WO2013005940A2 - 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법 - Google Patents

프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법 Download PDF

Info

Publication number
WO2013005940A2
WO2013005940A2 PCT/KR2012/005059 KR2012005059W WO2013005940A2 WO 2013005940 A2 WO2013005940 A2 WO 2013005940A2 KR 2012005059 W KR2012005059 W KR 2012005059W WO 2013005940 A2 WO2013005940 A2 WO 2013005940A2
Authority
WO
WIPO (PCT)
Prior art keywords
molding structure
phosphor
manufacturing
led element
silicone resin
Prior art date
Application number
PCT/KR2012/005059
Other languages
English (en)
French (fr)
Other versions
WO2013005940A3 (ko
Inventor
박승현
이계선
조용익
이상헌
정성훈
Original Assignee
한국광기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국광기술원 filed Critical 한국광기술원
Publication of WO2013005940A2 publication Critical patent/WO2013005940A2/ko
Publication of WO2013005940A3 publication Critical patent/WO2013005940A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to a method for manufacturing an LED device, and more particularly to a manufacturing method for an LED device that emits white light.
  • LED (LED) devices basically emit monochromatic light. Therefore, an additional packaging process is required to emit white light using the same, and a conventional packaging process may cause a problem of uneven coating in a coating process for implementing white color.
  • a white phosphor is mixed with an epoxy or a silicone resin, injected into a syringe, and a package is formed by pneumatic pressure. In this case, color coordinates are determined according to the mixing ratio of the phosphor and the amount of the resin.
  • the resin varies in viscosity with temperature, and the phosphor powder is also precipitated over time, and the mixing ratio of the mixed liquid injected into the syringe may not be constant. Therefore, when the amount of production increases, there is a problem that the ratio of the initially injected phosphor mixture and the last injected phosphor mixture are different, resulting in the shaking of the white color coordinates during the manufacturing process.
  • a phosphor coating method is proposed by using a silkscreen method so that a resin containing silicon resin and a phosphor that does not undergo an application process has a specific height on a submount substrate on which an LED element is disposed. have.
  • This method can reduce the dispersion of color coordinates that occurred in the conventional coating process, and can also reduce the color deviation of each device.
  • this method is limited to the devices that can be used, and the submount must use a substrate that can additionally conduct electricity, and in terms of the cost of the product, it causes a cost increase. Therefore, a process of directly arranging and applying an element directly on a transfer film without using a submount has been attempted.
  • a curing process of 2 to 4 hours or more at a high temperature of 150 is essential because of the thermosetting property of the resin containing the phosphor. .
  • the transfer film is difficult to implement such a process in that the film is not applicable because the film is destroyed other than the polyimide film.
  • the most demanding time in the packaging process is the thermosetting process of the resin containing the phosphor, which is more than 95% of the total process is consumed in the curing process, the curing process has been completed before the molding process By applying a resin containing, it is possible to reduce the process time.
  • the ratio of the luminous intensity emitted from the upper surface of the device occupies about 90% of the ratio of the luminous intensity emitted from the device, and the ratio of the light beam emitted from the vertical surface of the attachment part of the device is about 10%
  • the distribution result of the color coordinates for each angle of the device is different within the direction angle range.
  • a resin containing a phosphor should be formed on a surface perpendicular to the light emitting surface of the device.
  • the implementation of this process involves changing the viscosity of the resin generated during the thermosetting process in the process of masking and molding the resin in the silk screen method. Since there is a problem that the constant width and thickness are not formed for the surface perpendicular to each device light emitting surface is not easy.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is to provide a method of manufacturing a white LED element having high color reproducibility by maintaining uniformity of phosphor compounding ratio.
  • a method of manufacturing a white LED device includes a first molding structure manufacturing step of manufacturing a first molding structure in which a plurality of protruding shapes having a predetermined width are formed on one surface thereof; A second molding structure manufacturing step of manufacturing a second molding structure in which an unevenness is formed in an embossed or engraved shape on one side thereof; One surface of the first molding structure manufactured in the first molding structure manufacturing step and the second molding structure manufactured in the second molding structure manufacturing step face each other, and the first molding structure and the second molding structure Arranging molding structures spaced apart from each other to have a predetermined distance therebetween; A molded article manufacturing step of manufacturing a silicone resin molded body by inserting a silicone resin including a phosphor between the first molding structure and the second molding structure disposed in the molding structure arrangement step; A separation step of separating the first molding structure and the second molding structure from the silicone resin molded body through the molded body manufacturing step; A film mounting step of mounting the film on a surface on which the uneven
  • the monochromatic LED element mounted in the monochromatic LED element mounting step includes a light intensity and a forward voltage depending on the type, concentration, and thickness of the phosphor included in the silicone resin molded product manufactured in the molded object manufacturing step to emit white light.
  • the branch is characterized in that the monochromatic LED element.
  • the silicone resin molded product manufactured in the molded object manufacturing step includes 10% to 60% by weight of a YAG-based yellow phosphor.
  • the silicate-based red phosphor and the green phosphor is mixed with 1% to 10% by weight of the phosphor, but the nitride-based phosphor is characterized in that it comprises 1% to 10% by weight.
  • the silicone resin molded body manufactured in the molding unit manufacturing step includes a silicate-based yellow phosphor containing 10% to 50% by weight.
  • the silicate-based red phosphor and the green phosphor is mixed with 1% to 10% by weight of the phosphor, but the nitride-based phosphor is characterized in that it comprises 1% to 10% by weight.
  • the silicone resin molded body manufactured in the molding unit manufacturing step includes a mixed phosphor of silicate-based red phosphor, green phosphor, and blue phosphor. It is characterized in that it comprises 10% by weight to 30% by weight or 30% by weight of the nitride-based phosphor.
  • the thickness of the thin side of the silicone resin molded body produced in the molded article manufacturing step is 30 to 100um, characterized in that the thickness of the thick side is 150 to 300um.
  • FIG. 1 is a view showing a first molding structure of the present invention.
