WO2013008665A1 - Condenser, light condensing system, solar power generation device, and solar system - Google Patents

Condenser, light condensing system, solar power generation device, and solar system Download PDF

Info

Publication number
WO2013008665A1
WO2013008665A1 PCT/JP2012/066897 JP2012066897W WO2013008665A1 WO 2013008665 A1 WO2013008665 A1 WO 2013008665A1 JP 2012066897 W JP2012066897 W JP 2012066897W WO 2013008665 A1 WO2013008665 A1 WO 2013008665A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
condensing
concentrator
light guide
modification
Prior art date
Application number
PCT/JP2012/066897
Other languages
French (fr)
Japanese (ja)
Inventor
高部 篤
Original Assignee
株式会社レーベン販売
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レーベン販売 filed Critical 株式会社レーベン販売
Publication of WO2013008665A1 publication Critical patent/WO2013008665A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the present invention relates to a collector that collects light such as sunlight.
  • the present invention claims the priority of Japanese Patent Application No. 2011-153379 filed on July 11, 2011.
  • the contents described in the application are as follows: Is incorporated into this application by reference.
  • the condensing optical system of such a concentrator mainly uses lenses such as Fresnel lenses and rod lenses, and mirrors such as concave mirrors and plane mirrors, directly by transmission, or indirectly by reflection, Concentrate sunlight.
  • a general concentrating solar / solar system is provided with a tracking device, and the light receiving surface tracks the sun, thereby generating power due to the difference between the sunlight irradiation direction and the light receiving surface. This prevents a decrease in efficiency.
  • Patent Document 1 sunlight is applied to a light receiving surface of a solar cell by combining a secondary concentrator made of a conical condensing member having a prism-shaped protrusion formed on the inner peripheral surface of a flat Fresnel lens.
  • a secondary concentrator made of a conical condensing member having a prism-shaped protrusion formed on the inner peripheral surface of a flat Fresnel lens there is disclosed a technique of suppressing the unevenness of incidence of light and mitigating a decrease in power generation efficiency due to errors still occurring using a tracking device.
  • Patent Document 2 discloses a technology that allows and uses incident light from a wide range of angles by using a highly functional sheet that radiates light incident on the light receiving surface to the lower surface.
  • the incident angle that can still be used is limited, and thus power generation efficiency may be extremely reduced at angles outside the allowable range. There is.
  • the light collecting effect could hardly be exhibited on rainy or cloudy days.
  • the reflected light of snow in snowy countries, the reflected light of sandy beaches, and the reflected light of buildings and other buildings could not be used.
  • an object of the present invention is to provide a concentrator capable of condensing a wide range of light with high efficiency.
  • the light collector according to the present invention includes a cylindrical light collecting portion that forms a circular light receiving surface at one end, and a light guide portion that gradually decreases in diameter from the light collecting portion toward the other end. It is characterized by that.
  • 1 is a perspective view of a condenser 1. It is the upper side figure and sectional drawing of the collector 1a which concern on the modification 1 of 1st embodiment of this invention. It is sectional drawing of the collector 1b which concerns on the further modification 2 of the modification 1 of this invention. It is sectional drawing of the collector 1c which concerns on the further modification 3 of the modification 1 of this invention. It is sectional drawing of the collector 1d which concerns on the further modification 4 of the modification 2 of this invention. It is sectional drawing of the collector 1e which concerns on the further modification 5 of the modification 1 of this invention.
  • (C) It is a perspective view of the collector 1n which concerns on the modification 13 of this invention.
  • (A) It is a disassembled perspective view of the collector 1f.
  • (B) It is sectional drawing of the collector 1j. It is explanatory drawing for demonstrating the light collection characteristic of the collector 1j.
  • It is the schematic of the condensing system 2 which concerns on 2nd embodiment of this invention.
  • It is the schematic of the solar power generation device 22 which concerns on the modification 15 using the condensing system 2 which concerns on 2nd embodiment of this invention.
  • a transparent body for example, a cylinder, a prism, etc.
  • a refractive index higher than the outside air and a substantially parallel surface will be described.
  • FIG. 22A is an explanatory diagram of the light collecting action in the cylindrical transparent body 91.
  • the light a parallel to the side surface of the transparent body 91 passes through as it is and reaches the light emitting surface B.
  • the light incident on the light receiving surface A obliquely is totally reflected on the side surface and reaches the light emitting surface B by repeating this.
  • FIG. 22B is an explanatory diagram of light incident on the transparent body 91 from an oblique direction. As shown in FIG. 22B, the incident light X from the oblique direction is totally reflected with the outer peripheral surface as a reflection surface, and is emitted from the light emission surface B as light Y.
  • FIG. 22C is an explanatory diagram of the light collection phenomenon caused by the transparent body 91. Since the outer peripheral surface acts as a reflection surface, the light receiving surface A of the transparent body 91 can capture light in a wide angle range (that is, up to an angle near the critical angle of the transparent body 91) in addition to vertical light. it can.
  • the length of the transparent body is preferably several times the diameter of the cylinder.
  • the angle range of the emitted light from the light-emitting surface B is equivalent to the angle range of the incident light on the light-receiving surface A, so that it becomes scattered light and its use becomes difficult. Then, the light collection principle of the transparent body of another shape with a larger light collection action will be described next.
  • FIG. 23 (a) and 23 (b) are explanatory diagrams of the light condensing action in the transparent body 92.
  • FIG. The transparent body 92 includes a cylindrical light condensing part and a linear tapered light guiding part whose diameter is gradually reduced on the light emitting surface B side.
  • the transparent body 92 guides the light incident from the light receiving surface A to the light emitting surface B by totally reflecting the outer peripheral surface as a reflecting surface. According to such a transparent body 92, since the area of the light emitting surface B is smaller than that of the light receiving surface A, the scattering of the emitted light is suppressed more than the transparent body 91.
  • the reflection angle may be less than the critical angle on the tapered surface of the light collector, so that light leaks from the side surface.
  • the transparent body 93 shown in FIG. 23C has a mirror structure on the inner side of the light guide portion of the transparent band 92 so that light less than the critical angle is reliably reflected and guided to the light emission surface B. It is a thing.
  • the transparent body 94 shown in FIG. 23D has a long light guide portion and a gentle inclination angle of the tapered surface, thereby suppressing the emission angle from the light emission surface B.
  • the emission angle from the light emission surface B can be suppressed by bringing the tapered surface closer to a hyperbola as in the transparent body 95 shown in FIG. Is possible. Furthermore, by providing a light guide correction part in which the diameter of the light guide part is partially expanded as in the transparent body 96 shown in FIG. 23 (f), the emission angle can be corrected to a gentle angle.
  • the area of the light receiving surface A must be enlarged.
  • the major axis is several times longer than the minor axis. Therefore, as the light receiving surface A is enlarged, the entire length becomes longer and exponentially heavier. End up. This is not preferable because, for example, sink marks appear during injection molding or the installation location is limited.
  • the transparent body 97 is formed by layering a plurality of columnar condensing portions with a gap therebetween. According to this, since a plurality of light transmission paths are formed between the opposed peripheral surfaces, even when the area of the light receiving surface A is enlarged by enlarging the minor axis, it is not necessary to significantly extend the major axis. Further, if a plate-like member having a mirror surface structure is inserted into the gap, light can be transmitted without leakage.
  • the present invention provides a concentrator that suppresses leakage and realizes a high condensing function in consideration of the above condensing principle.
  • FIG. 1 is a top view and a cross-sectional view of a condenser 1 according to a first embodiment of the present invention.
  • FIG. 2 is a perspective view of the condenser 1.
  • the concentrator 1 is a funnel-shaped member in which a light condensing unit 11 developed on the light source side and a light guiding unit 12 that collectively guides light from the light converging unit 11 are integrally formed.
  • the condensing part 11 has a conical hollow 13 inside, and an inversely tapered main body part 11A that gradually increases in diameter toward the opening 15 and between the apex 13A of the hollow 13 and the light guiding part 12. And a base 11B formed on the base.
  • the outer peripheral surface 14a of the condensing part 11 is substantially parallel to the inner peripheral surface 14b.
  • the member thickness is the largest on the apex 13A side of the base 11B.
  • the edge of the opening 15 forms an annular light receiving surface A, and the light collecting unit 11 reflects and totally reflects the external light received by the light receiving surface A on the outer peripheral surface 14a and the inner peripheral surface 14b. Collect to 12.
  • the light guide portion 12 is a cylindrical member whose outer peripheral surface 14a extends from the base portion 11B in the direction opposite to the light receiving surface A, and the outer peripheral surface thereof is substantially parallel to the axis R.
  • the diameter of the light guide unit 12 is smaller than any diameter of the light collecting unit 11.
  • a circular light emitting surface B is formed on the side opposite to the light receiving surface A, and the light incident from the light receiving surface A is guided and emitted from the light emitting surface B.
  • Such a concentrator 1 is made of a transparent light guide material having translucency and a high refractive index.
  • a material having a refractive index higher than that of the outside air it becomes possible to totally reflect incident light having a critical angle or more at the boundary surfaces (outer peripheral surface 14a and inner peripheral surface 14b).
  • Examples of such a material include quartz glass, plastic resin (acrylic, polycarbonate, polypropylene, elastomer, etc.), silicon rubber, and the like.
  • the total reflection angle is determined from the light guide material and the refractive index of air.
  • the external light a incident on the light receiving surface A from the outer side of the tapered axis of the outer peripheral surface 14a and the inner peripheral surface 14b and the external light c incident on the light receiving surface A from the inner side of the tapered axis are the outer peripheral surface 14a and the outer surface 14a of the main body 11A. Total reflection is repeated by the inner peripheral surface 14b, passes through the base portion 11B, and reaches the light guide portion 12. Further, the external light b incident on the light receiving surface A at the same angle as the taper axis passes through the main body portion 11A and the base portion 11B and directly reaches the light guide portion 12.
  • the external lights a to c that have reached the light guide unit 12 in this way are also totally reflected by the light guide unit 12 and are finally emitted from the light emission surface B as emitted light a 'to c'.
  • the collector 1 since the incident light takes a path with the outer peripheral surface 14a and the inner peripheral surface 14b being substantially parallel, the change in the incident angle with respect to the interface is small. It is possible to collect light while suppressing radiation loss.
  • FIG. 3 is a top view and a cross-sectional view of a condenser 1a according to Modification 1 of the first embodiment of the present invention.
  • the light collector 1 a is different from the light collector 1 in that the base portion 11 ⁇ / b> B is not provided between the main body portion 11 ⁇ / b> A and the light guide portion 12.
  • the external lights d and e incident on the light receiving surface A at an angle larger than the external lights a to c are transmitted to the outer peripheral surface 14 a and the inner peripheral surface 14 b of the main body 11 A. After repeating the total reflection, the light is incident at an angle less than the critical angle on the outer peripheral surface 14a having an inclination opposite to that at the base 11B. Therefore, they may leak to the outside as transmitted light d ′ and e ′ at the base portion 11 ⁇ / b> B and do not reach the light guide portion 12.
  • the peripheral surface can be formed substantially in parallel at most positions. Therefore, in the above embodiment, external light d and e that leak to the outside at the base portion 11B reach the light guide portion 12 without leaking and are emitted from the light emitting surface B.
  • the concentrator 1a as described above, it is possible to suppress the leakage of the incident light and to guide the incident light having more angles to the light emitting surface B.
  • FIG. 4 is a cross-sectional view of a condenser 1b according to a further modification 2 of the modification 1 of the present invention.
  • the condensing part 11 has the reverse taper-shaped parallel outer peripheral surface 14a and inner peripheral surface 14b which expand exponentially as it goes to the opening 15. As shown in FIG. This is different from the condenser 1b.
  • the circumference of the light receiving surface A in the condensing unit 11 is widened and the area thereof is also enlarged, so that it is possible to collect a wider range of outside light.
  • FIG. 5 is a cross-sectional view of a condenser 1c according to a third modification of the first modification of the present invention.
  • the light collector 1 c is different from the light collector 1 a in that the inner surface 14 b of the light collector 11 has a mirror surface inside.
  • This can be formed by, for example, aluminum deposition plating or nickel plating. Alternatively, a mirror-finished thin metal may be formed and pasted.
  • the inner surface of the outer peripheral surface 14a can be a mirror structure.
  • FIG. 6 is a cross-sectional view of a condenser 1d according to a further modification 4 of the modification 2 of the present invention.
  • the concentrator 1d has a shape similar to that of the concentrator 1b, but the plate-like member 16 whose inner surface forming the outer peripheral surface 14a and the inner peripheral surface 14b has a mirror structure is provided with a gap therebetween. This is different from the condenser 1b in that it is configured.
  • the light receiving surface is a gap between the two plate-like members 16, and the light-emitting surface is a hole in the cylindrical plate-like member 16 that forms the outer peripheral surface 14a. Therefore, the condenser 1 d takes incident light into the gap A ′ corresponding to the light receiving surface A and emits the emitted light from the hole B ′ corresponding to the light emitting surface B. According to such a configuration, attenuation and radiation loss in the path are hardly caused, and more efficient light collection is possible.
  • FIG. 7 is a cross-sectional view of a condenser 1e according to a further modification 5 of the modification 1 of the present invention.
  • the concentrator 1e is obtained by superposing a small concentrator 1a 'having substantially the same shape on the hollow 13 of the concentrator 1a and connecting the light guide portions 12 of the two concentrators. At this time, the two concentrators are connected so that the centers of the light-emitting surfaces B are aligned on the axis R.
  • the condenser 1a ′ is formed such that the position of the light receiving surface A is higher than that of the condenser 1a.
  • incident light a to f is taken from the light receiving surfaces A of both the concentrator 1a and the concentrator 1a ', and emitted light a' to f 'is emitted from the light emitting surface B. It can. Therefore, it is possible to collect a lot of light with a wider light receiving surface.
  • FIG. 8 is a cross-sectional view of a condenser 1f according to a further modification 6 of the modification 2 of the present invention.
  • the concentrator 1f includes a plurality of inner condensing portions 1b ′ having a circumferential surface formed in an inversely tapered shape that expands exponentially in the hollow 13 of the concentrator 1b, and a central concentrator that does not have a hollow.
  • the portion 1b ′′ is combined with a gap in between (here, for convenience, the inner light collecting portion excluding the center is referred to as the inner light collecting portion 1b ′).
