WO2013005596A1 - Cooling device and illumination device using same - Google Patents

Cooling device and illumination device using same Download PDF

Info

Publication number
WO2013005596A1
WO2013005596A1 PCT/JP2012/066146 JP2012066146W WO2013005596A1 WO 2013005596 A1 WO2013005596 A1 WO 2013005596A1 JP 2012066146 W JP2012066146 W JP 2012066146W WO 2013005596 A1 WO2013005596 A1 WO 2013005596A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
cooling device
stirring
stirring unit
substrate
Prior art date
Application number
PCT/JP2012/066146
Other languages
French (fr)
Japanese (ja)
Inventor
敬三 鎌田
大塚 雅生
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011147079A external-priority patent/JP5213999B2/en
Priority claimed from JP2011147080A external-priority patent/JP5097847B1/en
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013005596A1 publication Critical patent/WO2013005596A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/60Cooling arrangements characterised by the use of a forced flow of gas, e.g. air
    • F21V29/67Cooling arrangements characterised by the use of a forced flow of gas, e.g. air characterised by the arrangement of fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • F21V29/763Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/83Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks the elements having apertures, ducts or channels, e.g. heat radiation holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to a cooling device and a lighting device using the cooling device and, for example, an LED (light emitting diode).
  • the cooling device includes an axial fan, and air sucked from one axial direction of the axial fan is blown axially from the other axial direction of the axial fan to the cooling fin, and then the cooling fin. Along the radial direction.
  • the axial air flow from the axial fan is blown axially onto the cooling fins that are the objects to be cooled, and then the air is discharged in the radial direction.
  • the pressure loss due to the air is large, and the noise is generated because the air is collided with the cooling fins to be cooled to change the direction.
  • the conventional cooling device has a streamline on the air inlet side that is always perpendicular to the front edge portion 62 of the axial fan 61.
  • a foreign matter 63 such as an insect or bird's wing was pressed against the front edge 62 by a pressure of fluid force.
  • the axial fan having a diameter of about 100 mm or less since the space between the blades 64 in the vicinity of the shaft center is narrow, dust or the like 63 is accumulated on the leading edge 62, and the axial fan While the dynamic balance of 61 deteriorates, the amount of air discharged by the axial fan is drastically reduced, and the cooling capacity of the cooling device is greatly reduced.
  • the direction of the air blown from the axial fan is perpendicular to the substrate on which the LED is mounted. Or there was a problem that the air could not flow in the vicinity, the cooling power was insufficient, and the life of the LED was shortened.
  • An object of the present invention is to provide a cooling device that has low pressure loss, low noise, and that is difficult for foreign matter such as dust and insects to adhere to it. It is to provide.
  • the cooling device of the present invention is: A stirring unit having a plurality of rotating blades and generating a concentric vortex centered on the rotation axis; An object to be cooled facing one first surface in the direction of the rotation axis of the stirring unit; An air inflow port for allowing air to flow into the stirring unit from the vicinity of the outer periphery of the stirring unit; An air discharge port for discharging air from the vicinity of the outer peripheral portion of the stirring unit; A separation unit that separates, from the stirring unit, a vortex in the circumferential direction of the stirring unit of air formed by the rotation of the moving blade of the stirring unit; The air flowing in from the air inflow port does not pass through the center of the agitation unit, becomes the vortex, flows in the circumferential direction of the agitation unit, and flows out of the air discharge port.
  • a concentric air vortex centered on the rotating shaft of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the surface of the cooled object, It cools and is deviated from the rotating direction of the moving blade by the separation part, and flows into the air discharge port as a flow along the separation part.
  • the vortex generated by the moving blade is a flow in a direction perpendicular to the rotating shaft of the moving blade and flows along the cooled body, so that the air may hit the cooled body vertically. Absent.
  • the vortex is a flow along the body to be cooled and does not collide with the body to be cooled perpendicularly. Therefore, the body to be cooled hardly changes the direction of the flow, the pressure loss is small, the power There is little loss.
  • the stirring unit generates a vortex flow that flows along the body to be cooled, and the air inlet and the air discharge port are in the vicinity of the outer peripheral portion of the stirring unit. Can be thinned.
  • the concentric vortex around the rotation axis of the moving blade is generated by the rotation of the moving blade of the stirring unit, even if foreign matter such as dust or small insects flows into the stirring unit, the moving blade It is difficult to adhere to the blade, and the deterioration of the dynamic balance of the rotor blade can be prevented, and the reliability can be increased.
  • a casing facing the other second surface in the direction of the rotation axis of the agitator is provided.
  • the casing can be covered with the second surface of the stirring unit so as not to be exposed, so that safety can be ensured and the amount of dust and foreign matter entering the stirring unit can be reduced. Can do.
  • a substantially semicircular arc or 1 / arc-shaped vortex can be formed, so that heat exchange of the object to be cooled is further promoted, and the object to be cooled is more It can be cooled with high efficiency.
  • the stirring unit includes a rotating disk part, and the moving blade is fixed to the rotating disk part.
  • the stirring unit includes the rotating disk part, and the moving blade is fixed to the rotating disk part. Therefore, the rotating disk part also serves as a casing, and the moving blade and the rotating circle are used. A gap can be eliminated between the plate portion and the air blowing efficiency.
  • the rotor blades of the stirring unit extend radially from the center of the stirring unit in the radial direction.
  • the moving blades of the stirring unit extend radially from the center of the stirring unit, the moving blades can support a large centrifugal force, and the moving blades are reduced in weight. Thus, the rotational load of the stirring unit can be reduced.
  • the front surface in the rotational direction of the moving blade is a concave surface.
  • the front surface in the rotation direction of the moving blade is concave, it is possible to increase the ability to convey a large amount of air and generate vortex flow in the agitating unit, and to improve the cooling ability of the cooling device. be able to.
  • the cooling device includes an ion generation unit that discharges ions to the air to be discharged from the air discharge port or to the air discharged from the air discharge port.
  • the air can be purified by the ions released from the ion generator.
  • This ion generator may generate only negative ions, only positive ions, or positive and negative ions.
  • the lighting device of the present invention is A substrate with a light source mounted on the surface;
  • a stirring unit that is disposed on the back side of the substrate and has a plurality of rotating blades, and generates a vortex that is concentric around the rotation axis and flows in a direction along the back side of the substrate;
  • An air inflow port for allowing air to flow into the stirring unit from the vicinity of the outer periphery of the stirring unit;
  • An air discharge port for discharging air from the vicinity of the outer peripheral portion of the stirring unit;
  • a separation unit that separates the vortex flow in the circumferential direction of the stirring unit of the air formed by the rotation of the moving blade of the stirring unit from the stirring unit;
  • the air that has flowed in from the air inlet does not pass through the center of the agitating unit, becomes the vortex, flows in the circumferential direction of the agitating unit and in the direction along the back surface of the substrate, and the air exhaust port It is characterized by flowing out from.
  • a concentric air swirl around the rotation axis of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the back surface of the substrate to cool the back surface of the substrate. And it is deviated from the rotation direction of a moving blade by a separation part, becomes a flow along a separation part, and is discharged to an air discharge port.
  • the vortex generated by the moving blades flows in a direction perpendicular to the rotating shaft of the moving blades, and flows along the back surface of the substrate, so that air may hit the back surface of the substrate vertically. Absent. Therefore, there is little collision between air and the back surface of the substrate, and noise can be reduced. In the lighting device, noise due to cooling air becomes a serious problem, but the present invention has solved this problem.
  • the vortex flows along the back surface of the substrate and does not collide perpendicularly with the back surface of the substrate. Therefore, the back surface of the substrate rarely changes the direction of air flow, and the pressure loss is small. With less power loss, energy saving can be achieved.
  • substrate is provided.
  • the concentric air vortex centered on the rotating shaft of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the heat dissipation promoting portion to cool the heat dissipation promoting portion. Therefore, the cooling efficiency of the lighting device can be further increased.
  • a casing that faces the second surface of the stirring unit opposite to the first surface on the substrate side and that houses the stirring unit is provided.
  • the casing covers the second surface opposite to the first surface on the substrate side of the stirring unit so as not to be exposed, so that safety can be ensured and the inside of the stirring unit can be secured. It is possible to reduce the amount of dust and foreign matter that flows into the battery.
  • the air inlet and the air outlet are provided in the casing.
  • the air inlet and the air outlet are provided in the casing, air outside the casing can be introduced into the casing and then discharged outside the casing.
  • the back surface of the substrate and the heat radiation promoting portion can be cooled.
  • the air inlet and the air outlet are inclined toward the central direction of the stirring unit.
  • the distance between the stirring part and the heat radiation promoting part is substantially equal to the radial width of the air inlet and the air outlet.
  • the width of the air inlet and the air outlet is substantially the same, the change in the air passage area can be minimized, the flow loss can be reduced, and the efficiency can be improved.
  • the stirring unit includes a rotating disk part, The surface of the moving blade opposite to the surface facing the base is fixed to the rotating disk portion.
  • the stirring unit includes the rotating disk part, and the surface of the moving blade opposite to the surface facing the base is fixed to the rotating disk part.
  • the rotating disk part also serves as a casing, so that a gap can be eliminated between the moving blade and the rotating disk part, and the blowing efficiency can be improved.
  • the light source unit includes a light emitting diode.
  • the life of the light source part can be greatly extended.
  • the casing has a notch or hole in the outer peripheral portion, and an electrical wiring connected to the light source portion passes through the notch or hole.
  • the cooling efficiency of the lighting device can be increased.
  • a cooling device with low pressure loss, low noise, hardly adhering foreign matter such as dust and insects, and a thin thickness can be realized.
  • the lighting device of the present invention it is possible to realize a lighting device that has low noise, is difficult for foreign matters such as insects to enter, can achieve energy saving, can sufficiently cool the light source, and has a long life. it can.
  • FIG. 1 is a perspective view of a lighting device including a cooling device according to an embodiment of the present invention.
  • FIG. 2 is a bottom view of the lighting device including the cooling device.
  • FIG. 3 is a longitudinal sectional view taken along line EE of FIG. 2 showing an illuminating device provided with the cooling device.
  • FIG. 4 is a longitudinal sectional view taken along line BB of FIG. 2 showing an illuminating device provided with the cooling device.
  • FIG. 5 is a cross-sectional view taken along line DD of FIG. 4 showing an illuminating device provided with the cooling device.
  • 6 is a cross-sectional view taken along line CC of FIG. 4 showing an illuminating device provided with the cooling device.
  • FIG. 1 is a perspective view of a lighting device including a cooling device according to an embodiment of the present invention.
  • FIG. 2 is a bottom view of the lighting device including the cooling device.
  • FIG. 3 is a longitudinal sectional view taken along line EE of FIG. 2 showing an
  • FIG. 7 is a schematic plan view showing a vortex generated in the stirring unit of the cooling device.
  • FIG. 8 is a schematic plan view showing a state in which two separation units are provided in the stirring unit of the cooling device.
  • FIG. 9 is a perspective view illustrating the air flow of the lighting device including the cooling device.
  • FIG. 10 is a schematic plan view showing a state where dust or the like has flowed into the cooling device having two separation portions.
  • FIG. 11 is a schematic plan view showing a state in which dust or the like has flowed into the cooling device having two separation portions.
  • FIG. 12 is a schematic plan view showing a state where one separation unit is provided in the stirring unit of the cooling device.
  • FIG. 13 shows a perspective view of a stirring unit having five moving blades.
  • FIG. 14 shows a perspective view of a stirring unit having three blades.
  • FIG. 15 is a perspective view of a stirring unit having two blades.
  • FIG. 16 is a plan view of the stirring unit in which the moving blade is curved clockwise.
  • FIG. 17 is a plan view of the stirring unit in which the moving blade is curved counterclockwise.
  • FIG. 18 shows a side view of the axial fan.
  • FIG. 19 is a plan view of the axial fan.
  • FIG. 20 shows a plan view of the centrifugal fan.
  • FIG. 21 is a plan view of the cross flow fan.
  • the cooling device of this embodiment is provided in a lighting device including a main body 1 and a light diffusion cover 2 as shown in FIG.
  • the main body 1 has an outer peripheral surface having a rotating concave curved surface that is open at the bottom, gradually spreads from the center toward the opening, and can be generated by rotating a concave curve such as an exponential curve or a hyperbola.
  • the opening side of the main body 1 is cylindrical and has a step inside, and the light diffusion cover 2 is fitted and fixed to the step.
  • the light diffusing cover 2 has a translucent planer disk shape and has air inlets 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h.
  • the air guide holes 21 a, 21 b, 21 c, 21 d, 21 e, 21 f, 21 g, and 21 h are arc shapes that are curved along the outer periphery of the light diffusion cover 3, and have two types of large and small.
  • the light diffusion cover 3 may be transparent.
  • a substrate 15 is disposed inside the light diffusion cover 2, and the light source unit 3 is provided on the surface of the substrate 15.
  • the light source unit 3 is provided with four light emitting units 7, 7, 7, 7 on the circumference at equal intervals, and each of the light emitting units 7, 7, 7, 7 is It consists of six LEDs (light emitting diodes) 14 that are aligned.
  • a heat sink 13 which is an example of an object to be cooled (heat radiation promoting portion), is fixed to the back surface of the substrate 15.
  • the heat sink 13 is made of, for example, aluminum or an aluminum alloy. With this heat sink 13, heat generated from the electronic components (not shown) mounted on the LEDs 14 and the substrate 15 can be released, and the temperatures of the LEDs 14 and electronic components can be lowered to extend their lifetime.
  • a stirring unit 10, a casing 11, and a separation unit 16 are provided on the back surface of the substrate 15.
  • the stirring unit 10, the casing 11, the separation unit 16, and the heat sink 13 constitute an embodiment of the cooling device 6.