  • FIG. 2 is a view showing a frame formed by using the first molding structure and the second molding structure of the present invention.
  • FIG. 3 is a view showing a silicone resin molded article of the present invention.
  • FIG. 4 is a view in which a film and a solid color LED are attached to the silicone resin molded body of the present invention.
  • FIG. 5 is a view showing a single color LED mounted on a silicone resin molded body having different films of the present invention.
  • FIG. 6 is a flowchart illustrating a method of manufacturing a white LED device according to the present invention.
  • the first molding structure 110 is manufactured.
  • the first molding structure 110 is manufactured to have a plurality of protruding shapes 112 on one surface thereof.
  • the protruding shape 112 formed on one surface of the first molding structure 110 may include the monochromatic LED element 150 so that the monochromatic LED element 150 may be inserted into the silicone resin molded body 130 manufactured in step S104. It has a predetermined width to fit the size.
  • the position of the protruding shape 112 may be changed depending on the arrangement of the LED element in the wafer state.
  • the first molding structure 110 may be hardened at a high temperature, and may be manufactured to have a different shape as needed.
  • a pad capable of bonding such as a flip chip structure
  • the position can be manufactured to be applied to the device located at the lower end, as shown in Figure 1 (b), the first molding structure 210 is a pad of the pad to enable the wire bonding, such as Top View structure
  • the location may be made to be applicable to an element located at the top.
  • the flip chip structure will be mainly described, and the same content to the top view structure will be omitted.
  • This step is to prepare a second molding structure 120 capable of high temperature curing in the form of a flat plate, as shown in Figure 2, in order to increase the light extraction efficiency of the phosphor film on one side 122 It is preferably formed.
  • the unevenness 122 formed may be embossed or intaglio, and is preferably manufactured using tungsten carbide or a material corresponding thereto at high temperature.
  • the unevenness 122 may be a wafer in which the unevenness 122 is optionally formed by wet etching the surface of the silicon substrate.
  • the second molding structure is similarly manufactured in the top view structure as shown in FIG.
  • This step is a step of disposing the first molding structure 110 and the second molding structure 120 manufactured in step S101 and step S102, as shown in Figure 2, spaced apart from each other to have a predetermined distance
  • the surface on which the protruding shape 112 of the first molding structure 110 is formed and the surface on which the uneven surface 122 of the second molding structure 120 is formed are disposed to face each other.
  • the distance between the protruding shape 112 of the first molding structure 110 and the second molding structure 120 is maintained so that the distance of 30 to 100um, the protruding shape 112 in the first molding structure 110
  • the distance between the portion that is not formed and the second molding structure 120 is preferably spaced apart to maintain a distance of 150 to 300um.
  • a mold is formed on both sides of the first molding structure 110 and the second molding structure 120, and the release film of the transparent fluorine-based resin is formed so that the silicone resin molded body 130 can be separated smoothly. It may be preferable to be mounted on the first molding structure 110 and the second molding structure 120 or a release solution is applied.
  • FIG. 3 (b) The arrangement of the second molding structure on the first molding structure 210 of the top view structure shown in FIG. 1 (b) is shown in FIG. 3 (b). As shown, it can be seen that in such a structure, a hole-shaped structure is applied to enable wire bonding in which the electrical connection is possible in the top view device structure.
  • a structure that can further apply surface grinding may be applied to expose the holes or to adjust the thickness of the shaped body.
  • the molding is molded by inserting a silicone resin between the first molding structure 110 and the second molding structure 120 using the molding structure arranged in step S103.
  • the silicone resin molded body 130 manufactured in this step is formed by the first molding structure 110 and the second molding structure 120, the shape according to the brightness distribution of the LED element, the white color coordinate value to be manufactured Therefore, the thickness of the silicone resin molded body 130 is determined.
  • the combination of phosphors is changed according to the white color coordinate value to be manufactured.
  • the silicone resin molded body 130 in this step includes a YAG-based yellow phosphor of 10% to 60% by weight or the silicate-based It is possible that the yellow phosphor contains from 10% to 50% by weight.
  • a YAG-based yellow phosphor or a silicate-based yellow phosphor and a silicate-based red phosphor and a green phosphor are mixed, or a nitride-based phosphor 1% by weight It is preferred to include from 10% by weight.
  • the silicone resin molded body 130 in this step is a mixed phosphor in which silicate-based red phosphor, green phosphor, and blue phosphor are mixed. It will be preferred to include 10% to 30% by weight, or 10% to 30% by weight of the phosphor of the nitride series.
  • the silicone resin molded body 130 produced in this step is preferably the thickness of the thin side of 30 to 100um, it is preferable that the thickness of the thick side is 150 to 300um due to the protrusion shape (112).
  • step S104 When the manufacture of the silicone resin molded body 130 manufactured through step S104 is performed, the first molding structure 110 and the second molding structure 120 are removed and separated, respectively.
  • the film 140 is mounted on the silicone resin molded body 130 formed by separating the first molding structure 110 and the second molding structure 120 through the step S105, wherein the film 140 to be mounted is shown in FIG. 4. As shown in FIG. 1, mounting is performed on one surface of the silicone resin molded body 130 on which the unevenness 134 is formed. As such, since the film 140 is mounted on the silicone resin molded body 130, there is an advantage of shortening the resin curing time required in the conventional packaging process.
  • the monochromatic LEDs manufactured on a single wafer have LED elements having various luminosities and voltages. Accordingly, when the white LEDs are manufactured using the same, the scattering degree of the white characteristic value is changed, so that each monochromatic LED is suppressed.
  • the film 140 having different thicknesses according to the classification range of the LED element 150 it is possible to manufacture a white LED having the same white characteristic value.
  • the solid color LED is mounted on the silicone resin molded body 130 on which the film 140 is mounted through step S106.
  • the device to be mounted may be equipped with an LED device emitting blue light or an LED device emitting ultraviolet light, and the position at which the device is mounted may be a protruding shape of the first molding structure 110 ( 112 is attached to the groove 132 formed in the silicone resin molded body 130.
  • the device is mounted in the groove 232 formed in the same manner in the top view structure.
  • the present invention is applied to the industrial field related to the LED element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