  • the inner condensing portion 1b ′ has a shape along the inner peripheral surface 14b of the outer condensing portion, and is connected by, for example, high frequency welding so that the center thereof is aligned on the axis R. Therefore, the diameter of the light receiving surface A becomes smaller as the inner light condensing portion becomes smaller, and conversely, the height of the light receiving surface A is designed to be higher as the inner light condensing portion. Thereby, each condensing part can each receive the light which has the incident angle of the condensing angle
  • corner (theta) by each light-receiving surface A.
  • each condensing part has the light receiving surface A, a larger light receiving area can be realized.
  • the light incident from each light receiving surface A is collected on the light guide unit 12 through a path that is substantially parallel to the circumferential surface and is thinner than the circumferential diameter of the light collecting unit, so that radiation loss is reduced. It can be suppressed. Therefore, it becomes possible to collect more external light from more polygons efficiently.
  • FIG. 9 is a cross-sectional view of a condenser 1g according to a further modification 7 of the modification 3 of the present invention.
  • the light collector 1g includes a plurality of inner light collecting portions 1c ′ having a circumferential surface formed in an inversely tapered shape that linearly expands in the hollow of the light collector 1c, and a central light collecting portion 1c that does not have a hollow. ”Are superimposed with no gap in between (here, for the sake of convenience, all the inner condensing portions except the center are referred to as inner condensing portions 1c ′).
  • Each condensing part is connected so that the centers thereof are aligned on the axis R, and the inner condensing part has a shape that fits into the hollow of one outer condensing part without a gap. Further, the diameter of the light receiving surface A becomes smaller as the inner condensing portion becomes smaller, and conversely, the height of the light receiving surface A is designed as higher as the inner condensing portion.
  • the concentrator 1g has a total of four condensing units, but any number of condensing units may be combined.
  • such a concentrator 1g after forming each condensing part separately, after making the front and back of the outer peripheral surfaces of the inner condensing part 1c ′ and the outer condensing part 1c ′′ into a mirror structure with a plating or the like, It can be formed by fitting and condensing each condensing part. In that case, the whole can be integrally connected by filling a space
  • the light g ⁇ i incident from the light receiving surface A of each condensing unit is emitted from the light emitting surface B as emitted light g′ ⁇ i ′.
  • the reflection on the outer peripheral surface and the inner peripheral surface of each condensing part is ensured, and the radiation loss is suppressed.
  • FIG. 10 is a perspective view of a condenser 1h according to a further modification 8 of the modification 7 of the present invention.
  • the concentrator 1h has the same shape as the concentrator 1g, but each condensing portion is overlapped with a plate-like member 16 having a mirror structure that forms the outer peripheral surface and the inner peripheral surface of the concentrator. It differs from the collector 1g in that it is configured together.
  • Such a concentrator 1h can be connected by supporting each condensing part with, for example, the connection plate 17. Further, the light receiving surface and the light emitting surface are gaps formed by the plate-like member 16, and incident light is taken into the gap A ′ corresponding to the light receiving surface A and emitted from the hole B ′ corresponding to the light emitting surface B. To emit light. Therefore, attenuation and radiation loss in the path hardly occur, and more efficient light collection is possible.
  • FIG. 11 is a cross-sectional view of a condenser 1i according to a further modification 9 of the modification 6 of the present invention.
  • the concentrator 1i overlaps the hollow 13 of the concentrator 1d with a plurality of inner condensing portions 1d ′ having a circumferential surface formed in an inversely tapered shape that expands exponentially with a gap in between.
  • 1d ′ all the condensing portions formed on the inside are referred to as 1d ′.
  • Each condensing part is connected so that the centers thereof are aligned on the axis R, and the inner condensing part has a shape along the inner peripheral surface 14b of one outer condensing part.
  • the diameter of the light receiving surface A ′ is smaller as the inner condensing portion is smaller, and the height of the light receiving surface A ′ is the same in the inner condensing portion.
  • the concentrator 1i has eight condensing parts here, you may combine how many condensing parts.
  • incident light can be taken into the gap A ′ as a wider light receiving surface.
  • attenuation and radiation loss are less likely to occur in the path, more efficient light collection is possible.
  • Fig.12 (a) is a perspective view of the collector 1k which concerns on the modification 10 of this invention.
  • the concentrator 1k includes a concentrator (for example, a concentrator 1f) having a configuration in which a plurality of reverse-tapered condensing portions that expand exponentially in diameter are combined with two cutting planes sandwiching the axis R. It has a cut shape. It is assumed that the interval between both cutting planes is inclined with respect to the axis R so as to be wide on the light receiving surface A side and narrow toward the light emitting surface B side.
  • a plurality of condensing pieces 111 having light receiving surfaces A arranged substantially in parallel are arranged on both sides of the axis R.
  • FIG. 12B is a perspective view of the light collecting piece 111.
  • the condensing piece 111 is formed in a curved truncated pyramid shape having an outer peripheral surface 14a and an inner peripheral surface 14b which are substantially parallel curved surfaces, and two side surfaces 14c, and incident light a incident from the light receiving surface A is The light is totally reflected on any one of the four surfaces, guided to the light guide unit 12, and reaches the light emission surface B.
  • the collector 1k it is possible to efficiently collect sunlight by arranging the light receiving surfaces A along the solar orbit.
  • the shape of the light receiving surface is square when viewed from above, the light receiving surfaces of the plurality of concentrators 1k can be arranged without gaps, and high light collecting ability can be exhibited in a small space.
  • FIG. 13A is a perspective view of a condenser 11 according to the eleventh modification of the present invention.
  • the concentrator 11 is a leaf-shaped condensing piece having a light receiving surface A that is a curved surface forming a leaf-shaped edge and a condensing unit 11 including an outer peripheral surface 14a and an inner peripheral surface 14b that are parallel to each other.
  • an uneven surface 121 is formed on the entire surface (only part of the surface is shown in FIG. 13A).
  • light a and b incident from the light receiving surface A are totally reflected by the outer peripheral surface 14a and the inner peripheral surface 14b, and are guided to the light guide unit 12 to the light emitting surface B.
  • the light c received by the uneven surface 121 on the surface is also totally reflected by the outer peripheral surface 14a and the inner peripheral surface 14b, and is guided to the light guide unit 12 to reach the light emission surface B.
  • incident light incident from any surface is totally reflected on any of the three surfaces and is guided to the light guide unit 12 to reach the light emission surface B.
  • FIG.13 (b) is a perspective view of the collector 1m which concerns on the modification 12 of this invention.
  • the concentrator 1m is a combination of a plurality of concentrators 1l as condensing pieces so that the light guides 12 are bundled (in this case, the connecting portion 19 is connected to the light emitting surface B of the concentrator 1m).
  • the collected light is transmitted to the optical cable 18 by connecting the optical cable 18 via the optical cable 18).
  • FIG.13 (c) is a perspective view of the collector 1n which concerns on the modification 13 of this invention.
  • the concentrator 1n is a combination of the concentrators 1l as the condensing pieces in the vertical direction so that the centers of the light guide portions 12 overlap on the axis R. This can be realized, for example, by providing a connection port 122 in the upper part of the light guide unit 12 and inserting the light guide unit 12 of another condenser.
  • a concentrator with higher design can be provided by combining a plurality of concentrators 1l. It can also be used as an exterior or an object by applying a color or pattern to the surface.
  • FIG. 14A is an exploded perspective view of the condenser 1j
  • FIG. 14B is a cross-sectional view of the condenser 1j.
  • the concentrator 1j has substantially the same configuration as the concentrator 1f of the sixth modification of the present invention, but a mirror surface structure is applied to the outer peripheral surface 14a and the inner peripheral surface 14b of each condensing unit. Is different.
  • Such a concentrator 1j can be manufactured by the following method. First, each condensing part is shape
  • FIG. 15 is an explanatory diagram for explaining the condensing characteristics of such a collector 1j.
  • the condensing characteristic of the linear light (sunlight etc.) with respect to is shown.
  • the light receiving surface A receives the light from the A side, and its light collecting intensity increases so as to draw a circle toward the center (a black portion indicates that the light collecting intensity is high).
  • B part and C part it becomes a substantially elliptical condensing range, and a condensing area becomes narrower than the light-receiving surface which a center collector has.
  • FIG. 16 is a schematic view of the light collection system 2 according to the second embodiment of the present invention.
  • the condensing system 2 is configured to transmit the collected light to the optical cable 18 by connecting the optical cable 18 to the light emitting surface B of the condenser 1j via the connecting portion 19. Is.
  • the light received by the light receiving surface A reaches the optical cable 18 via the light emitting surface B in the connection portion 19.
  • such a condensing system 2 can be applied to many apparatuses. Examples thereof will be described below.
  • FIG. 17 is a schematic diagram of an illuminating device 21 using the light collecting system 2 according to Modification 13 of the second embodiment of the present invention.
  • the condensing system 2 connects one end of the optical cable 18 to the concentrator 1 j to transmit the collected light, and emits light from the lighting fixture 30 provided at the other end of the optical cable 18. It is.
  • the radiating plate 31 in the lighting fixture 30 the emitted light from the optical cable 18 can be diffusely reflected and emitted as scattered light.
  • direct light may be applied to the wall without providing a radiation plate and used as indirect illumination, or may be diffused through a lens.
  • the introduction at the plant factory makes it easier to control the temperature and enables plant cultivation using cleaner sunlight.
  • an illuminating device 21 it is possible to guide the light collected outdoors to the indoors and use it as illumination.
  • a wide range of light can be collected by the condenser, light with sufficient illuminance can be obtained even in cloudy or rainy weather, and an illumination power source and a light bulb are not required.
  • FIG. 18 is a schematic diagram of a solar power generation device 22 using the light collection system 2 according to Modification 14 of the second embodiment of the present invention.
  • the solar power generation device 22 includes a plurality of light collection systems 2, collects the light collected by each light collection system 2 in a solar power generation panel 40 constituted by solar cells, and generates power. Is.
  • the electric power generated by the solar power generation panel 40 is transmitted through the power line 41 and used after being stored in a temporary storage battery or the like.
  • the light from the optical cable 18 may be used as it is for emitting light to the solar power generation panel 40, or may be passed through a lens. Further, if the periphery of the solar power generation panel is covered with a reflector or the like, leakage loss is suppressed and further efficiency can be achieved. Moreover, since the light with high illuminance collected by each condensing unit can be used, the energy of sunlight can be reduced by downsizing the solar power generation panel 40 or using a multi-junction solar cell in which a plurality of solar cells having different utilization wavelengths are stacked. Can be used more efficiently and conversion efficiency can be improved. In addition, it can be managed in a space-saving manner.
  • the condensing system 2 outdoors and the solar power generation panel 40 indoors.
  • the solar power generation panel 40 is used indoors, it is easy to manage and maintain, and its life is also increased.
  • a concentrator installed outdoors has a simple structure and is inexpensive, and is not easily broken, so that the cost required for management and maintenance can be greatly reduced.
  • the collected light is transmitted to the optical cable 18 and used.
  • an element that converts sunlight into electric power may be connected to the end of the condenser and the light emission surface B.
  • utilization of solar heat becomes easy to use, and in addition, sunlight and solar heat may be used in combination.
  • the solar power generation device 22 using such a condensing system 2 a wide range of sunlight is condensed by a concentrator without providing a solar tracking device, and highly efficient power generation is possible with a simple structure. Can be done. Of course, if the center of the concentrator is directed to the sun by the tracking device, it becomes a more efficient concentrator by taking in sunlight and surrounding reflected light.
  • FIG. 19 is a schematic diagram of a solar system 23 using the light collection system 2 according to Modification 15 of the second embodiment of the present invention.
  • the solar system 23 is obtained by replacing the solar power generation panel 40 used for the solar power generation device 22 with a heat exchanger 50, and can obtain hot water through this. In addition to this, it is also possible to generate electricity using the obtained heat, or to simultaneously use sunlight and solar heat.
  • FIG. 20A is a schematic diagram of a solar system 24 using the light collecting system 2 according to Modification 15 of the second embodiment of the present invention.
  • the solar system 24 has a solar cell 43 connected to the light guide portion 12 of the condenser 1j.
  • the power generation device can be managed with less space and without loss of light.
  • a solar power generation panel may be connected instead of the solar battery 43.
  • the energy of sunlight can be used more efficiently, and the similar solar system 24 can be connected to each other with a fastener 42. Stable installation is possible.
  • thermoelectric conversion element 44 may be further added to the lower part of the solar cell.
  • heat from a light collector is collected using an element utilizing the Seebeck effect, and solar heat is used as a high temperature side, and heat radiating fins 45 provided on the outside are used as a low temperature side, and power is generated by a temperature difference.
  • the collector of the present invention can be applied to various types of solar systems using sunlight and heat.
  • the condenser and the condenser system according to the present invention have been described above. According to the concentrator and the condensing system according to the present invention, it is possible to condense sunlight stably and with high efficiency without a sun tracking device. In addition, since not only parallel light but also a wide range of external light from various polygons can be collected, it is possible to collect light having sufficient illuminance even in rainy or cloudy weather.
  • the concentrator and the condensing system according to the present invention are not limited to the above, and many alternatives, modifications, and variations will be apparent to those skilled in the art. Also, the features in the above embodiments and modifications can be used in combination.
  • FIG. 21 is a perspective view of an earpick 25 according to Modification 18 of the present invention.
  • the earpick 25 has a rod-shaped handle portion 61, a light collector 1j formed at one end of the handle portion 61, and a tip portion 62 curved in a hook shape formed at the other end.
  • the handle portion 61 is formed by covering the periphery of a rod-shaped light guide member formed integrally with the distal end portion 62 with a cylindrical member having a mirror surface structure on the inner peripheral surface.
  • the light guide member of the handle 61 is made of a material having translucency and a high refractive index. Therefore, if the handle 61 and the collector 1j are integrally formed, radiation loss is further suppressed. Further, the bottom surface 63 of the tip portion 62 may be formed by using a satin finish or a blast finish, or using a translucent material or a material mixed with a light diffusing agent. As a result, light can be scattered to illuminate the external auditory canal widely.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

