WO2013010371A1 - 一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法 - Google Patents

一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法 Download PDF

Info

Publication number
WO2013010371A1
WO2013010371A1 PCT/CN2011/084403 CN2011084403W WO2013010371A1 WO 2013010371 A1 WO2013010371 A1 WO 2013010371A1 CN 2011084403 W CN2011084403 W CN 2011084403W WO 2013010371 A1 WO2013010371 A1 WO 2013010371A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
aerogel
gel
reinforced
rice husk
Prior art date
Application number
PCT/CN2011/084403
Other languages
English (en)
French (fr)
Inventor
沈晓冬
顾丹明
崔升
Original Assignee
南京工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京工业大学 filed Critical 南京工业大学
Publication of WO2013010371A1 publication Critical patent/WO2013010371A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/16Preparation of silica xerogels

Definitions

  • the invention belongs to the technical field of preparation of inorganic non-metal materials, in particular to a method for preparing fiber-reinforced SiO 2 aerogels from agricultural waste rice husk ash. Background technique
  • Si0 2 aerogel is a new type of low-density nanoporous amorphous solid material with a continuous three-dimensional network structure with a porosity of 80 to 99.8% and a specific surface area of 500 to 1200 m 2 /g.
  • the pore size is between 1 and 100 nm. Due to the structural characteristics of the Si0 2 aerogel, it exhibits unique properties different from ordinary solid materials in terms of mechanics, acoustics, thermals, optics and electricity, such as extremely low thermal conductivity, low refractive index, low sound. Impedance, strong adsorption performance, etc.
  • Si0 2 aerogel As a new material in the 21st century, Si0 2 aerogel has broad application prospects in the fields of heat insulation, environmental protection, medicine, catalysis, building energy conservation, chemical industry and aerospace.
  • the pure Si0 2 aerogel has low strength and poor toughness, and it is difficult to form a complete block material, which seriously restricts its practical application in engineering.
  • Si0 2 aerogels are mostly obtained from organosilicon compounds such as methyl orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS), which are obtained by sol-gel and supercritical drying or atmospheric drying.
  • TMOS methyl orthosilicate
  • TEOS tetraethyl orthosilicate
  • silicone raw materials are expensive and have certain toxicity, resulting in excessive aerogel production costs, which on the other hand limits the promotion of SiO 2 aerogels in practical applications.
  • Si0 2 aerogels some researchers turned to the rice hull ash, bagasse ash, fly ash and other inexpensive source of silicon.
  • Rice husk is the largest by-product of rice processing. China produces about 200 million tons of rice per year, and rice husk accounts for 30% of rice quality. According to its calculation, China produces 60 million tons of rice husk per year, ranking first in the world. .
  • Rice husk contains 15 ⁇ 20% SiO 2 , and the rest is mainly fiber, lignin, polysaccharide, and a small amount of crude protein, lipid and so on.
  • the content of Si0 2 in the rice husk ash is more than 90%, and it has an amorphous structure and good activity. It is a good raw material for the preparation of Si0 2 aerogel.
  • rice husks are treated as waste, which is not only a great waste of resources, but also causes great pollution to the environment. Summary of the invention
  • the present invention provides a method for preparing a fiber reinforced SiO 2 aerogel from rice husk ash.
  • the method is inexpensive,
  • Ample source of agricultural waste rice husk ash is a silicon source, with fiber as a reinforcement, which achieves the purpose of reducing the production cost of aerogel and improving the mechanical properties of aerogel.
  • the technical scheme of the invention is: a method for preparing fiber reinforced SiO 2 aerogel from rice husk ash, which is prepared by using rice husk ash as raw material, leaching by inorganic alkali solution, cation exchange resin treatment, inorganic alkali And a silica sol is formed, and when the sol becomes viscous, it is compounded with the reinforcing fiber, and the silica gel is allowed to stand, and the gel is aged, washed with water, replaced with an organic solvent, and dried to prepare fiber-reinforced SiO 2 gas.
  • the specific process steps of the glue are as follows:
  • the rice hull ash is added to the alkali solution, boiled, and condensed and refluxed for 30 to 360 minutes to obtain a leachate of rice hull ash; wherein the ratio of the weight of the rice husk ash to the volume of the alkali solution is 1:5 ⁇ 1: 100 kg/L ;
  • the leachate of rice husk ash is filtered, and the obtained filtrate is ion-exchanged through a cation exchange resin column at a flow rate of 5 to 50 mL/min to obtain silicic acid, and the pH of the silicic acid is adjusted by an alkali solution to 4 to 7. Si0 2 sol;
  • the fiber constituting the rice hull ash by 1 to 100% is compounded with the SiO 2 sol, and allowed to stand to obtain a fiber-reinforced SiO 2 gel;
  • the fiber-reinforced SiO 2 gel is aged at 20 to 70 ° C for 3 to 36 h;
  • the organic solvent is used to replace the water in the gel after the step (5), the replacement temperature is 20 to 70 ° C, the number of substitutions is 2 to 10 times, and the replacement time is 1 to 24 hours;
  • step (6) substitution gel treated and dried, to obtain the fiber-reinforced Si0 2 aerogels.
  • the alkali solution described in the steps (1) and (2) is an aqueous solution of ammonia water, sodium hydroxide or potassium hydroxide; and the concentration of the alkali solution is 0.5 to 5 mol/L.
  • the cation exchange resin described in the step (2) is a strongly acidic styrene-based cation exchange resin which is subjected to activation pretreatment with a hydrochloric acid solution of 1 to 4 mol/L before use.
  • the fiber described in the step (3) is any one or a combination of two or more of glass fiber, mullite fiber, aluminum silicate fiber, brucite fiber, quartz fiber, and carbon fiber.
  • the fiber described in the step (3) is a continuous fiber mat, or a chopped fiber having a length of 2 to 20 mm; when reinforced with a continuous fiber mat, the SiO 2 sol is impregnated into the fiber mat preform until the sol is completely immersed In the fiber mat; when reinforced with chopped fibers, the chopped fibers are added to the SiO 2 sol and ultrasonically dispersed for 5 to 30 minutes to uniformly disperse the chopped fibers.
  • the drying described in the step (7) is ethanol supercritical drying, C0 2 supercritical drying or atmospheric drying.
  • the alcohol gel is placed in a drying kettle, and the air in the kettle is discharged by N 2 and pre-pressurized to 4 to 6 MPa; the temperature is raised, and the pressure in the kettle is controlled to be 8 to 12 MPa.