본 발명은 엘이디 소자의 제조 방법에 관한 것으로, 더욱 상세하게는 백색의 빛을 발광하는 엘이디 소자에 대한 제조 방법에 관한 것으로, 돌출 형상이 형성된 제1몰딩 구조물과 요철이 형성된 제2몰딩 구조물을 사전 제작하여 실리콘 수지 성형제를 제조하고, 이렇게 제조된 실리콘 수지 성형체에 필름을 장착하여, 다양한 광도와 전압을 가지는 단색 엘이디 소자를 실장하여도 동일한 백색 특성을 가지는 백색 엘이디 소자를 제조하는 것이 가능한 백색 엘이디 소자 제조 방법을 제공한다.

Description

프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법
본 발명은 엘이디 소자의 제조 방법에 관한 것으로, 더욱 상세하게는 백색의 빛을 발광하는 엘이디 소자에 대한 제조 방법에 관한 것이다.
엘이디(LED) 소자는 기본적으로 단색광을 발광한다. 그리하여 이를 이용하여 백색광을 발광하도록 하기 위해서는 추가적인 패키지 공정이 요구되는데, 기존의 패키지 공정은 백색을 구현하기 위한 도포공정에서 불균일하게 도포되는 문제가 발생할 수 있다. 이렇게 기존의 도포공정은 백색용 형광체와 에폭시나 실리콘 수지를 혼합하여 주사기에 주입한 후, 공압으로 패키지를 형성하는데, 이때, 형광체의 혼합 비율과 수지의 양에 따라서 색좌표가 결정된다.
하지만, 수지는 온도에 따라 점도가 변하고, 형광체 가루 역시 시간의 경과에 따라 침전이 이루어지며, 주사기에 주입된 혼합액의 혼합 비율도 일정하지 않을 수 있다. 그러므로 생산량이 많아지는 경우에 초기 주입된 형광체 혼합 비율과 마지막에 주입된 형광체 혼합 비율이 달라져, 백색의 색좌표가 제조 과정에서 흔들리게 되는 결과가 나타나는 문제가 있다.
그리하여, 이러한 문제를 해결하기 위해 도포 공정을 거치지 않는 실리콘 수지와 형광체가 포함된 수지를 엘이디 소자가 배치된 서브마운트 형태의 기판위에 특정 높이를 가지도록 실크스크린 기법을 사용하여 형광체 도포법이 제시되고 있다. 이런 방법을 사용하면 기존에 도포 공정에서 발생하던 색좌표의 분산을 줄일 수 있고, 소자의 각도별 색편차도 감소시킬 수 있다.
하지만, 이런 방법은 사용가능한 소자에 한정이 있는데, 서브마운트라는 추가의 통전이 가능한 기판을 사용해야 하고, 제품의 원가 측면에 있어, 원가를 상승시키는 원인이 된다. 그래서 서브마운트를 사용하지 않고 전사용 필름 위에 소자를 직접 배치하여 적용하는 공정도 시도되고 있으나, 형광체가 포함된 수지의 열경화 특성상 150의 고온에서 2~4시간 이상의 경화공정이 필수적으로 포함되고 있다. 이 과정에서 전사용 필름은 폴리이미드 계열의 필름이외에는 필름이 파괴되어 적용 불가능하다는 점에서 이런 공정이 구현하는데 어려움이 있다.
또한, 패키지 과정에서 가장 많은 시간을 요구하는 것이 형광체가 포함된 수지의 열경화 공정이며, 이는 전체 공정에서 소요되는 95% 이상이 경화공정에 소비되고 있으므로, 이러한 경화공정이 사전에 성형이 완료된 형광체가 포함된 수지를 적용하면, 공정시간을 줄일 수 있다.
더욱이, 백색 엘이디소자에 적용하고자 하는 도포방법이 사용되지 않는 형광체와 수지가 결합된 형광체 필름을 형성하는데 있어서, 필름과 소자가 결합된 이후에 필름에 거칠기를 추가로 형성하는 공정이 적용되고 있으므로, 원가를 상승시키는 원인이 된다. 그리고 백색 엘이디소자의 경우 소자의 가장 넓은 면인 상면에서 발광하는 광도의 비율이 소자에서 발광하는 광도의 비율 중 90% 정도를 차지하고 있으며, 소자의 부착부위의 수직면에서 발광하는 광보의 비율이 10% 정도가 발생하기 때문에 형광체 필름을 형성하는데 소자의 측면까지 필름이 형성되지 않는 경우에는 소자의 각도별 색좌표의 분포 결과가 지향각 범위 내에서 달라진다.
이러한 원인은 통산 2차 렌즈가 적용된 이후에 더 크게 나타나는데, 이를 색분리 현상이라 한다. 이를 억제하기 위해서는 소자의 발광면과 수직인 면에 대해서도 형광체가 포함된 수지가 형성되어야 하는데, 이를 구현하는 것은 실크스크린 방법에서 수지를 마스킹하고 성형하는 과정에서 열경화 과정에서 발생되는 수지의 점도 변화가 일어나기 때문에 각각의 소자 발광면과 수직인 면에 대해 일정한 폭과 두께가 형성되지 않아 쉽지 않다는 문제가 있다.
본 발명은 상술한 문제점을 해결하기 위한 것으로, 형광체 배합 비율의 균일성을 유지함으로써 높은 색재현성을 가지는 백색의 엘이디 소자를 제조하는 방법을 제공하는 데 그 목적이 있다.
