WO2013002542A2 - 폐기물을 이용한 이산화탄소 고정방법 - Google Patents

폐기물을 이용한 이산화탄소 고정방법 Download PDF

Info

Publication number
WO2013002542A2
WO2013002542A2 PCT/KR2012/005060 KR2012005060W WO2013002542A2 WO 2013002542 A2 WO2013002542 A2 WO 2013002542A2 KR 2012005060 W KR2012005060 W KR 2012005060W WO 2013002542 A2 WO2013002542 A2 WO 2013002542A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
asbestos
waste
fixing
solution
Prior art date
Application number
PCT/KR2012/005060
Other languages
English (en)
French (fr)
Other versions
WO2013002542A9 (ko
WO2013002542A3 (ko
Inventor
노열
윤성준
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110089545A external-priority patent/KR101265828B1/ko
Priority claimed from KR1020120004739A external-priority patent/KR101344127B1/ko
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Publication of WO2013002542A2 publication Critical patent/WO2013002542A2/ko
Publication of WO2013002542A9 publication Critical patent/WO2013002542A9/ko
Publication of WO2013002542A3 publication Critical patent/WO2013002542A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/36Manufacture of hydraulic cements in general
    • C04B7/38Preparing or treating the raw materials individually or as batches, e.g. mixing with fuel
    • C04B7/42Active ingredients added before, or during, the burning process
    • C04B7/421Inorganic materials
    • C04B7/424Oxides, Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • B09B3/0066Disposal of asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D2101/00Harmful chemical substances made harmless, or less harmful, by effecting chemical change
    • A62D2101/40Inorganic substances
    • A62D2101/41Inorganic fibres, e.g. asbestos
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/30Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by reacting with chemical agents
    • A62D3/36Detoxification by using acid or alkaline reagents