  • the alcohol gel is placed in a drying kettle, and the organic solvent is added to completely immerse the gel, and C0 2 of 8 to 15 MPa is introduced, and 10 to 30 L/min is used at 10 to 30 ° C.
  • the gassing rate is replaced by l ⁇ 8h; the temperature is raised to 40 ⁇ 80 °C, and then replaced at 8 ⁇ 15MPa at a gassing rate of l ⁇ 10L/min for 1 ⁇ 24h; finally, the gas is deflated at a rate of 0.5 ⁇ 5L/min. the same with the outside atmospheric pressure, turn off the power, cooling, taken out to obtain a fiber-reinforced Si0 2 aerogels.
  • the solvent-substituted gel When drying under normal pressure, the solvent-substituted gel is hydrophobically modified in a mixed solution of trimethylchlorosilane (TMCS) / n-hexane at 25 to 50 ° C for 1 to 4 days, wherein TMCS and n-hexane are used.
  • TMCS trimethylchlorosilane
  • the volume ratio is 1:1 ⁇ 1:10; the gel is hydrophobically modified and then washed with n-hexane for 1 ⁇ 10 times, each time for l ⁇ 12h, to remove the residual modification liquid; finally, the gel is at 25 ⁇ 150 ° under C, atmospheric pressure and dried l ⁇ 72h, Si0 2 to give the fiber-reinforced airgel.
  • the above organic solvent is methanol, ethanol, n-propanol, isopropanol, n-butanol or isobutanol.
  • the number of washings in the step (5) is 2 to 10 times.
  • the fiber-reinforced Si0 2 aerogel effectively improves the mechanical strength of the pure aerogel with low mechanical strength and brittleness, and the fiber-reinforced Si0 2 aerogel composite material maintains the Si0 2 aerogel original. Some excellent performance, and obviously improve the mechanical properties of the material, and the aerogel has good integrity, can be made into a block shape of a regular shape, and expanded
  • the fiber-reinforced SiO 2 aerogel prepared by the invention has a density of 0.1-0.4 g/cm 3 and a specific surface area of
  • Figure 1 is a photograph of a mullite fiber mat reinforced SiO 2 aerogel sample prepared in Example 1.
  • Example 2 is a N 2 adsorption-desorption curve of the chopped glass fiber reinforced SiO 2 aerogel prepared in Example 2; wherein is an adsorption curve, which is a desorption curve.
  • Figure 3 is a graph showing the pore size distribution of the chopped glass fiber reinforced SiO 2 aerogel prepared in Example 2.
  • Figure 5 is an FT-IR chart of the chopped quartz fiber reinforced SiO 2 aerogel prepared in Example 5. detailed description
  • the air in the kettle was discharged by using N 2 .
  • the internal pre-pressurization pressure is up to 6 MPa, the temperature is raised, and the pressure in the control kettle is 10 MPa.
  • the temperature in the autoclave reaches 260 ° C, the temperature is kept for 3 h, the temperature in the autoclave is kept constant, the pressure is slowly reduced to normal pressure, the power is turned off, and cooling is performed.
  • Figure 1 is a photograph of a mullite fiber felt reinforced SiO 2 aerogel sample prepared in Example 1. As can be seen from the photograph, the mullite fiber felt reinforced Si0 2 aerogel has good bulkiness, no cracks, and has a certain mechanical strength.
  • Example 2 Preparation of Chopped Glass Fiber Reinforced Si0 2 Aerogel
  • Figure 2 is the N 2 adsorption-desorption isotherm of the chopped glass fiber reinforced SiO 2 aerogel prepared in Example 2. It can be seen from the figure that the N 2 adsorption of the chopped glass fiber reinforced SiO 2 aerogel -
  • the desorption isotherm belongs to the type IV isotherm, which is convex upward due to the formation of a single molecule adsorption curve in the low relative pressure region; when the relative pressure is high, capillary condensation occurs, etc. The temperature rises rapidly, and the adsorption hysteresis does not coincide with the adsorption curve and the desorption curve, indicating that it has a typical mesoporous structure.
  • Example 3 is a graph showing the pore size distribution of the chopped glass fiber reinforced SiO 2 aerogel prepared in Example 2. As can be seen from the figure, the pore diameter of the chopped glass fiber reinforced SiO 2 aerogel is mainly distributed at 5 to 25 nm. Between, belongs to the mesoporous range.
  • Example 3 Preparation of Aluminosilicate Fiber Mat Reinforced Si0 2 Aerogel
  • the density was found to be 0.28 g/cm 3 , the specific surface area was 537.6 m 2 /g, the pore volume was 1.8 cm 3 /g, the average pore diameter was 20.3 nm, and the compressive strength was 1.7 MPa (30% strain).
  • FIG. 4 is an SEM image of an aluminum silicate fiber felt reinforced SiO 2 aerogel sample prepared in Example 3, wherein (a) is a low magnification image of the aerogel sample, and (b) is a diagram (a). High magnification image of the medium aerogel matrix. It can be seen from the figure (a) that a large amount of SiO 2 aerogel fills the gap between the fibers, and the surface of the fiber is covered by the SiO 2 aerogel, and a good bonding interface is formed between the fiber and the aerogel. Be understood from FIG.
  • Example 4 Preparation of brucite fiber mat reinforced Si0 2 aerogel
  • the gel was soaked with n-propanol at 25 ° C for 6 times for 6 hours to displace the water; finally, the gel was dried by C0 2 supercritical drying, when dried, Add n-propanol to the drying kettle to completely immerse the gel, pass 15 MPa of C0 2 , replace it at 15 ° C for 2 h at a gas release rate of 2.5 L/min; raise the temperature to 45 ° C, and then 2 L at 15 MPa. The degassing rate of /min was replaced by 4h; finally, it was vented to the same atmospheric pressure as IL/min, the power was turned off, cooled, and the SiO 2 fiber aerogel enhanced by the brucite fiber mat was obtained.
  • the density was found to be 0.26 g/cm 3 , the specific surface area was 421.9 m 2 /g, the pore volume was 1.0 cm 3 /g, the average pore diameter was 8.4 nm, and the compressive strength was 1.3 MPa (30% strain).
  • Figure 5 is an FT-IR chart of the chopped quartz fiber reinforced SiO 2 aerogel prepared in Example 5.
  • 1078, 796 and 462cm- 1 presents the significant features of Si0 2 aerogels outer bands, wherein the 1078, 796 and 462cm- 1 does not correspond to the absorption peaks of Si0-Si symmetric stretching vibration, symmetric stretching vibration and bending vibration at 2980, 2928 cm "1 appears stretching vibration of CH absorption peak at 1390 cm” bending vibration occurs CH at an absorption peak, while "at a further 1275 and 836 cm The vibration absorption peak of Si-C appeared.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明涉及一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法,其特征在于由以下步骤制得:稻壳灰经无机碱溶液浸取,阳离子交换树脂处理,无机碱中和生成二氧化硅溶胶,待溶胶变得粘稠时与增强纤维复合,静置得到二氧化硅复合凝胶,凝胶经老化、水洗、有机溶剂置换、干燥,制备出纤维增强的SiO2气凝胶。获得气凝胶密度为0.1~0.4g/cm3,比表面积可达400~700m2/g,孔体积为1.0~3.0cm3/g,平均孔径为5~30nm,抗压强度为0.5~2.5MPa。本发明以价格低廉、来源充足的农业废料稻壳灰代替价格昂贵且有一定毒性的有机硅为原料,以纤维为增强体,制备得到SiO2气凝胶,在保持气凝胶优异性能的前提下,既降低了气凝胶的生产成本又提高了气凝胶的力学性能。

