WO2013002252A1 - Rolling bearing - Google Patents

Rolling bearing Download PDF

Info

Publication number
WO2013002252A1
WO2013002252A1 PCT/JP2012/066366 JP2012066366W WO2013002252A1 WO 2013002252 A1 WO2013002252 A1 WO 2013002252A1 JP 2012066366 W JP2012066366 W JP 2012066366W WO 2013002252 A1 WO2013002252 A1 WO 2013002252A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
outer ring
rolling bearing
bearing
cage
Prior art date
Application number
PCT/JP2012/066366
Other languages
French (fr)
Japanese (ja)
Inventor
小杉太
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to DE112012002734.5T priority Critical patent/DE112012002734B4/en
Priority to CN201280030846.9A priority patent/CN103635708B/en
Priority to KR1020137033508A priority patent/KR101968714B1/en
Publication of WO2013002252A1 publication Critical patent/WO2013002252A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q11/00Accessories fitted to machine tools for keeping tools or parts of the machine in good working condition or for cooling work; Safety devices specially combined with or arranged in, or specially adapted for use in connection with, machine tools
    • B23Q11/12Arrangements for cooling or lubricating parts of the machine
    • B23Q11/121Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction
    • B23Q11/123Arrangements for cooling or lubricating parts of the machine with lubricating effect for reducing friction for lubricating spindle bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/14Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
    • F16C19/16Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls
    • F16C19/163Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with a single row of balls with angular contact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/24Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly
    • F16C19/26Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for radial load mainly with a single row of rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/541Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing
    • F16C19/542Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact
    • F16C19/543Systems consisting of juxtaposed rolling bearings including at least one angular contact bearing with two rolling bearings with angular contact in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/586Details of specific parts of races outside the space between the races, e.g. end faces or bore of inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6662Details of supply of the liquid to the bearing, e.g. passages or nozzles the liquid being carried by air or other gases, e.g. mist lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6685Details of collecting or draining, e.g. returning the liquid to a sump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/768Sealings of ball or roller bearings between relatively stationary parts, i.e. static seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7803Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings
    • F16C33/7806Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members suited for particular types of rolling bearings for spherical roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7816Details of the sealing or parts thereof, e.g. geometry, material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/54Systems consisting of a plurality of bearings with rolling friction
    • F16C19/546Systems with spaced apart rolling bearings including at least one angular contact bearing
    • F16C19/547Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings
    • F16C19/548Systems with spaced apart rolling bearings including at least one angular contact bearing with two angular contact rolling bearings in O-arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • This invention relates to a rolling bearing used for supporting, for example, a machine tool spindle.
  • FIG. 16 is a longitudinal sectional view of a conventional rolling bearing with a nozzle spacer.
  • exhaust notches 71 and 71 are provided in the spacer 70, and the lubricant used for lubricating the bearing is discharged from the exhaust notches 71 and 71 to the outside of the bearing.
  • Patent Document 1 there is a system in which an oil supply hole that communicates from an outer diameter portion to an inner diameter portion is provided in an outer ring, and oil is supplied from the oil supply hole.
  • An object of the present invention is to provide a rolling bearing capable of smoothly discharging the air oil supplied into the bearing space to the outside of the bearing when a bearing having an oil supply hole in the outer ring is used without a spacer. That is.
  • a rolling bearing according to the present invention is a rolling bearing in which rolling elements are interposed between rolling surfaces of an inner ring and an outer ring, and the outer ring is provided with an oil supply hole for air oil lubrication penetrating into a bearing space.
  • One or both of the width surfaces are provided with notch recesses for exhausting air oil that are recessed inward in the axial direction of the bearing from the inner diameter surface to the outer diameter surface.
  • a circumferential groove communicating with the oil supply hole is provided on the outer diameter surface of the outer ring, and annular grooves are provided on both sides of the circumferential groove on the outer diameter surface of the outer ring.
  • a seal member may be provided. These annular seal members can prevent air oil from undesirably leaking from the outer diameter surface of the outer ring.
  • the circumferential phase of the notch recesses of each bearing may be arranged in the same phase.
  • a large discharge area that is, a cross-sectional area of the notch recess can be secured.
  • the air oil used for lubrication in each bearing is quickly discharged from the notched recess without almost moving into the bearing space of the adjacent bearing. In this way, an effective exhaust and drainage flow can be realized for the air oil. Therefore, the unstable displacement of the bearing temperature can be reliably eliminated.
  • the inner diameter surface of the outer ring may be formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side.
  • the air oil that has been lubricated in the bearing space moves from the inner ring side to the outer ring side due to the centrifugal force generated by the rotation of the inner ring and the exhaust and oil discharge flow accompanying this centrifugal force.
  • a part of the air oil may stay on the inner diameter surface of the outer ring.
  • the inner diameter surface of the outer ring is inclined as described above, the air oil does not stay on the inner diameter surface of the outer ring. It is discharged smoothly.
  • a counter bore portion may be formed on the outer diameter surface of the inner ring, and a protruding portion protruding toward the outer diameter side may be provided at an axial end portion of the counter bore portion.
  • a counterbore portion is formed on one of the outer diameter surfaces of the inner ring, and an anti-counterbore portion without a counterbore portion is formed on the other, and the anti-counterbore portion is formed from the rolling surface side of the inner ring.
  • You may form in the cross-sectional shape which inclines so that a radial dimension may become large as it goes to the width surface side.
  • the air oil present in the counter-counter bore portion flows along the width surface side from the rolling surface side in the inclined surface of the counter-counter bore portion, and moves toward the notch recess. Therefore, an effective exhaust and exhaust oil flow can be realized.
  • a counter bore portion may be formed on the outer diameter surface of the inner ring, and when a plurality of rolling bearings are combined, an annular member having a diameter larger than the inner ring counter diameter of the counter bore portion may be sandwiched between the bearings.
  • the annular member may have a thin plate shape of, for example, a few millimeters or less.
  • the circumferential phase of the notch recess of the outer ring and the oil supply hole may be arranged in the same phase.
  • the distance between the supply and discharge oil in the bearing can be made smaller than that obtained by making the circumferential phase of the notch recess and the oil supply hole different from each other, and a more effective exhaust and oil discharge flow can be obtained. be able to.
  • the cross-sectional area of the exhaust outlet can be made larger than the cross-sectional area of the exhaust inlet, and a more effective exhaust and exhaust oil flow can be obtained.
  • the rolling bearing may be an angular ball bearing. It has a cage that holds a plurality of rolling elements at regular intervals in the circumferential direction, and this cage may be an outer ring guide type or a rolling element guide type.
  • this cage can be prevented from swinging during high-speed rotation by making the cage an outer ring guide type.
  • the cage is a rolling element guide type, and the outer diameter surface of the cage is formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the pocket side holding the rolling element toward the cage end surface side. May be.
  • the air oil existing in the vicinity of the outer diameter surface of the cage flows from the small diameter side to the large diameter side of the inclined surface and smoothly moves toward the notch recess.
  • the rolling bearing may be a cylindrical roller bearing with an inner ring collar. It has a cage that holds a plurality of rolling elements at regular intervals in the circumferential direction, and this cage may be an outer ring guide type or a rolling element guide type.
  • the main spindle for machine tools according to the present invention uses a rolling bearing according to any one of the above-described configurations. In this case, the spindle speed can be increased and the temperature rise can be reduced.
  • (A) is a longitudinal cross-sectional view of a rolling bearing according to an eighth embodiment of the present invention, and (B) is a plan view of the bearing as viewed from the direction of arrow A in FIG. 11 (A).
  • (A) is one side view of the outer ring
  • (B) is the other side view of the outer ring
  • (A) is a longitudinal sectional view of a rolling bearing according to a tenth embodiment of the present invention, and (B) is a plan view of the same bearing as viewed from the direction of arrow A in FIG.
  • (A) is a longitudinal cross-sectional view of a rolling bearing according to an eleventh embodiment of the present invention
  • (B) is a plan view of the bearing as viewed from the direction of arrow A in FIG. 14 (A).
  • It is a longitudinal cross-sectional view of the main axis for machine tools using the rolling bearing which concerns on any embodiment of this invention.
  • It is a longitudinal cross-sectional view of the rolling bearing with a nozzle spacer of a prior art example.
  • It is a longitudinal cross-sectional view of the rolling bearing of another conventional example.
  • the rolling bearing according to this embodiment is used for supporting a machine tool spindle, for example, and is used in air-oil lubrication. However, it is not limited to machine tool spindle applications.
  • the rolling bearing includes an inner ring 1, an outer ring 2, and a plurality of rolling elements 3 interposed between the rolling surfaces 1a and 2a of the inner and outer rings 1 and 2.
  • the rolling bearing of this example is an angular ball bearing, and the rolling element 3 is made of a ball.
  • Each rolling element 3 is held in a pocket 4a of a ring-shaped cage 4 at regular intervals in the circumferential direction.
  • As the cage 4 for example, an outer ring guide type guided by the inner diameter surface 2 b of the outer ring 2 is applied.
  • FIG. 1 (B) is a plan view seen from the direction of arrow A in FIG. 1 (A).
  • the outer ring 2 is provided with an oil supply hole 5 and a circumferential groove 6 for air oil lubrication.
  • the oil supply hole 5 is a through hole that communicates the outer diameter surface 2c of the outer ring 2 and the position in the vicinity of the rolling surface of the outer ring inner diameter surface 2b in the radial direction, and is a hole that supplies air oil into the bearing space.
  • the position in the vicinity of the rolling surface refers to the side of the outer ring inner diameter surface 2b on the opposite side of the rolling element 3 and the outer ring 2 from the center of the rolling element until air oil discharged from the oil supply hole 5 is applied to the rolling element 3.
