WO2013002200A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2013002200A1
WO2013002200A1 PCT/JP2012/066233 JP2012066233W WO2013002200A1 WO 2013002200 A1 WO2013002200 A1 WO 2013002200A1 JP 2012066233 W JP2012066233 W JP 2012066233W WO 2013002200 A1 WO2013002200 A1 WO 2013002200A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal panel
unit
panel unit
display device
Prior art date
Application number
PCT/JP2012/066233
Other languages
English (en)
French (fr)
Inventor
亮 山川
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013002200A1 publication Critical patent/WO2013002200A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/041Temperature compensation

Definitions

  • This invention relates to a liquid crystal display device having a liquid crystal panel.
  • the liquid crystal display device includes a liquid crystal panel unit and an illumination unit (backlight).
  • the liquid crystal panel unit displays an image (image), and the illumination unit supplies light to the liquid crystal panel unit.
  • a ghost occurs in a liquid crystal display device.
  • a ghost is a phenomenon in which a video signal is displayed shifted by one line from a position (line) where the video signal is to be displayed.
  • the liquid crystal display device includes a ghost correction unit.
  • the ghost correction unit changes the correction coefficient according to the luminance level difference between the front and rear lines. ghosts are corrected appropriately.
  • a light emitting diode (LED) is used as a light source of an illumination unit (backlight).
  • LED light emitting diode
  • backlight an illumination unit
  • temperature unevenness occurs depending on the arrangement of the light source and the like.
  • the temperature distribution in the liquid crystal panel is not uniform.
  • one of the objects of the present invention is to provide a liquid crystal display device capable of improving the display quality even when the temperature distribution of the liquid crystal panel portion is non-uniform.
  • the liquid crystal display device of the present invention includes a liquid crystal panel unit, an illumination unit that includes a plurality of light sources and supplies light to the liquid crystal panel unit, and a correction unit that performs ghost correction of the liquid crystal panel unit.
  • the correction unit changes the ghost correction amount for each predetermined region of the liquid crystal panel unit according to the heat distribution of the liquid crystal panel unit.
  • the ghost is appropriately corrected (reduced) according to the heat distribution of the liquid crystal panel. Therefore, even if the heat distribution of the liquid crystal panel portion is non-uniform, the display quality can be improved.
  • the liquid crystal panel unit includes a first region and a second region having a temperature lower than that of the first region, and the ghost correction amount in the first region is smaller than the ghost correction amount in the second region.
  • the response characteristics of the liquid crystal panel unit can be controlled so as to be substantially constant throughout the liquid crystal panel unit. Therefore, the ghost can be effectively corrected (reduced).
  • the correction unit has a plurality of parameter tables that define a voltage corresponding to a ghost correction amount by comparing the luminance of a predetermined line and the luminance of the next line in the liquid crystal panel unit.
  • the ghost correction amount can be easily changed for each predetermined region of the liquid crystal panel unit according to the heat distribution of the liquid crystal panel unit.
  • the parameter table is preferably provided for each temperature region of the liquid crystal panel.
  • the ghost can be corrected (reduced) with an appropriate ghost correction amount for each temperature region of the liquid crystal panel. Further, it is more preferable that the parameter table is provided for each temperature in addition to each temperature region of the liquid crystal panel unit.
  • the ghost correction amount can be changed according to the temperature in a predetermined region of the liquid crystal panel unit. That is, the ghost correction amount can be changed according to the temperature change of the liquid crystal panel unit.
  • the liquid crystal display device preferably further includes temperature measuring means for measuring the temperature of the liquid crystal panel unit.
  • Information such as the temperature distribution or temperature change of the liquid crystal panel can be obtained by the temperature measuring means. By using the obtained information, the ghost correction amount can be changed more accurately according to the heat distribution of the liquid crystal panel unit.
  • the illumination unit includes, for example, a light guide member that guides light from the light source, and a plurality of light sources are arranged at the end of the light guide member.
  • the illumination unit is an edge light (side light) type, and the illumination unit and the liquid crystal display device can be easily reduced in thickness.
  • the edge light type illumination unit Although it is easy to reduce the thickness of the edge light type illumination unit, a plurality of light sources are disposed at the end of the light guide member, and the temperature in the vicinity of the end of the light guide member tends to increase. For this reason, in a liquid crystal display device including an edge light type illumination unit, the temperature distribution of the liquid crystal panel unit tends to be non-uniform.
  • the lighting part may be a direct type.
  • the illumination unit may be disposed so as to overlap the liquid crystal panel unit, and a plurality of light sources may be disposed immediately below the liquid crystal panel unit.
  • the plurality of light sources are driven independently of each other.
  • dimming control for each area local dimming control, area active control, etc.
  • the contrast of the liquid crystal display device can be greatly improved and the power consumption can be reduced.
  • the temperature is higher in the high luminance region than in the low luminance region. For this reason, the temperature distribution of the liquid crystal panel portion becomes non-uniform.
  • this crystal display device can improve the display quality even when the temperature distribution of the liquid crystal panel is non-uniform. Therefore, by using a direct illumination unit, it is possible to reduce power consumption while further improving display quality.
  • the multiple light sources may be arranged unevenly.
  • light sources may be densely arranged in the end region of the illumination unit as compared to other regions.
  • the number of light sources arranged in the end area of the illumination unit is larger than the number of light sources arranged in other areas.
  • the end region tends to be dark, the end region can be brightened.
  • the present invention it is possible to easily obtain a liquid crystal display device capable of improving display quality even when the temperature distribution of the liquid crystal panel portion is non-uniform.
  • FIG. 1 is an exploded perspective view of the liquid crystal display device 200.
  • FIG. 2A is a cross-sectional view schematically showing the liquid crystal display device 200.
  • FIG. 2B is a diagram schematically illustrating the temperature distribution of the display panel unit of the liquid crystal display device 200.
  • FIG. 3 is a plan view schematically showing the liquid crystal display device 200. 4 to 11 are diagrams for explaining the liquid crystal display device 200.
  • FIG. 1 is an exploded perspective view of the liquid crystal display device 200.
  • FIG. 2A is a cross-sectional view schematically showing the liquid crystal display device 200.
  • FIG. 2B is a diagram schematically illustrating the temperature distribution of the display panel unit of the liquid crystal display device 200.
  • FIG. 3 is a plan view schematically showing the liquid crystal display device 200.
  • 4 to 11 are diagrams for explaining the liquid crystal display device 200.
  • FIG. 1 is an exploded perspective view of the liquid crystal display device 200.
  • FIG. 2A is a cross-sectional view schematically showing the liquid
  • the liquid crystal display device 200 includes a liquid crystal panel unit 10, a backlight unit 50, and a pair of housings 70 (a front housing 71 and a back housing 72).
  • the backlight unit 50 supplies light to the liquid crystal panel unit 10.
  • the pair of housings 70 sandwich the liquid crystal panel unit 10 and the backlight unit 50.
  • the liquid crystal panel unit 10 includes an active matrix substrate 11 and a counter substrate 12 facing the active matrix substrate 11.
  • the active matrix substrate 11 includes, for example, a TFT (Thin Film Transistor) as a switching element.
  • the active matrix substrate 11 and the counter substrate 12 are bonded together with a sealing material (not shown).
  • Liquid crystal (not shown) is injected into the gap between the active matrix substrate 11 and the counter substrate 12.
  • Polarizing films 13 are attached to the light-receiving surface side of the active matrix substrate 11 and the light-emitting surface side of the counter substrate 12, respectively.
  • the liquid crystal panel unit 10 displays an image using a change in transmittance caused by the inclination of liquid crystal molecules.
  • the backlight unit 50 is an edge light (side light) type backlight unit, and includes an LED module 20, a light guide (light guide member) 30 that guides light from the LED module 20, A reflection sheet (reflection member) 41, a backlight chassis 42, a diffusion plate (diffusion member) 43, a prism sheet 44, and a lens sheet 45 are included. As shown in FIGS. 1 and 2A, the backlight unit 50 is disposed directly below the liquid crystal panel unit 10.
  • the LED module 20 includes an LED 22 as a light source and a mounting substrate 21.
  • the LED 22 is mounted on the mounting substrate 21.
  • the mounting substrate 21 is a plate-shaped and rectangular substrate.
  • a plurality of electrodes (not shown) are arranged on the mounting surface 21 a of the mounting substrate 21.
  • the LED 22 is mounted on these electrodes.
  • LED 22 emits light while receiving current.
  • a plurality of LEDs 22 are arranged on the mounting substrate 21 with a predetermined interval.
  • the LED 22 is disposed in the vicinity of the side surface 31 of the light guide 30.
  • the light guide 30 is made of, for example, a transparent resin material such as acrylic or polycarbonate, and is formed on a single light guide plate as shown in FIGS.
  • the light guide 30 is formed in a substantially rectangular shape (substantially rectangular shape) when seen in a plan view.
  • the light guide 30 has an upper surface 30U (see FIG. 1), a lower surface 30B (see FIG. 1) which is the opposite surface, and four side surfaces 31 (31a to 31d).
  • the side surfaces 31a and 31b are incident surfaces 32 on which light from the LED 22 is incident. That is, the light from the LED 22 enters the light guide 30 through the side surfaces 31 (31a and 1b).
  • the side surfaces 31 a and 31 b of the light guide 30 are surfaces that face in opposite directions and are parallel to the longitudinal direction (X direction) of the light guide 30.
  • the side surfaces 31 c and 31 d of the light guide 30 are surfaces that face in opposite directions and are parallel to the short direction (Y direction) of the light guide 30.
  • the LED module 20 on which the plurality of LEDs 22 are mounted is disposed on both sides of the backlight unit 50 in the left-right direction (X direction). That is, the LED module 20 is disposed so that the light emitting surface of the LED 22 faces the side surface 31a, and the LED module 20 is disposed so that the light emitting surface of the LED 22 faces the side end surface 31b.
  • the light incident from the incident surface 32 (side surfaces 31a and 31b) is guided through the light guide 30 and emitted from the upper surface 30U as planar light (emitted light).
  • the upper surface 30U is a light emitting surface 30U that emits light toward the outside (the liquid crystal panel unit 10).
  • the reflection surface 41U (see FIG. 1) of the reflection sheet 41 faces the lower surface 30B of the light guide 30.
  • the reflective heat 41 reflects the light leaked from the lower surface 30B so as to return it to the light guide 30, thereby preventing light loss.
  • the backlight chassis 42 (FIG. 1) is, for example, a box-shaped member.
  • the backlight chassis 42 has a bottom surface 42 ⁇ / b> B and houses the LED module 20, the light guide 30 and the reflection sheet 41.