  • the stirring unit 10 is provided on the side of the heat sink 13 facing the fins.
  • the stirring unit 10 is configured by fixing a moving blade 12 to a rotating disk unit 17.
  • One side of the rotating shaft 19 of the rotating disk portion 17, that is, the first surface faces the fin of the heat sink 13.
  • the moving blade 12 has a flat plate shape and is fixed in a radial direction from the rotating shaft 19 of the rotating disc portion 17 in a radial direction perpendicular to the rotating disc portion 17.
  • One end of nine moving blades 12 is attached to the rotating disk part 17 in close contact with the stirring part 10 of the present embodiment.
  • the rotating disc portion 17 also serves as the casing 11 to eliminate a gap between the moving blade 12 and the rotating disc portion 17. Can improve the ventilation efficiency.
  • the moving blade 12 since the moving blade 12 extends radially from the center of the stirring unit 10, the moving blade 12 can support a large centrifugal force, reducing the weight of the moving blade 12 and the rotational load of the stirring unit 10. Can be reduced.
  • the rotating shaft 19 of the stirring unit 10 is rotated by a motor provided in the driving unit 5.
  • the motor of the drive unit 5 may be an inner rotor type or an outer rotor type.
  • a power supply unit 4 for operating the drive unit 5 is provided above the drive unit 5.
  • separation parts 16 and 16 are provided at a phase of 180 degrees around the outer periphery of the stirring part 10, that is, at opposing positions.
  • the separation parts 16 and 16 are provided on the radially outer side of the rotor blade 12 of the stirring part 10 and are fixed to the casing 11 as shown in FIGS.
  • the casing 11 has a substantially frustoconical shape and covers the surface of the stirring unit 10 on the rotating disk portion 17 side and the outer peripheral side of the stirring unit 10 in the circumferential direction.
  • the casing 11 covers the surface of the stirring unit 10 on the side of the rotating disk 17 so as not to be exposed. Therefore, safety can be ensured and the amount of dust and foreign matter flowing into the stirring unit 10 can be reduced. Can do.
  • the ceiling portion 31 of the casing 11 is slightly larger than the diameter of the rotating disc portion 17 of the stirring unit 10 and is formed so as not to hinder the rotation of the stirring unit 10. Further, the outer peripheral end portion of the ceiling portion 31 of the casing 11 is connected to the curved portion 32 of the casing 11, and the curved portion 32 of the casing 11 is connected to the bottom portion 33 of the casing 11 along the shape of the main body 1. Yes.
  • the bottom portion 33 of the casing 11 has a circular opening at the center, and the disc-shaped substrate 15 shown in FIG. 5 is attached to the opening. Further, the bottom 33 of the casing 11 has air inlets 23a, 23b, 23c, and 23d shown in FIG. 5 that allow air to flow into the cooling device 6, and an air outlet 24a that allows air to flow out of the cooling device 6. 24b, 24c, and 24d are provided.
  • the air inlets 23a, 23b, 23c, and 23d and the air outlets 24a, 24b, 24c, and 24d are provided on the light diffusion cover 2 as shown in FIG. 2 as air guide portions 21a, 21b, 21c, 21d, and 21e, There are two types of large and small arc shapes having the same size as 21f, 21g, and 21h.
  • the cross-sectional shape of 24d is inclined along the shape of the side surface of the casing 11.
  • the cross-sectional shapes of the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h, the air inlets 23a, 23b, 23c, and 23d and the air outlets 24a, 24b, 24c, and 24d are inclined.
  • the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, the air inlets 23a, 23b, 23c, 23d and the air outlets 24a, 24b, 24c, 24d are introduced into the casing 11.
  • the pressure loss of the air that flows in and the air that is discharged outside the casing 11 can be reduced.
  • the shapes, the number of installations, and the like of 24a, 24b, 24c, and 24d are the same, it is not always necessary and can be changed according to the design.
  • the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h shown in FIG. 2, the air inlets 23a, 23b, 23c, and 23d, and the air outlets 24a, 24b, and 24c shown in FIG. 24d in the radial direction is substantially the same as the distance CV2 between the moving blade 12 and the heat sink 13 of the stirring unit 10 shown in FIG.
  • two notches 18 and 18 are provided on the outer peripheral portion of the bottom 33 of the casing 11 at positions facing each other.
  • the notches 18 and 18 are used for passing the electric wiring connected to the LED to the outside of the casing 11.
  • the efficiency of the cooling device can be increased.
  • the air in the vicinity of the outer periphery of the agitating unit 10 and outside the casing 11 is guided by the flow of air in two directions formed inside the casing 11.
  • the air flows into the casing 11 from the air inlets 23a, 23b, 23c, and 23d through the portions 21c, 21d, 21g, and 21h.
  • the inflowed air flows along the substrate 15 and the heat sink 13 and is guided by the separation parts 16 and 16 toward the air discharge ports 24a, 24b, 24c and 24d, and the air guide parts 21a, 21b,
  • the air is discharged from the air outlets 24a, 24b, 24c, and 24d to the outside of the casing 11 through 21e and 21f.
  • the vicinity of the outer peripheral portion of the stirring unit 10 is a region outside the half of the length from the center of the rotating shaft 19 of the moving blade 12 to the distal end in the radial direction of the moving blade 12, and A region on the inner side of the outer peripheral end of the moving blade 12 from the half of the length of the moving blade 12 in the radial direction.
  • a concentric air vortex centered on the rotating shaft 19 of the moving blade 12 formed by the rotation of the moving blade 12 of the stirring unit 10 flows along the surfaces of the substrate 15 and the heat sink 13,
  • the substrate 15 and the heat sink 13 are cooled, and are deviated from the rotational direction of the moving blade 12 by the separation unit 16 to become a flow along the separation unit 16 and from the air discharge ports 24a, 24b, 24c, 24d to the casing 11. Is discharged outside.
  • the vortex generated by the moving blade 12 flows in a direction perpendicular to the rotating shaft 19 of the moving blade 12 and flows along the substrate 15 and the heat sink 13, so that the air is perpendicular to the substrate 15 and the heat sink 13. There is no collision.
  • the stirring unit 10 generates a vortex flow that flows along the substrate 15 and the heat sink 13, and the air inlets 23 a, 23 b, 23 c, 23 d and the air outlets 24 a, 24 b, 24 c, 24 d are arranged on the outer periphery of the stirring unit 10. Therefore, the thickness of the cooling device 6 in the direction of the rotating shaft 19 can be reduced.
  • the eddy current of air formed by the cooling device 6 prevents dust and the like from adhering to the substrate 15 and the heat sink 13, thereby preventing a decrease in heat exchange efficiency between the substrate 15 and the heat sink 13 and the air. be able to.
  • the centrifugal fan 51 when used as a blower of the cooling device, the air flowing in from the axial direction of the centrifugal fan 51 is ejected in the radial direction as shown in FIG. Dust is pressed against 52. Since the moving blade 55 of the centrifugal fan 51 is thick and has a large stagnation point, a strong fluid force (self-cleaning action) toward the outside of the centrifugal fan 51 hardly acts on the dust adhering to the moving blade 55, so that the centrifugal fan Dust accumulates up to a region 53 near the inner end 52 of the 51 moving blade 55.
  • the cross flow fan 71 when used as a blower of the cooling device, air flowing in from a part of the outside of the cross flow fan 71 passes through the inside including the center of the cross flow fan 71 as shown in FIG. , And ejected toward a part of the outer periphery on the opposite side. At this time, the dust adhering to the outer end 73 of the moving blade 75 has a self-cleaning action due to the centrifugal force caused by the rotation of the cross flow fan 71 and the fluid force caused by the air flow. However, the dust flowing into the cross flow fan 71 is pressed against the inner end 72 of the rotor blade 75 and accumulates.
  • the cross flow fan 71 has a large number of the moving blades 75 and the space between the moving blades 75 is narrow, a foreign matter 74 such as a small insect is transferred from the outer end 73 of the moving blade 75 to the blades of the moving blade 75. It accumulates in a clogged form.
  • the cooling device 6 of the present embodiment has a centrifugal force direction and an air separation direction due to the rotation of the moving blade 12 in the portion where the vortex is separated by the separation unit 16. Substantially coincides with each other, a strong fluid force (self-cleaning action) acting on the outer side of the stirring unit acts on the dust 81 and the like adhering to the moving blade 12. Further, since the relative speed between the dust 81 and the moving blade 12 is small between the blades of the moving blade 12, the pressure for pressing the dust 81 and the like against the moving blade 12 is small.
  • the cooling device 6 Since the cooling device 6 has low pressure loss and power loss and has high reliability, the use of the cooling device 6 in an illumination device using the LED 14 minimizes maintenance such as periodic replacement of the cooling device 6. can do. That is, the advantages of the LED 14 that has a significantly longer life than conventional light sources such as light bulbs, fluorescent lamps, and discharge lamps can be utilized to the maximum.
  • the cooling device 6 can be easily discharged even if dust, foreign matter or the like enters the cooling device 6, the air inlet 23a, There is no need to reduce the size of 23b, 23c, 23d, or to attach a filter to the air inlets 23a, 23b, 23c, 23d.
  • the distance CV1 between the ceiling portion 31 of the casing 11 and the rotating disc portion 17 shown in FIG. 3 is preferably 2 to 5 mm.
  • CV1 2 mm.
  • the distance CR1 between the outer peripheral end of the moving blade 12 and the inner diameter of the casing 11 shown in FIG. 6 is preferably 5 to 20 mm.
  • the distance CR2 between the separating portion 16 and the outer peripheral end portion of the rotor blade 12 shown in FIG. 6 is preferably 2 to 10 mm.
  • the curvature radius R of the curved portion 32 of the casing 11 shown in FIG. 3 and the height H of the moving blade 12 of the stirring portion 10 satisfy the relationship of R ⁇ H.
  • the curvature radius R of the curved portion 32 of the casing 11 is equal to the height H of the moving blade 12 or larger than the height H of the moving blade 12, so that the air flowing into the casing 11 and the outside of the casing 11 are discharged. The pressure loss of the generated air can be reduced.
  • two separation parts 16 are provided inside the casing 11.
  • the present invention is not limited to this, and only one separation part 16 may be provided, or three or more separation parts 16 may be provided.
  • a 1/3 arc-shaped air swirl can be formed, so that heat exchange between the substrate 15 and the heat sink 13 is further promoted, and the substrate 15 and the heat sink 13 can be made more efficient. Can be cooled.
  • the vortex flow is approximately one circle, and after approximately one circle rotation from the air inlet 23, it is discharged from the air discharge port 24. Therefore, the warm air flows along the surfaces of the substrate 15 and the heat sink 13 and the cooling efficiency is deteriorated as compared with the case where the number of the separation portions 16 is two or three. It can be used.
  • separation part 16 is provided so that it may be located in the radial direction outer side rather than the moving blade 12 of the stirring part 10, it is not restricted to this,
  • the separating unit 16 may be provided so as to be located on the inner side in the radial direction from the moving blade 12 of the stirring unit 10.
  • the separation unit 16 is provided in a space between the base 15 and the moving blade 12 so as not to hinder the rotation of the stirring unit 10.
  • the heat sink 13 may also serve as the separation unit 16. Since the heat sink 13 also serves as the separation portion 16, the number of parts can be reduced and the manufacturing cost can be reduced.
  • the cooling device 6 has nine moving blades 12 of the stirring unit 10 as shown in FIG. 6, but is not limited to this, and has four moving blades 12 shown in FIGS.
  • the five moving blades 12 shown in FIG. 13 may be provided, the three moving blades 12 shown in FIG. 14 may be provided, or the two moving blades 12 shown in FIG. 15 may be provided. It may have wings 12.
  • the prime number closest to the number satisfying 1 ⁇ 2 ⁇ NH or 2 ⁇ NH is the number of the moving blades 12 of the stirring unit 10. It is more preferable to use the number. This is to prevent noise caused by the phase of the light emitting unit 7 being synchronized. In this embodiment, since there are four light-emitting parts 7, it is more preferable to provide the stirring part 10 to which two, three, or seven moving blades 12 are attached.
  • the flat blade 12 is fixed perpendicularly to the rotating disk 17, but the present invention is not limited to this.
  • the shape of 102 may be curved.
  • the moving blades 12, 101, and 102 it is preferable to form the moving blades 12, 101, and 102 as thin as possible. By thinning the moving blades 12, 101, 102, it is possible to reduce the accumulation of dust and the like at the outer end portions (stagnation points) of the moving blades 12, 101, 102.
  • the separating portions 16 are provided at positions facing each other.
  • the present invention is not limited to this, and for example, the separating portion is formed so as to form a vortex flow of a 1/3 arc shape or a 1/4 arc shape air. 16, 16 may be arranged. Further, both a 2/3 arc shape and a 1/3 arc shape vortex may be formed simultaneously.
  • the heat sink 13 is used, but the heat sink 13 may not be used, and the stirring unit 10 may cause a vortex to flow directly along the substrate 15. At this time, the substrate 15 itself becomes the object to be cooled.
  • the cooling device 6 may not be operated until the temperature inside the casing 11 becomes a certain level or more by using a thermostat or the like. If it does so, power consumption can be reduced rather than operating the cooling device 6 always.
  • an organic EL electrophoton emission
  • the heat sink 13 is used as the object to be cooled (heat radiation promoting portion).
  • the stirring portion 10 may flow vortex directly along the substrate 15 without using the heat sink 13.
  • the cooling device 6 may be provided with an ion generator (not shown).
  • This ion generator is a plasma cluster (registered trademark No. 455823, Japanese Patent No. 3680121), and is a positive ion that is H + (H 2 O) m (m is an arbitrary natural number), and O 2 ⁇ (H 2 O) n (n is An arbitrary natural number) is released.
  • plasma cluster ions adhere to the surface of airborne bacteria and chemically react to generate H2O2 or .OH (hydroxyl radical) which is an active species. Since H2O2 or .OH exhibits extremely strong activity, it can be inactivated and removed by surrounding mold and bacteria that are airborne bacteria.
  • the air can be purified by plasma cluster ions emitted from the ion generator.
  • the ion generator is not limited to the plasma cluster ion generator, and for example, an ion generator that generates normal negative ions, positive ions, or positive and negative ions using a high voltage may be used.
  • the ion generator is installed at a location where ions should be discharged into the air to be discharged from the air discharge ports 24a, 24b, 24c, 24d or the air discharged from the air discharge ports 24a, 24b, 24c, 24d. It can be anywhere as long as it releases.
  • the cooling device 6 is thin and compact, the cooling device 6 is not limited to a lighting device, and can be used for, for example, a heating cooker, video equipment, a semiconductor device, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

The present invention relates to a cooling device and addresses the problem of providing a cooling device which has small pressure loss and low noise and to which a foreign material does not easily adhere. The cooling device (6) is provided with a stirring section (10) for generating concentric swirling currents, a separation section (16) for separating the swirling currents from the stirring section (10), an air inlet (23a, 23b, 23c, 23d) and an air outlet (24a, 24b, 24c, 24d) which are provided near the outer periphery of the stirring section (10), and a heat sink (13) facing the axial direction of the stirring section (10). The cooling device can be used for cooling the rear surface of a substrate (15) having a light source section (3) comprised of an LED mounted on the front surface thereof.