또한, 엘이디 소자의 백색을 구현함에 있어서 중요한 요소인 형광체 배합비율의 균일성 유지와 광추출효율을 증대시키기 위한 성형수지의 거칠기 형성에도 동시에 진행이 가능한 백색 엘이디 소자를 제조하는데 그 목적이 있다.
이러한 목적을 달성하기 위하여 본 발명의 백색 엘이디 소자 제조 방법은 일면에 소정의 폭을 가지는 다수의 돌출 형상이 형성된 제1몰딩 구조물을 제조하는 제1몰딩 구조물 제조단계; 한 쪽 면에 양각 또는 음각으로 요철이 형성된 제2몰딩 구조물을 제조하는 제2몰딩 구조물 제조단계; 상기 제1몰딩 구조물 제조단계에서 제조된 제1몰딩 구조물의 일면과 상기 제2몰딩 구조물 제조단계에서 제조된 제2몰딩 구조물이 한 쪽 면이 서로 마주보며, 상기 제1몰딩 구조물과 제2몰딩 구조물의 사이에 소정의 거리를 가지도록 이격되도록 배치되는 몰딩 구조물 배치단계; 상기 몰딩 구조물 배치단계에서 배치된 제1몰딩 구조물 및 제2몰딩 구조물의 사이에 형광체가 포함된 실리콘 수지를 투입하여 실리콘 수지 성형체를 제조하는 성형체 제조단계; 상기 성형체 제조단계를 통해 실리콘 수지 성형체에서 제1몰딩 구조물 및 제2몰딩 구조물을 분리하는 분리단계; 상기 분리단계에서 분리된 실리콘 수지 성형체의 요철이 형성된 면에 필름을 장착하는 필름 장착단계; 및 상기 분리단계에서 분리된 실리콘 수지 성형체의 일면에 상기 제1몰딩 구조물에 의해 형성된 홈에 단색 엘이디 소자를 장착하는 단색 엘이디 소자 장착단계; 를 포함하고, 상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자는 백색을 발광할 수 있도록 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체에 포함되는 형광체의 종류, 농도 및 두께에 따라 광도 및 순방향 전압을 가지는 단색 엘이디 소자인 것을 특징으로 한다.
이때, 상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 청색을 발광하는 엘이디 소자인 경우, 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 YAG 계열 황색 형광체가 10% 중량 내지 60% 중량이 포함되고, 실리케이트 계열의 적색 형광체와 녹색 형광체가 혼합된 형광체가 1% 중량 내지 10% 중량이나 나이트라이드 계열 형광체가 1% 중량 내지 10% 중량이 포함되는 것을 특징으로 한다.
또한, 상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 청색을 발광하는 엘이디 소자인 경우, 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 실리케이트 계열 황색 형광체가 10% 중량 내지 50% 중량이 포함되고, 실리케이트 계열의 적색 형광체와 녹색 형광체가 혼합된 형광체가 1% 중량 내지 10% 중량이나 나이트라이드 계열 형광체가 1% 중량 내지 10% 중량이 포함되는 것을 특징으로 한다.
그리고 상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 자외선을 발광하는 엘이디 소자인 경우, 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 실리케이트 계열의 적색 형광체, 녹색 형광체 및 청색 형광체의 혼합 형광체가 10% 중량 내지 30% 중량이나 나이트라이드 계열 형광체가 10% 중량 내지 30% 중량이 포함되는 것을 특징으로 한다.
한편, 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체의 얇은 쪽 두께는 30 내지 100um이고, 두꺼운 쪽 두께는 150 내지 300um인 것을 특징으로 한다.
이상에서 설명한 바와 같이 본 발명에 의하면,형광체 배합 비율의 균일성 유지에 의해 높은 색재현성을 실현하는 것이 가능하고, 패키지 공정에서 가장 많은 공정 소요 시간인 수지 경화시간을 제거함으로써, 패키지 공정의 소요 시간을 단축할 수 있다는 효과가 있다.
도1은 본 발명의 제1몰딩 구조물을 도시한 도면이다.
도2는 본 발명의 제1몰딩 구조물과 제2몰딩 구조물을 이용하여 틀을 형성한 것을 도시한 도면이다.
도3은 본 발명의 실리콘 수지 성형체를 도시한 도면이다.
도4는 본 발명의 실리콘 수지 성형체에 필름과 단색 엘이디를 장착한 도면이다.
도5는 본 발명의 각기 다른 필름이 장착된 실리콘 수지 성형체에 단색 엘이디를 장착한 것을 도시한 도면이다.
