem das Ladekabel umgebenden Potential (hier: von dem Erdpotential P3) unterscheidet. Beispielsweise kann das zweite elektrische Potential die Größe P2 = 10 Volt auf¬ weisen. Dann können mittels einer Fehlerstromerkennungsein- richtung 15 während des Ladebetriebs die durch das Ladekabel fließenden Ströme (hier also der durch den Außenleiter 7 fließende Strom und der durch den Innenleiter 3 fließende Strom) auf das Auftreten eines Fehlerstroms hin überwacht werden. Derartige Fehlerstromerkennungseinrichtungen 15 als solche sind bekannt, z.B. aus sogenannten Fehlerstromschutz- Schaltern. Das Auftreten eines Fehlerstroms wird dann erkannt, wenn zwischen den in dem Ladekabel fließenden Strömen (hier also zwischen dem durch den Außenleiter 7 fließenden Strom und dem durch den Innenleiter 3 fließenden Strom) eine Stromdifferenz auftritt und diese Stromdifferenz einen vorge- gebenen Schwellwert überschreitet.
Sollte der Kabelmantel 9 des Ladekabels 1 beschädigt werden, so würde aufgrund von durch den Kabelmantel fließenden Kriechströmen bzw. Leckströmen ein Fehlerstrom auftreten bzw. fließen und von der Fehlerstromerkennungseinrichtung erkannt werden. So kann auf einfache Art und Weise das Vorliegen einer Beschädigung des Kabelmantels 9 festgestellt werden. Dies ist ein wichtiger Aspekt, da bei den oftmals verwendeten hohen Spannungen und den großen über das Ladekabel übertragenen elektrischen Leistungen eine Beschädigung des Kabelmantels 9 ein erhebliches Sicherheitsrisiko darstellt.
In Figur 3 ist schematisch eine Ladeeinrichtung 20 dargestellt, die mittels des Ladekabels 1 elektrisch mit einem elektrisch antreibbaren Fahrzeug 22 verbunden ist. Das Ladekabel 1 überträgt elektrische Energie in Form von elektri¬ schem Strom von der Ladeeinrichtung 20 zu dem elektrisch antreibbaren Fahrzeug 22. In dem elektrisch antreibbaren Fahrzeug 22 wird der elektrische Strom verwendet, um eine Fahrbatterie 24 des Fahrzeugs 22 aufzuladen. Insbesondere kann mittels des Ladekabels 1 Gleichstrom zu dem elektrisch antreibbaren Fahrzeug 22 übertragen werden (Gleichstromladen) , oder es kann z.B. niederfrequenter Wechselstrom zu dem Fahrzeug 22 übertragen werden (Wechselstromladen) . Solcher niederfrequenter Wechselstrom hat im Allgemeinen eine Frequenz kleiner als 1 kHz. Beispielsweise kann diese Frequenz der üblichen Netzfrequenz von 50 Hz oder 60 Hz entsprechen. Von der Ladeeinrichtung 20 ist lediglich die Fehlerstromer- kennungseinrichtung 15 dargestellt, die Fehlerströme erkennt und damit das Ladekabel auf Beschädigungen überwacht.
Es wurde ein Ladekabel und ein Verfahren beschrieben, bei denen beim Laden von Fahrbatterien elektrisch antreibbarer Fahrzeuge in dem das Ladekabel umgebenden Kabelaußenraum keine bzw. nur geringe elektrische und/oder magnetische Fel¬ der auftreten.