  • the diffusion plate 43 is an optical sheet that overlaps the light guide 30 and diffuses light from the light guide 30. That is, the diffusion plate 43 diffuses the light from the light guide 30 and spreads the light over the entire area of the liquid crystal panel unit 10.
  • the prism sheet 44 is an optical sheet that overlaps the diffusion plate 43.
  • the prism sheet 44 includes, for example, triangular prisms extending in one direction (linear shape) arranged in parallel, and deflects the radiation characteristics of light from the diffusion plate 43.
  • the lens sheet 45 is an optical sheet that overlaps the prism sheet 44. Fine particles that refract and scatter light are dispersed inside the lens sheet 45. The lens sheet 45 does not locally collect the light from the prism sheet 44. That is, the lens sheet 45 suppresses the difference in brightness (light intensity unevenness).
  • the light from the LED module 20 is emitted as planar light by the light guide 30, and the light from the light guide 30 passes through the plurality of optical sheets 43 to 45, and the liquid crystal panel unit. 10 is supplied.
  • the non-light emitting liquid crystal panel unit 10 receives light (backlight light) from the backlight unit 50 and improves the display function.
  • the liquid crystal display device 200 further includes a display control unit 80, a liquid crystal driver 90, and an LED driving unit 51.
  • the liquid crystal driver 90 includes a source driver 91 and a gate driver 92.
  • the LED driving unit 51 drives the backlight unit 50 (LED 22).
  • the liquid crystal panel unit 110 includes a liquid crystal driver 90 and a liquid crystal panel unit 10.
  • the liquid crystal panel unit 10 includes a plurality of source bus lines 91a, a plurality of gate bus lines 92a, and a plurality of pixel formation units (not shown).
  • the plurality of pixel formation portions are provided corresponding to the intersections of the source bus line 91a and the gate bus line 92a, respectively. These pixel forming portions are arranged in a matrix to form a pixel array.
  • Each pixel formation unit includes the above-described TFT (not shown), pixel electrode (not shown), common electrode (not shown), and liquid crystal layer (not shown).
  • the common electrode is a counter electrode provided in common to the plurality of pixel formation portions.
  • the liquid crystal layer is sandwiched between the pixel electrode and the common electrode.
  • the gate terminal of the TFT is connected to the gate bus line 92a, and the source terminal of the TFT is connected to the source bus line 91a.
  • the drain terminal of the TFT is connected to the pixel electrode.
  • the display control unit 80 receives the image signal DAT and the timing signal group TG, as well as the video signal DV, the source start pulse signal SSP, the source clock signal SCK, the latch strobe signal LS, the gate start pulse signal GSP, the gate clock signal GCK, the luminance
  • the signal KS is output.
  • the image signal DAT is sent from the outside.
  • the timing signal group TG is a horizontal synchronization signal, a vertical synchronization signal, or the like.
  • the source start pulse signal SSP, the source clock signal SCK, the latch strobe signal LS, the gate start pulse signal GSP, and the gate clock signal GCK control image display in the liquid crystal panel unit 10.
  • the luminance signal KS controls the luminance of the backlight unit 50.
  • the display control unit 80 includes a liquid crystal controller unit 81 that controls the display of the liquid crystal panel unit 10.
  • the liquid crystal controller unit 81 includes a drive voltage value determination unit 82 and a correction unit 83.
  • the correction unit 83 includes a ghost voltage value determination unit 84 and a memory 86 and performs ghost correction of the liquid crystal panel unit 10.
  • the memory 86 has a ghost parameter reference table (parameter table) 85.
  • the drive voltage value determination unit 82 determines a drive voltage value for driving the liquid crystal panel unit 10 from the LCD data signal output from the signal generation unit 80d.
  • the ghost voltage value determination unit 84 determines the ghost correction amount by referring to the ghost parameter reference table 85, and adds the ghost correction amount to the drive voltage value (or subtracts the ghost correction amount from the drive voltage value). A voltage in consideration of the ghost correction amount is applied to the liquid crystal driver 90.
  • the display control unit 80 further includes a color restoration unit 80a, a contrast adjustment unit 80b, a gamma correction unit 80c, a signal generation unit 80d, and the like.
  • the color recovery unit 80a recovers the signal transmitted from the image data acquisition unit 120 into red (R), green (G), and blue (B) color signals, and outputs them to the contrast adjustment unit 80b.
  • the contrast adjustment unit 80b performs contrast adjustment on the signal from the color restoration unit 80a and outputs the signal to the gamma correction unit 80c.
  • the gamma correction unit 80c performs gamma correction on the signal from the contrast adjustment unit 80b and outputs the signal to the signal generation unit 80d.
  • the signal generation unit 80d generates various signals (see FIG.
  • the display control unit 80 includes other units such as a Y / C separation unit and a signal adjustment unit.
  • the source driver 91 receives the video signal DV, the source start pulse signal SSP, the source clock signal SCK, and the latch strobe signal LS, and applies a driving video signal to each source bus line 91a. Based on the gate start pulse signal GSP and the gate clock signal GCK, the gate driver 92 repeats the application of the active scanning signal to each gate bus line 92a with one vertical scanning period as a cycle.
  • the LED drive unit 51 receives the luminance signal KS and drives the backlight unit 50 (LED 22).
  • a driving video signal is applied to each source bus line 91a, a scanning signal is applied to each gate bus line 92a, light is irradiated from the back side of the liquid crystal panel unit 10, and an image (video) is liquid crystal. Displayed on the panel unit 10.
  • the timing of the gate clock signal GCK and the latch strobe signal LS is specified so that no ghost appears.
  • the gate clock signal GCK is a signal that determines the timing of the gate driver 92
  • the latch strobe signal LS is a signal that determines the timing of the source driver 91.
  • the liquid crystal has temperature characteristics, and the movement of the liquid crystal (liquid crystal layer) of the liquid crystal panel unit 10 varies depending on the temperature.
  • the rising and falling characteristics of the source voltage (voltage applied to the liquid crystal layer) are affected by the ambient temperature.
  • the waveform becomes dull at low temperatures.
  • a ghost that could not be seen at room temperature may appear.
  • the LEDs 22 as light sources are concentrated on the end of the liquid crystal panel unit 10 (near the side surface of the light guide 30). Therefore, the heat distribution of the liquid crystal panel unit 10 tends to be biased. For this reason, the dullness of the waveform such as the source waveform (the waveform of the voltage applied to the liquid crystal layer) and the gate waveform is not constant over the entire liquid crystal panel unit 10 (the entire surface), and the strength of the appearing ghost is also nonuniform. Therefore, in the conventional ghost correction in which the correction amount for the ghost is constant throughout the liquid crystal panel unit 10 (constant for each gradation), the display quality is deteriorated.
  • ghost is a phenomenon in which the video signal is displayed shifted by one line from the position (line) to be displayed.
  • a “ghost” includes a front ghost and a back ghost.
  • the “front ghost” is a phenomenon that is displayed one line before the target
  • the “rear ghost” is a phenomenon that is displayed one line behind the target (a position advanced one line in the scanning direction).
  • the phenomenon that the voltage written to the n + 1th row (n + 1 line) is applied to the nth row (nline) is the pre-ghost, and the nth row (nline).
  • the phenomenon that the voltage to be written to the (n + 1) th line (n + 1 line) is applied to the rear ghost.
  • FIG. 7 shows the case where the temperature of the liquid crystal panel is normal.
  • the Nth gate Gout_n goes high (H) and the Nth gate opens (Nth gate OPEN).
  • the Nth source Sout_n (voltage applied to the liquid crystal layer) goes high, and the voltage is written in the nth row (nline).
  • the Nth gate Gout_n becomes low (L) in synchronization with the rising edge of the next gate clock signal GCK, and the (N + 1) th gate Gout_n + 1 becomes high in synchronization with the rising edge of the gate clock signal GCK. . Then, the (N + 1) th gate Gout_n + 1 is opened (N + 1th gate OPEN). Similarly, the N-th source Sout_n then goes low in synchronization with the rising edge of the latch strobe signal LS, and in synchronization with the rising edge of the latch strobe signal LS, the N + 1-th source Sout_n + 1 (in the liquid crystal layer). Applied voltage) goes high. Then, a voltage is written in the (n + 1) th row (n + 1 line).
  • the voltage of the Nth source Sout_n is written to the (N + 1) th (n + 1th row). Specifically, a voltage corresponding to the region q (hatched portion) in the Nth source Sout_n is written in the (N + 1) th (n + 1th row). When this region q becomes large, a rear ghost is likely to appear.
  • the waveform becomes dull as shown in FIG.
  • the waveform (Sout) of the source voltage applied to the liquid crystal layer
  • the amount of the front ghost and the rear ghost is changed.
  • the waveform becomes dull at low temperatures, and a post-ghost is likely to occur (the area of the region r in the source Sout_n + 1 is reduced, and the area of the region q in the source Sout_n is increased).
  • the heat distribution of the liquid crystal panel unit 10 is likely to be biased.
  • the temperature of the liquid crystal panel unit 10 is high in the region (region Ar1) near the LED 22, and the liquid crystal panel unit 10 is in a region (region Ar2) away from the LED 22 by a predetermined distance. Is relatively low (the temperature of the liquid crystal panel is lower than that in the vicinity of the LED 22 (region Ar1)). That is, in the liquid crystal display device 200 including the edge light type backlight unit 50, the temperature is high near the light source of the liquid crystal panel unit 10, and the temperature is relatively low near the center of the liquid crystal panel unit 10. Waveform dullness is large near the center of the liquid crystal panel unit 10 having a low temperature, and waveform dullness is small near both ends of the liquid crystal panel unit 10 having a high temperature.
  • the correction unit 83 changes the ghost correction amount for each predetermined region of the liquid crystal panel unit 10.
  • the parameter is set to be weak (ghost correction amount is small).
  • the parameter is set to be strong (ghost correction amount is large).
  • the ghost correction amount is determined by comparing the luminance of a predetermined line in the liquid crystal panel unit 10 with the luminance of the next line. As shown in FIGS. 10 and 11, for example, when the luminance of the previous line is lower than the luminance of the next line, a high voltage is applied to the next line to prevent this luminance from appearing as a ghost. At that time, in the area Ar2 near the center of the liquid crystal panel portion, a rear ghost is likely to appear, so that ghost correction is applied strongly as shown in FIG. On the other hand, in the area Ar1 in the vicinity of both ends (near the light source) of the liquid crystal panel portion, the ghost is unlikely to appear, so that ghost correction is applied weakly as shown in FIG.