Description

冷却装置およびそれを用いた照明装置Cooling device and lighting device using the same
 この発明は、冷却装置、および、その冷却装置と例えばLED(発光ダイオード)等を用いた照明装置に関する。 The present invention relates to a cooling device and a lighting device using the cooling device and, for example, an LED (light emitting diode).
 従来、冷却装置としては、特開平11-330753号公報(特許文献1)に記載されたものがある。この冷却装置は、軸流ファンを備え、この軸流ファンの軸方向の一方から吸い込んだ空気を、上記軸流ファンの軸方向の他方から、冷却フィンに軸方向に吹き付け、その後、この冷却フィンに沿って径方向に排出するようにしている。 Conventionally, as a cooling device, there is one described in JP-A-11-330753 (Patent Document 1). The cooling device includes an axial fan, and air sucked from one axial direction of the axial fan is blown axially from the other axial direction of the axial fan to the cooling fin, and then the cooling fin. Along the radial direction.
特開平11-330753号公報Japanese Patent Laid-Open No. 11-330753
 しかしながら、上記従来の冷却装置では、軸流ファンからの軸方向の空気の流れを被冷却体である冷却フィンに軸方向に吹き付けて、その後、空気を径方向に排出しているため、方向転換による圧力損失が大きく、また、被冷却体である冷却フィンに空気がぶつかって方向を変えるため大きな騒音が生じるという問題があった。 However, in the above-described conventional cooling device, the axial air flow from the axial fan is blown axially onto the cooling fins that are the objects to be cooled, and then the air is discharged in the radial direction. There is a problem that the pressure loss due to the air is large, and the noise is generated because the air is collided with the cooling fins to be cooled to change the direction.
 また、上記従来の冷却装置は、図18,図19に示すように、空気の入口側の流線が、軸流ファン61の前縁部62に対し常に垂直であるので,空気中の塵埃や昆虫あるいは鳥の羽根等の異物63が、流体力による圧力で前縁部62に圧しつけられていた。さらに、直径約100mm以下の軸流ファンにおいては、図19に示すように、軸芯近傍の動翼64の翼間が狭いため、前縁部62に塵埃等63が蓄積されて、軸流ファン61の動バランスが悪化すると共に、軸流ファンにより吐出される風量が激減し、冷却装置の冷却能力が大幅に低下してしまうという問題があった。 Further, as shown in FIGS. 18 and 19, the conventional cooling device has a streamline on the air inlet side that is always perpendicular to the front edge portion 62 of the axial fan 61. A foreign matter 63 such as an insect or bird's wing was pressed against the front edge 62 by a pressure of fluid force. Further, in the axial fan having a diameter of about 100 mm or less, as shown in FIG. 19, since the space between the blades 64 in the vicinity of the shaft center is narrow, dust or the like 63 is accumulated on the leading edge 62, and the axial fan While the dynamic balance of 61 deteriorates, the amount of air discharged by the axial fan is drastically reduced, and the cooling capacity of the cooling device is greatly reduced.
 また、上記従来の冷却装置を用いた照明装置では、軸流ファンから吹き出される空気の流れの方向が、LEDを搭載した基板に垂直方向であるため、LEDの被冷却体(放熱促進部)あるいはその近傍に空気を流すことができず、冷却力不足で、LEDの寿命が短くなるという問題があった。 In the illumination device using the conventional cooling device, the direction of the air blown from the axial fan is perpendicular to the substrate on which the LED is mounted. Or there was a problem that the air could not flow in the vicinity, the cooling power was insufficient, and the life of the LED was shortened.
 そこで、この発明の課題は、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくい冷却装置を提供し、光源を十分に冷却することができて、寿命の長い照明装置を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to provide a cooling device that has low pressure loss, low noise, and that is difficult for foreign matter such as dust and insects to adhere to it. It is to provide.
 上記課題を解決するため、この発明の冷却装置は、
 複数の回転する動翼を有して、回転軸を中心とする同心円状の渦流を生成する攪拌部と、
 上記攪拌部の上記回転軸の方向の一方の第1面に面する被冷却体と、
 上記攪拌部に、その攪拌部の外周部の近傍から空気を流入させる空気流入口と、
 上記攪拌部の外周部の近傍からの空気を排出する空気排出口と、
 上記攪拌部の上記動翼の回転により形成される空気の上記攪拌部の周方向の渦流を上記攪拌部から分離する分離部と
を備え、
 上記空気流入口から流入した空気が、上記攪拌部の中心を通らないで、上記渦流となって、上記攪拌部の周方向に流れて、上記空気排出口から流出することを特徴とする。
In order to solve the above problems, the cooling device of the present invention is:
A stirring unit having a plurality of rotating blades and generating a concentric vortex centered on the rotation axis;
An object to be cooled facing one first surface in the direction of the rotation axis of the stirring unit;
An air inflow port for allowing air to flow into the stirring unit from the vicinity of the outer periphery of the stirring unit;
An air discharge port for discharging air from the vicinity of the outer peripheral portion of the stirring unit;
A separation unit that separates, from the stirring unit, a vortex in the circumferential direction of the stirring unit of air formed by the rotation of the moving blade of the stirring unit;
The air flowing in from the air inflow port does not pass through the center of the agitation unit, becomes the vortex, flows in the circumferential direction of the agitation unit, and flows out of the air discharge port.
 上記構成によれば、上記攪拌部の動翼の回転により形成される動翼の回転軸を中心とする同心円状の空気の渦流が、被冷却体の表面に沿って流れて、被冷却体を冷却し、そして、分離部により動翼の回転方向から逸らされて、分離部に沿った流れとなって空気排出口に排出される。 According to the above configuration, a concentric air vortex centered on the rotating shaft of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the surface of the cooled object, It cools and is deviated from the rotating direction of the moving blade by the separation part, and flows into the air discharge port as a flow along the separation part.
 このように、上記動翼により生じた渦流は、動翼の回転軸に対して垂直な方向の流れとなり、被冷却体に沿った流れとなるので、被冷却体に空気が垂直にぶつかることがない。 In this way, the vortex generated by the moving blade is a flow in a direction perpendicular to the rotating shaft of the moving blade and flows along the cooled body, so that the air may hit the cooled body vertically. Absent.
 したがって、空気と被冷却体との衝突が少なく、騒音を低減することができる。 Therefore, there is little collision between the air and the object to be cooled, and noise can be reduced.
 また、上記渦流は、被冷却体に沿った流れであって、被冷却体と垂直に衝突することがないから、被冷却体が流れの方向を変えることが少なくて、圧力損失が少なく、動力ロスが少ない。 In addition, the vortex is a flow along the body to be cooled and does not collide with the body to be cooled perpendicularly. Therefore, the body to be cooled hardly changes the direction of the flow, the pressure loss is small, the power There is little loss.
 また、上記攪拌部は、被冷却体に沿って流れる渦流を生成して、空気流入口および空気排出口が攪拌部の外周部の近傍にあるので、この冷却装置の回転軸方向の厚さを薄くすることができる。 Further, the stirring unit generates a vortex flow that flows along the body to be cooled, and the air inlet and the air discharge port are in the vicinity of the outer peripheral portion of the stirring unit. Can be thinned.
 また、上記攪拌部の動翼の回転により、動翼の回転軸を中心とする同心円状の渦流を生成しているので、攪拌部に塵埃や小型の昆虫等の異物が流入しても動翼に付着しにくく、動翼の動バランスの悪化を防止できて、信頼性を高くすることができる。 Further, since the concentric vortex around the rotation axis of the moving blade is generated by the rotation of the moving blade of the stirring unit, even if foreign matter such as dust or small insects flows into the stirring unit, the moving blade It is difficult to adhere to the blade, and the deterioration of the dynamic balance of the rotor blade can be prevented, and the reliability can be increased.
 また、一実施形態の冷却装置では、
 上記攪拌部の回転軸の方向の他方の第2面に面するケーシングを備える。
Moreover, in the cooling device of one embodiment,
A casing facing the other second surface in the direction of the rotation axis of the agitator is provided.
 上記実施形態によれば、上記ケーシングにより上記攪拌部の第2面を覆って露出しないようにできるので、安全を確保でき、かつ、攪拌部の内部に侵入する塵埃や異物の量を低減することができる。 According to the above embodiment, the casing can be covered with the second surface of the stirring unit so as not to be exposed, so that safety can be ensured and the amount of dust and foreign matter entering the stirring unit can be reduced. Can do.
 また、一実施形態の冷却装置では、
 上記分離部を2つまたは3つ有する。
Moreover, in the cooling device of one embodiment,
Two or three separation parts are provided.
 上記実施形態によれば、分離部を2つまたは3つ有するので、略半円弧あるいは1/3円弧状の渦流を形成できるので、被冷却体の熱交換がより促進され、被冷却体をより高効率で冷却することができる。 According to the above embodiment, since two or three separation portions are provided, a substantially semicircular arc or 1 / arc-shaped vortex can be formed, so that heat exchange of the object to be cooled is further promoted, and the object to be cooled is more It can be cooled with high efficiency.
 もし、分離部が1つだけであると、略一円周分の渦流になり、空気流入口から略一円周分回ってから空気排出口から排出されるので、温まった空気が被冷却体の表面に沿って流れて、分離部が2つまたは3つの場合と比べて冷却効率が悪くなるのである。 If there is only one separation part, it will be a vortex for approximately one circle, and after approximately one circle from the air inlet, it will be discharged from the air outlet, so the warm air will be cooled Therefore, the cooling efficiency is deteriorated as compared with the case of two or three separation portions.
 尤も、分離部が1つであっても使用は可能である。 However, even if there is only one separation unit, it can be used.
 また、一実施形態の冷却装置では、
 上記攪拌部は、回転円板部を備え、この回転円板部に上記動翼が固定されている。
Moreover, in the cooling device of one embodiment,
The stirring unit includes a rotating disk part, and the moving blade is fixed to the rotating disk part.
 上記実施形態によれば、上記攪拌部が回転円板部を備え、この回転円板部に動翼が固定されているので、この回転円板部がケーシングの役目もして、動翼と回転円板部との間に隙間をなくすることができ、送風効率を向上できる。 According to the embodiment, the stirring unit includes the rotating disk part, and the moving blade is fixed to the rotating disk part. Therefore, the rotating disk part also serves as a casing, and the moving blade and the rotating circle are used. A gap can be eliminated between the plate portion and the air blowing efficiency.
 また、一実施形態の冷却装置では、
 上記攪拌部の上記動翼が、上記攪拌部の中心から径方向に放射状に延びている。
Moreover, in the cooling device of one embodiment,
The rotor blades of the stirring unit extend radially from the center of the stirring unit in the radial direction.
 上記実施形態によれば、上記攪拌部の上記動翼が、上記攪拌部の中心から径方向に放射状に延びているので、動翼が大きな遠心力を支持することができ、動翼を軽量化して攪拌部の回転負荷を低減することができる。 According to the embodiment, since the moving blades of the stirring unit extend radially from the center of the stirring unit, the moving blades can support a large centrifugal force, and the moving blades are reduced in weight. Thus, the rotational load of the stirring unit can be reduced.
 また、一実施形態の冷却装置では、
 上記動翼の回転方向の前面が凹面である。
Moreover, in the cooling device of one embodiment,
The front surface in the rotational direction of the moving blade is a concave surface.
 上記実施形態によれば、上記動翼の回転方向の前面が凹面であるので、大量の空気を搬送して攪拌部の渦流を生成する能力を高めることができ、冷却装置の冷却能力を向上することができる。 According to the embodiment, since the front surface in the rotation direction of the moving blade is concave, it is possible to increase the ability to convey a large amount of air and generate vortex flow in the agitating unit, and to improve the cooling ability of the cooling device. be able to.
 尤も、上記動翼の回転方向の前面が凸面であっても使用可能である。 However, it can be used even if the front surface in the rotational direction of the moving blade is convex.
 また、一実施形態の冷却装置では、上記空気排出口から排出されるべき空気、または、上記空気排出口から排出された空気にイオンを放出するイオン発生部を備える。 Also, the cooling device according to an embodiment includes an ion generation unit that discharges ions to the air to be discharged from the air discharge port or to the air discharged from the air discharge port.
 上記実施形態によれば、上記イオン発生器から放出されるイオンによって空気浄化をすることができる。このイオン発生器は、負イオンのみ、陽イオンのみ、あるいは正負のイオンを発生するものであってもよい。 According to the above embodiment, the air can be purified by the ions released from the ion generator. This ion generator may generate only negative ions, only positive ions, or positive and negative ions.
 この発明の照明装置は、
 光源部を表面に搭載した基板と、
 上記基板の裏面側に配置されると共に、複数の回転する動翼を有して、回転軸を中心とする同心円状であって上記基板の裏面に沿う方向に流れる渦流を生成する攪拌部と、
 上記攪拌部に、その攪拌部の外周部の近傍から空気を流入させる空気流入口と、
 上記攪拌部の外周部の近傍からの空気を排出する空気排出口と、
 上記攪拌部の上記動翼の回転により形成される空気の上記攪拌部の周方向の渦流を上記攪拌部から分離する分離部と
を備え、
 上記空気流入口から流入した空気が、上記攪拌部の中心を通らないで、上記渦流となって、上記攪拌部の周方向、かつ、上記基板の裏面に沿う方向に流れて、上記空気排出口から流出することを特徴とする。
The lighting device of the present invention is
A substrate with a light source mounted on the surface;
A stirring unit that is disposed on the back side of the substrate and has a plurality of rotating blades, and generates a vortex that is concentric around the rotation axis and flows in a direction along the back side of the substrate;
An air inflow port for allowing air to flow into the stirring unit from the vicinity of the outer periphery of the stirring unit;
An air discharge port for discharging air from the vicinity of the outer peripheral portion of the stirring unit;
A separation unit that separates the vortex flow in the circumferential direction of the stirring unit of the air formed by the rotation of the moving blade of the stirring unit from the stirring unit;
The air that has flowed in from the air inlet does not pass through the center of the agitating unit, becomes the vortex, flows in the circumferential direction of the agitating unit and in the direction along the back surface of the substrate, and the air exhaust port It is characterized by flowing out from.
 上記構成によれば、上記攪拌部の動翼の回転により形成される動翼の回転軸を中心とする同心円状の空気の渦流が、基板の裏面に沿って流れて、基板の裏面を冷却し、そして、分離部により動翼の回転方向から逸らされて、分離部に沿った流れとなって空気排出口に排出される。 According to the above configuration, a concentric air swirl around the rotation axis of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the back surface of the substrate to cool the back surface of the substrate. And it is deviated from the rotation direction of a moving blade by a separation part, becomes a flow along a separation part, and is discharged to an air discharge port.
 このように、上記動翼により生じた渦流は、動翼の回転軸に対して垂直な方向の流れとなり、基板の裏面に沿った流れとなるので、基板の裏面に空気が垂直にぶつかることがない。したがって、空気と基板の裏面との衝突が少なく、騒音を低減することができる。照明装置においては、冷却風による騒音が、重大な問題となるが、本発明は、この問題を解消したのである。 In this way, the vortex generated by the moving blades flows in a direction perpendicular to the rotating shaft of the moving blades, and flows along the back surface of the substrate, so that air may hit the back surface of the substrate vertically. Absent. Therefore, there is little collision between air and the back surface of the substrate, and noise can be reduced. In the lighting device, noise due to cooling air becomes a serious problem, but the present invention has solved this problem.
 また、上記渦流は、基板の裏面に沿った流れであって、基板の裏面と垂直に衝突することがないから、基板の裏面が空気の流れの方向を変えることが少なくて、圧力損失が少なく、動力ロスが少なく、省エネを達成できる。 Further, the vortex flows along the back surface of the substrate and does not collide perpendicularly with the back surface of the substrate. Therefore, the back surface of the substrate rarely changes the direction of air flow, and the pressure loss is small. With less power loss, energy saving can be achieved.
 また、上記攪拌部の動翼の回転により形成される動翼の回転軸を中心とする同心円状の空気の渦流を生成しているので、攪拌部に塵埃や小型の昆虫等の異物が流入しても動翼に付着しにくく、動翼の動バランスの悪化を防止でき、かつ、信頼性を高くすることができる。したがって、照明装置の寿命を長くすることができる。 In addition, since a concentric air swirl around the rotation axis of the moving blade formed by the rotation of the moving blade of the stirring unit is generated, foreign matters such as dust and small insects flow into the stirring unit. However, it is difficult to adhere to the moving blade, the deterioration of the dynamic balance of the moving blade can be prevented, and the reliability can be increased. Therefore, the lifetime of the lighting device can be extended.
 また、一実施形態の照明装置では、
 上記攪拌部の上記基板方向の第1面に面すると共に、上記基板の裏面側に設けられた放熱促進部を備える。
In the lighting device according to the embodiment,
While facing the 1st surface of the said stirring part of the said board | substrate direction, the heat radiation promotion part provided in the back surface side of the said board | substrate is provided.