The purpose of the present invention is to provide a condenser capable of stably condensing light with high efficiency. This condenser (1) is provided with a light condensing part (11) having an annular light receiving surface (A), reverse taper-shaped outer peripheral surface (14a) and inner peripheral surface (14b) which are approximately parallel to each other and have diameters that gradually expand toward the light receiving surface (A), and a columnar light guiding part (12) having the outer peripheral surface (14a) which extends to the reverse side of the light receiving surface (A).

Description

集光器、集光システム、太陽光発電装置、及び、ソーラーシステムConcentrator, condensing system, solar power generation device, and solar system
 本発明は、太陽光等の光を集める集光器に関する。本発明は2011年7月11日に出願された日本国特許の出願番号2011-153379の優先権を主張し、文献の参照による織り込みが認められる指定国については、その出願に記載された内容は参照により本出願に織り込まれる。 The present invention relates to a collector that collects light such as sunlight. The present invention claims the priority of Japanese Patent Application No. 2011-153379 filed on July 11, 2011. For designated countries where weaving by reference is allowed, the contents described in the application are as follows: Is incorporated into this application by reference.
 近年、光エネルギーとして太陽光を集光する集光器を備えた太陽光発電装置が注目されている。このような集光器の集光光学系には、主にフレネルレンズ・ロッドレンズ等のレンズや、凹面鏡・平面鏡等の鏡が利用され、透過により直接的に、あるいは、反射により間接的に、太陽光を集光する。 In recent years, a photovoltaic power generation apparatus equipped with a concentrator that condenses sunlight as light energy has attracted attention. The condensing optical system of such a concentrator mainly uses lenses such as Fresnel lenses and rod lenses, and mirrors such as concave mirrors and plane mirrors, directly by transmission, or indirectly by reflection, Concentrate sunlight.
 しかしながら太陽光(平行光源)は照射方向が刻々と変化するため、集光器の受光面が照射方向を向いていない場合、その照度が著しく低下する。そこで、一般的な集光型の太陽光・ソーラーシステムにはその追尾装置が設けられており、受光面が太陽を追尾することで、太陽光の照射方向と受光面とのずれに起因する発電効率の低下を防いでいる。 However, since the irradiation direction of sunlight (parallel light source) changes every moment, when the light receiving surface of the condenser does not face the irradiation direction, the illuminance is significantly reduced. Therefore, a general concentrating solar / solar system is provided with a tracking device, and the light receiving surface tracks the sun, thereby generating power due to the difference between the sunlight irradiation direction and the light receiving surface. This prevents a decrease in efficiency.
 例えば特許文献1では、平板フレネルレンズに内周面にプリズム断面の突条が形成された円錐形の集光部材からなる二次集光器を組み合わせることで、太陽電池の受光面への太陽光の入射ムラを抑制し、追尾装置を利用してなお生じる誤差による発電効率の低下を緩和する技術が開示されている。 For example, in Patent Document 1, sunlight is applied to a light receiving surface of a solar cell by combining a secondary concentrator made of a conical condensing member having a prism-shaped protrusion formed on the inner peripheral surface of a flat Fresnel lens. In other words, there is disclosed a technique of suppressing the unevenness of incidence of light and mitigating a decrease in power generation efficiency due to errors still occurring using a tracking device.
 また、追尾装置を設けない固定型の太陽光・ソーラーシステムにおいても、発電効率を損なわないような工夫がなされている。例えば特許文献2には、受光面に入射した光を下側面に放射する高機能性シートを用いることで、広範な角度からの入射光を許容して利用する技術が開示されている。 Also, a fixed solar / solar system without a tracking device has been devised so as not to impair the power generation efficiency. For example, Patent Document 2 discloses a technology that allows and uses incident light from a wide range of angles by using a highly functional sheet that radiates light incident on the light receiving surface to the lower surface.
特開2004-214470号公報JP 2004-214470 A 特開2007-218540号公報JP 2007-218540 A
 しかしながら、上記のように太陽光(移動する平行光源)を前提とした装置では、依然として利用可能な入射角度が限定されてしまうため、許容範囲外の角度では発電効率が極端に落ちてしまう可能性がある。また、雨天や曇り日には集光効果が殆ど発揮出来なかった。さらに、雪国での雪の反射光や、海岸の砂浜の反射光、ビル等建設物の反射光を利用出来なかった。 However, in the device based on sunlight (moving parallel light source) as described above, the incident angle that can still be used is limited, and thus power generation efficiency may be extremely reduced at angles outside the allowable range. There is. In addition, the light collecting effect could hardly be exhibited on rainy or cloudy days. Furthermore, the reflected light of snow in snowy countries, the reflected light of sandy beaches, and the reflected light of buildings and other buildings could not be used.
 そこで本発明は、広範囲の光を高効率に集光することが可能な集光器を提供することを目的とする。 Therefore, an object of the present invention is to provide a concentrator capable of condensing a wide range of light with high efficiency.
 本発明に係る集光器は、一端に円状の受光面を形成する円柱状の集光部と、前記集光部から他端に向けて漸次縮径する導光部と、を備えていることを特徴とする。 The light collector according to the present invention includes a cylindrical light collecting portion that forms a circular light receiving surface at one end, and a light guide portion that gradually decreases in diameter from the light collecting portion toward the other end. It is characterized by that.
 本発明によれば、広範囲の光を高効率に集光することが可能な集光器が提供できる。 According to the present invention, it is possible to provide a concentrator capable of condensing a wide range of light with high efficiency.
本発明の第一の実施形態に係る集光器1の上面図及び断面図である。It is the top view and sectional drawing of the collector 1 which concern on 1st embodiment of this invention. 集光器1の斜視図である。1 is a perspective view of a condenser 1. 本発明の第一の実施形態の変形例1に係る集光器1aの上面図及び断面図である。It is the upper side figure and sectional drawing of the collector 1a which concern on the modification 1 of 1st embodiment of this invention. 本発明の変形例1のさらなる変形例2に係る集光器1bの断面図である。It is sectional drawing of the collector 1b which concerns on the further modification 2 of the modification 1 of this invention. 本発明の変形例1のさらなる変形例3に係る集光器1cの断面図である。It is sectional drawing of the collector 1c which concerns on the further modification 3 of the modification 1 of this invention. 本発明の変形例2のさらなる変形例4に係る集光器1dの断面図である。It is sectional drawing of the collector 1d which concerns on the further modification 4 of the modification 2 of this invention. 本発明の変形例1のさらなる変形例5に係る集光器1eの断面図である。It is sectional drawing of the collector 1e which concerns on the further modification 5 of the modification 1 of this invention. 本発明の変形例3のさらなる変形例7に係る集光器1fの断面図である。It is sectional drawing of the collector 1f which concerns on the further modification 7 of the modification 3 of this invention. 本発明の変形例3のさらなる変形例7に係る集光器1gの断面図である。It is sectional drawing of the collector 1g which concerns on the further modification 7 of the modification 3 of this invention. 本発明の変形例7のさらなる変形例8に係る集光器1hの斜視図である。It is a perspective view of the collector 1h which concerns on the further modification 8 of the modification 7 of this invention. 本発明の変形例6のさらなる変形例9に係る集光器1iの断面図である。It is sectional drawing of the collector 1i which concerns on the further modification 9 of the modification 6 of this invention. (a)本発明の変形例10に係る集光器1kの斜視図である。(b)集光器1kの分解図である。(A) It is a perspective view of the collector 1k which concerns on the modification 10 of this invention. (B) It is an exploded view of the collector 1k. (a)本発明の変形例11に係る集光器1lの斜視図である。(b)本発明の変形例12に係る集光器1mの斜視図である。(c)本発明の変形例13に係る集光器1nの斜視図である。(A) It is a perspective view of the collector 1l which concerns on the modification 11 of this invention. (B) It is a perspective view of the collector 1m which concerns on the modification 12 of this invention. (C) It is a perspective view of the collector 1n which concerns on the modification 13 of this invention. (a)集光器1fの分解斜視図である。(b)集光器1jの断面図である。(A) It is a disassembled perspective view of the collector 1f. (B) It is sectional drawing of the collector 1j. 集光器1jの光の収集特性を説明するための説明図である。It is explanatory drawing for demonstrating the light collection characteristic of the collector 1j. 本発明の第二の実施形態に係る集光システム2の概略図である。It is the schematic of the condensing system 2 which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る集光システム2を利用した変形例14に係る照明器具21の概略図である。It is the schematic of the lighting fixture 21 which concerns on the modification 14 using the condensing system 2 which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る集光システム2を利用した変形例15に係る太陽光発電装置22の概略図である。It is the schematic of the solar power generation device 22 which concerns on the modification 15 using the condensing system 2 which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る集光システム2を利用した変形例16に係るソーラーシステム23の概略図である。It is the schematic of the solar system 23 which concerns on the modification 16 using the condensing system 2 which concerns on 2nd embodiment of this invention. (a)(b)本発明の第二の実施形態の変形例17に係るソーラーシステム24の斜視図である。(A) (b) It is a perspective view of the solar system 24 which concerns on the modification 17 of 2nd embodiment of this invention. 本発明の第二の実施形態の変形例18に係る耳かき25の斜視図である。It is a perspective view of the earpick 25 which concerns on the modification 18 of 2nd embodiment of this invention. (a)透明体91における集光作用の説明図である。(b)斜め方向からの入射光についての説明図である。(c)集光現象の説明図である。(A) It is explanatory drawing of the condensing effect | action in the transparent body 91. FIG. (B) It is explanatory drawing about the incident light from the diagonal direction. (C) It is explanatory drawing of a condensing phenomenon. (a)(b)透明体92における集光作用の説明図である。(A) (b) It is explanatory drawing of the condensing effect | action in the transparent body 92. FIG.
 まず、本発明の理解のため、外気より高い屈折率と、略平行な面を有する透明体(例えば、円柱、角柱等)による集光原理について説明する。 First, in order to understand the present invention, the principle of light collection by a transparent body (for example, a cylinder, a prism, etc.) having a refractive index higher than the outside air and a substantially parallel surface will be described.
 図22(a)は、円柱形状の透明体91における集光作用の説明図である。外光が透明体91の受光面Aから入射した場合、透明体91側面に平行な光aはそのまま通過して放光面Bに到達する。一方、斜めから受光面Aへと入射した光は、側面で全反射され、これを繰り返すことで放光面Bに到達する。図22(b)は、このような透明体91への斜めからの入射光についての説明図である。図22(b)に示すように、斜め方向からの入射光Xは、外周面を反射面として全反射され、光Yとして放光面Bから出射されている。これにより、本来は放光面Bに到達しないような光も、透明体91の側面で全反射を受けることによって、放光面Bに集約される現象が見られる。ここでは円柱を元に説明しているが、平行な板や四角柱などでも同様の現象が見られる。このような平行透明体の集光現象について、図22(c)に示す。図22(c)は、透明体91による集光現象の説明図である。外周面が反射面として作用することで、透明体91の受光面Aは、垂直な光以外にも、広い角度範囲(即ち、透明体91の臨界角付近の角度まで)の光を取り込むことができる。なお、透明体の長さは、円柱の径に対して数倍以上であることが望ましい。しかしながら、このような平行透明体では、放光面Bからの出射光の角度範囲が受光面Aにおける入射光の角度範囲と同等となるため、散乱光となってしまいその利用が難しくなる。そこで次に、より集光作用の大きな他の形状の透明体の集光原理について説明する。 FIG. 22A is an explanatory diagram of the light collecting action in the cylindrical transparent body 91. When external light enters from the light receiving surface A of the transparent body 91, the light a parallel to the side surface of the transparent body 91 passes through as it is and reaches the light emitting surface B. On the other hand, the light incident on the light receiving surface A obliquely is totally reflected on the side surface and reaches the light emitting surface B by repeating this. FIG. 22B is an explanatory diagram of light incident on the transparent body 91 from an oblique direction. As shown in FIG. 22B, the incident light X from the oblique direction is totally reflected with the outer peripheral surface as a reflection surface, and is emitted from the light emission surface B as light Y. As a result, a phenomenon that light that does not originally reach the light-emitting surface B is concentrated on the light-emitting surface B by being totally reflected by the side surface of the transparent body 91 can be seen. Here, the explanation is based on a cylinder, but the same phenomenon can be seen with a parallel plate or a quadrangular prism. Such a condensing phenomenon of the parallel transparent body is shown in FIG. FIG. 22C is an explanatory diagram of the light collection phenomenon caused by the transparent body 91. Since the outer peripheral surface acts as a reflection surface, the light receiving surface A of the transparent body 91 can capture light in a wide angle range (that is, up to an angle near the critical angle of the transparent body 91) in addition to vertical light. it can. Note that the length of the transparent body is preferably several times the diameter of the cylinder. However, in such a parallel transparent body, the angle range of the emitted light from the light-emitting surface B is equivalent to the angle range of the incident light on the light-receiving surface A, so that it becomes scattered light and its use becomes difficult. Then, the light collection principle of the transparent body of another shape with a larger light collection action will be described next.
 図23(a)及び図23(b)は、透明体92における集光作用の説明図である。透明体92は、円柱形状の集光部と、放光面B側が徐々に縮径する線形テーパー状の導光部とを備えている。図23(a)に示すように、透明体92は、受光面Aから入射した光を外周面を反射面として全反射することで、放光面Bへと導く。このような透明体92によれば、受光面Aよりも放光面Bの面積が小さいため、透明体91よりも出射光の散乱が抑えられる。 23 (a) and 23 (b) are explanatory diagrams of the light condensing action in the transparent body 92. FIG. The transparent body 92 includes a cylindrical light condensing part and a linear tapered light guiding part whose diameter is gradually reduced on the light emitting surface B side. As shown in FIG. 23A, the transparent body 92 guides the light incident from the light receiving surface A to the light emitting surface B by totally reflecting the outer peripheral surface as a reflecting surface. According to such a transparent body 92, since the area of the light emitting surface B is smaller than that of the light receiving surface A, the scattering of the emitted light is suppressed more than the transparent body 91.
 しかしながら、図23(b)に示すように、このような透明体92では、集光体のテーパー面でその反射角度が臨界角未満となってしまう場合があるため、光が側面から漏洩してしまう可能性がある。そこで、図23(c)に示す透明体93は、透明帯92の導光部の内側を鏡面構造とすることで、臨界角未満の光を確実に反射して放光面Bへと導くようにしたものである。 However, as shown in FIG. 23B, in such a transparent body 92, the reflection angle may be less than the critical angle on the tapered surface of the light collector, so that light leaks from the side surface. There is a possibility. Accordingly, the transparent body 93 shown in FIG. 23C has a mirror structure on the inner side of the light guide portion of the transparent band 92 so that light less than the critical angle is reliably reflected and guided to the light emission surface B. It is a thing.
 しかしながら、このような透明体93では、放光面Bからの出射角度が大きくなってしまうため、照度の高い光が得難い。そこで、図23(d)に示す透明体94は、導光部を長く、テーパー面の傾斜角度を緩やかにすることで、放光面Bからの放出角度を抑えたものである。 However, in such a transparent body 93, since the emission angle from the light emission surface B becomes large, it is difficult to obtain light with high illuminance. Therefore, the transparent body 94 shown in FIG. 23D has a long light guide portion and a gentle inclination angle of the tapered surface, thereby suppressing the emission angle from the light emission surface B.
 また、上記のような鏡面構造を利用しない場合には、図23(e)に示す透明体95のように、テーパー面を双曲線に近づけることで、放光面Bからの放出角度を抑えることも可能である。さらに、図23(f)に示す透明体96のように、導光部の径を一部膨らませた導光補正部を設けることによって、放出角度を緩やかな角度に補正することもできる。 Further, when the mirror surface structure as described above is not used, the emission angle from the light emission surface B can be suppressed by bringing the tapered surface closer to a hyperbola as in the transparent body 95 shown in FIG. Is possible. Furthermore, by providing a light guide correction part in which the diameter of the light guide part is partially expanded as in the transparent body 96 shown in FIG. 23 (f), the emission angle can be corrected to a gentle angle.