Description

说明书 一种以稻壳灰为原料制备纤维增强 Si02气凝胶的方法 技术领域
本发明属于无机非金属材料制备技术领域,特别涉及一种以农业废料稻壳灰为原料制 备纤维增强 Si02气凝胶的方法。 背景技术
Si02气凝胶是一种新型的低密度纳米多孔非晶态固体材料, 具有连续的三维网络结 构, 其孔隙率可达 80〜99.8%, 比表面积高达 500〜1200 m2/g, 典型的孔洞尺寸在 l〜100nm之 间。 由于 Si02气凝胶的结构特性, 使其在力学、 声学、 热学、 光学和电学等方面, 显示出 不同于普通固态材料的独特性质, 如极低的热导率、低折射率、低声阻抗、强吸附性能等。 因此, Si02气凝胶作为 21世纪的新材料在隔热绝缘、环保、 医药、催化、 建筑节能、化工、 航空航天等领域具有广阔的应用前景。 但是, 纯 Si02气凝胶强度低, 韧性差, 难以形成完 整的块体材料, 严重制约了其在工程中的实际应用。
目前, Si02气凝胶大多以正硅酸甲酯 (TMOS)、 正硅酸乙酯 (TEOS)等有机硅化合物为 原料, 经溶胶-凝胶和超临界干燥或常压干燥过程获得。 但是, 有机硅原料价格昂贵且具 有一定的毒性, 导致气凝胶生产成本过高, 这在另一方面限制了 Si02气凝胶在实际应用中 的推广。 为了降低 Si02气凝胶的制备成本, 一些研究者将目光转向稻壳灰、 甘蔗渣灰、 粉 煤灰等廉价硅源上。
稻壳是稻谷加工过程中数量最大的副产品,我国每年年产稻谷约 2亿吨,稻壳约占稻 谷质量的 30%, 按其计算, 我国每年产生 6000万吨左右的稻壳, 占世界首位。 稻壳中含 有 15〜20%的 Si02, 其余主要为纤维、 木质素、 多糖, 还有少量粗蛋白、 脂类等。 稻壳的 燃烧产物稻壳灰中 Si02含量更是达到 90%以上, 且为无定形结构, 具有良好的活性, 是 制备 Si02气凝胶很好的原料。 但是在大多数情况下, 稻壳被当作废弃物来处理, 这不但 是对资源的极大浪费, 而且对环境也造成了很大的污染。 发明内容
本发明为了解决 Si02气凝胶实际应用中存在的生产成本过高, 强度低, 韧性差等问 题, 而提供了一种以稻壳灰为原料制备纤维增强 Si02气凝胶的方法。该方法以价格低廉、 来源充足的农业废料稻壳灰为硅源, 以纤维为增强体,达到了既能降低气凝胶的生产成本 又能提高气凝胶的力学性能的目的。
本发明的技术方案为: 一种以稻壳灰为原料制备纤维增强 Si02气凝胶的方法, 该方 法以稻壳灰为原料, 经无机碱溶液浸取, 阳离子交换树脂处理, 无机碱中和生成二氧化硅 溶胶, 待溶胶变得粘稠时与增强纤维复合, 静置得到二氧化硅凝胶, 凝胶经老化、 水洗、 有机溶剂置换、 干燥, 制备出纤维增强的 Si02气凝胶, 其具体工艺步骤如下:
( 1 ) 碱溶液浸取
将稻壳灰加入到碱溶液中, 沸腾, 冷凝回流 30〜360min, 得到稻壳灰的浸取液; 其中 稻壳灰重量与碱溶液体积的比例为 1 :5〜1: 100kg/L;
(2) Si02溶胶的制备
将稻壳灰的浸取液过滤,得到的滤液以 5〜50mL/min的流速经过阳离子交换树脂柱进 行离子交换, 得到硅酸, 再用碱溶液调节硅酸的 pH值为 4〜7, 得到 Si02溶胶;
(3 ) 纤维增强 Si02凝胶的制备
将占稻壳灰质量 1〜100%的纤维与 Si02溶胶复合, 静置得到纤维增强的 Si02凝胶;
(4) 老化
将纤维增强的 Si02凝胶在 20〜70°C下老化 3〜36h;
(5 ) 水洗
用去离子水洗涤老化后的凝胶, 以除去其中的杂质离子;
(6) 溶剂置换
用有机溶剂将步骤 (5 ) 处理后凝胶中的水分置换出来, 置换温度为 20〜70°C, 置换 次数为 2〜10次, 每次的置换时间为 l〜24h;
(7) 干燥
将步骤 (6) 置换处理的凝胶进行干燥, 即得到纤维增强的 Si02气凝胶。
优选步骤(1 )和 (2) 中所述的碱溶液为氨水、 氢氧化钠或氢氧化钾的水溶液; 碱溶 液的浓度为 0.5〜5mol/L。
优选步骤 (2) 中所述的阳离子交换树脂为强酸性苯乙烯系阳离子交换树脂, 其在使 用前需用 l〜4mol/L的盐酸溶液进行活化预处理。
优选步骤 (3 ) 中所述的纤维为玻璃纤维、 莫来石纤维、 硅酸铝纤维、 水镁石纤维、 石英纤维和碳纤维中的任意一种或两种以上的组合。 优选步骤 (3 ) 中所述的纤维为连续 的纤维毡, 或长度为 2〜20mm的短切纤维; 当用连续纤维毡增强时, 需将 Si02溶胶浸渍 纤维毡预制件, 直至溶胶完全浸入纤维毡中; 当用短切纤维增强时, 将短切纤维加入到 Si02溶胶中, 超声分散 5〜30min, 以使短切纤维充分分散均匀。