  • the “non-contact side” refers to a side of the outer ring 2 opposite to the biased side of the action line L1 that forms a contact angle with the rolling surface 2a.
  • the oil supply holes 5 are provided at two positions at 180 ° diagonal positions in the outer ring 2.
  • a circumferential groove 6 is provided on the outer diameter surface 2c of the outer ring 2, and the circumferential groove 6 communicates with the two oil supply holes 5 and 5, respectively.
  • the outer circumferential surface 2c of the outer ring 2 is provided so that the circumferential groove 6 passes through a portion where the opening ends of the two oil supply holes 5 and 5 are located.
  • the circumferential groove 6 is formed in an arc-shaped cross section, and for example, is arranged so that the groove bottom position of the circumferential groove 6 matches the central axis of the oil supply holes 5 and 5. It is installed. Moreover, in this example, it is provided in the circumferential groove
  • annular grooves 7 and 7 are provided at positions on both sides of the circumferential groove 6 on the outer diameter surface 2c of the outer ring 2, respectively.
  • the annular grooves 7 and 7 are provided with annular seal members 8 and 8 each composed of an O-ring. That is, by providing the annular seal members 8 and 8 on both sides of the circumferential groove 6 and the oil supply holes 5 and 5 between the inner peripheral surface of the housing Hs and the outer diameter surface 2c of the outer ring 2, air oil To prevent leakage.
  • Notch recesses 9 and 9 for exhausting air oil are provided on both width surfaces of the outer ring 2. As shown in FIGS. 2A and 2B, the notch recesses 9 and 9 on both width surfaces of the outer ring 2 have the same phase and the same shape, and therefore only the notch recesses 9 and 9 on one width surface.
  • the notch recesses 9 and 9 on the other width surface will be described with the same reference numerals and will not be described in detail.
  • the “width surface” may be referred to as an “end surface”.
  • the notch recesses 9 and 9 on the one width surface are respectively recessed inward in the axial direction of the bearing, and provided from the inner diameter surface 2b to the outer diameter surface 2c of the outer ring 2. Yes.
  • the notch recesses 9 and 9 are disposed at 180 ° diagonal positions of the outer ring 2, and the notch recesses 9 and 9 have the same width dimensions H1 and H1. It is provided to become.
  • the notch recesses 9 and 9 are formed in a concave cross-sectional shape in which the bottom depths D1 and D1 (FIG. 1B) are the same depth.
  • the notched recesses 9 and 9 of the outer ring 2 are provided with a predetermined angle ⁇ 1 with respect to the phases of the oil supply holes 5 and 5.
  • FIG. 3 is a longitudinal sectional view showing an example in which two rolling bearings are combined with the back surface (DB combination) without a spacer.
  • the circumferential phases of the notch recesses 9 and 9 of each bearing are arranged in the same phase.
  • a comparison test was performed for the presence or absence of the notched recess 9 when the two rolling bearings were combined with the back without a spacer.
  • the number of rotations of the bearing is increased step by step with the passage of a predetermined operating time. The relationship between bearing temperature and operation time was compared.
  • Fig. 4 (A) shows test data of a combination bearing with a notched recess, which is an actual product
  • Fig. 4 (B) shows test data of a combination bearing without a notch, which is a comparative product.
  • the cut-out recesses 9 of the product used for the test were provided on both width surfaces of the outer ring 2. Further, two notches 9 and 9 are provided at 180 ° diagonal positions for each width surface.
  • the size of the notch recess 9 is a bearing having an inner diameter of ⁇ 100 mm, a width of 30 mm, and a depth of 2 mm. According to the test results, in the comparative product without a notch recess shown in FIG.
  • FIGS. 5 to 14A and 14B second to eleventh embodiments of the present invention will be described with reference to FIGS. 5 to 14A and 14B.
  • the same or corresponding parts as those in the first embodiment shown in FIGS. 1 (A) and (B) are the same. A detailed description thereof is omitted with reference numerals.
  • the rolling bearings may be combined on the back surface, and the inner diameter surface 2b of the outer ring 2 may be formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side.
  • the air oil that has been lubricated in the bearing space moves from the inner ring 1 side to the outer ring 2 side due to the centrifugal force generated by the rotation of the inner ring, the exhaust gas accompanying the centrifugal force, and the oil flow.
  • a part of the air oil may stay on the inner diameter surface 2b of the outer ring 2, but the air oil does not stay on the inner diameter surface 2b of the outer ring 2 because the inner diameter surface 2b of the outer ring 2 is inclined as described above.
  • the liquid is smoothly discharged along the inclined surface 2b.
  • the rolling bearing having the counter bore portion 10 formed on the outer diameter surface of the inner ring 1 is combined with the back surface, and the axial end portion of the counter bore portion 10 has an outer diameter side.
  • the air oil existing in the vicinity of the protruding portion 11 flows from the inner diameter side portion of the protruding portion 11 along the outer diameter side portion toward the notch recess 9 during the bearing operation. Therefore, an effective exhaust and exhaust oil flow can be realized.
  • a rolling bearing in which the counter bore portion 10 is formed on the back side and the counter counter bore portion 12 is formed on the front side of the outer diameter surface of the inner ring 1 is combined with the back surface.
  • the counter-bore portion 12 may be formed in a cross-sectional shape that inclines so that the diameter dimension increases from the rolling surface 1a side of the inner ring 1 toward the width surface side.
  • the air oil existing in the counter-counter bore portion 12 flows along the width surface side from the rolling surface 1a side of the inclined surface of the counter-counter bore portion 12 toward the notch recess 9. Therefore, an effective exhaust and exhaust oil flow can be realized.
  • annular member 13 having a diameter larger than the inner ring counter diameter D ⁇ b> 2 of the inner ring counter bore portion 10 is sandwiched between the inner ring end faces. It is good as a thing.
  • the annular member 13 is made of a thin steel plate or the like.
  • the inner diameter of the annular member 13 is substantially the same as the inner ring inner diameter, and the outer diameter of the annular member 13 is larger than the inner ring counter diameter D2 and smaller than the inner diameter of the outer ring. It has been established.
  • An annular member 14 made of a thin steel plate or the like is sandwiched between the outer ring end faces.
  • the annular member 14 has the same thickness as the annular member 13 between the inner ring end faces, is larger in diameter than the inner diameter of the outer ring, and is substantially the same as the outer diameter of the outer ring. According to this configuration, by sandwiching the annular member 13 having a diameter larger than the inner ring counter diameter D2 between the end surfaces of the inner ring, air oil used for lubrication in each bearing is blocked by the annular member 13 and adjacent thereto. It is quickly discharged from the notch recess 9 with little movement into the bearing space of the bearing.
  • the cage 4A of each bearing is an outer ring guide type, and the inner diameter surface 4Aa of the cage 4A is held from the pocket 4a side. It is formed in a cross-sectional shape that inclines so that the diameter dimension increases toward the end face of the vessel.
  • the air oil existing in the vicinity of the inner diameter surface of the cage 4 ⁇ / b> A flows along the larger diameter side from the smaller diameter side of the cage inclined surface during the bearing operation, and smoothly moves toward the notch recess 9.
  • the cage 4B of each bearing is a rolling element guide type, and the outer diameter surface 4Bb of this cage 4B is connected to the pocket 4a side. It is formed in the cross-sectional shape which inclines so that a radial dimension may become large as it goes to a cage end surface side.
  • the inner diameter surface 4Ba of the cage 4B is also an inclined surface parallel to the outer diameter surface 4Bb.
  • the circumferential phase of the notch recess 9 and the oil supply hole 5 of the outer ring 2 may be arranged in the same phase.
  • the distance between the oil supply and discharge oil in the bearing can be made smaller than in the embodiment shown in FIG. 12B in which the circumferential phase of the notch recess 9 and the oil supply hole 5 is different by 90 degrees. Effective exhaust and drainage flow can be achieved.
  • the outer circumferential surface 2c of the outer ring 2 has no circumferential groove, and as shown in FIG. 13B, the oil supply hole 5 in the outer diameter surface 2c is formed.
  • An annular groove 16 may be provided in the outer peripheral portion of the exhaust outlet.
  • the annular groove 16 is provided with an annular seal member 8A made of an O-ring for preventing air oil leakage. In this case, the number of processing steps can be reduced and the number of parts can be reduced as compared with the case where the two circumferential grooves 6 and 6 are formed.
  • the rolling bearing may be a cylindrical roller bearing with an inner ring collar.
  • the axial position of the oil supply hole 5 in the outer ring 2 is provided so as to match the one end surface 3 a of the rolling element 3.
  • the air oil can be reliably guided to the cage pocket 4a and the collar surface 1c of the inner ring 1, and the lubrication effect can be enhanced.
  • the same operational effects as the above-described embodiments are obtained.
  • the outer ring guide type cage may be changed to a rolling element guide type cage, and conversely, the rolling element guide type cage may be changed to an outer ring guide type.
  • FIG. 15 is a longitudinal sectional view of a main spindle for a machine tool using the rolling bearing according to any one of the above embodiments.
  • the example of FIG. 15 is a so-called built-in motor driven spindle for a machine tool in which a motor is built in a housing.
  • a rotor 19 of a motor 18 is attached to the main shaft 17, and a stator 20 of the motor 18 is attached to the housing Hs.
  • the rotor 19 is made of a permanent magnet or the like
  • the stator 20 is made of a coil, a core, or the like.
  • the cylindrical roller bearing BR1 according to the embodiment and the angular ball bearing BR2 combined with the back surface are arranged on the front end side of the main shaft 17, and the cylindrical roller bearing BR1 according to the embodiment is also arranged on the rear end side of the main shaft 17.
  • each bearing BR1, BR2 is fitted to the outer circumferential surface of the main shaft 17, and the outer ring 2 is fitted to the inner circumferential surface of the housing Hs.
  • These inner and outer rings 1 and 2 are fixed to the main shaft 17 and the housing Hs by an inner ring presser 21 and an outer ring presser 22, respectively.
  • An air oil supply path 23 is provided in the housing Hs, and the air oil supply path 23 is connected to an air oil supply source (not shown).
  • the air oil supply path 23 communicates with the oil supply hole 5 of each outer ring 2.
  • the housing Hs is provided with an air oil exhaust groove 24 communicating with the notched recess 9 of each outer ring 2 and an air oil exhaust passage 25 connected to each air oil exhaust groove 24.
  • Air oil is exhausted from the air oil exhaust passage 25.
  • the main shaft 17 can be shortened and the main shaft rigidity can be increased as compared with the conventional case where the spacer is provided between the bearings. it can.
  • it is possible to prevent the bearing temperature from being unstablely displaced or to raise the temperature excessively, so that the speed and accuracy of the main shaft 17 can be increased.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Turning (AREA)
  • Sealing Of Bearings (AREA)