 なお、上記のような各透明体でより多くの光を集光するためには、受光面Aの面積を拡大しなければならない。しかしながら、前記したように長径は短径に対して数倍以上の長さを有していることが望ましいため、受光面Aを拡大すればするほど、全体が長く、指数関数的に重くなってしまう。これは、例えばインジェクション成形時にヒケが出てしまったり、設置場所が限られてしまったりするため、好ましくない。 In addition, in order to collect more light with each transparent body as described above, the area of the light receiving surface A must be enlarged. However, as described above, it is desirable that the major axis is several times longer than the minor axis. Therefore, as the light receiving surface A is enlarged, the entire length becomes longer and exponentially heavier. End up. This is not preferable because, for example, sink marks appear during injection molding or the installation location is limited.
 そこで、図23(g)に示す透明体97を用いれば、このような問題を解決することができる。透明体97は、複数の円柱状の集光部を、空隙を挟んで層にしたものである。これによれば、対向する周面間に送光経路が複数構成されるため、短径を拡大させて受光面Aの面積を拡大した場合でも、長径を大幅に伸長する必要がない。また、空隙部分に、鏡面構造の板状部材を挿入すれば、漏洩なく送光できる。 Therefore, such a problem can be solved by using the transparent body 97 shown in FIG. The transparent body 97 is formed by layering a plurality of columnar condensing portions with a gap therebetween. According to this, since a plurality of light transmission paths are formed between the opposed peripheral surfaces, even when the area of the light receiving surface A is enlarged by enlarging the minor axis, it is not necessary to significantly extend the major axis. Further, if a plate-like member having a mirror surface structure is inserted into the gap, light can be transmitted without leakage.
 本発明は、上記のような集光原理を踏まえた上で、漏洩を抑え、高い集光作用を実現する集光器を提供するものである。以下、実施の形態について、図に基づいて説明する。 The present invention provides a concentrator that suppresses leakage and realizes a high condensing function in consideration of the above condensing principle. Hereinafter, embodiments will be described with reference to the drawings.
<第一の実施形態>
 図1は、本発明の第一の実施形態に係る集光器1の上面図及び断面図である。図2は、集光器1の斜視図である。
<First embodiment>
FIG. 1 is a top view and a cross-sectional view of a condenser 1 according to a first embodiment of the present invention. FIG. 2 is a perspective view of the condenser 1.
 集光器1は、光源側に展開する集光部11と、該集光部11からの光を纏めて導く導光部12とが、一体的に形成される漏斗状の部材である。 The concentrator 1 is a funnel-shaped member in which a light condensing unit 11 developed on the light source side and a light guiding unit 12 that collectively guides light from the light converging unit 11 are integrally formed.
 集光部11は、内部に円錐形状の中空13を有し、開口15に向かうにつれて漸次線形に拡径する逆テーパー状の本体部11Aと、中空13の頂点13Aから導光部12までの間に形成される基部11Bと、から構成されている。なお、集光部11の外周面14aは、内周面14bと略平行である。また部材厚は、基部11Bの頂点13A側で最も大きくなる。さらに、開口15の縁部は環状の受光面Aを構成し、集光部11は受光面Aで受光した外光を、外周面14a及び内周面14bで反射及び全反射させて導光部12へと集める。 The condensing part 11 has a conical hollow 13 inside, and an inversely tapered main body part 11A that gradually increases in diameter toward the opening 15 and between the apex 13A of the hollow 13 and the light guiding part 12. And a base 11B formed on the base. In addition, the outer peripheral surface 14a of the condensing part 11 is substantially parallel to the inner peripheral surface 14b. The member thickness is the largest on the apex 13A side of the base 11B. Further, the edge of the opening 15 forms an annular light receiving surface A, and the light collecting unit 11 reflects and totally reflects the external light received by the light receiving surface A on the outer peripheral surface 14a and the inner peripheral surface 14b. Collect to 12.
 導光部12は、外周面14aが、基部11Bから受光面Aとは逆側の方向へ延出した円柱形状の部材であり、その外周面は軸Rに対して略平行である。また、導光部12の径は、集光部11の何れの径よりも小さい。さらに、受光面Aとは逆側に円形の放光面Bを形成し、受光面Aから入射された光を導いて放光面Bから放光する。 The light guide portion 12 is a cylindrical member whose outer peripheral surface 14a extends from the base portion 11B in the direction opposite to the light receiving surface A, and the outer peripheral surface thereof is substantially parallel to the axis R. The diameter of the light guide unit 12 is smaller than any diameter of the light collecting unit 11. Further, a circular light emitting surface B is formed on the side opposite to the light receiving surface A, and the light incident from the light receiving surface A is guided and emitted from the light emitting surface B.
 このような集光器1は、透光性と高屈折率を有する透明な導光素材からなる。特に、外気よりも高い屈折率を有する素材を用いることで、その境界面(外周面14a及び内周面14b)で臨界角以上の入射光を全反射させることが可能となる。このような素材としては例えば、石英ガラスやプラスチック樹脂(アクリル、ポリカポネート、ポリプロピレン、エラストマ等)、シリコンゴム等が挙げられる。このような導光素材と空気の屈折率から、全反射角度が定まる。 Such a concentrator 1 is made of a transparent light guide material having translucency and a high refractive index. In particular, by using a material having a refractive index higher than that of the outside air, it becomes possible to totally reflect incident light having a critical angle or more at the boundary surfaces (outer peripheral surface 14a and inner peripheral surface 14b). Examples of such a material include quartz glass, plastic resin (acrylic, polycarbonate, polypropylene, elastomer, etc.), silicon rubber, and the like. The total reflection angle is determined from the light guide material and the refractive index of air.
 上記のような集光器1における入射光の進み方を、以下、具体的に説明する。なお、受光面Aから入射する外光a~eは、軸Rを通る断面に平行に入射し、本体部11Aの外周面14a及び内周面14bに、臨界角以上の角度で到達するものとする。 The following will specifically describe how the incident light travels in the collector 1 as described above. External light a to e incident from the light receiving surface A is incident in parallel to the cross section passing through the axis R, and reaches the outer peripheral surface 14a and the inner peripheral surface 14b of the main body 11A at an angle greater than the critical angle. To do.
 外周面14a及び内周面14bのテーパー軸外側方向から受光面Aに入射した外光aと、テーパー軸内側方向から受光面Aに入射した外光cとは、本体部11Aの外周面14a及び内周面14bにより全反射を繰り返し、基部11Bを通過して導光部12へと到達する。また、テーパー軸と同じ角度で受光面Aに入射した外光bは、本体部11A及び基部11Bを通過して、導光部12へと直接到達する。このようにして導光部12に到達した外光a~cは、導光部12でも全反射を受け、最終的には放光面Bから出射光a’~c’として放光される。 The external light a incident on the light receiving surface A from the outer side of the tapered axis of the outer peripheral surface 14a and the inner peripheral surface 14b and the external light c incident on the light receiving surface A from the inner side of the tapered axis are the outer peripheral surface 14a and the outer surface 14a of the main body 11A. Total reflection is repeated by the inner peripheral surface 14b, passes through the base portion 11B, and reaches the light guide portion 12. Further, the external light b incident on the light receiving surface A at the same angle as the taper axis passes through the main body portion 11A and the base portion 11B and directly reaches the light guide portion 12. The external lights a to c that have reached the light guide unit 12 in this way are also totally reflected by the light guide unit 12 and are finally emitted from the light emission surface B as emitted light a 'to c'.
 また図2に示すように、断面に対して傾きを有する外光fが入射した場合、外光fは外周面14a及び内周面14bで全反射を受けて集光部11内をらせん状に進み、導光部12へと導かれる。 As shown in FIG. 2, when external light f having an inclination with respect to the cross section is incident, the external light f undergoes total reflection at the outer peripheral surface 14 a and the inner peripheral surface 14 b and spirals within the condensing unit 11. Then, the light is guided to the light guide unit 12.
 このような構成により、本実施形態に係る集光器1では、入射光が略平行な外周面14a及び内周面14bを反射面とした経路を取るため、界面に対する入射角の変化が小さく、放射損失を抑制しながら集光を行うことが可能となる。 With such a configuration, in the collector 1 according to the present embodiment, since the incident light takes a path with the outer peripheral surface 14a and the inner peripheral surface 14b being substantially parallel, the change in the incident angle with respect to the interface is small. It is possible to collect light while suppressing radiation loss.
<変形例1>
 次に、本発明の第一の実施形態の変形例1に係る集光器1aについて説明する。以下、上述の実施形態と同様の構成を有するものについては同様の符号を付し、詳細な説明は省略する。
<Modification 1>
Next, the concentrator 1a which concerns on the modification 1 of 1st embodiment of this invention is demonstrated. Hereinafter, components having the same configuration as those of the above-described embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
 図3は、本発明の第一の実施形態の変形例1に係る集光器1aの上面図及び断面図である。図3に示すように、集光器1aでは、本体部11Aと導光部12との間に、基部11Bが設けられていない点で、上記集光器1とは異なる。 FIG. 3 is a top view and a cross-sectional view of a condenser 1a according to Modification 1 of the first embodiment of the present invention. As shown in FIG. 3, the light collector 1 a is different from the light collector 1 in that the base portion 11 </ b> B is not provided between the main body portion 11 </ b> A and the light guide portion 12.
 上記集光器1では、図1に示すように、外光a~cよりも大きな角度で受光面Aに入射した外光d及びeは、本体部11Aの外周面14a及び内周面14bにおいて全反射を繰り返した後、基部11Bでこれまでとは逆の傾きを有する外周面14aに対し臨界角未満の角度で入射する。よって、これらは透過光d’及びe’として基部11Bで外部へ漏洩し、導光部12には到達しない可能性があった。 In the condenser 1, as shown in FIG. 1, the external lights d and e incident on the light receiving surface A at an angle larger than the external lights a to c are transmitted to the outer peripheral surface 14 a and the inner peripheral surface 14 b of the main body 11 A. After repeating the total reflection, the light is incident at an angle less than the critical angle on the outer peripheral surface 14a having an inclination opposite to that at the base 11B. Therefore, they may leak to the outside as transmitted light d ′ and e ′ at the base portion 11 </ b> B and do not reach the light guide portion 12.
 しかしながら、本変形例に係る集光器1aでは、集光部11の部材厚が略一定であるために周面が殆どの位置で略平行に形成できる。従って、上記実施形態においては基部11Bで外部に漏洩するような外光dやeも、漏洩することなく導光部12へと到達し、放光面Bから放光される。 However, in the concentrator 1a according to this modification, since the member thickness of the condensing part 11 is substantially constant, the peripheral surface can be formed substantially in parallel at most positions. Therefore, in the above embodiment, external light d and e that leak to the outside at the base portion 11B reach the light guide portion 12 without leaking and are emitted from the light emitting surface B.
 上記のような集光器1aによれば、入射光の漏洩を抑制し、より多くの角度の入射光を放光面Bまで導くことができる。 According to the concentrator 1a as described above, it is possible to suppress the leakage of the incident light and to guide the incident light having more angles to the light emitting surface B.
<変形例2>
 図4は、本発明の変形例1のさらなる変形例2に係る集光器1bの断面図である。図4に示すように、集光器1bでは、集光部11が、開口15に向かうにつれて指数関数的に拡径する逆テーパー状の平行な外周面14a及び内周面14bを有している点で、集光器1bとは異なる。
<Modification 2>
FIG. 4 is a cross-sectional view of a condenser 1b according to a further modification 2 of the modification 1 of the present invention. As shown in FIG. 4, in the concentrator 1b, the condensing part 11 has the reverse taper-shaped parallel outer peripheral surface 14a and inner peripheral surface 14b which expand exponentially as it goes to the opening 15. As shown in FIG. This is different from the condenser 1b.
 このような集光器1bによれば、集光部11における受光面Aの円周が広がると共に、その面積も拡大するため、より広範囲の外光を集光することが可能となる。 According to such a concentrator 1b, the circumference of the light receiving surface A in the condensing unit 11 is widened and the area thereof is also enlarged, so that it is possible to collect a wider range of outside light.
<変形例3>
 図5は、本発明の変形例1のさらなる変形例3に係る集光器1cの断面図である。図5に示すように、集光器1cでは、集光部11の内周面14bの内側を鏡面構造としている点で、集光器1aとは異なる。これは例えば、アルミの蒸着鍍金、ニッケル鍍金により形成することができる。また、鏡面仕上げした薄金属を成形し、貼付してもよい。なお、外周面14aの内側を鏡面構造とすることもできる。
<Modification 3>
FIG. 5 is a cross-sectional view of a condenser 1c according to a third modification of the first modification of the present invention. As shown in FIG. 5, the light collector 1 c is different from the light collector 1 a in that the inner surface 14 b of the light collector 11 has a mirror surface inside. This can be formed by, for example, aluminum deposition plating or nickel plating. Alternatively, a mirror-finished thin metal may be formed and pasted. The inner surface of the outer peripheral surface 14a can be a mirror structure.
 このような集光器1cによれば、鏡面構造を有する内周面14bでの反射が確実なものとなるため、放射損失が抑制され、より高効率な集光を行うことができる。 According to such a concentrator 1c, since reflection at the inner peripheral surface 14b having a mirror surface structure is ensured, radiation loss is suppressed, and more efficient condensing can be performed.
<変形例4>
 図6は、本発明の変形例2のさらなる変形例4に係る集光器1dの断面図である。集光器1dは、集光器1bと同様の形状を有しているが、外周面14aと内周面14bとを形成する内側が鏡面構造の板状部材16を、空隙を設けて重ね合わせることで構成している点で、集光器1bとは異なる。
<Modification 4>
FIG. 6 is a cross-sectional view of a condenser 1d according to a further modification 4 of the modification 2 of the present invention. The concentrator 1d has a shape similar to that of the concentrator 1b, but the plate-like member 16 whose inner surface forming the outer peripheral surface 14a and the inner peripheral surface 14b has a mirror structure is provided with a gap therebetween. This is different from the condenser 1b in that it is configured.
 このような集光器1dでは、受光面は2枚の板状部材16の空隙であり、放光面は外周面14aを形成する円筒形の板状部材16の孔である。従って、集光器1dは、受光面Aに相当する空隙A’に入射光を取り込んで、放光面Bに相当する孔B’から出射光を放光する。このような構成によれば、経路中での減衰や放射損失を殆ど生じさせず、より効率的な集光が可能となる。 In such a concentrator 1d, the light receiving surface is a gap between the two plate-like members 16, and the light-emitting surface is a hole in the cylindrical plate-like member 16 that forms the outer peripheral surface 14a. Therefore, the condenser 1 d takes incident light into the gap A ′ corresponding to the light receiving surface A and emits the emitted light from the hole B ′ corresponding to the light emitting surface B. According to such a configuration, attenuation and radiation loss in the path are hardly caused, and more efficient light collection is possible.
<変形例5>
 図7は、本発明の変形例1のさらなる変形例5に係る集光器1eの断面図である。集光器1eは、集光器1aの中空13に略同形状の小型の集光器1a’を重ね合わせ、両集光器の導光部12を接続したものである。この際、両集光器は放光面Bの中心が軸R上に並ぶよう接続されている。なお、集光器1a’は、集光器1aよりも受光面Aの位置が高くなるように形成されている。
<Modification 5>
FIG. 7 is a cross-sectional view of a condenser 1e according to a further modification 5 of the modification 1 of the present invention. The concentrator 1e is obtained by superposing a small concentrator 1a 'having substantially the same shape on the hollow 13 of the concentrator 1a and connecting the light guide portions 12 of the two concentrators. At this time, the two concentrators are connected so that the centers of the light-emitting surfaces B are aligned on the axis R. The condenser 1a ′ is formed such that the position of the light receiving surface A is higher than that of the condenser 1a.
 このような集光器1eでは、集光器1aと集光器1a’の両方の受光面Aから入射光a~fを取り込んで、放光面Bから出射光a’~f’を放光できる。従って、より広い受光面で多くの光を集光することが可能となる。 In such a concentrator 1e, incident light a to f is taken from the light receiving surfaces A of both the concentrator 1a and the concentrator 1a ', and emitted light a' to f 'is emitted from the light emitting surface B. it can. Therefore, it is possible to collect a lot of light with a wider light receiving surface.