  • the previous ghost is set so as not to appear even when the temperature distribution occurs (when the temperature distribution is non-uniform).
  • the boundary g between the region Ar1 and the region Ar2 in the liquid crystal panel unit 10 is, for example, in a region (region R) having a large temperature gradient.
  • the boundary g is easily set by measuring the temperature distribution.
  • the distance between the boundary g and the end of the liquid crystal panel unit 10 in the X direction is L.
  • the distance L is, for example, about 3 cm (about 3.4% with respect to the panel length (about 88.5 cm)).
  • the distance L varies depending on the number of LEDs 22, the thermal efficiency, the temperature of the liquid crystal panel unit 10, and the like.
  • the ghost correction amount is determined by the correction unit 83 by comparing the luminance of the predetermined line in the liquid crystal panel unit 10 with the luminance of the next line.
  • the correction unit 83 includes a ghost parameter reference table 85 (lookup table).
  • the correction unit 83 refers to the ghost parameter reference table 85 to determine a ghost correction amount (ghost parameter) for each luminance difference (gradation).
  • the ghost parameter reference table 85 includes at least a table for the area Ar1 and a table 85 for the area Ar2.
  • the table for the area Ar1 is a table (table for setting parameters weakly) assuming that the liquid crystal panel unit 10 becomes high temperature.
  • the table for the area Ar2 is a table (a table in which parameters are set to be stronger) assuming that the liquid crystal panel unit 10 has a relatively low temperature.
  • Each setting value of the ghost parameter reference table 85 is determined by the temperature, gradation, input signal frequency, and the like.
  • the ghost can be corrected (reduced) appropriately. Therefore, the display quality of the liquid crystal display device 200 can be improved.
  • the ghost correction amount in the region Ar1 near both ends (near the light source) of the liquid crystal panel unit 10 is smaller than the ghost correction amount in the region Ar2 near the center of the liquid crystal panel unit 10.
  • the response characteristics of the liquid crystal panel unit 10 can be controlled so as to be substantially constant throughout the liquid crystal panel unit 10. Therefore, the ghost can be effectively corrected (reduced).
  • the correcting unit 83 determines the ghost correction amount (ghost parameter) by comparing the luminance of a predetermined line with the luminance of the next line in the liquid crystal panel unit 10.
  • the correction unit 83 includes a ghost parameter reference table 85 that defines a ghost correction amount for a luminance difference, and the ghost correction amount can be easily determined by referring to the ghost parameter reference table 85.
  • the ghost parameter reference table 85 includes a table for each temperature region (for each region Ar1 and each region Ar2) of the liquid crystal panel unit 10. Therefore, the ghost can be corrected (reduced) appropriately for each temperature region of the liquid crystal panel unit 10.
  • the liquid crystal display device 200 includes an edge light type backlight unit 50. Therefore, the liquid crystal display device 200 can be easily reduced in thickness.
  • the temperature distribution of the liquid crystal panel unit 10 tends to be non-uniform.
  • the display quality can be improved even if the temperature distribution of the liquid crystal panel unit 10 is not uniform. Therefore, it is possible to reduce the thickness of the liquid crystal display device 200 while improving display quality.
  • FIG. 12 is a cross-sectional view schematically showing the liquid crystal display device 200a.
  • FIG. 13 is a plan view schematically showing the liquid crystal display device 200a.
  • FIG. 14 is a block diagram showing a schematic configuration of the liquid crystal display device 200a.
  • symbol is attached
  • the liquid crystal display device 200a of the second embodiment includes a direct-type backlight unit 150.
  • the LED module 20 LED 22
  • the backlight unit 150 is disposed so as to overlap the liquid crystal panel unit 10, and the plurality of LEDs 22 are disposed immediately below the liquid crystal panel unit 10.
  • the plurality of LEDs 22 are arranged at equal intervals.
  • the plurality of LEDs 22 can be controlled independently of each other. Therefore, it is possible to perform so-called dimming control for each area (local dimming control, area active control, etc.) that adjusts the brightness of each area of the backlight unit 150 in synchronization with the brightness of each area of the display image. .
  • the temperature of the region of the liquid crystal panel unit 10 corresponding to the light source is relatively low.
  • the temperature of the region of the liquid crystal panel unit 10 corresponding to the light source becomes high. Therefore, in the liquid crystal display device 200a including such a backlight unit 150, the heat distribution of the liquid crystal panel unit 10 may be biased.
  • the ghost correction amount is changed for each predetermined area of the liquid crystal panel unit 10 as in the first embodiment. Specifically, for example, in a region where the light source (LED 22) is turned off and the temperature is low, a rear ghost is likely to appear, and as shown in FIG. On the other hand, for example, in a region where the light source (LED 22) is lit and the temperature is high, a rear ghost hardly appears, and ghost correction is applied weakly as shown in FIG.
  • the LED driving unit 51 includes an LED driver 51a and a counter 51b that control driving of the LEDs 22 of the backlight unit 150.
  • the counter 51b is connected to the LED driver 51a and counts a predetermined time.
  • the LED driver 51 a is connected to the ghost voltage value determination unit 84 of the correction unit 83.
  • the LED driver 51a calculates the integrated value of the current applied to each LED 22 for a predetermined time.
  • the ghost voltage value determination unit 84 calculates the temperature of the liquid crystal panel unit 10 based on the integrated value of the current applied to each LED 22.
  • the correction unit 83 determines an optimum ghost correction amount for each predetermined region (for each temperature region) of the liquid crystal panel unit 10 from the ghost parameter reference table 85.
  • the ghost parameter reference table 85 has a plurality of tables for each temperature region or for each temperature. Other configurations of the second embodiment are the same as those of the first embodiment.
  • the liquid crystal display device 200a includes the direct-type backlight unit 150 and can perform dimming control for each region (local dimming control, area active control, etc.). Thereby, the contrast of the liquid crystal display device can be greatly improved and the power consumption can be reduced.
  • the temperature is higher in the high luminance area than in the low luminance area. Therefore, also in the liquid crystal display device 200a including the direct type backlight unit 150, the temperature distribution of the liquid crystal panel unit 10 becomes non-uniform.
  • the display quality can be improved even when the temperature distribution of the liquid crystal panel unit 10 is not uniform as described above. Therefore, it is possible to reduce power consumption while further improving display quality.
  • the ghost parameter reference table 85 includes a table for each temperature, the ghost correction amount can be changed according to the temperature change of the liquid crystal panel unit 10.
  • Other effects of the second embodiment are the same as those of the first embodiment.
  • FIGS. 15 and 16 are plan views schematically showing the liquid crystal display device 200b.
  • FIG. 17 is a block diagram showing a schematic configuration of the liquid crystal display device 200b.
  • FIG. 15 shows an example of the third embodiment
  • FIG. 16 shows another example of the third embodiment.
  • symbol is attached
  • the liquid crystal display device 200b of 3rd Embodiment contains the temperature sensor 60 which measures the temperature of the liquid crystal panel part 10, as shown in FIG.15 and FIG.16.
  • the temperature sensor 60 may measure (temperature measurement) one location of the liquid crystal panel unit 10.
  • the plurality of temperature sensors 60 may measure (temperature measurement) a plurality of locations on the liquid crystal panel unit 10.
  • region enclosed with the dashed-two dotted line s shows a measurement location.
  • the temperature at multiple locations can be recognized by measurement. Therefore, if comprised in this way, the temperature distribution of the liquid crystal panel part 10 can be measured in real time.
  • the temperature distribution of the liquid crystal panel unit 10 can be measured more accurately in real time.
  • the temperature sensor 60 is connected to the ghost voltage value determination unit 84 of the correction unit 83, and outputs the measured temperature to the ghost voltage value determination unit 84.
  • the ghost voltage value determination unit 84 determines an optimum ghost correction amount for each predetermined region (for each temperature region) of the liquid crystal panel unit 10 from the ghost parameter reference table 85. .
  • the ghost parameter reference table 85 has a plurality of tables for each temperature in addition to each temperature region. Therefore, a more optimal ghost correction amount is determined according to the temperature change of the liquid crystal panel unit 10.
  • Other configurations of the third embodiment are the same as those of the first or second embodiment.
  • the temperature sensor 60 can obtain information such as the temperature distribution or temperature change of the liquid crystal panel unit 10. Therefore, by using the obtained information, the ghost correction amount can be changed more accurately according to the heat distribution of the liquid crystal panel unit 10.
  • the temperature of the liquid crystal panel unit 10 varies depending on a change in ambient temperature (environmental temperature) or an elapsed time after the power is turned on. More optimal ghost correction can be performed by changing the ghost correction amount for each predetermined region in accordance with the temperature change. Thereby, display quality can be improved more.
  • the ghost parameter reference table 85 has a plurality of tables for each temperature in addition to each temperature region of the liquid crystal panel unit 10. Therefore, the ghost correction amount can be changed according to the temperature change of the liquid crystal panel unit 10.
  • Other effects of the third embodiment are the same as those of the first or second embodiment.
  • the backlight unit includes a diffusion plate, a prism sheet, and a lens sheet as optical members (optical sheets).
  • the optical member optical sheet
  • the optical sheet may be appropriately changed, added, or reduced as necessary.
  • the ghost correction amount is changed according to the heat distribution of the liquid crystal panel unit due to the heat from the light source.
  • an electronic component that generates heat is mounted on the liquid crystal display device.
  • the heat distribution of the liquid crystal panel part may be biased by heat from such electronic components. Therefore, the ghost correction amount may be changed for each region in consideration of the uneven distribution of heat due to heat from the electronic component or the like.
  • the liquid crystal display device described above can be applied not only to a liquid crystal television but also to various devices including a liquid crystal panel unit such as a smartphone or an electronic book terminal.
  • a ghost parameter reference table is used to determine a ghost correction amount.
  • the ghost correction amount may be determined by parameters, for example, without using such a table.
  • the parameter may be changed at a constant rate with respect to the distance from the light source without using a table. Specifically, for example, the parameter is set to increase by 1.1 times every 1 cm when the distance from the end of the liquid crystal panel is 0 to 5 cm, and becomes stronger toward the center of the liquid crystal panel. May be.
  • the LED is used as the light source of the backlight unit, but a light source other than the LED may be used.
  • a single light guide plate is used as the light guide, but for example, the light guide may have a combination of a plurality of strip-shaped light guide plates.
  • the light guide body may be, for example, a rod-shaped light guide bar in addition to the plate shape.
  • the LED modules are arranged on the left and right sides of the backlight unit (light guide), but the LED modules (LEDs) are arranged on at least one side of the backlight unit (light guide). It only has to be done.