Definitions

  • the present invention relates to a method of fixing carbon dioxide using waste, and more particularly, to a method of fixing carbon dioxide using asbestos-containing waste or gypsum board waste.
  • Asbestos is the commercial term for naturally occurring fibrous silicate minerals, and the Occupational Safety and Health Administration (OSHA) defines asbestos as fibrous or acicular minerals with an aspect ratio of at least 3: 1 and at least 5 ⁇ m in length.
  • OSHA Occupational Safety and Health Administration
  • Asbestos is flexible and has a silky gloss. Asbestos can be divided into serpentine and hornblende crystals.
  • the serpentine series basically has a crystal structure composed of a 1: 1 1: 1 (neutral) layer of a neutral charge, and the hornblende series has a double chain crystal structure in which SiO 4 tetrahedra are bonded.
  • Asbestos has been widely used industrially due to its high tensile strength, non-electricity, good resistance to heat and cold, and strong chemical corrosion.
  • the thin, fibrous, mineralistic properties of asbestos are known to increase the risk of various lung-related diseases such as asbestos, lung cancer, and malignant species.
  • the slate is composed of 80% to 90% cement and 10% to 20% Chrysotile.
  • the amount of slate used for the rural roof improvement project cannot be accurately determined, but according to the press release, 35 million sheets were sold annually from 1987 to 76, and gradually decreased to 32 million in 1977 and 30 million in 1978, and then in the 80s. 18 million were sold.
  • the slate used in houses, factories, houses, etc., is still aging.
  • the slate is composed of cement and asbestos as mentioned above. Over time, the calcium hydroxide, a component of cement, dissolves in water, and asbestos is released into the environment.
  • asbestos-containing asbestos boards consist of limestone, gypsum and white asbestos. Therefore, as time goes by, asbestos boards are exposed to the atmosphere in the air by weathering, like slate.
  • gypsum board refers to a sawdust, fiber, pearlite, etc. mixed with calcined gypsum as the main raw material, in some cases added with a blowing agent, kneaded with water and poured between two sheets to harden into a plate.
  • Gypsum board was invented in the United States in 1902 and is used for walls and ceilings in construction, and serves as a fire prevention material and at the same time as a interior material. Gypsum board has excellent fire resistance and plays a big role in the early fire prevention and combustion delay of building frame. In addition, the gypsum board can be shortened by the construction is easy, and the weight is light, the building structure cost can be reduced.
  • the gypsum board Since gypsum itself is a stable crystalline state, there is no stretch deformation due to temperature or humidity change, and thermal insulation is low, and thus excellent thermal insulation.
  • the gypsum board has properties such as heat insulation, fire resistance, sound insulation, waterproof, light weight and workability, antibacterial, economical, shockproof.
  • gypsum board is used in most construction works, and more than 300,000 tons of waste is generated annually. This is about 3% or more of the total amount of construction waste generated.
  • social infrastructure expansion projects, urban redevelopment projects, and reconstruction projects progress widely, the discharge of gypsum board waste is expected to increase steadily.
  • Gypsum board waste is reported to be recycled as a raw material of gypsum board through crushing and separation of paper by an intermediate processor.
  • most of the gypsum board waste is disposed of in landfill due to difficulty in screening gypsum board waste and a lack of a recycling market for gypsum board.
  • the technical problem to be solved by the present invention is to provide a carbon dioxide fixing method using a waste that can harm the asbestos-containing slate by using heat treatment and carbon dioxide, and to fix the carbon dioxide, and to synthesize calcium carbonate, a raw material of cement. There is.
  • the carbon dioxide immobilization is performed by using the reaction of the gypsum board and carbon dioxide, and to provide a method for fixing the carbon dioxide using waste that can produce calcium carbonate as a raw material of cement by recycling the gypsum board waste.
  • One aspect of the present invention to achieve the above technical problem provides a method for fixing the asbestos-containing material and carbon dioxide.
  • the method includes heat treating the asbestos-containing material to a temperature of 710 ° C. to 840 ° C., and injecting the heat treated asbestos-containing material into a medium solution and injecting carbon dioxide into the medium solution.
  • the asbestos-containing material may further include the step of pressing at a temperature of 100 °C to 150 °C and a pressure of 0.1 MPa to 0.5 MPa.
  • the method may further include the step of pulverizing the asbestos-containing material.
  • the grinding of the asbestos-containing material may include grinding the asbestos-containing material to 75 ⁇ m or less.
  • the asbestos-containing material may comprise a slate.
  • the mediator solution may be water or a basic solution.
  • the basic solution may comprise NaCl and NaHCO 3 .
  • another aspect of the present invention provides a method of fixing asbestos board waste and carbon dioxide.
  • the method includes the steps of crushing the asbestos board, adding the crushed asbestos board to the medium solution to form an asbestos board solution, injecting carbon dioxide into the asbestos board solution to fix the carbon dioxide and asbestos fixed carbon dioxide Heat-treating the board to harm the asbestos.
  • the fixing of the carbon dioxide may include a process of accelerating the fixing of the carbon dioxide by maintaining the asbestos board solution at a temperature of 100 ° C. to 150 ° C. and a pressure of 0.1 MPa to 0.5 MPa.
  • the assembling of the asbestos board may include grinding the asbestos board to 75 ⁇ m or less.
  • the mediator solution may be water or a basic solution.
  • the basic solution may comprise NaCl and NaHCO 3 .
  • the heat treatment temperature may be 700 °C to 800 °C.
  • Another aspect of the present invention to achieve the above technical problem provides a method for fixing the carbon dioxide and the synthesis of calcium carbonate using the gypsum board waste.
  • the method comprises the steps of forming a slurry by injecting a gypsum board into the medium solution, injecting carbon dioxide into the slurry and the slurry injected with carbon dioxide at a pressure of 0.1 MPa to 0.5 MPa and a temperature of 100 °C to 150 °C Pressurizing and heating.
  • the method may further include grinding the gypsum board.
  • the grinding of the gypsum board may include grinding the gypsum board to 75 ⁇ m or less.
  • the mediator solution may be water or a basic solution.
  • the basic solution may comprise NaCl and NaHCO 3 .
  • the asbestos-containing material may be heat-treated at a temperature of 710 ° C. to 840 ° C. to make the asbestos-containing material harmless and improve the immobilization efficiency of carbon dioxide.
  • the final product of the synthesized calcium carbonate can be used as a raw material of cement.
  • asbestos may be harmless through phase transition of minerals through heat treatment.
  • 1 is an XRD result analysis graph of particles formed through heat treatment and carbon dioxide injection of an asbestos-containing slate according to a first embodiment of the present invention.
  • FIG. 3 is an SEM-EDX analysis image and graph of particles formed by heat treatment and carbon dioxide injection of an asbestos-containing slate according to a first embodiment of the present invention.
  • FIG. 4 is an XRD result analysis graph of a product formed using an autoclave sterilizer after injection of asbestos raw material and carbon dioxide according to a second embodiment of the present invention.
  • FIG. 5 is an XRD result analysis graph of a product formed through asbestos raw material and heat treatment according to the second embodiment of the present invention.
  • FIG. 6 is an SEM-EDS analysis image and graph of asbestos board raw material according to a second embodiment of the present invention.
  • FIG. 7 is an SEM-EDS analysis image and graph of a product formed using an autoclave sterilizer after injecting carbon dioxide according to a second embodiment of the present invention.
  • FIG. 10 is a SEM-EDX analysis result image and graph of gypsum board waste according to a third embodiment of the present invention.
  • FIG. 11 is an SEM-EDX analysis image and graph of particles formed by injecting carbon dioxide into gypsum board waste according to a third embodiment of the present invention.
  • the waste may be asbestos containing material. That is, the asbestos-containing material may be waste containing asbestos.
  • an asbestos-containing material is prepared.
  • the asbestos-containing material may be a slate containing asbestos.
  • the asbestos-containing material may be ground. This is to promote the reaction with carbon dioxide by increasing the surface area of the asbestos-containing material. At this time, it is preferable to grind the length of the asbestos-containing material to 75 ⁇ m or less. However, the grinding process may be omitted.
  • the ground asbestos-containing material is heat treated.
  • the phase change of the asbestos-containing material may be changed through the heat treatment process. Carbon dioxide may be easily injected into the asbestos-containing material heat-treated in the steps to be described later through the phase change.
  • the heat-treat at a temperature of, for example, 710 ° C to 840 ° C.
  • the heat treatment temperature is less than 710 ° C.
  • the white asbestos contained in the slate may not change in phase transition to gore olivine (Forsterite).
  • gore olivine Formsterite
  • gory olivine formed by heat-treating the white asbestos contained in the slate may not react with carbon dioxide and bicarbonate to form a carbonate mineral, the cost of the high temperature heat treatment increases There is.
  • the heat treated asbestos-containing material is added to a carrier solution.
  • the mediator solution may be a basic solution containing water or bicarbonate (HCO 3 ⁇ ) ions. In this case, problems such as scattering of asbestos can be prevented through a wet process.
  • the basic solution may include NaCl and NaHCO 3 .
  • the present invention is not limited thereto.
  • gosterite produced by heat-treating the asbestos-containing material may react with carbon dioxide in the medium solution.
  • the formation of the carbonate mineral is promoted so that the carbon dioxide can be easily fixed.
  • Carbon dioxide is injected into the medium solution containing the heat treated asbestos-containing material to fix the carbon dioxide, and the carbonate mineralization reaction is performed.
  • Carbonate mineralization reaction is a reaction in which the alkaline earth metal component constituting the mineral reacts with carbon dioxide and mimics the weathering action of the natural system to change into a carbonate mineral in a thermodynamically stable state.
  • the carbonate mineralization reaction is exothermic, and the product of the carbonate mineralization reaction has an energy level of 60 to 180 kJ / mol, which is lower than that of carbon dioxide.
  • the carbon dioxide is fixed in the form of carbonate mineral when viewed in the energy level, it is possible to fix the carbon dioxide for a long time in a state of a stable energy level. Therefore, since carbon dioxide is fixed to a stable energy level, a separate monitoring system for additionally managing the fixed state of carbon dioxide is unnecessary.
  • carbon dioxide may be injected into the medium solution containing asbestos-containing slate at a pressure of 0.2 MPa.
  • carbonate mineralization takes place at the same time to produce calcium carbonate.
  • the asbestos-containing material may be pressed to accelerate the carbonate mineralization.
  • the pressurization process may be performed using an autoclave.
  • the pressurization is preferably carried out at a temperature of 100 °C to 150 °C and a pressure of 0.1 MPa to 0.5 MPa.
  • the temperature and pressure range is a mild condition that can sterilize microorganisms.
  • the said press process it is preferable to hold the said press process for 20 minutes or more. If the holding time of the pressing process is less than 20 minutes, there is a fear that it is insufficient to accelerate the carbonate mineralization action.
  • Asbestos-containing materials were prepared asbestos-containing materials.
  • a pulverizer Pulverizer
  • 75 ⁇ m 200 Mesh
  • the filtered powder was heat-treated for about 2 hours at a temperature of about 750 ° C. using a laboratory electric furnace.
  • the heat treated slate was added to a basic solution to prepare a slurry.
  • the basic solution included NaCl and NaHCO 3 .
  • Carbon dioxide (CO 2 ) was injected into the slurry at a pressure of about 0.2 MPa to asbestos-free and fix carbon dioxide.
  • carbon dioxide immobilization proceeded
  • carbonate mineralization proceeded
  • calcium carbonate was synthesized.
  • the main component of the product synthesized through the experiment is calcium carbonate, the diameter of the product is 10 ⁇ m to 20 ⁇ m, the product is a raw material of cement which is a calcite of round shape.
  • 1 is an XRD result analysis graph of particles formed by heat treatment and carbon dioxide injection of asbestos-containing slate according to the first embodiment of the present invention.
  • the particles formed through the experiment were repeated three times using a centrifuge to remove NaCl, and then dried naturally.
  • X-ray diffraction analysis of asbestos-containing slate (raw sample) pulverized to 75 ⁇ m or less without heat treatment and asbestos-containing slate particles formed by heat-treating the raw material and injecting carbon dioxide ).
  • the slate ground to 75 ⁇ m or less without heat treatment mainly consisted of chrysotile (Ch) and calcium hydroxide (Calcium hydroxide, Ca).
  • Asbestos-containing slate particles formed by heat-treating the raw material and injecting carbon dioxide were tested with and without an autoclave at the temperature and pressure shown above after injecting carbon dioxide.
  • FIG. 3 is an SEM-EDX analysis image and graph of a product formed by heat treatment and carbon dioxide injection of an asbestos-containing slate according to a first embodiment of the present invention.
  • the waste may be asbestos board.
  • the asbestos board can be ground. This is to increase the surface area of the asbestos board to promote the reaction with carbon dioxide.
  • the asbestos board is preferably pulverized to 75 ⁇ m or less.
  • the crushed asbestos board is introduced into a carrier solution to form an asbestos board solution.
  • the asbestos board solution may have a slurry (Slurry) form.
  • the mediator solution may be water or a basic solution.
  • the basic solution may include distilled water, NaCl and NaHCO 3 .
  • the asbestos board solution Injecting carbon dioxide into the asbestos board solution to fix the carbon dioxide.
  • carbon dioxide is fixed and carbonate mineralization reaction (Mineral carbonation) may proceed.
  • the gypsum (CaSO 4 ) of the asbestos board may be calcium carbonate (CaCO 3 ) through a carbonate mineralization reaction.
  • Carbonate mineralization reaction is a reaction in which the alkaline earth metal component constituting the mineral reacts with carbon dioxide and mimics the weathering action of the natural system to change into a carbonate mineral in a thermodynamically stable state.
  • the carbonate mineralization reaction is exothermic, and the product of the carbonate mineralization reaction has an energy level of 60 to 180 kJ / mol, which is lower than that of carbon dioxide. Therefore, fixing carbon dioxide in the form of a carbonate mineral is in a stable energy state, and thus there is an advantage of fixing carbon dioxide for a long time.
  • the asbestos board solution may be maintained at a temperature of 100 ° C to 150 ° C and a pressure of 0.1 MPa to 0.5 MPa to accelerate carbon dioxide fixation.
  • the temperature of the accelerated process is less than 100 ° C., the time for fixing the carbon dioxide becomes long, and when the temperature of the accelerated process exceeds 150 ° C., there is a problem that the cost due to the high temperature heat treatment increases.
  • the said temperature and pressure it is preferable to maintain the said temperature and pressure for 20 minutes or more. If the holding time is less than 20 minutes, it may be insufficient to accelerate the carbonate mineralization action.
  • Asbestos is harmless by heat treatment of the asbestos board to which carbon dioxide is fixed.
  • sulfur dioxide SO 2
  • gypsum CaSO 4
  • Asbestos is harmless by heat treatment of the asbestos board to which carbon dioxide is fixed.
  • the heat treatment temperature may be 700 °C to 800 °C.
  • the heat treatment temperature is less than 700 ° C, the white asbestos contained in the asbestos board may not change in phase transition to goto olivine (Forsterite). If the heat treatment temperature is higher than 800 °C, there is a problem that the cost due to high temperature heat treatment increases.
  • the heat treatment process is preferably performed for 1 to 3 hours at a temperature of 700 °C to 800 °C. Therefore, through the heat treatment process, calcite having a diameter of about 20 ⁇ m and having a round shape can be obtained, and the asbestos can be made harmless.
  • the asbestos board was formed into a powder form by using a pulverizer, and then it was filtered to 75 ⁇ m (200 Mesh). Asbestos crushed asbestos board was added to the basic solution for carbonate mineralization to prepare an asbestos board solution.
  • the asbestos board solution consisted of 60 ml tertiary distilled water, 9 g pulverized asbestos board up to 75 ⁇ m (15% solids in total solution), 1.7535 g NaCl (1M) and 1.6129 g NaHCO 3 (0.64M).
  • Carbon dioxide (99.999%) gas was injected into the asbestos board solution at 0.2 MPa pressure to fix the carbon dioxide. Thereafter, using a autoclave sterilizer, the temperature was maintained at 120 ° C. and 0.25 MPa pressure for 20 minutes to promote carbon dioxide fixation.
  • the carbon dioxide-fixed asbestos board was heat-treated at about 700 ° C. for 2 hours using a laboratory electric furnace to make asbestos harmless.
  • FIG. 4 is an XRD result analysis graph of a product formed using an autoclave sterilizer after injection of asbestos raw material and carbon dioxide according to a second embodiment of the present invention.
  • the asbestos board (raw sample) pulverized to 75 ⁇ m or less is mainly composed of white asbestos (Chrysotile, Ch), limestone (Calcite, C), and gypsum (Gypsum, G).
  • white asbestos Chrysotile, Ch
  • limestone Calcite, C
  • gypsum G
  • the particles formed by maintaining the above-described temperature and pressure by using an autoclave sterilizer after carbon dioxide injection were composed of limestone (Calcite, C) and white stone (Chrysotile, Ch). That is, it can be seen that carbon dioxide is fixed to gypsum and the carbonate mineralization reaction has occurred.
  • FIG. 5 is an XRD result analysis graph of a product formed through asbestos raw material and heat treatment according to the second embodiment of the present invention.
  • the particles formed by heat treatment again after carbon dioxide injection were found to have calcite (C), calcium oxide (Calcium Oxide, Ca), and quartz (Quartz, Q), which are cement raw materials. That is, it can be confirmed that the phase transition of the mineral occurs.
  • FIG. 6 is an SEM-EDS analysis image and graph of asbestos board raw material according to a second embodiment of the present invention.
  • FIG. 6 as a result of conducting scanning electron microscopy (SEM-EDS) to confirm the size, shape, and composition of minerals, asbestos board raw materials pulverized to 75 ⁇ m or less are rounded to 3 ⁇ m or less in diameter. Gypsum (Figs. 6 (b) and 6 (c)) and long and thin fibrous asbestos (Chrysotile) (Figs. 6 (d) and 6 (e)) were confirmed.
  • FIG. 7 is an SEM-EDS analysis image and graph of a product formed using an autoclave sterilizer after injecting carbon dioxide according to a second embodiment of the present invention.
  • the particles formed after the carbon dioxide injection were found to have a rounded calcite bonded to the elongated, fibrous asbestos (FIGS. 7A and 7B).
  • round aggregates of calcite were also present (Figs. 7 (c) and 7 (d)). That is, it can be seen that carbon dioxide is fixed to gypsum to form calcium carbonate (CaCO 3 ).
  • the cement raw material was synthesized using asbestos elimination, carbon dioxide fixation, and calcium carbonate formed as a product.
  • the waste may be gypsum board.
  • the gypsum board can be pulverized. This is to increase the surface area of the gypsum board to promote the reaction with carbon dioxide. At this time, it is preferable to grind the length of the gypsum board to 75 ⁇ m or less. However, the grinding process of the gypsum board may be omitted. If the grinding process of the gypsum board is omitted, there is an advantage that can prevent the scattering of the gypsum board generated during the grinding process.
  • the gypsum board is added to a carrier solution to form a slurry.
  • the mediator solution may be water or a basic solution.
  • the basic solution may include bicarbonate ions (HCO 3 ⁇ ).
  • the basic solution including the bicarbonate (HCO 3 ⁇ ) allows the carbon dioxide to be easily fixed when the gypsum board and the carbon dioxide react.
  • the basic solution may include NaCl and NaHCO 3 .
  • the present invention is not limited thereto.
  • Inject carbon dioxide into the slurry When injecting carbon dioxide into the slurry, it may be injected using a predetermined pressure.
  • Carbonate mineralization reaction is a reaction in which the alkaline earth metal component constituting the mineral reacts with carbon dioxide and mimics the weathering action of the natural system to change into a carbonate mineral in a thermodynamically stable state.
  • the carbonate mineralization reaction is exothermic, and the product of the carbonate mineralization reaction has an energy level of 60 to 180 kJ / mol, which is lower than that of carbon dioxide.
  • the energy level when carbon dioxide is fixed in the form of carbonate mineral, carbon dioxide can be immobilized for a long time in a stable energy level. Therefore, since carbon dioxide is fixed to a stable energy level, a separate monitoring system for additionally managing the fixed state of carbon dioxide is unnecessary.
  • the pressurizing and heating process may be performed using an autoclave.
  • the pressing and heating process is preferably carried out at a pressure of 0.1 MPa to 0.5 MPa and a temperature of 100 °C to 150 °C.
  • gypsum CaSO 4
  • HCO 3 ⁇ bicarbonate
  • carbon dioxide dissolved in the slurry.
  • the pressure and temperature range may be pressure and temperature conditions capable of sterilizing microorganisms.
  • CaCO 3 calcium carbonate
  • the gypsum board waste In order to increase the surface area of the gypsum board waste, it was made into powder by using a pulverizer and then placed in a thickness of 75 ⁇ m (200 Mesh). 30 ml of water, 4.5 g of plasterboard waste of less than 75 ⁇ m, 1.7535 g (1 M) of NaCl, 1.6129 g (0.64 M) of NaHCO 3 were injected into a 120 ml media bottle to form a slurry. Carbon dioxide gas was injected into the slurry at 0.2 MPa pressure. Then, pressurization and heating were maintained at 120 ° C. and 0.25 MPa for 20 minutes using an autoclave to accelerate the carbonate mineralization. 10 ml of water was added for ease of analysis, repeated three times using a centrifuge, followed by air drying to remove NaCl.
  • XRD X-ray diffraction analysis
  • Scanning electron microscopy was performed to determine the size, shape and composition of the minerals of the gypsum board waste (raw sample) pulverized to 75 ⁇ m or less and the particles formed by the experimental and comparative examples.
  • the particles formed by the comparative example is a case that does not use an autoclave after the carbon dioxide injection, there was no phase transition of minerals.
  • the particles formed by the experimental example is a case of using a autoclave after the injection of carbon dioxide, it can be seen that the phase transition of minerals to calcite (C), a cement raw material.
  • FIG. 10 is a SEM-EDX analysis result image and graph of gypsum board waste according to a third embodiment of the present invention.
  • the gypsum board waste (raw sample) is composed of a round shape having a diameter of 30 ⁇ m to 40 ⁇ m and a rectangular gypsum having a length of 30 ⁇ m to 35 ⁇ m.
  • FIG. 11 is an SEM-EDX analysis image and graph of particles formed by injecting carbon dioxide into gypsum board waste according to a third embodiment of the present invention.
  • the particles formed when a pressurizer was used after carbon dioxide injection had a diameter of 20 ⁇ m to 30 ⁇ m and were calcite, which is a raw material of a round cement.
  • Gypsum a constituent mineral of gypsum board waste, is a phase transition to carbonate minerals.
  • sulfur (S) which is a main component of gypsum, is present in the headspace of the media bottle as sulfur oxide (SO x ) in a gaseous state.
  • SO x sulfur oxide
  • the gypsum board waste can be reacted with carbon dioxide using a pressurizer at the temperature and pressure conditions set forth above. This confirmed that the carbon dioxide was fixed and synthesized as a cement raw material using calcium carbonate formed product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