优选步骤 (7) 中所述的干燥为乙醇超临界干燥、 C02超临界干燥或常压干燥。 当采用乙醇超临界干燥时, 将醇凝胶置于干燥釜, 利用 N2排出釜内的空气, 并预加 压力到 4〜6MPa; 升温, 控制釜内压力为 8〜12MPa, 当釜内温度达到在 255〜275°C后, 保 温 l〜3h; 保持釜内温度不变, 将压力缓慢降至常压, 关闭电源, 冷却, 取出即得到纤维 增强的 Si02气凝胶。
当采用 C02超临界干燥时, 将醇凝胶置于干燥釜内, 加入有机溶剂使凝胶完全浸没, 通入 8〜15MPa的 C02, 在 10〜30°C下以 l〜20L/min的放气速率置换 l〜8h; 升温至 40〜80 °C, 再在 8〜15MPa下以 l〜10L/min的放气速率置换 l〜24h; 最后以 0.5〜5L/min的速率放 气至与外界大气压相同, 关闭电源, 冷却, 取出即得到纤维增强的 Si02气凝胶。
当采用常压干燥时, 将溶剂置换过的凝胶在三甲基氯硅烷(TMCS) /正己烷的混合溶 液中, 25〜50°C下疏水改性 l〜4d, 其中 TMCS与正己烷的体积比为 1 :1〜1 :10; 凝胶疏水改 性后再用正己烷清洗 1〜10次, 每次 l〜12h, 以除去残留的改性液; 最后将凝胶在 25〜150 °C下, 常压干燥 l〜72h, 得到纤维增强的 Si02气凝胶。
优选上述的有机溶剂为甲醇、 乙醇、 正丙醇、 异丙醇、 正丁醇或异丁醇。
优选步骤 (5 ) 中水洗次数为 2〜10次。
有益效果:
1. 用价格低廉、来源丰富的农业废料稻壳灰代替价格昂贵且有一定毒性的有机硅做原 料制备 Si02气凝胶, 不但使气凝胶生产成本大大降低, 而且稻壳废弃物得到资源化利用, 符合国家节能减排的基本国策。
2. 纤维增强的 Si02气凝胶有效地改善了纯气凝胶机械强度低、 脆性大等不足, 所制 得的纤维增强 Si02气凝胶复合材料, 既保持了 Si02气凝胶原有的优异性能, 又明显提高 了材料的力学性能, 而且气凝胶的整体性较好, 可制成一定规则形状的块体材料, 扩大了
Si02气凝胶的应用领域。
3. 本发明制备出的纤维增强 Si02气凝胶经检测, 密度为 0.1〜0.4g/cm3, 比表面积为
400〜700m2/g, 孔体积为 1.0〜3.0cm3/g, 平均孔径为 5〜30nm, 抗压强度为 0.5〜2.5MPa。 附图说明
图 1 是实例 1所制备的莫来石纤维毡增强 Si02气凝胶样品照片。
图 2 是实例 2所制备的短切玻璃纤维增强 Si02气凝胶的 N2吸附-脱附曲线图; 其中 为吸附曲线, 为脱附曲线。
图 3 是实例 2所制备的短切玻璃纤维增强 Si02气凝胶的孔径分布曲线图。
图 4 是实例 3所制备的硅酸铝纤维毡增强 Si02气凝胶的 SEM图。
图 5 是实例 5所制备的短切石英纤维增强 Si02气凝胶的 FT-IR图。 具体实施方式
实例 1 莫来石纤维毡增强 Si02气凝胶的制备
20克稻壳灰与 250毫升 lmol/L的 NaOH溶液混合, 常压下状态下沸腾, 冷凝回流 180min;过滤,得到的滤液以 15mL/min的流速通过装有 lmol/L盐酸活化预处理过的 001x7 强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.3 的硅酸, 再用 lmol/L的 NaOH溶液滴定中和至 pH值为 6.0, 得到 Si02溶胶; 将 Si02溶胶注入 20g莫 来石纤维毡预制件中, 直至把纤维毡完全浸没, 静置得到纤维增强 Si02凝胶; 所得的复 合凝胶在 50°C下老化 24h, 之后用去离子水洗涤 3次, 再用乙醇在 50°C下浸泡凝胶 5次, 每次 12h, 以置换出其中的水分; 最后采用乙醇超临界干燥对凝胶进行干燥, 干燥时, 利 用 N2排出釜内的空气, 釜内预加压力到 6MPa, 升温, 控制釜内压力为 10MPa, 当釜内 温度达到在 260°C后, 保温 3h, 保持釜内温度不变, 将压力缓慢降至常压, 关闭电源, 冷 却, 取出即得到莫来石纤维毡增强的 Si02气凝胶。 经检测, 其密度为 0.32g/cm3, 比表面 积为 469.5 m2/g,孔体积为 1.3cm3/g,平均孔径为 10.8nm,抗压强度为 2.1MPa (30%应变)。
图 1为实例 1所制得的莫来石纤维毡增强 Si02气凝胶样品的照片。 从照片中可以看 出, 莫来石纤维毡增强的 Si02气凝胶成块性较好, 无任何裂纹, 且具有一定的力学强度。 实例 2 短切玻璃纤维增强 Si02气凝胶的制备