도6은 본 발명의 백색 엘이디 소자 제조 방법을 도시한 흐름도이다.
본 발명의 바람직한 실시예에 대하여 첨부된 도면을 참조하여 더 구체적으로 설명하되, 이미 주지되어진 기술적 부분에 대해서는 설명의 간결함을 위해 생략하거나 압축하기로 한다.
본 발명의 백색의 엘이디 소자 제조 방법에 대해서 도1 내지 도6에 도시된 도면을 참조하여 설명을 하되, 편의상 순서를 붙여 설명한다.
1. 제1몰딩 구조물 제조<S101>
본 단계는 제1몰딩 구조물(110)을 제조하는 단계로, 제1몰딩 구조물(110)은 일면에 다수의 돌출 형상(112)을 가지도록 제조된다. 이때, 제1몰딩 구조물(110)의 일면에 형성되는 돌출 형상(112)은 단계 S104에서 제조되는 실리콘 수지 성형체(130)에 단색 엘이디 소자(150)가 삽입될 수 있도록 단색 엘이디 소자(150)의 크기에 맞게 소정의 폭을 가진다. 그리고 백색 엘이디 소자를 제조함에 있어, 돌출 형상(112)의 위치는 웨이퍼 상태의 엘이디 소자의 배치에 따라 달라지는 것이 가능하다.
또한, 제1몰딩 구조물(110)은 고온 경화가 가능하고, 필요에 따라 그 형상이 다르게 제조하는 것이 가능한데, 도1의 (a)에 도시된 바와 같이, Flip Chip 구조와 같이 접합이 가능한 패드의 위치가 하단부에 위치하는 소자에 적용하는 것이 가능하도록 제조될 수 있으며, 도1의 (b)에 도시된 바와 같이, 제1몰딩 구조물(210)은 Top View 구조와 같이 와이어 본딩이 가능하도록 패드의 위치가 상단부에 위치하는 소자에 적용하는 것이 가능하도록 제조될 수도 있다. 편의상 Flip Chip 구조를 위주로 설명하고, Top View 구조에 동일하게 적용되는 내용은 생략하기로 한다.
2. 제2몰딩 구조물 제조<S102>
본 단계는 평판 형태의 고온 경화가 가능한 제2몰딩 구조물(120)을 제조하는 단계로, 도2에 도시된 바와 같이, 형광체 필름의 광추출 효율을 상승시키기 위해 한 쪽 면에 요철(122)이 형성되는 것이 바람직하다. 이때 형성되는 요철(122)은 양각이나 음각으로 형성되는 것이 가능하며, 고온 경화가 가능한 텅스텐카바이드나 이에 상당하는 물질을 이용하여 제조되는 것이 바람직하다.
또한, 요철(122)은 실리콘 기판의 표면에 습식성 에칭처리를 하여 임의로 요철(122)을 형성한 웨이퍼를 사용하는 것도 가능할 것이다.
제2몰딩 구조물은 도1의 (b)에 도시된 바와 같은 Top View 구조에도 동일하게 제작된다.
3. 몰딩 구조물 배치<S103>
본 단계는 단계 S101 및 단계 S102에서 제조된 제1몰딩 구조물(110)과 제2몰딩 구조물(120)을 배치하는 단계로, 도2에 도시된 바와 같이, 서로 소정의 거리를 가지도록 이격된 상태로 배치하는데, 제1몰딩 구조물(110)의 돌출 형상(112)이 형성된 면과 제2몰딩 구조물(120)의 요철(122)이 형성된 면이 서로 마주보도록 배치한다.
이때, 제1몰딩 구조물(110)의 돌출 형상(112)과 제2몰딩 구조물(120)과의 거리는 30 내지 100um의 거리가 되도록 유지하고, 제1몰딩 구조물(110)에서 돌출 형상(112)이 형성되지 않은 부분과 제2몰딩 구조물(120)과의 거리는 150 내지 300um의 거리가 유지되도록 이격하는 것이 바람직하다.
또한, 제1몰딩 구조물(110)과 제2몰딩 구조물(120)의 양측으로 틀을 형성하며, 실리콘 수지 성형체(130)가 제조된 이후에 원활하게 분리가 가능하도록 투명한 불소계 수지의 이형용 필름이 제1몰딩 구조물(110) 및 제2몰딩 구조물(120)에 장착되거나 이형용 액이 도포되는 것이 바람직할 것이다.
도1(b)에 나타낸 Top View 구조의 제1몰딩구조물(210)에 제2몰딩 구조물을 배치시킨 것은 도3(b)와 같이 나타난다. 도시된 바와 같이, 이와 같은 구조에서는 Top View 소자 구조에서 전기적 연결이 가능한 와이어본딩이 가능하도록 홀(hole) 형태의 구조로 적용되는 것을 알 수 있다.
또한, 홀을 노출시키기 위하여 또는 성형체의 두께를 조절하기 위하여 표면 연삭을 추가로 적용가능한 구조가 적용될 수 있다.
4. 성형체 제조<S104>
단계 S103에서 배치된 몰딩 구조물을 이용하여 제1몰딩 구조물(110)과 제2몰딩 구조물(120)의 사이에 실리콘 수지를 투입하여 성형체를 성형한다. 그리하여, 본 단계에서 제조된 실리콘 수지 성형체(130)는 제1몰딩 구조물(110)과 제2몰딩 구조물(120)에 의해 형상이 형성되며, 엘이디 소자의 광도 분포별, 제조하고자 하는 백색 색좌표 값에 따라서 실리콘 수지 성형체(130)의 두께가 정해진다.