폐기물을 이용한 이산화탄소 고정방법을 제공한다. 먼저, 석면 함유 물질을 710℃ 내지 840℃의 온도로 열처리한 후, 매개체 용액에 투입하고, 이산화탄소를 주입함으로써 석면 함유 물질을 무해화하고, 이산화탄소의 고정화 효율을 향상시키며,탄산염광물화 작용을 통하여 시멘트의 원료물질을 생성할 수 있다. 또한, 석면보드를 분쇄하고, 분쇄된 석면보드를 매개체 용액에 투입하여 석면보드 용액을 형성하고, 석면보드 용액에 이산화탄소를 주입하여 이산화탄소를 고정시킨 후, 열처리하여 석면을 무해화함으로써 석면보드 폐기물과 이산화탄소의 반응을 이용하여 이산화탄소를 고정할 뿐 아니라, 합성한 최종생성물인 탄산칼슘을 시멘트의 원료물질로 사용할 수 있다. 또한, 석고보드를 매개체 용액에 투입하여 슬러리를 형성하고, 슬러리에 이산화탄소를 주입한 후, 0.1㎫ 내지 0.5㎫의 압력 및 100℃ 내지 150℃의 온도로 가압 및 가열함으로써 석고보드 폐기물과 이산화탄소의 반응을 이용하여 탄산칼슘(방해석, Calcite)의 합성에 따른 이산화탄소의 고정 뿐 아니라, 합성한 최종생성물인 탄산칼슘을 시멘트의 원료물질로 사용할 수 있다.