<変形例6>
 図8は、本発明の変形例2のさらなる変形例6に係る集光器1fの断面図である。集光器1fは、集光器1bの中空13に指数関数的に拡径する逆テーパー状に形成された周面を有する複数の内側集光部1b’と、中空を有さない中心集光部1b’’とを、空隙を挟んで組み合わせることで構成されている(ここでは便宜上、中心を除く内側の集光部は、全て内側集光部1b’と称する)。内側集光部1b’は、一つ外側の集光部の内周面14bに沿った形状を有しており、その中心が軸R上に並ぶように例えば高周波溶着により接続されている。よって、その受光面Aの径は内側の集光部ほど小さくなり、逆に受光面Aの高さは、内側の集光部ほど高く設計されている。これにより各集光部は、それぞれ集光可能角度θの入射角を有する光を、各受光面Aで受光することができる。なお、ここでは集光器1fは計9つの集光部を有しているが、いくつの集光部を組み合わせてもよい。 
<Modification 6>
FIG. 8 is a cross-sectional view of a condenser 1f according to a further modification 6 of the modification 2 of the present invention. The concentrator 1f includes a plurality of inner condensing portions 1b ′ having a circumferential surface formed in an inversely tapered shape that expands exponentially in the hollow 13 of the concentrator 1b, and a central concentrator that does not have a hollow. The portion 1b ″ is combined with a gap in between (here, for convenience, the inner light collecting portion excluding the center is referred to as the inner light collecting portion 1b ′). The inner condensing portion 1b ′ has a shape along the inner peripheral surface 14b of the outer condensing portion, and is connected by, for example, high frequency welding so that the center thereof is aligned on the axis R. Therefore, the diameter of the light receiving surface A becomes smaller as the inner light condensing portion becomes smaller, and conversely, the height of the light receiving surface A is designed to be higher as the inner light condensing portion. Thereby, each condensing part can each receive the light which has the incident angle of the condensing angle | corner (theta) by each light-receiving surface A. FIG. In addition, although the collector 1f has a total of nine condensing parts here, you may combine how many condensing parts.
 このような集光器1fでは、各集光部がそれぞれに受光面Aを有しているため、より大きな受光面積を実現することができる。また、各受光面Aより入射した光は、それぞれが略平行の周面からなる、集光部の円周径よりも細い経路を通って導光部12に集光されるため、放射損失が抑えられる。従って、より多角からの多くの外光を効率よく集光することが可能となる。 In such a concentrator 1f, since each condensing part has the light receiving surface A, a larger light receiving area can be realized. In addition, the light incident from each light receiving surface A is collected on the light guide unit 12 through a path that is substantially parallel to the circumferential surface and is thinner than the circumferential diameter of the light collecting unit, so that radiation loss is reduced. It can be suppressed. Therefore, it becomes possible to collect more external light from more polygons efficiently.
<変形例7>
 図9は、本発明の変形例3のさらなる変形例7に係る集光器1gの断面図である。集光器1gは、集光器1cの中空に、線形に拡径する逆テーパー状に形成された周面を有する複数の内側集光部1c’と、中空を有さない中心集光部1c’’とを、空隙を挟まずに重ね合わせたものである(ここでは便宜上、中心を除く内側の集光部は、全て内側集光部1c’と称する)。各集光部は、中心が軸R上に並ぶよう接続されており、内側集光部は一つ外側の集光部の中空に隙間なく嵌合する形状を有している。また、その受光面Aの径は内側の集光部ほど小さくなり、逆に受光面Aの高さは、内側の集光部ほど高く設計されている。ここでは集光器1gは計4つの集光部を有しているが、いくつの集光部を組み合わせてもよい。
<Modification 7>
FIG. 9 is a cross-sectional view of a condenser 1g according to a further modification 7 of the modification 3 of the present invention. The light collector 1g includes a plurality of inner light collecting portions 1c ′ having a circumferential surface formed in an inversely tapered shape that linearly expands in the hollow of the light collector 1c, and a central light collecting portion 1c that does not have a hollow. ”Are superimposed with no gap in between (here, for the sake of convenience, all the inner condensing portions except the center are referred to as inner condensing portions 1c ′). Each condensing part is connected so that the centers thereof are aligned on the axis R, and the inner condensing part has a shape that fits into the hollow of one outer condensing part without a gap. Further, the diameter of the light receiving surface A becomes smaller as the inner condensing portion becomes smaller, and conversely, the height of the light receiving surface A is designed as higher as the inner condensing portion. Here, the concentrator 1g has a total of four condensing units, but any number of condensing units may be combined.
 なお、このような集光器1gは、各集光部を別々に形成した後、内側集光部1c’及び外側集光部1c’’の外周面の表裏を鍍金等で鏡面構造としてから、各集光部を嵌め込み接合することで形成可能である。その際、空隙を接着剤で埋めることで、全体を一体的に接続することができる。空隙を接着剤で埋めずに適宜凸部を設け、浮かせた状態で接合してもよい。 In addition, such a concentrator 1g, after forming each condensing part separately, after making the front and back of the outer peripheral surfaces of the inner condensing part 1c ′ and the outer condensing part 1c ″ into a mirror structure with a plating or the like, It can be formed by fitting and condensing each condensing part. In that case, the whole can be integrally connected by filling a space | gap with an adhesive agent. Protruding portions may be provided as appropriate without filling the gaps with an adhesive, and the gaps may be joined in a floating state.
 このような集光器1gによれば、各集光部の受光面Aから入射した光g~iは、放光面Bから出射光g’~ i’として放光される、より広い受光面で多くの光を集光することが可能となる。その際、各集光部での外周面及び内周面での反射が確実なものとなり、放射損失が抑えられる。 According to such a concentrator 1g, the light g˜i incident from the light receiving surface A of each condensing unit is emitted from the light emitting surface B as emitted light g′˜ i ′. This makes it possible to collect a lot of light. At that time, the reflection on the outer peripheral surface and the inner peripheral surface of each condensing part is ensured, and the radiation loss is suppressed.
<変形例8>
 図10は、本発明の変形例7のさらなる変形例8に係る集光器1hの斜視図である。集光器1hは、集光器1gと同様の形状を有しているが、各集光部は、その外周面及び内周面を形成する鏡面構造の板状部材16が空隙を設けて重ね合わせて構成されたものである点で、集光器1gとは異なる。
<Modification 8>
FIG. 10 is a perspective view of a condenser 1h according to a further modification 8 of the modification 7 of the present invention. The concentrator 1h has the same shape as the concentrator 1g, but each condensing portion is overlapped with a plate-like member 16 having a mirror structure that forms the outer peripheral surface and the inner peripheral surface of the concentrator. It differs from the collector 1g in that it is configured together.
 このような集光器1hは、例えば接続板17で、各集光部を支持させることで接続することができる。また、受光面及び放光面は板状部材16により形成される空隙であり、受光面Aに相当する空隙A’に入射光を取り込んで、放光面Bに相当する孔B’から出射光を放光する。従って、経路中での減衰や放射損失が殆ど生じず、より効率的な集光が可能となる。 Such a concentrator 1h can be connected by supporting each condensing part with, for example, the connection plate 17. Further, the light receiving surface and the light emitting surface are gaps formed by the plate-like member 16, and incident light is taken into the gap A ′ corresponding to the light receiving surface A and emitted from the hole B ′ corresponding to the light emitting surface B. To emit light. Therefore, attenuation and radiation loss in the path hardly occur, and more efficient light collection is possible.
<変形例9>
 図11は、本発明の変形例6のさらなる変形例9に係る集光器1iの断面図である。集光器1iは、集光器1dの中空13に、指数関数的に拡径する逆テーパー状に形成された周面を有する複数の内側集光部1d’を、空隙を挟んで重ね合わせることで構成されている(ここでは便宜上、内側に形成されている集光部は全て1d’と称する)。各集光部は、中心が軸R上に並ぶよう接続されており、内側の集光部は一つ外側の集光部の内周面14bに沿った形状を有している。よって、受光面A’の径は内側の集光部ほど小さく、受光面A’の高さは、内側の集光部で同じである。また、ここでは集光器1iは8個の集光部を有しているが、いくつ集光部を組み合わせてもよい。
<Modification 9>
FIG. 11 is a cross-sectional view of a condenser 1i according to a further modification 9 of the modification 6 of the present invention. The concentrator 1i overlaps the hollow 13 of the concentrator 1d with a plurality of inner condensing portions 1d ′ having a circumferential surface formed in an inversely tapered shape that expands exponentially with a gap in between. (Here, for the sake of convenience, all the condensing portions formed on the inside are referred to as 1d ′). Each condensing part is connected so that the centers thereof are aligned on the axis R, and the inner condensing part has a shape along the inner peripheral surface 14b of one outer condensing part. Therefore, the diameter of the light receiving surface A ′ is smaller as the inner condensing portion is smaller, and the height of the light receiving surface A ′ is the same in the inner condensing portion. Moreover, although the concentrator 1i has eight condensing parts here, you may combine how many condensing parts.
 このような集光器1iでは、より広い受光面としての空隙A’ に入射光を取り込むことができる。また、経路中での減衰や放射損失が生じ難いため、より効率的な集光が可能となる。  In such a concentrator 1i, incident light can be taken into the gap A ′ as a wider light receiving surface. In addition, since attenuation and radiation loss are less likely to occur in the path, more efficient light collection is possible. *
<変形例10>
 図12(a)は、本発明の変形例10に係る集光器1kの斜視図である。集光器1kは、指数関数的に拡径する逆テーパー状の集光部が複数組み合わされた構成の集光器(例えば、集光器1f)を、軸Rを挟んだ2つの切断平面で切断した形状を有している。両切断平面の間隔は、受光面A側で広く、放光面B側に向かうにしたがって狭くなるよう、軸Rに対して傾きを有しているものとする。このような集光器1kでは、軸Rを挟んだ両側に、略平行に並んだ受光面Aが形成される複数の集光片111が並ぶ構成となっている。
<Modification 10>
Fig.12 (a) is a perspective view of the collector 1k which concerns on the modification 10 of this invention. The concentrator 1k includes a concentrator (for example, a concentrator 1f) having a configuration in which a plurality of reverse-tapered condensing portions that expand exponentially in diameter are combined with two cutting planes sandwiching the axis R. It has a cut shape. It is assumed that the interval between both cutting planes is inclined with respect to the axis R so as to be wide on the light receiving surface A side and narrow toward the light emitting surface B side. In such a concentrator 1k, a plurality of condensing pieces 111 having light receiving surfaces A arranged substantially in parallel are arranged on both sides of the axis R.
 図12(b)は、集光片111の斜視図である。集光片111は、略平行な曲面である外周面14a及び内周面14bと、2つの側面14cと、を有する湾曲した角錐台形状に形成され、受光面Aから入射した入射光aは、この4面のうち何れかに全反射されて、導光部12へと導かれ、放光面Bへと達する。 FIG. 12B is a perspective view of the light collecting piece 111. The condensing piece 111 is formed in a curved truncated pyramid shape having an outer peripheral surface 14a and an inner peripheral surface 14b which are substantially parallel curved surfaces, and two side surfaces 14c, and incident light a incident from the light receiving surface A is The light is totally reflected on any one of the four surfaces, guided to the light guide unit 12, and reaches the light emission surface B.
 このような集光器1kによれば、太陽の軌道に沿って受光面Aを並べることで、効率的に太陽光を集光することができる。特に、受光面の形状が上方から見て方形となるため、複数の集光器1kの受光面を隙間なく並べることが可能となり、省スペースで高い集光能を発揮できる。 According to such a collector 1k, it is possible to efficiently collect sunlight by arranging the light receiving surfaces A along the solar orbit. In particular, since the shape of the light receiving surface is square when viewed from above, the light receiving surfaces of the plurality of concentrators 1k can be arranged without gaps, and high light collecting ability can be exhibited in a small space.
<変形例11>
 図13(a)は、本発明の変形例11に係る集光器1lの斜視図である。集光器1lは、葉形状の縁を形成する曲面である受光面Aと、互いに平行な外周面14a及び内周面14bを備える集光部11を有する葉形状の集光片である。また、その表面には、凹凸面121が全体に形成されている(図13(a)では、一部のみに図示する)。
<Modification 11>
FIG. 13A is a perspective view of a condenser 11 according to the eleventh modification of the present invention. The concentrator 11 is a leaf-shaped condensing piece having a light receiving surface A that is a curved surface forming a leaf-shaped edge and a condensing unit 11 including an outer peripheral surface 14a and an inner peripheral surface 14b that are parallel to each other. In addition, an uneven surface 121 is formed on the entire surface (only part of the surface is shown in FIG. 13A).
 図13(a)に示すように、例えば受光面Aから入射した光a及びbは、外周面14a及び内周面14bに全反射され、導光部12に導かれて放光面Bへと達する。また、表面の凹凸面121で受光された光cも、外周面14aと内周面14bに全反射され、導光部12に導かれて放光面Bへと達する。このように、どの面から入射した入射光でも、上記3面の何れかに全反射され、導光部12に導かれて放光面Bへと達する。 As shown in FIG. 13A, for example, light a and b incident from the light receiving surface A are totally reflected by the outer peripheral surface 14a and the inner peripheral surface 14b, and are guided to the light guide unit 12 to the light emitting surface B. Reach. Further, the light c received by the uneven surface 121 on the surface is also totally reflected by the outer peripheral surface 14a and the inner peripheral surface 14b, and is guided to the light guide unit 12 to reach the light emission surface B. In this way, incident light incident from any surface is totally reflected on any of the three surfaces and is guided to the light guide unit 12 to reach the light emission surface B.
<変形例12>
 上記のような集光器1lは、複数組み合わせて使用することもできる。図13(b)は、本発明の変形例12に係る集光器1mの斜視図である。集光器1mは、集光片としての集光器1lを、導光部12を束ねるように複数組み合わせたものである(なおここでは、集光器1mの放光面Bに、接続部19を介して光ケーブル18を接続することで、収集光を光ケーブル18へと送光させるようにしたものを示す)。また、複数の集光器1lは、次のように組み合わせてもよい。
<Modification 12>
A plurality of concentrators 1l as described above can be used in combination. FIG.13 (b) is a perspective view of the collector 1m which concerns on the modification 12 of this invention. The concentrator 1m is a combination of a plurality of concentrators 1l as condensing pieces so that the light guides 12 are bundled (in this case, the connecting portion 19 is connected to the light emitting surface B of the concentrator 1m). The collected light is transmitted to the optical cable 18 by connecting the optical cable 18 via the optical cable 18). Moreover, you may combine the several collector 1l as follows.
<変形例13>
 図13(c)は、本発明の変形例13に係る集光器1nの斜視図である。集光器1nは、集光片としての集光器1lを、導光部12の中心が軸R上で重なるように縦方向に組み合わせたものである。これは例えば、導光部12の上部に接続口122を設け、ここに他の集光器の導光部12を差し込む構成とすることで実現可能である。
<Modification 13>
FIG.13 (c) is a perspective view of the collector 1n which concerns on the modification 13 of this invention. The concentrator 1n is a combination of the concentrators 1l as the condensing pieces in the vertical direction so that the centers of the light guide portions 12 overlap on the axis R. This can be realized, for example, by providing a connection port 122 in the upper part of the light guide unit 12 and inserting the light guide unit 12 of another condenser.
 このように集光器1lを複数組み合わせることによって、よりデザイン性の高い集光器が提供できる。また、表面に色や模様を施すことにより、エクステリアやオブジェとしても利用することができる。 In this way, a concentrator with higher design can be provided by combining a plurality of concentrators 1l. It can also be used as an exterior or an object by applying a color or pattern to the surface.
 次に、本発明の代表的な集光器の製法について説明する。図14(a)は、集光器1jの分解斜視図、図14(b)は、集光器1jの断面図である。 Next, a method for manufacturing a typical concentrator of the present invention will be described. FIG. 14A is an exploded perspective view of the condenser 1j, and FIG. 14B is a cross-sectional view of the condenser 1j.
 集光器1jは、本発明の変形例6の集光器1fとほぼ同様の構成を有しているが、各集光部の外周面14a及び内周面14bに、鏡面構造が施されている点で異なる。 The concentrator 1j has substantially the same configuration as the concentrator 1f of the sixth modification of the present invention, but a mirror surface structure is applied to the outer peripheral surface 14a and the inner peripheral surface 14b of each condensing unit. Is different.