  • the LED modules 20 may be disposed on both upper and lower sides of the backlight unit (light guide 30).
  • the area in the vicinity of the LED 22 may be the area Ar1, and the area away from the LED 22 by a predetermined distance may be the area Ar2.
  • the LED modules may be arranged on both the left and right sides or the upper and lower sides.
  • the LED modules may be disposed on the upper and right sides of the light guide.
  • the LED module may be disposed only on one of the upper side and the lower side of the light guide.
  • the LED module may be disposed only on either the right side or the left side of the light guide.
  • the liquid crystal panel unit includes two regions, that is, a region Ar1 having a high temperature and a region Ar2 having a relatively low temperature.
  • the liquid crystal panel unit may include three or more regions having different temperatures.
  • the ghost correction amount may be changed for each of these areas. ghost correction is performed more accurately. However, in reality, about three regions are sufficient. When the number of regions is more than that, it is considered that the effect is not obtained so much.
  • the area in the vicinity of the LED (area Ar1) and the area away from the LED by a predetermined distance (area Ar2) may be changed according to the temperature change. That is, since the temperature distribution of the liquid crystal panel changes depending on the ambient temperature or the like, the size of the region Ar1 and the region Ar2 (position of the boundary g) may be changed according to the temperature change.
  • the LED as the light source may be a top view type LED or a side view type LED.
  • the top-view LED emits light in a direction perpendicular to the mounting surface of the mounting substrate, and the side-view LED emits light in a direction horizontal to the mounting surface of the mounting substrate.
  • the distance L indicates the position of the boundary g and is set to about 3 cm, for example.
  • the boundary g may be appropriately set according to, for example, the heat distribution.
  • the LEDs are arranged at equal intervals.
  • LEDs (a plurality of light sources) may be arranged unevenly.
  • FIG. 19 shows a modification of the second embodiment.
  • the LEDs 22 are arranged more densely in the end region of the backlight unit 150 than in other regions.
  • the LEDs 22 are arranged at an interval a1 in the X direction and at an interval b1 in the Y direction.
  • the LEDs 22 are arranged at an interval a2 in the X direction and at an interval b2 in the Y direction.
  • the interval a1 is smaller than the interval a2, and the interval b1 is smaller than the interval b2.
  • the number of LEDs 22 arranged in the end region of the backlight unit 150 is larger than the number of LEDs 22 arranged in other regions.
  • the end region is likely to be dark, but in FIG. 19, the end region is bright.
  • the temperature is high in a region where the density of the LED 22 is high, and the temperature is low in a region where the density of the LED 22 is low.
  • the driving of the liquid crystal panel unit is adjusted in accordance with such characteristics.
  • the interval a1 may be smaller than the interval a2, and the interval b1 may be the same as the interval b2.
  • the interval a1 may be the same as the interval a2, and the interval b1 may be smaller than the interval b2.
  • a plurality of LEDs can be driven independently in a direct backlight unit.
  • a plurality of LEDs may be driven simultaneously. That is, the plurality of LEDs may not be driven independently.
  • the influence of heat from the LED on the heat distribution of the liquid crystal panel portion is reduced.
  • the heat distribution of the liquid crystal panel unit may be affected by the heat from the electronic components and the like mounted on the liquid crystal panel unit. Even in such a case, the ghost correction is effective, and the ghost is appropriately corrected according to the heat distribution of the liquid crystal panel unit.
  • the type of LED is not particularly limited.
  • an LED chip light emitting chip
  • an LED including a phosphor may be used.
  • the LED chip emits blue light and the phosphor receives light from the LED chip and emits yellow light
  • the LED emits light from the LED chip and light from the phosphor. Generate white light.
  • the number of LED chips included in the LED is not particularly limited.
  • the LED may include a phosphor that receives blue light from the LED chip and fluoresces green light and red light. In this case, the LED generates white light from the blue light from the LED chip and the light from the phosphor (green light, red light).
  • the LED may include a red LED chip that emits red light, a blue LED chip that emits blue light, and a phosphor that emits green light by receiving light from the blue LED chip.
  • a red LED chip that emits red light
  • a blue LED chip that emits blue light
  • a phosphor that emits green light by receiving light from the blue LED chip.
  • Such an LED can generate white light with red light from a red LED chip, blue light from a blue LED chip, and green light from a phosphor.
  • the LED may not contain any phosphor.
  • the LED includes a red LED chip that emits red light, a green LED chip that emits green light, and a blue LED chip that emits blue light, and mixes light from all LED chips to emit white light. It may be generated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 液晶パネル部に温度バラツキが生じた場合でも、表示品位を向上させることが可能な液晶表示装置を提供する。液晶表示装置(200)は、液晶パネル部(10)と、複数のLED(22)を含み液晶パネル部(10)に光を供給するバックライトユニット(50)と、液晶パネル部(10)のゴースト補正を行う補正部(83)を有する。補正部(83)は、液晶パネル部(10)の所定領域毎に、複数のLED(22)からの熱による液晶パネル部(10)の温度分布に応じて、ゴースト補正量を変化させる。