Description

폐기물을 이용한 이산화탄소 고정방법
본 발명은 폐기물을 이용한 이산화탄소 고정방법에 관한 것으로, 보다 상세하게는 석면 함유 폐기물 또는 석고보드 폐기물을 이용하여 이산화탄소를 고정하는 방법에 관한 것이다.
석면(asbestos)은 천연에서 산출되는 섬유상의 규산염 광물을 통칭하는 상업적 용어로서, 미국 산업안전보건청(OSHA)에서는 종횡비 3:1 이상, 길이 5μm 이상의 섬유상 또는 침상의 광물을 석면으로 정의한다.
석면은 유연성이 있고, 견사상 광택이 특이한 특성을 가진다. 석면은 사문석 계열과 각섬석 계열의 결정구조로 나눌 수 있다. 사문석 계열은 기본적으로 전하가 중성인 1:1 층(1:1 layer)으로 구성된 결정구조를 가지고, 각섬석 계열은 SiO4 사면체들이 결합한 복쇄형(double chain)의 결정구조를 가진다. 석면은 인장력이 강하고 전기를 통하지 않으며, 열과 추위에 잘 견디고, 화학적으로 부식이 강한 특성을 가져, 산업적으로 많이 이용되어 왔다. 그러나, 석면에 노출시 가늘고 긴 섬유상의 광물학적 특성에 의해 석면폐, 폐암 및 악성 종피종 등 각종 폐 관련 질환에 걸릴 위험이 높은 것으로 알려졌다.
슬레이트는 80% 내지 90%의 시멘트와 10% 내지 20%의 백석면(Chrysotile)으로 구성되어 있다. 농촌 지붕개량 사업으로 사용된 슬레이트의 양은 정확히 파악할 수 없으나, 당시 보도 자료에 의하면 73년부터 76년까지 연간 3,500만매가 판매되었고, 77년 3,200만매, 78년 3,000만매 등으로 서서히 감소하다가 80년대에 1,800만매가 판매되었다고 한다.
현재에도 전국적으로 주택과 공장, 축사 등에 사용되었던 슬레이트가 많이 잔존하며 점차 노후화되어 가고 있다. 슬레이트는 상기에서 언급했던 것과 같이 시멘트와 석면으로 구성되어 있다. 시간이 경과함에 따라 시멘트의 구성성분인 수산화칼슘(Calcium hydroxide)은 물에 녹으며, 석면은 주변 환경으로 방출된다.
또한, 슬레이트와 더불어, 석면이 함유된 석면보드는 석회석, 석고 및 백석면으로 이루어져 있다. 따라서, 석면보드도 시간이 경과함에 따라, 슬레이트와 같이, 풍화에 의해 백석면이 대기중에 노출되고 있는 실정이다.
따라서, 주변 환경으로 방출되는 석면을 무해화시키는 문제가 큰 사회적 이슈가 되고 있다. 이에 따라, 석면을 함유한 폐기물을 무해화시키는 문제에 대한 연구가 활발하게 진행되고 있다.
현재 석면 처리는 폴리에틸렌 용기에 밀봉 처리하여 지정 폐기물 매립장에 복토하여 이루어지고 있으며, 폐광산을 이용하여 석면 폐기물을 매립하는 방안도 제안되었다. 또한, 석면의 유해성을 없애기 위한 물리·화학적 연구가 많이 진행되고 있다. 일 예로, 사문석계 석면을 황산으로 화학적 처리하여 마그네슘 해리를 통한 광물탄산화를 유도할 수 있는 반응 기작에 대해 연구되고 있다.
한편, 석고보드는 소석고를 주원료로 하여 톱밥, 섬유, 펄라이트 등을 혼합하고, 경우에 따라서는 발포제를 첨가하고 물로 반죽하여 두 장의 시트 사이에 부어서 판상으로 굳힌 것을 가리킨다.
석고보드는 1902년 미국에서 발명되었으며, 건축시 벽이나 천장에 사용하여 방화재의 역할을 수행함과 동시에 내장재의 역할을 수행하는 자재이다. 석고보드는 방화성이 우수하여 건물골조의 초기 방화 및 연소 지연에 큰 역할을 한다. 또한, 석고보드는 시공이 간편하여 공기를 단축시킬 수 있으며, 중량이 가벼워 건물구조비가 절감될 수 있다.
석고는 그 자체가 안정된 결정상태이므로, 온도나 습도변화에 따른 신축 변형이 없고, 열전도율이 낮아 보온성이 우수하다. 또한, 석고보드는 단열성, 방화성, 차음성, 방수성, 경량 및 시공성, 방균성, 경제성, 내진성 등의 특성을 가진다.
급속한 경제성장과 더불어 현재 국내 건설업은 점차 다양화, 대형화, 초고층화 되어가고 있는 실정이다. 전국적으로 아파트를 대형으로 건설하고 있는 국내 건설업계에서는 설계, 자재, 시공에 대한 원활한 정보 교환을 기반으로 건설 효율의 극대화를 위해 많은 노력을 하고 있다.
그러나, 지난 수년간의 급속한 경제성장에 따라 건설 폐기물이 크게 증가하고 있는 실정이다.
그 중 석고보드는 대부분의 건축 공사 시에 사용되어, 연간 30만톤 이상이 폐기물로 발생되고 있다. 이는 전체 건설 폐기물의 발생량의 약 3% 이상을 차지하는 양이다. 그러나, 사회기반 시설 확충 공사 및 도시 재개발 사업, 재건축사업 등이 폭 넓게 진행됨에 따라, 석고보드 폐기물의 배출은 꾸준히 증가할 것으로 예상된다.
따라서, 건설 공사시 발생되는 석고보드 폐기물의 감량을 위한 노력과 석고보드 폐기물의 적정처리에 대한 연구가 절실히 필요하다. 건설 폐기물 처리방안에 관한 연구는 진행되고 있으나, 석고보드 폐기물 현황 조사와 처리방안에 관한 연구는 미흡한 실정이다.
석고보드 폐기물은 중간 처리업자 등에 의한 파쇄, 종이의 분리를 거쳐, 일부는 석고보드의 원료로 재활용이 이루어진다고 보고되고 있다. 그러나, 실질적으로는 석고보드 폐기물 선별의 곤란성, 석고보드의 재활용 시장의 부족 등의 이유로 석고보드 폐기물의 대부분은 매립처분되고 있는 실정이다.
한편, 우리나라의 이산화탄소 증가율은 OECD 국가 중 1위이고, 전 세계 제10위의 이산화탄소 배출 국가로서 2013년부터는 탄소배출 감소 의무국으로 지정되어 강도 높은 감축 요구를 받을 것으로 예상된다. 따라서, 이에 대비한 감축 계획의 수립이 필요한 실정이다. 그 일환으로, CCS(Carbon Capture and Storage)가 연구되고 있다. CCS 기술 중 이산화탄소 심해저장, UGS(Underground Gas Storage), 지하수용해, 지중저장 등의 다양한 물리적 방법들이 검토 및 시도될 예정이다. 그러나, 상기 방법들은 값비싼 이산화탄소 모니터링 시스템을 운용해야 하는 단점이 있다.또한, 우리나라에는 지질구조상 지중저장 장소가 많지 않은 문제점이 있다. 따라서, 광물을 구성하고 있는 알칼리 토금속 성분을 이산화탄소와 반응시켜 열역학적으로 안정된 상태의 탄산염광물로 변화시키는 탄산염광물화 작용에 대한 연구가 활발하게 진행되고 있다.
전치완 외(이산화탄소 포집을 위한 부산석고와 탄산암모늄의 광물탄산화에 대한 반응성 고찰, Chemistry, 2010, 14(1), 81-84.)는 부산석고를 이용하여 이산화탄소를 포집하기 위한 방법으로 암모니아와 이산화탄소의 반응에서 얻어진 탄산암모늄과 부산석고와의 광물탄산화에 대해 연구하였다. 그러나, 석고보드 폐기물을 직접 사용하여 이산화탄소 고정을 포함한 생성물의 재활용에 관한 연구는 이루어진 바가 없다.
본 발명이 해결하고자 하는 기술적 과제는 열처리 및 이산화탄소를 이용하여 석면이 함유된 슬레이트를 무해화하고, 이산화탄소를 고정하고, 시멘트의 원료물질인 탄산칼슘을 합성할 수 있는 폐기물을 이용한 이산화탄소 고정방법을 제공하는 데 있다.
또한, 열을 이용하여 석면보드 폐기물 내 존재하는 섬유상의 석면을 무해화하고, 석면보드와 이산화탄소의 상호 반응을 이용하여 시멘트의 원료물질인 탄산칼슘을 제조할 수 있는 폐기물을 이용한 이산화탄소 고정방법을 제공하는 데 있다.
또한, 석고보드와 이산화탄소의 상호 반응을 이용하여 이산화탄소 고정화를 수행하고, 석고보드 폐기물을 재활용하여 시멘트의 원료물질인 탄산칼슘을 제조할 수 있는 폐기물을 이용한 이산화탄소 고정방법을 제공하는 데 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 일 측면은 석면 함유 물질의 무해화 및 이산화탄소 고정방법을 제공한다. 상기 방법은 석면 함유 물질을 710℃ 내지 840℃의 온도로 열처리하는 단계 및 상기 열처리된 석면 함유 물질을 매개체 용액에 투입하고, 상기 매개체 용액에 이산화탄소를 주입하는 단계를 포함한다.
상기 이산화탄소를 주입하는 단계 이후에, 상기 석면 함유 물질을 100℃ 내지 150℃의 온도와 0.1㎫ 내지 0.5㎫의 압력으로 압열하는 단계를 더 포함할 수 있다.
상기 석면 함유 물질을 열처리하는 단계 이전에, 상기 석면 함유 물질을 분쇄하는 단계를 더 포함할 수 있다.
상기 석면 함유 물질을 분쇄하는 단계는 상기 석면 함유 물질을 75㎛ 이하로 분쇄하는 단계일 수 있다.
상기 석면 함유 물질은 슬레이트를 포함할 수 있다.
상기 매개체 용액은 물 또는 염기성 용액일 수 있다. 상기 염기성 용액은 NaCl 및 NaHCO3를 포함할 수 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 다른 측면은 석면보드 폐기물의 무해화 및 이산화탄소 고정방법을 제공한다. 상기 방법은 석면보드를 분쇄하는 단계, 상기 분쇄된 석면보드를 매개체 용액에 투입하여 석면보드 용액을 형성하는 단계, 상기 석면보드 용액에 이산화탄소를 주입하여 이산화탄소를 고정시키는 단계 및 상기 이산화탄소가 고정된 석면보드를 열처리하여 석면을 무해화하는 단계를 포함한다.
상기 이산화탄소를 고정시키는 단계는, 상기 석면보드 용액을 100℃ 내지 150℃의 온도와 0.1 MPa 내지 0.5 MPa의 압력으로 유지하여 이산화탄소의 고정을 가속화시키는 과정을 포함할 수 있다.
상기 석면보드를 분쇄하는 단계는, 상기 석면보드를 75㎛ 이하로 분쇄하는 단계일 수 있다.
상기 매개체 용액은 물 또는 염기성 용액일 수 있다. 상기 염기성 용액은 NaCl 및 NaHCO3를 포함할 수 있다.
상기 열처리 온도는 700℃ 내지 800℃일 수 있다.
상기 기술적 과제를 이루기 위하여 본 발명의 또 다른 측면은 석고보드 폐기물을 이용한 이산화탄소의 고정 및 탄산칼슘 합성 방법을 제공한다. 상기 방법은 석고보드를 매개체 용액에 투입하여 슬러리를 형성하는 단계, 상기 슬러리에 이산화탄소를 주입하는 단계 및 상기 이산화탄소를 주입한 슬러리를 0.1㎫ 내지 0.5㎫의 압력과, 100℃ 내지 150℃의 온도로 가압 및 가열하는 단계를 포함한다.
상기 슬러리를 형성하는 단계 이전에, 상기 석고보드를 분쇄하는 단계를 더 포함할 수 있다. 상기 석고보드를 분쇄하는 단계는, 상기 석고보드를 75㎛ 이하로 분쇄하는 단계일 수 있다.
상기 매개체 용액은 물 또는 염기성 용액일 수 있다. 상기 염기성 용액은 NaCl 및 NaHCO3를 포함할 수 있다.
본 발명에 따르면, 석면 함유 물질을 710℃ 내지 840℃의 온도로 열처리하여 석면 함유 물질을 무해화하고, 이산화탄소의 고정화 효율을 향상시킬 수 있다. 또한, 이산화탄소의 고정과 함께 탄산염광물화 작용을 통하여 시멘트의 원료물질을 생성할 수 있다. 이 때, 일정 조건의 압열 과정을 통해 탄산염광물화 작용을 가속화시킬 수 있다.
또한, 석면보드 폐기물과 이산화탄소의 반응을 이용하여 이산화탄소의 고정 뿐 아니라, 합성한 최종 생성물인 탄산칼슘을 시멘트의 원료물질로 사용할 수 있다. 또한, 열처리를 통한 광물의 상전이를 통해 석면을 무해화 시킬 수 있다.
또한, 석고보드 폐기물과 이산화탄소의 반응을 이용하여 이산화탄소의 고정 뿐 아니라, 합성한 최종 생성물인 탄산칼슘을 시멘트의 원료물질로 사용할 수 있다.
다만, 본 발명의 효과들은 이상에서 언급한 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1 실시예에 따른 석면 함유 슬레이트를 열처리와 이산화탄소 주입을 통해 형성된 입자의 XRD 결과분석 그래프이다.
도 2는 본 발명의 제1 실시예에 따른 석면 함유 슬레이트의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 3은 본 발명의 제1 실시예에 따른 석면 함유 슬레이트를 열처리와 이산화탄소 주입을 통해 형성된 입자의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 4는 본 발명의 제2 실시예에 따른 석면보드 원시료와 이산화탄소 주입 후 압열 멸균기를 사용하여 형성된 생성물의 XRD 결과분석 그래프이다.
도 5는 본 발명의 제2 실시예에 따른 석면보드 원시료와 열처리를 통해 형성된 생성물의 XRD 결과분석 그래프이다.