 このような集光器1jは、次の方法で製造が可能である。まず、各集光部を成形して、その外周面及び内周面を鍍金し、鏡面構造に加工する。次に、各集光部の接続面Cの表面を研磨して透明な磨き面とし、平滑性を与える。そして、各接続面Cの中心が軸R上に並ぶよう各集光部を重ねる。または、各接続面Cの中心が軸R上に並ぶよう高周波溶着する。これにより、各集光部からの光が下方向にムラ無く流れる。 Such a concentrator 1j can be manufactured by the following method. First, each condensing part is shape | molded, the outer peripheral surface and inner peripheral surface are plated, and it processes into a mirror surface structure. Next, the surface of the connection surface C of each light condensing part is polished to form a transparent polished surface, thereby providing smoothness. And each condensing part is accumulated so that the center of each connection surface C may be located on the axis R. Alternatively, high-frequency welding is performed so that the centers of the connection surfaces C are aligned on the axis R. Thereby, the light from each condensing part flows uniformly in the downward direction.
 図15は、このような集光器1jの集光特性を説明するための説明図であり、上部A部からの光、左斜め方向B部からの光、更に左斜め方向C部からの光に対する直線光(太陽光等)の集光特性を示す。受光面Aは、A側からの光を受け止め、その集光強度は中心に向かって円を描く様に増す(なお、黒い部分は集光強度が大きいことを示す)。一方、B部、C部では、略楕円形の集光範囲となり、集光領域は中心の集光器が有する受光面よりも狭くなる。 FIG. 15 is an explanatory diagram for explaining the condensing characteristics of such a collector 1j. Light from the upper part A, light from the left oblique direction B, and light from the left oblique direction C part. The condensing characteristic of the linear light (sunlight etc.) with respect to is shown. The light receiving surface A receives the light from the A side, and its light collecting intensity increases so as to draw a circle toward the center (a black portion indicates that the light collecting intensity is high). On the other hand, in B part and C part, it becomes a substantially elliptical condensing range, and a condensing area becomes narrower than the light-receiving surface which a center collector has.
 次に、このような集光器1jを利用した本発明の第二の実施形態について説明する。 Next, a second embodiment of the present invention using such a collector 1j will be described.
<第二の実施形態>
 図16は、本発明の第二の実施形態に係る集光システム2の概略図である。図16に示すように、集光システム2は、集光器1jの放光面Bに接続部19を介して光ケーブル18を接続することで、収集光を光ケーブル18へと送光させるようにしたものである。このような集光システム2によれば、受光面Aで受光された光は、接続部19内の放光面Bを介して光ケーブル18に到達する。なお、このような集光システム2は、多くの装置に応用することができる。以下、その例について説明する。
<Second Embodiment>
FIG. 16 is a schematic view of the light collection system 2 according to the second embodiment of the present invention. As shown in FIG. 16, the condensing system 2 is configured to transmit the collected light to the optical cable 18 by connecting the optical cable 18 to the light emitting surface B of the condenser 1j via the connecting portion 19. Is. According to such a condensing system 2, the light received by the light receiving surface A reaches the optical cable 18 via the light emitting surface B in the connection portion 19. In addition, such a condensing system 2 can be applied to many apparatuses. Examples thereof will be described below.
<変形例14>
 図17は、本発明の第二の実施形態の変形例13に係る集光システム2を利用した照明装置21の概略図である。図17に示すように、集光システム2は、集光器1jに光ケーブル18の一端を接続して収集光を送光させ、光ケーブル18の他端に設けられた照明器具30から放光させるものである。なお、照明器具30に放射板31を設けておくことで、光ケーブル18からの出射光を乱反射させて散乱光として放光させることができる。もちろん、放射板を設けずに直接光を壁に当てて間接照明として用いたり、レンズを介して拡散させたりしてもよい。
また、植物工場での導入により、温度管理しやすく、よりクリーンな太陽光を利用した植物栽培が可能となる。
<Modification 14>
FIG. 17 is a schematic diagram of an illuminating device 21 using the light collecting system 2 according to Modification 13 of the second embodiment of the present invention. As shown in FIG. 17, the condensing system 2 connects one end of the optical cable 18 to the concentrator 1 j to transmit the collected light, and emits light from the lighting fixture 30 provided at the other end of the optical cable 18. It is. In addition, by providing the radiating plate 31 in the lighting fixture 30, the emitted light from the optical cable 18 can be diffusely reflected and emitted as scattered light. Of course, direct light may be applied to the wall without providing a radiation plate and used as indirect illumination, or may be diffused through a lens.
In addition, the introduction at the plant factory makes it easier to control the temperature and enables plant cultivation using cleaner sunlight.
 このような照明装置21によれば、屋外で集光した光を屋内まで導き照明として利用することが可能となる。また、集光器により広範囲な光を集光できるため、曇天や雨天時でも、十分な照度の光を得ることができ、照明の電源や、電球が不要となる。 According to such an illuminating device 21, it is possible to guide the light collected outdoors to the indoors and use it as illumination. In addition, since a wide range of light can be collected by the condenser, light with sufficient illuminance can be obtained even in cloudy or rainy weather, and an illumination power source and a light bulb are not required.
<変形例15>
 図18は、本発明の第二の実施形態の変形例14に係るに係る集光システム2を利用した太陽光発電装置22の概略図である。図18に示すように、太陽光発電装置22は、複数の集光システム2を備え、各集光システム2で集光した光を太陽電池で構成される太陽発電パネル40に集め、発電を行うものである。太陽発電パネル40での発電電力は、電力線41を介して送電され、一時蓄電池等に蓄えてから利用される。
<Modification 15>
FIG. 18 is a schematic diagram of a solar power generation device 22 using the light collection system 2 according to Modification 14 of the second embodiment of the present invention. As shown in FIG. 18, the solar power generation device 22 includes a plurality of light collection systems 2, collects the light collected by each light collection system 2 in a solar power generation panel 40 constituted by solar cells, and generates power. Is. The electric power generated by the solar power generation panel 40 is transmitted through the power line 41 and used after being stored in a temporary storage battery or the like.
 なお、太陽発電パネル40への放光には、光ケーブル18からの光をそのまま用いてもよいし、レンズを介してもよい。また、太陽発電パネルの周囲を反射板等で覆えば、漏洩損失が抑制されさらなる効率化を図ることができる。また、各集光部が集光した照度の高い光を利用できるため、太陽発電パネル40の小型化や、利用波長の異なる太陽電池を複数積み重ねた多接合型太陽電池の利用により太陽光のエネルギーをより無駄なく利用し、変換効率の向上が図れる。その上、省スペースで管理できる。 In addition, the light from the optical cable 18 may be used as it is for emitting light to the solar power generation panel 40, or may be passed through a lens. Further, if the periphery of the solar power generation panel is covered with a reflector or the like, leakage loss is suppressed and further efficiency can be achieved. Moreover, since the light with high illuminance collected by each condensing unit can be used, the energy of sunlight can be reduced by downsizing the solar power generation panel 40 or using a multi-junction solar cell in which a plurality of solar cells having different utilization wavelengths are stacked. Can be used more efficiently and conversion efficiency can be improved. In addition, it can be managed in a space-saving manner.
 さらに、集光システム2を屋外に、太陽発電パネル40を屋内に設置することも可能である。太陽発電パネル40は、屋内で使用することにより、管理・保守が容易となり、その寿命も増す。一方、屋外に設置する集光器は構造が簡単で安価である上に壊れにくく、管理・保守に必要なコストを大幅に抑えることが可能である。また、集光器は保護のためにガラスケース等に入れて設置してもよい。 Furthermore, it is possible to install the condensing system 2 outdoors and the solar power generation panel 40 indoors. When the solar power generation panel 40 is used indoors, it is easy to manage and maintain, and its life is also increased. On the other hand, a concentrator installed outdoors has a simple structure and is inexpensive, and is not easily broken, so that the cost required for management and maintenance can be greatly reduced. Moreover, you may install a collector in a glass case etc. for protection.
 なお、ここでは、収集光を光ケーブル18へと送光し使用しているが、集光器の末端、放光面Bに太陽光を電力に変換する素子を接続してもよい。さらに、太陽光ばかりでなく、集光することにより太陽熱を高温で取り出せるため、太陽熱の利用も利用しやすくなる、その上、太陽光と太陽熱の併用としてもよい。 In this case, the collected light is transmitted to the optical cable 18 and used. However, an element that converts sunlight into electric power may be connected to the end of the condenser and the light emission surface B. Furthermore, since not only sunlight but also solar heat can be extracted at a high temperature by condensing, utilization of solar heat becomes easy to use, and in addition, sunlight and solar heat may be used in combination.
 このような集光システム2を利用した太陽光発電装置22によれば、太陽の追尾装置を設けなくとも、広範囲の太陽光を集光器で集光し、簡便な構造で高効率な発電を行うことが可能となる。もちろん、追尾装置により集光器の中心を太陽に向ければ、太陽光と周囲の反射光などを取り入れより効率の良い集光器となる。 According to the solar power generation device 22 using such a condensing system 2, a wide range of sunlight is condensed by a concentrator without providing a solar tracking device, and highly efficient power generation is possible with a simple structure. Can be done. Of course, if the center of the concentrator is directed to the sun by the tracking device, it becomes a more efficient concentrator by taking in sunlight and surrounding reflected light.
<変形例16>
 図19は、本発明の第二の実施形態の変形例15に係る集光システム2を利用したソーラーシステム23の概略図である。ソーラーシステム23は、太陽光発電装置22に利用される太陽発電パネル40を、熱交換器50に替えたものであり、これを介して温熱水を得ることができる。またこれ以外にも、得られた熱によって発電を行ったり、太陽光と太陽熱を同時に利用したりすることもできる。
<Modification 16>
FIG. 19 is a schematic diagram of a solar system 23 using the light collection system 2 according to Modification 15 of the second embodiment of the present invention. The solar system 23 is obtained by replacing the solar power generation panel 40 used for the solar power generation device 22 with a heat exchanger 50, and can obtain hot water through this. In addition to this, it is also possible to generate electricity using the obtained heat, or to simultaneously use sunlight and solar heat.
<変形例17>
 図20(a)は、本発明の第二の実施形態の変形例15に係る集光システム2を利用したソーラーシステム24の概略図である。ソーラーシステム24は、集光器1jの導光部12に、太陽電池43を接続したものである。これにより、より省スペースで、光の損失なく発電装置を管理できる。また、太陽電池43の代わりに、太陽発電パネルを接続してもよい。また、利用波長の異なる太陽電池を複数積み重ねた多接合型太陽電池の利用により太陽光のエネルギーをより無駄なく利用でき、さらに、、留め具42で同様のソーラーシステム24を相互に連結することで、安定した設置が可能となる。
<Modification 17>
FIG. 20A is a schematic diagram of a solar system 24 using the light collecting system 2 according to Modification 15 of the second embodiment of the present invention. The solar system 24 has a solar cell 43 connected to the light guide portion 12 of the condenser 1j. As a result, the power generation device can be managed with less space and without loss of light. Further, instead of the solar battery 43, a solar power generation panel may be connected. Further, by using a multi-junction solar cell in which a plurality of solar cells having different utilization wavelengths are stacked, the energy of sunlight can be used more efficiently, and the similar solar system 24 can be connected to each other with a fastener 42. Stable installation is possible.
 なお、図20(b)に記載するように、太陽電池の下部にさらに熱電変換素子44を追加してもよい。例えば、ゼーベック効果を利用した素子を利用して集光器からの熱を集め、太陽熱を高温側、外側に設けられた放熱フィン45が低温側とし、温度差により発電を行う。また、図示しないが、太陽熱を利用して、スターリングエンジンを動かし、発電を行う太陽熱発電装置による発電を行ってもよい。このように、本発明の集光器は太陽光・熱を利用する様々な形式のソーラーシステムに応用できる。 As shown in FIG. 20B, a thermoelectric conversion element 44 may be further added to the lower part of the solar cell. For example, heat from a light collector is collected using an element utilizing the Seebeck effect, and solar heat is used as a high temperature side, and heat radiating fins 45 provided on the outside are used as a low temperature side, and power is generated by a temperature difference. Moreover, although not shown in figure, you may perform the electric power generation by the solar thermal power generation device which moves a Stirling engine using solar heat and generates electric power. Thus, the collector of the present invention can be applied to various types of solar systems using sunlight and heat.
 以上、本発明に係る集光器及び集光システムの各実施形態と実施例について説明した。本発明に係る集光器及び集光システムによれば、太陽の追従装置が無くとも、安定的に、かつ、高効率に太陽光を集光することが可能である。また、平行な光のみならず、多角からの広範囲の外光を集光可能なため、雨天や曇天でも十分な照度を有する光を集光することが可能となる。 The embodiments and examples of the condenser and the condenser system according to the present invention have been described above. According to the concentrator and the condensing system according to the present invention, it is possible to condense sunlight stably and with high efficiency without a sun tracking device. In addition, since not only parallel light but also a wide range of external light from various polygons can be collected, it is possible to collect light having sufficient illuminance even in rainy or cloudy weather.
 また、光ファイバー等の誘導体にも簡便に接続することができるため、大がかりな装置や、建築設備を必要とせずに利用媒体へと光を導くことが可能である。 In addition, since it can be easily connected to a derivative such as an optical fiber, it is possible to guide light to a use medium without requiring a large-scale apparatus or building equipment.
 なお、本発明に係る集光器及び集光システムは上記に限らず、さらに多くの代替物、修正および変形例が当業者にとって明らかである。また、上記各実施形態や変形例における各特徴をそれぞれ組み合わせて用いることもできる。 The concentrator and the condensing system according to the present invention are not limited to the above, and many alternatives, modifications, and variations will be apparent to those skilled in the art. Also, the features in the above embodiments and modifications can be used in combination.
<変形例18>
 例えば、本発明の集光器を、図21に示すような耳かき具に利用してもよい。図21は、本発明の変形例18に係る耳かき具25の斜視図である。
<Modification 18>
For example, you may use the concentrator of this invention for an earpick as shown in FIG. FIG. 21 is a perspective view of an earpick 25 according to Modification 18 of the present invention.
 耳かき具25は、棒状の柄部61と、該柄部61の一端に形成される集光器1jと、他端に形成される匙状に湾曲した先端部62と、を有している。柄部61は、先端部62と一体に形成される棒状の導光部材の周囲を、内周面に鏡面構造を有する円筒部材で覆ったものである。これにより、利用者が柄部61を指で掴んだ場合でも、光の漏洩が防止され確実な反射が保証される。 The earpick 25 has a rod-shaped handle portion 61, a light collector 1j formed at one end of the handle portion 61, and a tip portion 62 curved in a hook shape formed at the other end. The handle portion 61 is formed by covering the periphery of a rod-shaped light guide member formed integrally with the distal end portion 62 with a cylindrical member having a mirror surface structure on the inner peripheral surface. Thereby, even when the user grasps the handle 61 with a finger, light leakage is prevented and reliable reflection is assured.
 なお、柄部61の導光部材には、透光性と高屈折率を有する素材が用いられる。従って、柄部61と集光器1jとを一体に形成すれば、放射損失がより抑制される。また、先端部62の底面63は、梨地仕上げやブラスト仕上げにしたり、半透明な素材や光拡散剤を混合した素材を用いたりして形成してもよい。これにより、光が散乱して外耳道を広く照らし出すことが可能となる。 Note that the light guide member of the handle 61 is made of a material having translucency and a high refractive index. Therefore, if the handle 61 and the collector 1j are integrally formed, radiation loss is further suppressed. Further, the bottom surface 63 of the tip portion 62 may be formed by using a satin finish or a blast finish, or using a translucent material or a material mixed with a light diffusing agent. As a result, light can be scattered to illuminate the external auditory canal widely.
1・1a~1n:集光器、2:集光システム、11:集光部、11A:本体部、11B :基部、12:導光部、13:中空、13A:頂点、14a:外周面、14b:内周面、15:開口、16:板状部材、17:接続板、18:光ファイバー、19:接続部、21:照明器具、22:太陽光発電装置、23・24:ソーラーシステム、25:耳かき具、30:照明器具、31:放射板、40:太陽発電パネル、41:電力線、50:熱交換器、61:柄部、62:先端部、63:底面、A:受光面、B:放光面、R:軸。 1.1a to 1n: Condenser, 2: Condensing system, 11: Condensing part, 11A: Main body part, 11B 基: Base part, 12: Light guiding part, 13: Hollow, 13A: Vertex, 14a: Outer peripheral surface, 14b: inner peripheral surface, 15: opening, 16: plate member, 17: connecting plate, 18: optical fiber, 19: connecting portion, 21: lighting fixture, 22: solar power generation device, 23/24: solar system, 25 : Earpick, 30: lighting fixture, 31: radiation plate, 40: solar power generation panel, 41: power line, 50: heat exchanger, 61: handle, 62: tip, 63: bottom, A: light receiving surface, B : Emission surface, R: axis.