그리고 제조하고자 하는 백색 색좌표 값에 따라 형광체의 배합을 달리 한다. 그 예로, 본 단계에서 제조된 성형체에 실장되는 단색 엘이디가 청색인 경우에는, 본 단계에서의 실리콘 수지 성형체(130)는 YAG 계열의 황색 형광체가 10%중량 내지 60% 중량이 포함되거나 실리케이트 계열의 황색 형광체가 10% 중량 내지 50% 중량이 포함되는 것이 가능하다.
또한, 상기에서처럼 YAG 계열의 황색 형광체나 실리케이트 계열의 황색 형광체와 함께 실리케이트 계열의 적색 형광체와 녹색 형광체가 혼합된 혼합 형광체가 1% 중량 내지 10% 중량이 포함되거나, 나이트라이드 계열 형광체를 1% 중량 내지 10% 중량이 포함되는 것이 바람직하다.
또 다른 예로, 본 단계에서 제조되는 성형체에 실정되는 단색 엘이디가 자외선을 발광하는 경우에는, 본 단계에서의 실리콘 수지 성형체(130)는 실리케이트 계열의 적색 형광체, 녹색 형광체 및 청색 형광체가 혼합된 혼합 형광체가 10% 중량 내지 30% 중량이 포함되거나, 나이트라이드 계열의 형광체 10% 중량 내지 30% 중량이 포함되는 것이 바람직할 것이다.
그리고 본 단계에서 제조되는 실리콘 수지 성형체(130)는 얇은 쪽의 두께가 30 내지 100um인 것이 바람직하고, 돌출 형상(112)으로 인해 두꺼운 쪽의 두께는 150 내지 300um인 것이 바람직할 것이다.
5. 분리<S105>
단계 S104를 통해 제조된 실리콘 수지 성형체(130)의 제조가 이루어지면, 제1몰딩 구조물(110)과 제2몰딩 구조물(120)을 각각 제거하여 분리한다.
6. 필름 장착<S106>
단계 S105를 통해 제1몰딩 구조물(110)과 제2몰딩 구조물(120)이 각각 분리되어 생성된 실리콘 수지 성형체(130)에 필름(140)을 장착하는데, 이때 장착되는 필름(140)은 도4에 도시된 바와 같이, 요철(134)이 형성된 실리콘 수지 성형체(130)의 한 쪽 면에 장착이 이루어진다. 이처럼, 실리콘 수지 성형체(130)에 필름(140)을 장착하기 때문에 기존에 패키지 공정에서 소요되는 수지 경화시간을 단축할 수 있는 장점이 있다.
더욱이, 도5에 도시된 바와 같이, 본 단계에서 장착되는 필름(140)의 두께를 달리함으로써, 다양한 광조를 가지는 단색 엘이디를 장착하더라도 동일한 백색 특성치를 가지는 빛을 발광할 수 있도록 하는 것이 가능하다.
즉, 한 장의 웨이퍼 상에서 제조되는 단색 엘이디는 다양한 광도와 전압을 가지는 엘이디 소자가 존재하게 되는데, 그에 따라 이를 이용하여 백색 엘이디를 제조할 때, 백색의 특성치 산포도가 달라지기 때문에 이를 억제하기 위해 각 단색 엘이디 소자(150)의 분류 범위에 따라 각기 다른 두께를 가지는 필름(140)을 장착함으로써, 동일한 백색의 특성치를 가지는 백색 엘이디를 제조하는 것이 가능하다.
물론, 단계 S104에서 제조되는 실리콘 수지 성형체(130)의 형광체 조성비가 각기 다른 실리콘 수지 성형체(130)를 다수 개 제조함으로써, 각기 다른 광도와 전압을 가지는 단색 엘이디 소자(150)가 장착되더라도 동일한 백색의 특성치를 가지는 백색 엘이디를 제조하는 것도 가능할 것이다.
7. 소자 장착<S107>
단계 S106을 통해 필름(140)이 장착된 실리콘 수지 성형체(130)에 단색 엘이디를 장착한다. 이때 장착되는 소자는 단계 S104에서 설명한 바와 같이, 청색을 발광하는 엘이디 소자나 자외선을 발광하는 엘이디 소자 등을 장착하는 것이 가능하며, 소자가 장착되는 위치는 제1몰딩 구조물(110)의 돌출 형상(112)에 의해 실리콘 수지 성형체(130)에 형성된 홈(132)에 장착된다. 소자의 장착은 Top View 구조에서도 같은 방식으로 형성되는 홈(232)에 장착된다.
8. 개별 소자 Dicing<S108>
단계 S107을 통해 단색 엘이디 소자(150)가 각각의 홈(132)에 장착되면, 이를 각각 Dicing함으로써, 하나의 백색 엘이디 소자를 제조한다.
위에서 설명한 바와 같이 본 발명에 대한 구체적인 설명은 첨부된 도면을 참조한 실시예에 의해서 이루어졌지만, 상술한 실시예는 본 발명의 바람직한 예를 들어 설명하였을 뿐이기 때문에, 본 발명이 상기의 실시예에만 국한되는 것으로 이해되어져서는 아니 되며, 본 발명의 권리범위는 후술하는 청구범위 및 그 등가개념으로 이해되어져야 할 것이다.
본 발명은 엘이디소자와 관련된 산업분야에 적용된다.