 上記実施形態によれば、上記攪拌部の動翼の回転により形成される動翼の回転軸を中心とする同心円状の空気の渦流が、放熱促進部に沿って流れて、放熱促進部を冷却するので、照明装置の冷却効率をさらに高めることができる。 According to the embodiment, the concentric air vortex centered on the rotating shaft of the moving blade formed by the rotation of the moving blade of the stirring unit flows along the heat dissipation promoting portion to cool the heat dissipation promoting portion. Therefore, the cooling efficiency of the lighting device can be further increased.
 また、一実施形態の照明装置では、
 上記攪拌部の上記基板側の第1面とは反対側の第2面に面すると共に、上記攪拌部を収納するケーシングを備える。
In the lighting device according to the embodiment,
A casing that faces the second surface of the stirring unit opposite to the first surface on the substrate side and that houses the stirring unit is provided.
 上記実施形態によれば、上記ケーシングにより上記攪拌部の上記基板側の第1面とは反対側の第2面を覆って露出しないようにできるので、安全を確保でき、かつ、攪拌部の内部に流入する塵埃や異物の量を低減することができる。 According to the above embodiment, the casing covers the second surface opposite to the first surface on the substrate side of the stirring unit so as not to be exposed, so that safety can be ensured and the inside of the stirring unit can be secured. It is possible to reduce the amount of dust and foreign matter that flows into the battery.
 また、一実施形態の照明装置では、
 上記空気流入口および上記空気排出口が、上記ケーシングに設けられている。
In the lighting device according to the embodiment,
The air inlet and the air outlet are provided in the casing.
 上記実施形態によれば、上記ケーシングに上記空気流入口および上記空気排出口が設けられているので、ケーシング外部の空気をケーシング内部に流入させて、その後、ケーシング外部に排出できるので、より効果的に基板の裏面および放熱促進部を冷却することができる。 According to the embodiment, since the air inlet and the air outlet are provided in the casing, air outside the casing can be introduced into the casing and then discharged outside the casing. In addition, the back surface of the substrate and the heat radiation promoting portion can be cooled.
 また、一実施形態の照明装置では、
 上記空気流入口および上記空気排出口が、上記攪拌部の中心方向に向かって傾斜している。
In the lighting device according to the embodiment,
The air inlet and the air outlet are inclined toward the central direction of the stirring unit.
 上記実施形態によれば、上記空気流入口および上記空気排出口を上記攪拌部の中心方向に向かって傾斜させることで、空気流入口からケーシング内部に流入する空気と、空気排出口から排出される空気の圧力損失を低減することができる。 According to the embodiment, by inclining the air inlet and the air outlet toward the center of the stirring unit, air flowing into the casing from the air inlet and discharged from the air outlet. Air pressure loss can be reduced.
 また、一実施形態の照明装置では、
 上記攪拌部と上記放熱促進部との間の距離が、上記空気流入口および上記空気排出口の径方向の幅と略同等である。
In the lighting device according to the embodiment,
The distance between the stirring part and the heat radiation promoting part is substantially equal to the radial width of the air inlet and the air outlet.
 上記実施形態によれば、上記空気流入口および上記空気排出口の幅と略同等であるので、空気の流路面積の変化を最小にして、流動損失を少なくして効率を向上できる。 According to the above embodiment, since the width of the air inlet and the air outlet is substantially the same, the change in the air passage area can be minimized, the flow loss can be reduced, and the efficiency can be improved.
 また、一実施形態の照明装置では、
 上記攪拌部は、回転円板部を備え、
 上記動翼の上記基盤に面する面とは反対側の面が、上記回転円板部に固定されている。
In the lighting device according to the embodiment,
The stirring unit includes a rotating disk part,
The surface of the moving blade opposite to the surface facing the base is fixed to the rotating disk portion.
 上記実施形態によれば、上記攪拌部は、回転円板部を備え、上記動翼の上記基盤に面する面とは反対側の面が、上記回転円板部に固定されているので、この回転円板部がケーシングの役目もして、動翼と回転円板部との間に隙間をなくすることができ、送風効率を向上できる。 According to the embodiment, the stirring unit includes the rotating disk part, and the surface of the moving blade opposite to the surface facing the base is fixed to the rotating disk part. The rotating disk part also serves as a casing, so that a gap can be eliminated between the moving blade and the rotating disk part, and the blowing efficiency can be improved.
 また、一実施形態の照明装置では、
 上記光源部は発光ダイオードを含んでいる。
In the lighting device according to the embodiment,
The light source unit includes a light emitting diode.
 上記実施形態によれば、光源部に発光ダイオードを含んでいるので、光源部の寿命を大幅に伸ばすことができる。 According to the above embodiment, since the light source part includes the light emitting diode, the life of the light source part can be greatly extended.
 また、一実施形態の照明装置では、
 上記ケーシングの外周部に切欠または穴を有し、この切欠または穴に、上記光源部に接続された電気配線が通っている。
In the lighting device according to the embodiment,
The casing has a notch or hole in the outer peripheral portion, and an electrical wiring connected to the light source portion passes through the notch or hole.
 上記実施形態によれば、上記切欠からも空気の流出入が可能なため、照明装置の冷却効率を高めることができる。 According to the above embodiment, since the air can flow in and out from the notch, the cooling efficiency of the lighting device can be increased.
 以上より明らかなように、この発明によれば、圧力損失が少なく、騒音が小さく、塵埃や昆虫等の異物が付着しにくく、かつ、厚さの薄い冷却装置を実現することができる。 As can be seen from the above, according to the present invention, a cooling device with low pressure loss, low noise, hardly adhering foreign matter such as dust and insects, and a thin thickness can be realized.
 また、この発明の照明装置によれば、騒音が小さく、昆虫等の異物が入り込みにくく、かつ、省エネを達成できる上に、光源を十分に冷却できて、寿命の長い照明装置を実現することができる。 In addition, according to the lighting device of the present invention, it is possible to realize a lighting device that has low noise, is difficult for foreign matters such as insects to enter, can achieve energy saving, can sufficiently cool the light source, and has a long life. it can.
図1は、この発明の一実施形態の冷却装置を備える照明装置の斜視図である。FIG. 1 is a perspective view of a lighting device including a cooling device according to an embodiment of the present invention. 図2は、上記冷却装置を備える照明装置の底面図である。FIG. 2 is a bottom view of the lighting device including the cooling device. 図3は、上記冷却装置を備える照明装置を示す図2のE-E線から見た縦断面図である。FIG. 3 is a longitudinal sectional view taken along line EE of FIG. 2 showing an illuminating device provided with the cooling device. 図4は、上記冷却装置を備える照明装置を示す図2のB-B線から見た縦断面図である。FIG. 4 is a longitudinal sectional view taken along line BB of FIG. 2 showing an illuminating device provided with the cooling device. 図5は、上記冷却装置を備える照明装置を示す図4のD-D線から見た横断面図である。FIG. 5 is a cross-sectional view taken along line DD of FIG. 4 showing an illuminating device provided with the cooling device. 図6は、上記冷却装置を備える照明装置を示す図4のC-C線から見た横断面図である。6 is a cross-sectional view taken along line CC of FIG. 4 showing an illuminating device provided with the cooling device. 図7は、上記冷却装置の攪拌部で発生する渦流を示す平面の模式図である。FIG. 7 is a schematic plan view showing a vortex generated in the stirring unit of the cooling device. 図8は、上記冷却装置の攪拌部に分離部を2つ設けた状態を示す平面の模式図である。FIG. 8 is a schematic plan view showing a state in which two separation units are provided in the stirring unit of the cooling device. 図9は、上記冷却装置を備える照明装置の空気の流れを示す斜視図である。FIG. 9 is a perspective view illustrating the air flow of the lighting device including the cooling device. 図10は、分離部を2つ有する上記冷却装置に塵埃等が流入した状態を示す平面の模式図である。FIG. 10 is a schematic plan view showing a state where dust or the like has flowed into the cooling device having two separation portions. 図11は、分離部を2つ有する上記冷却装置に塵埃等が流出した状態を示す平面の模式図である。FIG. 11 is a schematic plan view showing a state in which dust or the like has flowed into the cooling device having two separation portions. 図12は、上記冷却装置の攪拌部に分離部を1つ設けた状態を示す平面の模式図である。FIG. 12 is a schematic plan view showing a state where one separation unit is provided in the stirring unit of the cooling device. 図13は、5枚の動翼を有する攪拌部の斜視図を示す。FIG. 13 shows a perspective view of a stirring unit having five moving blades. 図14は、3枚の動翼を有する攪拌部の斜視図を示す。FIG. 14 shows a perspective view of a stirring unit having three blades. 図15は、2枚の動翼を有する攪拌部の斜視図を示す。FIG. 15 is a perspective view of a stirring unit having two blades. 図16は、動翼が時計回りに湾曲した攪拌部の平面図を示す。FIG. 16 is a plan view of the stirring unit in which the moving blade is curved clockwise. 図17は、動翼が反時計回りに湾曲した攪拌部の平面図を示す。FIG. 17 is a plan view of the stirring unit in which the moving blade is curved counterclockwise. 図18は、軸流ファンの側面図を示す。FIG. 18 shows a side view of the axial fan. 図19は、軸流ファンの平面図を示す。FIG. 19 is a plan view of the axial fan. 図20は、遠心ファンの平面図を示す。FIG. 20 shows a plan view of the centrifugal fan. 図21は、クロスフローファンの平面図を示す。FIG. 21 is a plan view of the cross flow fan.
 以下、この発明の冷却装置および照明装置を図示の実施形態により詳細に説明する。 Hereinafter, the cooling device and the lighting device of the present invention will be described in detail with reference to the illustrated embodiments.
 この実施形態の冷却装置は、図1に示すように、本体1と光拡散カバー2とを備える照明装置に設けている。 The cooling device of this embodiment is provided in a lighting device including a main body 1 and a light diffusion cover 2 as shown in FIG.
 上記本体1は、底部が開口していて、中央部から開口部側に向かって漸次広がり、指数曲線や双曲線等の凹曲線を回転して生成できる回転凹曲面の外周面を有する。また、上記本体1の開口側は、円筒形状で内側が段部になっていて、この段部に光拡散カバー2を嵌め込んで固定している。 The main body 1 has an outer peripheral surface having a rotating concave curved surface that is open at the bottom, gradually spreads from the center toward the opening, and can be generated by rotating a concave curve such as an exponential curve or a hyperbola. The opening side of the main body 1 is cylindrical and has a step inside, and the light diffusion cover 2 is fitted and fixed to the step.
 上記光拡散カバー2は、図2に示すように、半透明の平面視円板形状で、導風口21a,21b,21c,21d,21e,21f,21g,21hを有する。この導風口21a,21b,21c,21d,21e,21f,21g,21hは、光拡散カバー3の外周に沿って湾曲した円弧状で、大小2つの種類を有している。なお、上記光拡散カバー3は、透明であってもよい。 As shown in FIG. 2, the light diffusing cover 2 has a translucent planer disk shape and has air inlets 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h. The air guide holes 21 a, 21 b, 21 c, 21 d, 21 e, 21 f, 21 g, and 21 h are arc shapes that are curved along the outer periphery of the light diffusion cover 3, and have two types of large and small. The light diffusion cover 3 may be transparent.
 図3に示すように、上記光拡散カバー2の内側には、基板15を配置していて、この基板15の表面に光源部3を設けている。上記光源部3は、図5に示すように、4つの発光部7,7,7,7を円周上に等間隔に設けていて、この発光部7,7,7,7の各々は、それぞれ整列された6個のLED(発光ダイオード)14からなっている。 As shown in FIG. 3, a substrate 15 is disposed inside the light diffusion cover 2, and the light source unit 3 is provided on the surface of the substrate 15. As shown in FIG. 5, the light source unit 3 is provided with four light emitting units 7, 7, 7, 7 on the circumference at equal intervals, and each of the light emitting units 7, 7, 7, 7 is It consists of six LEDs (light emitting diodes) 14 that are aligned.
 図3に示すように、上記基板15の裏面には、被冷却体(放熱促進部)の一例であるヒートシンク13を固定している。このヒートシンク13は、例えば、アルミニウムやアルミニウム合金等から形成している。このヒートシンク13によって、LED14や基板15に搭載された電子部品(図示せず)から発生する熱を放出して、LED14や電子部品の温度を下げて、それらの寿命を長くすることができる。 As shown in FIG. 3, a heat sink 13, which is an example of an object to be cooled (heat radiation promoting portion), is fixed to the back surface of the substrate 15. The heat sink 13 is made of, for example, aluminum or an aluminum alloy. With this heat sink 13, heat generated from the electronic components (not shown) mounted on the LEDs 14 and the substrate 15 can be released, and the temperatures of the LEDs 14 and electronic components can be lowered to extend their lifetime.
 また、上記基板15の裏面には、攪拌部10とケーシング11と分離部16(図4を参照)とを設けている。上記攪拌部10、ケーシング11、分離部16およびヒートシンク13は、冷却装置6の一実施形態を構成する。 Further, on the back surface of the substrate 15, a stirring unit 10, a casing 11, and a separation unit 16 (see FIG. 4) are provided. The stirring unit 10, the casing 11, the separation unit 16, and the heat sink 13 constitute an embodiment of the cooling device 6.
 上記攪拌部10は、ヒートシンク13のフィンに面する側に設けている。この攪拌部10は、回転円板部17に動翼12を固定してなる。上記回転円板部17の回転軸19の一方側、すなわち第1面は、ヒートシンク13のフィンに面している。 The stirring unit 10 is provided on the side of the heat sink 13 facing the fins. The stirring unit 10 is configured by fixing a moving blade 12 to a rotating disk unit 17. One side of the rotating shaft 19 of the rotating disk portion 17, that is, the first surface faces the fin of the heat sink 13.
 上記動翼12は、図6に示すように、平板形状で、上記回転円板部17の回転軸19から径方向に放射状に、回転円板部17に対し垂直に固定している。本実施形態の攪拌部10には、9枚の動翼12の一端を回転円板部17に密着させて取り付けている。 As shown in FIG. 6, the moving blade 12 has a flat plate shape and is fixed in a radial direction from the rotating shaft 19 of the rotating disc portion 17 in a radial direction perpendicular to the rotating disc portion 17. One end of nine moving blades 12 is attached to the rotating disk part 17 in close contact with the stirring part 10 of the present embodiment.
 上記動翼12の一端が回転円板部17に密着しているので、この回転円板部17がケーシング11の役目もして、動翼12と回転円板部17との間に隙間をなくすことができ、送風効率を向上できる。 Since one end of the moving blade 12 is in close contact with the rotating disc portion 17, the rotating disc portion 17 also serves as the casing 11 to eliminate a gap between the moving blade 12 and the rotating disc portion 17. Can improve the ventilation efficiency.
 また、上記動翼12が攪拌部10の中心から径方向に放射状に延びているので、動翼12が大きな遠心力を支持することができ、動翼12を軽量化して攪拌部10の回転負荷を低減することができる。 Further, since the moving blade 12 extends radially from the center of the stirring unit 10, the moving blade 12 can support a large centrifugal force, reducing the weight of the moving blade 12 and the rotational load of the stirring unit 10. Can be reduced.
 上記攪拌部10の回転軸19は、駆動部5に設けたモータにより回転する。この駆動部5のモータは、インナーロータのタイプであっても、アウターロータのタイプであってもよい。また、駆動部5の上側には、駆動部5を作動させるための電源部4を設けている。 The rotating shaft 19 of the stirring unit 10 is rotated by a motor provided in the driving unit 5. The motor of the drive unit 5 may be an inner rotor type or an outer rotor type. A power supply unit 4 for operating the drive unit 5 is provided above the drive unit 5.
 また、図6に示すように、上記攪拌部10の外周囲の180度の位相、つまり対向する位置に分離部16,16を設けている。この分離部16,16は、攪拌部10の動翼12の径方向外側に設けていて、図4,6に示すように、ケーシング11に固定している。 Further, as shown in FIG. 6, separation parts 16 and 16 are provided at a phase of 180 degrees around the outer periphery of the stirring part 10, that is, at opposing positions. The separation parts 16 and 16 are provided on the radially outer side of the rotor blade 12 of the stirring part 10 and are fixed to the casing 11 as shown in FIGS.
 図3に示すように、上記ケーシング11は、略円錐台形状で、攪拌部10の回転円板部17側の面と攪拌部10の周方向の外周側を覆っている。このケーシング11により攪拌部10の回転円板部17側の面を覆って露出しないようにできるので、安全を確保でき、かつ、攪拌部10の内部に流入する塵埃や異物の量を低減することができる。 As shown in FIG. 3, the casing 11 has a substantially frustoconical shape and covers the surface of the stirring unit 10 on the rotating disk portion 17 side and the outer peripheral side of the stirring unit 10 in the circumferential direction. The casing 11 covers the surface of the stirring unit 10 on the side of the rotating disk 17 so as not to be exposed. Therefore, safety can be ensured and the amount of dust and foreign matter flowing into the stirring unit 10 can be reduced. Can do.
 上記ケーシング11の天井部31は、攪拌部10の回転円板部17の直径よりもやや大きく、攪拌部10の回転の妨げにならないように形成している。また、上記ケーシング11の天井部31の外周端部は、ケーシング11の湾曲部32に繋がっていて、このケーシング11の湾曲部32は、本体1の形状に沿ってケーシング11の底部33に繋がっている。 The ceiling portion 31 of the casing 11 is slightly larger than the diameter of the rotating disc portion 17 of the stirring unit 10 and is formed so as not to hinder the rotation of the stirring unit 10. Further, the outer peripheral end portion of the ceiling portion 31 of the casing 11 is connected to the curved portion 32 of the casing 11, and the curved portion 32 of the casing 11 is connected to the bottom portion 33 of the casing 11 along the shape of the main body 1. Yes.
