WO2013008579A1 - Method for manufacturing organic thin film solar cell - Google Patents

Method for manufacturing organic thin film solar cell Download PDF

Info

Publication number
WO2013008579A1
WO2013008579A1 PCT/JP2012/065195 JP2012065195W WO2013008579A1 WO 2013008579 A1 WO2013008579 A1 WO 2013008579A1 JP 2012065195 W JP2012065195 W JP 2012065195W WO 2013008579 A1 WO2013008579 A1 WO 2013008579A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar cell
bulk heterojunction
film solar
layer
organic thin
Prior art date
Application number
PCT/JP2012/065195
Other languages
French (fr)
Japanese (ja)
Inventor
優 永井
郵司 吉田
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2013008579A1 publication Critical patent/WO2013008579A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an organic thin film solar cell in which the domain size of a bulk heterojunction layer is controlled.
  • a bulk heterojunction type organic thin film solar cell in which a bulk heterojunction layer is formed between a transparent electrode layer and a counter electrode layer as one of thin film solar cells using an organic material (hereinafter referred to as an organic thin film solar cell). (See Non-Patent Document 1).
  • a bulk heterojunction type organic thin film solar cell is formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent on one electrode layer. And a bulk heterojunction layer is formed.
  • the domain size of the bulk heterojunction layer has a great influence on device characteristics. That is, when the bulk heterojunction layer absorbs light, excitons are generated in the domain. The excitons diffuse into the domain and reach the pn interface, and then are separated into free charges. The exciton diffusion length in the bulk heterojunction layer is small and is 10 to 20 nm. When the domain size is larger than this diffusion length, free charges are not generated because excitons are deactivated before reaching the pn interface. In a situation where domains exist separately from each other, even if free charges are generated, they cannot conduct to the electrodes. Under these circumstances, it is ideal that the domain size of the bulk heterojunction layer is 10 nm or less and that they are in contact with each other to form a percolation structure.
  • a step of removing the solvent from the coating film is required after the coating liquid is applied.
  • a method for removing the solvent a method of heating the coating film using a heater such as a hot plate to evaporate and remove the solvent is common.
  • a solvent having a low boiling point as a solvent for dissolving the sample material and to heat at a low temperature (for example, 100 ° C. or lower) so that the progress of phase separation does not proceed remarkably.
  • a solvent having a low boiling point when used, most of the solvent is removed immediately after the coating liquid is applied, and phase separation is likely to proceed rapidly. Therefore, the domain size is likely to increase, and a bulk heterojunction having an appropriate structure. It was difficult to form a layer. In order to form a bulk heterojunction layer having an appropriate structure, the solvent needs to have a boiling point of at least 100 ° C., and the means of removing the solvent by heating at a low temperature of 100 ° C. or less is a reality. It was difficult to apply.
  • an object of the present invention is to provide a method of manufacturing an organic thin film solar cell that can control the domain size of a bulk heterojunction layer with high accuracy and has excellent power generation characteristics.
  • the present inventors have vacuum-dried a coating film formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent. It was found that the coating film can be dried and solidified in a state where the n-type organic semiconductor and the n-type organic semiconductor are almost uniformly mixed. Even when an amorphous material is used, it is possible to form a dried and solidified film in which both are mixed almost uniformly. Then, it was found that the film thus dried and solidified is subjected to a heat treatment, whereby the diffusion of molecules is suppressed, the progress speed of phase separation is lowered, and the domain size of the bulk heterojunction layer can be controlled with high accuracy.
  • the method for producing an organic thin film solar cell of the present invention is a method for producing an organic thin film solar cell in which a first electrode layer, a bulk heterojunction layer, and a second electrode layer are formed on a substrate in this order.
  • a coating liquid containing an organic semiconductor, an n-type organic semiconductor, and an organic solvent is applied onto the first electrode layer to form a coating film, and the coating film is vacuum dried to remove the organic solvent.
  • the bulk heterojunction layer is formed, and the bulk heterojunction layer is heated before, during or after the formation of the second electrode layer to control the domain size of the bulk heterojunction layer. To do.
  • an amorphous material as the p-type organic semiconductor and a fullerene derivative as the n-type semiconductor.
  • the organic solvent preferably has a boiling point of 100 to 300 ° C.
  • the coating film is preferably vacuum-dried under conditions of a degree of vacuum of 10 ⁇ 2 Pa or less and a temperature of 30 to 70 ° C.
  • the coating solution formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent on the first electrode layer is vacuum-dried to remove the organic solvent.
  • the organic solvent is rapidly removed from the coating film before the phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds, and the p-type organic semiconductor and the n-type organic semiconductor are mixed almost uniformly. Can be formed.
  • the solvent has been removed, so that the diffusion of molecules is suppressed and the speed of phase separation is reduced, and the domain size of the bulk heterojunction layer Can be accurately controlled.
  • 4 is a phase image of a bulk heterojunction layer of Test Example 1.
  • 4 is a phase image of a bulk heterojunction layer of Test Example 2.
  • 4 is a phase image of a bulk heterojunction layer of Test Example 3.
  • a first electrode layer, a bulk heterojunction layer, and a second electrode layer are formed in this order on a substrate.
  • the substrate is not particularly limited.
  • an insulating plastic film substrate such as a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethersulfone film, an acrylic film, an aramid film, a glass substrate, a stainless steel substrate, or the like can be used.
  • substrate is distribute
  • a first electrode layer is formed on the substrate.
  • a method for forming the first electrode layer is not particularly limited, and a conventionally known method such as a sputtering method, a CVD method, or a spray film forming method can be used.
  • an electrode material which comprises a 1st electrode layer and the 2nd electrode layer mentioned later there is no limitation in particular as an electrode material which comprises a 1st electrode layer and the 2nd electrode layer mentioned later.
  • the electrode material of the electrode layer disposed on the light incident side include transparent conductive oxides such as ITO (indium oxide + tin oxide), ZnO, TiO 2 , SnO 2 , and IZO (indium oxide + zinc oxide).
  • transparent conductive oxides such as ITO (indium oxide + tin oxide), ZnO, TiO 2 , SnO 2 , and IZO (indium oxide + zinc oxide).
  • the electrode material of the electrode layer disposed on the non-light-receiving side include metals such as Al, Mg, Ca, and alloys thereof.
  • a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent is applied to the first electrode to form a coating film, which is then vacuum dried to form a bulk heterojunction layer. To do.
  • any organic material having an electron donating property can be used.
  • compounds such as thiophene, phenylene vinylene, thienylene vinylene, carbazole, vinyl carbazole, pyrrole, isothiaphene, isothiaphene and heptadiene, and hydroxyl groups, alkyl groups, amino groups, methyl groups, nitro groups and halogen groups, etc.
  • examples thereof include polymers of derivatives of the above compounds, but are not limited thereto.
  • these may be used independently and may be used in combination of 2 or more types.
  • compounds of the following formulas (1) to (14) can be mentioned as an example.
  • n is preferably 5 to 150, more preferably 10 to 100.
  • the compounds represented by the formulas (1) and (6) are crystalline compounds. Further, the compounds represented by the formulas (7) to (14) are amorphous (non-crystalline).
  • the p-type organic semiconductor may be crystalline or amorphous (amorphous), and the degree of stereoregularity is not questioned. According to the method of the present invention, even if it is an amorphous material, an increase in the domain size can be suppressed, and the domain size can be controlled with high accuracy. Therefore, an amorphous material is particularly preferably used.
  • the weight average molecular weight of the p-type organic semiconductor depends on the material used and cannot be generally mentioned, but is preferably 2,000 to 150,000.
  • any organic material having an electron accepting property can be used.
  • fullerene derivatives and perylene derivatives.
  • fullerene derivatives are particularly preferable because electron transfer from the p-type organic semiconductor is particularly fast.