30克稻壳灰与 300毫升 2.5mol/L的 KOH溶液混合, 常压下状态下沸腾, 冷凝回流 240min;过滤,得到的滤液以 5mL/min的流速通过装有 lmol/L盐酸活化预处理过的 001x7 强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.1 的硅酸, 再用 2.5mol/L的 KOH溶液滴定中和至 pH值为 5.5, 得到 Si02溶胶; 将质量为 1.5g, 长度为 5mm的短切玻璃纤维加入到 Si02溶胶中, 超声分散 5min, 静置得到纤维增强 Si02凝胶; 所得的复合凝胶在 35°C下老化 36h, 之后用去离子水洗涤 8次, 再用乙醇在 35°C下浸泡 凝胶 3次, 每次 24h, 以置换出其中的水分; 最后采用乙醇超临界干燥对凝胶进行干燥, 干燥时,利用 N2排出釜内的空气, 釜内预加压力到 4MPa, 升温, 控制釜内压力为 9MPa, 当釜内温度达到在 270°C后, 保温 1.5h, 保持釜内温度不变, 将压力缓慢降至常压, 关闭 电源, 冷却, 取出即得到短切玻璃纤维增强的 Si02气凝胶。经检测, 其密度为 0.15g/cm3, 比表面积为 632.4m2/g,孔体积为 2.7cm3/g,平均孔径为 16.2nm,抗压强度为 0.8MPa (30% 应变)。
图 2为实例 2所制得的短切玻璃纤维增强 Si02气凝胶的 N2吸附-脱附等温线, 由图 可以看出, 短切玻璃纤维增强的 Si02气凝胶的 N2吸附-脱附等温线属于 IV型等温线, 在 低相对压力区由于形成单分子吸附曲线凸向上; 当相对压力较高时, 发生毛细管凝聚, 等 温线迅速上升, 出现吸附曲线与脱附曲线不重合的吸附滞后现象,表明其具有典型介孔结 构。
图 3为实例 2所制得的短切玻璃纤维增强 Si02气凝胶的孔径分布曲线图, 从图中可 以知道, 短切玻璃纤维增强 Si02气凝胶的孔径主要分布在 5〜25nm之间, 属于介孔范围。 实例 3 硅酸铝纤维毡增强 Si02气凝胶的制备
15克稻壳灰与 100毫升 4mol/L的 NaOH溶液混合, 常压下状态下沸腾, 冷凝回流 60min;过滤,得到的滤液以 25mL/min的流速通过装有 4mol/L盐酸活化预处理过的 001 x8 强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.5 的硅酸, 再用 4mol/L的 KOH溶液滴定中和至 pH值为 5.0, 得到 Si02溶胶; 将 Si02溶胶注入到 12g硅 酸铝纤维毡预制件中, 直至把纤维毡完全浸没, 静置得到纤维增强 Si02凝胶; 所得的复 合凝胶在 65 °C下老化 3h, 之后用去离子水洗涤 6次, 再用甲醇在 25 °C下浸泡凝胶 8次, 每次 3h, 以置换出其中的水分; 最后采用 C02超临界干燥对凝胶进行干燥, 干燥时, 在 干燥釜内加入甲醇使凝胶完全浸没, 通入 lOMPa的 C02, 在 25 °C下以 20L/min的放气速 率置换 8h; 升温至 70°C, 再在 lOMPa下以 8L/min的放气速率置换 24h; 最后以 4L/min 的速率放气至与外界大气压相同,关闭电源,冷却,取出即得到硅酸铝纤维毡增强的 Si02 气凝胶。 经检测, 其密度为 0.28g/cm3, 比表面积为 537.6m2/g, 孔体积为 1.8cm3/g, 平均 孔径为 20.3nm, 抗压强度为 1.7MPa ( 30%应变)。
图 4为实例 3所制得的硅酸铝纤维毡增强 Si02气凝胶样品的 SEM图, 其中图 (a) 为气凝胶样品的低放大倍数图像, 图 (b)是图 (a) 中气凝胶基体的高放大倍数图像。 从 图 (a) 可以看出, 大量 Si02气凝胶填充纤维之间的空隙, 同时纤维表面被 Si02气凝胶 所包覆, 纤维与气凝胶之间形成很好的结合界面。 从图 (b ) 可以知道, 纤维增强 Si02 气凝胶复合材料中 Si02气凝胶保持了其纳米多孔的结构特性, Si02颗粒大小均匀, 在结 构中起着网络骨架的作用, 而结构内部则充满了纳米级的孔洞。 实例 4 水镁石纤维毡增强 Si02气凝胶的制备