 上記ケーシング11の底部33は、図3に示すように、中央部が一部円形状に開口していて、この開口部に図5に示す円板形状の基板15を取り付けている。また、上記ケーシング11の底部33には、冷却装置6内部に空気を流入させる図5に示す空気流入口23a,23b,23c,23dと、冷却装置6外部に空気を流出させる空気排出口24a,24b,24c,24dを設けている。この空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dは、上記光拡散カバー2に設けている図2に示す導風部21a,21b,21c,21d,21e,21f,21g,21hと同じ大きさの円弧形状で、大小2つの種類がある。 As shown in FIG. 3, the bottom portion 33 of the casing 11 has a circular opening at the center, and the disc-shaped substrate 15 shown in FIG. 5 is attached to the opening. Further, the bottom 33 of the casing 11 has air inlets 23a, 23b, 23c, and 23d shown in FIG. 5 that allow air to flow into the cooling device 6, and an air outlet 24a that allows air to flow out of the cooling device 6. 24b, 24c, and 24d are provided. The air inlets 23a, 23b, 23c, and 23d and the air outlets 24a, 24b, 24c, and 24d are provided on the light diffusion cover 2 as shown in FIG. 2 as air guide portions 21a, 21b, 21c, 21d, and 21e, There are two types of large and small arc shapes having the same size as 21f, 21g, and 21h.
 また、図2に示すように、上記導風部21a,21b,21c,21d,21e,21f,21g,21hと、空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dの断面形状は、ケーシング11側面の形状に沿って傾斜している。このように、導風部21a,21b,21c,21d,21e,21f,21g,21hと、空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dの断面形状を傾斜させることで、導風部21a,21b,21c,21d,21e,21f,21g,21hと、空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dからケーシング11内部に流入する空気と、ケーシング11外部に排出される空気の圧力損失を低減することができる。なお、光拡散カバー2に設けている導風部21a,21b,21c,21d,21e,21f,21g,21hと、ケーシング11に設けている空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dの形状、設置個数等は同じにするのが好ましいが、必ずしも必要ではなく、設計に応じてそれぞれ変更可能であることは勿論である。 Further, as shown in FIG. 2, the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, the air inlets 23a, 23b, 23c, 23d and the air outlets 24a, 24b, 24c, The cross-sectional shape of 24d is inclined along the shape of the side surface of the casing 11. Thus, the cross-sectional shapes of the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h, the air inlets 23a, 23b, 23c, and 23d and the air outlets 24a, 24b, 24c, and 24d are inclined. By doing so, the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, the air inlets 23a, 23b, 23c, 23d and the air outlets 24a, 24b, 24c, 24d are introduced into the casing 11. The pressure loss of the air that flows in and the air that is discharged outside the casing 11 can be reduced. Note that the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h provided in the light diffusion cover 2, the air inlets 23a, 23b, 23c, 23d provided in the casing 11 and the air outlets. Although it is preferable that the shapes, the number of installations, and the like of 24a, 24b, 24c, and 24d are the same, it is not always necessary and can be changed according to the design.
 また、図2に示す上記導風部21a,21b,21c,21d,21e,21f,21g,21hと、図5に示す空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dの径方向の幅hが、図3に示す攪拌部10の動翼12とヒートシンク13との間の距離CV2と略同じであるようにしている。上記導風部21a,21b,21c,21d,21e,21f,21g,21hと、空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dの径方向の幅hと、攪拌部10の動翼12とヒートシンク13との間の距離CV2とが略同じ大きさであるので、空気の流路面積の変化を最小にして、流動損失を少なくして効率を向上できる。 Further, the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, and 21h shown in FIG. 2, the air inlets 23a, 23b, 23c, and 23d, and the air outlets 24a, 24b, and 24c shown in FIG. 24d in the radial direction is substantially the same as the distance CV2 between the moving blade 12 and the heat sink 13 of the stirring unit 10 shown in FIG. The radial direction width h of the air guide portions 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h, the air inlets 23a, 23b, 23c, 23d and the air outlets 24a, 24b, 24c, 24d, Since the distance CV2 between the moving blade 12 and the heat sink 13 of the stirring unit 10 is approximately the same size, the change in the air flow path area can be minimized, the flow loss can be reduced, and the efficiency can be improved.
 図6に示すように、上記ケーシング11の底部33の外周部には、2つの切欠18,18を対向する位置に設けている。この切欠18,18は、LEDに接続された電気配線をケーシング11の外部に通すために用いられる。また、上記切欠18,18からも空気の流出入が可能なため、冷却装置の効率を高めることができる。 As shown in FIG. 6, two notches 18 and 18 are provided on the outer peripheral portion of the bottom 33 of the casing 11 at positions facing each other. The notches 18 and 18 are used for passing the electric wiring connected to the LED to the outside of the casing 11. In addition, since air can flow in and out from the notches 18 and 18, the efficiency of the cooling device can be increased.
 上記構成の照明装置を動作させると、基板15に搭載したLED14や電子部品から熱が発生する。このLED14や電子部品から発生した熱は、基板15を介してヒートシンク13に伝わる。 When the lighting device having the above configuration is operated, heat is generated from the LEDs 14 and the electronic components mounted on the substrate 15. Heat generated from the LEDs 14 and the electronic components is transmitted to the heat sink 13 through the substrate 15.
 一方、上記冷却装置6の駆動部5へ電源部4から電力供給がされ、駆動部5が攪拌部10を回転させる。そうすると、図7に示すように、ケーシング11内部に攪拌部10の回転軸19を中心とする同心円状の空気の渦流が発生する。なお、動翼12は、図6に示すように、実際は9枚であるが、図7は、説明の便宜上、分かりやすく4枚にしている。 Meanwhile, power is supplied from the power supply unit 4 to the drive unit 5 of the cooling device 6, and the drive unit 5 rotates the stirring unit 10. Then, as shown in FIG. 7, concentric air swirl around the rotating shaft 19 of the stirring unit 10 is generated inside the casing 11. As shown in FIG. 6, the number of the moving blades 12 is actually nine, but FIG. 7 shows four blades for easy understanding.
 そして、図8に示すように、上記攪拌部10の動翼12の回転により形成される動翼12の回転軸19を中心とする同心円状の空気の渦流が、分離部16,16により動翼12の回転方向から逸らされて、分離部16,16に沿った流れとなる。そのため、ケーシング11内部には、流れる方向の異なる空気の流れが2方向に形成される。 Then, as shown in FIG. 8, concentric air vortex flow around the rotating shaft 19 of the moving blade 12 formed by the rotation of the moving blade 12 of the stirring unit 10 is caused by the separating portions 16 and 16 to move the moving blade. Deviated from the twelve rotation directions, the flow along the separating parts 16, 16 results. Therefore, in the casing 11, air flows having different flow directions are formed in two directions.
 このケーシング11内部に形成された2方向の空気の流れによって、図9に示すように、攪拌部10の外周部の近傍、かつ、ケーシング11の外部にある空気が、光拡散部2の導風部21c,21d,21g,21hを介して、空気流入口23a,23b,23c,23dからケーシング11内部に流入する。この流入した空気は、基板15およびヒートシンク13に沿って流れ、分離部16、16に案内されて空気排出口24a,24b,24c,24dに向かい、光拡散部2の導風部21a,21b,21e,21fを介して、空気排出口24a,24b,24c,24dからケーシング11外部に排出される。 As shown in FIG. 9, the air in the vicinity of the outer periphery of the agitating unit 10 and outside the casing 11 is guided by the flow of air in two directions formed inside the casing 11. The air flows into the casing 11 from the air inlets 23a, 23b, 23c, and 23d through the portions 21c, 21d, 21g, and 21h. The inflowed air flows along the substrate 15 and the heat sink 13 and is guided by the separation parts 16 and 16 toward the air discharge ports 24a, 24b, 24c and 24d, and the air guide parts 21a, 21b, The air is discharged from the air outlets 24a, 24b, 24c, and 24d to the outside of the casing 11 through 21e and 21f.
 なお、この明細書では、攪拌部10の外周部の近傍とは、動翼12の回転軸19の中心から動翼12の半径方向先端迄の長さの半分よりも外側の領域で、かつ、動翼12の外周端部から動翼12の半径方向の上記長さの半分よりも内側の領域をいう。 In this specification, the vicinity of the outer peripheral portion of the stirring unit 10 is a region outside the half of the length from the center of the rotating shaft 19 of the moving blade 12 to the distal end in the radial direction of the moving blade 12, and A region on the inner side of the outer peripheral end of the moving blade 12 from the half of the length of the moving blade 12 in the radial direction.
 このように、上記攪拌部10の動翼12の回転により形成される動翼12の回転軸19を中心とする同心円状の空気の渦流が、基板15およびヒートシンク13の表面に沿って流れて、基板15およびヒートシンク13を冷却し、そして、分離部16により動翼12の回転方向から逸らされて、分離部16に沿った流れとなって、空気排出口24a,24b,24c,24dからケーシング11の外部に排出される。 Thus, a concentric air vortex centered on the rotating shaft 19 of the moving blade 12 formed by the rotation of the moving blade 12 of the stirring unit 10 flows along the surfaces of the substrate 15 and the heat sink 13, The substrate 15 and the heat sink 13 are cooled, and are deviated from the rotational direction of the moving blade 12 by the separation unit 16 to become a flow along the separation unit 16 and from the air discharge ports 24a, 24b, 24c, 24d to the casing 11. Is discharged outside.
 上記動翼12により生じた渦流は、動翼12の回転軸19に対して垂直な方向の流れとなり、基板15およびヒートシンク13に沿った流れとなるので、基板15およびヒートシンク13に空気が垂直にぶつかることがない。 The vortex generated by the moving blade 12 flows in a direction perpendicular to the rotating shaft 19 of the moving blade 12 and flows along the substrate 15 and the heat sink 13, so that the air is perpendicular to the substrate 15 and the heat sink 13. There is no collision.
 したがって、空気と基板15およびヒートシンク13との衝突が少なく、騒音を低減することができ、また、上記渦流は、基板15およびヒートシンク13に沿った流れであって、基板15およびヒートシンク13と垂直に衝突することがないから、基板15およびヒートシンク13が流れの方向を変えることが少なくて、圧力損失が少なく、動力ロスが少ない。 Therefore, there is little collision between the air and the substrate 15 and the heat sink 13, noise can be reduced, and the vortex is a flow along the substrate 15 and the heat sink 13, and is perpendicular to the substrate 15 and the heat sink 13. Since there is no collision, the substrate 15 and the heat sink 13 rarely change the direction of flow, the pressure loss is small, and the power loss is small.
 また、上記攪拌部10は、基板15およびヒートシンク13に沿って流れる渦流を生成して、空気流入口23a,23b,23c,23dおよび空気排出口24a,24b,24c,24dが攪拌部10の外周部の近傍にあるので、この冷却装置6の回転軸19方向の厚さを薄くすることができる。 The stirring unit 10 generates a vortex flow that flows along the substrate 15 and the heat sink 13, and the air inlets 23 a, 23 b, 23 c, 23 d and the air outlets 24 a, 24 b, 24 c, 24 d are arranged on the outer periphery of the stirring unit 10. Therefore, the thickness of the cooling device 6 in the direction of the rotating shaft 19 can be reduced.
 さらに、上記冷却装置6により形成される空気の渦流が、塵埃等が基板15やヒートシンク13に付着するのを防止するので、基板15やヒートシンク13と空気との間の熱交換効率の低下を防ぐことができる。 Furthermore, the eddy current of air formed by the cooling device 6 prevents dust and the like from adhering to the substrate 15 and the heat sink 13, thereby preventing a decrease in heat exchange efficiency between the substrate 15 and the heat sink 13 and the air. be able to.
 この渦流を生じる攪拌部10と軸流ファン61、遠心ファン51およびクロスフローファン71とを比較すると次のようになる。 The following is a comparison of the stirring unit 10 that generates this vortex and the axial fan 61, the centrifugal fan 51, and the cross flow fan 71.
 軸流ファン61を用いた冷却装置の送風機において、塵埃や異物63等が冷却装置のケーシング内に流入した場合、図18,図19に示すように、流入した塵埃等は、まず、外部から流入した空気が最初に動翼64に接触する動翼64の端部(澱み点)に付着する。そして、動翼64の回転により発生する流体力と遠心力との方向が同じときに、塵埃等63は上記流体力および遠心力により動翼64に強く押し付けられることで動翼64の前縁部62に固定され、動翼64間を塞ぐように蓄積してしまう。 In the blower of the cooling device using the axial fan 61, when dust or foreign matter 63 or the like flows into the casing of the cooling device, as shown in FIGS. The first air adheres to the end (stagnation point) of the moving blade 64 that first contacts the moving blade 64. When the direction of the fluid force generated by the rotation of the moving blade 64 and the centrifugal force are the same, the dust etc. 63 is strongly pressed against the moving blade 64 by the fluid force and the centrifugal force. It is fixed to 62 and accumulates so as to close the space between the rotor blades 64.
 また、冷却装置の送風機に遠心ファン51を用いた場合、図20に示すように、遠心ファン51の軸方向から流入した空気が径方向に向かって噴出されるため、動翼55の内側端部52に塵埃が押し付けられる。遠心ファン51の動翼55は、動翼55が厚く澱み点が大きいため、動翼55に付着した塵埃に遠心ファン51の外側に向かう強い流体力(セルフクリーニング作用)がほとんど働かず、遠心ファン51の動翼55の内側端部52の近傍領域53にまで塵埃が蓄積してしまう。また、比較的大きな異物(鳥の羽根等)が流入した場合や、塵埃の蓄積等により動翼55の翼間が狭くなっている場合等に、異物54が動翼55の翼間に詰まる形で蓄積してしまう。 Further, when the centrifugal fan 51 is used as a blower of the cooling device, the air flowing in from the axial direction of the centrifugal fan 51 is ejected in the radial direction as shown in FIG. Dust is pressed against 52. Since the moving blade 55 of the centrifugal fan 51 is thick and has a large stagnation point, a strong fluid force (self-cleaning action) toward the outside of the centrifugal fan 51 hardly acts on the dust adhering to the moving blade 55, so that the centrifugal fan Dust accumulates up to a region 53 near the inner end 52 of the 51 moving blade 55. In addition, when a relatively large foreign object (such as a bird's blade) flows in or when the space between the blades 55 is narrowed due to accumulation of dust or the like, the foreign material 54 is clogged between the blades of the blade 55. Will accumulate.
 また、冷却装置の送風機にクロスフローファン71を用いた場合、図21に示すように、クロスフローファン71の外側の一部から流入した空気が、クロスフローファン71の中心を含む内部を通って、反対側の外周の一部に向かって噴出される。このとき、動翼75の外側端部73に付着した塵埃は、クロスフローファン71の回転による遠心力と、空気の流れによる流体力によりセルフクリーニング作用が働く。しかし、クロスフローファン71の内部に流入した塵埃は、動翼75の内側端部72に押し付けられて蓄積してしまう。また、クロスフローファン71は、動翼75の枚数が多く、動翼75の翼間が狭いため、小型の虫等の異物74が、動翼75の外側端部73から、動翼75の翼間に詰まる形で蓄積してしまう。 Further, when the cross flow fan 71 is used as a blower of the cooling device, air flowing in from a part of the outside of the cross flow fan 71 passes through the inside including the center of the cross flow fan 71 as shown in FIG. , And ejected toward a part of the outer periphery on the opposite side. At this time, the dust adhering to the outer end 73 of the moving blade 75 has a self-cleaning action due to the centrifugal force caused by the rotation of the cross flow fan 71 and the fluid force caused by the air flow. However, the dust flowing into the cross flow fan 71 is pressed against the inner end 72 of the rotor blade 75 and accumulates. Further, since the cross flow fan 71 has a large number of the moving blades 75 and the space between the moving blades 75 is narrow, a foreign matter 74 such as a small insect is transferred from the outer end 73 of the moving blade 75 to the blades of the moving blade 75. It accumulates in a clogged form.
 これに対して、本実施形態の冷却装置6は、図10,11に示すように、分離部16により渦流が分離される部分において、動翼12の回転による遠心力の方向と空気の分離方向とがほぼ一致するため、動翼12に付着した塵埃81等に攪拌部の外側に向かう強い流体力(セルフクリーニング作用)が働く。また、動翼12の翼間においては、塵埃81等と動翼12との相対速度が小さいため、塵埃81等を動翼12に押し付ける圧力が小さい。そのため、例えば小さい昆虫や鳥の羽根等、比較的大きい異物82が空気流入口23a,23b,23c,23dからケーシング11内部に流入しても、上記セルフクリーニング作用により動翼12の翼間に詰まることがなく、空気排出口24a,24b,24c,24dから攪拌部10の外部に排出される。 On the other hand, as shown in FIGS. 10 and 11, the cooling device 6 of the present embodiment has a centrifugal force direction and an air separation direction due to the rotation of the moving blade 12 in the portion where the vortex is separated by the separation unit 16. Substantially coincides with each other, a strong fluid force (self-cleaning action) acting on the outer side of the stirring unit acts on the dust 81 and the like adhering to the moving blade 12. Further, since the relative speed between the dust 81 and the moving blade 12 is small between the blades of the moving blade 12, the pressure for pressing the dust 81 and the like against the moving blade 12 is small. Therefore, even if relatively large foreign matter 82 such as small insects or bird feathers flows into the casing 11 from the air inlets 23a, 23b, 23c, and 23d, the blades of the moving blades 12 are clogged by the self-cleaning action. Without being discharged from the air discharge ports 24a, 24b, 24c, and 24d to the outside of the stirring unit 10.