Claims (7)

  1.  一端に円状の受光面を形成する円柱状の集光部と、
     前記集光部から他端に向けて漸次縮径する導光部と、を備え、
     導光素材で構成されることを特徴とする集光器。
    A cylindrical condensing part that forms a circular light-receiving surface at one end;
    A light guide part that gradually decreases in diameter from the light collecting part toward the other end,
    A light collector made of a light guide material.
  2.  環状の受光面と、前記受光面に近づくにつれて漸次拡径する略平行な外周面及び内周面と、を有する集光部と、
     前記受光面とは逆側へ前記外周面が延出した、円柱状の導光部と、を備え、
     導光素材で構成されることを特徴とする集光器。
    A light collecting portion having an annular light receiving surface, and a substantially parallel outer peripheral surface and inner peripheral surface that gradually increase in diameter as approaching the light receiving surface;
    A columnar light guide part with the outer peripheral surface extending to the side opposite to the light receiving surface;
    A light collector made of a light guide material.
  3.  請求項2に記載の集光器であって、
     前記集光部の内側に、さらに1つ以上の集光部を有すること
     を特徴とする集光器。
    The concentrator according to claim 2,
    A concentrator, further comprising one or more condensing units inside the condensing unit.
  4.  請求項1に記載の集光器であって、
     前記導光部に、一部径が膨らんだ導光補正部が形成されていること
     を特徴とする集光器。
    The concentrator according to claim 1,
    The light guide is characterized in that a light guide correction part having a partially enlarged diameter is formed in the light guide part.
  5.  請求項2に記載の集光器であって、
     前記導光部に、一部径が膨らんだ導光補正部が形成されていること
     を特徴とする集光器。
    The concentrator according to claim 2,
    The light guide is characterized in that a light guide correction part having a partially enlarged diameter is formed in the light guide part.
  6.  請求項1に記載の集光器であって、
     前記導光部に、太陽電池や太陽電池パネル、太陽熱発電装置を接続したこと
     を特徴とする集光器。
    The concentrator according to claim 1,
    A concentrator comprising a solar cell, a solar cell panel, and a solar thermal power generation device connected to the light guide unit.
  7.  請求項2に記載の集光器であって、
     前記導光部に、太陽電池や太陽電池パネル、太陽熱発電装置を接続したこと
     を特徴とする集光器。
    The concentrator according to claim 2,
    A concentrator comprising a solar cell, a solar cell panel, and a solar thermal power generation device connected to the light guide unit.
PCT/JP2012/066897 2011-07-11 2012-07-02 Condenser, light condensing system, solar power generation device, and solar system WO2013008665A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-153379 2011-07-11
JP2011153379A JP2013020096A (en) 2011-07-11 2011-07-11 Light collector, light collecting system, photovoltaic power generator, and solar system