도 6은 본 발명의 제2 실시예에 따른 석면보드 원시료의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 7은 본 발명의 제2 실시예에 따른 이산화탄소 주입 후 압열 멸균기를 사용하여 형성된 생성물의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 8은 본 발명의 제2 실시예에 따른 열처리를 통해 형성된 생성물의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 9는 본 발명의 제3 실시예에 따라 생성된 입자의 XRD 결과분석 그래프이다.
도 10은 본 발명의 제3 실시예에 따른 석고보드 폐기물의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 11은 본 발명의 제3 실시예에 따른 석고보드 폐기물에 이산화탄소 주입을 통해 형성된 입자의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 12는 본 발명의 제3 실시예에 따른 석고보드 폐기물에 이산화탄소 주입 후, 가압 및 가열 단계를 통해 형성된 입자의 SEM-EDX 분석결과 이미지 및 그래프이다.
이하, 첨부한 도면들을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 도면들에 있어서, 층 및 영역들의 두께는 명확성을 기하기 위하여 과장된 것이다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다. 또한, 하기에서 본 발명을 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략할 것이다.
제1 실시예: 석면 함유 물질
본 발명의 제1 실시예에 따른 폐기물의 이산화탄소 고정방법에 대하여 설명한다. 상기 폐기물은 석면 함유 물질일 수 있다. 즉, 상기 석면 함유 물질은 석면이 함유된 폐기물일 수 있다.
먼저, 석면 함유 물질을 준비한다. 일 예로, 상기 석면 함유 물질은 석면이 함유된 슬레이트일 수 있다.
상기 석면 함유 물질을 분쇄할 수 있다. 이는 석면 함유 물질의 표면적을 넓혀 이산화탄소와의 반응을 촉진시키기 위함이다. 이 때, 상기 석면 함유 물질의 길이를 75㎛ 이하로 분쇄(Grinding)함이 바람직하다. 다만, 상기 분쇄 과정은 생략될 수 있다.
상기 분쇄된 석면 함유 물질을 열처리한다. 상기 열처리 과정을 통하여 석면 함유 물질의 상전이 변화가 이루어질 수 있다. 상전이 변화를 통하여 후술할 단계에서 열처리된 석면 함유 물질에 이산화탄소가 쉽게 주입될 수 있다.
슬레이트의 경우, 예를 들어 710℃ 내지 840℃의 온도로 열처리하는 것이 바람직하다. 상기 열처리 온도가 710℃ 미만일 경우, 슬레이트에 포함된 백석면이 고토 감람석(Forsterite)으로 상전이 변화가 일어나지 않을 우려가 있다. 또한, 상기 열처리 온도가 840℃를 상회하는 경우, 슬레이트에 포함된 백석면을 열처리하여 형성된 고토 감람석이 이산화탄소와 중탄산과 반응하여 탄산염광물이 형성될 수 없을 수 있으며, 고온 열처리에 따른 비용이 증가하는 문제가 있다.
상기 열처리된 석면 함유 물질을 매개체 용액(Carrier solution)에 투입한다. 상기 매개체 용액은 물, 또는 중탄산(HCO3 -) 이온이 포함된 염기성 용액일 수 있다. 이 경우, 습식 공정을 통해 석면의 비산 등의 문제를 방지할 수 있다.
일 예로, 상기 염기성 용액은 NaCl 및 NaHCO3을 포함할 수 있다. 다만, 이에 한정되지는 않는다.
상기 열처리된 석면 함유 물질을 매개체 용액에 투입함으로써, 석면 함유 물질을 열처리하여 생성된 고토감람석(forsterite)이 상기 매개체 용액 내에서 이산화탄소와 반응할 수 있다. 이 경우, 탄산염광물의 형성이 촉진되어 이산화탄소가 쉽게 고정될 수 있다.
상기 열처리된 석면 함유 물질이 포함된 매개체 용액에 이산화탄소를 주입하여 이산화탄소를 고정시키고, 탄산염광물화 반응(Mineral carbonation)을 진행시킨다.
탄산염광물화 반응(Mineral carbonation)이란, 자연계의 풍화작용을 모방하여 광물을 구성하고 있는 알칼리 토금속 성분을 이산화탄소와 반응시켜, 열역학적으로 안정된 상태의 탄산염광물로 변화시키는 반응이다.
상기 탄산염광물화 반응은 발열반응이며, 탄산염광물화 반응결과의 생성물은 에너지 준위가 60 내지 180 kJ/mol로 이산화탄소보다 낮다. 상기 에너지 준위로 보았을 때 탄산염광물의 형태로 이산화탄소를 고정시키면, 안정된 에너지 준위의 상태로 장기간 이산화탄소를 고정화시킬 수 있다. 따라서, 안정된 에너지 준위의 상태로 이산화탄소를 고정화시키므로, 이산화탄소의 고정 상태를 추가적으로 관리하기 위한 별도의 모니터링 시스템이 불필요한 이점이 있다.
예를 들어, 이산화탄소를 0.2㎫의 압력으로 석면 함유 슬레이트가 포함된 매개체 용액에 주입할 수 있다. 이 경우, 주입된 이산화탄소가 고정되면서 탄산염광물화 작용이 동시에 일어나 탄산칼슘이 생성된다.
상기 이산화탄소를 주입하는 공정 이후에, 상기 석면 함유 물질을 압열하여 탄산염광물화 작용을 가속화시킬 수 있다.
상기 압열 공정은 압열기(Autoclave)를 이용하여 수행할 수 있다.
상기 압열은 100℃ 내지 150℃의 온도 및 0.1㎫ 내지 0.5㎫의 압력에서 수행하는 것이 바람직하다. 상기 온도 및 압력 범위는 미생물을 멸균할 수 있는 온화한(mild) 조건이다.
또한, 상기 압열 공정은 20분 이상 유지하는 것이 바람직하다. 만일, 상기 압열 공정의 유지 시간이 20분 미만인 경우, 탄산염광물화 작용을 가속화시키기에 불충분할 우려가 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
실험예
석면 함유 물질로서 석면이 함유된 슬레이트를 준비하였다. 상기 슬레이트의 표면적을 높이기 위해 분쇄기(Pulverizer)를 이용하여 분말로 만든 뒤, 75㎛(200 Mesh) 채에 걸렀다. 이후, 채에 거른 분말을 실험실용 전기로를 이용하여 약 750℃의 조건에서 약 2시간 열처리를 하였다.
상기 열처리된 슬레이트를 염기성 용액에 투입하여 슬러리(Slurry)를 제조하였다. 상기 염기성 용액은 NaCl 및 NaHCO3을 포함하였다. 상기 슬러리에 이산화탄소(CO2)를 약 0.2㎫의 압력으로 주입하여 석면을 무해화하고 이산화탄소를 고정하였다. 또한, 이산화탄소 고정화가 진행됨과 동시에 탄산염광물화 작용이 진행되어 탄산칼슘이 합성되었다.
이후, 압열기(Autoclave)를 이용하여 약 120℃의 온도 및 약 0.25㎫의 압력 조건으로 약 20분간 유지하였다. 상기 압열 공정을 통해 탄산염광물화 작용이 가속화되었다.
상기 실험을 통해 합성된 생성물의 주성분은 탄산칼슘이며, 상기 생성물의 지름은 10㎛ 내지 20㎛이고, 상기 생성물은 둥근 형태의 방해석(Calcite)인 시멘트의 원료물질이다.
도 1은 본 발명의 제1 실시예에 따라 석면 함유 슬레이트를 열처리와 이산화탄소 주입을 통해 형성된 입자의 XRD 결과분석 그래프이다. 분석의 용의성을 위하여 상기 실험을 통해 형성된 입자에서 NaCl을 제거하기 위해 원심분리기(Centrifuge)를 이용하여 3회 반복한 후 자연건조시켰다.
도 1을 참조하면, 열처리를 하지 않고 75㎛ 이하로 분쇄한 석면 함유 슬레이트(원시료)와, 상기 원시료를 열처리하고, 이산화탄소를 주입하여 형성한 석면 함유 슬레이트 입자를 X-선 회절 분석(XRD)으로 비교하였다.
분석 결과에 따르면, 열처리를 하지 않고 75 ㎛ 이하로 분쇄한 슬레이트는 주로 백석면(Chrysotile, Ch) 및 수산화칼슘(Calcium hydroxide, Ca)으로 구성되어 있었다.
원시료를 열처리하고, 이산화탄소를 주입하여 형성한 석면 함유 슬레이트 입자는 이산화탄소 주입 후 상기에 제시된 온도와 압력으로 압열기(Autoclave)를 사용한 경우와 사용하지 않은 경우로 실험하였다.
그 결과, 압열기 사용과 관계없이 둘 다 시멘트 원료물질인 방해석(Calcite, C)으로 광물의 상전이가 일어남을 확인할 수 있었다. 다만, 압열기를 사용한 경우 탄산칼슘의 결정도가 높음을 확인할 수 있었다. 이는 더 많은 양의 탄산칼슘이 형성되었음을 의미한다. 따라서, 압열 공정의 추가로 탄산염광물화 반응을 가속화시킬 수 있음을 알 수 있다.
도 2는 본 발명의 제1 실시예에 따른 석면 함유 슬레이트의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 3은 본 발명의 제1 실시예에 따른 석면 함유 슬레이트를 열처리와 이산화탄소 주입을 통해 형성된 생성물의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 2 및 도 3을 참조하면, 광물의 크기와 모양 및 구성성분을 확인하기 위해 주사전자현미경분석(SEM-EDX)을 실시하였다. 열처리를 하지 않고 75㎛ 이하로 분쇄한 슬레이트(원시료)에서는 가늘고 긴 섬유상의 백석면(Chrysotile, Mg3(OH)4Si2O5)과 지름이 5㎛ 이하의 둥근 형태의 수산화칼슘(Calcium hydroxide, Ca(OH)2)이 확인되었다. 반면, 열처리와 이산화탄소 주입을 통해 형성한 석면 함유 슬레이트 입자에서는 가늘고 긴 섬유상의 석면은 확인되지 않았고, 지름이 10㎛ 내지 20㎛인 둥근형태의 시멘트의 원료물질인 탄산칼슘(방해석, Calcite)이 확인되었다.
따라서, 열처리와 이산화탄소의 주입을 통하여 섬유상의 석면의 유해성이 제거되고, 이산화탄소가 고정되고, 시멘트의 원료물질인 탄산칼슘(방해석, Calcite)이 합성됨을 확인하였다.
제2 실시예: 석면보드
본 발명의 제2 실시예에 따른 폐기물을 이용한 이산화탄소 고정방법에 대하여 설명한다. 상기 폐기물은 석면보드일 수 있다.
먼저, 석면보드를 분쇄할 수 있다. 이는 석면보드의 표면적을 넓혀 이산화탄소와의 반응을 촉진시키기 위함이다. 상기 석면보드는 75㎛ 이하로 분쇄하는 것이 바람직하다.
상기 분쇄된 석면보드를 매개체 용액(Carrier solution)에 투입하여 석면보드 용액을 형성한다. 상기 석면보드 용액은 슬러리(Slurry) 형태를 가질 수 있다. 상기 매개체 용액은 물 또는 염기성 용액일 수 있다. 일 예로, 석면보드에 이산화탄소를 고정시킬 때, 물 또는 염기성 용액을 사용하여 석면보드 용액의 pH를 7 이상으로 조절함으로써, 이산화탄소의 고정 반응을 촉진시킬 수 있다. 상기 염기성 용액은 증류수, NaCl 및 NaHCO3를 포함할 수 있다.
상기 석면보드 용액에 이산화탄소를 주입하여 이산화탄소를 고정시킨다. 이 경우, 이산화탄소가 고정되면서 탄산염광물화 반응(Mineral carbonation)이 진행될 수 있다. 따라서, 석면보드의 석고(CaSO4)는 탄산염광물화 반응을 통해 탄산칼슘(CaCO3)이 될 수 있다.
탄산염광물화 반응(Mineral carbonation)이란, 자연계의 풍화작용을 모방하여 광물을 구성하고 있는 알칼리 토금속 성분을 이산화탄소와 반응시켜, 열역학적으로 안정된 상태의 탄산염광물로 변화시키는 반응이다. 상기 탄산염광물화 반응은 발열반응이며, 탄산염광물화 반응결과의 생성물은 에너지 준위가 60 내지 180 kJ/mol로 이산화탄소보다 낮다. 따라서, 탄산염광물의 형태로 이산화탄소를 고정시키는 것이 안정된 에너지 준위의 상태이므로, 장기간 이산화탄소를 고정화시킬 수 있는 이점이 있다.
상기 이산화탄소를 주입 후, 일정한 온도 및 압력을 유지하여 탄산염광물화 작용을 가속화시킬 수 있다. 예를 들어, 압열 멸균기(Autoclave)를 이용하여 일정 온도 및 압력 조건을 유지할 수 있다.
바람직하게는, 상기 석면보드 용액을 100℃ 내지 150℃의 온도 및 0.1 MPa 내지 0.5 MPa의 압력으로 유지하여 이산화탄소 고정을 가속화시킬 수 있다. 상기 가속화 공정의 온도가 100℃ 미만인 경우, 이산화탄소를 고정시키는 시간이 길어지고, 상기 가속화 공정의 온도가 150℃를 상회하는 경우, 고온 열처리에 따른 비용이 증가하는 문제가 있다.
또한, 상기 온도 및 압력은 20분 이상 유지하는 것이 바람직하다. 상기 유지 시간이 20분 미만인 경우, 탄산염광물화 작용을 가속화시키기에 불충분할 수 있다.
상기 이산화탄소가 고정된 석면보드를 열처리하여 석면을 무해화한다. 석면보드에 이산화탄소를 고정시키지 않고 열처리할 경우, 석면보드의 석고(CaSO4)로부터 이산화황(SO2)이 생성될 수 있어 원하지 않는 생성물이 형성될 수 있다. 상기 열처리 과정을 통하여 석면보드에 함유된 백석면의 상전이 변화가 이루어진다.