 このように、上記攪拌部10の動翼12の回転により形成される動翼12の回転軸19を中心とする同心円状の空気の渦流を生成しているので、攪拌部10に塵埃や小型の昆虫等の異物が流入しても動翼12に付着しにくく、容易く排出できるので、動翼12の動バランスの悪化を防止でき、かつ、信頼性を高くすることができる。すなわち、照明装置の寿命を長くすることができる。 Thus, since the concentric air swirl around the rotating shaft 19 of the moving blade 12 formed by the rotation of the moving blade 12 of the stirring unit 10 is generated, dust or small size is generated in the stirring unit 10. Even if a foreign substance such as an insect flows in, it is difficult to adhere to the moving blade 12 and can be easily discharged, so that the deterioration of the dynamic balance of the moving blade 12 can be prevented and the reliability can be increased. That is, the lifetime of the lighting device can be extended.
 特に、照明装置においては、その内部に小さな昆虫が侵入することが大きな解決すべき問題であるが、本照明装置では、昆虫の侵入という問題が解決される。 Especially, in the lighting device, it is a big problem to be solved that a small insect enters inside, but in this lighting device, the problem of insect invasion is solved.
 上記冷却装置6は、圧力損失および動力ロスが少なく、高い信頼性を備えるので、LED14を用いた照明装置にこの冷却装置6を用いることで、冷却装置6の定期交換等のメンテナンスを最小限にすることができる。すなわち、電球,蛍光灯,放電灯等の従来の光源よりも大幅に寿命が延びたLED14の長所を最大限生かすことができる。 Since the cooling device 6 has low pressure loss and power loss and has high reliability, the use of the cooling device 6 in an illumination device using the LED 14 minimizes maintenance such as periodic replacement of the cooling device 6. can do. That is, the advantages of the LED 14 that has a significantly longer life than conventional light sources such as light bulbs, fluorescent lamps, and discharge lamps can be utilized to the maximum.
 また、上記空気流入口23a,23b,23c,23dのサイズを小さくしたり、空気流入口23a,23b,23c,23dにフィルタを取り付けたりすると、空気の流入抵抗が増加してしまい、冷却装置6の冷却能力が低下してしまう。しかし、上記冷却装置6は、塵埃や異物等が冷却装置6内部に侵入しても容易に排出できるため、塵埃や異物等が冷却装置6内部に進入することを防ぐために、空気流入口23a,23b,23c,23dのサイズを小さくしたり、空気流入口23a,23b,23c,23dにフィルタを取り付けたりする必要がない。 Further, if the size of the air inlets 23a, 23b, 23c, 23d is reduced or a filter is attached to the air inlets 23a, 23b, 23c, 23d, the inflow resistance of the air increases, and the cooling device 6 The cooling capacity will be reduced. However, since the cooling device 6 can be easily discharged even if dust, foreign matter or the like enters the cooling device 6, the air inlet 23a, There is no need to reduce the size of 23b, 23c, 23d, or to attach a filter to the air inlets 23a, 23b, 23c, 23d.
 上記冷却装置6において、図3に示すケーシング11の天井部31と回転円板部17との間の距離CV1は、2~5mmであることが好ましい。ケーシング11の天井部31と回転円板部17との間の距離CV1を2~5mmにすることで、冷却装置6の全高を抑えることができる。なお、本実施形態では、CV1=2mmにしている。 In the cooling device 6, the distance CV1 between the ceiling portion 31 of the casing 11 and the rotating disc portion 17 shown in FIG. 3 is preferably 2 to 5 mm. By setting the distance CV1 between the ceiling portion 31 of the casing 11 and the rotating disc portion 17 to 2 to 5 mm, the overall height of the cooling device 6 can be suppressed. In this embodiment, CV1 = 2 mm.
 また、図6に示す動翼12の外周端部とケーシング11の内径との距離CR1は、5~20mmであるのが好ましい。動翼12の外周端部とケーシング11の内径との距離CR1を5~20mmにすることで、冷却装置6のケーシング11内部に形成された2方向の空気の流れをロスなく効率よく流すことができる。なお、本実施形態では、CR1=5mmにしている。 Further, the distance CR1 between the outer peripheral end of the moving blade 12 and the inner diameter of the casing 11 shown in FIG. 6 is preferably 5 to 20 mm. By setting the distance CR1 between the outer peripheral end of the moving blade 12 and the inner diameter of the casing 11 to 5 to 20 mm, the two-way air flow formed inside the casing 11 of the cooling device 6 can flow efficiently without loss. it can. In this embodiment, CR1 = 5 mm.
 また、図6に示す分離部16と動翼12の外周端部との間の距離CR2は、2~10mmであるのが好ましい。分離部16と動翼12の外周端部との間の距離CR2を2~10mmにすることで、攪拌部10の回転に支障がないように空気の渦流の周方の一部をロスなく分離して、効率よく分離部16の一面に沿って案内することができる。なお、本実施形態では、CR2=2mmにしている。 Further, the distance CR2 between the separating portion 16 and the outer peripheral end portion of the rotor blade 12 shown in FIG. 6 is preferably 2 to 10 mm. By setting the distance CR2 between the separation part 16 and the outer peripheral edge of the rotor blade 12 to 2 to 10 mm, a part of the circumference of the air vortex is separated without loss so that the rotation of the stirring part 10 is not hindered. Thus, it is possible to guide along one surface of the separation part 16 efficiently. In the present embodiment, CR2 = 2 mm.
 また、図3に示すケーシング11の湾曲部32の曲率半径Rと攪拌部10の動翼12の高さHとが、R≧Hの関係を満たしているのが好ましい。ケーシング11の湾曲部32の曲率半径Rが動翼12の高さHに等しいか、動翼12の高さHよりも大きくすることで、ケーシング11内部に流入する空気と、ケーシング11外部に排出される空気の圧力損失を低減することができる。 Further, it is preferable that the curvature radius R of the curved portion 32 of the casing 11 shown in FIG. 3 and the height H of the moving blade 12 of the stirring portion 10 satisfy the relationship of R ≧ H. The curvature radius R of the curved portion 32 of the casing 11 is equal to the height H of the moving blade 12 or larger than the height H of the moving blade 12, so that the air flowing into the casing 11 and the outside of the casing 11 are discharged. The pressure loss of the generated air can be reduced.
 上記冷却装置6では、ケーシング11の内部に分離部16を2つ設けているが、これに限られず、分離部16を1つだけ設けてもいいし、3つ以上設けてもよい。例えば、分離部16を3つ設ける場合には、1/3円弧状の空気の渦流を形成できるので、基板15およびヒートシンク13の熱交換がより促進され、基板15およびヒートシンク13をさらに高効率で冷却することができる。 In the cooling device 6, two separation parts 16 are provided inside the casing 11. However, the present invention is not limited to this, and only one separation part 16 may be provided, or three or more separation parts 16 may be provided. For example, when three separation portions 16 are provided, a 1/3 arc-shaped air swirl can be formed, so that heat exchange between the substrate 15 and the heat sink 13 is further promoted, and the substrate 15 and the heat sink 13 can be made more efficient. Can be cooled.
 また、上記分離部16が1つだけの場合、図12に示すように、略一円周分の渦流になり、空気流入口23から略一円周分回ってから空気排出口24から排出されるので、温まった空気が基板15およびヒートシンク13の表面に沿って流れて、分離部16が2つまたは3つの場合と比べて冷却効率が悪くなるが、分離部16が1つであっても使用可能である。 In addition, when there is only one separation portion 16, as shown in FIG. 12, the vortex flow is approximately one circle, and after approximately one circle rotation from the air inlet 23, it is discharged from the air discharge port 24. Therefore, the warm air flows along the surfaces of the substrate 15 and the heat sink 13 and the cooling efficiency is deteriorated as compared with the case where the number of the separation portions 16 is two or three. It can be used.
 また、上記照明装置では、図4,図6に示すように、分離部16を攪拌部10の動翼12よりも径方向の外側に位置するように設けているが、これに限られず、例えば、分離部16を攪拌部10の動翼12よりも径方向の内側に位置するように設けてもよい。この場合、分離部16は、攪拌部10の回転の妨げとならないように、基盤15と動翼12との間の空間に設ける。分離部16を攪拌部10の動翼12よりも径方向の内側に位置するように設けることで、ケーシング11の径方向の長さを攪拌部10の径方向の長さと略同じにすることができ、冷却装置6を小型化することができる。 Moreover, in the said illuminating device, as shown in FIG.4, FIG.6, although the isolation | separation part 16 is provided so that it may be located in the radial direction outer side rather than the moving blade 12 of the stirring part 10, it is not restricted to this, For example, The separating unit 16 may be provided so as to be located on the inner side in the radial direction from the moving blade 12 of the stirring unit 10. In this case, the separation unit 16 is provided in a space between the base 15 and the moving blade 12 so as not to hinder the rotation of the stirring unit 10. By providing the separation unit 16 so as to be located on the inner side in the radial direction of the moving blade 12 of the stirring unit 10, the radial length of the casing 11 can be made substantially the same as the radial length of the stirring unit 10. The cooling device 6 can be reduced in size.
 なお、分離部16を攪拌部10の動翼12よりも径方向の内側に位置するように設ける場合に、ヒートシンク13が分離部16を兼ねるようにしてもよい。ヒートシンク13が分離部16を兼ねることで、部品数を減らして、製造コストを低減することができる。 In addition, when the separation unit 16 is provided so as to be located on the inner side in the radial direction from the moving blade 12 of the stirring unit 10, the heat sink 13 may also serve as the separation unit 16. Since the heat sink 13 also serves as the separation portion 16, the number of parts can be reduced and the manufacturing cost can be reduced.
 また、上記冷却装置6では、図6に示すように、攪拌部10の動翼12を9枚有しているが、これに限られず、図7,8に示す4枚の動翼12を有してもよいし、図13に示す5枚の動翼12を有してもいいし、図14に示す3枚の動翼12を有してもいいし、図15に示す2枚の動翼12を有してもよい。 Further, the cooling device 6 has nine moving blades 12 of the stirring unit 10 as shown in FIG. 6, but is not limited to this, and has four moving blades 12 shown in FIGS. Alternatively, the five moving blades 12 shown in FIG. 13 may be provided, the three moving blades 12 shown in FIG. 14 may be provided, or the two moving blades 12 shown in FIG. 15 may be provided. It may have wings 12.
 なお、上記基板15に搭載されたLED14群、すなわち発光部7の数をNHとしたとき、1/2×NHまたは2×NHを満たす数に最も近い素数を上記攪拌部10の動翼12の枚数とするのがより好ましい。これは、発光部7の位相が同調することに起因する騒音を防ぐためである。本実施形態では、発光部7は4つなので、動翼12を2枚または3枚または7枚取り付けた攪拌部10を設けるのがより好ましい。 When the number of the LEDs 14 mounted on the substrate 15, that is, the number of the light emitting units 7 is NH, the prime number closest to the number satisfying ½ × NH or 2 × NH is the number of the moving blades 12 of the stirring unit 10. It is more preferable to use the number. This is to prevent noise caused by the phase of the light emitting unit 7 being synchronized. In this embodiment, since there are four light-emitting parts 7, it is more preferable to provide the stirring part 10 to which two, three, or seven moving blades 12 are attached.
 また、上記冷却装置6では、平板形状の動翼12を回転円板17に対し垂直に固定しているが、これに限られず、たとえば、図16,図17に示すように、動翼101,102の形状を湾曲させてもよい。 Further, in the cooling device 6, the flat blade 12 is fixed perpendicularly to the rotating disk 17, but the present invention is not limited to this. For example, as shown in FIGS. The shape of 102 may be curved.
 図16に示すように、上記動翼101の回転方向の前面を凹面にすると、大量の空気を搬送して攪拌部10の渦流を生成する能力を高めることができるので、攪拌部10の送風効率が高まり、冷却装置6の冷却能力を向上することができる。尤も、図17に示すように、動翼102の回転方向の前面が凸面であっても使用可能である。 As shown in FIG. 16, if the front surface in the rotational direction of the moving blade 101 is concave, the ability to convey a large amount of air and generate a vortex flow of the stirring unit 10 can be improved. And the cooling capacity of the cooling device 6 can be improved. However, as shown in FIG. 17, it can be used even if the front surface in the rotational direction of the moving blade 102 is convex.
 なお、上記動翼12,101,102の厚さは、できる限り薄く形成するのが好ましい。動翼12,101,102を薄くすることで、動翼12,101,102の外側端部(澱み点)に塵埃等が蓄積するのを低減することができる。 In addition, it is preferable to form the moving blades 12, 101, and 102 as thin as possible. By thinning the moving blades 12, 101, 102, it is possible to reduce the accumulation of dust and the like at the outer end portions (stagnation points) of the moving blades 12, 101, 102.
 上記冷却装置6では、分離部16、16を対向する位置に設けているが、これに限られず、例えば、1/3円弧状あるいは1/4円弧状の空気の渦流を形成するように分離部16,16を配置してもよい。また、2/3円弧状と1/3円弧状の渦流の両方が同時に形成するようにしてもよい。 In the cooling device 6, the separating portions 16 are provided at positions facing each other. However, the present invention is not limited to this, and for example, the separating portion is formed so as to form a vortex flow of a 1/3 arc shape or a 1/4 arc shape air. 16, 16 may be arranged. Further, both a 2/3 arc shape and a 1/3 arc shape vortex may be formed simultaneously.
 上記実施形態においては、ヒートシンク13を用いているが、ヒートシンク13を用いなくて、基板15に直接沿うよう、攪拌部10が渦流を流すようにしてもよい。このとき、基板15そのものが被冷却体となる。 In the above embodiment, the heat sink 13 is used, but the heat sink 13 may not be used, and the stirring unit 10 may cause a vortex to flow directly along the substrate 15. At this time, the substrate 15 itself becomes the object to be cooled.
 また、例えば、サーモスタット等を用いて、ケーシング11内部の温度が一定以上になるまで上記冷却装置6を作動させないようにしてもよい。そうすると、冷却装置6を常時作動させるよりも消費電力を低減することができる。 Further, for example, the cooling device 6 may not be operated until the temperature inside the casing 11 becomes a certain level or more by using a thermostat or the like. If it does so, power consumption can be reduced rather than operating the cooling device 6 always.
 上記LED14の代わりに、例えば有機EL(エレクトロルミネッセンス)を用いてもよい。 Instead of the LED 14, for example, an organic EL (electroluminescence) may be used.
 上記実施形態においては、被冷却体(放熱促進部)としてヒートシンク13を用いているが、ヒートシンク13を用いなくて、基板15に直接沿うよう、攪拌部10が渦流を流すようにしてもよい。 In the above-described embodiment, the heat sink 13 is used as the object to be cooled (heat radiation promoting portion). However, the stirring portion 10 may flow vortex directly along the substrate 15 without using the heat sink 13.
 上記冷却装置6に、図示しないイオン発生器を設けてもよい。このイオン発生器は、プラズマクラスター(登録商標第4582023号、特許第3680121号)であり、H+(H2O)m(mは任意の自然数)である正イオンと、O2-(H2O)n(nは任意の自然数)である負イオンとを放出している。これらのイオン(プラズマクラスターイオンという)は、空気中の浮遊細菌の表面に付着し、化学反応して活性種であるH2O2または・OH(水酸基ラジカル)を生成する。H2O2または・OHは、極めて強力な活性を示すため、空気中の浮遊細菌であるカビや雑菌を取り囲んで不活化、除去することができる。 The cooling device 6 may be provided with an ion generator (not shown). This ion generator is a plasma cluster (registered trademark No. 455823, Japanese Patent No. 3680121), and is a positive ion that is H + (H 2 O) m (m is an arbitrary natural number), and O 2 − (H 2 O) n (n is An arbitrary natural number) is released. These ions (referred to as plasma cluster ions) adhere to the surface of airborne bacteria and chemically react to generate H2O2 or .OH (hydroxyl radical) which is an active species. Since H2O2 or .OH exhibits extremely strong activity, it can be inactivated and removed by surrounding mold and bacteria that are airborne bacteria.
 上記イオン発生器をケーシング11と、ヒートシンク13および基板15との間に設けると、イオン発生器から放出されるプラズマクラスターイオンによって空気を浄化することができる。 When the ion generator is provided between the casing 11 and the heat sink 13 and the substrate 15, the air can be purified by plasma cluster ions emitted from the ion generator.
 尤も、上記イオン発生器は、プラズマクラスターイオン発生器に限らず、例えば、高電圧を使用する通常の負イオンまたは陽イオンまたは正負のイオンを発生するイオン発生器を用いてもよい。 However, the ion generator is not limited to the plasma cluster ion generator, and for example, an ion generator that generates normal negative ions, positive ions, or positive and negative ions using a high voltage may be used.
 また、上記イオン発生器の設置箇所は、上記空気排出口24a,24b,24c,24dから排出されるべき空気、または、上記空気排出口24a,24b,24c,24dから排出された空気にイオンを放出するものならばどこであってもよい。 The ion generator is installed at a location where ions should be discharged into the air to be discharged from the air discharge ports 24a, 24b, 24c, 24d or the air discharged from the air discharge ports 24a, 24b, 24c, 24d. It can be anywhere as long as it releases.
 上記冷却装置6は、薄くてコンパクトであるため、照明装置に限られず、例えば、加熱調理器や映像機器、半導体装置等に用いることができる。 Since the cooling device 6 is thin and compact, the cooling device 6 is not limited to a lighting device, and can be used for, for example, a heating cooker, video equipment, a semiconductor device, and the like.
 1 本体
 2 光拡散カバー
 3 光源部
 4 電源部
 5 駆動部
 6 冷却装置
 7 発光面
10 攪拌部
11 ケーシング
12,101,102 動翼
13 ヒートシンク
14 発光ダイオード
15 基板
16 分離部
17 回転円板部
18 切欠
19 回転軸
21a,21b,21c,21d,21e,21f,21g,21h 導風部
23a,23b,23c,23d 空気流入口
24a,24b,24c,24d 空気排出口
31 ケーシング天井部
32 ケーシング湾曲部
33 ケーシング底部
DESCRIPTION OF SYMBOLS 1 Main body 2 Light diffusion cover 3 Light source part 4 Power supply part 5 Drive part 6 Cooling device 7 Light emission surface 10 Stirring part 11 Casing 12, 101, 102 Rotor blade 13 Heat sink 14 Light emitting diode 15 Substrate 16 Separation part 17 Rotating disk part 18 Notch 19 Rotating shafts 21a, 21b, 21c, 21d, 21e, 21f, 21g, 21h Air guide portions 23a, 23b, 23c, 23d Air inflow ports 24a, 24b, 24c, 24d Air exhaust ports 31 Casing ceiling portion 32 Casing bending portion 33 Casing bottom