  • Preferred examples of the fullerene derivative include a fullerene C 60 derivative, a fullerene C 70 derivative, and a fullerene C 80 derivative.
  • Specific examples include Phenyl-C 61 -Butyric-Acid-Methyl Ester (hereinafter also referred to as “PCBM”), Bisduct-Phenyl-C 61 -Butyric-Acid-Methyl Ester, and the like.
  • the organic solvent is desirably one having sufficient solubility for the p-type organic semiconductor and the n-type organic semiconductor.
  • the organic solvent volatilizes immediately after the application of the coating liquid, and the organic solvent is removed before the phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds by vacuum drying. Sometimes the original purpose of removing it quickly cannot be achieved. Therefore, it is desirable that the organic solvent has a boiling point higher than a certain level.
  • the organic solvent is preferably 100 to 300 ° C., more preferably 120 to 250 ° C.
  • organic solvent examples include chlorobenzene (boiling point: 131 ° C.), anisole (boiling point: 154 ° C.), 1,2-dichlorobenzene (boiling point: 181 ° C.), 1,2,3-trichlorobenzene (boiling point: 221). ° C) and the like.
  • the content of the organic solvent in the coating solution is preferably 70 to 99.9% by mass, and more preferably 80 to 99% by mass.
  • the content of the organic solvent is less than 70% by mass, the organic semiconductor that is a solute tends to aggregate, and the domain size tends to increase or phase separation hardly occurs.
  • it exceeds 99.9% by mass the viscosity of the coating liquid is lowered, and it becomes difficult to form a coating film having an appropriate film thickness by the coating process.
  • the above-mentioned coating liquid can contain additives such as an antioxidant, a compatibilizing agent, a crystallization accelerator and the like as long as the physical properties are not impaired.
  • the coating method of the coating liquid is not particularly limited, and conventionally known methods such as spin coating, dip coating, spray coating, ink jet printing, and screen printing can be used.
  • the bulk heterojunction layer is formed by vacuum drying the coating film formed by applying the coating liquid.
  • the organic solvent is rapidly removed from the coating film before phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds.
  • the progress speed of the phase separation decreases, so that in the subsequent heat treatment, the phase separation does not proceed rapidly, as shown in Test Example 1 of the examples described later. , Increase in the domain size can be suppressed, and the domain size can be accurately controlled.
  • the time from the start of vacuum drying in as short a time as possible so that the organic solvent does not volatilize naturally from the coating film.
  • the specific time depends on the vapor pressure of the solvent and the production environment, it cannot be generally specified, but is preferably within 15 minutes, more preferably within 5 minutes. Even if an organic solvent with a low vapor pressure is used, if the evaporation of the organic solvent proceeds while left in the atmosphere, phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds, The effect expected in the present invention is reduced.
  • the coating film is preferably vacuum-dried for 30 minutes or more under the conditions of a degree of vacuum of 10 ⁇ 2 Pa or less and a temperature of 30 to 150 ° C.
  • the degree of vacuum is more preferably 10 ⁇ 3 Pa or less, and particularly preferably 10 ⁇ 4 Pa or less.
  • the drying temperature is more preferably from 50 to 120 ° C, particularly preferably from 70 to 100 ° C.
  • an elution prevention film such as a vapor deposition metal film, a TiO x film produced by a sol-gel method, or a ZnO nanoparticle is inserted on the bulk heterojunction layer, and the same coating liquid is applied onto the elution prevention film.
  • a bulk heterojunction layer to be a top cell may be formed by vacuum drying to form a tandem structure.
  • the bulk heterojunction layer thus formed is heat-treated to adjust the domain size.
  • the domain size of the bulk heterojunction layer is preferably 1 to 30 nm, and more preferably 1 to 10 nm.
  • the thickness is less than 1 nm, it is difficult to form a percolation structure in which adjacent domains are in contact with each other.
  • it exceeds 30 nm excitons are easily deactivated before reaching the pn interface, and free charges are hardly generated.
  • the heat treatment conditions for adjusting the domain size need to be between these values.
  • the upper limit is about 200 ° C.
  • the lower limit is about 50 ° C. for many p-type organic semiconductors and n-type organic semiconductors.
  • 100 to 150 ° C. is more preferable.
  • the heating time if it is 10 minutes or less, the phase separation does not reach an equilibrium structure, and the phase separation structure no longer changes even if it continues for 30 minutes or more. From these circumstances, the heat treatment conditions for adjusting the domain size are preferably 50 to 200 ° C. and 10 to 30 minutes, more preferably 100 to 150 ° C. and 10 to 30 minutes.
  • the domain size of the bulk heterojunction layer can be measured by observing a phase image using an atomic force microscope (AFM).
  • AFM atomic force microscope
  • the heat treatment of the bulk heterojunction layer may be performed at any stage before, during, or after the formation of the second electrode layer. However, if the heat treatment is performed with the surface of the bulk heterojunction layer open, It is preferable to carry out after forming the second electrode layer because the molecular components are easily segregated on the surface.
  • a second electrode layer is formed on the bulk heterojunction layer using a conventionally known method such as sputtering, CVD, or vacuum deposition, and the bulk heterojunction layer is heat-treated as necessary. Thereby, an organic thin film solar cell is obtained.
  • Test Example 1 20 mg of poly-3-hexylthiophene (P3HT) as a p-type organic semiconductor, 14 mg of Phenyl-C 61 -Butyric-Acyl-Methyl Ester (PCBM) as an n-type organic semiconductor, and chlorobenzene (boiling point 131 ° C.) as a solvent It was dissolved in 1 mL and stirred for 20 hours to prepare a coating solution. A glass substrate on which a first electrode (ITO) was formed was prepared, and the surface was dry-cleaned with oxygen plasma. Then, the said coating liquid was apply
  • ITO first electrode
  • FIG. 1 is an AFM image of 500 nm ⁇ 500 nm.
  • the substrate is returned to the glove box and subjected to heat treatment (130 ° C. ⁇ 15 minutes) using a hot plate to form an organic thin film.
  • a solar cell was manufactured.
  • Test Example 2 Under the same conditions as in Test Example 1, a coating liquid was applied onto a glass substrate, and the substrate coated with the coating liquid was naturally dried in a glove box for 60 minutes to form a bulk heterojunction layer.
  • the bulk heterojunction layer after natural drying was observed using an atomic force microscope (AFM) to examine the phase separation structure. The observation using the phase image was performed so that the difference of the domain component could be detected sharply.
  • FIG. FIG. 2 is an AFM image of 500 nm ⁇ 500 nm.
  • the substrate is returned into the glove box, and subjected to heat treatment (130 ° C. ⁇ 15 minutes) using a hot plate, An organic thin film solar cell was manufactured.
  • Test Example 3 Under the same conditions as in Test Example 1, a coating solution was applied onto a glass substrate, and the substrate coated with the coating solution was subjected to heat treatment (130 ° C. ⁇ 15 minutes) using a hot plate in a glove box, and bulk hetero A bonding layer was formed. The bulk heterojunction layer after the heat treatment was observed using an atomic force microscope (AFM) to examine the phase separation structure. The observation using the phase image was performed so that the difference of the domain component could be detected sharply. The results are shown in FIG. FIG. 3 is an AFM image of 500 nm ⁇ 500 nm. Then, the second electrode was formed on the bulk heterojunction layer in the same manner as in Test Example 1 to manufacture an organic thin film solar cell.
  • AFM atomic force microscope
  • the light receiving cells (2 mm ⁇ 2 mm) of the organic thin film solar cells of Test Examples 1 to 3 were irradiated with simulated sunlight (AM1.5), and the solar cell characteristics (short circuit current (Jsc), open circuit voltage (Voc) ), FF (fill factor), energy conversion efficiency (PCE)).
  • simulated sunlight AM1.5
  • solar cell characteristics short circuit current (Jsc), open circuit voltage (Voc) ), FF (fill factor), energy conversion efficiency (PCE)
  • OTE-XL manufactured by Spectrometer Co., Ltd. was used.
  • For measurement of current density and voltage, 2400 made by KEITHLEY was used. Table 1 summarizes the results.
  • Test Example 1 showed the highest efficiency.
  • Jsc and FF were particularly lowered in Test Examples 2 and 3 as compared with Test Example 1. These are considered to be influenced by the trapping of the carrier by the residual solvent.
  • the decrease in FF was significant. The decrease in FF is considered to be due to the segregation of the polymer due to heating with the film surface exposed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