상기 열처리 온도는 700℃ 내지 800℃일 수 있다. 상기 열처리 온도가 700℃ 미만일 경우, 석면보드에 포함된 백석면이 고토 감람석(Forsterite)으로 상전이 변화가 일어나지 않을 우려가 있다. 상기 열처리 온도가 800℃를 상회하는 경우, 고온 열처리에 따른 비용이 증가하는 문제가 있다.
또한, 상기 열처리 공정은 700℃ 내지 800℃의 온도에서 1시간 내지 3시간동안 수행되는 것이 바람직하다. 따라서, 상기 열처리 공정을 통하여 지름이 약 20㎛이고 둥근 형태인 방해석(Calcite)을 얻을 수 있고, 석면을 무해화 시킬 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
실험예
석면보드의 표면적을 높이기 위해 분쇄기(Pulverizer)를 이용하여 석면보드를 분말 형태로 만든 뒤, 75㎛ (200 Mesh) 채에 걸렀다. 탄산염광물화를 위하여 분쇄된 석면보드를 염기성 용액에 투입하여 석면보드 용액을 제조하였다. 상기 석면보드 용액은 60㎖ 3차 증류수, 9g 분쇄된 75㎛ 이하의 석면보드(전체 용액 중 고체 15%), 1.7535g의 NaCl(1M) 및 1.6129g의 NaHCO3(0.64M)로 구성된다.
상기 석면보드 용액에 이산화탄소(99.999%) 가스를 0.2MPa 압력으로 주입하여 이산화탄소를 고정시켰다. 이후, 압열 멸균기를 이용하여 120℃의 온도 및 0.25 MPa 압력 조건으로 20분간 유지하여 이산화탄소 고정을 촉진시켰다. 상기 이산화탄소가 고정된 석면보드를 실험실용 전기로를 이용하여 약 700℃에서 2시간 열처리하여 석면을 무해화하였다.
분석의 용의성을 위해 증류수 10㎖를 넣고 원심분리기(Centrifuge)를 이용하여 3회 반복한 후 자연건조시켜 NaCl을 제거하였다. 75㎛ 이하로 분쇄한 석면보드 원시료, 이산화탄소 주입 후 형성된 생성물 및 열처리를 통한 생성물을 X-선 회절 분석(XRD)으로 비교하였다.
도 4는 본 발명의 제2 실시예에 따른 석면보드 원시료와 이산화탄소 주입 후 압열 멸균기를 사용하여 형성된 생성물의 XRD 결과분석 그래프이다.
도 4를 참조하면, 75㎛ 이하로 분쇄한 석면보드(원시료)는 주로 백석면(Chrysotile, Ch)과 석회석(Calcite, C) 및 석고(Gypsum, G)로 구성되어 있다. 또한, 이산화탄소 주입 후 압열 멸균기를 사용하여 상술한 온도 및 압력을 유지하여 형성된 입자는 석회석(Calcite, C)과 백석면(Chrysotile, Ch)으로 구성되었음을 확인할 수 있다. 즉, 석고에 이산화탄소가 고정되어 탄산염광물화반응이 일어났음을 알 수 있다.
도 5는 본 발명의 제2 실시예에 따른 석면보드 원시료와 열처리를 통해 형성된 생성물의 XRD 결과분석 그래프이다.
도 5를 참조하면, 이산화탄소 주입 후, 다시 열처리하여 형성된 입자는 시멘트 원료물질인 방해석(Calcite, C), 산화칼슘(Calcium Oxide, Ca) 및 석영(Quartz, Q)을 가지는 것으로 나타났다. 즉, 광물의 상전이가 일어남을 확인할 수 있다.
도 6은 본 발명의 제2 실시예에 따른 석면보드 원시료의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 6을 참조하면, 광물의 크기와 모양 및 구성성분을 확인하기 위해 주사전자현미경분석(SEM-EDS)을 실시한 결과, 75㎛ 이하로 분쇄한 석면보드 원시료는 지름이 3㎛ 이하의 둥근 형태의 석고(Gypsum)(도 6(b) 및 6(c))와, 가늘고 긴 섬유상의 석면(Chrysotile)(도 6(d) 및 6(e))이 확인되었다.
도 7은 본 발명의 제2 실시예에 따른 이산화탄소 주입 후 압열 멸균기를 사용하여 형성된 생성물의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 7을 참조하면, 이산화탄소 주입 후 형성된 입자는 가늘고 긴 섬유상의 석면에 둥근 모양의 방해석이 접합되어 있는 것을 확인할 수 있었다(도 7(a) 및 7(b)). 또한, 둥근 모양의 방해석(Calcite)의 집합체가 존재하기도 하였다(도 7(c) 및 7(d)). 즉, 석고에 이산화탄소가 고정되어 탄산칼슘(CaCO3)이 형성되었음을 알 수 있다.
도 8은 본 발명의 제2 실시예에 따른 열처리를 통해 형성된 생성물의 SEM-EDS 분석결과 이미지 및 그래프이다.
도 8을 참조하면, 열처리 한 후 형성된 입자에서는 섬유상의 석면이 관찰되지 않았으며, 지름이 10㎛ 내지 20㎛인 둥근형태의 시멘트의 원료물질인 방해석(Calcite)의 집합체가 확인되었다(도 8(a) 내지 8(d)).
따라서, 상기 결과를 통하여 석면의 유해성 제거, 이산화탄소의 고정 및 형성된 생성물인 탄산칼슘을 이용한 시멘트 원료물질의 합성 가능성을 확인하였다.
제3 실시예: 석고보드
본 발명의 제3 실시예에 따른 폐기물을 이용한 이산화탄소 고정방법에 대하여 설명한다. 상기 폐기물은 석고보드일 수 있다.
먼저, 석고보드를 분쇄할 수 있다. 이는 석고보드의 표면적을 넓혀 이산화탄소와의 반응을 촉진시키기 위함이다. 이 때, 상기 석고보드의 길이를 75㎛ 이하로 분쇄(Grinding)함이 바람직하다. 다만, 상기 석고보드의 분쇄 과정은 생략될 수 있다. 석고보드의 분쇄 과정을 생략할 경우, 분쇄 과정에서 발생하는 석고보드의 비산을 방지할 수 있는 이점이 있다.
상기 석고보드를 매개체 용액(Carrier solution)에 투입하여 슬러리를 형성한다.
상기 매개체 용액은 물 또는 염기성 용액일 수 있다. 상기 염기성 용액은 중탄산 이온(HCO3 -)을 포함할 수 있다. 상기 중탄산(HCO3 -)이 포함된 염기성 용액은 석고보드와 이산화탄소가 반응할 때, 이산화탄소를 쉽게 고정될 수 있게 한다. 일 예로, 상기 염기성 용액은 NaCl 및 NaHCO3을 포함할 수 있다. 다만, 이에 한정되지는 않는다.
상기 슬러리에 이산화탄소를 주입한다. 상기 슬러리에 이산화탄소를 주입할 때, 일정 압력을 이용하여 주입할 수 있다.
상기 이산화탄소를 주입한 슬러리를 가압 및 가열하여 탄산염광물화 반응(Mineral carbonation)을 진행한다. 즉, 이산화탄소를 주입한 슬러리에 일정 압력 및 일정 온도를 가할 경우, 석고보드와 이산화탄소가 반응하여 탄산염광물을 형성한다.
탄산염광물화 반응(Mineral carbonation)이란, 자연계의 풍화작용을 모방하여 광물을 구성하고 있는 알칼리 토금속 성분을 이산화탄소와 반응시켜, 열역학적으로 안정된 상태의 탄산염광물로 변화시키는 반응이다.
상기 탄산염광물화 반응은 발열반응이며, 탄산염광물화 반응결과의 생성물은 에너지 준위가 60 내지 180 kJ/mol로 이산화탄소보다 낮다. 상기 에너지 준위로 보았을 때, 탄산염광물의 형태로 이산화탄소를 고정시키면, 안정된 에너지 준위의 상태로 장기간 이산화탄소를 고정화시킬 수 있다. 따라서, 안정된 에너지 준위의 상태로 이산화탄소를 고정화시키므로, 이산화탄소의 고정 상태를 추가적으로 관리하기 위한 별도의 모니터링 시스템이 불필요한 이점이 있다.
상기 가압 및 가열 공정은 압열기(Autoclave)를 이용하여 수행할 수 있다. 상기 가압 및 가열 공정은 0.1㎫ 내지 0.5㎫의 압력 및 100℃ 내지 150℃의 온도에서 수행하는 것이 바람직하다. 상기 압력 및 온도 범위에서, 석고보드의 주 구성광물인 석고(CaSO4)는 슬러리 내 이산화탄소가 용존되어 존재하는 중탄산(HCO3 -)과 반응할 수 있다. 상기 반응으로 짧은 시간(30분 이내)에 탄산칼슘(CaCO3)이 합성될 수 있다. 또한, 상기 압력 및 온도 범위는 미생물을 멸균할 수 있는 압력 및 온도 조건일 수 있다.
상기 가압 및 가열 공정을 20분 이상 유지하는 것이 바람직하다. 상기 가압 및 가열 공정의 유지 시간이 20분 미만인 경우, 탄산염광물화 작용을 수행하는 데 시간이 불충분할 우려가 있다. 이와 같이, 상기 이산화탄소를 주입한 슬러리에 일정 압력 및 온도를 가할 경우, 탄산염광물화 작용이 진행되어 이산화탄소가 고정되고 그 생성물로 시멘트 원료물질인 탄산칼슘(CaCO3)이 합성될 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실험예(example)를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다.
실험예
석고보드 폐기물의 표면적을 높이기 위해 분쇄기(Pulverizer)를 이용하여 가루로 만든 뒤 75㎛(200 Mesh) 채에 걸렀다. 120㎖ 미디어병에 물 30㎖, 75㎛ 이하의 석고보드 폐기물 4.5g, NaCl 1.7535g(1M), NaHCO3 1.6129g(0.64M)를 주입하여 슬러리를 형성하였다. 상기 슬러리에 이산화탄소 가스를 0.2㎫ 압력으로 주입하였다. 이후, 탄산염광물화 작용을 가속화하기 위해 압열기(Autoclave)를 이용하여 120℃, 0.25㎫의 조건으로 가압 및 가열을 20분간 유지하였다. 분석의 용의성을 위하여 물을 10㎖ 넣고, 원심분리기(Centrifuge)를 이용하여 3회 반복한 후 자연건조 시켜 NaCl을 제거하였다.
비교예
탄산염광물화 작용을 가속화하기 위한 가압 및 가열 단계를 생략한 것을 제외하고, 상기 실험예와 동일하게 수행하였다.
75㎛ 이하로 분쇄한 석고보드 폐기물(원시료)와 실험예 및 비교예에 의해 형성된 입자를 X-선 회절 분석(XRD)으로 비교하였다.
75㎛ 이하로 분쇄한 석고보드 폐기물(원시료)과 실험예 및 비교예에 의해 형성된 입자를 광물의 크기와 모양 및 구성 성분을 확인하기 위해 주사전자현미경분석(SEM-EDX)을 실시하였다.
도 9는 본 발명의 제3 실시예에 따라 생성된 입자의 XRD 결과분석 그래프이다.
도 9를 참조하면, 75㎛ 이하로 분쇄한 석고보드 폐기물(원시료)은 주로 석고(Gypsum, G)와 방해석(Calcite, C)로 구성되어 있었다. 한편, 비교예에 의해 형성된 입자는 이산화탄소 주입 후 압열기(Autoclave)를 사용하지 않은 경우로서, 광물의 상전이가 없었다. 반면, 실험예에 의해 형성된 입자는 이산화탄소 주입 후 압열기(Autoclave)를 사용한 경우로서, 시멘트 원료물질인 방해석(Calcite, C)으로 광물의 상전이가 일어남을 확인할 수 있다.
도 10은 본 발명의 제3 실시예에 따른 석고보드 폐기물의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 10을 참조하면, 석고보드 폐기물(원시료)은 지름이 30㎛ 내지 40㎛인 둥근 형태와, 길이가 30㎛ 내지 35㎛인 직사각형 모양의 석고(Gypsum)로 구성되어 있음이 확인되었다.
도 11은 본 발명의 제3 실시예에 따른 석고보드 폐기물에 이산화탄소 주입을 통해 형성된 입자의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 11을 참조하면, 이산화탄소 주입 후 압열기를 사용하지 않은 경우, 원시료와 같이 황(S) 성분이 들어있는 석고(Gypsum)가 확인되었다. 따라서, 석고보드 폐기물이 포함된 슬러리에 이산화탄소를 주입한 이후 일정 압력 및 온도를 가하지 않은 경우, 시멘트 원료물질인 방해석(Calcite)으로 광물의 상전이가 일어나지 않음을 확인할 수 있다.
도 12는 본 발명의 제3 실시예에 따른 석고보드 폐기물에 이산화탄소 주입 후, 가압 및 가열 단계를 통해 형성된 입자의 SEM-EDX 분석결과 이미지 및 그래프이다.
도 12를 참조하면, 이산화탄소 주입 후 압열기를 사용한 경우 형성된 입자는 지름이 20㎛ 내지 30㎛이고, 둥근 형태의 시멘트의 원료물질인 방해석(Calcite)임이 확인되었다.
석고보드 폐기물의 구성광물인 석고(Gypsum)는 탄산염광물로 상전이가 일어난다. 이 때, 석고의 주성분인 황(S)은 기체상태의 황산화물(SOx)로 미디어병(Serum bottle)의 상부공간(headspace)에 존재하게 된다. 따라서, 상기에 제시된 온도와 압력 조건의 압열기를 사용하여 석고보드 폐기물을 이산화탄소와 반응시킬 수 있다. 이를 통해 이산화탄소를 고정시키고 형성된 생성물인 탄산칼슘을 이용하여 시멘트 원료물질로 합성이 가능함을 확인하였다.
이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형 및 변경이 가능하다.