Claims (5)

  1. 일면에 소정의 폭을 가지는 다수의 돌출 형상이 형성된 제1몰딩 구조물을 제조하는 제1몰딩 구조물 제조단계;
    한 쪽 면에 양각 또는 음각으로 요철이 형성된 제2몰딩 구조물을 제조하는 제2몰딩 구조물 제조단계;
    상기 제1몰딩 구조물 제조단계에서 제조된 제1몰딩 구조물의 일면과 상기 제2몰딩 구조물 제조단계에서 제조된 제2몰딩 구조물이 한 쪽 면이 서로 마주보며, 상기 제1몰딩 구조물과 제2몰딩 구조물의 사이에 소정의 거리를 가지도록 이격되도록 배치되는 몰딩 구조물 배치단계;
    상기 몰딩 구조물 배치단계에서 배치된 제1몰딩 구조물 및 제2몰딩 구조물의 사이에 형광체가 포함된 실리콘 수지를 투입하여 실리콘 수지 성형체를 제조하는 성형체 제조단계;
    상기 성형체 제조단계를 통해 실리콘 수지 성형체에서 제1몰딩 구조물 및 제2몰딩 구조물을 분리하는 분리단계;
    상기 분리단계에서 분리된 실리콘 수지 성형체의 요철이 형성된 면에 필름을 장착하는 필름 장착단계; 및
    상기 분리단계에서 분리된 실리콘 수지 성형체의 일면에 상기 제1몰딩 구조물에 의해 형성된 홈에 단색 엘이디 소자를 장착하는 단색 엘이디 소자 장착단계; 를 포함하고,
    상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자는 백색을 발광할 수 있도록 상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체에 포함되는 형광체의 종류, 농도 및 두께에 따라 광도 및 순방향 전압을 가지는 단색 엘이디 소자인 것을 특징으로 하는
    백색의 엘이디 소자 제조 방법.
  2. 제1항에 있어서,
    상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 청색을 발광하는 엘이디 소자인 경우,
    상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 YAG 계열 황색 형광체가 10% 중량 내지 60% 중량이 포함되고,
    실리케이트 계열의 적색 형광체와 녹색 형광체가 혼합된 형광체가 1% 중량 내지 10% 중량이나 나이트라이드 계열 형광체가 1% 중량 내지 10% 중량이 포함되는 것을 특징으로 하는
    백색의 엘이디 소자 제조 방법.
  3. 제1항에 있어서,
    상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 청색을 발광하는 엘이디 소자인 경우,
    상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 실리케이트 계열 황색 형광체가 10% 중량 내지 50% 중량이 포함되고,
    실리케이트 계열의 적색 형광체와 녹색 형광체가 혼합된 형광체가 1% 중량 내지 10% 중량이나 나이트라이드 계열 형광체가 1% 중량 내지 10% 중량이 포함되는 것을 특징으로 하는
    백색의 엘이디 소자 제조 방법.
  4. 제1항에 있어서,
    상기 단색 엘이디 소자 장착단계에서 장착되는 단색 엘이디 소자가 자외선을 발광하는 엘이디 소자인 경우,
    상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체는 실리케이트 계열의 적색 형광체, 녹색 형광체 및 청색 형광체의 혼합 형광체가 10% 중량 내지 30% 중량이나 나이트라이드 계열 형광체가 10% 중량 내지 30% 중량이 포함되는 것을 특징으로 하는
    백색의 엘이디 소자 제조 방법.
  5. 제1항에 있어서,
    상기 성형체 제조단계에서 제조되는 실리콘 수지 성형체의 얇은 쪽 두께는 30 내지 100um이고, 두꺼운 쪽 두께는 150 내지 300um인 것을 특징으로 하는
    백색의 엘이디 소자 제조 방법.
PCT/KR2012/005059 2011-07-01 2012-06-27 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법 WO2013005940A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0065369 2011-07-01
KR1020110065369A KR101173251B1 (ko) 2011-07-01 2011-07-01 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법

Publications (2)

Publication Number Publication Date
WO2013005940A2 true WO2013005940A2 (ko) 2013-01-10
WO2013005940A3 WO2013005940A3 (ko) 2013-03-14

Family

ID=46880335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005059 WO2013005940A2 (ko) 2011-07-01 2012-06-27 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법

Country Status (2)

Country Link
KR (1) KR101173251B1 (ko)
WO (1) WO2013005940A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013112435A1 (en) * 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
US8896010B2 (en) 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US8907362B2 (en) 2012-01-24 2014-12-09 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9343444B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101446038B1 (ko) * 2012-10-23 2014-10-01 한국생산기술연구원 커팅식 형광층 제조방법 및 이를 이용한 발광 다이오드 패키지 제조방법
KR101405902B1 (ko) * 2012-11-15 2014-06-17 한국생산기술연구원 이형제를 사용한 형광층 제조방법 및 발광 다이오드 패키지 제조방법
KR20140076767A (ko) 2012-12-13 2014-06-23 (주)라이타이저코리아 발광 다이오드용 형광체 제조 방법
KR101440722B1 (ko) * 2013-03-13 2014-09-17 한국광기술원 광공간을 갖는 발광장치의 제조방법 및 이에 의한 발광장치
KR101457474B1 (ko) 2013-06-14 2014-11-04 (주)라이타이저코리아 형광층 제조 장비
KR101591062B1 (ko) * 2013-12-19 2016-02-02 한국생산기술연구원 탈착트레이를 포함하는 발광 다이오드 패키지용 형광층 제조장치, 그리고 이를 이용한 발광 다이오드 패키지용 형광층 제조방법 및 발광 다이오드 패키지 제조방법
US9537058B2 (en) 2014-06-05 2017-01-03 Shanghai Fudi Lighting Electronic Co., Ltd. Embedded white light LED package structure based on solid-state fluorescence material and manufacturing method thereof
KR101633872B1 (ko) * 2014-11-27 2016-06-28 한국광기술원 형광체 시트를 이용한 발광다이오드 소자 제조방법
KR101787984B1 (ko) * 2015-06-18 2017-10-24 한국생산기술연구원 형광체막 제조방법
KR101689179B1 (ko) * 2015-07-08 2016-12-23 정진수 엘이디 형광체 플레이트 제조 방법
KR101863637B1 (ko) * 2016-01-13 2018-07-05 시그네틱스 주식회사 칩 몰딩 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234509A (ja) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
KR100610278B1 (ko) * 2004-12-14 2006-08-09 알티전자 주식회사 고휘도 백색발광다이오드 및 그의 제조방법
KR100849813B1 (ko) * 2007-03-22 2008-07-31 삼성전기주식회사 발광소자 패키지 제조방법 및 발광소자 패키지 제조용 몰드
KR20100055348A (ko) * 2008-11-17 2010-05-26 스탠리 일렉트릭 컴퍼니, 리미티드 반도체 장치의 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003234509A (ja) * 2002-02-08 2003-08-22 Citizen Electronics Co Ltd 発光ダイオード
KR100610278B1 (ko) * 2004-12-14 2006-08-09 알티전자 주식회사 고휘도 백색발광다이오드 및 그의 제조방법
KR100849813B1 (ko) * 2007-03-22 2008-07-31 삼성전기주식회사 발광소자 패키지 제조방법 및 발광소자 패키지 제조용 몰드
KR20100055348A (ko) * 2008-11-17 2010-05-26 스탠리 일렉트릭 컴퍼니, 리미티드 반도체 장치의 제조방법