Abstract

In a rolling bearing used for supporting the principal axis of machine tools and the like, oil supply holes (5) for air-oil lubrication that penetrate through to the bearing space are provided in the outer ring (2). On both side surfaces of the outer ring (2), notches (9) for exhausting the air-oil that are indented in the axial direction of the bearing are provided from the internal diameter surface (2b) to the external diameter surface (2c). In addition to providing a circumferential groove (6) that communicates with the oil supply holes (5) on the external diameter surface of the outer ring (2), ring-shaped grooves (7, 7) are severally provided on both sides of the circumferential groove (6) on said external diameter surface of the outer ring (2) and in each ring-shaped groove (7), a ring-shaped sealing member (8) is provided.

Description

転がり軸受Rolling bearing 関連出願Related applications
 本出願は、2011年6月30日出願の特願2011-146142の優先権を主張するものであり、その全体を参照により本願の一部をなすものとして引用する。 This application claims the priority of Japanese Patent Application No. 2011-146142 filed on June 30, 2011, which is incorporated herein by reference in its entirety.
 この発明は、例えば、工作機械主軸等の支持に用いられる転がり軸受に関する。 This invention relates to a rolling bearing used for supporting, for example, a machine tool spindle.
 図16は、従来のノズル間座付きの転がり軸受の縦断面図である。この転がり軸受では、間座70に排気用切欠き71,71を設けて、軸受の潤滑に供された潤滑剤が排気用切欠き71,71から軸受外部に排出される。転がり軸受において、外輪に外径部から内径部に連通する給油孔を設けて、この給油孔から給油する方式がある(特許文献1)。この方式では、軸受を背面組み合せで使用する場合に、エアオイル排気のための排気口(切欠き)を形成した間座を、軸受間に設ける必要がある。 FIG. 16 is a longitudinal sectional view of a conventional rolling bearing with a nozzle spacer. In this rolling bearing, exhaust notches 71 and 71 are provided in the spacer 70, and the lubricant used for lubricating the bearing is discharged from the exhaust notches 71 and 71 to the outside of the bearing. In a rolling bearing, there is a system in which an oil supply hole that communicates from an outer diameter portion to an inner diameter portion is provided in an outer ring, and oil is supplied from the oil supply hole (Patent Document 1). In this method, when the bearings are used in combination with the back surface, it is necessary to provide a spacer between the bearings in which an exhaust port (notch) for exhausting air oil is formed.
実開昭63-180726号公報Japanese Utility Model Publication No. 63-180726
 図17に示す外輪72に給油孔73を設けた軸受を、図18に示すように、背面組合せで間座無しで用いると、軸受間にエアオイル排出のための排気口が無いため、運転中に軸受内部で潤滑油の滞留や捲き込みを生じ、温度の不安定化や最悪の場合には過度の昇温に至る可能性がある。 When a bearing having an oil supply hole 73 in the outer ring 72 shown in FIG. 17 is used without a spacer in the rear combination as shown in FIG. 18, there is no exhaust port for discharging air oil between the bearings. There is a possibility that the lubricating oil stays or gets inside the bearing, resulting in temperature instability or, in the worst case, excessive temperature rise.
 この発明の目的は、外輪に給油孔を設けた軸受を間座無しで組合わせて用いる場合に、軸受空間内に供給したエアオイルを、軸受外部にスムーズに排出することができる転がり軸受を提供することである。 An object of the present invention is to provide a rolling bearing capable of smoothly discharging the air oil supplied into the bearing space to the outside of the bearing when a bearing having an oil supply hole in the outer ring is used without a spacer. That is.
 この発明の転がり軸受は、内輪および外輪の転走面間に転動体を介在させた転がり軸受であって、前記外輪に、軸受空間内に貫通するエアオイル潤滑用の給油孔を設け、前記外輪の幅面のうちいずれか一方または両方に、軸受の軸方向内方に凹むエアオイル排気用の切欠き凹部を、内径面から外径面にわたって設けたものである。 A rolling bearing according to the present invention is a rolling bearing in which rolling elements are interposed between rolling surfaces of an inner ring and an outer ring, and the outer ring is provided with an oil supply hole for air oil lubrication penetrating into a bearing space. One or both of the width surfaces are provided with notch recesses for exhausting air oil that are recessed inward in the axial direction of the bearing from the inner diameter surface to the outer diameter surface.
 この構成によると、エアオイルが、軸受外部から外輪の給油孔を通して軸受空間内に供給され、軸受の潤滑に供される。その後、エアオイルは外輪の切欠き用凹部からスムーズに排気される。このように軸受空間内に供給したエアオイルを、軸受空間内に滞留させることなく、軸受外部にスムーズに排出することができる。このため、運転中、軸受温度が不安定に変位したり過度に昇温することを未然に防止することができる。したがって、排気用の切欠きを設けた間座が不要となり、軸受同士を隣接して組合わせて用いることが可能となる。この場合、例えば、主軸前方に軸受を集中して配置できるため、従来のように間座を軸受間に設けた場合に比べて、主軸剛性が高くなるという利点がある。 According to this configuration, air oil is supplied from the outside of the bearing through the oil supply hole of the outer ring into the bearing space, and is used for lubricating the bearing. Thereafter, the air oil is smoothly exhausted from the notch recess of the outer ring. Thus, the air oil supplied into the bearing space can be smoothly discharged outside the bearing without staying in the bearing space. For this reason, it is possible to prevent the bearing temperature from being displaced in an unstable manner or excessively rising during operation. Therefore, a spacer provided with a notch for exhaust becomes unnecessary, and the bearings can be used in combination adjacent to each other. In this case, for example, since the bearings can be concentrated and arranged in front of the main shaft, there is an advantage that the main shaft rigidity is increased as compared with the conventional case where the spacer is provided between the bearings.
 前記外輪の外径面に、給油孔に連通する円周溝を設けると共に、この外輪の外径面における、前記円周溝の両側位置に、それぞれ環状溝を設け、各環状溝にそれぞれ環状のシール部材を設けても良い。これら環状のシール部材により、外輪の外径面からエアオイルが不所望に漏れることを防止することができる。 A circumferential groove communicating with the oil supply hole is provided on the outer diameter surface of the outer ring, and annular grooves are provided on both sides of the circumferential groove on the outer diameter surface of the outer ring. A seal member may be provided. These annular seal members can prevent air oil from undesirably leaking from the outer diameter surface of the outer ring.
 複数の転がり軸受の組合せ時に、各軸受の切欠き凹部の円周方向の位相を同位相に配置しても良い。この場合、切欠き凹部の排出面積つまり断面積を大きく確保することができる。これにより、各軸受において潤滑に供されたエアオイルは、隣接する軸受の軸受空間内に殆んど移動することなく切欠き凹部から速やかに排出される。このようにエアオイルについて効果的な排気および排油流れを実現することができる。したがって、軸受温度の不安定な変位を確実に解消することができる。 ¡When combining a plurality of rolling bearings, the circumferential phase of the notch recesses of each bearing may be arranged in the same phase. In this case, a large discharge area, that is, a cross-sectional area of the notch recess can be secured. As a result, the air oil used for lubrication in each bearing is quickly discharged from the notched recess without almost moving into the bearing space of the adjacent bearing. In this way, an effective exhaust and drainage flow can be realized for the air oil. Therefore, the unstable displacement of the bearing temperature can be reliably eliminated.
 前記外輪の内径面を、転走面側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成しても良い。軸受運転中、軸受空間内で潤滑に供されたエアオイルは、内輪回転による遠心力、この遠心力に伴う排気および排油流れにより、内輪側から外輪側に向かう。エアオイルの一部は、外輪の内径面にて滞留する場合があるが、外輪の内径面を前記のように傾斜させたため、エアオイルは外輪の内径面に滞留することがなく、傾斜面に沿ってスムーズに排出される。 The inner diameter surface of the outer ring may be formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side. During the operation of the bearing, the air oil that has been lubricated in the bearing space moves from the inner ring side to the outer ring side due to the centrifugal force generated by the rotation of the inner ring and the exhaust and oil discharge flow accompanying this centrifugal force. A part of the air oil may stay on the inner diameter surface of the outer ring. However, since the inner diameter surface of the outer ring is inclined as described above, the air oil does not stay on the inner diameter surface of the outer ring. It is discharged smoothly.
 前記内輪の外径面に、カウンタボア部が形成され、このカウンタボア部における軸方向端部に、外径側に突出する突出部を設けても良い。軸受運転中、突出部付近に存するエアオイルは、突出部の内径側部分から外径側部分に沿って流れ、切欠き凹部に向かっていく。したがって効果的な排気および排油流れを実現することができる。 A counter bore portion may be formed on the outer diameter surface of the inner ring, and a protruding portion protruding toward the outer diameter side may be provided at an axial end portion of the counter bore portion. During the bearing operation, the air oil existing in the vicinity of the protruding portion flows from the inner diameter side portion of the protruding portion along the outer diameter side portion toward the notch concave portion. Therefore, an effective exhaust and exhaust oil flow can be realized.
 前記内輪の外径面のうちいずれか一方にカウンタボア部が形成され、他方に、カウンタボア部の無い反カウンタボア部が形成され、この反カウンタボア部を、前記内輪の転走面側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成しても良い。軸受運転中、反カウンタボア部に存するエアオイルは、この反カウンタボア部の傾斜面における転走面側から幅面側に沿って流れ、切欠き凹部に向かっていく。したがって効果的な排気および排油流れを実現することができる。 A counterbore portion is formed on one of the outer diameter surfaces of the inner ring, and an anti-counterbore portion without a counterbore portion is formed on the other, and the anti-counterbore portion is formed from the rolling surface side of the inner ring. You may form in the cross-sectional shape which inclines so that a radial dimension may become large as it goes to the width surface side. During the bearing operation, the air oil present in the counter-counter bore portion flows along the width surface side from the rolling surface side in the inclined surface of the counter-counter bore portion, and moves toward the notch recess. Therefore, an effective exhaust and exhaust oil flow can be realized.
 前記内輪の外径面に、カウンタボア部が形成され、複数の転がり軸受の組合せ時に、カウンタボア部の内輪カウンタ径よりも大径となる環状部材を軸受間に挟み込んだものとしても良い。前記環状部材の厚みは、例えば数1mm以下程度の薄板状であっても良い。内輪カウンタ径よりも大径となる環状部材を軸受間に挟み込むことで、各軸受において潤滑に供されたエアオイルは、環状部材に遮られて、隣接する軸受の軸受空間内に殆んど移動することなく切欠き凹部から速やかに排出される。 A counter bore portion may be formed on the outer diameter surface of the inner ring, and when a plurality of rolling bearings are combined, an annular member having a diameter larger than the inner ring counter diameter of the counter bore portion may be sandwiched between the bearings. The annular member may have a thin plate shape of, for example, a few millimeters or less. By sandwiching an annular member having a diameter larger than the inner ring counter diameter between the bearings, the air oil used for lubrication in each bearing is blocked by the annular member and moves almost into the bearing space of the adjacent bearing. It is quickly discharged from the notch recess without any problem.
 前記外輪の切欠き凹部と給油孔との円周方向の位相を同位相に配置しても良い。この場合、切欠き凹部と給油孔との円周方向の位相を異ならせたものよりも、軸受における給排油間の距離を小さくすることができ、より効果的な排気および排油流れとすることができる。前記外輪の切欠き凹部と、この外輪の外径面との角部に、面取りを設けても良い。この場合、排気出口の断面積を排気入口の断面積よりも大きくすることができ、より効果的な排気および排油流れとすることができる。 The circumferential phase of the notch recess of the outer ring and the oil supply hole may be arranged in the same phase. In this case, the distance between the supply and discharge oil in the bearing can be made smaller than that obtained by making the circumferential phase of the notch recess and the oil supply hole different from each other, and a more effective exhaust and oil discharge flow can be obtained. be able to. You may provide a chamfer in the corner | angular part of the notch recessed part of the said outer ring | wheel, and the outer-diameter surface of this outer ring | wheel. In this case, the cross-sectional area of the exhaust outlet can be made larger than the cross-sectional area of the exhaust inlet, and a more effective exhaust and exhaust oil flow can be obtained.