Provided is a method for manufacturing an organic thin film solar cell, wherein a domain size of a bulk hetero junction layer can be accurately controlled. In this method for manufacturing an organic thin film solar cell, an organic thin film solar cell is formed by forming a first electrode layer, a photoelectric conversion layer and a second electrode layer in this order on a substrate. In the method, a coat film is formed by applying, to the first electrode layer, a coat liquid containing a p-type organic semiconductor, an n-type organic semiconductor and an organic solvent, a bulk hetero junction layer is formed by drying the coat film in a vacuum and removing the organic solvent, and a domain size of the bulk hetero junction layer is controlled by heating the bulk hetero junction layer before or while or after forming the second electrode layer.

Description

有機薄膜太陽電池の製造方法Manufacturing method of organic thin film solar cell
 本発明は、バルクヘテロ接合層のドメインサイズが制御された有機薄膜太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing an organic thin film solar cell in which the domain size of a bulk heterojunction layer is controlled.
 有機材料を用いた薄膜太陽電池(以下、有機薄膜太陽電池という)の一つとして、透明電極層と対向電極層との間にバルクヘテロ接合層を形成してなる、バルクヘテロ接合型の有機薄膜太陽電池がある(非特許文献1参照)。 A bulk heterojunction type organic thin film solar cell in which a bulk heterojunction layer is formed between a transparent electrode layer and a counter electrode layer as one of thin film solar cells using an organic material (hereinafter referred to as an organic thin film solar cell). (See Non-Patent Document 1).
 バルクヘテロ接合型の有機薄膜太陽電池は、例えば特許文献1に開示されるように、p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を、一方の電極層上に塗布してバルクへテロ接合層を形成することにより製造される。 For example, as disclosed in Patent Document 1, a bulk heterojunction type organic thin film solar cell is formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent on one electrode layer. And a bulk heterojunction layer is formed.
 バルクヘテロ接合型の薄膜太陽電池においては、バルクヘテロ接合層のドメインサイズが、素子特性に大きな影響を与えることが知られている。すなわち、バルクヘテロ接合層が光を吸収すると、ドメイン内に励起子が生成する。励起子は、ドメイン内を拡散してpn界面に到達した後、自由電荷に分離される。バルクヘテロ接合層での励起子の拡散長は小さく、10~20nmとされている。ドメインサイズがこの拡散長より大きい場合は、励起子はpn界面に到達する以前に失活してしまうため、自由電荷が生成されない。また、ドメインが互いに分離して存在しているような状況では、例え自由電荷が生じたとしても、電極まで伝導して行くことが出来ない。これらの事情から、バルクヘテロ接合層のドメインサイズは10nm以下で、かつそれらが互いに接触してパーコレーション構造を形成していることが理想とされている。 In bulk heterojunction type thin-film solar cells, it is known that the domain size of the bulk heterojunction layer has a great influence on device characteristics. That is, when the bulk heterojunction layer absorbs light, excitons are generated in the domain. The excitons diffuse into the domain and reach the pn interface, and then are separated into free charges. The exciton diffusion length in the bulk heterojunction layer is small and is 10 to 20 nm. When the domain size is larger than this diffusion length, free charges are not generated because excitons are deactivated before reaching the pn interface. In a situation where domains exist separately from each other, even if free charges are generated, they cannot conduct to the electrodes. Under these circumstances, it is ideal that the domain size of the bulk heterojunction layer is 10 nm or less and that they are in contact with each other to form a percolation structure.
 試料材料を溶解させた塗工液を塗布してバルクヘテロ接合層を形成する場合、塗工液の塗布後に、塗膜から溶媒を除去する工程が必要となる。溶媒の除去方法としては、ホットプレート等のヒーターを用いて塗膜を加熱して、溶媒を蒸発除去させる方法が一般的である。 When a bulk heterojunction layer is formed by applying a coating liquid in which a sample material is dissolved, a step of removing the solvent from the coating film is required after the coating liquid is applied. As a method for removing the solvent, a method of heating the coating film using a heater such as a hot plate to evaporate and remove the solvent is common.
 しかしながら、溶媒の共存下で塗膜を加熱すると、バルクヘテロ接合層の相分離が急速に進行して、太陽電池素子にとって不適切なサイズの大きなドメインが形成され易かった。このことは、アモルファス性の高分子材料において、より顕著な問題となる。アモルファス性の材料は、加熱しても結晶化は進行せず、ドメインは柔軟で容易に変形し易いため、加熱により相分離がより急速に進行してドメインサイズが増大し易く、特にドメインサイズの制御が困難であった。 However, when the coating film is heated in the presence of a solvent, the phase separation of the bulk heterojunction layer proceeds rapidly, and large domains having an inappropriate size for the solar cell element are easily formed. This is a more significant problem in amorphous polymer materials. Amorphous materials do not proceed with crystallization even when heated, and the domains are flexible and easily deformed. Therefore, the phase separation is more rapidly advanced by heating, and the domain size is likely to increase. It was difficult to control.
 そこで、試料材料を溶解させる溶媒として沸点の低いものを用い、相分離の進行を顕著に進行させないような低い温度(例えば100℃以下)で加熱するという手段が考えられる。しかしながら、沸点の低い溶媒を用いると、塗工液を塗布した直後に溶媒の大部分が除去されて、相分離が急速に進行し易いので、ドメインサイズが大きくなり易く、適切な構造のバルクヘテロ接合層を形成することが困難であった。適切な構造のバルクヘテロ接合層を形成するためには、溶媒は少なくとも100℃以上の沸点を持つことが必要であり、100℃以下の低い温度で加熱して溶媒を除去する、という手段は、現実には適用することは困難であった。 Therefore, it is conceivable to use a solvent having a low boiling point as a solvent for dissolving the sample material and to heat at a low temperature (for example, 100 ° C. or lower) so that the progress of phase separation does not proceed remarkably. However, when a solvent having a low boiling point is used, most of the solvent is removed immediately after the coating liquid is applied, and phase separation is likely to proceed rapidly. Therefore, the domain size is likely to increase, and a bulk heterojunction having an appropriate structure. It was difficult to form a layer. In order to form a bulk heterojunction layer having an appropriate structure, the solvent needs to have a boiling point of at least 100 ° C., and the means of removing the solvent by heating at a low temperature of 100 ° C. or less is a reality. It was difficult to apply.
 また、塗膜を送風乾燥して塗膜から溶媒を除去する方法がある。しかしながら、送風乾燥では比較的高い沸点の溶媒を完全に除去することは困難であり、バルクヘテロ接合層に溶媒が残留し易かった。バルクヘテロ接合層に溶媒が残留すると、発電の妨げとなり、太陽電池特性(短絡電流(Jsc)、開放電圧(Voc)、FF(曲線因子)、エネルギー変換効率(PCE)など)が低下し易かった。また、特にアモルファス性の材料の場合、送風乾燥時に相分離が進行して、ドメインサイズが増大してしまうことがあった。 Also, there is a method of removing the solvent from the coating film by blowing and drying the coating film. However, it is difficult to completely remove the solvent having a relatively high boiling point by air blowing, and the solvent tends to remain in the bulk heterojunction layer. If the solvent remains in the bulk heterojunction layer, power generation is hindered, and the solar cell characteristics (short circuit current (Jsc), open circuit voltage (Voc), FF (curve factor), energy conversion efficiency (PCE), etc.) are likely to decrease. In particular, in the case of an amorphous material, phase separation may have progressed during blow drying to increase the domain size.
特開2009-252768号公報JP 2009-252768 A
 よって、本発明の目的は、バルクヘテロ接合層のドメインサイズを精度よく制御可能で、発電特性に優れた有機薄膜太陽電池の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method of manufacturing an organic thin film solar cell that can control the domain size of a bulk heterojunction layer with high accuracy and has excellent power generation characteristics.
 本発明者らは、鋭意研究の結果、p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を塗布して形成した塗膜を真空乾燥することで、p型有機半導体と、n型有機半導体とがほぼ均一に混合した状態で塗膜を乾燥固化できることを見出した。アモルファス系の材料を用いた場合であっても、両者がほぼ均一に混合した乾燥固化膜を形成できる。そして、このようにして乾燥固化した膜を加熱処理することで、分子の拡散が抑制されて相分離の進行速度が低下し、バルクヘテロ接合層のドメインサイズを精度よく制御できることを見出した。 As a result of intensive studies, the present inventors have vacuum-dried a coating film formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent. It was found that the coating film can be dried and solidified in a state where the n-type organic semiconductor and the n-type organic semiconductor are almost uniformly mixed. Even when an amorphous material is used, it is possible to form a dried and solidified film in which both are mixed almost uniformly. Then, it was found that the film thus dried and solidified is subjected to a heat treatment, whereby the diffusion of molecules is suppressed, the progress speed of phase separation is lowered, and the domain size of the bulk heterojunction layer can be controlled with high accuracy.