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9184351B2 (en) 2012-01-24 2015-11-10 Cooledge Lighting Inc. Polymeric binders incorporating light-detecting elements
US8785960B1 (en) 2012-01-24 2014-07-22 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
WO2013112435A1 (en) * 2012-01-24 2013-08-01 Cooledge Lighting Inc. Light - emitting devices having discrete phosphor chips and fabrication methods
US8759125B2 (en) 2012-01-24 2014-06-24 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9190581B2 (en) 2012-01-24 2015-11-17 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8884326B2 (en) 2012-01-24 2014-11-11 Cooledge Lighting Inc. Polymeric binders incorporating light-detecting elements and related methods
US8896010B2 (en) 2012-01-24 2014-11-25 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US9236502B2 (en) 2012-01-24 2016-01-12 Cooledge Lighting, Inc. Wafer-level flip chip device packages and related methods
US8748929B2 (en) 2012-01-24 2014-06-10 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8680558B1 (en) 2012-01-24 2014-03-25 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US8907362B2 (en) 2012-01-24 2014-12-09 Cooledge Lighting Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9276178B2 (en) 2012-01-24 2016-03-01 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9496472B2 (en) 2012-01-24 2016-11-15 Cooledge Lighting Inc. Wafer-level flip chip device packages and related methods
US9478715B2 (en) 2012-01-24 2016-10-25 Cooledge Lighting Inc. Discrete phosphor chips for light-emitting devices and related methods
US9472732B2 (en) 2012-01-24 2016-10-18 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9343443B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods
US9343444B2 (en) 2014-02-05 2016-05-17 Cooledge Lighting, Inc. Light-emitting dies incorporating wavelength-conversion materials and related methods

Also Published As

Publication number Publication date
KR101173251B1 (ko) 2012-08-10
WO2013005940A3 (ko) 2013-03-14

Similar Documents

Publication Publication Date Title
WO2013005940A2 (ko) 프리폼 형광체 시트가 사용된 백색 엘이디 소자 제조 방법
KR100665121B1 (ko) 파장변환형 발광 다이오드 패키지 제조방법
CN101939859B (zh) 发光设备和包括该发光设备的显示设备
EP1995780B1 (en) Semiconductor light emitting apparatus
KR20180090006A (ko) 발광 다이오드 유닛
US20140339582A1 (en) Resin sheet laminate, method for manufacturing the same and method for manufacturing led chip with phosphor-containing resin sheet
US8399268B1 (en) Deposition of phosphor on die top using dry film photoresist
US20120161162A1 (en) Optoelectronic Semiconductor Component
US8900892B2 (en) Printing phosphor on LED wafer using dry film lithography
WO2014046488A2 (ko) 색변환 엘리먼트 및 그 제조방법
JP2004356116A (ja) 発光ダイオード
KR20120119350A (ko) 발광소자 모듈 및 이의 제조방법
KR20120133264A (ko) 발광소자 렌즈, 이를 포함하는 발광소자 모듈 및 이를 이용한 발광소자 모듈의 제조방법
US20130168703A1 (en) Deposition of phosphor on die top by stencil printing
JP4980640B2 (ja) 照明装置
KR101769356B1 (ko) 발광소자에 형광체층을 형성하는 방법 및 장치
WO2018139687A1 (ko) Led 모듈
WO2013024916A1 (ko) 파장변환형 발광다이오드 칩 및 그 제조방법
CN102714263B (zh) 发光二极管及其制造方法
WO2015174566A1 (ko) 발광각도 조절이 가능한 형광필름이 구비된 led 조명 모듈 제조 방법
KR101752426B1 (ko) 발광소자 및 이를 포함하는 발광다이오드 패키지
KR101103944B1 (ko) 발광소자 패키지
KR101646256B1 (ko) 발광장치
CN219998252U (zh) 一种白光Mini COB光源、COB灯板及显示装置
CN213635980U (zh) 一种csp led芯片封装件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807945

Country of ref document: EP

Kind code of ref document: A2