Description

液晶表示装置
 この発明は、液晶パネル部を備えた液晶表示装置に関する。
 液晶表示装置は、液晶パネル部と照明部(バックライト)を含む。液晶パネル部は映像(画像)を表示し、照明部は液晶パネル部に光を供給する。液晶表示装置において、ゴーストが生じることが知られている。ゴーストは映像信号が表示されるべき箇所(ライン)から1ラインずれて表示される現象である。
 そこで、ゴーストを補正することが提案されている(例えば、特開2003-150131号公報)。
 この従来の技術では、液晶表示装置はゴースト補正部を含む。ゴースト補正部は補正係数を前後ラインの輝度レベル差に応じて変化させる。ゴーストは適正に補正される。
 近年、照明部(バックライト)の光源として、発光ダイオード(LED:Light Emitting Diode)が使用される。そのような照明部では、光源の配置等によっては温度ムラが生じる。この場合、液晶パネル部の温度分布が不均一となる。
 しかし、従来の技術では、液晶パネル部の温度分布が不均一である場合、ゴーストを適正に補正することは困難である。よって、液晶表示装置の表示品位が低下する。
 上記の課題を解決するため、この発明の目的の1つは、液晶パネル部の温度分布が不均一である場合でも、表示品位を向上させることが可能な液晶表示装置を提供することである。
 そこで、この発明の液晶表示装置は、液晶パネル部と、複数の光源を含むとともに液晶パネル部に光を供給する照明部と、液晶パネル部のゴースト補正を行う補正部を含む。補正部は、液晶パネル部の熱分布に応じて、液晶パネル部の所定領域毎にゴースト補正量を変化させる。
 この液晶表示装置では、液晶パネル部の熱分布に応じて、ゴーストが適正に補正(低減)される。よって、液晶パネル部の熱分布が不均一であっても、表示品位を向上させることができる。
 好ましくは、液晶パネル部は、第1領域と、第1領域よりも温度が低い第2領域を含み、第1領域におけるゴースト補正量が、第2領域におけるゴースト補正量より小さい。この場合、液晶パネル部の応答特性は液晶パネル部全体でほぼ一定となるように制御され得る。それゆえ、効果的にゴーストを補正(低減)することができる。
 また、好ましくは、補正部は、液晶パネル部における所定ラインの輝度と次ラインの輝度とを比較することによりゴースト補正量に対応する電圧を規定する複数のパラメータテーブルを有する。この場合、液晶パネル部の熱分布に応じて、容易に、液晶パネル部の所定領域毎にゴースト補正量を変化させることができる。
 パラメータテーブルは、液晶パネル部の温度領域毎に設けられているのが好ましい。液晶パネル部の温度領域毎に適正なゴースト補正量でゴーストを補正(低減)することができる。また、パラメータテーブルは、液晶パネル部の温度領域毎に加えて、温度毎にも設けられているとより好ましい。液晶パネル部の所定領域における温度によってゴースト補正量を変化させることができる。即ち、液晶パネル部の温度変化に応じてゴースト補正量を変化させることができる。
 液晶表示装置は、好ましくは、液晶パネル部の温度を測定する温度測定手段をさらに含む。温度測定手段によって、液晶パネル部の温度分布または温度変化等の情報を得ることができる。得られた情報を用いることによって、より精度よく、液晶パネル部の熱分布に応じてゴースト補正量を変化させることができる。
 照明部は、例えば、光源からの光を導光する導光部材を含み、複数の光源が導光部材の端部に配置される。この場合、照明部はエッジライト(サイドライト)型であり、照明部及び液晶表示装置の薄型化を容易に図ることができる。
 エッジライト型の照明部は、薄型化を図ることが容易であるものの、複数の光源が導光部材の端部に配置され、導光部材の端部近傍の領域の温度が高くなりやすい。そのため、エッジライト型の照明部を備えた液晶表示装置では、液晶パネル部の温度分布が不均一となりやすい。
 しかし、この液晶表示装置では、上記のように、液液晶パネル部の温度分布が不均一である場合でも、表示品位を向上させることができる。そのため、エッジライト型の照明部を用いることによって、表示品位を向上させつつ、液晶表示装置の薄型化を図ることができる。
 照明部は直下型でもよい。具体的には、照明部は、液晶パネル部と重なるように配置されており、複数の光源が、液晶パネル部の直下に配置されてもよい。この場合、複数の光源は、互いに独立して駆動されるのが好ましい。表示画像の各領域の明暗と同期して照明部の各領域の明暗を調整する、いわゆる領域毎調光制御(ローカルディミング制御、エリアアクティブ制御等)を実現することができる。これにより、液晶表示装置の大幅なコントラスト向上、および低消費電力化を図ることができる。
 このような直下型の照明部の場合、輝度の高い領域では、輝度の低い領域に比べて、温度が高くなる。そのため、液晶パネル部の温度分布が不均一となる。
 しかし、上記したように、液晶パネル部の温度分布が不均一となる場合でも、この晶表示装置は表示品位を向上させることができる。そのため、直下型の照明部を用いることによって、表示品位をより向上させつつ、低消費電力化を図ることができる。
 複数の光源は不均一に配置されていてもよい。例えば、照明部の端部領域では、他の領域に比べて、光源が密に配置されてもよい。この場合、照明部の端部領域に配置される光源の数が、他の領域に配置される光源の数よりも多くなる。端部領域は暗くなりやすいが、端部領域を明るくすることができる。
 本発明によれば、液晶パネル部の温度分布が不均一である場合でも、表示品位を向上させることが可能な液晶表示装置を容易に得ることができる。
本発明の第1実施形態の液晶表示装置の分解斜視図である。 本発明の第1実施形態の液晶表示装置を模式的に示した断面図である。 本発明の第1実施形態の液晶表示装置の表示パネル部の温度分布を模式的に示した図である。 本発明の第1実施形態の液晶表示装置を模式的に示した平面図である。 本発明の第1実施形態の液晶表示装置の構成を示したブロック図である。 本発明の第1実施形態の液晶表示装置の構成を示したブロック図である。 本発明の第1実施形態の液晶表示装置の液晶パネル部を示した平面図(ゴーストを説明するための図)である。 液晶パネル部の温度が常温の場合でのゴーストの出現について説明するためのタイミングチャートである。 液晶パネル部の温度が高い場合でのゴーストの出現について説明するためのタイミングチャートである。 液晶パネル部の温度が低い場合でのゴーストの出現について説明するためのタイミングチャートである。 本発明の第1実施形態の液晶パネル部の中心付近の領域でのゴースト補正の一例を示した図である。 本発明の第1実施形態の液晶パネル部の両端付近の領域でのゴースト補正の一例を示した図である。 本発明の第2実施形態の液晶表示装置を模式的に示した断面図である。 本発明の第2実施形態の液晶表示装置を模式的に示した平面図である。 本発明の第2実施形態の液晶表示装置の概略構成を示したブロック図である。 本発明の第3実施形態の液晶表示装置を模式的に示した平面図である。 本発明の第3実施形態の液晶表示装置を模式的に示した平面図である。 本発明の第3実施形態の液晶表示装置の概略構成を示したブロック図である。 第1実施形態の変形例の液晶表示装置を模式的に示した平面図である。 第2実施形態の変形例の液晶表示装置を模式的に示した平面図である。
 以下、本発明を具体化した実施形態を図面に基づいて詳細に説明する。
 (第1実施形態)
 図1~図11を参照して、本発明の第1実施形態の液晶表示装置200を説明する。図1は、液晶表示装置200の分解斜視図である。図2Aは、液晶表示装置200を模式的に示した断面図である。図2Bは、液晶表示装置200の表示パネル部の温度分布を模式的に示した図である。図3は、液晶表示装置200を模式的に示した平面図である。図4~図11は、液晶表示装置200を説明するための図である。
 第1実施形態の液晶表示装置200は、図1に示すように、液晶パネル部10、バックライトユニット50、及び一対のハウジング70(表ハウジング71及び裏ハウジング72)を含む。バックライトユニット50は液晶パネル部10に光を供給する。一対のハウジング70は、液晶パネル部10、バックライトユニット50を挟む。
 液晶パネル部10は、アクティブマトリックス基板11と、このアクティブマトリックス基板11に対向する対向基板12を含む。アクティブマトリックス基板11は、例えば、スイッチング素子としてTFT(Thin Film Transistor)を含む。アクティブマトリックス基板11と対向基板12は、シール材(不図示)で貼り合わせられる。アクティブマトリックス基板11と対向基板12の隙間には、液晶(不図示)が注入されている。アクティブマトリックス基板11の受光面側および対向基板12の出射面側には、それぞれ、偏光フィルム13が取り付けられている。
 液晶パネル部10は、液晶分子の傾きに起因する透過率の変化を利用して、画像を表示する。
 第1実施形態では、バックライトユニット50は、エッジライト(サイドライト)型のバックライトユニットであり、LEDモジュール20、LEDモジュール20からの光を導光する導光体(導光部材)30、反射シート(反射部材)41、バックライトシャーシ42、拡散板(拡散部材)43、プリズムシート44、及びレンズシート45を有する。バックライトユニット50は、図1および図2Aに示すように、液晶パネル部10の直下に配置される。
 LEDモジュール20は光源としてのLED22と実装基板21を含む。LED22は実装基板21の上に実装される。
 実装基板21は板状かつ矩形状の基板である。複数の電極(不図示)が実装基板21の実装面21a上が配列されている。LED22は、これらの電極上に取り付けられている。
 LED22は、電流を受けるとともに光を発する。実装基板21上には、複数のLED22が、所定の間隔を隔てて配列されている。LED22は、導光体30の側面31の近傍に配置されている。
 導光体30は、例えば、アクリル、ポリカーボネートのような透明樹脂材料から構成されており、図1~図3に示すように、一枚状の導光板に形成されている。導光体30は、平面的に見て、略矩形形状(略長方形形状)に形成されている。導光体30は、上面30U(図1参照)及びその反対面である下面30B(図1参照)と、4つの側面31(31a~31d)を有する。側面31a及び31bは、LED22からの光が入射される入射面32である。すなわち、LED22からの光が、側面31(31a及び1b)を介して、導光体30内に入射される。
 導光体30の側面31a及び31bは、互いに逆方向を向き、かつ、導光体30の長手方向(X方向)に平行な面である。導光体30の側面31c及び31dは、互いに逆方向を向き、かつ、導光体30の短手方向(Y方向)に平行な面である。
 複数のLED22が実装されたLEDモジュール20は、バックライトユニット50の左右方向(X方向)の両側に配置されている。即ち、LED22の発光面と側面31aとが対向するように、LEDモジュール20が配置されているとともに、LED22の発光面と側端面31bとが対向するように、LEDモジュール20が配置されている。
 入射面32(側面31a及び31b)から入射された光は、導光体30内を導光して上面30Uから面状光(出射光)として出射される。上面30Uは、光を外部(液晶パネル部10)に向けて出射する光出射面30Uである。
 図1及び図2Aに示すように、反射シート41の反射面41U(図1参照)は、導光体30の下面30Bに面する。反射ヒート41は、下面30Bから漏れた光を、導光体30に戻すように反射させ、光の損失を防ぐ。
 バックライトシャーシ42(図1)は、例えば箱状の部材である。バックライトシャーシ42は、底面42Bを有し、LEDモジュール20、導光体30及び反射シート41を収容する。
 拡散板43は、導光体30に重なる光学シートであり、導光体30からの光を拡散させる。即ち、拡散板43は、導光体30からの光を拡散させて、液晶パネル部10の全域に光を行き渡らせる。
 プリズムシート44は、拡散板43に重なる光学シートである。プリズムシート44は、例えば、平行に並んだ一方向(線状)に延びる三角プリズムを有し、拡散板43からの光の放射特性を偏向させる。
 レンズシート45は、プリズムシート44に重なる光学シートである。光を屈折散乱させる微粒子が、レンズシート45の内部に分散されている。レンズシート45は、プリズムシート44からの光を、局所的に集光させない。即ち、レンズシート45は明暗差(光量ムラ)を抑える。
 バックライトユニット50では、LEDモジュール20からの光は、導光体30で面状光として出射され、導光体30からの光は、複数の光学シート43~45を通過して、液晶パネル部10に供給される。非発光型の液晶パネル部10は、バックライトユニット50からの光(バックライト光)を受光して表示機能を向上させる。