 すなわち、本発明の有機薄膜太陽電池の製造方法は、基板上に、第1電極層、バルクヘテロ接合層及び第2電極層の順に形成してなる有機薄膜太陽電池の製造方法であって、p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を、前記第1電極層上に塗布して塗膜を形成し、該塗膜を真空乾燥して有機溶媒を除去して前記バルクヘテロ接合層を形成し、前記第2電極層を形成する前、形成中及び形成後のいずれかに前記バルクヘテロ接合層を加熱して、前記バルクヘテロ接合層のドメインサイズを制御することを特徴とする。 That is, the method for producing an organic thin film solar cell of the present invention is a method for producing an organic thin film solar cell in which a first electrode layer, a bulk heterojunction layer, and a second electrode layer are formed on a substrate in this order. A coating liquid containing an organic semiconductor, an n-type organic semiconductor, and an organic solvent is applied onto the first electrode layer to form a coating film, and the coating film is vacuum dried to remove the organic solvent. The bulk heterojunction layer is formed, and the bulk heterojunction layer is heated before, during or after the formation of the second electrode layer to control the domain size of the bulk heterojunction layer. To do.
 本発明の有機薄膜太陽電池の製造方法は、前記p型有機半導体として、アモルファス性の材料を用い、前記n型半導体としてフラーレン誘導体を用いることが好ましい。 In the method for producing an organic thin film solar cell of the present invention, it is preferable to use an amorphous material as the p-type organic semiconductor and a fullerene derivative as the n-type semiconductor.
 本発明の有機薄膜太陽電池の製造方法は、前記有機溶媒の沸点が100~300℃であることが好ましい。 In the method for producing an organic thin-film solar cell of the present invention, the organic solvent preferably has a boiling point of 100 to 300 ° C.
 本発明の有機薄膜太陽電池の製造方法は、前記塗膜を、真空度10-2Pa以下、温度30~70℃の条件で真空乾燥することが好ましい。 In the method for producing an organic thin-film solar cell of the present invention, the coating film is preferably vacuum-dried under conditions of a degree of vacuum of 10 −2 Pa or less and a temperature of 30 to 70 ° C.
 本発明によれば、p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を、第1電極層上に塗布して形成された塗膜を真空乾燥して有機溶媒を除去することで、p型有機半導体とn型有機半導体との相分離が進行する前に塗膜から有機溶媒が急速に除去され、p型有機半導体と、n型有機半導体とがほぼ均一に混合した膜を形成できる。そして、有機溶媒を除去した上記膜に対し適度な加熱処理を施すことにより、溶媒が除去されているため、分子の拡散が抑制されて相分離の進行速度が低下し、バルクヘテロ接合層のドメインサイズを精度よく制御できる。 According to the present invention, the coating solution formed by applying a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent on the first electrode layer is vacuum-dried to remove the organic solvent. By removing, the organic solvent is rapidly removed from the coating film before the phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds, and the p-type organic semiconductor and the n-type organic semiconductor are mixed almost uniformly. Can be formed. Then, by applying an appropriate heat treatment to the above-mentioned film from which the organic solvent has been removed, the solvent has been removed, so that the diffusion of molecules is suppressed and the speed of phase separation is reduced, and the domain size of the bulk heterojunction layer Can be accurately controlled.
試験例1のバルクヘテロ接合層の位相像である。4 is a phase image of a bulk heterojunction layer of Test Example 1. 試験例2のバルクヘテロ接合層の位相像である。4 is a phase image of a bulk heterojunction layer of Test Example 2. 試験例3のバルクヘテロ接合層の位相像である。4 is a phase image of a bulk heterojunction layer of Test Example 3.
 本発明の有機薄膜太陽電池の製造方法は、基板上に、第1電極層、バルクヘテロ接合層、第2電極層の順に形成する。 In the method for producing an organic thin film solar cell of the present invention, a first electrode layer, a bulk heterojunction layer, and a second electrode layer are formed in this order on a substrate.
 基板としては、特に限定されない。例えば、ポリイミドフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリエーテルスルホンフィルム、アクリルフィルム、アラミドフィルム等の絶縁性プラスチックフィルム基板、ガラス基板、ステンレス基板などを用いることができる。なお、この基板が光入射側に配される場合には、光透過性の材料で構成すべきことはいうまでもない。 The substrate is not particularly limited. For example, an insulating plastic film substrate such as a polyimide film, a polyethylene terephthalate film, a polyethylene naphthalate film, a polyethersulfone film, an acrylic film, an aramid film, a glass substrate, a stainless steel substrate, or the like can be used. In addition, when this board | substrate is distribute | arranged to the light-incidence side, it cannot be overemphasized that it should comprise with a light transmissive material.
 基板上に第1電極層を形成する。第1電極層の形成方法としては、特に限定は無く、スパッタ法、CVD法、スプレー成膜法等、従来公知の方法を用いることができる。 A first electrode layer is formed on the substrate. A method for forming the first electrode layer is not particularly limited, and a conventionally known method such as a sputtering method, a CVD method, or a spray film forming method can be used.
 第1電極層、及び後述する第2電極層を構成する電極材料としては、特に限定はない。光入射側に配される電極層の電極材料としては、ITO(酸化インジウム+酸化スズ)、ZnO、TiO、SnO、IZO(酸化インジウム+酸化亜鉛)などの透明導電性酸化物が挙げられる。非受光側に配される電極層の電極材料としては、Al、Mg、Ca等の金属あるいはこれらの合金が挙げられる。 There is no limitation in particular as an electrode material which comprises a 1st electrode layer and the 2nd electrode layer mentioned later. Examples of the electrode material of the electrode layer disposed on the light incident side include transparent conductive oxides such as ITO (indium oxide + tin oxide), ZnO, TiO 2 , SnO 2 , and IZO (indium oxide + zinc oxide). . Examples of the electrode material of the electrode layer disposed on the non-light-receiving side include metals such as Al, Mg, Ca, and alloys thereof.
 次に、第1電極上に、p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を塗布して塗膜を形成し、これを真空乾燥してバルクヘテロ接合層を形成する。 Next, a coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent is applied to the first electrode to form a coating film, which is then vacuum dried to form a bulk heterojunction layer. To do.
 p型有機半導体としては、電子供与性を有する任意の有機材料を用いることができる。例えば、チオフェン、フェニレンビニレン、チエニレンビニレン、カルバゾール、ビニルカルバゾール、ピロール、イソチアナフェン、イソチアナフェンおよびヘプタジエンなどの化合物、ならびに水酸基、アルキル基、アミノ基、メチル基、ニトロ基およびハロゲン基などを有する上記化合物の誘導体の重合体が挙げられるが、これらには限定されない。なお、これらは、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。例えば、下記式(1)~(14)の化合物が一例として挙げられる。 As the p-type organic semiconductor, any organic material having an electron donating property can be used. For example, compounds such as thiophene, phenylene vinylene, thienylene vinylene, carbazole, vinyl carbazole, pyrrole, isothiaphene, isothiaphene and heptadiene, and hydroxyl groups, alkyl groups, amino groups, methyl groups, nitro groups and halogen groups, etc. Examples thereof include polymers of derivatives of the above compounds, but are not limited thereto. In addition, these may be used independently and may be used in combination of 2 or more types. For example, compounds of the following formulas (1) to (14) can be mentioned as an example.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 上記式(1)~(14)におけるnは5~150が好ましく、10~100がより好ましい。 In the above formulas (1) to (14), n is preferably 5 to 150, more preferably 10 to 100.
 上記化合物のうち、式(1)、(6)で表される化合物は、結晶性の化合物である。また、式(7)~(14)で表される化合物は、アモルファス性(非晶性)である。p型有機半導体は、結晶性でもアモルファス性(非晶性)であってもよく、立体規則性の程度については問われない。本発明の方法によれば、アモルファス性の材料であっても、ドメインサイズの増大を抑制でき、ドメインサイズを精度よく制御できるので、アモルファス性の材料が特に好ましく用いられる。 Among the above compounds, the compounds represented by the formulas (1) and (6) are crystalline compounds. Further, the compounds represented by the formulas (7) to (14) are amorphous (non-crystalline). The p-type organic semiconductor may be crystalline or amorphous (amorphous), and the degree of stereoregularity is not questioned. According to the method of the present invention, even if it is an amorphous material, an increase in the domain size can be suppressed, and the domain size can be controlled with high accuracy. Therefore, an amorphous material is particularly preferably used.
 p型有機半導体の重量平均分子量は、用いる材料にも依存し、一概には言及出来ないが、2,000~150,000が望ましい。 The weight average molecular weight of the p-type organic semiconductor depends on the material used and cannot be generally mentioned, but is preferably 2,000 to 150,000.
 n型有機半導体は、電子受容性を有する任意の有機材料を用いることができる。例えば、フラーレン誘導体、ペリレン誘導体等が挙げられる。なかでも、フラーレン誘導体は、p型有機半導体からの電子移動が取り分け早いので、特に好ましい。フラーレン誘導体としては、フラーレンC60の誘導体、フラーレンC70の誘導体、フラーレンC80の誘導体等が好ましく挙げられる。具体的な一例としては、Phenyl-C61-Butyric-Acid-Methyl Ester(以下、「PCBM」ともいう)、Bisadduct-Phenyl-C61-Butyric-Acid-Methyl Ester等が挙げられる。 As the n-type organic semiconductor, any organic material having an electron accepting property can be used. Examples thereof include fullerene derivatives and perylene derivatives. Among these, fullerene derivatives are particularly preferable because electron transfer from the p-type organic semiconductor is particularly fast. Preferred examples of the fullerene derivative include a fullerene C 60 derivative, a fullerene C 70 derivative, and a fullerene C 80 derivative. Specific examples include Phenyl-C 61 -Butyric-Acid-Methyl Ester (hereinafter also referred to as “PCBM”), Bisduct-Phenyl-C 61 -Butyric-Acid-Methyl Ester, and the like.