 前記転がり軸受がアンギュラ玉軸受であっても良い。複数の転動体を円周方向一定間隔おきに保持する保持器を有し、この保持器を外輪案内形式または転動体案内形式としても良い。例えば、高速回転で使用されるアンギュラ玉軸受では、保持器を外輪案内形式にすることで、高速回転時の保持器の振れ回りをより抑えることができる。 The rolling bearing may be an angular ball bearing. It has a cage that holds a plurality of rolling elements at regular intervals in the circumferential direction, and this cage may be an outer ring guide type or a rolling element guide type. For example, in an angular ball bearing used for high-speed rotation, the cage can be prevented from swinging during high-speed rotation by making the cage an outer ring guide type.
 前記保持器が転動体案内形式であって、この保持器の外径面を、転動体を保持するポケット側から保持器端面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成しても良い。軸受運転時、保持器の外径面付近に存するエアオイルは、傾斜面の小径側から大径側に沿って流れ、切欠き凹部にスムーズに向かっていく。 The cage is a rolling element guide type, and the outer diameter surface of the cage is formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the pocket side holding the rolling element toward the cage end surface side. May be. During the bearing operation, the air oil existing in the vicinity of the outer diameter surface of the cage flows from the small diameter side to the large diameter side of the inclined surface and smoothly moves toward the notch recess.
 前記転がり軸受が内輪つば付の円筒ころ軸受であっても良い。複数の転動体を円周方向一定間隔おきに保持する保持器を有し、この保持器を外輪案内形式または転動体案内形式としても良い。 The rolling bearing may be a cylindrical roller bearing with an inner ring collar. It has a cage that holds a plurality of rolling elements at regular intervals in the circumferential direction, and this cage may be an outer ring guide type or a rolling element guide type.
 この発明の工作機械用主軸は、前記いずれかの構成に係る転がり軸受を用いたものである。この場合、主軸の高速化および温度上昇低減が可能である。 The main spindle for machine tools according to the present invention uses a rolling bearing according to any one of the above-described configurations. In this case, the spindle speed can be increased and the temperature rise can be reduced.
 請求の範囲および/または明細書および/または図面に開示された少なくとも2つの構成のどのような組合せも、本発明に含まれる。特に、請求の範囲の各請求項の2つ以上のどのような組合せも、本発明に含まれる。 Any combination of at least two configurations disclosed in the claims and / or the specification and / or drawings is included in the present invention. In particular, any combination of two or more of each claim in the claims is included in the present invention.
 この発明は、添付の図面を参考にした以下の好適な実施形態の説明から、より明瞭に理解されるであろう。しかしながら、実施形態および図面は単なる図示および説明のためのものであり、この発明の範囲を定めるために利用されるべきものではない。この発明の範囲は添付の請求の範囲によって定まる。添付図面において、複数の図面における同一の符号は、同一または相当する部分を示す。
(A)は、この発明の第1実施形態に係る転がり軸受の縦断面図、(B)は、同軸受を図1(A)の矢印A方向から見た平面図である。 (A)は同転がり軸受の外輪の一側面図、(B)は同外輪の他側面図である。 同転がり軸受を背面組合わせとした例を示す縦断面図である。 外輪の切欠き凹部の有無の比較試験データを示す図である。 この発明の第2実施形態に係る転がり軸受の縦断面図である。 この発明の第3実施形態に係る転がり軸受の縦断面図である。 この発明の第4実施形態に係る転がり軸受の縦断面図である。 この発明の第5実施形態に係る転がり軸受の縦断面図である。 この発明の第6実施形態に係る転がり軸受の縦断面図である。 この発明の第7実施形態に係る転がり軸受の縦断面図である。 (A)は、この発明の第8実施形態に係る転がり軸受の縦断面図、(B)は、同軸受を図11(A)の矢印A方向から見た平面図である。 (A)は、この発明の第9実施形態に係る転がり軸受の外輪の一側面図、(B)は同転がり軸受の外輪の他側面図である。 (A)は、この発明の第10実施形態に係る転がり軸受の縦断面図、(B)は、同軸受を図13(A)の矢印A方向から見た平面図である。 (A)は、この発明の第11実施形態に係る転がり軸受の縦断面図、(B)は、同軸受を図14(A)の矢印A方向から見た平面図である。 この発明のいずれかの実施形態に係る転がり軸受を用いた工作機械用主軸の縦断面図である。 従来例のノズル間座付きの転がり軸受の縦断面図である。 他の従来例の転がり軸受の縦断面図である。 同転がり軸受を背面組合わせとした例を示す縦断面図である。
The present invention will be more clearly understood from the following description of preferred embodiments with reference to the accompanying drawings. However, the embodiments and drawings are for illustration and description only and should not be used to define the scope of the present invention. The scope of the invention is defined by the appended claims. In the accompanying drawings, the same reference numerals in a plurality of drawings indicate the same or corresponding parts.
(A) is a longitudinal cross-sectional view of the rolling bearing according to the first embodiment of the present invention, and (B) is a plan view of the bearing seen from the direction of arrow A in FIG. 1 (A). (A) is one side view of the outer ring of the rolling bearing, and (B) is another side view of the outer ring. It is a longitudinal cross-sectional view which shows the example which made the rolling bearing the back surface combination. It is a figure which shows the comparative test data of the presence or absence of the notch recessed part of an outer ring | wheel. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 2nd Embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 3rd Embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 4th Embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 5th Embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 6th Embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing which concerns on 7th Embodiment of this invention. (A) is a longitudinal cross-sectional view of a rolling bearing according to an eighth embodiment of the present invention, and (B) is a plan view of the bearing as viewed from the direction of arrow A in FIG. 11 (A). (A) is one side view of the outer ring | wheel of the rolling bearing which concerns on 9th Embodiment of this invention, (B) is the other side view of the outer ring | wheel of the same rolling bearing. (A) is a longitudinal sectional view of a rolling bearing according to a tenth embodiment of the present invention, and (B) is a plan view of the same bearing as viewed from the direction of arrow A in FIG. 13 (A). (A) is a longitudinal cross-sectional view of a rolling bearing according to an eleventh embodiment of the present invention, and (B) is a plan view of the bearing as viewed from the direction of arrow A in FIG. 14 (A). It is a longitudinal cross-sectional view of the main axis for machine tools using the rolling bearing which concerns on any embodiment of this invention. It is a longitudinal cross-sectional view of the rolling bearing with a nozzle spacer of a prior art example. It is a longitudinal cross-sectional view of the rolling bearing of another conventional example. It is a longitudinal cross-sectional view which shows the example which made the rolling bearing the back surface combination.
 この発明の第1実施形態を図1(A),(B)ないし図4(A),(B)と共に説明する。この実施形態に係る転がり軸受は、例えば、工作機械主軸の支持に用いられ、エアオイル潤滑で使用される。但し、工作機械主軸用途に限定されるものではない。図1(A)に示すように、この転がり軸受は、内輪1と、外輪2と、これら内外輪1,2の転走面1a,2a間に介在する複数の転動体3とを備える。この例の転がり軸受はアンギュラ玉軸受であり、前記転動体3はボールからなる。各転動体3は、リング状の保持器4のポケット4a内に円周方向一定間隔おきにそれぞれ保持される。保持器4は、例えば、外輪2の内径面2bに案内される外輪案内形式のものが適用されている。 A first embodiment of the present invention will be described with reference to FIGS. 1 (A), 1 (B) to 4 (A), (B). The rolling bearing according to this embodiment is used for supporting a machine tool spindle, for example, and is used in air-oil lubrication. However, it is not limited to machine tool spindle applications. As shown in FIG. 1A, the rolling bearing includes an inner ring 1, an outer ring 2, and a plurality of rolling elements 3 interposed between the rolling surfaces 1a and 2a of the inner and outer rings 1 and 2. The rolling bearing of this example is an angular ball bearing, and the rolling element 3 is made of a ball. Each rolling element 3 is held in a pocket 4a of a ring-shaped cage 4 at regular intervals in the circumferential direction. As the cage 4, for example, an outer ring guide type guided by the inner diameter surface 2 b of the outer ring 2 is applied.
 図1(B)は、図1(A)の矢印A方向から見た平面図である。図1(B)に示すように、外輪2には、エアオイル潤滑用の給油孔5および円周溝6が設けられている。前記給油孔5は、外輪2の外径面2cと、外輪内径面2bにおける転走面近傍位置とを径方向に連通する貫通孔であり、軸受空間内にエアオイルを供給する孔である。前記転走面近傍位置とは、外輪内径面2bのうち、転動体中心よりも転動体3と外輪2との反接触側で、給油孔5から吐出されるエアオイルが転動体3にかかるまでの位置をいう。なお前記「反接触側」とは、外輪2のうち、転走面2aに対して接触角を成す作用線L1の偏り側と反対側をいう。図2(A)に示すように、給油孔5は、外輪2における180°対角位置に2箇所設けている。 FIG. 1 (B) is a plan view seen from the direction of arrow A in FIG. 1 (A). As shown in FIG. 1B, the outer ring 2 is provided with an oil supply hole 5 and a circumferential groove 6 for air oil lubrication. The oil supply hole 5 is a through hole that communicates the outer diameter surface 2c of the outer ring 2 and the position in the vicinity of the rolling surface of the outer ring inner diameter surface 2b in the radial direction, and is a hole that supplies air oil into the bearing space. The position in the vicinity of the rolling surface refers to the side of the outer ring inner diameter surface 2b on the opposite side of the rolling element 3 and the outer ring 2 from the center of the rolling element until air oil discharged from the oil supply hole 5 is applied to the rolling element 3. Says the position. The “non-contact side” refers to a side of the outer ring 2 opposite to the biased side of the action line L1 that forms a contact angle with the rolling surface 2a. As shown in FIG. 2A, the oil supply holes 5 are provided at two positions at 180 ° diagonal positions in the outer ring 2.
 図1(B)に示すように、外輪2の外径面2cに円周溝6が設けられ、この円周溝6は、前記2箇所の給油孔5,5にそれぞれ連通している。換言すれば、外輪2の外径面2cのうち、2箇所の給油孔5,5の開口先端のある箇所を、円周溝6が通るように設けられている。図1(A)に示すように、この円周溝6は、円弧形状の断面に形成され、例えば、円周溝6の溝底位置が給油孔5,5の中心軸線に合致するように配設されている。またこの例では、円周溝6内に、給油孔5,5の各開口先端が収まるように設けられている。 As shown in FIG. 1B, a circumferential groove 6 is provided on the outer diameter surface 2c of the outer ring 2, and the circumferential groove 6 communicates with the two oil supply holes 5 and 5, respectively. In other words, the outer circumferential surface 2c of the outer ring 2 is provided so that the circumferential groove 6 passes through a portion where the opening ends of the two oil supply holes 5 and 5 are located. As shown in FIG. 1 (A), the circumferential groove 6 is formed in an arc-shaped cross section, and for example, is arranged so that the groove bottom position of the circumferential groove 6 matches the central axis of the oil supply holes 5 and 5. It is installed. Moreover, in this example, it is provided in the circumferential groove | channel 6 so that each opening front-end | tip of the oil supply holes 5 and 5 may be settled.
 図1(A)に示すように、外輪2の外径面2cにおける、円周溝6の両側位置に、それぞれ環状溝7,7を設けている。各環状溝7,7にそれぞれOリングからなる環状のシール部材8,8を設けている。すなわちハウジングHsの内周面と、外輪2の外径面2cとの間における、円周溝6および給油孔5,5の両側位置に、それぞれ環状のシール部材8,8を設けることで、エアオイルの漏れ防止を図っている。 As shown in FIG. 1 (A), annular grooves 7 and 7 are provided at positions on both sides of the circumferential groove 6 on the outer diameter surface 2c of the outer ring 2, respectively. The annular grooves 7 and 7 are provided with annular seal members 8 and 8 each composed of an O-ring. That is, by providing the annular seal members 8 and 8 on both sides of the circumferential groove 6 and the oil supply holes 5 and 5 between the inner peripheral surface of the housing Hs and the outer diameter surface 2c of the outer ring 2, air oil To prevent leakage.