Claims (18)

  1. 석면 함유 물질을 710℃ 내지 840℃의 온도로 열처리하는 단계; 및
    상기 열처리된 석면 함유 물질을 매개체 용액에 투입하고, 상기 매개체 용액에 이산화탄소를 주입하는 단계를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  2. 제1항에 있어서,
    상기 이산화탄소를 주입하는 단계 이후에,
    상기 석면 함유 물질을 100℃ 내지 150℃의 온도와 0.1㎫ 내지 0.5㎫의 압력으로 압열하는 단계를 더 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  3. 제1항에 있어서,
    상기 석면 함유 물질을 열처리하는 단계 이전에,
    상기 석면 함유 물질을 분쇄하는 단계를 더 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  4. 제3항에 있어서,
    상기 석면 함유 물질을 분쇄하는 단계는, 상기 석면 함유 물질을 75㎛ 이하로 분쇄하는 단계인 폐기물을 이용한 이산화탄소 고정 방법.
  5. 제1항에 있어서,
    상기 석면 함유 물질은 슬레이트를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  6. 제1항에 있어서,
    상기 매개체 용액은 물 또는 염기성 용액인 폐기물을 이용한 이산화탄소 고정 방법.
  7. 제6항에 있어서,
    상기 염기성 용액은 NaCl 및 NaHCO3를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  8. 석면보드를 분쇄하는 단계;
    상기 분쇄된 석면보드를 매개체 용액에 투입하여 석면보드 용액을 형성하는 단계;
    상기 석면보드 용액에 이산화탄소를 주입하여 이산화탄소를 고정시키는 단계; 및
    상기 이산화탄소가 고정된 석면보드를 열처리하여 석면을 무해화하는 단계를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  9. 제8항에 있어서,
    상기 이산화탄소를 고정시키는 단계는,
    상기 석면보드 용액을 100℃ 내지 150℃의 온도와 0.1 MPa 내지 0.5 MPa의 압력으로 유지하여 이산화탄소의 고정을 가속화시키는 과정을 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  10. 제8항에 있어서,
    상기 석면보드를 분쇄하는 단계는, 상기 석면보드를 75㎛ 이하로 분쇄하는 단계인 폐기물을 이용한 이산화탄소 고정 방법.
  11. 제8항에 있어서,
    상기 매개체 용액은 물 또는 염기성 용액인 폐기물을 이용한 이산화탄소 고정 방법.
  12. 제11항에 있어서,
    상기 염기성 용액은 NaCl 및 NaHCO3를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  13. 제8항에 있어서,
    상기 열처리 온도는 700℃ 내지 800℃인 폐기물을 이용한 이산화탄소 고정 방법.
  14. 석고보드를 매개체 용액에 투입하여 슬러리를 형성하는 단계;
    상기 슬러리에 이산화탄소를 주입하는 단계; 및
    상기 이산화탄소를 주입한 슬러리를 0.1㎫ 내지 0.5㎫의 압력과, 100℃ 내지 150℃의 온도로 가압 및 가열하는 단계를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  15. 제14항에 있어서,
    상기 슬러리를 형성하는 단계 이전에,
    상기 석고보드를 분쇄하는 단계를 더 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
  16. 제15항에 있어서,
    상기 석고보드를 분쇄하는 단계는,
    상기 석고보드를 75㎛ 이하로 분쇄하는 단계인 폐기물을 이용한 이산화탄소 고정 방법.
  17. 제14항에 있어서,
    상기 매개체 용액은 물 또는 염기성 용액인 폐기물을 이용한 이산화탄소 고정 방법.
  18. 제17항에 있어서,
    상기 염기성 용액은 NaCl 및 NaHCO3를 포함하는 폐기물을 이용한 이산화탄소 고정 방법.
PCT/KR2012/005060 2011-06-30 2012-06-27 폐기물을 이용한 이산화탄소 고정방법 WO2013002542A2 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20110064317 2011-06-30
KR10-2011-0064317 2011-06-30
KR10-2011-0089545 2011-09-05
KR1020110089545A KR101265828B1 (ko) 2011-09-05 2011-09-05 석고보드 폐기물을 이용한 이산화탄소의 고정 및 탄산칼슘 합성방법
KR1020120004739A KR101344127B1 (ko) 2012-01-16 2012-01-16 석면보드의 무해화 및 이산화탄소 고정방법
KR10-2012-0004739 2012-01-16