 塗工液中におけるp型有機半導体とn型有機半導体との混合割合は、モル比で、p型有機半導体:n型有機半導体=1:0.5~7が好ましく、1:0.7~3がより好ましい。 The mixing ratio of the p-type organic semiconductor and the n-type organic semiconductor in the coating liquid is preferably a molar ratio of p-type organic semiconductor: n-type organic semiconductor = 1: 0.5-7, 1: 0.7- 3 is more preferable.
 有機溶媒は、p型有機半導体及びn型有機半導体に対して、十分な溶解性を持つものが望ましい。また、有機溶媒の沸点があまり低いと、塗工液の塗布後直ちに溶媒が揮発してしまい、真空乾燥により、p型有機半導体とn型有機半導体との相分離が進行する前に有機溶媒を急速に除去させる、という本来の目的を達することが出来ないことがある。そのため、有機溶媒は、一定以上の高い沸点を持つものであることが望ましく、具体的には100~300℃が好ましく、120~250℃がより好ましい。有機溶媒の好ましい具体例としては、クロロベンゼン(沸点:131℃)、アニソール(沸点:154℃)、1,2-ジクロロベンゼン(沸点:181℃)、1,2,3-トリクロロベンゼン(沸点:221℃)等が挙げられる。 The organic solvent is desirably one having sufficient solubility for the p-type organic semiconductor and the n-type organic semiconductor. In addition, if the boiling point of the organic solvent is too low, the solvent volatilizes immediately after the application of the coating liquid, and the organic solvent is removed before the phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds by vacuum drying. Sometimes the original purpose of removing it quickly cannot be achieved. Therefore, it is desirable that the organic solvent has a boiling point higher than a certain level. Specifically, the organic solvent is preferably 100 to 300 ° C., more preferably 120 to 250 ° C. Preferred examples of the organic solvent include chlorobenzene (boiling point: 131 ° C.), anisole (boiling point: 154 ° C.), 1,2-dichlorobenzene (boiling point: 181 ° C.), 1,2,3-trichlorobenzene (boiling point: 221). ° C) and the like.
 塗工液中における有機溶媒の含有量は、70~99.9質量%が好ましく、80~99質量%がより好ましい。有機溶媒の含有量が70質量%未満であると溶質である有機半導体が凝集して、ドメインサイズが大きくなったり、相分離が生じ難くなる傾向がある。99.9質量%を超えると塗工液の粘度が低下して、塗布工程により適切な膜厚を有する塗膜を形成し難くなる。 The content of the organic solvent in the coating solution is preferably 70 to 99.9% by mass, and more preferably 80 to 99% by mass. When the content of the organic solvent is less than 70% by mass, the organic semiconductor that is a solute tends to aggregate, and the domain size tends to increase or phase separation hardly occurs. When it exceeds 99.9% by mass, the viscosity of the coating liquid is lowered, and it becomes difficult to form a coating film having an appropriate film thickness by the coating process.
 上記塗工液には、酸化防止剤、相溶化剤、結晶化促進剤等の添加剤を、物性を損なわない範囲で含有できる。 The above-mentioned coating liquid can contain additives such as an antioxidant, a compatibilizing agent, a crystallization accelerator and the like as long as the physical properties are not impaired.
 上記塗工液の塗布方法は、特に限定はなく、スピン塗布、ディップ塗布、スプレー塗布、インクジェット印刷、スクリーン印刷など従来公知の方法を用いることができる。 The coating method of the coating liquid is not particularly limited, and conventionally known methods such as spin coating, dip coating, spray coating, ink jet printing, and screen printing can be used.
 本発明では、上記塗工液を塗布して形成した塗膜を真空乾燥してバルクヘテロ接合層を形成する。上記塗膜を真空乾燥することで、p型有機半導体とn型有機半導体との相分離が進行する前に塗膜から有機溶媒が急速に除去される。塗膜から溶媒が除去されることで、相分離の進行速度が低下するので、その後の加熱処理において、急速に相分離が進行することがなく、後述する実施例の試験例1に示すように、ドメインサイズの増大を抑制でき、ドメインサイズを精度よく制御できる。 In the present invention, the bulk heterojunction layer is formed by vacuum drying the coating film formed by applying the coating liquid. By vacuum-drying the coating film, the organic solvent is rapidly removed from the coating film before phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds. As the solvent is removed from the coating film, the progress speed of the phase separation decreases, so that in the subsequent heat treatment, the phase separation does not proceed rapidly, as shown in Test Example 1 of the examples described later. , Increase in the domain size can be suppressed, and the domain size can be accurately controlled.
 塗工液を塗布して塗膜を形成後、真空乾燥を開始するまでの時間は、塗膜から有機溶媒が自然に揮発しないようにできるだけ短時間で行うことが好ましい。具体的な時間は、溶媒の蒸気圧や作製環境にも依存するので一概には言えないが、好ましくは15分以内、より好ましくは5分以内である。例え蒸気圧の低い有機溶媒を用いたとしても、大気中に放置している間に、有機溶媒の蒸発が進行すると、p型有機半導体とn型有機半導体との相分離が進行してしまい、本発明で期待される効果が低減してしまう。 After applying the coating solution to form a coating film, it is preferable to perform the time from the start of vacuum drying in as short a time as possible so that the organic solvent does not volatilize naturally from the coating film. Although the specific time depends on the vapor pressure of the solvent and the production environment, it cannot be generally specified, but is preferably within 15 minutes, more preferably within 5 minutes. Even if an organic solvent with a low vapor pressure is used, if the evaporation of the organic solvent proceeds while left in the atmosphere, phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds, The effect expected in the present invention is reduced.
 塗膜の真空乾燥は、真空度10-2Pa以下、温度30~150℃の条件で、30分以上行うことが好ましい。真空度は10-3Pa以下がより好ましく、10-4Pa以下が特に好ましい。乾燥温度は、50~120℃がより好ましく、70~100℃が特に好ましい。上記条件で真空乾燥することで、p型有機半導体とn型有機半導体との相分離が進行する前に塗膜から有機溶媒を除去し易くできる。 The coating film is preferably vacuum-dried for 30 minutes or more under the conditions of a degree of vacuum of 10 −2 Pa or less and a temperature of 30 to 150 ° C. The degree of vacuum is more preferably 10 −3 Pa or less, and particularly preferably 10 −4 Pa or less. The drying temperature is more preferably from 50 to 120 ° C, particularly preferably from 70 to 100 ° C. By vacuum drying under the above conditions, the organic solvent can be easily removed from the coating film before the phase separation between the p-type organic semiconductor and the n-type organic semiconductor proceeds.
 なお、バルクヘテロ接合層上に、蒸着金属膜、ゾルゲル法で作製したTiO膜、ZnOナノパーティクルなどの等の溶出防止膜を挿入し、該溶出防止膜上に上記塗工液を塗布して同様に真空乾燥してトップセルとなるバルクヘテロ接合層を形成し、タンデム構造としてもよい。 In addition, an elution prevention film such as a vapor deposition metal film, a TiO x film produced by a sol-gel method, or a ZnO nanoparticle is inserted on the bulk heterojunction layer, and the same coating liquid is applied onto the elution prevention film. A bulk heterojunction layer to be a top cell may be formed by vacuum drying to form a tandem structure.
 こうして形成されたバルクヘテロ接合層を加熱処理して、ドメインサイズを調整する。バルクヘテロ接合層のドメインサイズは、1~30nmが好ましく、1~10nmがより好ましい。1nm未満であると、隣接するドメインどうしが互いに接触したパーコレーション構造が形成され難くなる。30nmを超えると、励起子がpn界面に到達する以前に失活し易く、自由電荷が生成され難くなる。 The bulk heterojunction layer thus formed is heat-treated to adjust the domain size. The domain size of the bulk heterojunction layer is preferably 1 to 30 nm, and more preferably 1 to 10 nm. When the thickness is less than 1 nm, it is difficult to form a percolation structure in which adjacent domains are in contact with each other. When it exceeds 30 nm, excitons are easily deactivated before reaching the pn interface, and free charges are hardly generated.
 高分子の相分離では、相分離の生じる臨界温度に上限と下限が存在する場合が多く、ドメインサイズ調整のための加熱処理条件は、これらの間の値であることが必要である。調査の結果、多くのp型有機半導体及びn型有機半導体に対して、上限は200℃、下限は50℃程度であることが明らかとなった。さらに、上記のような、最適なドメインサイズを形成するためには、100~150℃がより好ましい。加熱時間に関しては、10分以下であると相分離が平衡構造に到達せず、30分以上続けても相分離構造はもはや変化しない。これらの事情から、ドメインサイズ調整のための加熱処理条件は50~200℃で、10~30分が好ましく、100~150℃で、10~30分がより好ましい。 In polymer phase separation, there are many cases where an upper limit and a lower limit exist in the critical temperature at which phase separation occurs, and the heat treatment conditions for adjusting the domain size need to be between these values. As a result of the investigation, it was revealed that the upper limit is about 200 ° C. and the lower limit is about 50 ° C. for many p-type organic semiconductors and n-type organic semiconductors. Further, in order to form the optimum domain size as described above, 100 to 150 ° C. is more preferable. Regarding the heating time, if it is 10 minutes or less, the phase separation does not reach an equilibrium structure, and the phase separation structure no longer changes even if it continues for 30 minutes or more. From these circumstances, the heat treatment conditions for adjusting the domain size are preferably 50 to 200 ° C. and 10 to 30 minutes, more preferably 100 to 150 ° C. and 10 to 30 minutes.