 外輪2の両幅面に、エアオイル排気用の切欠き凹部9,9をそれぞれ設けている。図2(A)および(B)に示すように、外輪2の両幅面における切欠き凹部9,9は、互いに同一位相で同一形状であるから、一方の幅面の切欠き凹部9,9についてのみ説明し、他方の幅面の切欠き凹部9,9については同一の符号を付して詳細な説明は省略する。なお、前記「幅面」を「端面」という場合がある。 Notch recesses 9 and 9 for exhausting air oil are provided on both width surfaces of the outer ring 2. As shown in FIGS. 2A and 2B, the notch recesses 9 and 9 on both width surfaces of the outer ring 2 have the same phase and the same shape, and therefore only the notch recesses 9 and 9 on one width surface. The notch recesses 9 and 9 on the other width surface will be described with the same reference numerals and will not be described in detail. The “width surface” may be referred to as an “end surface”.
 図1(A)に示すように、前記一方の幅面の切欠き凹部9,9は、それぞれ軸受の軸方向内方に凹み、且つ、外輪2の内径面2bから外径面2cにわたって設けられている。図2(A)に示すように、前記切欠き凹部9,9は、外輪2の180°対角位置に配設されると共に、これら切欠き凹部9,9の幅寸法H1,H1が同一寸法となるように設けられている。切欠き凹部9,9は、それぞれ底面の深さD1,D1(図1(B))が同一深さとなる断面凹形状に形成されている。図2(A)に示すように、外輪2の切欠き凹部9,9は、給油孔5,5の位相に対して、定められた角度α1位相をもって設けられている。 As shown in FIG. 1A, the notch recesses 9 and 9 on the one width surface are respectively recessed inward in the axial direction of the bearing, and provided from the inner diameter surface 2b to the outer diameter surface 2c of the outer ring 2. Yes. As shown in FIG. 2A, the notch recesses 9 and 9 are disposed at 180 ° diagonal positions of the outer ring 2, and the notch recesses 9 and 9 have the same width dimensions H1 and H1. It is provided to become. The notch recesses 9 and 9 are formed in a concave cross-sectional shape in which the bottom depths D1 and D1 (FIG. 1B) are the same depth. As shown in FIG. 2A, the notched recesses 9 and 9 of the outer ring 2 are provided with a predetermined angle α1 with respect to the phases of the oil supply holes 5 and 5.
 図3は、2個の転がり軸受を、間座無しで背面組合わせ(DB組合わせ)とした例を示す縦断面図である。この例では、各軸受の切欠き凹部9,9の円周方向の位相を同位相に配置している。ここで2個の転がり軸受を間座無しで背面組合わせとした場合の、切欠き凹部9の有無の比較試験を行った。本実施品である切欠き凹部9有りの組合わせ軸受と、比較品である切欠き凹部無しの組合わせ軸受のそれぞれについて、定められた運転時間の経過と共に軸受回転数を段階的に上げていき、軸受温度と運転時間との関係を比較した。 FIG. 3 is a longitudinal sectional view showing an example in which two rolling bearings are combined with the back surface (DB combination) without a spacer. In this example, the circumferential phases of the notch recesses 9 and 9 of each bearing are arranged in the same phase. Here, a comparison test was performed for the presence or absence of the notched recess 9 when the two rolling bearings were combined with the back without a spacer. For each of the combination bearing with a notch recess 9 as a product of this embodiment and the combination bearing without a notch recess as a comparison product, the number of rotations of the bearing is increased step by step with the passage of a predetermined operating time. The relationship between bearing temperature and operation time was compared.
 図4(A)は、実施品である切欠き凹部有りの組合わせ軸受の試験データであり、図4(B)は、比較品である切欠き凹部無しの組合わせ軸受の試験データである。試験に用いた実施品の切欠き凹部9は、外輪2の両幅面に設けた。また各幅面につき180°対角位置に2箇所切欠き凹部9,9を設けている。前記切欠き凹部9のサイズは、軸受内径φ100mmのもので幅30mm、深さ2mmである。試験結果によると、図4(B)に示す切欠き凹部無しの比較品では、軸受温度tが不安定に変位するいわゆる温度ふらつきが解消されていないが、図4(A)に示す切欠き凹部9を設けた実施品では、軸受温度tの温度ふらつきが解消されている。また実施品では、軸受温度tの過度の昇温もない。なお、幅30mm、深さ1mmの切欠き凹部のサイズでは、温度ふらつきが残っており、ある程度の排出面積を確保する必要がある。今回の試験では、2箇所の給油孔5,5を設け、各給油孔5の直径をφ1.5mmとした。この給油孔5からの給油に対し、実施品の切欠き凹部9は、深さ2mm×幅30mmの4箇所である。 Fig. 4 (A) shows test data of a combination bearing with a notched recess, which is an actual product, and Fig. 4 (B) shows test data of a combination bearing without a notch, which is a comparative product. The cut-out recesses 9 of the product used for the test were provided on both width surfaces of the outer ring 2. Further, two notches 9 and 9 are provided at 180 ° diagonal positions for each width surface. The size of the notch recess 9 is a bearing having an inner diameter of φ100 mm, a width of 30 mm, and a depth of 2 mm. According to the test results, in the comparative product without a notch recess shown in FIG. 4B, the so-called temperature fluctuation in which the bearing temperature t is displaced in an unstable manner is not eliminated, but the notch recess shown in FIG. In the implementation product provided with 9, the temperature fluctuation of the bearing temperature t is eliminated. Moreover, in the implementation product, there is no excessive temperature rise of the bearing temperature t. In addition, in the size of the notch recess having a width of 30 mm and a depth of 1 mm, temperature fluctuation remains, and it is necessary to secure a certain discharge area. In this test, two oil supply holes 5 and 5 were provided, and the diameter of each oil supply hole 5 was set to φ1.5 mm. With respect to the oil supply from the oil supply hole 5, the cut-out concave portions 9 of the implemented product are four places of depth 2 mm × width 30 mm.
 以上説明した転がり軸受によると、エアオイルが、軸受外部から外輪2の給油孔5を通して軸受空間内に供給され、軸受の潤滑に供される。その後、エアオイルは外輪2の切欠き用凹部9からスムーズに排気される。このように軸受空間内に供給したエアオイルを、軸受空間内に滞留させることなく、軸受外部にスムーズに排出することができる。このため、運転中、軸受温度が不安定に変位したり過度に昇温することを未然に防止することができる。したがって、排気用の切欠きを設けた間座が不要となり、軸受同士を隣接して組合わせて用いることが可能となる。 According to the rolling bearing described above, air oil is supplied from the outside of the bearing through the oil supply hole 5 of the outer ring 2 into the bearing space and used for lubricating the bearing. Thereafter, the air oil is smoothly exhausted from the notch recess 9 of the outer ring 2. Thus, the air oil supplied into the bearing space can be smoothly discharged outside the bearing without staying in the bearing space. For this reason, it is possible to prevent the bearing temperature from being displaced in an unstable manner or excessively rising during operation. Therefore, a spacer provided with a notch for exhaust becomes unnecessary, and the bearings can be used in combination adjacent to each other.
 複数の転がり軸受の組合せ時に、各軸受の切欠き凹部9,9の円周方向の位相を同位相に配置した場合、切欠き凹部9の排出面積つまり断面積を大きく確保することができる。これにより、各軸受において潤滑に供されたエアオイルは、隣接する軸受の軸受空間内に殆んど移動することなく切欠き凹部9から速やかに排出される。このようにエアオイルについて効果的な排気および排油流れを実現することができる。したがって、軸受温度の不安定な変位を確実に解消することができる。また保持器4を外輪案内形式にすることで、高速回転時の保持器4の振れ回りをより抑えることができる。 When a plurality of rolling bearings are combined and the circumferential phases of the notched recesses 9 and 9 of each bearing are arranged in the same phase, a large discharge area, that is, a cross-sectional area of the notched recess 9 can be secured. As a result, the air oil used for lubrication in each bearing is quickly discharged from the notched recess 9 without almost moving into the bearing space of the adjacent bearing. In this way, an effective exhaust and drainage flow can be realized for the air oil. Therefore, the unstable displacement of the bearing temperature can be reliably eliminated. Further, by making the cage 4 into the outer ring guide type, the swinging of the cage 4 during high-speed rotation can be further suppressed.
 以下、この発明の第2ないし第11実施形態を図5ないし図14(A),(B)と共に説明する。なお、図5ないし図14(A),(B)に示す第2ないし第11実施形態において、図1(A),(B)に示す第1実施形態と同一または相当する部分には同一の符号を付してその詳しい説明は省略する。 Hereinafter, second to eleventh embodiments of the present invention will be described with reference to FIGS. 5 to 14A and 14B. In the second to eleventh embodiments shown in FIGS. 5 to 14 (A) and (B), the same or corresponding parts as those in the first embodiment shown in FIGS. 1 (A) and (B) are the same. A detailed description thereof is omitted with reference numerals.
 まず、第2実施形態について図5と共に説明する。同図に示すように、転がり軸受を背面組合わせとし、外輪2の内径面2bを、転走面側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成しても良い。この例では、軸受運転中、軸受空間内で潤滑に供されたエアオイルは、内輪回転による遠心力、この遠心力に伴う排気および排油流れにより、内輪1側から外輪2側に向かう。エアオイルの一部は、外輪2の内径面2bにて滞留する場合があるが、外輪2の内径面2bを前記のように傾斜させたため、エアオイルは外輪2の内径面2bに滞留することがなく、傾斜面2bに沿ってスムーズに排出される。 First, the second embodiment will be described with reference to FIG. As shown in the figure, the rolling bearings may be combined on the back surface, and the inner diameter surface 2b of the outer ring 2 may be formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side. . In this example, during the bearing operation, the air oil that has been lubricated in the bearing space moves from the inner ring 1 side to the outer ring 2 side due to the centrifugal force generated by the rotation of the inner ring, the exhaust gas accompanying the centrifugal force, and the oil flow. A part of the air oil may stay on the inner diameter surface 2b of the outer ring 2, but the air oil does not stay on the inner diameter surface 2b of the outer ring 2 because the inner diameter surface 2b of the outer ring 2 is inclined as described above. The liquid is smoothly discharged along the inclined surface 2b.
 図6に示す第3実施形態のように、内輪1の外径面にカウンタボア部10が形成された転がり軸受を背面組合わせとし、前記カウンタボア部10における軸方向端部に、外径側に突出する突出部11を設けても良い。この例では、軸受運転中、突出部11付近に存するエアオイルは、突出部11の内径側部分から外径側部分に沿って流れ、切欠き凹部9に向かっていく。したがって効果的な排気および排油流れを実現することができる。 As in the third embodiment shown in FIG. 6, the rolling bearing having the counter bore portion 10 formed on the outer diameter surface of the inner ring 1 is combined with the back surface, and the axial end portion of the counter bore portion 10 has an outer diameter side. You may provide the protrusion part 11 which protrudes in this. In this example, the air oil existing in the vicinity of the protruding portion 11 flows from the inner diameter side portion of the protruding portion 11 along the outer diameter side portion toward the notch recess 9 during the bearing operation. Therefore, an effective exhaust and exhaust oil flow can be realized.
 図7に示す第4実施形態のように、内輪1の外径面のうち、背面側にカウンタボア部10が形成され、正面側に反カウンタボア部12が形成された転がり軸受を背面組合わせとし、反カウンタボア部12を、内輪1の転走面1a側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成しても良い。この例では、軸受運転中、反カウンタボア部12に存するエアオイルは、この反カウンタボア部12の傾斜面における転走面1a側から幅面側に沿って流れ、切欠き凹部9に向かっていく。したがって効果的な排気および排油流れを実現することができる。 As in the fourth embodiment shown in FIG. 7, a rolling bearing in which the counter bore portion 10 is formed on the back side and the counter counter bore portion 12 is formed on the front side of the outer diameter surface of the inner ring 1 is combined with the back surface. The counter-bore portion 12 may be formed in a cross-sectional shape that inclines so that the diameter dimension increases from the rolling surface 1a side of the inner ring 1 toward the width surface side. In this example, during the bearing operation, the air oil existing in the counter-counter bore portion 12 flows along the width surface side from the rolling surface 1a side of the inclined surface of the counter-counter bore portion 12 toward the notch recess 9. Therefore, an effective exhaust and exhaust oil flow can be realized.