10克稻壳灰与 500毫升 0.5mol/L的 NaOH溶液混合, 常压下状态下沸腾, 冷凝回流 360min;过滤,得到的滤液以 50mL/min的流速通过装有 4mol/L盐酸活化预处理过的 001 x8 强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.9 的硅酸, 再用 0.5mol/L的氨水溶液滴定中和至 pH值为 4.0, 得到 Si02溶胶; 将 Si02溶胶注入到 5g水 镁石纤维毡预制件中, 直至把纤维毡完全浸没, 静置得到纤维增强 Si02凝胶; 所得的复 合凝胶在 25 °C下老化 32h, 之后用去离子水洗涤 10次, 再用正丙醇在 25 °C下浸泡凝胶 6 次, 每次 6h, 以置换出其中的水分; 最后采用 C02超临界干燥对凝胶进行干燥, 干燥时, 在干燥釜内加入正丙醇使凝胶完全浸没, 通入 15MPa的 C02, 在 15 °C下以 2.5L/min的放 气速率置换 2h;升温至 45 °C,再在 15MPa下以 2L/min的放气速率置换 4h;最后以 IL/min 的速率放气至与外界大气压相同,关闭电源,冷却,取出即得到水镁石纤维毡增强的 Si02 气凝胶。 经检测, 其密度为 0.24g/cm3, 比表面积为 554.7m2/g, 孔体积为 1.9cm3/g, 平均 孔径为 17.1nm, 抗压强度为 1.6MPa ( 30%应变)。 实例 5 短切石英纤维增强 Si02气凝胶的制备
50克稻壳灰与 1000毫升 1.5mol/L的 KOH溶液混合, 常压下状态下沸腾, 冷凝回流 120min; 过滤, 得到的滤液以 30mL/min 的流速通过装有 2mol/L 盐酸活化预处理过的 IR-120强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.6 的硅酸, 再用 lmol/L的氨水溶液滴定中和至 pH值为 4.5, 得到 Si02溶胶; 将质量为 4g, 长度为 10mm的短切石英纤维加入到 Si02溶胶中, 超声分散 20min, 静置得到纤维增强 Si02凝 胶; 所得的复合凝胶在 30°C下老化 12h, 之后用去离子水洗涤 5次, 再用异丙醇在 30°C 下浸泡凝胶 6次, 每次 12h, 以置换出其中的水分; 然后在体积比为 1 :2的三甲基氯硅烷 /正己烷混合溶液中, 25 °C下疏水改性 4d, 再用正己烷清洗 3次, 每次 12h; 最后将疏水 改性后的凝胶置于 125 °C烘箱干燥 24h, 得到短切石英纤维增强的 Si02气凝胶。 经检测, 其密度为 0.26g/cm3, 比表面积为 421.9m2/g, 孔体积为 1.0cm3/g, 平均孔径为 8.4nm, 抗 压强度为 1.3MPa ( 30%应变)。
图 5为实例 5 所制得的短切石英纤维增强 Si02气凝胶的 FT-IR图。 从红外图谱可以 看出, 除了在 1078、 796和 462cm- 1处呈现明显的 Si02气凝胶特征谱带外, 其中 1078、 796和 462cm-1吸收峰分别对应于 Si-0-Si的不对称伸縮振动、 对称伸縮振动和弯曲振动, 在 2980、 2928 cm"1出现 C-H的伸縮振动吸收峰, 在 1390 cm"1处出现 C-H的弯曲振动吸 收峰, 同时在 1275和 836 cm"1处还出现 Si-C的振动吸收峰, 另外, 在 3426和 1632 cm-1 处由吸附水所引起的吸收谱带也明显减弱, 表明经 TMCS改性后凝胶表面大部分硅羟基 被硅甲基所取代, 气凝胶表现出良好的疏水性。 实例 6 短切碳纤维增强 Si02气凝胶的制备
25克稻壳灰与 800毫升 2mol/L的 KOH溶液混合, 常压下状态下沸腾, 冷凝回流 180min; 过滤, 得到的滤液以 20mL/min 的流速通过装有 2mol/L 盐酸活化预处理过的 IR-120强酸性苯乙烯系阳离子交换树脂的交换柱进行离子交换, 得到 pH=2.4 的硅酸, 再用 2mol/L的 NaOH溶液滴定中和至 pH值为 6.5, 得到 Si02溶胶; 将质量为 3g, 长度 为 20mm的短切碳纤维加入到 Si02溶胶中, 超声分散 30min, 静置得到纤维增强 Si02凝 胶; 所得的复合凝胶在 45 °C下老化 6h, 之后用去离子水洗涤 4次, 再用正丁醇在 45 °C下 浸泡凝胶 5次, 每次 8h, 以置换出其中的水分; 然后在体积比为 1 :10的三甲基氯硅浣 / 正己烷混合溶液中, 50°C下疏水改性 ld, 再用正己烷清洗 8次, 每次 3h; 最后将疏水改 性后的凝胶置于 75 °C烘箱干燥 72h, 得到短切碳纤维增强的 Si02气凝胶。 经检测, 其密 度为 0.25g/cm3, 比表面积为 452.3m2/g, 孔体积为 l .lcm3/g, 平均孔径为 9.2nm, 抗压强 度为 1.5MPa ( 30%应变)。