 なお、バルクヘテロ接合層のドメインサイズは、原子間力顕微鏡(AFM)を用い、位相像を観察することで測定できる。 The domain size of the bulk heterojunction layer can be measured by observing a phase image using an atomic force microscope (AFM).
 バルクヘテロ接合層の加熱処理は、第2電極層の形成前、形成中、形成後のいずれの段階で行ってもよいが、バルクヘテロ接合層の表面が開放された状態で加熱処理を行うと、高分子成分が表面に偏析しやすいという理由から、第2電極層を形成した後に行うことが好ましい。 The heat treatment of the bulk heterojunction layer may be performed at any stage before, during, or after the formation of the second electrode layer. However, if the heat treatment is performed with the surface of the bulk heterojunction layer open, It is preferable to carry out after forming the second electrode layer because the molecular components are easily segregated on the surface.
 バルクヘテロ接合層を形成した後、バルクヘテロ接合層上に、スパッタ法、CVD法、真空蒸着法等従来公知の方法を用いて第2電極層を形成し、必要に応じてバルクヘテロ接合層を加熱処理することで、有機薄膜太陽電池が得られる。 After forming the bulk heterojunction layer, a second electrode layer is formed on the bulk heterojunction layer using a conventionally known method such as sputtering, CVD, or vacuum deposition, and the bulk heterojunction layer is heat-treated as necessary. Thereby, an organic thin film solar cell is obtained.
 (試験例1)
 p型有機半導体としてポリ3-ヘキシルチオフェン(P3HT)を20mgと、n型有機半導体としてPhenyl-C61-Butyric-Acid-Methyl Ester(PCBM)を14mgとを、溶媒であるクロロベンゼン(沸点131℃)1mLに溶解させ、20時間攪拌して、塗工液を調製した。
 第1電極(ITO)の形成されたガラス基板を用意して、酸素プラズマで表面をドライ洗浄した。その後、スピンコーターを用いて基板上に上記塗工液を塗布した。回転条件は2000rpm×120sとした。塗布は乾燥窒素が封入されたグローブボックス内で行った。
 塗工液を塗布後、直ちに基板をグローブボックスから取り出し、ベルジャー型の真空蒸着装置にセットした。真空度は、約30分で10-3Paに到達した。その後、30分間真空引きを行い、10-3Paの真空度で、50℃の加熱条件で30分間真空乾燥を行ってバルクヘテロ接合層を形成した。
 真空乾燥後のバルクヘテロ接合層を、原子間力顕微鏡(AFM)を用いて観察し、相分離構造を調べた。ドメインの成分の違いが鋭敏に検出出来るように、位相像を用いた観察を行った。結果を図1に記す。図1は、500nm×500nmのAFM像である。
 次に、バルクヘテロ接合層上に、第2電極(Al)を蒸着形成した後に、基板をグローブボックス内に戻して、ホットプレートを用いて加熱処理(130℃×15分)を施して、有機薄膜太陽電池を製造した。
(Test Example 1)
20 mg of poly-3-hexylthiophene (P3HT) as a p-type organic semiconductor, 14 mg of Phenyl-C 61 -Butyric-Acyl-Methyl Ester (PCBM) as an n-type organic semiconductor, and chlorobenzene (boiling point 131 ° C.) as a solvent It was dissolved in 1 mL and stirred for 20 hours to prepare a coating solution.
A glass substrate on which a first electrode (ITO) was formed was prepared, and the surface was dry-cleaned with oxygen plasma. Then, the said coating liquid was apply | coated on the board | substrate using the spin coater. The rotation condition was 2000 rpm × 120 s. Application was performed in a glove box filled with dry nitrogen.
Immediately after applying the coating solution, the substrate was taken out of the glove box and set in a bell jar type vacuum deposition apparatus. The degree of vacuum reached 10 −3 Pa in about 30 minutes. Thereafter, vacuuming was performed for 30 minutes, and vacuum drying was performed for 30 minutes under a heating condition of 50 ° C. under a vacuum degree of 10 −3 Pa to form a bulk heterojunction layer.
The bulk heterojunction layer after vacuum drying was observed using an atomic force microscope (AFM) to examine the phase separation structure. The observation using the phase image was performed so that the difference of the domain component could be detected sharply. The results are shown in FIG. FIG. 1 is an AFM image of 500 nm × 500 nm.
Next, after depositing and forming the second electrode (Al) on the bulk heterojunction layer, the substrate is returned to the glove box and subjected to heat treatment (130 ° C. × 15 minutes) using a hot plate to form an organic thin film. A solar cell was manufactured.
 (試験例2)
 試験例1と同じ条件で、ガラス基板上に塗工液を塗布し、塗工液を塗布した基板をグローブボックス内で、60分間自然乾燥させてバルクヘテロ接合層を形成した。
 自然乾燥後のバルクヘテロ接合層を、原子間力顕微鏡(AFM)を用いて観察し、相分離構造を調べた。ドメインの成分の違いが鋭敏に検出出来るように、位相像を用いた観察を行った。結果を図2に記す。図2は、500nm×500nmのAFM像である。
 そして、バルクヘテロ接合層上に、試験例1と同様にして第2電極を形成した後に、基板をグローブボックス内に戻して、ホットプレートを用いて加熱処理(130℃×15分)を施して、有機薄膜太陽電池を製造した。
(Test Example 2)
Under the same conditions as in Test Example 1, a coating liquid was applied onto a glass substrate, and the substrate coated with the coating liquid was naturally dried in a glove box for 60 minutes to form a bulk heterojunction layer.
The bulk heterojunction layer after natural drying was observed using an atomic force microscope (AFM) to examine the phase separation structure. The observation using the phase image was performed so that the difference of the domain component could be detected sharply. The results are shown in FIG. FIG. 2 is an AFM image of 500 nm × 500 nm.
Then, after forming the second electrode on the bulk heterojunction layer in the same manner as in Test Example 1, the substrate is returned into the glove box, and subjected to heat treatment (130 ° C. × 15 minutes) using a hot plate, An organic thin film solar cell was manufactured.
 (試験例3)
 試験例1と同じ条件で、ガラス基板上に塗工液を塗布し、塗工液を塗布した基板をグローブボックス内で、ホットプレートを用いて加熱処理(130℃×15分)を施してバルクヘテロ接合層を形成した。加熱処理後のバルクヘテロ接合層を、原子間力顕微鏡(AFM)を用いて観察し、相分離構造を調べた。ドメインの成分の違いが鋭敏に検出出来るように、位相像を用いた観察を行った。結果を図3に記す。図3は、500nm×500nmのAFM像である。
 そして、バルクヘテロ接合層上に、試験例1と同様にして第2電極を形成して、有機薄膜太陽電池を製造した。
(Test Example 3)
Under the same conditions as in Test Example 1, a coating solution was applied onto a glass substrate, and the substrate coated with the coating solution was subjected to heat treatment (130 ° C. × 15 minutes) using a hot plate in a glove box, and bulk hetero A bonding layer was formed. The bulk heterojunction layer after the heat treatment was observed using an atomic force microscope (AFM) to examine the phase separation structure. The observation using the phase image was performed so that the difference of the domain component could be detected sharply. The results are shown in FIG. FIG. 3 is an AFM image of 500 nm × 500 nm.
Then, the second electrode was formed on the bulk heterojunction layer in the same manner as in Test Example 1 to manufacture an organic thin film solar cell.
 図1を見ると、相分離のドメインの境界は明瞭に確認することが出来ず、p型有機半導体とn型有機半導体が均一に混合した状態で膜が形成されたことが分かる。このように、塗膜を真空乾燥することで、相分離を抑制できた。これに対し、図2,3に示されるように、塗膜を室温で自然乾燥した後加熱処理した試験例2や、塗膜をそのまま加熱処理した試験例3は、相分離が生じており、ドメインサイズが大きかった。 Referring to FIG. 1, it can be seen that the boundary between the phase separation domains cannot be clearly confirmed, and the film is formed in a state where the p-type organic semiconductor and the n-type organic semiconductor are uniformly mixed. Thus, the phase separation could be suppressed by vacuum drying the coating film. On the other hand, as shown in FIGS. 2 and 3, in Test Example 2 in which the coating film was naturally dried at room temperature and then heat-treated, and in Test Example 3 in which the coating film was heat-treated as it was, phase separation occurred, The domain size was large.
 また、試験例1~3の有機機薄膜太陽電池の受光セル(2mm×2mm)に、擬似太陽光(AM1.5)を照射して、太陽電池特性(短絡電流(Jsc)、開放電圧(Voc)、FF(曲線因子)、エネルギー変換効率(PCE))を調べた。擬似太陽光の照射には、分光計器製OTE-XLを用いた。電流密度と電圧の測定には、KEITHLEY製2400を用いた。表1に、結果をまとめて記す。 Further, the light receiving cells (2 mm × 2 mm) of the organic thin film solar cells of Test Examples 1 to 3 were irradiated with simulated sunlight (AM1.5), and the solar cell characteristics (short circuit current (Jsc), open circuit voltage (Voc) ), FF (fill factor), energy conversion efficiency (PCE)). For irradiation with simulated sunlight, OTE-XL manufactured by Spectrometer Co., Ltd. was used. For measurement of current density and voltage, 2400 made by KEITHLEY was used. Table 1 summarizes the results.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表1に示すように、試験例1が最も高い効率を示した。一方、試験例2,3は、試験例1と比較して、JscとFFがとりわけ低下していた。これらは、残留溶媒によるキャリアのトラップが影響しているものと考えられる。特に、試験例3の素子は、FFの低下は顕著であった。FFの低下は、膜表面が暴露された状態での加熱による、高分子の偏析によるものと考えられる。 As shown in Table 1, Test Example 1 showed the highest efficiency. On the other hand, Jsc and FF were particularly lowered in Test Examples 2 and 3 as compared with Test Example 1. These are considered to be influenced by the trapping of the carrier by the residual solvent. In particular, in the element of Test Example 3, the decrease in FF was significant. The decrease in FF is considered to be due to the segregation of the polymer due to heating with the film surface exposed.