Claims

Patentansprüche
1. Ladekabel (1) zum elektrischen Verbinden eines elektrisch antreibbaren Fahrzeugs (22) und einer Ladeeinrichtung (24), d a d u r c h g e k e n n z e i c h n e t , dass
das Ladekabel ein Koaxialkabel (1) ist.
2. Ladekabel nach Anspruch 1,
d a d u r c h g e k e n n z e i c h n e t , dass
- das Ladekabel (1) einen Innenleiter (3) und einen den Innenleiter umgebenden Außenleiter (7) aufweist.
3. Ladekabel nach Anspruch 1 oder 2,
d a d u r c h g e k e n n z e i c h n e t , dass
- die elektrisch leitende Querschnittsfläche (11) des Innen¬ leiters (3) größer ist als die elektrisch leitende Quer¬ schnittsfläche (13) des Außenleiters (7) .
4. Verfahren zum elektrischen Laden einer Fahrbatterie (24) eines elektrisch antreibbaren Fahrzeugs (22), bei dem
elektrische Energie von einer Ladeeinrichtung (20) über ein als Koaxialkabel ausgestaltetes Ladekabel (1) zu dem Fahrzeug (22) übertragen wird.
5. Verfahren nach Anspruch 4,
d a d u r c h g e k e n n z e i c h n e t , dass
- mittels des Ladekabels (1) elektrische Energie in Form von elektrischem Strom mit einer Frequenz kleiner als 1 kHz übertragen wird.
6. Verfahren nach Anspruch 4 oder 5,
d a d u r c h g e k e n n z e i c h n e t , dass
- mittels eines Innenleiters (3) und eines den Innenleiter umgebenden Außenleiters (7) des Ladekabels (1) ein Gleich- ström von der Ladeeinrichtung (20) zu dem Fahrzeug (22) übertragen wird.
7. Verfahren nach einem der Ansprüche 4 bis 6, d a d u r c h g e k e n n z e i c h n e t , dass
- der Innenleiter (3) ein höheres elektrisches Potential (P2) aufweist als der Außenleiter (7) .
8. Verfahren nach einem der Ansprüche 4 bis 7,
d a d u r c h g e k e n n z e i c h n e t , dass
- die im Ladekabel fließenden Ströme überwacht werden, um bei Auftreten eines Fehlerstroms eine Beschädigung eines den Außenleiter umgebenden Kabelmantels (9) zu erkennen.
PCT/EP2011/062920 2011-07-27 2011-07-27 Ladekabel WO2013013713A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/062920 WO2013013713A1 (de) 2011-07-27 2011-07-27 Ladekabel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2011/062920 WO2013013713A1 (de) 2011-07-27 2011-07-27 Ladekabel

Publications (1)

Publication Number Publication Date
WO2013013713A1 true WO2013013713A1 (de) 2013-01-31

Family

ID=44534348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/062920 WO2013013713A1 (de) 2011-07-27 2011-07-27 Ladekabel

Country Status (1)

Country Link
WO (1) WO2013013713A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220092A1 (de) * 2017-06-02 2018-12-06 Igus Gmbh Durchmesserreduziertes mehrleiterkabel und kontaktvorrichtung hierfür
US10967751B2 (en) 2019-05-10 2021-04-06 Gm Global Technology Operations, Llc Method to detect the proper connection of a vehicle charging cable
WO2023046393A1 (de) * 2021-09-27 2023-03-30 KEBA Energy Automation GmbH Ladekabel für eine ladestation, ladestation, system mit einer mehrzahl von ladestationen und verfahren zum betreiben einer ladestation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823766A1 (de) * 1996-08-07 1998-02-11 Sumitomo Wiring Systems, Ltd. Gekühltes Kabel zum Laden eines elektrischen Fahrzeugs
EP1355325A1 (de) * 2002-04-19 2003-10-22 Eidgenössische Technische Hochschule Zürich Fest abgeschirmte elektrische Leiter und Röhren mit integrierten fest abgeschirmten elektrischen Leitern
DE202009011111U1 (de) * 2009-08-14 2009-10-15 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Antriebsanordnung, beispielsweise für ein Elektrofahrrad
WO2011011776A1 (en) * 2009-07-24 2011-01-27 Fisker Automotive, Inc. High voltage cable design for electric and hybrid electric vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0823766A1 (de) * 1996-08-07 1998-02-11 Sumitomo Wiring Systems, Ltd. Gekühltes Kabel zum Laden eines elektrischen Fahrzeugs
EP1355325A1 (de) * 2002-04-19 2003-10-22 Eidgenössische Technische Hochschule Zürich Fest abgeschirmte elektrische Leiter und Röhren mit integrierten fest abgeschirmten elektrischen Leitern
WO2011011776A1 (en) * 2009-07-24 2011-01-27 Fisker Automotive, Inc. High voltage cable design for electric and hybrid electric vehicles
DE202009011111U1 (de) * 2009-08-14 2009-10-15 Rosenberger Hochfrequenztechnik Gmbh & Co. Kg Antriebsanordnung, beispielsweise für ein Elektrofahrrad