Claims

权利要求书
1. 一种以稻壳灰为原料制备纤维增强 Si02气凝胶的方法, 其具体步骤如下:
( 1 ) 碱溶液浸取
将稻壳灰加入到碱溶液中, 沸腾, 冷凝回流 30~360min, 得到稻壳灰的浸取液; 其中 稻壳灰重量与碱溶液体积的比例为 1 :5~1: 100kg/L;
(2) Si02溶胶的制备
将稻壳灰的浸取液过滤, 得到的滤液以 5~50mL/min的流速经过阳离子交换树脂柱进 行离子交换, 得到硅酸, 再用碱溶液调节硅酸的 pH值为 4~7, 得到 Si02溶胶;
(3) 纤维增强 Si02凝胶的制备
将占稻壳灰质量 1~100%的纤维与 Si02溶胶复合, 静置得到纤维增强的 Si02凝胶;
(4) 老化
将纤维增强的 Si02凝胶在 20 ~70°C下老化 3~36h;
(5) 水洗
用去离子水洗涤老化后的凝胶, 以除去其中的杂质离子;
(6) 溶剂置换
用有机溶剂将步骤 (5) 处理后凝胶中的水分置换出来, 置换温度为 20 ~70°C, 置换 次数为 2~10次, 每次的置换时间为 l~24h;
(7) 干燥
将步骤 (6) 置换处理的凝胶进行干燥, 即得到纤维增强的 Si02气凝胶。
2. 根据权利要求 1 所述的制备方法, 其特征在于: 步骤 (1 ) 和 (2) 中所述的碱溶 液为氨水、 氢氧化钠或氢氧化钾的水溶液; 碱溶液的浓度为 0.5~5mol/L。
3. 根据权利要求 1所述的制备方法, 其特征在于: 步骤 (2) 中所述的阳离子交换树 脂为强酸性苯乙烯系阳离子交换树脂, 其在使用前需用 l~4mol/L的盐酸溶液进行活化预 处理。
4. 根据权利要求 1所述的制备方法, 其特征在于: 步骤 (3) 中所述的纤维为玻璃纤 维、 莫来石纤维、 硅酸铝纤维、 水镁石纤维、 石英纤维和碳纤维中的任意一种或两种以上 的组合。
5. 根据权利要求 1所述的制备方法, 其特征在于: 步骤 (7) 中所述的干燥为乙醇超 临界干燥、 C02超临界干燥或常压干燥。
6. 根据权利要求 1 所述的制备方法, 其特征在于: 所述的有机溶剂为甲醇、 乙醇、 正丙醇、 异丙醇、 正丁醇或异丁醇。
7. 根据权利要求 1所述的制备方法, 其特征在于步骤 (5) 中水洗次数为 2~10次。
PCT/CN2011/084403 2011-07-18 2011-12-21 一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法 WO2013010371A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110200277.5 2011-07-18
CN201110200277.5A CN102351507B (zh) 2011-07-18 2011-07-18 一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法

Publications (1)

Publication Number Publication Date
WO2013010371A1 true WO2013010371A1 (zh) 2013-01-24

Family

ID=45575185

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084403 WO2013010371A1 (zh) 2011-07-18 2011-12-21 一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法

Country Status (2)

Country Link
CN (1) CN102351507B (zh)
WO (1) WO2013010371A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016730A2 (en) 2013-08-02 2015-02-05 Active Aerogels, Unipessoal, Lda. Method for production of flexible panels of hydrophobic aerogel reinforced with fibre felts

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102531521B (zh) * 2012-02-21 2013-07-24 湖北三江航天江北机械工程有限公司 常压干燥制备透波SiO2气凝胶隔热复合材料的方法
CN102679599A (zh) * 2012-06-05 2012-09-19 卢斌 一种平板太阳能集热板芯
CN103910516A (zh) * 2012-12-31 2014-07-09 上海新安纳电子科技有限公司 一种废弃硅溶胶回收再利用的方法
CN103342367B (zh) * 2013-07-09 2015-09-02 南京工业大学 一种亲水型SiO2气凝胶的制备方法
CN104741047B (zh) * 2015-03-09 2016-11-30 同济大学 一种SiO2-C-N复合气凝胶材料的制备方法
CN105272143A (zh) * 2015-12-06 2016-01-27 北京工业大学 一种不同长度海泡石纤维增强的低成本疏水型二氧化硅气凝胶隔热材料的制备方法
CN105771887A (zh) * 2016-03-12 2016-07-20 常州大学 一种二氧化硅基碳纤维复合吸附剂的制备方法
CN108358211A (zh) * 2018-04-26 2018-08-03 上海理工大学 利用甘蔗渣灰制备二氧化硅气凝胶的方法
CN108640642B (zh) * 2018-05-31 2021-07-23 佛山市高明区爪和新材料科技有限公司 一种气凝胶型多孔隔热材料的制备方法
WO2023009065A2 (en) * 2021-07-27 2023-02-02 Singapore Polytechnic Method for making silica aerogel blanket