Publications (3)

Publication Number Publication Date
WO2013002542A2 true WO2013002542A2 (ko) 2013-01-03
WO2013002542A9 WO2013002542A9 (ko) 2013-03-07
WO2013002542A3 WO2013002542A3 (ko) 2013-05-16

Family

ID=47424655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/005060 WO2013002542A2 (ko) 2011-06-30 2012-06-27 폐기물을 이용한 이산화탄소 고정방법

Country Status (1)

Country Link
WO (1) WO2013002542A2 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249153A (ja) * 1997-03-11 1998-09-22 Natl Inst For Res In Inorg Mater アルカリ土類珪酸塩によるco2の固定化方法
JP2006273599A (ja) * 2005-03-28 2006-10-12 Tokuyama Corp 廃石膏の処理方法
JP2008019099A (ja) * 2004-09-02 2008-01-31 Nozawa Corp 炭酸ガス固定化性能に優れたフォルステライト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10249153A (ja) * 1997-03-11 1998-09-22 Natl Inst For Res In Inorg Mater アルカリ土類珪酸塩によるco2の固定化方法
JP2008019099A (ja) * 2004-09-02 2008-01-31 Nozawa Corp 炭酸ガス固定化性能に優れたフォルステライト
JP2006273599A (ja) * 2005-03-28 2006-10-12 Tokuyama Corp 廃石膏の処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
0' CONNOR ET AL. CARBON DIOXIDE SEQUESTRATION BY DIRECT MINERAL CARBONATION: RESULTS FROM RECENT STUDIES AND CURRENT STATUS 2001, *

Also Published As

Publication number Publication date
WO2013002542A9 (ko) 2013-03-07
WO2013002542A3 (ko) 2013-05-16

Similar Documents

Publication Publication Date Title
WO2016072622A2 (ko) 무시멘트 촉진형 혼화제 및 이를 포함하는 무시멘트 조성물
Nam et al. Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid
WO2018151526A1 (ko) 순환유동층발전소 발전회의 이산화탄소 고용화를 통한 복합탄산칼슘 제조방법 및 이에 따라 제조된 복합탄산칼슘
CZ292875B6 (cs) Geopolymerní pojivo na bázi popílků
Kusiorowski et al. The potential use of cement–asbestos waste in the ceramic masses destined for sintered wall clay brick manufacture
El-Hassan Accelerated carbonation curing as a means of reducing carbon dioxide emissions
KR101265828B1 (ko) 석고보드 폐기물을 이용한 이산화탄소의 고정 및 탄산칼슘 합성방법
WO2017131330A1 (ko) 황산처리된 굴패각을 포함하는 고화재 및 이를 이용한 시공방법
Kozawa et al. Thermal decomposition of chrysotile-containing wastes in a water vapor atmosphere
Zheng et al. Development of a novel rapid repairing agent for concrete based on GFRP waste powder/GGBS geopolymer mortars
WO2012033317A2 (ko) Cao를 다량 함유한 비산회 재활용 방법
WO2013002542A9 (ko) 폐기물을 이용한 이산화탄소 고정방법
WO2016010223A2 (ko) 배연탈황 설비용 탈황제
KR20120073621A (ko) 이산화탄소 흡수력이 촉진된 이산화탄소 저장 콘크리트 및 그 제조방법.
WO2024101633A1 (ko) 마그네슘계 시멘트 조성물 및 이를 이용한 마그네슘계 시멘트
JP4694065B2 (ja) 石綿の処理方法
CN102712537B (zh) 利用石棉废弃物的轻量建筑材料的制造方法
JP2000271561A (ja) アスベスト含有繊維強化セメント板の廃棄物からアスベストを分離する方法、分離したアスベストを無害化する方法、アスベスト無害化物を再利用した繊維強化セメント板の製造方法および繊維強化セメント板
WO2011049275A1 (ko) 폐시멘트를 이용한 co2 고용화 및 중금속 흡착 방법
KR20130004115A (ko) 석면 함유 물질의 무해화 및 이산화탄소 고정 방법
KR101344127B1 (ko) 석면보드의 무해화 및 이산화탄소 고정방법
JP2008272566A (ja) アスベスト含有資源の無害化熱処理方法,アスベスト含有成形物資源の無害化熱処理方法,アスベスト無害化熱処理物を用いた水硬性組成物。
KR100279171B1 (ko) 상, 하수 슬러지를 이용한 쓰레기 매립장 복토재, 성토 매립재 및 그 제조방법
WO2021085792A1 (ko) 석면 함유 폐자재의 무해화 처리방법
WO2018216886A1 (ko) 수소 가스 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804826

Country of ref document: EP

Kind code of ref document: A2