 図8に示す第5実施形態のように、2個の転がり軸受を背面組合わせとし、内輪端面間に、内輪カウンタボア部10の内輪カウンタ径D2よりも大径となる環状部材13を挟み込んだものとしても良い。この環状部材13は薄板状の鋼板等からなり、環状部材13の内径は内輪内径と略同一寸法で、環状部材13の外径は内輪カウンタ径D2よりも大径でかつ外輪内径よりも小径に定められている。また外輪端面間にも、薄板状の鋼板等からなる環状部材14を挟み込んでいる。この環状部材14は、内輪端面間の環状部材13と厚みが同一で、外輪内径よりも大径でかつ外輪外径と略同一寸法に定められている。この構成によると、内輪カウンタ径D2よりも大径となる環状部材13を、内輪端面間に挟み込むことで、各軸受において潤滑に供されたエアオイルは、前記環状部材13に遮られて、隣接する軸受の軸受空間内に殆んど移動することなく切欠き凹部9から速やかに排出される。 As in the fifth embodiment shown in FIG. 8, two rolling bearings are combined on the back surface, and an annular member 13 having a diameter larger than the inner ring counter diameter D <b> 2 of the inner ring counter bore portion 10 is sandwiched between the inner ring end faces. It is good as a thing. The annular member 13 is made of a thin steel plate or the like. The inner diameter of the annular member 13 is substantially the same as the inner ring inner diameter, and the outer diameter of the annular member 13 is larger than the inner ring counter diameter D2 and smaller than the inner diameter of the outer ring. It has been established. An annular member 14 made of a thin steel plate or the like is sandwiched between the outer ring end faces. The annular member 14 has the same thickness as the annular member 13 between the inner ring end faces, is larger in diameter than the inner diameter of the outer ring, and is substantially the same as the outer diameter of the outer ring. According to this configuration, by sandwiching the annular member 13 having a diameter larger than the inner ring counter diameter D2 between the end surfaces of the inner ring, air oil used for lubrication in each bearing is blocked by the annular member 13 and adjacent thereto. It is quickly discharged from the notch recess 9 with little movement into the bearing space of the bearing.
 図9に示す第6実施形態では、2個の転がり軸受を背面組合わせとし、各軸受の保持器4Aが外輪案内形式であって、この保持器4Aの内径面4Aaを、ポケット4a側から保持器端面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成している。この例では、軸受運転時、保持器4Aの内径面付近に存するエアオイルは、保持器傾斜面の小径側から大径側に沿って流れ、切欠き凹部9にスムーズに向かっていく。 In the sixth embodiment shown in FIG. 9, two rolling bearings are combined on the back side, and the cage 4A of each bearing is an outer ring guide type, and the inner diameter surface 4Aa of the cage 4A is held from the pocket 4a side. It is formed in a cross-sectional shape that inclines so that the diameter dimension increases toward the end face of the vessel. In this example, the air oil existing in the vicinity of the inner diameter surface of the cage 4 </ b> A flows along the larger diameter side from the smaller diameter side of the cage inclined surface during the bearing operation, and smoothly moves toward the notch recess 9.
 図10に示す第7実施形態では、2個の転がり軸受を背面組合わせとし、各軸受の保持器4Bが転動体案内形式であって、この保持器4Bの外径面4Bbを、ポケット4a側から保持器端面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成している。保持器4Bの内径面4Baも、前記外径面4Bbと平行な傾斜面としている。軸受運転時、保持器4Bの外径面付近、内径面付近に存するエアオイルは、各傾斜面の小径側から大径側に沿って流れ、切欠き凹部9にスムーズに向かっていく。 In the seventh embodiment shown in FIG. 10, two rolling bearings are combined in the back, and the cage 4B of each bearing is a rolling element guide type, and the outer diameter surface 4Bb of this cage 4B is connected to the pocket 4a side. It is formed in the cross-sectional shape which inclines so that a radial dimension may become large as it goes to a cage end surface side. The inner diameter surface 4Ba of the cage 4B is also an inclined surface parallel to the outer diameter surface 4Bb. During the bearing operation, the air oil existing in the vicinity of the outer diameter surface and the inner diameter surface of the cage 4B flows from the small diameter side to the large diameter side of each inclined surface, and smoothly moves toward the notch recess 9.
 図11(A),(B)に示す第8実施形態では、2個の転がり軸受を背面組合わせとし、各外輪2の切欠き凹部9とこの外輪2の外径面2cとの角部に、面取り15を設けている。この場合、排気出口の断面積を排気入口の断面積よりも大きくすることができ、より効果的な排気および排油流れとすることができる。 In the eighth embodiment shown in FIGS. 11 (A) and 11 (B), two rolling bearings are combined on the back surface, and at the corners of the notch recess 9 of each outer ring 2 and the outer diameter surface 2c of the outer ring 2. The chamfer 15 is provided. In this case, the cross-sectional area of the exhaust outlet can be made larger than the cross-sectional area of the exhaust inlet, and a more effective exhaust and exhaust oil flow can be obtained.
 図12(A)に示す第9実施形態のように、外輪2の切欠き凹部9と給油孔5との円周方向の位相を、同位相に配置しても良い。この場合、切欠き凹部9と給油孔5との円周方向の位相を90度異ならせた図12(B)の形態よりも、軸受における給排油間の距離を小さくすることができ、より効果的な排気および排油流れとすることができる。 As in the ninth embodiment shown in FIG. 12A, the circumferential phase of the notch recess 9 and the oil supply hole 5 of the outer ring 2 may be arranged in the same phase. In this case, the distance between the oil supply and discharge oil in the bearing can be made smaller than in the embodiment shown in FIG. 12B in which the circumferential phase of the notch recess 9 and the oil supply hole 5 is different by 90 degrees. Effective exhaust and drainage flow can be achieved.
 図13(A)に示す第10実施形態のように、外輪2の外径面2cにおいて、円周溝を無くし、図13(B)に示すように、この外径面2cにおける給油孔5の排気出口の外周部分に環状溝16を設けても良い。この環状溝16に、エアオイルの漏れ防止用のOリングからなる環状のシール部材8Aを設けている。この場合、2列の円周溝6,6を形成する場合より加工工数の低減を図れるうえ、部品点数の低減を図れる。 As in the tenth embodiment shown in FIG. 13A, the outer circumferential surface 2c of the outer ring 2 has no circumferential groove, and as shown in FIG. 13B, the oil supply hole 5 in the outer diameter surface 2c is formed. An annular groove 16 may be provided in the outer peripheral portion of the exhaust outlet. The annular groove 16 is provided with an annular seal member 8A made of an O-ring for preventing air oil leakage. In this case, the number of processing steps can be reduced and the number of parts can be reduced as compared with the case where the two circumferential grooves 6 and 6 are formed.
 図14(A),(B)に示す第11実施形態のように、転がり軸受が内輪つば付の円筒ころ軸受であっても良い。この場合、外輪2における給油孔5の軸方向位置が、転動体3の一端面3aに合致するように設けられる。これにより、エアオイルを、保持器ポケット4aおよび内輪1のつば面1cに確実に導くことができ、潤滑効果を高めることができる。その他前記各実施形態と同様の作用効果を奏する。 As in the eleventh embodiment shown in FIGS. 14A and 14B, the rolling bearing may be a cylindrical roller bearing with an inner ring collar. In this case, the axial position of the oil supply hole 5 in the outer ring 2 is provided so as to match the one end surface 3 a of the rolling element 3. As a result, the air oil can be reliably guided to the cage pocket 4a and the collar surface 1c of the inner ring 1, and the lubrication effect can be enhanced. In addition, the same operational effects as the above-described embodiments are obtained.
 上記各実施形態ではアンギュラ玉軸受の組合せの例として、背面組合わせとした例を示しているが、正面組合わせや並列組合わせとしても良い。外輪案内形式の保持器を転動体案内形式の保持器に変更しても良いし、逆に転動体案内形式の保持器を外輪案内形式に変更しても良い。 In each of the above embodiments, as an example of the combination of the angular ball bearings, an example in which a rear combination is used is shown, but a front combination or a parallel combination may be used. The outer ring guide type cage may be changed to a rolling element guide type cage, and conversely, the rolling element guide type cage may be changed to an outer ring guide type.
 図15は、前記いずれかの実施形態に係る転がり軸受を用いた工作機械用主軸の縦断面図である。この図15の例は、モータをハウジング内に内蔵した、いわゆるビルトインモータ駆動式の工作機械用主軸である。主軸17に、モータ18のロータ19が取付けられ、ハウジングHsに、このモータ18のステータ20が取付けられている。ロータ19は永久磁石等からなり、ステータ20はコイルおよびコア等からなる。主軸17の前端側に、実施形態に係る円筒ころ軸受BR1および背面組合せしたアンギュラ玉軸受BR2が配置され、主軸17の後端側にも実施形態に係る円筒ころ軸受BR1が配置されている。 FIG. 15 is a longitudinal sectional view of a main spindle for a machine tool using the rolling bearing according to any one of the above embodiments. The example of FIG. 15 is a so-called built-in motor driven spindle for a machine tool in which a motor is built in a housing. A rotor 19 of a motor 18 is attached to the main shaft 17, and a stator 20 of the motor 18 is attached to the housing Hs. The rotor 19 is made of a permanent magnet or the like, and the stator 20 is made of a coil, a core, or the like. The cylindrical roller bearing BR1 according to the embodiment and the angular ball bearing BR2 combined with the back surface are arranged on the front end side of the main shaft 17, and the cylindrical roller bearing BR1 according to the embodiment is also arranged on the rear end side of the main shaft 17.
 各軸受BR1,BR2の内輪1は主軸17の外周面に嵌合し、外輪2はハウジングHsの内周面に嵌合している。これら内外輪1,2は内輪押え21および外輪押え22等により主軸17およびハウジングHsにそれぞれ固定されている。ハウジングHsにはエアオイル供給路23が設けられ、このエアオイル供給路23は図示しないエアオイル供給源に接続されている。前記エアオイル供給路23は、各外輪2の給油孔5に連通している。またハウジングHsには、各外輪2の切欠き凹部9に連通するエアオイル排気溝24がそれぞれ設けられると共に、各エアオイル排気溝24に繋がるエアオイル排気路25が設けられている。このエアオイル排気路25からエアオイルが排気されるようになっている。この場合、主軸17の前端側に、軸受を集中して配置できるため、従来のように間座を軸受間に設けた場合に比べて、主軸17の短縮化を図り、主軸剛性を高めることができる。これと共に、軸受温度が不安定に変位したり、過度に昇温することを未然に防止できるため、主軸17の高速化および高精度化を図ることができる。 The inner ring 1 of each bearing BR1, BR2 is fitted to the outer circumferential surface of the main shaft 17, and the outer ring 2 is fitted to the inner circumferential surface of the housing Hs. These inner and outer rings 1 and 2 are fixed to the main shaft 17 and the housing Hs by an inner ring presser 21 and an outer ring presser 22, respectively. An air oil supply path 23 is provided in the housing Hs, and the air oil supply path 23 is connected to an air oil supply source (not shown). The air oil supply path 23 communicates with the oil supply hole 5 of each outer ring 2. The housing Hs is provided with an air oil exhaust groove 24 communicating with the notched recess 9 of each outer ring 2 and an air oil exhaust passage 25 connected to each air oil exhaust groove 24. Air oil is exhausted from the air oil exhaust passage 25. In this case, since the bearings can be concentrated on the front end side of the main shaft 17, the main shaft 17 can be shortened and the main shaft rigidity can be increased as compared with the conventional case where the spacer is provided between the bearings. it can. At the same time, it is possible to prevent the bearing temperature from being unstablely displaced or to raise the temperature excessively, so that the speed and accuracy of the main shaft 17 can be increased.
 以上のとおり、図面を参照しながら好適な実施形態を説明したが、当業者であれば、本件明細書を見て、自明な範囲内で種々の変更および修正を容易に想定するであろう。したがって、そのような変更および修正は、請求の範囲から定まる発明の範囲内のものと解釈される。 As described above, the preferred embodiments have been described with reference to the drawings. However, those skilled in the art will readily assume various changes and modifications within the obvious scope by looking at the present specification. Accordingly, such changes and modifications are to be construed as within the scope of the invention as defined by the appended claims.
1…内輪
2…外輪
1a,2a…転走面
2b…内径面
2c…外径面
3…転動体
5…給油孔
6…円周溝
7…環状溝
8,8A…シール部材
10…カウンタボア部
11…突出部
12…反カウンタボア部
13…環状部材
15…面取り
DESCRIPTION OF SYMBOLS 1 ... Inner ring 2 ... Outer ring 1a, 2a ... Rolling surface 2b ... Inner diameter surface 2c ... Outer diameter surface 3 ... Rolling element 5 ... Oil supply hole 6 ... Circumferential groove 7 ... Annular groove 8, 8A ... Seal member 10 ... Counter bore part DESCRIPTION OF SYMBOLS 11 ... Projection part 12 ... Counter-bore part 13 ... Ring member 15 ... Chamfer