 第1実施形態では、図4に示すように、液晶表示装置200は、更に、表示制御部80、液晶ドライバ90及びLED駆動部51を含む。液晶ドライバ90は、ソースドライバ91及びゲートドライバ92を含む。LED駆動部51はバックライトユニット50(LED22)を駆動する。なお、図5に示すように、液晶パネルユニット110が、液晶ドライバ90と液晶パネル部10によって構成される。
 図4に示すように、液晶パネル部10は、複数のソースバスライン91a、複数のゲートバスライン92a及び複数の画素形成部(不図示)を含む。複数の画素形成部は、ソースバスライン91aとゲートバスライン92aとの交差点にそれぞれ対応して設けられる。これらの画素形成部はマトリクス状に配置されて画素アレイを構成する。各画素形成部は、上記したTFT(不図示)、画素電極(不図示)、共通電極(不図示)及び液晶層(不図示)を有する。共通電極は、複数の画素形成部に共通に設けられた対向電極である。液晶層は、画素電極と共通電極の間に挟持される。TFTのゲート端子はゲートバスライン92aに接続され、TFTのソース端子はソースバスライン91aに接続される。TFTのドレイン端子は画素電極に接続される。
 表示制御部80は、画像信号DAT及びタイミング信号群TGを受けるとともに、映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP、ゲートクロック信号GCK、輝度信号KSを出力する。
 画像信号DATは外部から送られる。タイミング信号群TGは水平同期信号や垂直同期信号などである。ソーススタートパルス信号SSP、ソースクロック信号SCK、ラッチストローブ信号LS、ゲートスタートパルス信号GSP及びゲートクロック信号GCKは、液晶パネル部10における画像表示を制御する。輝度信号KSはバックライトユニット50の輝度を制御する。
 図5に示すように、表示制御部80は、液晶パネル部10の表示を制御する液晶コントローラー部81を有する。液晶コントローラー部81は、駆動電圧値決定部82及び補正部83を含む。補正部83は、ゴースト電圧値決定部84とメモリ86を含み、液晶パネル部10のゴースト補正を行う。メモリ86は、ゴーストパラメータ参照用テーブル(パラメータテーブル)85を有する。
 駆動電圧値決定部82は、信号生成部80dから出力されるLCDデータ信号から液晶パネル部10を駆動する駆動電圧値を決定する。ゴースト電圧値決定部84は、ゴーストパラメータ参照用テーブル85を参照することによってゴースト補正量を決定し、ゴースト補正量を駆動電圧値に加える(又は駆動電圧値からゴースト補正量を引く)。ゴースト補正量が考慮された電圧が液晶ドライバ90に印加される。
 表示制御部80は、色回復部80a、コントラスト調整部80b、ガンマ補正部80c及び信号生成部80d等を更に備える。色回復部80aは、画像データ取得部120から送られた信号を、赤(R)、緑(G)、青(B)の色信号に回復し、コントラスト調整部80bに出力する。コントラスト調整部80bは、色回復部80aからの信号にコントラスト調整を施し、ガンマ補正部80cに出力する。ガンマ補正部80cは、コントラスト調整部80bからの信号にガンマ補正を施し、信号生成部80dに出力する。信号生成部80dは、ゲートクロック信号GCK、ラッチストローブ信号LS等の各種信号(図4参照)を生成する。信号生成部80dから駆動電圧値決定部82にLCDデータ信号が出力される。画像データ取得部120からの信号がコンポジット信号の場合、表示制御部80は、例えばY/C分離部や信号調整部等の他の部を備える。
 図4に示すように、ソースドライバ91は、映像信号DV、ソーススタートパルス信号SSP、ソースクロック信号SCK及びラッチストローブ信号LSを受け、各ソースバスライン91aに駆動用映像信号を印加する。ゲートドライバ92は、ゲートスタートパルス信号GSPとゲートクロック信号GCKに基づいて、アクティブな走査信号の各ゲートバスライン92aへの印加を、1垂直走査期間を周期として繰り返す。LED駆動部51は、輝度信号KSを受け、バックライトユニット50(LED22)を駆動する。
 以上のように、各ソースバスライン91aに駆動用映像信号が印加され、各ゲートバスライン92aに走査信号が印加され、液晶パネル部10の背面側から光が照射され、画像(映像)が液晶パネル部10に表示される。
 液晶表示装置の駆動タイミング設定において、ゴーストが出現しないようにゲートクロック信号GCK及びラッチストローブ信号LSのタイミングが規定される。ゲートクロック信号GCKは、ゲートドライバ92のタイミングを決める信号であり、ラッチストローブ信号LSは、ソースドライバ91のタイミングを決める信号である。このように規定された状態で十分にゴーストが補正できない場合は、ゴースト補正が補正部83によって行われる。
 しかし、液晶は温度特性を有し、液晶パネル部10の液晶(液晶層)の動きは温度によって変わる。ソース電圧(液晶層に印加される電圧)の立ち上がり特性と立ち下がり特性は周囲温度の影響を受ける。低温では波形の鈍りが生じる。その結果、常温では見えなかったゴースト(後ゴースト)が出現する場合がある。
 エッジライト型のバックライトユニット50では、光源であるLED22が液晶パネル部10の端部(導光体30の側面の近傍)に集中して配置される。それゆえ、液晶パネル部10の熱分布が偏りやすい。そのため、ソース波形(液晶層に印加される電圧の波形)及びゲート波形などの波形の鈍り具合が液晶パネル部10の全体(全面)で一定ではなく、出現するゴーストの強さも不均一となる。従って、ゴーストに対する補正量が液晶パネル部10の全体で一定(階調毎に一定)である従来のゴースト補正では、表示品位が低下する。
 なお「ゴースト」は映像信号が表示すべき箇所(ライン)から1ラインずれて表示される現象である。「ゴースト」は前ゴースト及び後ゴーストを含む。「前ゴースト」は目標よりも1ライン手前に表示する現象であり、「後ゴースト」は目標よりも1ライン後ろ(スキャン方向へ1ライン進んだところ)に表示する現象である。具体的には、例えば、図6に示すように、n+1行目(n+1ライン)に書き込む電圧がn行目(nライン)にかかってしまう現象が前ゴーストであり、n行目(nライン)に書き込む電圧がn+1行目(n+1ライン)にかかってしまう現象が後ゴーストである。
 液晶パネル部の温度によるゴーストの出現について図7~図9を参照しつつ説明する。図7は液晶パネル部の温度が常温の場合を示す。図7に示すように、ゲートクロック信号GCKの立ち上がりエッジに同期して、N番目のゲートGout_nがハイ(H)になり、N番目のゲートが開く(N番目ゲートOPEN)。ラッチストローブ信号LSの立ち上がりエッジに同期して、N番目のソースSout_n(液晶層に印加される電圧)がハイになり、n行目(nライン)に電圧が書き込まれる。N番目のゲートGout_nは、次のゲートクロック信号GCKの立ち上がりエッジに同期してロー(L)になるとともに、このゲートクロック信号GCKの立ち上がりエッジに同期して、N+1番目のゲートGout_n+1がハイになる。そして、N+1番目のゲートGout_n+1が開く(N+1番目ゲートOPEN)。同様に、N番目のソースSout_nは、次にラッチストローブ信号LSの立ち上がりエッジに同期してローになるとともに、このラッチストローブ信号LSの立ち上がりエッジに同期して、N+1番目のソースSout_n+1(液晶層に印加される電圧)がハイになる。そして、n+1行目(n+1ライン)に電圧が書き込まれる。
 N+1番目のゲートGout_n+1は、N番目のソースSout_nが閉じる前に開くため、N番目のソースSout_nの電圧がN+1番目(n+1行目)に書き込まれる。具体的には、N番目のソースSout_nにおける領域q(ハッチング部分)に相当する電圧がN+1番目(n+1行目)に書き込まれる。この領域qが大きくなると後ゴーストが出現しやすくなる。一方、N番目のゲートGout_nが閉じる(ロー状態になる)前に、N+1番目のソースSout_n+1が開くため、N+1番目のソースSout_n+1における領域r(ハッチング部分)に相当する電圧がN番目(n行目)に書き込まれる。この領域rが大きくなると前ゴーストが出現しやすくなる。なお、上記したように、前ゴースト及び後ゴーストの出る量のバランスをとって、両方が目立たないように、ゲートクロック信号GCK及びラッチストローブ信号LSのタイミングが調整される。
 周囲温度の変化によって液晶パネル部の温度が低くなると、図8に示すように、波形に鈍りが生じる。特に鈍りの大きいソース(液晶層に印加される電圧)の波形(Sout)の影響により、前ゴースト及び後ゴーストの出る量が変化する。具体的には、低温においては波形が鈍り、後ゴーストが出やすくなる(ソースSout_n+1における領域rの面積が小さくなり、ソースSout_nにおける領域qの面積が大きくなる)。
 反対に、液晶パネル部の温度が高くなると、図9に示すように、波形の立ち上がり及び立ち下がりが俊敏になるため、前ゴーストが出やすくなる(ソースSout_n+1における領域rの面積が大きくなり、ソースSout_nにおける領域qの面積が小さくなる)。
 上述したように、エッジライト型のバックライトユニット50において、液晶パネル部10の熱分布が偏りやすい。
 例えば、図2及び図3に示すように、LED22の近傍の領域(領域Ar1)では、液晶パネル部10の温度が高く、LED22から所定の距離離れた領域(領域Ar2)では、液晶パネル部10の温度が比較的低い(LED22の近傍の領域(領域Ar1)に比べて液晶パネル部の温度が低い)。即ち、エッジライト型のバックライトユニット50を備えた液晶表示装置200において、液晶パネル部10の光源付近では温度が高く、液晶パネル部10のセンター付近では温度が比較的低い。温度が低い液晶パネル部10の中心付近では波形の鈍りが大きく、温度が高い液晶パネル部10の両端付近では波形の鈍りが小さい。
 そのため、第1実施形態では、補正部83は、液晶パネル部10の所定領域毎に、ゴースト補正量を変化させる。
 詳説すると、例えば、液晶パネル部10が高い光源付近(領域Ar1)では、パラメータは弱く設定される(ゴースト補正量は小さい)。一方、液晶パネル部10が比較的低いパネルの中心付近(領域Ar2)では、パラメータは強めに設定される(ゴースト補正量は大きい)。これにより、液晶パネル部10の温度分布が不均一な場合でも、ゴースト特性が液晶パネル部の全体でほぼ一定となるように制御することが可能である。
 ゴースト補正量は液晶パネル部10における所定ラインの輝度とその次ラインの輝度とを比較することにより決定される。図10及び図11に示すように、例えば、前ラインの輝度が次ラインの輝度に対して低い場合、この輝度がゴーストとして現れるのを防ぐために高い電圧が次ラインに印加される。その際、液晶パネル部の中心付近の領域Ar2では、後ゴーストが出現しやすいため、図10に示すように、強めにゴースト補正がかけられる。一方、液晶パネル部の両端付近(光源付近)の領域Ar1では、後ゴーストが出現しにくいため、図11に示すように、弱めにゴースト補正がかけられる。
 なお、ゲートクロック信号GCK及びラッチストローブ信号LSのタイミングを調整することによって、前ゴーストは、温度分布が生じた場合(温度分布が不均一な場合)でも、出現しにくくなるように設定される。
 図2Bに示すように、液晶パネル部10における領域Ar1と領域Ar2の境界gは、例えば、温度勾配の大きい領域(領域R)内である。温度分布を測定することにより、境界gは容易に設定される。
 図3に示すように、境界gと液晶パネル部10のX方向の端部との距離はLである。例えば40インチの液晶パネル部の場合、距離Lは、例えば約3cm(パネル長(約88.5cm)に対して約3.4%)である。ただし、この距離Lは、LED22の個数、熱効率、又は液晶パネル部10の温度等によっても異なる。
 上述したように、ゴースト補正量は、補正部83によって、液晶パネル部10における所定ラインの輝度とその次ラインの輝度とを比較することにより決定される。図5に示すように、補正部83は、ゴーストパラメータ参照用テーブル85(ルックアップテーブル)を有する。補正部83は、ゴーストパラメータ参照用テーブル85を参照することにより、輝度差(階調)毎にゴースト補正量(ゴーストパラメータ)を決定する。
 ゴーストパラメータ参照用テーブル85は、少なくとも、領域Ar1用のテーブル及び領域Ar2用のテーブル85を含む。領域Ar1用のテーブルは、液晶パネル部10が高温となることを想定したテーブル(パラメータを弱く設定するテーブル)である。一方、領域Ar2用のテーブルは、液晶パネル部10が比較的低温となることを想定したテーブル(パラメータを強めに設定するテーブル)である。ゴーストパラメータ参照用テーブル85の各設定値は温度や階調、入力信号の周波数などによって決められている。