Claims (4)

  1.  基板上に、第1電極層、バルクヘテロ接合層、第2電極層の順に形成してなる有機薄膜太陽電池の製造方法であって、
     p型有機半導体と、n型有機半導体と、有機溶媒とを含む塗工液を、前記第1電極層上に塗布して塗膜を形成し、該塗膜を真空乾燥して有機溶媒を除去して前記バルクヘテロ接合層を形成し、前記第2電極層を形成する前、形成中及び形成後のいずれかに前記バルクヘテロ接合層を加熱して、前記バルクヘテロ接合層のドメインサイズを制御することを特徴とする有機薄膜太陽電池の製造方法。
    A method for producing an organic thin-film solar cell, which is formed on a substrate in the order of a first electrode layer, a bulk heterojunction layer, and a second electrode layer,
    A coating liquid containing a p-type organic semiconductor, an n-type organic semiconductor, and an organic solvent is applied onto the first electrode layer to form a coating film, and the coating film is vacuum dried to remove the organic solvent. Forming the bulk heterojunction layer and heating the bulk heterojunction layer before, during or after the formation of the second electrode layer to control the domain size of the bulk heterojunction layer. A method for producing an organic thin film solar cell.
  2.  前記p型有機半導体として、アモルファス性材料を用い、前記n型半導体としてフラーレン誘導体を用いる、請求項1に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to claim 1, wherein an amorphous material is used as the p-type organic semiconductor, and a fullerene derivative is used as the n-type semiconductor.
  3.  前記有機溶媒の沸点が100~300℃である、請求項1又は2に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to claim 1 or 2, wherein the boiling point of the organic solvent is 100 to 300 ° C.
  4.  前記塗膜を、真空度10-2Pa以下、温度30~70℃の条件で真空乾燥する請求項1~3のいずれか1項に記載の有機薄膜太陽電池の製造方法。 The method for producing an organic thin-film solar cell according to any one of claims 1 to 3, wherein the coating film is vacuum-dried under conditions of a degree of vacuum of 10 -2 Pa or less and a temperature of 30 to 70 ° C.
PCT/JP2012/065195 2011-07-08 2012-06-14 Method for manufacturing organic thin film solar cell WO2013008579A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011152023A JP2013021070A (en) 2011-07-08 2011-07-08 Method for manufacturing organic thin film solar cell
JP2011-152023 2011-07-08