Claims (15)

  1.  内輪および外輪の転走面間に転動体を介在させた転がり軸受であって、
     前記外輪に、軸受空間内に貫通するエアオイル潤滑用の給油孔を設け、前記外輪の幅面のうちいずれか一方または両方に、軸受の軸方向内方に凹むエアオイル排気用の切欠き凹部を、内径面から外径面にわたって設けた転がり軸受。
    A rolling bearing with rolling elements interposed between the rolling surfaces of the inner ring and the outer ring,
    The outer ring is provided with an oil-oil lubrication hole penetrating into the bearing space, and either or both of the width surfaces of the outer ring have a notch recess for exhausting air oil that is recessed inward in the axial direction of the bearing. Rolling bearing provided from the surface to the outer diameter surface.
  2.  請求項1において、前記外輪の外径面に、給油孔に連通する円周溝を設けると共に、この外輪の外径面における、前記円周溝の両側位置に、それぞれ環状溝を設け、各環状溝にそれぞれ環状のシール部材を設けた転がり軸受。 2. The outer ring according to claim 1, wherein a circumferential groove communicating with the oil supply hole is provided on the outer diameter surface of the outer ring, and annular grooves are respectively provided on both sides of the circumferential groove on the outer diameter surface of the outer ring. Rolling bearings each provided with an annular seal member in the groove.
  3.  請求項1において、複数の転がり軸受の組合せ時に、各軸受の切欠き凹部の円周方向の位相を同位相に配置した転がり軸受。 2. The rolling bearing according to claim 1, wherein when the plurality of rolling bearings are combined, the circumferential phases of the notch recesses of the bearings are arranged in the same phase.
  4.  請求項1において、前記外輪の内径面を、転走面側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成した転がり軸受。 2. A rolling bearing according to claim 1, wherein the inner ring surface of the outer ring is formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side.
  5.  請求項1において、前記内輪の外径面に、カウンタボア部が形成され、このカウンタボア部における軸方向端部に、外径側に突出する突出部を設けた転がり軸受。 2. A rolling bearing according to claim 1, wherein a counter bore portion is formed on the outer diameter surface of the inner ring, and a protruding portion protruding toward the outer diameter side is provided at an axial end portion of the counter bore portion.
  6.  請求項1において、前記内輪の外径面のうちいずれか一方にカウンタボア部が形成され、他方に、カウンタボア部の無い反カウンタボア部が形成され、この反カウンタボア部を、前記内輪の転走面側から幅面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成した転がり軸受。 In Claim 1, a counterbore part is formed in any one of the outer diameter surfaces of the inner ring, and an anti-counterbore part without a counterbore part is formed on the other, and the anti-counterbore part is formed on the inner ring. A rolling bearing formed in a cross-sectional shape that is inclined so that the diameter dimension increases from the rolling surface side toward the width surface side.
  7.  請求項1において、前記内輪の外径面に、カウンタボア部が形成され、複数の転がり軸受の組合せ時に、カウンタボア部の内輪カウンタ径よりも大径となる環状部材を軸受間に挟み込んで設けた転がり軸受。 2. The counter bore portion according to claim 1, wherein a counter bore portion is formed on the outer diameter surface of the inner ring, and an annular member having a larger diameter than the inner ring counter diameter of the counter bore portion is provided between the bearings when a plurality of rolling bearings are combined. Rolling bearing.
  8.  請求項1において、前記外輪の切欠き凹部と給油孔との円周方向の位相を同位相に配置した転がり軸受。 2. The rolling bearing according to claim 1, wherein the circumferential phase of the notch recess and the oil supply hole of the outer ring are arranged in the same phase.
  9.  請求項1において、前記外輪の切欠き凹部と、この外輪の外径面との角部に、面取りを設けた転がり軸受。 2. The rolling bearing according to claim 1, wherein a chamfer is provided at a corner between the notch recess of the outer ring and the outer diameter surface of the outer ring.
  10.  請求項1において、前記転がり軸受がアンギュラ玉軸受である転がり軸受。 The rolling bearing according to claim 1, wherein the rolling bearing is an angular ball bearing.
  11.  請求項10において、複数の転動体を円周方向一定間隔おきに保持する保持器を有し、この保持器を外輪案内形式または転動体案内形式とした転がり軸受。 11. A rolling bearing according to claim 10, further comprising a cage for holding a plurality of rolling elements at regular intervals in the circumferential direction, wherein the cage is an outer ring guide type or a rolling element guide type.
  12.  請求項11において、前記保持器が転動体案内形式であって、この保持器の外径面を、転動体を保持するポケット側から保持器端面側に向かうに従って径寸法が大きくなるように傾斜する断面形状に形成した転がり軸受。 12. The cage according to claim 11, wherein the cage is of a rolling element guide type, and the outer diameter surface of the cage is inclined so that the diameter dimension increases from the pocket side holding the rolling element toward the cage end surface side. Rolling bearing with a cross-sectional shape.
  13.  請求項1において、前記転がり軸受が内輪つば付の円筒ころ軸受である転がり軸受。 2. The rolling bearing according to claim 1, wherein the rolling bearing is a cylindrical roller bearing with an inner ring collar.
  14.  請求項13において、複数の転動体を円周方向一定間隔おきに保持する保持器を有し、この保持器を外輪案内形式または転動体案内形式とした転がり軸受。 14. A rolling bearing according to claim 13, further comprising a cage for holding a plurality of rolling elements at regular intervals in the circumferential direction, wherein the cage is an outer ring guide type or a rolling element guide type.
  15.  請求項1の転がり軸受を用いた工作機械用主軸。 A spindle for a machine tool using the rolling bearing according to claim 1.
PCT/JP2012/066366 2011-06-30 2012-06-27 Rolling bearing WO2013002252A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002734.5T DE112012002734B4 (en) 2011-06-30 2012-06-27 Rolling bearing device, combined rolling bearing unit and machine tool main shaft
CN201280030846.9A CN103635708B (en) 2011-06-30 2012-06-27 Rolling bearing
KR1020137033508A KR101968714B1 (en) 2011-06-30 2012-06-27 Rolling bearing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146142 2011-06-30
JP2011146142A JP5917030B2 (en) 2011-06-30 2011-06-30 Rolling bearing