Publications (1)

Publication Number Publication Date
WO2013008665A1 true WO2013008665A1 (en) 2013-01-17

Family

ID=47505958

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066897 WO2013008665A1 (en) 2011-07-11 2012-07-02 Condenser, light condensing system, solar power generation device, and solar system

Country Status (2)

Country Link
JP (1) JP2013020096A (en)
WO (1) WO2013008665A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047222A1 (en) * 2014-09-24 2016-03-31 岩崎電気株式会社 Light guide component and light source device
JP2020024821A (en) * 2018-08-06 2020-02-13 株式会社東芝 Optical element, illuminating device
WO2020139186A1 (en) * 2018-12-27 2020-07-02 Ilia Katardjiev Optical system for manipulation and concentration of diffuse light

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6331846B2 (en) * 2014-08-01 2018-05-30 オムロン株式会社 Optical sensor and light guide plate design method
AU2017400886B2 (en) * 2017-02-27 2020-04-30 Bolymedia Holdings Co. Ltd. Energy storage type solar device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649505U (en) * 1980-08-20 1981-05-01
JPS58154804A (en) * 1982-03-10 1983-09-14 Takashi Mori Light energy condenser
JPS6113261U (en) * 1984-06-28 1986-01-25 中国工業株式会社 Solar water heater using optical fiber
JPS61135310U (en) * 1986-02-06 1986-08-23
JPS61172591U (en) * 1985-04-16 1986-10-27
JPH07335004A (en) * 1994-06-03 1995-12-22 Kazuo Yoshino Sunlight converging device
JPH10133020A (en) * 1996-10-30 1998-05-22 Hiroshi Akitani Appliance for condensing and converging light
JP2003227661A (en) * 2002-02-06 2003-08-15 Takeo Saito Optical fiber solar collector
JP2003240356A (en) * 2002-02-18 2003-08-27 Seishiro Munehira Sun tracking system
JP2009080215A (en) * 2007-09-26 2009-04-16 Motoaki Masuda Solar lens
JP2010014826A (en) * 2008-07-02 2010-01-21 Motoaki Masuda Solar lens

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10104547A (en) * 1996-09-27 1998-04-24 Hideo Suzuki Solar concentrator and utilizing method for concentrated light using the device
JP3952167B2 (en) * 2002-05-30 2007-08-01 日本電気株式会社 Condensing device and portable electronic device
GB2400452B (en) * 2003-04-09 2007-09-12 Univ Warwick Communication transmitter
JP2005164631A (en) * 2003-11-28 2005-06-23 Canon Inc Light converging optical system, method for manufacturing light converging optical system, and light convergence type solar battery
KR20050077455A (en) * 2004-01-28 2005-08-02 삼성전자주식회사 Optical antenna and wireless optical system using the same
JP2008008671A (en) * 2006-06-27 2008-01-17 Matsushita Electric Ind Co Ltd Light receiving device
JPWO2009066720A1 (en) * 2007-11-22 2011-04-07 シャープ株式会社 Solar cell module and solar power generation unit
JP2011039395A (en) * 2009-08-17 2011-02-24 Canon Inc Illuminator and image display device having the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649505U (en) * 1980-08-20 1981-05-01
JPS58154804A (en) * 1982-03-10 1983-09-14 Takashi Mori Light energy condenser
JPS6113261U (en) * 1984-06-28 1986-01-25 中国工業株式会社 Solar water heater using optical fiber
JPS61172591U (en) * 1985-04-16 1986-10-27
JPS61135310U (en) * 1986-02-06 1986-08-23
JPH07335004A (en) * 1994-06-03 1995-12-22 Kazuo Yoshino Sunlight converging device
JPH10133020A (en) * 1996-10-30 1998-05-22 Hiroshi Akitani Appliance for condensing and converging light
JP2003227661A (en) * 2002-02-06 2003-08-15 Takeo Saito Optical fiber solar collector
JP2003240356A (en) * 2002-02-18 2003-08-27 Seishiro Munehira Sun tracking system
JP2009080215A (en) * 2007-09-26 2009-04-16 Motoaki Masuda Solar lens
JP2010014826A (en) * 2008-07-02 2010-01-21 Motoaki Masuda Solar lens

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016047222A1 (en) * 2014-09-24 2016-03-31 岩崎電気株式会社 Light guide component and light source device
JP2016065923A (en) * 2014-09-24 2016-04-28 岩崎電気株式会社 Light guide component and light source device
JP2020024821A (en) * 2018-08-06 2020-02-13 株式会社東芝 Optical element, illuminating device
JP7086780B2 (en) 2018-08-06 2022-06-20 株式会社東芝 Optical elements, lighting equipment
WO2020139186A1 (en) * 2018-12-27 2020-07-02 Ilia Katardjiev Optical system for manipulation and concentration of diffuse light

Also Published As

Publication number Publication date
JP2013020096A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
US8608339B2 (en) Lighting device
WO2013008665A1 (en) Condenser, light condensing system, solar power generation device, and solar system
JP2007513382A (en) Reflected light coupler
WO2014141204A1 (en) Optics for illumination devices and solar concentrators
KR20130130707A (en) Redirecting optics for concentration and illumination systems
JP2004047753A (en) Solar cell with condensing element
US8767302B2 (en) Laminated optical disk
JP3173523U (en) Concentrator, condensing system, solar power generation device, and solar system
US20120260986A1 (en) System for Switching Focus Position
JP2012099681A (en) Light condensing structure and photovoltaics generator
TWI537533B (en) Side-irradiated concentrated photovoltaic system
TWI482995B (en) Light collecting device and illumination apparatus
US20210364149A1 (en) Light-reflective-type profile surface for light diffusion and concentration, and surface-emitting lighting and light concentration apparatus using same
CA3030595C (en) Light collection device
KR101231367B1 (en) Lighting Apparatus Using the Solar cell
KR101722514B1 (en) Transmission Device Of Solar Light
WO2009115940A1 (en) Light concentrating device
TW202001342A (en) High-efficiency lighting device with concentrated sunlight including at least one light concentrating unit, a total reflection transmission unit, a light-scattering unit and at least one function utilization unit
TWI497112B (en) Light collecting device
JP2018072826A (en) Light collector unit and sunlight receiver apparatus
KR20100009093U (en) The solar illumination system which uses the optical fiber
RU2436193C1 (en) Photovoltaic concentrator module
KR101018879B1 (en) Prismatic fresnel lens sheet, apparatus for collecting solar radiation employing the prismatic fresnel lens sheet, and solar system
KR102030654B1 (en) Transmission Apparatus Of Solar Light
KR101628099B1 (en) Solar Lighting System

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12811156

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12811156

Country of ref document: EP

Kind code of ref document: A1