Claims (16)

  1.  複数の回転する動翼(12,101,102)を有して、回転軸(19)を中心とする同心円状の渦流を生成する攪拌部(10)と、
     上記攪拌部(10)の上記回転軸(19)の方向の一方の第1面に面する被冷却体(13)と、
     上記攪拌部(10)に、その攪拌部(10)の外周部の近傍から空気を流入させる空気流入口(23a,23b,23c,23d)と、
     上記攪拌部(10)の外周部の近傍からの空気を排出する空気排出口(24a,24b,24c,24d)と、
     上記攪拌部(10)の上記動翼(12,101,102)の回転により形成される空気の上記攪拌部(10)の周方向の渦流を上記攪拌部(10)から分離する分離部(16)と
    を備え、
     上記空気流入口(23a,23b,23c,23d)から流入した空気が、上記攪拌部(10)の中心を通らないで、上記渦流となって、上記攪拌部(10)の周方向に流れて、上記空気排出口(24a,24b,24c,24d)から流出することを特徴とする冷却装置。
    A stirring section (10) having a plurality of rotating blades (12, 101, 102) and generating a concentric vortex centered on the rotation axis (19);
    An object to be cooled (13) facing one first surface in the direction of the rotation axis (19) of the stirring section (10);
    An air inlet (23a, 23b, 23c, 23d) for allowing air to flow into the stirring unit (10) from the vicinity of the outer periphery of the stirring unit (10);
    An air discharge port (24a, 24b, 24c, 24d) for discharging air from the vicinity of the outer peripheral portion of the stirring unit (10);
    Separating part (16) for separating the vortex flow in the circumferential direction of the stirring part (10) of the air formed by the rotation of the rotor blades (12, 101, 102) of the stirring part (10) from the stirring part (10) )
    The air flowing in from the air inlets (23a, 23b, 23c, 23d) does not pass through the center of the stirring unit (10) but becomes the vortex and flows in the circumferential direction of the stirring unit (10). The cooling device is characterized by flowing out from the air discharge ports (24a, 24b, 24c, 24d).
  2.  請求項1に記載の冷却装置において、
     上記攪拌部(10)の回転軸(19)の方向の他方の第2面に面するケーシング(11)を備えることを特徴とする冷却装置。
    The cooling device according to claim 1, wherein
    A cooling device comprising a casing (11) facing the other second surface in the direction of the rotation axis (19) of the agitator (10).
  3.  請求項1または2に記載の冷却装置において、
     上記分離部(16)を2つまたは3つ有することを特徴とする冷却装置。
    The cooling device according to claim 1 or 2,
    A cooling device having two or three separation parts (16).
  4.  請求項1から3のいずれか1つに記載の冷却装置において、
     上記攪拌部(10)は、回転円板部(17)を備え、この回転円板部(17)に上記動翼(12,101,102)が固定されていることを特徴とする冷却装置。
    In the cooling device according to any one of claims 1 to 3,
    The said stirring part (10) is provided with the rotating disk part (17), The said moving blade (12,101,102) is being fixed to this rotating disk part (17), The cooling device characterized by the above-mentioned.
  5.  請求項1から4のいずれか1つに記載の冷却装置において、
     上記攪拌部(10)の上記動翼(12,101,102)が、上記攪拌部(10)の中心から径方向に放射状に延びていることを特徴とする冷却装置。
    In the cooling device according to any one of claims 1 to 4,
    The cooling device, wherein the moving blades (12, 101, 102) of the stirring unit (10) extend radially from the center of the stirring unit (10).
  6.  請求項1から5のいずれか1つに記載の冷却装置において、
     上記動翼(12,101,102)の回転方向の前面が凹面であることを特徴とする冷却装置。
    The cooling device according to any one of claims 1 to 5,
    The cooling device according to claim 1, wherein a front surface of the moving blade (12, 101, 102) in a rotational direction is a concave surface.
  7.  請求項1から6のいずれか1つに記載の冷却装置において、
     上記空気排出口(24a,24b,24c,24d)から排出されるべき空気、または、上記空気排出口(24a,24b,24c,24d)から排出された空気にイオンを放出するイオン発生部を備えることを特徴とする冷却装置。
    The cooling device according to any one of claims 1 to 6,
    An ion generator for discharging ions to the air to be discharged from the air discharge ports (24a, 24b, 24c, 24d) or to the air discharged from the air discharge ports (24a, 24b, 24c, 24d) is provided. A cooling device characterized by that.
  8.  光源部(3)を表面に搭載した基板(15)と、
     上記基板(15)の裏面側に配置されると共に、複数の回転する動翼(12,101,102)を有して、回転軸(19)を中心とする同心円状であって上記基板(15)の裏面に沿う方向に流れる渦流を生成する攪拌部(10)と、
     上記攪拌部(10)に、その攪拌部(10)の外周部の近傍から空気を流入させる空気流入口(23a,23b,23c,23d)と、
     上記攪拌部(10)の外周部の近傍からの空気を排出する空気排出口(24a,24b,24c,24d)と、
     上記攪拌部(10)の上記動翼(12,101,102)の回転により形成される空気の上記攪拌部(10)の周方向の渦流を上記攪拌部(10)から分離する分離部(16)と
    を備え、
     上記空気流入口(23a,23b,23c,23d)から流入した空気が、上記攪拌部(10)の中心を通らないで、上記渦流となって、上記攪拌部(10)の周方向、かつ、上記基板(15)の裏面に沿う方向に流れて、上記空気排出口(24a,24b,24c,24d)から流出することを特徴とする照明装置。
    A substrate (15) on which a light source part (3) is mounted;
    The substrate (15) is disposed on the back surface side, has a plurality of rotating blades (12, 101, 102), is concentric with the rotation axis (19) as a center, and is formed on the substrate (15). ) And a stirring unit (10) for generating a vortex flowing in the direction along the back surface;
    An air inlet (23a, 23b, 23c, 23d) for allowing air to flow into the stirring unit (10) from the vicinity of the outer periphery of the stirring unit (10);
    An air discharge port (24a, 24b, 24c, 24d) for discharging air from the vicinity of the outer peripheral portion of the stirring unit (10);
    Separating part (16) for separating the vortex flow in the circumferential direction of the stirring part (10) of the air formed by the rotation of the rotor blades (12, 101, 102) of the stirring part (10) from the stirring part (10) )
    The air flowing in from the air inlets (23a, 23b, 23c, 23d) does not pass through the center of the stirring unit (10), becomes the vortex, becomes the circumferential direction of the stirring unit (10), and A lighting device characterized by flowing in a direction along the back surface of the substrate (15) and flowing out from the air discharge ports (24a, 24b, 24c, 24d).
  9.  請求項8に記載の照明装置において、
     上記攪拌部(10)の上記基板(15)方向の第1面に面すると共に、上記基板(15)の裏面側に設けられた放熱促進部(13)を備えることを特徴とする照明装置。
    The lighting device according to claim 8.
    An illuminating device comprising a heat radiation accelerating portion (13) provided on the back side of the substrate (15) while facing the first surface of the stirring portion (10) in the substrate (15) direction.
  10.  請求項8または9に記載の照明装置において、
     上記攪拌部(10)の上記基板(15)側の第1面とは反対側の第2面に面すると共に、上記攪拌部(10)を収納するケーシング(11)を備えることを特徴とする照明装置。
    The lighting device according to claim 8 or 9,
    The stirrer (10) has a casing (11) that faces the second surface opposite to the first surface on the substrate (15) side and that houses the stirrer (10). Lighting device.
  11.  請求項10に記載の照明器具において、
     上記空気流入口(23a,23b,23c,23d)および上記空気排出口(24a,24b,24c,24d)が、上記ケーシング(11)に設けられていることを特徴とする照明装置。
    The luminaire according to claim 10,
    The lighting device, wherein the air inlet (23a, 23b, 23c, 23d) and the air outlet (24a, 24b, 24c, 24d) are provided in the casing (11).
  12.  請求項8から11のいずれか1つに記載の照明装置において、
     上記空気流入口(23a,23b,23c,23d)および上記空気排出口24a,24b,24c,24d)が、上記攪拌部(10)の中心方向に向かって傾斜していることを特徴とする照明装置。
    The lighting device according to any one of claims 8 to 11,
    Illumination characterized in that the air inlets (23a, 23b, 23c, 23d) and the air outlets 24a, 24b, 24c, 24d) are inclined toward the central direction of the stirring section (10). apparatus.
  13.  請求項8から12のいずれか1つに記載の照明装置において、
     上記攪拌部(10)と上記放熱促進部(13)との間の距離が、上記空気流入口(23a,23b,23c,23d)および上記空気排出口24a,24b,24c,24d)の径方向の幅と略同等であることを特徴とする照明装置。
    The lighting device according to any one of claims 8 to 12,
    The distance between the stirring section (10) and the heat radiation promoting section (13) is the radial direction of the air inlet (23a, 23b, 23c, 23d) and the air outlet 24a, 24b, 24c, 24d). A lighting device characterized by being substantially equal to the width of the light.
  14.  請求項8から13のいずれか1つに記載の照明装置において、
     上記攪拌部(10)は、回転円板部(17)を備え、
     上記動翼(12,101,102)の上記基板(15)に面する面とは反対側の面が、上記回転円板部(17)に固定されていることを特徴とする照明装置。
    The lighting device according to any one of claims 8 to 13,
    The stirring unit (10) includes a rotating disk part (17),
    The lighting device, wherein a surface of the moving blade (12, 101, 102) opposite to a surface facing the substrate (15) is fixed to the rotating disk portion (17).
  15.  請求項8から14のいずれか1つに記載の照明装置において、
     上記光源部(3)は発光ダイオード(14)を含んでいることを特徴とする照明装置。
    The lighting device according to any one of claims 8 to 14,
    The light source (3) includes a light emitting diode (14).
  16.  請求項10または11に記載の照明装置において、
     上記ケーシング(11)の外周部に切欠または穴を有し、この切欠または穴に、上記光源部(3)に接続された電気配線が通っていることを特徴とする照明装置。
    The lighting device according to claim 10 or 11,
    An illuminating device having a notch or a hole in an outer peripheral portion of the casing (11), and an electrical wiring connected to the light source part (3) passing through the notch or hole.
PCT/JP2012/066146 2011-07-01 2012-06-25 Cooling device and illumination device using same WO2013005596A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011147079A JP5213999B2 (en) 2011-07-01 2011-07-01 Cooling system
JP2011147080A JP5097847B1 (en) 2011-07-01 2011-07-01 Lighting device
JP2011-147080 2011-07-01
JP2011-147079 2011-07-01