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018220092A1 (de) * 2017-06-02 2018-12-06 Igus Gmbh Durchmesserreduziertes mehrleiterkabel und kontaktvorrichtung hierfür
CN110809531A (zh) * 2017-06-02 2020-02-18 易格斯有限公司 直径减小的多导体线缆和用于该多导体线缆的接触装置
US11472303B2 (en) 2017-06-02 2022-10-18 Igus Gmbh Multi-conductor cable of reduced diameter and contact apparatus for same
US10967751B2 (en) 2019-05-10 2021-04-06 Gm Global Technology Operations, Llc Method to detect the proper connection of a vehicle charging cable
WO2023046393A1 (de) * 2021-09-27 2023-03-30 KEBA Energy Automation GmbH Ladekabel für eine ladestation, ladestation, system mit einer mehrzahl von ladestationen und verfahren zum betreiben einer ladestation

Similar Documents

Publication Publication Date Title
EP2384922B1 (de) Stromaufladevorrichtung für ein Elektrofahrzeug
DE102018104916A1 (de) Verfahren zur Steuerung einer Ladevorrichtung eines Fahrzeugs und Ladevorrichtung eines Fahrzeugs zum Laden eines elektrischen Energiespeichers des Fahrzeugs
DE102014219504A1 (de) Drahtloses Batterieladesystem mit Notabschaltung für eine Fahrbatterie eines Elektrofahrzeugs
DE102017009355A1 (de) Verfahren zum Betreiben von elektrischen Bordnetzen
DE102011082897A1 (de) Ladevorrichtung für ein Fahrzeug
DE102014219645B4 (de) Elektrische Verbindungseinrichtung zum Übertragen von elektrischer Energie und/oder Daten, Bordnetz und Kraftfahrzeug
DE102015117678A1 (de) Isolationsfehler-Schutzeinrichtung mit Abschaltfunktion für ungeerdete Stromversorgungssysteme
DE102014210589A1 (de) Fehlerstromschutzanordnung, Ladevorrichtung sowie Verfahren zum Überprüfen einer Fehlerstromschutzeinrichtung
WO2013013713A1 (de) Ladekabel
DE102013219538A1 (de) Ladestation für ein elektrisch antreibbares Fahrzeug
DE202014000328U1 (de) Ladesystem zum Laden eines Energiespeichers eines Elektrofahrzeuges und Ladekabel hierfür
WO2011116970A2 (de) Verfahren und anordnung elektrischer leiter zum laden einer fahrzeugbatterie
DE102011101191A1 (de) Ladevorrichtung eines Fahrzeugs
DE102017110955A1 (de) Detektion eines Schutzleiterausfalls mittels aktiver Schirmung
DE102013205236A1 (de) Überwachungsvorrichtung und Verfahren zum Überwachen einer Restspannung
DE102011079326A1 (de) Verfahren und Vorrichtung zum Überwachen einer Masseverbindung
DE102014018642B4 (de) EMV-Maßnahme und Kurzschlussdetektion im Kraftfahrzeug
EP3433125A1 (de) Kontaktierungssystem zum herstellen einer elektrischen verbindung zwischen einem fahrzeug und einer energieversorgung
DE102012219457B4 (de) Schutzschaltvorrichtung zum Detektieren eines Fehlerstroms und Steuerverfahren
DE202014011008U1 (de) Energieversorgungsvorrichtung, Elektromotor und Fahrzeug
DE102013226628A1 (de) Stecker für ein Ladekabel, Ladevorrichtung sowie Ladeverfahren zum Laden eines Elektrofahrzeugs
DE102017006979A1 (de) Hochvolt-Anordnung für ein Kraftfahrzeug mit Signalübertragung über einen Hochvolt-Schirm
WO2012146306A2 (de) Verfahren zum begrenzen der elektrischen leistung
EP2611645B1 (de) Verfahren und anordnung zur spannungsversorgung eines elektrischen kontaktmittels
EP4041588A1 (de) Verfahren zum überwachen von zumindest einer y-kapazität eines elektrischen bordnetzes eines fahrzeugs, sowie elektrisches bordnetz

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11749770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11749770

Country of ref document: EP

Kind code of ref document: A1