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669921A (zh) * 2005-03-04 2005-09-21 清华大学 以稻壳灰为原料常压干燥制备二氧化硅气凝胶的方法
CN1724353A (zh) * 2005-07-15 2006-01-25 清华大学 以稻壳灰为原料制备疏水性二氧化硅气凝胶的方法
CN1803602A (zh) * 2005-12-20 2006-07-19 长安大学 水镁石纤维增强SiO2气凝胶隔热材料的制备方法
CN101244826A (zh) * 2008-03-20 2008-08-20 绍兴纳诺气凝胶新材料研发中心有限公司 一种以稻壳为原料常压干燥制备二氧化硅气凝胶的方法
CN101259964A (zh) * 2008-03-20 2008-09-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种以稻壳灰为原料常压干燥制备高性能二氧化硅气凝胶的方法
CN101318659A (zh) * 2008-07-04 2008-12-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种常压干燥制备二氧化硅气凝胶复合材料的方法
CN101475180A (zh) * 2009-01-16 2009-07-08 清华大学 一种超高纯二氧化硅溶胶的纯化方法
CN101948296A (zh) * 2010-09-28 2011-01-19 航天特种材料及工艺技术研究所 一种高性能隔热材料及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222473C (zh) * 2003-04-24 2005-10-12 清华大学 以稻壳灰为原料制备二氧化硅气凝胶的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1669921A (zh) * 2005-03-04 2005-09-21 清华大学 以稻壳灰为原料常压干燥制备二氧化硅气凝胶的方法
CN1724353A (zh) * 2005-07-15 2006-01-25 清华大学 以稻壳灰为原料制备疏水性二氧化硅气凝胶的方法
CN1803602A (zh) * 2005-12-20 2006-07-19 长安大学 水镁石纤维增强SiO2气凝胶隔热材料的制备方法
CN101244826A (zh) * 2008-03-20 2008-08-20 绍兴纳诺气凝胶新材料研发中心有限公司 一种以稻壳为原料常压干燥制备二氧化硅气凝胶的方法
CN101259964A (zh) * 2008-03-20 2008-09-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种以稻壳灰为原料常压干燥制备高性能二氧化硅气凝胶的方法
CN101318659A (zh) * 2008-07-04 2008-12-10 绍兴纳诺气凝胶新材料研发中心有限公司 一种常压干燥制备二氧化硅气凝胶复合材料的方法
CN101475180A (zh) * 2009-01-16 2009-07-08 清华大学 一种超高纯二氧化硅溶胶的纯化方法
CN101948296A (zh) * 2010-09-28 2011-01-19 航天特种材料及工艺技术研究所 一种高性能隔热材料及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015016730A2 (en) 2013-08-02 2015-02-05 Active Aerogels, Unipessoal, Lda. Method for production of flexible panels of hydrophobic aerogel reinforced with fibre felts

Also Published As

Publication number Publication date
CN102351507B (zh) 2013-04-10
CN102351507A (zh) 2012-02-15

Similar Documents

Publication Publication Date Title
WO2013010371A1 (zh) 一种以稻壳灰为原料制备纤维增强SiO2气凝胶的方法
CN104478394B (zh) 一种纤维毡增强二氧化硅气凝胶复合板的制备方法
CN108218386B (zh) 氯硅烷改性氧化石墨烯/二氧化硅保温复合材料制备方法
CN108658576B (zh) 一种复合二氧化硅气凝胶毡的制备方法
CN101244826B (zh) 一种以稻壳为原料常压干燥制备二氧化硅气凝胶的方法
CN109265131B (zh) 一种气凝胶真空绝热板及其芯材的制备方法
CN102897779B (zh) 一种透明二氧化硅气凝胶的制备方法
CN105418052B (zh) 一种纳米碳纤维复合氧化硅气凝胶的制备工艺
CN108484098A (zh) 一种二氧化硅/凹凸棒土纤维复合气凝胶的常压制备方法
CN105837244B (zh) 一种环保型硅酸镁纤维毡增强二氧化硅气凝胶复合材料及其制备方法
CN101318659A (zh) 一种常压干燥制备二氧化硅气凝胶复合材料的方法
CN106495169A (zh) 一种憎水型二氧化硅气凝胶及其制备方法
TW202134180A (zh) 二氧化矽氣凝膠之製備方法
JP2021075448A (ja) 複合有機エアロゲルの製造方法及びその用途
CN104528741A (zh) 一种有机改性纳米孔二氧化硅气凝胶及其制备方法
CN104909375A (zh) 二氧化碳亚临界干燥法快速制备疏水氧化硅气凝胶的方法
CN1278933C (zh) 以稻壳灰为原料常压干燥制备二氧化硅气凝胶的方法
CN104876226A (zh) 一种用甲醇亚临界干燥快速制备疏水氧化硅气凝胶的方法
CN108484097B (zh) 一种木质素增强二氧化硅气凝胶毡的制备方法
CN108395202B (zh) 一种纤维改性气凝胶材料的制备方法
CN113264533A (zh) 一种利用废弃玻璃制备纳米二氧化硅气凝胶的方法
CN108929072B (zh) 一种从铁尾矿制备氧化铁及纳米复合隔热保温材料的方法
CN113307306B (zh) 复合硅石气凝胶材料及其制备方法与应用
CN110591161A (zh) 一种纤维素-凹凸棒土复合气凝胶的制备方法
CN106592195B (zh) 一种气凝胶纤维毡复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11869545

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11869545

Country of ref document: EP

Kind code of ref document: A1