Publications (1)

Publication Number Publication Date
WO2013002252A1 true WO2013002252A1 (en) 2013-01-03

Family

ID=47424143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066366 WO2013002252A1 (en) 2011-06-30 2012-06-27 Rolling bearing

Country Status (5)

Country Link
JP (1) JP5917030B2 (en)
KR (1) KR101968714B1 (en)
CN (2) CN103635708B (en)
DE (1) DE112012002734B4 (en)
WO (1) WO2013002252A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516969A (en) * 2013-05-08 2016-06-09 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Grease lubricated angular contact ball bearings
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
WO2018181524A1 (en) * 2017-03-30 2018-10-04 Ntn株式会社 Retainer for rolling bearing and rolling bearing with outer ring oil supply hole
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly
US10746227B2 (en) 2016-08-03 2020-08-18 Nsk Ltd. Ball bearing and main shaft device for machine tool
JP2023007343A (en) * 2021-06-30 2023-01-18 プファイファー・ヴァキューム・テクノロジー・アクチエンゲゼルシャフト Vacuum pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6439469B2 (en) * 2015-02-04 2018-12-19 日本精工株式会社 Rolling bearing
CN105134787B (en) * 2015-08-18 2017-09-29 洛阳轴研科技股份有限公司 A kind of bearing ring and bearing
CN105134790B (en) * 2015-08-18 2017-09-29 洛阳轴研科技股份有限公司 A kind of rotation support device
JP6645378B2 (en) * 2016-08-03 2020-02-14 日本精工株式会社 Ball bearings and spindle devices for machine tools
JP2018028329A (en) 2016-08-15 2018-02-22 日本精工株式会社 Bearing device and spindle device for machine tool
JP2018028330A (en) * 2016-08-15 2018-02-22 日本精工株式会社 Ball bearing and spindle device for machine tool
JP2018168956A (en) * 2017-03-30 2018-11-01 セイコーエプソン株式会社 Robot and gear unit
JP6911773B2 (en) * 2018-01-04 2021-07-28 日本精工株式会社 Ball bearings and spindle devices for machine tools
JP7289686B2 (en) * 2019-03-26 2023-06-12 Ntn株式会社 rolling bearing
CN110332228A (en) * 2019-07-10 2019-10-15 无锡诚石轴承有限公司 A kind of EPS motor bearing of circle with o
JP6881656B2 (en) * 2020-06-05 2021-06-02 日本精工株式会社 Angular contact ball bearings and spindle devices for machine tools
JP7291309B1 (en) 2022-07-15 2023-06-14 株式会社エフ・シー・シー Clutch device and motorcycle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109914A (en) * 1984-11-02 1986-05-28 Koyo Seiko Co Ltd Rolling bearing for main spindle of machine tool
JP2005180669A (en) * 2003-12-24 2005-07-07 Nsk Ltd Roller bearing and bearing device
JP2006242293A (en) * 2005-03-03 2006-09-14 Nsk Ltd Double row bearing
JP2011106493A (en) * 2009-11-13 2011-06-02 Ntn Corp Rolling bearing device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63180726U (en) 1987-05-14 1988-11-22
DE102004045588B4 (en) 2003-09-19 2018-02-22 Ntn Corporation Rolling body holder and angular contact ball bearing assembly, wherein the same is used
JP2006046454A (en) 2004-08-03 2006-02-16 Nsk Ltd Bearing device and spindle device, and machine tool
DE102006012001A1 (en) 2006-03-16 2007-09-20 Schaeffler Kg High-speed bearing e.g. direct-lubricated spindle bearing, for machine tool, has bearing rings, where intermediate space between bearing rings is partitioned axially on one side or on two-sides by circular-ring shaped pressure plates
CN101125403B (en) * 2007-09-27 2010-05-19 天津市第二机床有限公司 Pneumatic load-removing plastic-sticking guiding rail
JP5359319B2 (en) 2008-02-06 2013-12-04 日本精工株式会社 Spindle device
CN101571163B (en) * 2009-06-03 2010-09-08 哈尔滨工程大学 Sliding bearing cooled and lubricated by gas-liquid phase fluid
US8545106B2 (en) 2009-07-08 2013-10-01 Williams International Co., L.L.C. System and method for isolating a rolling-element bearing
JP5471464B2 (en) 2010-01-12 2014-04-16 パナソニック株式会社 Corona discharge generator and sterilizer using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109914A (en) * 1984-11-02 1986-05-28 Koyo Seiko Co Ltd Rolling bearing for main spindle of machine tool
JP2005180669A (en) * 2003-12-24 2005-07-07 Nsk Ltd Roller bearing and bearing device
JP2006242293A (en) * 2005-03-03 2006-09-14 Nsk Ltd Double row bearing
JP2011106493A (en) * 2009-11-13 2011-06-02 Ntn Corp Rolling bearing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016516969A (en) * 2013-05-08 2016-06-09 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG Grease lubricated angular contact ball bearings
US10086865B2 (en) * 2015-01-14 2018-10-02 Nsk Ltd Steering device
US10746227B2 (en) 2016-08-03 2020-08-18 Nsk Ltd. Ball bearing and main shaft device for machine tool
US10415646B2 (en) * 2016-09-16 2019-09-17 Steering Solutions Ip Holding Corporation Telescoping roller I-shaft and method of assembly
WO2018181524A1 (en) * 2017-03-30 2018-10-04 Ntn株式会社 Retainer for rolling bearing and rolling bearing with outer ring oil supply hole
JP2023007343A (en) * 2021-06-30 2023-01-18 プファイファー・ヴァキューム・テクノロジー・アクチエンゲゼルシャフト Vacuum pump
JP7482101B2 (en) 2021-06-30 2024-05-13 プファイファー・ヴァキューム・テクノロジー・アクチエンゲゼルシャフト Vacuum pump

Also Published As

Publication number Publication date
CN105605101A (en) 2016-05-25
KR101968714B1 (en) 2019-04-12
CN105605101B (en) 2020-12-11
KR20140033427A (en) 2014-03-18
DE112012002734T5 (en) 2014-04-03
JP5917030B2 (en) 2016-05-11
JP2013015152A (en) 2013-01-24
CN103635708A (en) 2014-03-12
DE112012002734B4 (en) 2022-12-22
CN103635708B (en) 2017-04-19

Similar Documents

Publication Publication Date Title
WO2013002252A1 (en) Rolling bearing
WO2014175000A1 (en) Taper roller bearing
CN109563879B (en) Ball bearing, spindle device, and machine tool
US20170234367A1 (en) Rolling bearing
JP6565366B2 (en) Angular contact ball bearings
JP2014062617A (en) Cooling structure of bearing device
JP5672805B2 (en) Oil-air lubricated rolling bearing device
WO2018034245A1 (en) Bearing device, and spindle device for machine tool
JP2008002659A (en) High-speed rotation single row cylindrical roller bearing
JP6138979B2 (en) Rolling bearing
US6739757B2 (en) Bearing unit
JP5321052B2 (en) Rolling bearing device
JP2007024258A (en) Lubricating device of rolling bearing
WO2018034246A1 (en) Ball bearing, and machine tool spindle device
JP2006275077A (en) Hydrodynamic pressure bearing device
WO2019188621A1 (en) Cooling structure for bearing device
JP2017187119A (en) Rolling bearing
JP7289686B2 (en) rolling bearing
JP2010090981A (en) Lubricating structure of angular contact ball bearing
WO2018181524A1 (en) Retainer for rolling bearing and rolling bearing with outer ring oil supply hole
JP5353432B2 (en) Rolling bearing device
JP2009241214A (en) Main spindle device
WO2018181032A1 (en) Cooling structure for bearing device
US20190178291A1 (en) Ball bearing
JP2008038999A (en) Bearing unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805280

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033508

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1120120027345

Country of ref document: DE

Ref document number: 112012002734

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805280

Country of ref document: EP

Kind code of ref document: A1