 第1実施形態では、上記のように、液晶パネル部10の温度分布が不均一な場合でも、適正にゴーストを補正(低減)することができる。従って、液晶表示装置200の表示品位を向上させることができる。
 液晶パネル部10の両端付近(光源付近)の領域Ar1におけるゴースト補正量は、液晶パネル部10の中心付近の領域Ar2におけるゴースト補正量より小さい。このような構成では、液晶パネル部10の応答特性を液晶パネル部10全体でほぼ一定となるように制御することができる。それゆえ、効果的にゴーストを補正(低減)することができる。
 補正部83は、液晶パネル部10における所定ラインの輝度とその次ラインの輝度とを比較することにより、ゴースト補正量(ゴーストパラメータ)を決定する。補正部83は、輝度差に対するゴースト補正量を規定したゴーストパラメータ参照用テーブル85を含み、ゴーストパラメータ参照用テーブル85を参照することにより、ゴースト補正量を容易に決定することができる。
 ゴーストパラメータ参照用テーブル85は、液晶パネル部10の温度領域毎(領域Ar1及び領域Ar2毎)のテーブルを含む。従って、液晶パネル部10の温度領域毎に適正にゴーストを補正(低減)することができる。
 第1実施形態では、液晶表示装置200はエッジライト型のバックライトユニット50を含む。それゆえ、液晶表示装置200の薄型化を容易に図ることができる。
 エッジライト型のバックライトユニット50を備えた液晶表示装置200では、液晶パネル部10の温度分布が不均一になりやすい。しかし、上記のように、液晶パネル部10温度分布が不均一でも、表示品位を向上させることができる。そのため、表示品位を向上させつつ、液晶表示装置200の薄型化を図ることができる。
 (第2実施形態)
 次に、図12~図14を参照して、本発明の第2実施形態による液晶表示装置200aについて説明する。図12は、液晶表示装置200aを模式的に示した断面図である。図13は、液晶表示装置200aを模式的に示した平面図である。図14は、液晶表示装置200aの概略構成を示したブロック図である。なお、各図において、対応する構成要素には同一の符号を付すことにより、重複する説明は適宜省略する。
 第2実施形態の液晶表示装置200aは、第1実施形態とは異なり、直下型のバックライトユニット150を含む。具体的には、図12に示すように、バックライトユニット150は、バックライトシャーシ42の底面42Bの上に、LEDモジュール20(LED22)が配置される。図12及び図13に示すように、バックライトユニット150は、液晶パネル部10と重なるように配置され、複数のLED22は液晶パネル部10の直下に配置されている。
 図13に示すように、第2実施形態では、複数のLED22は等間隔で配置される。複数のLED22は、互いに独立して制御されることができる。このため、表示画像の各領域の明暗と同期してバックライトユニット150の各領域の明暗を調整する、いわゆる領域毎調光制御(ローカルディミング制御、エリアアクティブ制御等)を行うことが可能である。
 光源(LED22)が消灯されている場合又は光源の輝度が低い場合、その光源に対応する液晶パネル部10の領域は温度が比較的低くなる。一方、光源(LED22)が点灯されている場合又は光源の輝度が高い場合、その光源に対応する液晶パネル部10の領域は温度が高くなる。そのため、このようなバックライトユニット150を備えた液晶表示装置200aでは、液晶パネル部10の熱分布が偏る場合がある。
 そのため、第2実施形態では、第1実施形態と同様、液晶パネル部10の所定領域毎に、ゴースト補正量は変えられる。具体的には、例えば、光源(LED22)が消灯していて低温になっている領域では、後ゴーストが出現しやすく、図10に示したように、強めにゴースト補正がかけられる。一方、例えば、光源(LED22)が点灯していて高温になっている領域では、後ゴーストが出現しにくく、図11に示したように、弱めにゴースト補正がかけられる。
 図14に示すように、第2実施形態では、LED駆動部51と補正部83とは連動し、最適なゴーストパラメータが選択される。LED駆動部51は、バックライトユニット150のLED22の駆動を制御するLEDドライバ51aとカウンタ51bを含む。カウンタ51bは、LEDドライバ51aと接続され、所定時間をカウントする。LEDドライバ51aは、補正部83のゴースト電圧値決定部84と接続されている。LEDドライバ51aは、各LED22に印加される電流の所定時間の積算値を算出する。ゴースト電圧値決定部84は、各LED22に印加される電流の積算値に基づいて液晶パネル部10の温度を算出する。補正部83は、ゴーストパラメータ参照用テーブル85から、液晶パネル部10の所定領域毎(温度領域毎)に、最適なゴースト補正量を決定する。
 ゴーストパラメータ参照用テーブル85は、温度領域毎または温度毎に複数のテーブルを有する。第2実施形態のその他の構成は、第1実施形態と同様である。
 第2実施形態では、上記のように、液晶表示装置200aは直下型のバックライトユニット150を含み、領域毎調光制御(ローカルディミング制御、エリアアクティブ制御等)ができる。これにより、液晶表示装置の大幅なコントラスト向上及び低消費電力化を図ることができる。
 直下型のバックライトユニット150の場合、輝度の高い領域では、輝度の低い領域に比べて、温度が高くなる。そのため、直下型のバックライトユニット150を備えた液晶表示装置200aにおいても、液晶パネル部10の温度分布が不均一になる。
 しかし、第2実施形態の液晶表示装置200aにおいても、上記のように、液晶パネル部10の温度分布が不均一である場合でも、表示品位を向上させることができる。そのため、表示品位をより向上させつつ、低消費電力化を図ることができる。
 ゴーストパラメータ参照用テーブル85が温度毎のテーブルを含むと、液晶パネル部10の温度変化に応じてゴースト補正量を変化させることができる。第2実施形態のその他の効果は、第1実施形態と同様である。
 (第3実施形態)
 図15~図17を参照して、本発明の第3実施形態の液晶表示装置200bについて説明する。図15及び図16は、液晶表示装置200bを模式的に示した平面図である。図17は、液晶表示装置200bの概略構成を示したブロック図である。図15は、第3実施形態の一例を示しており、図16は、第3実施形態の他の一例を示している。なお、各図において、対応する構成要素には同一の符号を付すことにより、重複する説明は適宜省略する。
 第3実施形態の液晶表示装置200bは、図15及び図16に示すように、液晶パネル部10の温度を計測する温度センサー60を含む。例えば、図15に示すように、温度センサー60は、液晶パネル部10の1箇所を計測(温度計測)してもよい。図16に示すように、複数の温度センサー60が、液晶パネル部10の複数箇所を計測(温度計測)してもよい。図15及び図16において、二点鎖線sで囲んだ領域は計測箇所を示す。
 図15に示すように、液晶パネル部10の1箇所を計測する場合、各温度において、実際の計測箇所とそれ以外の箇所との温度の対応関係を予め計測しておくことにより、1箇所の計測で複数箇所の温度を認識することができる。そのため、このように構成すれば、液晶パネル部10の温度分布をリアルタイムで計測することができる。
 一方、図16に示すように、複数の温度センサー60で液晶パネル部10の複数箇所を計測(温度計測)する場合、液晶パネル部10の温度分布をリアルタイムでより正確に計測することができる。
 温度センサー60は、図17に示すように、補正部83のゴースト電圧値決定部84と接続され、計測した温度をゴースト電圧値決定部84に出力する。ゴースト電圧値決定部84は、温度センサー60からの温度データに基づいて、ゴーストパラメータ参照用テーブル85から、液晶パネル部10の所定領域毎(温度領域毎)に、最適なゴースト補正量を決定する。
 ゴーストパラメータ参照用テーブル85は、温度領域毎に加えて、温度毎にも複数のテーブルを有する。そのため、液晶パネル部10の温度変化に応じてより最適なゴースト補正量が決定される。第3実施形態のその他の構成は、第1又は第2実施形態と同様である。
 第3実施形態では、温度センサー60により、液晶パネル部10の温度分布または温度変化等の情報を得ることができる。そのため、得られた情報を用いることによって、より精度よく、液晶パネル部10の熱分布に応じてゴースト補正量を変化させることができる。
 液晶パネル部10の温度は、周囲温度(環境温度)の変化、又は電源を投入してからの経過時間等によっても異なる。温度変化に応じて、所定領域毎にゴースト補正量を変えることにより、より最適なゴースト補正を行うことができる。これにより、より表示品位を高めることができる。
 ゴーストパラメータ参照用テーブル85は、液晶パネル部10の温度領域毎に加えて、温度毎にも複数のテーブルを有する。よって、液晶パネル部10の温度変化に応じてゴースト補正量を変化させることができる。第3実施形態のその他の効果は、第1又は第2実施形態と同様である。
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく特許請求の範囲によって示され、さらに特許請求の範囲と均等の意味および範囲内でのすべての変更を含む。
 例えば、第1~第3実施形態では、バックライトユニットに、光学部材(光学シート)として、拡散板、プリズムシート及びレンズシートが含まれる。しかし、光学部材(光学シート)は、必要に応じて適宜変更、追加又は削減されてもよい。
 第1~第3実施形態では、光源からの熱による液晶パネル部の熱分布に応じて、ゴースト補正量が変えられる。しかし、液晶表示装置には、光源以外にも、熱を発する電子部品等が搭載される。このような電子部品からの熱によっても液晶パネル部の熱分布が偏る場合がある。そのため、電子部品等からの熱による熱分布の偏りを考慮して、領域毎にゴースト補正量が変えられてもよい。
 上記した液晶表示装置は、液晶テレビのみならず、スマートフォン又は電子書籍端末などの液晶パネル部を備えた種々のデバイスに適用できる。
 第1~第3実施形態では、ゴースト補正量を決定するために、ゴーストパラメータ参照用テーブルが使用されている。しかし、ゴースト補正量は、このようなテーブルを用いずに、例えば、パラメータにより決定されてもよい。また、パラメータは、テーブルを用いずに、光源からの距離に対して一定の割合で変化されてもよい。具体的には、例えば、パラメータは、液晶パネル部の端部からの距離が0~5cmの範囲では1cm毎に1.1倍ずつ大きくし、液晶パネル部の中央付近ほど強くなるように設定されてもよい。
 第1~第3実施形態では、バックライトユニットの光源として、LEDが使用されているが、LED以外の光源が使用されてもよい。
 第1実施形態では、導光体として、一枚状の導光板が使用されているが、例えば、導光体は短冊状の導光板を複数組み合わせた構成でもよい。また、導光体は、板状以外に、例えば、棒状の導光棒であってもよい。
 第1実施形態では、LEDモジュール(LED)はバックライトユニット(導光体)の左右両側に配置されているが、LEDモジュール(LED)は、バックライトユニット(導光体)の少なくとも一辺に配置されていればよい。例えば、図18に示すように、LEDモジュール20(LED22)は、バックライトユニット(導光体30)の上下両側に配置されてもよい。この場合も、LED22の近傍の領域は領域Ar1であってよく、LED22から所定の距離離れた領域は領域Ar2であってよい。なお、LEDモジュールは、左右両側又は上下両側以外に配置されてもよい。例えば、LEDモジュールは、導光体の上側と右側に配置されてもよい。また、LEDモジュールは、導光体の上側と下側の一方にのみに配置されてもよい。LEDモジュールは、導光体の右側と左側のいずれか一方にのみ配置されてもよい。
 第1実施形態では、液晶パネル部は、2つの領域、即ち、温度の高い領域Ar1及び温度が比較的低い領域Ar2を含む。しかし、液晶パネル部は、温度の異なる3以上の領域を含んでもよい。ゴースト補正量は、これらの領域毎に変えられてもよい。ゴースト補正がより正確に行われる。ただし、現実的には、3領域程度で十分である。領域の数がそれ以上の場合、あまり効果は得られないものと考えられる。
 第1及び第3実施形態において、LED近傍の領域(領域Ar1)及びLEDから所定の距離離れた領域(領域Ar2)は、温度変化に応じて変えられてもよい。即ち、液晶パネル部の温度分布は周囲温度等によって変化するため、温度変化に応じて、領域Ar1及び領域Ar2の大きさ(境界gの位置)が変えられてもよい。
 エッジライト型のバックライトユニットにおいて、光源としてのLEDは、トップビュー型LED、又はサイドビュー型LEDでもよい。なお、トップビュー型LEDは実装基板の実装面に対して垂直な方向に光を出射し、サイドビュー型LEDは実装基板の実装面に対して水平な方向に光を出射する。