Publications (1)

Publication Number Publication Date
WO2013008579A1 true WO2013008579A1 (en) 2013-01-17

Family

ID=47505877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065195 WO2013008579A1 (en) 2011-07-08 2012-06-14 Method for manufacturing organic thin film solar cell

Country Status (2)

Country Link
JP (1) JP2013021070A (en)
WO (1) WO2013008579A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026216A1 (en) * 2015-03-30 2018-01-25 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188231A (en) * 2019-05-17 2020-11-19 ソニー株式会社 Photoelectric conversion element and imaging apparatus
CN115552652A (en) * 2020-06-19 2022-12-30 索尼集团公司 Photoelectric conversion element and an image forming apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165474A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Photoelectric conversion device and its manufacturing method
JP2006270061A (en) * 2005-02-25 2006-10-05 Toray Ind Inc Photovoltaic device
JP2010067642A (en) * 2008-09-08 2010-03-25 Kyoto Univ Photoelectric conversion device, method of manufacturing same, and solar battery
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004165474A (en) * 2002-11-14 2004-06-10 Matsushita Electric Ind Co Ltd Photoelectric conversion device and its manufacturing method
JP2006270061A (en) * 2005-02-25 2006-10-05 Toray Ind Inc Photovoltaic device
JP2010067642A (en) * 2008-09-08 2010-03-25 Kyoto Univ Photoelectric conversion device, method of manufacturing same, and solar battery
JP2010111649A (en) * 2008-11-10 2010-05-20 Toray Ind Inc Quinoxaline compound, electron-donating organic material produced by using the same, material for photovoltaic element and photovoltaic element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERB ET AL.: "Correlation between structural and optical properties of composite polymer/ fullerene films for organic solar cells", ADVANCED FUNCTIONAL MATERIALS, vol. 15, no. ISS.7, 4 July 2005 (2005-07-04), pages 1193 - 1196 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180026216A1 (en) * 2015-03-30 2018-01-25 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same
US10468616B2 (en) * 2015-03-30 2019-11-05 Kabushiki Kaisha Toshiba Photoelectric conversion device and method of manufacturing the same

Also Published As

Publication number Publication date
JP2013021070A (en) 2013-01-31

Similar Documents

Publication Publication Date Title
Kim et al. Slot die coated planar perovskite solar cells via blowing and heating assisted one step deposition
Cai et al. Ionic additive engineering toward high‐efficiency perovskite solar cells with reduced grain boundaries and trap density
Zeng et al. 2D-3D heterostructure enables scalable coating of efficient low-bandgap Sn–Pb mixed perovskite solar cells
Huang et al. Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass
Bag et al. Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles
Wang et al. Enhanced polymer solar cells efficiency by surface coating of the PEDOT: PSS with polar solvent
Kim et al. Preparation of PCDTBT nanofibers with a diameter of 20 nm and their application to air-processed organic solar cells
Zhao et al. Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules
Cui et al. Flexible ITO-free organic solar cells over 10% by employing drop-coated conductive PEDOT: PSS transparent anodes
Das et al. Self-assembled monolayer modified ITO in P3HT: PC61BM organic solar cells with improved efficiency
Wu et al. Air processed P3HT: PCBM photovoltaic cells: Morphology correlation to annealing, degradation, and recovery
Huang et al. Effects of nanomorphological changes on the performance of solar cells with blends of poly [9, 9′-dioctyl-fluorene-co-bithiophene] and a soluble fullerene
Huang et al. Morphological control and performance improvement of organic photovoltaic layer of roll-to-roll coated polymer solar cells
US9985230B2 (en) Fluorine-modification process and applications thereof
Ge et al. Core-expanded naphthalenediimide derivatives as non-fullerene electron transport materials for inverted perovskite solar cells
Baltakesmez et al. Improved perovskite film quality and solar cell performances using dual single solution coating
WO2013008579A1 (en) Method for manufacturing organic thin film solar cell
WO2014020989A1 (en) Method for manufacturing organic thin-film solar cells
KR20120016377A (en) Flexible organic photovoltaic cell and method for manufacturing the flexible organic photovoltaic cell
TWI568044B (en) Active layer, organic photovoltaic cell comprising the same and manufacturing method thereof
WO2014020988A1 (en) Organic thin-film solar cell and method for producing same
Inaba et al. Eco-Friendly Push-Coated Polymer Solar Cells with No Active Material Wastes Yield Power Conversion Efficiencies over 5.5%
Kwon Stability of bulk heterojunction organic solar cells with different blend ratios of P3HT: PCBM
Byun et al. Bladed organic photovoltaic cells
KR101149782B1 (en) Inverted organic photovoltaic cells and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12810851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12810851

Country of ref document: EP

Kind code of ref document: A1