Publications (1)

Publication Number Publication Date
WO2013005596A1 true WO2013005596A1 (en) 2013-01-10

Family

ID=47436951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066146 WO2013005596A1 (en) 2011-07-01 2012-06-25 Cooling device and illumination device using same

Country Status (1)

Country Link
WO (1) WO2013005596A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240371A (en) * 1989-10-16 1993-08-31 Belomestnov Petr I Multiple disc fan with rotatable casing
JP2004278989A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Cooling pump and heat receiving device
US20070251680A1 (en) * 2004-07-14 2007-11-01 Kanjirou Kinoshita Centrifugal Blower and Air Conditioner with Centrifugal Blower
US20100328949A1 (en) * 2009-06-26 2010-12-30 Foxsemicon Integrated Technology, Inc. Illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240371A (en) * 1989-10-16 1993-08-31 Belomestnov Petr I Multiple disc fan with rotatable casing
JP2004278989A (en) * 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Cooling pump and heat receiving device
US20070251680A1 (en) * 2004-07-14 2007-11-01 Kanjirou Kinoshita Centrifugal Blower and Air Conditioner with Centrifugal Blower
US20100328949A1 (en) * 2009-06-26 2010-12-30 Foxsemicon Integrated Technology, Inc. Illumination device

Similar Documents

Publication Publication Date Title
TWI529346B (en) Lamp
TWI408313B (en) Led lamp
JP2012195274A (en) Lamp
JP2012195273A (en) Lamp
CN202419231U (en) Lamp and heat dissipation unit thereof
JP2011249304A (en) Lamp and its radiator
JP5263357B2 (en) LED lamp
JP4983995B1 (en) LIGHTING DEVICE AND LIGHTING UNIT FOR LIGHTING DEVICE
CN212838463U (en) Fan lamp diffusion channel system and fan lamp with same
JP5097847B1 (en) Lighting device
JP5213999B2 (en) Cooling system
JP5460804B2 (en) Lighting device
WO2013005596A1 (en) Cooling device and illumination device using same
JP2014150031A (en) Heat sink and heat exhaust device
JP2013254576A (en) Lighting device
JP4860006B1 (en) LIGHTING DEVICE AND LIGHTING UNIT FOR LIGHTING DEVICE
JP6200679B2 (en) Microparticle diffusion device and illumination device
JP2013171695A (en) Lighting device, and blower unit for lighting device
JP2013020941A (en) Lighting device and blower unit for lighting device
JP2013077579A (en) Lighting device
CN212429256U (en) Fan lamp and modularized fan lamp
JP5186027B2 (en) Lighting device
CN213064010U (en) Fan lamp air duct system and fan lamp with same
JP2013097882A (en) Lighting system and blowing unit for the same
JP2016143573A (en) Led lamp and lighting fixture thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12808169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12808169

Country of ref document: EP

Kind code of ref document: A1