 第1実施形態では、距離L(図3参照)は境界gの位置を示すとともに例えば約3cmに設定されている。しかし、境界gは、例えば、熱分布等に応じて適宜設定されてよい。
 第2実施形態では、LEDは等間隔に配置される。しかし、LED(複数の光源)は不均一に配置されてもよい。図19は第2実施形態の変形例を示す。図19に示すように、バックライトユニット150の端部領域において、他の領域に比べて、LED22は密に配置される。端部領域では、LED22は、X方向に間隔a1で配置されるとともに、Y方向に間隔b1で配置される。中央部の領域では、LED22は、X方向に間隔a2で配置されるとともに、Y方向に間隔b2で配置される。間隔a1は間隔a2よりも小さく、間隔b1は間隔b2よりも小さい。この場合、バックライトユニット150の端部領域に配置されるLED22の数が、他の領域に配置されるLED22の数よりも多くなる。端部領域は暗くなりやすいが、図19では、端部領域が明るくなる。また、LED22の密度が高い領域では温度が高くなり、LED22の密度が低い領域では温度が低くなる。このような特性に合わせて、液晶パネル部の駆動が調整される。なお、図19において、間隔a1は間隔a2よりも小さく、間隔b1は間隔b2と同じでもよい。間隔a1は間隔a2と同じで、間隔b1は間隔b2よりも小さくてもよい。
 第2実施形態では、直下型のバックライトユニットにおいて、複数のLEDは独立して駆動できる。しかし、複数のLEDは同時に駆動してもよい。即ち、複数のLEDは独立して駆動しないでもよい。この場合、液晶パネル部の熱分布におよぼすLEDからの熱の影響は小さくなると考えられる。しかし、液晶パネル部は搭載される電子部品等からの熱によって、液晶パネル部の熱分布が影響を受ける場合がある。そのような場合も、ゴースト補正は有効であり、液晶パネル部の熱分布に応じて、ゴーストが適正に補正される。
 各実施形態において、LEDの種類は特に限定されない。例えば、LEDチップ(発光チップ)と、蛍光体を含むLEDが使用されてもよい。LEDチップが青色光を発光するとともに、蛍光体が、LEDチップからの光を受けて、黄色光を蛍光発光する場合、このようなLEDは、LEDチップからの光と蛍光体からの光とで白色光を生成する。なお、LEDに含まれるLEDチップの個数は特に限定されない。
 LEDは、LEDチップからの青色光を受けて、緑色光及び赤色光を蛍光発光する蛍光体を含んでもよい。この場合、LEDは、LEDチップからの青色光と蛍光体からの光(緑色光、赤色光)とで白色光を生成する。
 LEDは、赤色光を発光する赤色LEDチップと、青色光を発光する青色LEDチップと、青色LEDチップからの光を受けて緑色光を蛍光発光する蛍光体を含んでいてもよい。このようなLEDは、赤色LEDチップからの赤色光と、青色LEDチップからの青色光と、蛍光体からの緑色光とで白色光を生成することができる。
 LEDは、蛍光体を全く含まなくてもよい。例えば、LEDは、赤色光を発光する赤色LEDチップと、緑色光を発光する緑色LEDチップと、青色光を発光する青色LEDチップを含み、全てのLEDチップからの光を混色させて白色光を生成してもよい。
 なお、上記で開示された技術を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 10  液晶パネル部
 20  LEDモジュール
 21  実装基板
 22  LED(光源)
 30  導光体(導光部材)
 41  反射シート
 42  バックライトシャーシ
 43  拡散板
 44  プリズムシート
 45  レンズシート
 50、150  バックライトユニット(照明部)
 51  LED駆動部
 51a  LEDドライバ
 51b  カウンタ
 60  温度センサー(温度測定手段)
 70  ハウジング
 80  表示制御部
 80a  色回復部
 80b  コントラスト調整部
 80c  ガンマ補正部
 80d  信号生成部
 81  液晶コントローラー部
 82  駆動電圧値決定部
 83  補正部
 84  ゴースト電圧値決定部
 85  ゴーストパラメータ参照用テーブル
 86  メモリ
 90  液晶ドライバ
 91  ソースドライバ
 92  ゲートドライバ
 110  液晶パネルユニット
 120  画像データ取得部
 200、200a、200b  液晶表示装置
 Ar1  領域(第1領域)
 Ar2  領域(第2領域)

Claims (9)

  1.  液晶表示装置であって、液晶パネル部と、複数の光源を含むとともに前記液晶パネル部に光を供給する照明部と、前記液晶パネル部のゴースト補正を行う補正部を備え、前記補正部は、前記液晶パネル部の熱分布に応じて、前記液晶パネル部の所定領域毎にゴースト補正量を変化させる。
  2.  請求項1に記載の液晶表示装置であって、前記液晶パネル部は、第1領域と、前記第1領域よりも温度が低い第2領域を含み、前記第1領域におけるゴースト補正量が、前記第2領域におけるゴースト補正量より小さい。
  3.  請求項1又は2に記載の液晶表示装置であって、前記補正部は、前記液晶パネル部における所定ラインの輝度と次ラインの輝度とを比較することによりゴースト補正量に対応する電圧を規定する複数のパラメータテーブルを有する。
  4.  請求項3に記載の液晶表示装置であって、前記パラメータテーブルは、前記液晶パネル部の温度領域毎に設けられている。
  5.  請求項4に記載の液晶表示装置であって、前記パラメータテーブルは、温度毎に設けられている。
  6.  請求項1~5のいずれか1項に記載の液晶表示装置であって、前記液晶パネル部の温度を測定する温度測定手段をさらに備える。
  7.  請求項1~6のいずれか1項に記載の液晶表示装置であって、前記照明部は、前記光源からの光を導光する導光部材を含み、前記複数の光源が導光部材の端部に配置されている。
  8.  請求項1~6のいずれか1項に記載の液晶表示装置であって、前記照明部は、液晶パネル部と重なるように配置されており、前記複数の光源が、前記液晶パネル部の直下に配置されているとともに、互いに独立して駆動される。
  9.  請求項8に記載の液晶表示装置であって、前記複数の光源が不均一に配置されている。
PCT/JP2012/066233 2011-06-28 2012-06-26 液晶表示装置 WO2013002200A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-143023 2011-06-28
JP2011143023 2011-06-28

Publications (1)

Publication Number Publication Date
WO2013002200A1 true WO2013002200A1 (ja) 2013-01-03

Family

ID=47424092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066233 WO2013002200A1 (ja) 2011-06-28 2012-06-26 液晶表示装置

Country Status (1)

Country Link
WO (1) WO2013002200A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469751A (zh) * 2014-09-05 2016-04-06 联咏科技股份有限公司 残影消除方法及其驱动方法、驱动装置、面板与显示***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148127U (ja) * 1989-05-16 1990-12-17
JP2003150131A (ja) * 2001-11-16 2003-05-23 Sanyo Electric Co Ltd 液晶表示装置におけるゴースト補正回路
JP2003295158A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004151672A (ja) * 2002-09-04 2004-05-27 Sharp Corp 液晶表示装置
JP2008097896A (ja) * 2006-10-10 2008-04-24 Sharp Corp バックライトユニット及び該ユニットを備える画像表示装置
WO2009060656A1 (ja) * 2007-11-08 2009-05-14 Sharp Kabushiki Kaisha データ処理装置、液晶表示装置、テレビジョン受像機、およびデータ処理方法
WO2011043290A1 (ja) * 2009-10-07 2011-04-14 シャープ株式会社 液晶表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02148127U (ja) * 1989-05-16 1990-12-17
JP2003150131A (ja) * 2001-11-16 2003-05-23 Sanyo Electric Co Ltd 液晶表示装置におけるゴースト補正回路
JP2003295158A (ja) * 2002-03-29 2003-10-15 Matsushita Electric Ind Co Ltd 液晶表示装置
JP2004151672A (ja) * 2002-09-04 2004-05-27 Sharp Corp 液晶表示装置
JP2008097896A (ja) * 2006-10-10 2008-04-24 Sharp Corp バックライトユニット及び該ユニットを備える画像表示装置
WO2009060656A1 (ja) * 2007-11-08 2009-05-14 Sharp Kabushiki Kaisha データ処理装置、液晶表示装置、テレビジョン受像機、およびデータ処理方法
WO2011043290A1 (ja) * 2009-10-07 2011-04-14 シャープ株式会社 液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105469751A (zh) * 2014-09-05 2016-04-06 联咏科技股份有限公司 残影消除方法及其驱动方法、驱动装置、面板与显示***

Similar Documents

Publication Publication Date Title
US8330708B2 (en) Display device
KR101425956B1 (ko) 면형상 광원 장치 및 액정 표시 장치
US8243011B2 (en) Display device
KR101248468B1 (ko) 백라이트 유닛과 이를 이용한 액정표시장치
KR100964466B1 (ko) 디스플레이 장치
KR101252092B1 (ko) 백라이트 유닛과 이를 이용한 액정표시장치
KR20100109785A (ko) 액정표시장치
KR101331815B1 (ko) 직하형 액정표시장치 및 직하형 액정표시장치 구동방법
US20140375897A1 (en) Lighting device, display device and television device
KR20040036660A (ko) 광원 장치 및 그것을 구비한 표시 장치
US20120075555A1 (en) Liquid crystal display apparatus and light emitting assembly with light transmission control elements for illuminating same
US8350800B2 (en) Display device
US20140327708A1 (en) Display device
WO2013002200A1 (ja) 液晶表示装置
KR20110032491A (ko) 액정표시장치
KR101122001B1 (ko) 백 라이트 유닛과 이를 이용한 액정표시장치
KR102078020B1 (ko) 액정표시장치
KR101265326B1 (ko) 액정표시장치 및 그 구동방법
KR100964468B1 (ko) 디스플레이 장치
US20100309409A1 (en) Light emitting assemblies having defined regions of different brightness
KR20130074552A (ko) 액정표시장치
KR101854700B1 (ko) 백 라이트 유닛 및 이를 이용한 액정 표시장치
KR101157254B1 (ko) 백라이트 및 이를 구비한 액정표시장치
KR101213407B1 (ko) 백라이트 유니트, 이를 구비한 액정표시장치 및 그제조방법
KR20160027330A (ko) 곡면 액정 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP