WO2013002176A1 - Heat-resistant olefin multilayer film, method for producing same, and packaging material comprising same - Google Patents

Heat-resistant olefin multilayer film, method for producing same, and packaging material comprising same Download PDF

Info

Publication number
WO2013002176A1
WO2013002176A1 PCT/JP2012/066144 JP2012066144W WO2013002176A1 WO 2013002176 A1 WO2013002176 A1 WO 2013002176A1 JP 2012066144 W JP2012066144 W JP 2012066144W WO 2013002176 A1 WO2013002176 A1 WO 2013002176A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
heat
multilayer film
resistant
resin
Prior art date
Application number
PCT/JP2012/066144
Other languages
French (fr)
Japanese (ja)
Inventor
松原 弘明
北田 満
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to CN201280032338.4A priority Critical patent/CN103635317B/en
Priority to JP2012543826A priority patent/JP5158458B2/en
Publication of WO2013002176A1 publication Critical patent/WO2013002176A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/31Heat sealable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • B32B2439/46Bags

Definitions

  • the present invention relates to a heat-resistant olefin-based multilayer film that enables heat resistance and good packaging suitability without bonding a heat-resistant stretched substrate, and more specifically, a heat-resistant coating agent and an olefin-based multilayer film.
  • a heat-resistant olefin-based multilayer film that is excellent in coating properties and adhesion with a film, has no problems such as peeling or falling off of a coating agent, and can be used as a packaging material as it is, a method for producing the same, and a method for producing the same It relates to the packaging material used.
  • packaging materials are required to have high heat seal strength, pinhole resistance, low temperature impact resistance, etc. from the viewpoint of content protection. Further, from the viewpoint of automatic packaging by a packaging machine, it is preferable that the difference between the layer in contact with the seal bar that is a heat source and the melting point of the seal layer on the inner surface side to be sealed by thermal fusion is larger.
  • the high-rigidity film with low waist is easy for the operator to handle because it is easy to set in a packaging machine. From these viewpoints, biaxially oriented polypropylene (OPP) and biaxially oriented are generally excellent in heat resistance and high rigidity.
  • Bonding stretched base film such as polyester (OPET), biaxially stretched polyamide (OPA), etc., unstretched polyethylene (PE), unstretched polypropylene (CPP), etc. with excellent sealing and sealing properties with an adhesive, Many laminate films have been used.
  • OPET polyester
  • OPA biaxially stretched polyamide
  • PE unstretched polyethylene
  • CPP unstretched polypropylene
  • the volume of packaging materials used has been reduced by reducing the thickness of packaging materials
  • the laminating process has been reduced by the coextrusion method
  • the organic solvent used in adhesives has been reduced
  • the adhesive itself has been reduced. Use and other factors are gaining importance among users and end consumers.
  • the present inventor has already used heat-resistant polypropylene having a high melting point as a surface resin layer, and laminated a resin layer mainly composed of an olefin resin having a melting point lower than that of the polypropylene as a heat seal layer.
  • a coextruded multilayer film that can be used alone without using a stretched base material, has excellent packaging machine suitability and excellent pinhole resistance, and a packaging material composed of the film have been proposed (for example, (See Patent Document 1).
  • the upper limit of the sealing temperature is 160 ° C., and at a temperature higher than this, adhesion of the surface layer to the sealing bar is unavoidable. There was a problem of deterioration of the appearance due to generation of dirt, wrinkles in the seal portion, etc., and it was sometimes impossible to make a bag under the same conditions as a multilayer film in which stretched substrates were bonded together.
  • Patent Documents 2 to 4 a technique that aims to enhance the function of the film by applying a functional paint to the surface of the plastic film and drying it is widely known (see, for example, Patent Documents 2 to 4).
  • the object of the present invention has been made in view of the above problems, and by applying a heat-resistant coating agent to an unstretched olefin-based film, it has excellent surface heat resistance and utilizes a stretched substrate and the like.
  • a heat-resistant olefin-based multilayer film excellent in suitability for packaging machinery and excellent in adhesion strength between a coat layer and an olefin-based film, a manufacturing method thereof, and a packaging material using the same are provided. That is.
  • the present inventors applied a heat-resistant coating agent to a specific multilayer film made of an olefin resin and dried it, so that the above-described problem can be solved without any special efforts. It has been found that the adhesion between the coating agent and the film is good, the surface heat resistance of the olefin-based multilayer film can be effectively improved, and the above problems can be solved, and the present invention has been completed.
  • the layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat-resistant coating layer (B) are: A1) / (A2) / (B), and the ratio of the layer (A2) to the total thickness of the layer (A1) and the layer (A2) is 5 to 40%.
  • a layer (B) is a layer made of a polyurethane coating agent (b), and a heat-resistant olefin-based multilayer film and a packaging material using the same are provided.
  • the layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat resistant coating layer (B) are (A1 ) / (A2) / (B) is a method for producing a multilayer film, in which the layer (A1) and the layer (A2) are laminated using a coextrusion lamination method,
  • the present invention also provides a method for producing a heat-resistant olefin-based multilayer film, which comprises applying a polyurethane coating agent (b) on A2).
  • the heat-resistant olefin-based multilayer film of the present invention can be easily obtained by applying a heat-resistant coating agent on the coextruded multilayer film.
  • the design can be easily changed by selecting the layer structure of the multilayer film according to the target performance (transparency, rigidity, workability, etc.) and application (packaging material, poster, label, etc.). Excellent.
  • the use of the co-extrusion method can omit the formation process of the anchor layer (primer layer), and there are effects of reducing environmental load and manufacturing time and cost, and it is highly useful.
  • the plastic film functioning as a support for the heat-resistant olefin-based multilayer film of the present invention has a layer (A1) containing at least a polyolefin-based resin (a1) as a main component and an acid-modified olefin-based resin (a2) (A2). ).
  • This layer (A2) has a function as an easily adhesive layer with the heat-resistant coating layer (B) as well as a function as a support.
  • “main component” means that the specific resin is contained in an amount of 80% by mass or more based on the total amount of the resin composition forming the layer, and preferably 85% by mass.
  • the above is a specific resin.
  • “containing” means that the specific resin is contained in an amount of 1% by mass or more with respect to the total amount of the resin composition forming the layer, and preferably 20% by mass or more. Say that it is a specific resin.
  • the opposite side of the surface heat-resistant layer in the heat-resistant olefin-based multilayer film of the present invention is a layer (A1) mainly composed of a polyolefin-based resin (a1).
  • the polyolefin resin (a1) that can be used here include homopolymers or copolymers of ⁇ -olefins having 2 to 6 carbon atoms.
  • the copolymerization type may be a block copolymer or a random copolymer.
  • polyolefin resin (a1) it is preferable to use what has the melting
  • polystyrene resin (a1) for example, any of those known as a polypropylene resin, a polyethylene resin and the like can be used.
  • polypropylene resins include propylene homopolymers, propylene-ethylene copolymers, propylene-butene-1 copolymers, propylene-ethylene-butene-1 copolymers, ethylene-propylene block copolymers, metallocene catalysts. And polypropylene. These may be used alone or in combination of two or more.
  • crystallinity means having a peak of 0.5 J / g or more in the range of 95 to 250 ° C. in DSC (differential scanning calorimetry).
  • the polypropylene resin has a melt flow rate (hereinafter referred to as “230 ° C. MFR”; a value measured at 230 ° C. and 21.18 N in accordance with JIS K7210: 1999) of 0.5 to 30.
  • 230 ° C. MFR melt flow rate
  • Those having a melting point of 120 to 165 ° C. at 0.0 g / 10 min are preferred, more preferably those having an MFR of 230 to 120 ° C. of 2.0 to 15.0 g / 10 min and a melting point of 125 to 162 ° C. .
  • the MFR and the melting point are in this range, the film shrinkage is small even when secondary molding such as heat molding is performed after multilayering, so that the appearance can be maintained and the warping of the medium itself does not occur.
  • the film formability when a coextruded multilayer film is also improved.
  • the density is preferably 0.890 to 0.910 g / cm 3 and more preferably 0.895
  • the propylene-ethylene block copolymer is a resin obtained by block polymerization of propylene and ethylene.
  • propylene obtained by performing polymerization of ethylene or polymerization of ethylene and propylene in the presence of a propylene homopolymer. -Ethylene block copolymers and the like.
  • the surface of the layer (A1) can be easily modified into a satin finish. Can do.
  • a mixed resin of crystalline propylene resin and ethylene / propylene rubber hereinafter referred to as “EPR”
  • the surface of the layer (A1) can be easily modified into a satin finish. Can do.
  • the crystalline propylene-based resin used at this time a highly versatile propylene homopolymer is preferable.
  • the EPR used at this time those having a weight average molecular weight in the range of 400,000 to 1,000,000 are preferable in that irregularities can be formed on the film surface and the surface can be modified into a satin finish. A range is more preferable.
  • the content of EPR in the mixed resin is preferably in the range of 5 to 35% by mass from the viewpoint that the film surface can be uniformly modified into a satin finish.
  • the MFR (230 ° C.) of the mixed resin of the crystalline propylene polymer and EPR is preferably in the range of 0.5 to 15 g / 10 minutes from the viewpoint of easy extrusion.
  • the weight average molecular weight of the EPR was obtained by calculating a component extracted from the mixed resin by a cross fractionation method at 40 ° C. using orthodichlorobenzene as a solvent by GPC (gel permeation chromatography). It is.
  • the content of EPR in the mixed resin is obtained from the amount of EPR extracted by cross-fractionation at 40 ° C. using orthodichlorobenzene as a solvent.
  • the method for producing the mixed resin of the crystalline propylene-based resin and EPR is not particularly limited.
  • a propylene homopolymer and ethylene / propylene rubber are separately mixed using a Ziegler type catalyst.
  • a propylene homopolymer is produced in the first stage by a method of mixing both with a mixer or a two-stage polymerization method, and then the second stage. And a method of generating EPR in the presence of this polymer.
  • the Ziegler-type catalyst is a so-called Ziegler-Natta catalyst, and is obtained by supporting a transition metal compound such as a titanium-containing compound or a transition metal compound on a support such as a magnesium compound.
  • a transition metal compound such as a titanium-containing compound or a transition metal compound
  • a support such as a magnesium compound.
  • the combination with the promoter of an organometallic compound is mentioned.
  • polyethylene-based resin a density of 0.900 g / cm 3 or more 0.970 g / cm 3 less than the ethylene-based resin is preferably exemplified specifically a resin, for example, ultra low density polyethylene (VLDPE), Polyethylene resins such as linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and ethylene-vinyl acetate copolymer Polymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer (E-EA-MAH), ethylene Ethylene copolymers such as crylic acid copolymer (EAA) and ethylene-methacrylic acid copolymer (EMAA); further
  • the density of the ethylene-based resin as described above is preferably less than 0.900 g / cm 3 or more 0.970 g / cm 3, is particularly in a range of less than 0.905 g / cm 3 or more 0.965 g / cm 3 It is more preferable. As long as it corresponds to this density, two or more types of polyethylene resins may be blended. If the density is less than 0.900 g / cm 3 , the rigidity may decrease and the suitability of the packaging machine may deteriorate. On the other hand, if it is 0.970 g / cm 3 or more, the pinhole resistance may be deteriorated.
  • the density is within this range, it has appropriate rigidity, excellent mechanical strength such as pinhole resistance, and film film formability and extrusion suitability are improved.
  • the melting point is preferably in the range of 95 to 130 ° C, more preferably 100 to 125 ° C. If the melting point is within this range, the film shrinkage is small even when heated at the time of coating or secondary molding of the heat-resistant coating layer, so that the appearance of the film can be maintained and the warping of the film itself can be suppressed. it can.
  • this multilayer film is used to form a packaging bag, that is, when the layers (A1) are heat sealed with the layers (A1) inside, the sealing property is excellent. These may be used alone or in combination of two or more.
  • the MFR (190 ° C., 21.18 N) of the polyethylene resin is 2 to 20 g / 10 min from the viewpoint of improving the process stability and the processability when coextruding with the acid-modified olefin resin (a2) described later. It is preferably 3 to 10 g / 10 min.
  • a layer (A1) which has polyolefin resin (a1) as a main component it may be a single layer or may have a multilayer structure of two or more layers. From the viewpoint of more excellent rigidity, heat resistance and transparency, a film having a single layer or a multilayer structure mainly composed of a polypropylene resin is preferable.
  • the outermost layer on the opposite side of the heat-resistant coating layer (B) is made of 1-butene and propylene as described in JP-A-2006-213065.
  • a heat seal layer containing a 1-butene copolymer as an essential component and a copolymer having propylene and ethylene as essential components an easily openable bag can be obtained.
  • a lid when used as a lid, it can be easily opened by adopting a multilayer structure as described in JP-A-2004-75181 and JP-A-2008-80543. It is.
  • a cyclic polyolefin resin as described in JP-A-2010-234660 is used as one layer in a multilayer structure, it is possible to obtain a film having easy tearing properties. It is preferable to employ a multilayer structure.
  • the adhesive film (label) which can be affixed on a signboard, a vehicle, etc. by providing an adhesive layer on a layer (A1) [surface opposite to the layer (A2) mentioned later].
  • the type of the adhesive is not particularly limited.
  • the pressure-sensitive adhesive layer may contain, for example, a terpene resin such as ⁇ -pinene, ⁇ -pinene polymer, diterpene polymer, ⁇ -pinene / phenol copolymer, Appropriate tackifiers such as aromatic resins, aromatic resins, aliphatic / aromatic copolymer systems, other rosin resins, coumarone indene resins, (alkyl) phenol resins and xylene resins Can be blended.
  • a terpene resin such as ⁇ -pinene, ⁇ -pinene polymer, diterpene polymer, ⁇ -pinene / phenol copolymer
  • Appropriate tackifiers such as aromatic resins, aromatic resins, aliphatic / aromatic copolymer systems, other rosin resins, coumarone indene resins, (alkyl) phenol resins and xylene resins Can be blended.
  • the layer (A2) in the present invention is a layer containing the acid-modified olefin resin (a2) as an essential component.
  • the olefin component which is the main component of the acid-modified polyolefin resin (a2) is not particularly limited, but has 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 2-butene, 1-butene, 1-pentene, 1-hexene and the like. Alkenes are preferred and mixtures of these may be used. Of these, alkenes having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are more preferred, ethylene and propylene are more preferred, and ethylene is most preferred.
  • the acid-modified polyolefin resin (a2) needs to contain a (meth) acrylic acid ester component.
  • (Meth) acrylic acid ester components include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic acid Examples include octyl, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like.
  • the (meth) acrylic acid ester component may be copolymerized with the olefin component, and the form thereof is not limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and graft copolymerization. (Graft modification) and the like. (Note that “(meth) acrylic acid” means “acrylic acid or methacrylic acid”).
  • ethylene- (meth) acrylic acid ester copolymers include Elvalloy ( Product name: Mitsui-DuPont Polychemical Co., Ltd.), Aklift (trade name: Sumitomo Chemical Co., Ltd.), etc. These may be used alone or in combination of two or more.
  • the acid-modified polyolefin resin (a2) may be acid-modified with an unsaturated carboxylic acid component.
  • unsaturated carboxylic acid components include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and the like, as well as unsaturated dicarboxylic acid half esters and half amides. It is done. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable.
  • the unsaturated carboxylic acid component may be copolymerized with the olefin component, and the form thereof is not limited.
  • copolymerization state examples include random copolymerization, block copolymerization, and graft copolymerization (grafting). Modification).
  • ethylene-acrylic acid copolymer examples include Nucrel (trade name: Mitsui, manufactured by DuPont Polychemical Co., Ltd.) and the like can be mentioned.
  • ethylene- (meth) acrylic acid ester-maleic anhydride copolymer examples include bondine (trade name: manufactured by Tokyo Materials Co., Ltd.). These may be used alone or in combination of two or more.
  • the acid modification rate of the acid-modified olefin resin (a2) includes adhesion to the polyurethane coating agent (b) described later, suppression of blocking when winding and storing the multilayer film, polyurethane coating agent (b) It is preferable to use 3 to 40%, preferably 7 to 35%, more preferably 10 to 10% from the viewpoint of excellent balance such as prevention of appearance defects such as film wrinkles in the drying process after coating. Most preferably, it is 30%.
  • the layer (A2) in the present invention may further use other resins in combination.
  • a polyolefin-based resin in combination because it is mixed with the acid-modified olefin-based resin (a2) and can be easily coextruded with the layer (A1).
  • the acid-modified olefin resin (a2) is preferably contained in an amount of 20 parts by mass or more, particularly preferably 25 parts by mass or more in 100 parts by mass of the resin component forming the layer (A2).
  • any of those exemplified for the polyolefin resin (a1) used for the layer (A1) can be suitably used.
  • the polyolefin resin used in the layer (A1) and the layer (A2) may be the same or different.
  • the polyolefin resin used in the layer (A2) may be a single resin or a mixture of plural kinds.
  • an antifogging agent In each of the layers (A1) and (A2), an antifogging agent, an antistatic agent, a thermal stabilizer, a nucleating agent, an antioxidant, a lubricant, an antiblocking agent, a release agent, and an ultraviolet absorber are added as necessary.
  • Components such as a colorant and a colorant can be added within a range that does not impair the object of the present invention.
  • the surface friction coefficient is preferably 1.5 or less, more preferably 1.0 or less in order to impart processing suitability when forming a film or packaging suitability when used as a packaging material. It is preferable to appropriately add a lubricant, an antiblocking agent, or an antistatic agent to the corresponding resin layer.
  • the total thickness of each of the layers (A1) and (A2) can be appropriately set according to the use of the film.
  • a packaging material bag or lid material
  • 20 to 70 ⁇ m In the case of labels and posters, it is preferably in the range of 70 to 1000 ⁇ m.
  • the ratio of the thickness of the layer (A2) to the total thickness of the layers (A1) and (A2) is in the range of 5 to 50% from the viewpoint of ensuring adhesion with the polyurethane coating agent (b) described later.
  • the thickness of the layer (A2) is preferably in the range of 2 to 40 ⁇ m.
  • the method for laminating the layer (A1) and the layer (A2) is preferably a coextrusion laminating method in which the layer (A1) and the layer (A2) are laminated adjacently.
  • various coextrusion methods such as coextrusion multi-layer die method, feed block method, etc., which are melt-extruded using an extruder of more than one table
  • inflation, T-die -A method of processing into a long wound film by a method such as a chill roll method is particularly preferable, and a coextrusion method using a T-die is most preferable.
  • the surface of the layer (A2) may be continuously subjected to surface treatment using heating or an inert gas atmosphere using corona discharge or plasma discharge.
  • the heat-resistant olefin-based multilayer film of the present invention after coating the polyurethane coating agent (b) on the multilayer film obtained above, volatilizes the medium contained in the polyurethane coating agent (b), A heat-resistant coating layer (B) is formed on a multilayer film.
  • the heat-resistant olefin-based multilayer film of the present invention has a heat-resistant coating layer (B) having a thickness in the range of 1 ⁇ m to 50 ⁇ m in order to maintain heat resistance and transparency characteristics at a practical level and maintain good production efficiency. ) Is preferable, and the film having a heat-resistant coating layer (B) having a thickness in the range of 2 ⁇ m to 30 ⁇ m is more preferable in consideration of the coating on the seal bar and the coating strength of the heat-resistant coating layer (B). .
  • a method for coating the polyurethane coating agent (b) on the film is not particularly limited.
  • a coating machine such as an air knife coater, a blade coater, a roll coater, a gravure coater, a comma coater, or a gate roll coater is used.
  • the method used is simple.
  • the method of volatilizing the medium contained in the coating agent after coating the polyurethane coating agent (b) on the film is not particularly limited, but for example, a method of drying using a dryer. It is common.
  • the drying temperature may be a temperature that can volatilize the medium and does not adversely affect the substrate.
  • the polyurethane coating agent (b) is not particularly limited, and can be appropriately selected according to the drying speed and heat resistance performance of the coating.
  • polyurethane coating agent (b) examples include polyester polyol (b-1) and polyisocyanate (polyisocyanate) obtained by condensing a dicarboxylic acid mainly composed of an aromatic dicarboxylic acid and a polyol. It is preferable that b-2) is used as an essential component and, if necessary, other polyols, polyamines or the like are used as chain extenders and reacted by various methods. Further, a polyurethane coating agent (b) obtained by using at least one of these polyester polyols (b-1), other polyols and polyamines used in combination, if necessary, having an anionic group Water dispersibility can also be imparted to.
  • polyester polyol (b-1) obtained by condensing the dicarboxylic acid mainly composed of the aromatic dicarboxylic acid and the polyol, which is used when the polyurethane coating agent (b) is produced, will be described.
  • the polyester polyol (b-1) can be produced by various methods using various dicarboxylic acids and various polyols.
  • polyester polyol (b-1) examples include terephthalic acid, isophthalic acid, orthophthalic acid, 1,4-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid.
  • Aromatic dicarboxylic acids such as acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-P, P'-dicarboxylic acid and their acid anhydrides or ester-forming properties Derivatives, aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and their ester-forming derivatives, sulfonic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid Group-containing aromatic dicarboxylic acids and their ester-forming derivatives It is.
  • aliphatic carboxylic acids and alicyclic carboxylic acids can be used in combination.
  • aliphatic dicarboxylic acids such as succinic acid, succinic anhydride, adipic acid, suberic acid, azelaic acid, sebacic acid, dimer acid, maleic anhydride, fumaric acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid And anhydrides or ester-forming derivatives thereof. These may be used alone or in combination of two or more.
  • polyester polyol (b-1) examples include aromatic cyclic structures such as bisphenol A, bisphenol S, hydroquinone, bishydroxyethoxybenzene, and alkylene oxide adducts thereof.
  • an aliphatic polyol obtained by ring-opening polymerization of a cyclic ester such as ⁇ -caprolactone or ⁇ -valerolactone in the presence of the polyol and a catalyst can also be used. These may be used alone or in combination of two or more.
  • the polyester polyol (b-1) preferably has a hydroxyl value in the range of 10 to 350, particularly preferably in the range of 20 to 300. When the hydroxyl value is within this range, the resulting polyurethane resin has high cohesive strength, and heat resistance, solvent resistance, water resistance and blocking resistance when used as a coating agent are improved.
  • the polyester polyol (b-1) In order to produce the polyurethane coating agent (b) used in the present invention, among the polyester polyol (b-1), a polyester polyol obtained by condensing a dicarboxylic acid containing an aromatic dicarboxylic acid as a main component and the polyol. In this case, it is preferable to use one in which 70 to 100 mol% of the total amount of the dicarboxylic acid is terephthalic acid and / or isophthalic acid. By using such a polyester polyol, a coating agent capable of forming a coating layer excellent in heat resistance, water resistance, solvent resistance, transparency and the like can be easily obtained.
  • polyurethane coating agent (b) used in the present invention polyols other than the polyester polyol (b-1) described above can be used as long as the heat resistance is not impaired.
  • polyester polyol examples include polyester polyol, polyether polyol, polycarbonate polyol, and the like. These may be used alone or in combination of two or more. In particular, it is preferable to use polyester polyol as a main component from the viewpoint of excellent adhesion to a wide range of substrates and cost.
  • the polyester polyol is exemplified as a compound that can be used in combination with the production of the polyester polyol (b-1), and the aliphatic carboxylic acid or alicyclic carboxylic acid is reacted with various polyols by various methods. Can be manufactured. At this time, monoalcohols such as methanol, ethanol, n-butanol, isopropanol, and n-hexanol may be used in combination as long as the high molecular weight of the polyurethane coating agent (b) is not inhibited.
  • the polyester polyol (b-1) and other polyols as required, and various polyisocyanates (b-2) are previously added to the hydroxyl groups of all polyols.
  • the schocyanate-containing prepolymer is prepared by reacting under the condition that the isocyanate group of the polyisocyanate is excessive, and a low molecular weight polyol or polyamine is reacted with the prepolymer to increase the molecular weight. The method can also be adopted.
  • the low molecular weight polyol includes 2,2′-dimethylolpropionic acid, 2,2′-dimethylolbutanoic acid, 2,2′-dimethylolbutyric acid, 2,2′-dimethylolvaleric acid and the like as hydrophilic groups.
  • Polyols containing carboxyl groups that can be used, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol , Neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propane Aliphatic diols such as diols Alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A can be used, and polyols such as glycerin, trimethylolpropane and pentaerythritol can be used as polyfunctional
  • polyamine examples include metal salts of N- (2-sulfoethyl) ethylenediamine, diaminosulfonates such as 2- ( ⁇ -aminoalkyl-aminopropionamide) -alkanesulfonate, and aliphatics such as ethylenediamine.
  • amino alcohols having both an amino group and an alcoholic hydroxyl group in the molecule can be used, for example, ethanolamine, N-methyldiethanolamine, propanolamine, N-methyldiisopropanolamine, N-ethyldiethyleneamine, N-ethyldiisopropanolamine, aminoethylethanolamine, diethanolamine and the like can also be used.
  • a polyamine having two or more functional groups it is preferable to use a polyamine having two or more functional groups in order not to impair durability.
  • a polyamine having two or more functional groups may be used alone, or two or more kinds may be used. It may be used in combination with an average functional group number of 2 or more.
  • the amount of polyamine used is preferably 1.9 equivalent ratio or less with respect to the isocyanate group, more preferably 0.6 to The range is 1.0 equivalent ratio. If chain extension is carried out using polyamine within this range, the durability and light resistance of the coating layer (B) obtained using the resulting coating agent can be made excellent.
  • polyisocyanate (b-2) used for producing the polyurethane coating agent (b) used in the present invention various materials can be used.
  • aromatic diisocyanate is desirable particularly when considering the mechanical strength and the like, and when considering the durability and light resistance, the aliphatic or cycloaliphatic diisocyanate compound is particularly desirable. Use is desirable.
  • organic solvent used when producing the polyurethane coating agent (b) it is preferable to use an organic solvent having a boiling point of 150 ° C. or less in consideration of removing the residual solvent contained in the coating layer.
  • Examples of the organic solvent having a boiling point of 150 ° C. or lower include benzene, toluene, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, methyl acetate, acetonitrile, chloroform, and methylene chloride. These can be used alone or in combination. Among them, it is particularly preferable to use acetone, methyl ethyl ketone, or ethyl acetate as a solvent having high solubility for the polyurethane coating agent (b).
  • Alcohol solvents such as methanol, ethanol and isopropyl alcohol may be used for the purpose of improving processability after completion of the urethanization reaction. Also, after part or all of these organic solvents are distilled off, the aqueous (water-soluble, water-dispersible) polyurethane coating is changed to an aqueous solvent comprising a mixed solvent of water or a hydrophilic solvent compatible with water. It may be an agent.
  • the content of urethane bond units (—NH—COO—) per 1000 g of the polyurethane coating agent (b) is in the range of 1.0 to 4.0 mol, more preferably in the range of 1.5 to 3.0 mol. It is.
  • urethane bond units per 1000 g of the polyurethane coating agent (b) are formed.
  • the total content of —COO—) and urea binding units is in the range of 1.0 to 6.0 mol, more preferably in the range of 1.5 to 4.0 mol. Preferably there is. If it is this range, since the cohesive force of a polyurethane molecule will become high, the hardness of the coat layer obtained will become suitable, and solvent resistance, blocking resistance, and heat resistance can be improved.
  • the content of the aromatic cyclic structural unit in the polyurethane coating agent (b) is preferably in the range of 15 to 40% by mass, and more preferably in the range of 20 to 35% by mass. If it is this range, it will be excellent in the adhesiveness with respect to the multilayer film of the coating agent obtained, and will be excellent in the solvent resistance of the obtained coating layer (B), water resistance, blocking resistance, heat resistance, etc.
  • the polyurethane coating agent (b) preferably has a flow start temperature of 100 ° C. or higher, and more preferably 150 ° C. or higher. If it is this range, it will become the thing excellent in blocking resistance equivalent to the laminate film which uses heat-resistant base materials, such as PET.
  • the polyurethane coating agent (b) preferably has a minimum film-forming temperature of 50 ° C. or lower, and more preferably 30 ° C. or lower. If it is this range, it will become possible to coat without forming pinholes that are likely to occur during film formation.
  • a crosslinking agent such as an amino resin, an epoxy compound, an aziridine compound, a carbodiimide compound, an oxazoline compound, or a polyisocyanate compound is used in combination.
  • amino resins and isocyanate compounds typified by melamine crosslinking agents are most preferred because of their fast reactivity.
  • Two or more kinds of crosslinking agents may be used in combination, or an appropriate amount of a curing accelerator may be used in combination.
  • the addition amount of the cross-linking agent is preferably 1 to 20% by mass, more preferably 3 to 10% by mass, based on the polyurethane coating agent (b). If it is this range, the blocking resistance, heat resistance, heat-and-moisture resistance, and solvent resistance of the formed coating layer (B) will be improved without impairing the suitability when printing on the coating layer (B). It becomes possible to make it.
  • the polyurethane coating agent (b) can contain an acrylic resin, a polyester resin, a synthetic rubber resin such as SBR, or the like as long as the transparency and heat resistance are not impaired. These resins are preferably 30% or less, particularly preferably 10% or less, in terms of solid content in the coating agent.
  • the polyurethane coating agent (b) may contain an auxiliary agent such as inorganic fine particles (colloidal silica) for improving blocking resistance or slip resistance, and an antistatic agent for improving wettability, if necessary. It can also be blended.
  • an auxiliary agent such as inorganic fine particles (colloidal silica) for improving blocking resistance or slip resistance, and an antistatic agent for improving wettability, if necessary. It can also be blended.
  • the multilayer coating layer (B) is applied by a coating method such as gravure coating method, rod coating method, spray coating method, air knife coating method, roll coating method ( A2) can be applied on top.
  • a coating method such as gravure coating method, rod coating method, spray coating method, air knife coating method, roll coating method ( A2) can be applied on top.
  • the concentration of the resin is preferably adjusted to 0.1 to 40% by mass.
  • the surface of the heat-resistant coating layer (B) may be subjected to continuous surface treatment using corona discharge or plasma discharge under heating or in an inert gas atmosphere during the production of the heat-resistant olefin-based multilayer film.
  • the heat-resistant olefin-based multilayer film of the present invention is obtained as a substantially unstretched multilayer film by the above production method, secondary molding such as deep drawing by vacuum molding, foil pressing, embossing, etc. is also possible. .
  • a surface treatment on the resin layer (B) in order to improve adhesion with printing ink.
  • Examples of such surface treatment include corona treatment, plasma treatment, chromic acid treatment, flame treatment, hot air treatment, surface oxidation treatment such as ozone / ultraviolet treatment, and surface unevenness treatment such as sandblasting. Corona treatment is preferable.
  • it can be suitably used for medicines, industrial parts, foods and confectionery stored at room temperature, refrigerated and frozen, which are filled, packaged and sealed at high speed.
  • the packaging material includes a heat-sealable olefin-based multilayer film layer (A1) of the present invention as a heat seal layer, and the layers (A1) are stacked together to heat-seal, or the layer (A1) and the heat-resistant coat layer (B).
  • It is preferably a packaging bag formed with the layer (A1) on the inside by overlapping and heat-sealing. For example, after cutting out the two multilayer films into the desired size of a packaging bag and overlapping them to heat-seal three sides to form a bag, the contents are filled from one side that is not heat-sealed. It can be used as a packaging bag by heat sealing. Furthermore, it is also possible to form a packaging bag by sealing the upper and lower sides after sealing the end of a roll-shaped film into a cylindrical shape by an automatic packaging machine.
  • a lid of a packaging bag / container / container by heat-sealing with another film, sheet, or container heat-sealable with the layer (A1).
  • a film or sheet using a thermoplastic resin such as a polyethylene resin, a polypropylene resin, or a polyester resin can be used.
  • any tear such as V-notch, I-notch, perforation, micro-porosity, etc. is used in the seal portion in order to weaken initial tear strength and improve openability.
  • a starting portion may be formed.
  • the coating agent was applied to an A4 size film at 5 g / m 2 with a bar coater, and the number of repellings was visually measured. ⁇ : No repelling. X: There are one or more repels.
  • Resin layers (B) were sealed while changing in increments of 10 ° C. from a temperature of 30 bags / minute, a vertical heat sealing temperature of 150 ° C., an air gauge pressure of 4 kg / cm 2, and a horizontal heat sealing temperature of 140 ° C. to 200 ° C.
  • a flat bag measuring 200 mm long and 150 mm wide was used.
  • Shrinkage / Wrinkle Test The appearance of the sealed portion of the flat bag which was subjected to horizontal (gap-attached) seal and vertical seal was evaluated by shrinkage and the state of film fusion to the heat seal bar and the condition of wrinkles. ⁇ : There is no shrinkage of the seal part, fusion to the seal bar and wrinkles, etc. ⁇ : There is some shrinkage of the seal part, fusion to the seal bar and wrinkles, etc. ⁇ : Shrinkage of the seal part, fusion to the seal bar and wrinkles Etc.
  • Preparation Example 2 of polyurethane coating agent (b-2) 1000 parts of the polyester polyol (b-1A) was dehydrated at 100 ° C. under reduced pressure, then cooled to 80 ° C., added with 886 parts of methyl ethyl ketone, sufficiently stirred and dissolved, added with 80 parts of neopentyl glycol, 250 parts of the cyanate was added and reacted at 75 ° C. for 8 hours to carry out the urethanization step.
  • the mixture was cooled to 50 ° C., neutralized with 73 parts of triethylamine, emulsified with 7000 parts of water, 10.6 parts of ethylenediamine and diethylenetriamine.
  • the chain extension was completed by adding 5 parts.
  • the concentration is adjusted by adding water, and it contains an aqueous polyurethane resin having a flow starting temperature of 195 ° C. with a nonvolatile content of 20%.
  • a polyurethane coating agent (b-2) was prepared.
  • Example 1 As the resin for the resin layer (A1), a propylene-ethylene copolymer [MFR: 8 g / 10 min (230 ° C., 21.18 N), melting point: 138 ° C .; hereinafter referred to as “COPP”] was used. As the resin for the resin layer (A2), an ethylene- (meth) methyl acrylate copolymer (density: 0.940 g / cm 3 , MA content 18%; hereinafter referred to as “MA1”) was used.
  • MA1 ethylene- (meth) methyl acrylate copolymer
  • each of these resins is supplied to an extruder for the resin layer (A1) (caliber 50 mm) and an extruder for the resin layer (A2) (caliber 50 mm) and melted at 200 to 250 ° C., and the melted resin is fed into the feed block.
  • Co-extruded multilayer film manufacturing apparatus feed block and T-die temperature: 250 ° C.
  • T die / chill roll method and co-melt extrusion are carried out, and the layer structure of the film is (A1) / (A2)
  • a two-layered co-extruded multilayer film was obtained in which the thickness of each layer was 36 ⁇ m / 9 ⁇ m (total 45 ⁇ m).
  • the surface of the (A2) layer of the support was subjected to corona discharge treatment so that the wetting tension was 40 mN / m, and then the polyurethane coating agent (b-1) obtained in Preparation Example 1 was dried to a thickness of 5 ⁇ m.
  • the heat resistant olefin-based multilayer film of Example 1 was produced.
  • Example 2 A heat-resistant olefin-based multilayer film was prepared in the same manner as in Example 1 except that the polyurethane coating agent (b-1) in Example 1 was changed to the polyurethane coating agent (b-2) obtained in Preparation Example 2.
  • Example 3 The acid-modified olefin resin of the resin layer (A2) of Example 1 was replaced with an ethylene-methyl acrylate copolymer (MA content 12%, density: 0.933 g / cm 3 ; hereinafter referred to as “MA2”).
  • MA2 ethylene-methyl acrylate copolymer
  • a heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the polyurethane coating agent (b-1) was applied so that the film thickness after drying was 3 ⁇ m.
  • Example 4 The acid-modified olefin resin of the resin layer (A2) of Example 1 is an ethylene-methyl acrylate-maleic anhydride copolymer [density: 1.00 g / cm 3 , copolymer content: 15%; hereinafter referred to as “MA3”.
  • MA3 ethylene-methyl acrylate-maleic anhydride copolymer
  • Example 5 50% of resin MA1 for resin layer (A2) of Example 2 and propylene-ethylene copolymer [density: 0.900 g / cm 3 , MFR: 7 to 9 g / 10 min (230 ° C., 21.18 N), Melting point: 150 ° C .; hereinafter referred to as “COPP”]
  • a heat-resistant olefin-based multilayer film was produced in the same manner as in Example 2 except that the composition was replaced with 50%.
  • Example 6 A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the resin MA1 for the resin layer (A2) of Example 2 was replaced with a blend of 20% and COPP of 80%.
  • Example 7 COPP of the resin layer (A1) of Example 5 was made of high-density polyethylene [density: 0.963 g / cm 3 , MFR: 7 g / 10 min (190 ° C., 21.18 N), melting point 130 ° C .; hereinafter referred to as “HDPE”.
  • a heat-resistant olefin-based multilayer film was produced in the same manner as in Example 5 except that the description was replaced.
  • Example 8 The COPP of the resin layer (A1) of Example 5 was made of low-density polyethylene [density: 0.905 g / cm 3 , MFR: 5.3 g / 10 min (190 ° C., 21.18 N), melting point 100 ° C .; In the same manner as in Example 5, except that the polyurethane coating agent (b-1) was applied so that the film thickness after drying was 10 ⁇ m, a heat-resistant olefin-based multilayer film was produced.
  • Example 9 Example 1 except that the acrylic acid-modified resin of Example 1 was replaced with an ethylene- (meth) acrylic acid copolymer (density: 0.940 g / cm 3 , acid modification rate 12%; hereinafter referred to as “MA4”). In the same manner as in No. 2, a heat-resistant olefin-based multilayer film was produced.
  • MA4 ethylene- (meth) acrylic acid copolymer
  • Example 10 A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the thickness of each layer of the layer structure (A1) / (A2) of Example 1 was 114 ⁇ m / 6 ⁇ m (total 120 ⁇ m).
  • Example 11 A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the thickness of each layer of the layer structure (A1) / (A2) of Example 1 was 90 ⁇ m / 30 ⁇ m (total 120 ⁇ m).
  • Comparative Example 1 An olefin-based multilayer film was produced in the same manner as in Example 1 except that the acid-modified olefin resin in the resin layer (A2) of Example 1 was replaced with COPP.
  • Comparative Example 2 An olefin-based multilayer film was produced in the same manner as in Comparative Example 1, except that the polyurethane coating agent (b-1) in Comparative Example 1 was replaced with the polyurethane coating agents (b-1) and (b-2).
  • Comparative Example 3 An olefin-based multilayer film was produced in the same manner as in Example 1 except that the acid-modified olefin-based resin in the resin layer (A2) of Example 1 was replaced with HDPE.

Landscapes

  • Laminated Bodies (AREA)
  • Wrappers (AREA)
  • Bag Frames (AREA)

Abstract

Provided are: a heat-resistant olefin multilayer film which is produced by coating a heat-resistant coating agent onto a non-stretched olefin film, has a highly heat-resistant surface, can be used singly without requiring the use of any stretched base or the like, and is highly suitable for use in a packaging machine, and in which the adhesion strength between a coating layer and the olefin film is excellent; a method for producing the heat-resistant olefin multilayer film; and a packaging material produced using the heat-resistant olefin multilayer film. Specifically, a heat-resistant olefin multilayer film is used, which is characterized by being produced by laminating a layer (A1) mainly composed of a polyolefin resin, a layer (A2) comprising an acid-modified olefin resin and a heat-resistant coat layer (B) in the order of (A1)/(A2)/(B), wherein the ratio of the thickness of the layer (A2) to the total thickness of the layers (A1) and (A2) is 5-40%, and the heat-resistant coat layer (B) is a layer comprising a polyurethane coating agent (b).

Description

耐熱性オレフィン系多層フィルム、その製造方法及びこれを用いる包装材Heat-resistant olefin-based multilayer film, production method thereof, and packaging material using the same
 本発明は、耐熱性のある延伸基材を貼り合わさなくても耐熱性や良好な包装適性を可能とする耐熱性オレフィン系多層フィルムに関するものであり、詳しくは、耐熱性コーティング剤とオレフィン系多層フィルムとの塗工性や密着性に優れ、コート剤の剥がれ・脱落等の問題が無く、これをそのまま包装材して使用することが可能な耐熱性オレフィン系多層フィルムとその製造方法及びこれを用いる包装材に関するものである。 The present invention relates to a heat-resistant olefin-based multilayer film that enables heat resistance and good packaging suitability without bonding a heat-resistant stretched substrate, and more specifically, a heat-resistant coating agent and an olefin-based multilayer film. A heat-resistant olefin-based multilayer film that is excellent in coating properties and adhesion with a film, has no problems such as peeling or falling off of a coating agent, and can be used as a packaging material as it is, a method for producing the same, and a method for producing the same It relates to the packaging material used.
 従来、包装材には内容物の保護の観点から、高ヒートシール強度、耐ピンホール性、低温衝撃性等が要求される。また、包装機械による自動包装の点からは熱源であるシールバーに接する層と、熱融着によりシールされる内面側のシール層の融点との差は大きい方が好ましい。また腰のある高剛性フィルムは包装機にも簡単にセットしやすい等の理由からオペレータが扱いやすく、これらの観点から一般に、耐熱性・高剛性に優れる2軸延伸ポリプロピレン(OPP)、2軸延伸ポリエステル(OPET)、2軸延伸ポリアミド(OPA)等の延伸基材フィルムと、シール性や密封性に優れる無延伸ポリエチレン(PE)、無延伸ポリプロピレン(CPP)のフィルム等を接着剤で貼り合わせる、ラミネートフィルムが多く使用されてきた。 Conventionally, packaging materials are required to have high heat seal strength, pinhole resistance, low temperature impact resistance, etc. from the viewpoint of content protection. Further, from the viewpoint of automatic packaging by a packaging machine, it is preferable that the difference between the layer in contact with the seal bar that is a heat source and the melting point of the seal layer on the inner surface side to be sealed by thermal fusion is larger. In addition, the high-rigidity film with low waist is easy for the operator to handle because it is easy to set in a packaging machine. From these viewpoints, biaxially oriented polypropylene (OPP) and biaxially oriented are generally excellent in heat resistance and high rigidity. Bonding stretched base film such as polyester (OPET), biaxially stretched polyamide (OPA), etc., unstretched polyethylene (PE), unstretched polypropylene (CPP), etc. with excellent sealing and sealing properties with an adhesive, Many laminate films have been used.
 しかし、近年の環境対応の観点からは、包装材の薄肉化による使用包材の減容化、共押出法によるラミネート工程の削減、接着剤に使用される有機溶剤の削減や接着剤そのものの不使用化などは、ユーザーや最終消費者の間で重要視されつつある。 However, from the viewpoint of environmental response in recent years, the volume of packaging materials used has been reduced by reducing the thickness of packaging materials, the laminating process has been reduced by the coextrusion method, the organic solvent used in adhesives has been reduced, and the adhesive itself has been reduced. Use and other factors are gaining importance among users and end consumers.
 これらの要求を鑑み、本発明者は既に、耐熱性のある融点の高いポリプロピレンを表面樹脂層として用い、融点が前記ポリプロピレンよりも低いオレフィン系樹脂を主成分とする樹脂層をヒートシール層として積層することにより、延伸基材等を利用しない単体での使用が可能で、包装機械適性に優れ、耐ピンホール性にも優れた共押出多層フィルム及び該フィルムからなる包装材を提案した(例えば、特許文献1参照)。 In view of these requirements, the present inventor has already used heat-resistant polypropylene having a high melting point as a surface resin layer, and laminated a resin layer mainly composed of an olefin resin having a melting point lower than that of the polypropylene as a heat seal layer. Thus, a coextruded multilayer film that can be used alone without using a stretched base material, has excellent packaging machine suitability and excellent pinhole resistance, and a packaging material composed of the film have been proposed (for example, (See Patent Document 1).
 しかしながら、前記特許文献1で得られる共押出多層フィルムを単体使用した場合のシール温度は160℃が上限であり、これ以上の温度では表面層のシールバーへの付着が避けられず、シールバーの汚れ、シール部のシワ等の発生による外観の劣化の問題が生じ、延伸基材を張り合わせた多層フィルムと同条件での製袋が不可能になることがあった。 However, when the coextruded multilayer film obtained in Patent Document 1 is used alone, the upper limit of the sealing temperature is 160 ° C., and at a temperature higher than this, adhesion of the surface layer to the sealing bar is unavoidable. There was a problem of deterioration of the appearance due to generation of dirt, wrinkles in the seal portion, etc., and it was sometimes impossible to make a bag under the same conditions as a multilayer film in which stretched substrates were bonded together.
 一方、プラスチックフィルムの表面に機能性塗料を塗布し乾燥することによって、当該フィルムの高機能化を目指す技術は広く知られている(例えば、特許文献2~4参照)。 On the other hand, a technique that aims to enhance the function of the film by applying a functional paint to the surface of the plastic film and drying it is widely known (see, for example, Patent Documents 2 to 4).
 これらの機能性塗料をプラスチックフィルムに塗布し乾燥する際に、その塗装工程において、当該フィルム上にハジキが生じたり、又乾燥工程で塗膜がフィルムから剥がれたりすると、目的とした機能の付与が充分に行われない。又塗装や乾燥の工程で問題なくフィルムを多層化できたとしても、これを二次加工する際の衝撃(擦れ、加熱等)によって、当該塗膜に剥がれやひびが入ると、包装材として使用できないことになる。従来、これらの塗装による高機能化に際し、使用するプラスチックフィルムについて詳細に検討されてはおらず、極性の高いフィルムを用いたり、機能性塗料に添加剤を加えたりする等の工夫が必要であった。 When these functional paints are applied to a plastic film and dried, cissing occurs on the film in the coating process, or if the coating film is peeled off from the film in the drying process, the intended function is imparted. Not enough. Even if the film can be multilayered without any problems in the painting or drying process, if the film is peeled off or cracked due to impact (rubbing, heating, etc.) during secondary processing, it can be used as a packaging material. It will not be possible. Conventionally, the plastic film used has not been studied in detail for the enhancement of functionality by these coatings, and it has been necessary to devise such as using a highly polar film or adding an additive to the functional paint. .
特開2010-234660号公報JP 2010-234660 A 特開昭61-274936号公報JP-A 61-274936 特開昭63-299925号公報Japanese Patent Laid-Open No. 63-299925 特開平9-123378号公報JP-A-9-123378
 本発明の課題は、上記のような問題に鑑みなされたものであり、耐熱性のコーティング剤を無延伸オレフィン系フィルムに塗工することにより、表面の耐熱性に優れ、延伸基材等を利用しない単体での使用が可能となり、包装機械適性に優れ、又コート層とオレフィン系フィルムとの密着強度にも優れた耐熱性オレフィン系多層フィルムとその製造方法、並びにこれを用いる包装材を提供することである。 The object of the present invention has been made in view of the above problems, and by applying a heat-resistant coating agent to an unstretched olefin-based film, it has excellent surface heat resistance and utilizes a stretched substrate and the like. A heat-resistant olefin-based multilayer film excellent in suitability for packaging machinery and excellent in adhesion strength between a coat layer and an olefin-based film, a manufacturing method thereof, and a packaging material using the same are provided. That is.
 本発明者らは、上記課題を解決するために鋭意研究した結果、オレフィン系樹脂からなる特定の多層フィルムに耐熱性のコーティング剤を塗布し乾燥させることにより、特段の工夫をしなくても該コーティング剤とフィルム間の密着性が良好となり、オレフィン系多層フィルムの表面耐熱性を効果的に向上させることが可能で、上記課題が解決できることを見出し、本発明を完成するに至った。 As a result of diligent research to solve the above-mentioned problems, the present inventors applied a heat-resistant coating agent to a specific multilayer film made of an olefin resin and dried it, so that the above-described problem can be solved without any special efforts. It has been found that the adhesion between the coating agent and the film is good, the surface heat resistance of the olefin-based multilayer film can be effectively improved, and the above problems can be solved, and the present invention has been completed.
 即ち、本発明は、ポリオレフィン系樹脂(a1)を主成分とする層(A1)と、酸変性オレフィン系樹脂(a2)を含有する層(A2)と、耐熱コート層(B)とが、(A1)/(A2)/(B)の順で積層されてなり、前記層(A1)と前記層(A2)との合計厚みに対する層(A2)の比率が5~40%であり、耐熱コート層(B)がポリウレタンコーティング剤(b)からなる層であることを特徴とする耐熱性オレフィン系多層フィルムとこれを用いてなる包装材を提供するものである。 That is, in the present invention, the layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat-resistant coating layer (B) are: A1) / (A2) / (B), and the ratio of the layer (A2) to the total thickness of the layer (A1) and the layer (A2) is 5 to 40%. A layer (B) is a layer made of a polyurethane coating agent (b), and a heat-resistant olefin-based multilayer film and a packaging material using the same are provided.
 更に本発明は、ポリオレフィン系樹脂(a1)を主成分とする層(A1)と、酸変性オレフィン系樹脂(a2)を含有する層(A2)と、耐熱コート層(B)とが、(A1)/(A2)/(B)の順で積層されてなる多層フィルムの製造方法であり、前記層(A1)と前記層(A2)とを共押出積層法を用いて積層した後、層(A2)上にポリウレタンコーティング剤(b)を塗布することを特徴とする耐熱性オレフィン系多層フィルムの製造方法をも提供するものである。 Further, in the present invention, the layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat resistant coating layer (B) are (A1 ) / (A2) / (B) is a method for producing a multilayer film, in which the layer (A1) and the layer (A2) are laminated using a coextrusion lamination method, The present invention also provides a method for producing a heat-resistant olefin-based multilayer film, which comprises applying a polyurethane coating agent (b) on A2).
 本発明の耐熱性オレフィン系多層フィルムは、共押出多層フィルム上に耐熱コーティング剤を塗布することにより簡便に得られるものである。目的とする性能(透明性、剛性、加工性等)や用途(包装材、ポスター、ラベル等)に応じて当該多層フィルムの層構成を選択することで容易に設計変更が可能であり、汎用性に優れる。又、共押出法を用いることでアンカー層(プライマー層)の形成工程を省くことができ、環境負荷低減や製造に係る時間やコスト削減効果もあり、有用性が高いものでもある。 The heat-resistant olefin-based multilayer film of the present invention can be easily obtained by applying a heat-resistant coating agent on the coextruded multilayer film. The design can be easily changed by selecting the layer structure of the multilayer film according to the target performance (transparency, rigidity, workability, etc.) and application (packaging material, poster, label, etc.). Excellent. Further, the use of the co-extrusion method can omit the formation process of the anchor layer (primer layer), and there are effects of reducing environmental load and manufacturing time and cost, and it is highly useful.
 本発明の耐熱性オレフィン系多層フィルムの支持体として機能するプラスチックフィルムは、少なくともポリオレフィン系樹脂(a1)を主成分とする層(A1)と酸変性オレフィン系樹脂(a2)を含有する層(A2)とを有するものである。この層(A2)は支持体としての機能と同時に、耐熱コート層(B)との易接着層としても機能を有する。尚、本発明において「主成分とする」とは、当該特定の樹脂を、層を形成する樹脂組成物全量に対して80質量%以上含有する事を言うものであり、好ましくは、85質量%以上が特定の樹脂であることを言う。又、本発明において「含有する」とは、当該特定の樹脂を、層を形成する樹脂組成物全量に対して1質量%以上含有する事を言うものであり、好ましくは、20質量%以上が特定の樹脂であることを言う。 The plastic film functioning as a support for the heat-resistant olefin-based multilayer film of the present invention has a layer (A1) containing at least a polyolefin-based resin (a1) as a main component and an acid-modified olefin-based resin (a2) (A2). ). This layer (A2) has a function as an easily adhesive layer with the heat-resistant coating layer (B) as well as a function as a support. In the present invention, “main component” means that the specific resin is contained in an amount of 80% by mass or more based on the total amount of the resin composition forming the layer, and preferably 85% by mass. The above is a specific resin. Further, in the present invention, “containing” means that the specific resin is contained in an amount of 1% by mass or more with respect to the total amount of the resin composition forming the layer, and preferably 20% by mass or more. Say that it is a specific resin.
 本発明の耐熱性オレフィン系多層フィルムにおける表面耐熱層の反対側は、ポリオレフィン系樹脂(a1)を主成分とする層(A1)である。ここで用いることができるポリオレフィン系樹脂(a1)としては、炭素数2~6のα-オレフィンの単独重合体又は共重合体が挙げられる。共重合形式は、ブロック共重合体であってもランダム共重合体であってもよい。また、ポリオレフィン系樹脂(a1)としては、二次成形時における外観の保持、フィルム自体の反りの抑制の観点から、その融点が100℃以上であるものを用いることが好ましい。 The opposite side of the surface heat-resistant layer in the heat-resistant olefin-based multilayer film of the present invention is a layer (A1) mainly composed of a polyolefin-based resin (a1). Examples of the polyolefin resin (a1) that can be used here include homopolymers or copolymers of α-olefins having 2 to 6 carbon atoms. The copolymerization type may be a block copolymer or a random copolymer. Moreover, as polyolefin resin (a1), it is preferable to use what has the melting | fusing point of 100 degreeC or more from a viewpoint of the maintenance of the external appearance at the time of secondary shaping | molding, and suppression of the curvature of film itself.
 前記ポリオレフィン系樹脂(a1)としては、例えば、ポリプロピレン系樹脂、ポリエチレン系樹脂等として知られているものを何れも用いることができる。例えば、ポリプロピレン系樹脂としては、プロピレン単独重合体、プロピレン-エチレン共重合体、プロピレン-ブテン-1共重合体、プロピレン-エチレン-ブテン-1共重合体、エチレン-プロピレンブロック共重合体、メタロセン触媒系ポリプロピレン等が挙げられる。これらは単独で用いても、2種以上を併用してもよい。得られる耐熱性オレフィン系多層フィルムをロール状に巻き取り、長期間保管する場合は、ブロッキングを防止する観点から結晶性のプロピレン系樹脂を用いることが好ましい。なお、本願において結晶性とはDSC(示差走査熱量測定)において95~250℃の範囲で0.5J/g以上のピークを有することを言うものである。 As the polyolefin resin (a1), for example, any of those known as a polypropylene resin, a polyethylene resin and the like can be used. Examples of polypropylene resins include propylene homopolymers, propylene-ethylene copolymers, propylene-butene-1 copolymers, propylene-ethylene-butene-1 copolymers, ethylene-propylene block copolymers, metallocene catalysts. And polypropylene. These may be used alone or in combination of two or more. When the obtained heat-resistant olefin-based multilayer film is rolled up and stored for a long period of time, it is preferable to use a crystalline propylene-based resin from the viewpoint of preventing blocking. In the present application, crystallinity means having a peak of 0.5 J / g or more in the range of 95 to 250 ° C. in DSC (differential scanning calorimetry).
 また、上記のポリプロピレン系樹脂は、メルトフローレート(以下、「230℃のMFR」という。;JIS K7210:1999に準拠して、230℃、21.18Nで測定した値)が0.5~30.0g/10分で、融点が120~165℃であるものが好ましく、より好ましくは、230℃のMFRが2.0~15.0g/10分で、融点が125~162℃のものである。MFR及び融点がこの範囲であれば、多層化後に加熱成形等の二次成形を行なう場合においてもフィルムの収縮が少ないため、外観を保持できると共に、媒体自身の反りを発生させることもなく、また共押出多層フィルムとするときの成膜性も向上する。また、密度は0.890~0.910g/cmであることが好ましく、0.895~0.905g/cmであることがより好ましい。 The polypropylene resin has a melt flow rate (hereinafter referred to as “230 ° C. MFR”; a value measured at 230 ° C. and 21.18 N in accordance with JIS K7210: 1999) of 0.5 to 30. Those having a melting point of 120 to 165 ° C. at 0.0 g / 10 min are preferred, more preferably those having an MFR of 230 to 120 ° C. of 2.0 to 15.0 g / 10 min and a melting point of 125 to 162 ° C. . If the MFR and the melting point are in this range, the film shrinkage is small even when secondary molding such as heat molding is performed after multilayering, so that the appearance can be maintained and the warping of the medium itself does not occur. The film formability when a coextruded multilayer film is also improved. The density is preferably 0.890 to 0.910 g / cm 3 and more preferably 0.895 to 0.905 g / cm 3 .
 また、特に、層(A1)にプロピレン-エチレンブロック共重合体を用いる場合、表面が梨地状に改質され、多層フィルムをロール状に巻き取る際のシワの発生を抑制することができ、また、ロール状で保管した際のブロッキングを軽減できる。ここでプロピレン-エチレンブロック共重合体は、プロピレンとエチレンとをブロック重合した樹脂であり、例えば、プロピレン単独重合体の存在下で、エチレンの重合、又はエチレン及びプロピレンの重合を行って得られるプロピレン-エチレンブロック共重合体等が挙げられる。 In particular, when a propylene-ethylene block copolymer is used for the layer (A1), the surface is modified into a satin finish, and the generation of wrinkles when the multilayer film is wound into a roll can be suppressed. Blocking when stored in roll form can be reduced. Here, the propylene-ethylene block copolymer is a resin obtained by block polymerization of propylene and ethylene. For example, propylene obtained by performing polymerization of ethylene or polymerization of ethylene and propylene in the presence of a propylene homopolymer. -Ethylene block copolymers and the like.
 また、層(A1)に結晶性プロピレン系樹脂とエチレン・プロピレンゴム(以下、「EPR」という。)との混合樹脂を用いると、層(A1)の表面を梨地状に容易に改質することができる。このとき用いる結晶性プロピレン系樹脂としては、汎用性の高いプロピレン単独重合体が好ましい。一方、このとき用いるEPRとしては、重量平均分子量が40万~100万の範囲であるものがフィルム表面に凹凸を形成させて、表面を梨地状に改質できる点で好ましく、50~80万の範囲であることがより好ましい。また、混合樹脂中のEPRの含有率は、5~35質量%の範囲であることがフィルム表面を均質に梨地状に改質できる点で好ましい。この結晶性プロピレン系重合体とEPRとの混合樹脂のMFR(230℃)は、0.5~15g/10分の範囲であることが押出加工しやすい点で好ましい。なお、前記EPRの重量平均分子量は、該混合樹脂を、オルソジクロルベンゼンを溶媒として使用し、40℃においてクロス分別法によって抽出した成分をGPC(ゲルパーミエーションクロマトグラフィー)によって算出して求めたものである。また、前記混合樹脂中のEPRの含有率は、該混合樹脂を、オルソジクロルベンゼンを溶媒として使用し、40℃においてクロス分別法によって抽出されたEPRの抽出量より求めたものである。 Further, when a mixed resin of crystalline propylene resin and ethylene / propylene rubber (hereinafter referred to as “EPR”) is used for the layer (A1), the surface of the layer (A1) can be easily modified into a satin finish. Can do. As the crystalline propylene-based resin used at this time, a highly versatile propylene homopolymer is preferable. On the other hand, as the EPR used at this time, those having a weight average molecular weight in the range of 400,000 to 1,000,000 are preferable in that irregularities can be formed on the film surface and the surface can be modified into a satin finish. A range is more preferable. Further, the content of EPR in the mixed resin is preferably in the range of 5 to 35% by mass from the viewpoint that the film surface can be uniformly modified into a satin finish. The MFR (230 ° C.) of the mixed resin of the crystalline propylene polymer and EPR is preferably in the range of 0.5 to 15 g / 10 minutes from the viewpoint of easy extrusion. In addition, the weight average molecular weight of the EPR was obtained by calculating a component extracted from the mixed resin by a cross fractionation method at 40 ° C. using orthodichlorobenzene as a solvent by GPC (gel permeation chromatography). It is. The content of EPR in the mixed resin is obtained from the amount of EPR extracted by cross-fractionation at 40 ° C. using orthodichlorobenzene as a solvent.
 前記結晶性プロピレン系樹脂とEPRとの混合樹脂の製造方法は、特に制限はなく、具体例として例えば、プロピレン単独重合体とエチレン・プロピレンゴムとを、それぞれ別々にチーグラー型触媒を用いて溶液重合法、スラリー重合法、気相重合法等により製造した後、両者を混合機にて混合する方法や、2段重合法により、1段目でプロピレン単独重合体を生成させた後、2段目においてこの重合体の存在下でEPRを生成させる方法等が挙げられる。 The method for producing the mixed resin of the crystalline propylene-based resin and EPR is not particularly limited. As a specific example, for example, a propylene homopolymer and ethylene / propylene rubber are separately mixed using a Ziegler type catalyst. After producing by a combination method, a slurry polymerization method, a gas phase polymerization method, etc., a propylene homopolymer is produced in the first stage by a method of mixing both with a mixer or a two-stage polymerization method, and then the second stage. And a method of generating EPR in the presence of this polymer.
 前記チーグラー型触媒は、所謂チーグラー・ナッタ触媒であり、チタン含有化合物などの遷移金属化合物、またはマグネシウム化合物などの担体に遷移金属化合物を担持させることによって、得られる担体担持触媒と有機アルミニウム化合物などの有機金属化合物の助触媒とを組み合わせたもの等が挙げられる。 The Ziegler-type catalyst is a so-called Ziegler-Natta catalyst, and is obtained by supporting a transition metal compound such as a titanium-containing compound or a transition metal compound on a support such as a magnesium compound. The combination with the promoter of an organometallic compound is mentioned.
 前記ポリエチレン系樹脂としては、密度が0.900g/cm以上0.970g/cm未満のエチレン系樹脂であることが好ましく具体的に挙げられる樹脂として、例えば、超低密度ポリエチレン(VLDPE)、線状低密度ポリエチレン(LLDPE)、線状中密度ポリエチレン(LMDPE)、低密度ポリエチレン(LDPE)、中密度ポリエチレン(MDPE)、高密度ポリエチレン(HDPE)等のポリエチレン樹脂や、エチレン-酢酸ビニル共重合体(EVA)、エチレン-メチルメタアクリレート共重合体(EMMA)、エチレン-エチルアクリレート共重合体(EEA)、エチレン-メチルアクリレート(EMA)共重合体、エチレン-エチルアクリレート-無水マレイン酸共重合体(E-EA-MAH)、エチレン-アクリル酸共重合体(EAA)、エチレン-メタクリル酸共重合体(EMAA)等のエチレン系共重合体;更にはエチレン-アクリル酸共重合体のアイオノマー、エチレン-メタクリル酸共重合体のアイオノマー等が挙げられる。これらの中でも耐ピンホール性が良好なことからLDPE、LLDPE、LMDPE、MDPEが好ましい。 Examples of the polyethylene-based resin, a density of 0.900 g / cm 3 or more 0.970 g / cm 3 less than the ethylene-based resin is preferably exemplified specifically a resin, for example, ultra low density polyethylene (VLDPE), Polyethylene resins such as linear low density polyethylene (LLDPE), linear medium density polyethylene (LMDPE), low density polyethylene (LDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE), and ethylene-vinyl acetate copolymer Polymer (EVA), ethylene-methyl methacrylate copolymer (EMMA), ethylene-ethyl acrylate copolymer (EEA), ethylene-methyl acrylate (EMA) copolymer, ethylene-ethyl acrylate-maleic anhydride copolymer (E-EA-MAH), ethylene Ethylene copolymers such as crylic acid copolymer (EAA) and ethylene-methacrylic acid copolymer (EMAA); further, ionomers of ethylene-acrylic acid copolymers, ionomers of ethylene-methacrylic acid copolymers Can be mentioned. Among these, LDPE, LLDPE, LMDPE, and MDPE are preferable because of their good pinhole resistance.
 前述のようにエチレン系樹脂の密度は0.900g/cm以上0.970g/cm未満であることが好ましいが、特に0.905g/cm以上0.965g/cm未満の範囲であることがより好ましい。この密度に該当するものであれば、2種類以上のポリエチレン系樹脂をブレンドしても良い。密度が0.900g/cm未満では、剛性が低下し包装機械適性悪化する場合がある。一方0.970g/cm以上では耐ピンホール性が悪くなることがある。密度がこの範囲であれば、適度な剛性を有し、耐ピンホール性等の機械強度も優れ、フィルム成膜性、押出適性が向上する。また、融点は95~130℃の範囲であることが好ましく、100~125℃がより好ましい。融点がこの範囲であれば、耐熱コート層の塗工や二次成形時に加温された場合にもフィルムの収縮が少ないため、フィルムの外観を保持でき、又フィルム自体の反りを抑制することができる。又、この多層フィルムを用いて包装袋とする場合、即ち層(A1)同士を内側にしてヒートシールする場合のシール性にも優れたものとなる。これらは単独で用いても、2種以上を併用してもよい。 The density of the ethylene-based resin as described above is preferably less than 0.900 g / cm 3 or more 0.970 g / cm 3, is particularly in a range of less than 0.905 g / cm 3 or more 0.965 g / cm 3 It is more preferable. As long as it corresponds to this density, two or more types of polyethylene resins may be blended. If the density is less than 0.900 g / cm 3 , the rigidity may decrease and the suitability of the packaging machine may deteriorate. On the other hand, if it is 0.970 g / cm 3 or more, the pinhole resistance may be deteriorated. If the density is within this range, it has appropriate rigidity, excellent mechanical strength such as pinhole resistance, and film film formability and extrusion suitability are improved. The melting point is preferably in the range of 95 to 130 ° C, more preferably 100 to 125 ° C. If the melting point is within this range, the film shrinkage is small even when heated at the time of coating or secondary molding of the heat-resistant coating layer, so that the appearance of the film can be maintained and the warping of the film itself can be suppressed. it can. In addition, when this multilayer film is used to form a packaging bag, that is, when the layers (A1) are heat sealed with the layers (A1) inside, the sealing property is excellent. These may be used alone or in combination of two or more.
 更に加工安定性や後述する酸変性オレフィン系樹脂(a2)と共押出成形する際の加工性が向上する観点からポリエチレン系樹脂のMFR(190℃、21.18N)は2~20g/10分であることが好ましく、3~10g/10分であることがより好ましい。 Furthermore, the MFR (190 ° C., 21.18 N) of the polyethylene resin is 2 to 20 g / 10 min from the viewpoint of improving the process stability and the processability when coextruding with the acid-modified olefin resin (a2) described later. It is preferably 3 to 10 g / 10 min.
 ポリオレフィン系樹脂(a1)を主成分とする層(A1)としては、単層であっても2層以上の多層構成を有するものであってもよい。より剛性、耐熱性や透明性に優れる点から、ポリプロピレン系樹脂を主体とする単層或いは多層構成のフィルムであることが好ましい。又、例えば、得られたフィルムを包装体として用いる場合には、耐熱コート層(B)の反対の面の最表層を特開2006-213065号公報に記載のような1-ブテンとプロピレンとを必須成分としてなる1-ブテン系共重合体およびプロピレンとエチレンとを必須成分としてなる共重合体を含有してなるヒートシール層とすることで、易開封性の袋とすることができる。又、同様に蓋材として用いる場合には、特開2004-75181号公報や特開2008-80543号公報に記載のような多層構成とすることによって、易開封性を有するものとすることが可能である。更に特開2010-234660号公報に記載のような環状ポリオレフィン系樹脂を多層構成の中の一つの層として使用すると、易引き裂き性を有するフィルムとすることも可能であり、用途に応じて種々の多層構成を採用することが好ましい。 As a layer (A1) which has polyolefin resin (a1) as a main component, it may be a single layer or may have a multilayer structure of two or more layers. From the viewpoint of more excellent rigidity, heat resistance and transparency, a film having a single layer or a multilayer structure mainly composed of a polypropylene resin is preferable. For example, when the obtained film is used as a package, the outermost layer on the opposite side of the heat-resistant coating layer (B) is made of 1-butene and propylene as described in JP-A-2006-213065. By forming a heat seal layer containing a 1-butene copolymer as an essential component and a copolymer having propylene and ethylene as essential components, an easily openable bag can be obtained. Similarly, when used as a lid, it can be easily opened by adopting a multilayer structure as described in JP-A-2004-75181 and JP-A-2008-80543. It is. Furthermore, when a cyclic polyolefin resin as described in JP-A-2010-234660 is used as one layer in a multilayer structure, it is possible to obtain a film having easy tearing properties. It is preferable to employ a multilayer structure.
 また、層(A1)上〔後述する層(A2)と反対の面〕に粘着剤層を設けることにより看板、車両等に貼り付け可能な粘着フィルム(ラベル)とすることもできる。粘着剤の種類は特に限定されるものではなく、例えば、天然ゴム系、合成ゴム系、アクリル系、ウレタン系、ビニルエーテル系、シリコーン系、アミド系及びスチレン系粘着剤、スチレン系エラストマー、オレフィン系エラストマー等が挙げられる。前記粘着剤層には、粘着特性の制御等を目的として必要に応じて、例えばα-ピネンやβ-ピネン重合体、ジテルペン重合体、α-ピネン・フェノール共重合体等のテルペン系樹脂、脂肪族系や芳香族系、脂肪族・芳香族共重合体系等の炭化水素系樹脂、その他ロジン系樹脂やクマロンインデン系樹脂、(アルキル)フェノール系樹脂やキシレン系樹脂など適当な粘着付与剤を配合できる。これらの中でも、層(A1)と後述する層(A2)とを共押出法で積層する際に、同時に層(A2)の反対面の層(A1)上に粘着層を共押出で積層させる方法が製造サイクル上好ましい。 Moreover, it can also be set as the adhesive film (label) which can be affixed on a signboard, a vehicle, etc. by providing an adhesive layer on a layer (A1) [surface opposite to the layer (A2) mentioned later]. The type of the adhesive is not particularly limited. For example, natural rubber, synthetic rubber, acrylic, urethane, vinyl ether, silicone, amide and styrene adhesive, styrene elastomer, olefin elastomer Etc. For the purpose of controlling the adhesive properties, the pressure-sensitive adhesive layer may contain, for example, a terpene resin such as α-pinene, β-pinene polymer, diterpene polymer, α-pinene / phenol copolymer, Appropriate tackifiers such as aromatic resins, aromatic resins, aliphatic / aromatic copolymer systems, other rosin resins, coumarone indene resins, (alkyl) phenol resins and xylene resins Can be blended. Among these, when laminating a layer (A1) and a layer (A2) to be described later by a coextrusion method, a method of simultaneously laminating an adhesive layer on the layer (A1) opposite to the layer (A2) by coextrusion Is preferable in the manufacturing cycle.
 本発明における層(A2)は酸変性オレフィン系樹脂(a2)を必須成分とし含有する層である。酸変性ポリオレフィン系樹脂(a2)の主成分であるオレフィン成分は特に限定されないが、エチレン、プロピレン、イソブチレン、2-ブテン、1-ブテン、1-ペンテン、1-ヘキセン等の炭素数2~6のアルケンが好ましく、これらの混合物を用いてもよい。この中で、エチレン、プロピレン、イソブチレン、1-ブテン等の炭素数2~4のアルケンがより好ましく、エチレン、プロピレンがさらに好ましく、エチレンが最も好ましい。また、酸変性ポリオレフィン系樹脂(a2)は、(メタ)アクリル酸エステル成分を含有している必要がある。(メタ)アクリル酸エステル成分としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸デシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル等が挙げられる。入手の容易さと接着性の点から、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、アクリル酸ヘキシルがより好ましく、アクリル酸メチル、アクリル酸エチルがより好ましい。また、(メタ)アクリル酸エステル成分は、前記オレフィン成分と共重合されていればよく、その形態は限定されず、共重合の状態としては、例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられる。(なお、「(メタ)アクリル酸~」とは、「アクリル酸~またはメタクリル酸~」を意味する。)具体的には例えば、エチレン-(メタ)アクリル酸エステル共重合体としては、エルバロイ(商品名:三井・デュポンポリケミカル株式会社製)、アクリフト(商品名:住友化学株式会社製)等が挙げられる。これらは、1種を単独で用いても2種以上を混合して用いてもよい。 The layer (A2) in the present invention is a layer containing the acid-modified olefin resin (a2) as an essential component. The olefin component which is the main component of the acid-modified polyolefin resin (a2) is not particularly limited, but has 2 to 6 carbon atoms such as ethylene, propylene, isobutylene, 2-butene, 1-butene, 1-pentene, 1-hexene and the like. Alkenes are preferred and mixtures of these may be used. Of these, alkenes having 2 to 4 carbon atoms such as ethylene, propylene, isobutylene and 1-butene are more preferred, ethylene and propylene are more preferred, and ethylene is most preferred. Moreover, the acid-modified polyolefin resin (a2) needs to contain a (meth) acrylic acid ester component. (Meth) acrylic acid ester components include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, hexyl (meth) acrylate, (meth) acrylic acid Examples include octyl, decyl (meth) acrylate, lauryl (meth) acrylate, octyl (meth) acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, and the like. From the viewpoint of easy availability and adhesiveness, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and hexyl acrylate are more preferable, and methyl acrylate and ethyl acrylate are more preferable. The (meth) acrylic acid ester component may be copolymerized with the olefin component, and the form thereof is not limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and graft copolymerization. (Graft modification) and the like. (Note that “(meth) acrylic acid” means “acrylic acid or methacrylic acid”). Specifically, for example, ethylene- (meth) acrylic acid ester copolymers include Elvalloy ( Product name: Mitsui-DuPont Polychemical Co., Ltd.), Aklift (trade name: Sumitomo Chemical Co., Ltd.), etc. These may be used alone or in combination of two or more.
 また、酸変性ポリオレフィン樹脂(a2)は、不飽和カルボン酸成分により酸変性されたものでもよい。不飽和カルボン酸成分としては、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、クロトン酸等のほか、不飽和ジカルボン酸のハーフエステル、ハーフアミド等が挙げられる。中でもアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸が好ましく、特にアクリル酸、無水マレイン酸が好ましい。また、不飽和カルボン酸成分は、前記オレフィン成分と共重合されていればよく、その形態は限定されず、共重合の状態としては、例えば、ランダム共重合、ブロック共重合、グラフト共重合(グラフト変性)などが挙げられる。具体的には例えば、エチレン-アクリル酸共重合体としては、ニュクレル(商品名:三井・デュポンポリケミカル株式会社製)等が挙げられる。エチレン-(メタ)アクリル酸エステル-無水マレイン酸共重合体としては、ボンダイン(商品名:東京材料株式会社製)等が挙げられる。これらは、1種を単独で用いても2種以上を混合して用いてもよい。 The acid-modified polyolefin resin (a2) may be acid-modified with an unsaturated carboxylic acid component. Examples of unsaturated carboxylic acid components include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, crotonic acid, and the like, as well as unsaturated dicarboxylic acid half esters and half amides. It is done. Of these, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferable, and acrylic acid and maleic anhydride are particularly preferable. The unsaturated carboxylic acid component may be copolymerized with the olefin component, and the form thereof is not limited. Examples of the copolymerization state include random copolymerization, block copolymerization, and graft copolymerization (grafting). Modification). Specifically, for example, as the ethylene-acrylic acid copolymer, Nucrel (trade name: Mitsui, manufactured by DuPont Polychemical Co., Ltd.) and the like can be mentioned. Examples of the ethylene- (meth) acrylic acid ester-maleic anhydride copolymer include bondine (trade name: manufactured by Tokyo Materials Co., Ltd.). These may be used alone or in combination of two or more.
 前記酸変性オレフィン系樹脂(a2)の酸変性率としては、後述のポリウレタンコーティング剤(b)との密着性と、多層フィルムを巻き取って保管する場合のブロッキングの抑制、ポリウレタンコーティング剤(b)を塗布してからの乾燥工程におけるフィルムのシワ等の外観不良の抑制等のバランスに優れる点から3~40%のものを用いることが好ましく、7~35%であることが更に好ましく、10~30%であることが最も好ましい。 The acid modification rate of the acid-modified olefin resin (a2) includes adhesion to the polyurethane coating agent (b) described later, suppression of blocking when winding and storing the multilayer film, polyurethane coating agent (b) It is preferable to use 3 to 40%, preferably 7 to 35%, more preferably 10 to 10% from the viewpoint of excellent balance such as prevention of appearance defects such as film wrinkles in the drying process after coating. Most preferably, it is 30%.
 本発明における層(A2)は前記酸変性オレフィン系樹脂(a2)に加えて更にその他の樹脂を併用してもよい。特に酸変性オレフィン系樹脂(a2)と混合し、且つ前記層(A1)との共押出が容易である点から、ポリオレフィン系樹脂を併用することが好ましい。このとき、層(A2)を形成する樹脂成分100質量部中に、前記酸変性オレフィン系樹脂(a2)を好ましくは20質量部以上、特に好ましくは25質量部以上含有させる。 In addition to the acid-modified olefin resin (a2), the layer (A2) in the present invention may further use other resins in combination. In particular, it is preferable to use a polyolefin-based resin in combination because it is mixed with the acid-modified olefin-based resin (a2) and can be easily coextruded with the layer (A1). At this time, the acid-modified olefin resin (a2) is preferably contained in an amount of 20 parts by mass or more, particularly preferably 25 parts by mass or more in 100 parts by mass of the resin component forming the layer (A2).
 前記ポリオレフィン系樹脂としては、前記層(A1)に用いるポリオレフィン系樹脂(a1)で例示したものを何れも好適に用いることができる。このとき層(A1)と層(A2)とで使用するポリオレフィン系樹脂が同一のものであっても、異なるものであって良い。又、層(A2)で用いるポリオレフィン系樹脂としては、単一のものであっても複数種を混合して用いてもよい。 As the polyolefin resin, any of those exemplified for the polyolefin resin (a1) used for the layer (A1) can be suitably used. At this time, the polyolefin resin used in the layer (A1) and the layer (A2) may be the same or different. The polyolefin resin used in the layer (A2) may be a single resin or a mixture of plural kinds.
 前記の各層(A1)、(A2)には、必要に応じて、防曇剤、帯電防止剤、熱安定剤、造核剤、酸化防止剤、滑剤、アンチブロッキング剤、離型剤、紫外線吸収剤、着色剤等の成分を本発明の目的を損なわない範囲で添加することができる。特に、フィルム成形時の加工適性や包装材とする場合の包装適性を付与するため、表面の摩擦係数は1.5以下、中でも1.0以下であることが好ましいので、多層フィルムの表面層に相当する樹脂層には、滑剤やアンチブロッキング剤や帯電防止剤を適宜添加することが好ましい。 In each of the layers (A1) and (A2), an antifogging agent, an antistatic agent, a thermal stabilizer, a nucleating agent, an antioxidant, a lubricant, an antiblocking agent, a release agent, and an ultraviolet absorber are added as necessary. Components such as a colorant and a colorant can be added within a range that does not impair the object of the present invention. In particular, the surface friction coefficient is preferably 1.5 or less, more preferably 1.0 or less in order to impart processing suitability when forming a film or packaging suitability when used as a packaging material. It is preferable to appropriately add a lubricant, an antiblocking agent, or an antistatic agent to the corresponding resin layer.
 前記の各層(A1)、(A2)の合計厚さとしては、フィルムの用途に応じて適宜設定できるものであるが、例えば、包装材(袋や蓋材)とする場合には、20~70μmであり、ラベルやポスターとする場合には70~1000μmの範囲であることが好ましい。又、層(A1)、(A2)の合計厚さに対する層(A2)の厚みの割合としては、後述するポリウレタンコーティング剤(b)との密着性を確保できる観点から5~50%の範囲であることが好ましく、層(A2)の厚みとしては、2~40μmの範囲であることが好ましい。 The total thickness of each of the layers (A1) and (A2) can be appropriately set according to the use of the film. For example, in the case of a packaging material (bag or lid material), 20 to 70 μm. In the case of labels and posters, it is preferably in the range of 70 to 1000 μm. Further, the ratio of the thickness of the layer (A2) to the total thickness of the layers (A1) and (A2) is in the range of 5 to 50% from the viewpoint of ensuring adhesion with the polyurethane coating agent (b) described later. The thickness of the layer (A2) is preferably in the range of 2 to 40 μm.
 前述の層(A1)と層(A2)とを積層する方法としては、層(A1)と層(A2)とが隣接して積層される共押出積層成形法であることが好ましく、例えば、2台以上の押出機を用いて溶融押出する、共押出多層ダイス法、フィードブロック法等の種々の共押出法により溶融状態で層(A1)と層(A2)を積層した後、インフレーション、Tダイ・チルロール法等の方法で長尺巻フィルムに加工する方法が特に好ましく、Tダイを用いた共押出法が最も好ましい。 The method for laminating the layer (A1) and the layer (A2) is preferably a coextrusion laminating method in which the layer (A1) and the layer (A2) are laminated adjacently. After laminating layers (A1) and (A2) in a molten state by various coextrusion methods such as coextrusion multi-layer die method, feed block method, etc., which are melt-extruded using an extruder of more than one table, inflation, T-die -A method of processing into a long wound film by a method such as a chill roll method is particularly preferable, and a coextrusion method using a T-die is most preferable.
 又、多層フィルムの製造に際して層(A2)表面を、加熱下または不活性ガスの雰囲気下でコロナ放電もしくはプラズマ放電等を用いて連続的に表面処理を施しても良い。 Further, in the production of the multilayer film, the surface of the layer (A2) may be continuously subjected to surface treatment using heating or an inert gas atmosphere using corona discharge or plasma discharge.
 本発明の耐熱性オレフィン系多層フィルムは、前記で得られた多層フィルム上にポリウレタンコーティング剤(b)を塗工した後、当該ポリウレタンコーティング剤(b)中に含まれる媒体を揮発させることで、多層フィルム上に耐熱コート層(B)が形成されたものである。 The heat-resistant olefin-based multilayer film of the present invention, after coating the polyurethane coating agent (b) on the multilayer film obtained above, volatilizes the medium contained in the polyurethane coating agent (b), A heat-resistant coating layer (B) is formed on a multilayer film.
 本発明の耐熱性オレフィン系多層フィルムは、実用レベルの耐熱性や透明性の特性を維持し、かつ良好な生産効率を維持するうえで、1μm~50μmの範囲の厚さの耐熱コート層(B)を有するものが好ましく、シールバーへの取られ、及び耐熱コート層(B)の塗膜強度を勘案すると、2μm~30μmの範囲の厚さの耐熱コート層(B)を有するものがより好ましい。 The heat-resistant olefin-based multilayer film of the present invention has a heat-resistant coating layer (B) having a thickness in the range of 1 μm to 50 μm in order to maintain heat resistance and transparency characteristics at a practical level and maintain good production efficiency. ) Is preferable, and the film having a heat-resistant coating layer (B) having a thickness in the range of 2 μm to 30 μm is more preferable in consideration of the coating on the seal bar and the coating strength of the heat-resistant coating layer (B). .
 前記ポリウレタンコーティング剤(b)を前記フィルム上に塗工する方法としては、特に限定しないが、例えば、エアナイフコーター、ブレードコーター、ロールコーター、グラビアコーター、コンマコーター、ゲートロールコーター等の塗工機を用いる方法が簡便である。 A method for coating the polyurethane coating agent (b) on the film is not particularly limited. For example, a coating machine such as an air knife coater, a blade coater, a roll coater, a gravure coater, a comma coater, or a gate roll coater is used. The method used is simple.
 ポリウレタンコーティング剤(b)をフィルム上に塗工した後、該コーティング剤中に含まれる媒体を揮発させる方法としては、特に限定されるものではないが、例えば、乾燥機を用いて乾燥する方法が一般的である。乾燥温度としては、媒体を揮発させることが可能で、かつ基材に対して悪影響を与えない範囲の温度であれば良い。 The method of volatilizing the medium contained in the coating agent after coating the polyurethane coating agent (b) on the film is not particularly limited, but for example, a method of drying using a dryer. It is common. The drying temperature may be a temperature that can volatilize the medium and does not adversely affect the substrate.
 前記ポリウレタンコーティング剤(b)としては、特に限定されるものではなく、コーティングの乾燥スピードや耐熱性能に応じて適宜選択できるものである。特に本発明においては、多層フィルムの層(A2)上にコート層を形成させる点から、高い耐熱性能、透明性、包装機械特性を有するコート層を設ける必要がある。 The polyurethane coating agent (b) is not particularly limited, and can be appropriately selected according to the drying speed and heat resistance performance of the coating. In particular, in the present invention, it is necessary to provide a coat layer having high heat resistance, transparency, and packaging mechanical properties from the viewpoint of forming a coat layer on the multilayer film layer (A2).
 この様な性能を簡便に付与できるポリウレタンコーティング剤(b)としては、芳香族ジカルボン酸を主成分とするジカルボン酸とポリオールとを縮合させて得られたポリエステルポリオール(b-1)及びポリイソシアネート(b-2)を必須成分として使用し、必要によりその他のポリオールやポリアミン等を鎖伸長剤として使用して、種々の方法により反応させて得たものであることが好ましい。また、これらポリエステルポリオール(b-1)、必要に応じて併用されるその他のポリオール及びポリアミンのうちの少なくとも一種は、アニオン性基を有するものを使用することにより、得られるポリウレタンコーティング剤(b)に水分散性を付与することもできる。 Examples of the polyurethane coating agent (b) that can easily provide such performance include polyester polyol (b-1) and polyisocyanate (polyisocyanate) obtained by condensing a dicarboxylic acid mainly composed of an aromatic dicarboxylic acid and a polyol. It is preferable that b-2) is used as an essential component and, if necessary, other polyols, polyamines or the like are used as chain extenders and reacted by various methods. Further, a polyurethane coating agent (b) obtained by using at least one of these polyester polyols (b-1), other polyols and polyamines used in combination, if necessary, having an anionic group Water dispersibility can also be imparted to.
 次にポリウレタンコーティング剤(b)を製造する際に使用する、前記した芳香族ジカルボン酸を主成分とするジカルボン酸とポリオールとを縮合させて得られるポリエステルポリオール(b-1)について説明する。前記ポリエステルポリオール(b-1)は、各種ジカルボン酸及び各種ポリオールを用いて種々の手法により製造することができる。 Next, the polyester polyol (b-1) obtained by condensing the dicarboxylic acid mainly composed of the aromatic dicarboxylic acid and the polyol, which is used when the polyurethane coating agent (b) is produced, will be described. The polyester polyol (b-1) can be produced by various methods using various dicarboxylic acids and various polyols.
 前記ポリエステルポリオール(b-1)を製造する際に使用することができる芳香族ジカルボン酸としては、例えば、テレフタル酸、イソフタル酸、オルソフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ナフタル酸、ビフェニルジカルボン酸、1,2-ビス(フェノキシ)エタン-P,P’-ジカルボン酸等の芳香族ジカルボン酸やそれらの酸無水物又はエステル形成性誘導体、p-ヒドロキシ安息香酸等の芳香族ヒドロキシカルボン酸やそれらのエステル形成性誘導体、5-スルホイソフタル酸、スルホテレフタル酸、4-スルホフタル酸、5[4-スルホフェノキシ]イソフタル酸等のスルホン酸基含有芳香族ジカルボン酸やそれらのエステル形成性誘導体が挙げられる。 Examples of the aromatic dicarboxylic acid that can be used in producing the polyester polyol (b-1) include terephthalic acid, isophthalic acid, orthophthalic acid, 1,4-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid. Aromatic dicarboxylic acids such as acid, 2,6-naphthalenedicarboxylic acid, naphthalic acid, biphenyldicarboxylic acid, 1,2-bis (phenoxy) ethane-P, P'-dicarboxylic acid and their acid anhydrides or ester-forming properties Derivatives, aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid and their ester-forming derivatives, sulfonic acids such as 5-sulfoisophthalic acid, sulfoterephthalic acid, 4-sulfophthalic acid, and 5 [4-sulfophenoxy] isophthalic acid Group-containing aromatic dicarboxylic acids and their ester-forming derivatives It is.
 また、この様な芳香族ジカルボン酸の他に、脂肪族カルボン酸や脂環族カルボン酸を併用することができる。例えばコハク酸、無水コハク酸、アジピン酸、スベリン酸、アゼライン酸、セバシン酸、ダイマー酸、無水マレイン酸、フマル酸等の脂肪族ジカルボン酸、1,4-シクロヘキサンジカルボン酸等の脂環族ジカルボン酸、それらの無水物あるいはエステル形成性誘導体が挙げられる。これらは単独使用でもよく、2種以上を併用してもよい。 In addition to such aromatic dicarboxylic acids, aliphatic carboxylic acids and alicyclic carboxylic acids can be used in combination. For example, aliphatic dicarboxylic acids such as succinic acid, succinic anhydride, adipic acid, suberic acid, azelaic acid, sebacic acid, dimer acid, maleic anhydride, fumaric acid, and alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid And anhydrides or ester-forming derivatives thereof. These may be used alone or in combination of two or more.
 また、前記ポリエステルポリオール(b-1)を製造する際に併用可能なポリオールとして、例えば、ビスフェノールA、ビスフェノールS、ハイドロキノン、ビスヒドロキシエトキシベンゼン、あるいはそれらとアルキレンオキサイド付加物などの芳香族環式構造を有するポリオール;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール等の脂肪族ジオール;1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環式ジオール;また多官能成分としてグリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール等が挙げられる。 Examples of polyols that can be used in combination with the production of the polyester polyol (b-1) include aromatic cyclic structures such as bisphenol A, bisphenol S, hydroquinone, bishydroxyethoxybenzene, and alkylene oxide adducts thereof. A polyol having ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, diethylene glycol , Triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3 Aliphatic diols such as propanediol; Alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A; Polyols such as glycerin, trimethylolpropane and pentaerythritol as polyfunctional components Etc.
 また、前記ポリオール及び触媒存在下で、ε-カプロラクトン、γ-バレロラクトン等の環状エステルを開環重合させて得られる脂肪族ポリオールも使用することができる。これらは単独使用でもよく2種以上を併用してもよい。 In addition, an aliphatic polyol obtained by ring-opening polymerization of a cyclic ester such as ε-caprolactone or γ-valerolactone in the presence of the polyol and a catalyst can also be used. These may be used alone or in combination of two or more.
 前記ポリエステルポリオール(b-1)は、水酸基価が10~350の範囲であることが好ましく、水酸基価が20~300の範囲であることが特に好ましい。水酸基価がこの範囲であれば得られるポリウレタン樹脂の凝集力が高くなり、コーティング剤で使用した場合の耐熱性、耐溶剤性、耐水性及び耐ブロッキング性が良好となる。 The polyester polyol (b-1) preferably has a hydroxyl value in the range of 10 to 350, particularly preferably in the range of 20 to 300. When the hydroxyl value is within this range, the resulting polyurethane resin has high cohesive strength, and heat resistance, solvent resistance, water resistance and blocking resistance when used as a coating agent are improved.
 本発明で使用するポリウレタンコーティング剤(b)を製造するには、ポリエステルポリオール(b-1)の中でも、芳香族ジカルボン酸を主成分とするジカルボン酸とポリオールとを縮合させて得られたポリエステルポリオールであって、前記ジカルボン酸の全量のうち70~100モル%が、テレフタル酸及び/又はイソフタル酸であるものを使用することが好ましい。このようなポリエステルポリオールを使用することにより、耐熱性、耐水性、耐溶剤性、透明性等に優れたコート層を形成可能なコーティング剤が容易に得られる。 In order to produce the polyurethane coating agent (b) used in the present invention, among the polyester polyol (b-1), a polyester polyol obtained by condensing a dicarboxylic acid containing an aromatic dicarboxylic acid as a main component and the polyol. In this case, it is preferable to use one in which 70 to 100 mol% of the total amount of the dicarboxylic acid is terephthalic acid and / or isophthalic acid. By using such a polyester polyol, a coating agent capable of forming a coating layer excellent in heat resistance, water resistance, solvent resistance, transparency and the like can be easily obtained.
 本発明で使用するポリウレタンコーティング剤(b)を製造する際には、前記したポリエステルポリオール(b-1)以外のポリオールも耐熱性を阻害しない範囲で使用することができる。 In the production of the polyurethane coating agent (b) used in the present invention, polyols other than the polyester polyol (b-1) described above can be used as long as the heat resistance is not impaired.
 前記ポリオールとしては、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等が挙げられ、これらを単独使用、或いは2種以上を併用しても構わない。特に、広範囲の基材に対する優れた接着性と価格面からポリエステルポリオールを主体として使用することが好ましい。 Examples of the polyol include polyester polyol, polyether polyol, polycarbonate polyol, and the like. These may be used alone or in combination of two or more. In particular, it is preferable to use polyester polyol as a main component from the viewpoint of excellent adhesion to a wide range of substrates and cost.
 前記ポリエステルポリオールは、前記したポリエステルポリオール(b-1)を製造する際に併用することができるものとして例示した、脂肪族カルボン酸や脂環族カルボン酸と各種ポリオールとを、種々の方法で反応させることにより製造することができる。この際、ポリウレタンコーティング剤(b)の高分子量化を阻害しない範囲で、メタノール、エタノール、n-ブタノール、イソプロパノール、n-ヘキサノール等のモノアルコールを併用しても構わない。 The polyester polyol is exemplified as a compound that can be used in combination with the production of the polyester polyol (b-1), and the aliphatic carboxylic acid or alicyclic carboxylic acid is reacted with various polyols by various methods. Can be manufactured. At this time, monoalcohols such as methanol, ethanol, n-butanol, isopropanol, and n-hexanol may be used in combination as long as the high molecular weight of the polyurethane coating agent (b) is not inhibited.
 前記したようにポリウレタンコーティング剤(b)を製造するにあたって、予め、ポリエステルポリオール(b-1)及び必要によりその他のポリオールと、各種ポリイソシアネート(b-2)とを、全ポリオールが有する水酸基に対して、前記ポリイソシアネートが有するイソシアネート基が過剰となる条件で反応させて、予めイソシアネート基を含有するプレポリマーを製造し、これに低分子量ポリオールあるいはポリアミンを反応させて鎖伸長させて高分子量化する方法を採用することもできる。 As described above, in producing the polyurethane coating agent (b), the polyester polyol (b-1) and other polyols as required, and various polyisocyanates (b-2) are previously added to the hydroxyl groups of all polyols. The preisocyanate-containing prepolymer is prepared by reacting under the condition that the isocyanate group of the polyisocyanate is excessive, and a low molecular weight polyol or polyamine is reacted with the prepolymer to increase the molecular weight. The method can also be adopted.
 この際、低分子量ポリオールとしては、2,2’-ジメチロールプロピオン酸、2,2’-ジメチロールブタン酸、2,2’-ジメチロール酪酸、2,2’-ジメチロール吉草酸等の親水基として使用し得るカルボキシル基を含有するポリオール、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ネオペンチルグリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、3-メチル-1,5-ペンタンジオール、2-ブチル-2-エチル-1,3-プロパンジオール等の脂肪族ジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノール、水素添加ビスフェノールA等の脂環式ジオールを使用することができ、さらに多官能成分としてグリセリン、トリメチロールプロパン、ペンタエリスリトール等のポリオール等を併用することもできる。 In this case, the low molecular weight polyol includes 2,2′-dimethylolpropionic acid, 2,2′-dimethylolbutanoic acid, 2,2′-dimethylolbutyric acid, 2,2′-dimethylolvaleric acid and the like as hydrophilic groups. Polyols containing carboxyl groups that can be used, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol , Neopentyl glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol, 3-methyl-1,5-pentanediol, 2-butyl-2-ethyl-1,3-propane Aliphatic diols such as diols Alicyclic diols such as 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol and hydrogenated bisphenol A can be used, and polyols such as glycerin, trimethylolpropane and pentaerythritol can be used as polyfunctional components. It can also be used together.
 また、前記ポリアミンとしては、例えばN-(2-スルホエチル)エチレンジアミンの金属塩や2-(β-アミノアルキル-アミノプロピオンアミド)-アルカンスルホン酸塩等のジアミノスルホネート等、また、エチレンジアミン等の脂肪族1級ジアミンと(メタ)アクリル酸等のα-オレフィン系カルボン酸の付加物などのアニオン性基を有するポリアミン;1,2-ジアミノエタン、1,2-ないしは1,3-ジアミノプロパン、1,2-又は1,3-又は1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノヘキサン、ピペラジン、N,N’-ビス-(2-アミノエチル)ピペラジン、1-アミノ-3-アミノメチル-3,5,5-トリメチル-シクロヘキサン(イソホロンジアミン)、ビス-(4-アミノシクロヘキシル)メタン、ビス-(4-アミノ-3-ブチルシクロヘキシル)メタン、1,2-、1,3-ないしは1,4-ジアミノシクロヘキサン又は1,3-ジアミノプロパン等のジアミン類、ジエチレントリアミン、トリエチレンテトラミン等のポリアミン、更にはヒドラジン、又はアジピン酸ジヒドラジド等のヒドラジン誘導体、などのアニオン性基を有さないポリアミンを使用することができる。 Examples of the polyamine include metal salts of N- (2-sulfoethyl) ethylenediamine, diaminosulfonates such as 2- (β-aminoalkyl-aminopropionamide) -alkanesulfonate, and aliphatics such as ethylenediamine. A polyamine having an anionic group such as an adduct of primary diamine and α-olefinic carboxylic acid such as (meth) acrylic acid; 1,2-diaminoethane, 1,2- or 1,3-diaminopropane, 1, 2- or 1,3- or 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, piperazine, N, N′-bis- (2-aminoethyl) piperazine, 1-amino- 3-aminomethyl-3,5,5-trimethyl-cyclohexane (isophoronediamine), bis- (4-aminocyclohexane) ) Methane, bis- (4-amino-3-butylcyclohexyl) methane, diamines such as 1,2-, 1,3- or 1,4-diaminocyclohexane or 1,3-diaminopropane, diethylenetriamine, triethylene Polyamines having no anionic group such as polyamines such as tetramine and hydrazine derivatives such as hydrazine or adipic acid dihydrazide can be used.
 更に、分子内にアミノ基とアルコール性の水酸基を併有するアミノアルコールも使用することができ、例えば、エタノールアミン、N-メチルジエタノールアミン、プロパノールアミン、N-メチルジイソプロパノールアミン、N-エチルジエチレンアミン、N-エチルジイソプロパノールアミン、アミノエチルエタノールアミン、ジエタノールアミン等も使用することができる。 Furthermore, amino alcohols having both an amino group and an alcoholic hydroxyl group in the molecule can be used, for example, ethanolamine, N-methyldiethanolamine, propanolamine, N-methyldiisopropanolamine, N-ethyldiethyleneamine, N-ethyldiisopropanolamine, aminoethylethanolamine, diethanolamine and the like can also be used.
 前記ポリアミンとしては、耐久性を阻害しないためにも官能基数が2以上のものを使用することが好ましく、この場合に官能基数が2以上のポリアミンを単独使用してもよく、あるいは2種類以上を併用し平均官能基数を2以上にして使用してもよい。 As the polyamine, it is preferable to use a polyamine having two or more functional groups in order not to impair durability. In this case, a polyamine having two or more functional groups may be used alone, or two or more kinds may be used. It may be used in combination with an average functional group number of 2 or more.
 前記イソシアネート基を含有するプレポリマーを鎖伸長させて高分子量化する場合、ポリアミンの使用量としては、イソシアネート基に対して、好ましくは1.9当量比以下であり、より好ましくは0.6~1.0当量比の範囲である。この範囲でポリアミンを使用し鎖伸長を行えば、得られるコーティング剤を用いて得られるコート層(B)の耐久性及び耐光性を優れたものとすることができる。 When the prepolymer containing an isocyanate group is chain-extended to increase the molecular weight, the amount of polyamine used is preferably 1.9 equivalent ratio or less with respect to the isocyanate group, more preferably 0.6 to The range is 1.0 equivalent ratio. If chain extension is carried out using polyamine within this range, the durability and light resistance of the coating layer (B) obtained using the resulting coating agent can be made excellent.
 本発明で使用するポリウレタンコーティング剤(b)を製造する際に使用するポリイソシアネート(b-2)としては、種々のものを使用することができる。例えば、1,4-テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート、1,12-ドデカメチレンジイソシアネート、シクロヘキサン-1,3-ないしは1,4-ジイソシアネート、1-イソシアナト-3-イソシアナトメチル-3,5,5-トリメチルシクロヘキサン(別名イソホロンジイソシアネート;IPDI)、ジシクロヘキシルメタン-4,4’-ジイソシアネート(別名水添MDI)、2-ないしは4-イソシアナトシクロヘキシル-2’-イソシアナトシクロヘキシルメタン、1,3-ないしは1,4-ビス-(イソシアナトメチル)-シクロヘキサン、ビス-(4-イソシアナト-3-メチルシクロヘキシル)メタン、1,3-ないしは1,4-α,α,α’α’-テトラメチルキシリレンジイソシアネート、2,4-ないしは2,6-ジイソシアナトトルエン、2,2’-、2,4’-ないしは4,4’-ジイソシアナトジフェニルメタン(MDI)、1,5-ナフタレンジイソシアネート、p-ないしはm- フェニレンジイソシアネート、キシリレンジイソシアネートまたはジフェニル-4,4’-ジイソシアネートなどを使用することができる。 As the polyisocyanate (b-2) used for producing the polyurethane coating agent (b) used in the present invention, various materials can be used. For example, 1,4-tetramethylene diisocyanate, 1,6-hexamethylene diisocyanate, 1,12-dodecamethylene diisocyanate, cyclohexane-1,3- or 1,4-diisocyanate, 1-isocyanato-3-isocyanatomethyl-3 , 5,5-trimethylcyclohexane (also known as isophorone diisocyanate; IPDI), dicyclohexylmethane-4,4′-diisocyanate (also known as hydrogenated MDI), 2- or 4-isocyanatocyclohexyl-2′-isocyanatocyclohexylmethane, 3- or 1,4-bis- (isocyanatomethyl) -cyclohexane, bis- (4-isocyanato-3-methylcyclohexyl) methane, 1,3- or 1,4-α, α, α'α'-tetra Methyl xylylene diisocyanate 2,4- or 2,6-diisocyanatotoluene, 2,2'-, 2,4'- or 4,4'-diisocyanatodiphenylmethane (MDI), 1,5-naphthalene diisocyanate, p- Alternatively, m- phenylene diisocyanate, xylylene diisocyanate, diphenyl-4,4′-diisocyanate, or the like can be used.
 これらの中でも、とりわけ機械的強度などの点を考慮する場合は芳香族ジイソシアネートの使用が望ましく、また、とりわけ耐久性や耐光性などの点を考慮する場合は、脂肪族ないしは脂環式ジイソシアネート化合物の使用が望ましい。 Among these, the use of aromatic diisocyanate is desirable particularly when considering the mechanical strength and the like, and when considering the durability and light resistance, the aliphatic or cycloaliphatic diisocyanate compound is particularly desirable. Use is desirable.
 前記ポリウレタンコーティング剤(b)を製造する際に使用する有機溶剤としては、コーティング層中に含まれる残留溶剤を除去することを考慮すると、沸点が150℃以下の有機溶剤を使用することが好ましい。 As the organic solvent used when producing the polyurethane coating agent (b), it is preferable to use an organic solvent having a boiling point of 150 ° C. or less in consideration of removing the residual solvent contained in the coating layer.
 前記沸点が150℃以下の有機溶媒としては、例えばベンゼン、トルエン、酢酸エチル、アセトン、メチルエチルケトン、ジエチルエーテル、テトラヒドロフラン、酢酸メチル、アセトニトリル、クロロホルム、塩化メチレンなどが挙げられる。これらを単独または混合して使用することができる。この中でポリウレタンコーティング剤(b)の溶解性の高い溶媒として、特にアセトン、メチルエチルケトン、酢酸エチルを用いることは好適である。ウレタン化反応終了後に加工適性を高める目的で、メタノール、エタノール、イソプロピルアルコール等のアルコール溶剤を使用しても構わない。又、これらの有機溶剤の一部または全部を留去した後、水や水と相溶する親水性溶媒との混合溶剤からなる水性溶剤へ変更した水性(水溶性、水分散性)のポリウレタンコーティング剤であっても良い。 Examples of the organic solvent having a boiling point of 150 ° C. or lower include benzene, toluene, ethyl acetate, acetone, methyl ethyl ketone, diethyl ether, tetrahydrofuran, methyl acetate, acetonitrile, chloroform, and methylene chloride. These can be used alone or in combination. Among them, it is particularly preferable to use acetone, methyl ethyl ketone, or ethyl acetate as a solvent having high solubility for the polyurethane coating agent (b). Alcohol solvents such as methanol, ethanol and isopropyl alcohol may be used for the purpose of improving processability after completion of the urethanization reaction. Also, after part or all of these organic solvents are distilled off, the aqueous (water-soluble, water-dispersible) polyurethane coating is changed to an aqueous solvent comprising a mixed solvent of water or a hydrophilic solvent compatible with water. It may be an agent.
 前記ポリウレタンコーティング剤(b)1000g当たりのウレタン結合単位(-NH-COO-)の含有量は、1.0~4.0モルの範囲、さらに好ましくは、1.5~3.0モルの範囲である。 The content of urethane bond units (—NH—COO—) per 1000 g of the polyurethane coating agent (b) is in the range of 1.0 to 4.0 mol, more preferably in the range of 1.5 to 3.0 mol. It is.
 また、前記したようにプレポリマーをポリアミンと反応させて鎖伸長させた場合には、尿素結合が生成するが、この場合には、前記ポリウレタンコーティング剤(b)1000g当たりのウレタン結合単位(-NH-COO-)及び尿素結合単位(-NH-CO-NH-)の含有量の合計が、1.0~6.0モルの範囲、さらに好ましくは、1.5~4.0モルの範囲であることが好ましい。この範囲であれば、ポリウレタン分子の凝集力が高くなるため得られるコート層の硬度が好適となり、耐溶剤性、耐ブロッキング性、耐熱性を向上させることができる。 In addition, when the prepolymer is reacted with a polyamine to extend the chain as described above, a urea bond is formed. In this case, urethane bond units (—NH) per 1000 g of the polyurethane coating agent (b) are formed. The total content of —COO—) and urea binding units (—NH—CO—NH—) is in the range of 1.0 to 6.0 mol, more preferably in the range of 1.5 to 4.0 mol. Preferably there is. If it is this range, since the cohesive force of a polyurethane molecule will become high, the hardness of the coat layer obtained will become suitable, and solvent resistance, blocking resistance, and heat resistance can be improved.
 ポリウレタンコーティング剤(b)における芳香族環式構造単位の含有量は、15~40質量%の範囲が好ましく、さらに20~35質量%の範囲がより好ましい。この範囲であれば、得られるコーティング剤の多層フィルムに対する接着性に優れ、得られるコート層(B)の耐溶剤性、耐水性、耐ブロッキング性、耐熱性等に優れたものになる。 The content of the aromatic cyclic structural unit in the polyurethane coating agent (b) is preferably in the range of 15 to 40% by mass, and more preferably in the range of 20 to 35% by mass. If it is this range, it will be excellent in the adhesiveness with respect to the multilayer film of the coating agent obtained, and will be excellent in the solvent resistance of the obtained coating layer (B), water resistance, blocking resistance, heat resistance, etc.
 また、ポリウレタンコーティング剤(b)は、100℃以上の流動開始温度を有することが好ましく、さらに150℃以上であることがより好ましい。この範囲であれば、PET等の耐熱基材を使用してなるラミネートフィルムと同等の耐ブロッキング性に優れたものになる。 The polyurethane coating agent (b) preferably has a flow start temperature of 100 ° C. or higher, and more preferably 150 ° C. or higher. If it is this range, it will become the thing excellent in blocking resistance equivalent to the laminate film which uses heat-resistant base materials, such as PET.
 さらには、ポリウレタンコーティング剤(b)は、50℃以下の最低造膜温度を有することが好ましく、さらに30℃以下であることがより好ましい。この範囲であれば、造膜時に発生しやすいピンホールを形成することなくコーティングすることが可能となる。 Furthermore, the polyurethane coating agent (b) preferably has a minimum film-forming temperature of 50 ° C. or lower, and more preferably 30 ° C. or lower. If it is this range, it will become possible to coat without forming pinholes that are likely to occur during film formation.
 またポリウレタンコーティング剤(b)から得られるコート層(B)の耐熱性を尚一層向上させるためにアミノ樹脂、エポキシ化合物、アジリジン化合物、カルボジイミド化合物、オキサゾリン化合物、ポリイソシアネート化合物等の架橋剤を併用しても何ら差し支えない。中でもメラミン架橋剤に代表されるアミノ樹脂またはイソシアネート化合物が、反応性が速い点で最も好ましい。また、2種類以上の架橋剤を併用、あるいは適量の硬化促進剤を併用しても構わない。 In order to further improve the heat resistance of the coating layer (B) obtained from the polyurethane coating agent (b), a crosslinking agent such as an amino resin, an epoxy compound, an aziridine compound, a carbodiimide compound, an oxazoline compound, or a polyisocyanate compound is used in combination. There is no problem. Of these, amino resins and isocyanate compounds typified by melamine crosslinking agents are most preferred because of their fast reactivity. Two or more kinds of crosslinking agents may be used in combination, or an appropriate amount of a curing accelerator may be used in combination.
 前記架橋剤の添加量は、ポリウレタンコーティング剤(b)に対して、1~20質量%の添加が好ましく、更に3~10質量%の添加がより好ましい。この範囲であれば、コート層(B)上に印刷等を施す際の適性を阻害することなく、形成されるコート層(B)の耐ブロッキング性、耐熱性、耐湿熱性、耐溶剤性を向上させることが可能となる。 The addition amount of the cross-linking agent is preferably 1 to 20% by mass, more preferably 3 to 10% by mass, based on the polyurethane coating agent (b). If it is this range, the blocking resistance, heat resistance, heat-and-moisture resistance, and solvent resistance of the formed coating layer (B) will be improved without impairing the suitability when printing on the coating layer (B). It becomes possible to make it.
 またポリウレタンコーティング剤(b)には、透明性及び耐熱性を阻害しない範囲で、アクリル樹脂、ポリエステル樹脂、SBR等の合成ゴム樹脂等を含ませることができる。これらの樹脂はコーティング剤中に固形分質量比で30%以下であることが好ましく、10%以下であることが特に好ましい。 Further, the polyurethane coating agent (b) can contain an acrylic resin, a polyester resin, a synthetic rubber resin such as SBR, or the like as long as the transparency and heat resistance are not impaired. These resins are preferably 30% or less, particularly preferably 10% or less, in terms of solid content in the coating agent.
 更に又、ポリウレタンコーティング剤(b)には、必要に応じて耐ブロッキング性あるいは耐滑り性を改良するための無機系微粒子(コロイダルシリカ)、濡れ性を改良するため帯電防止剤等の助剤を配合することもできる。 Further, the polyurethane coating agent (b) may contain an auxiliary agent such as inorganic fine particles (colloidal silica) for improving blocking resistance or slip resistance, and an antistatic agent for improving wettability, if necessary. It can also be blended.
 ポリウレタンコーティング剤(B)は、任意の樹脂濃度に調整した後、例えばグラビアコート法、ロッドコート法、スプレーコート法、エアーナイフコート法、ロールコート法等の塗工方法により、多層フィルムの層(A2)上に塗布することができる。この際、樹脂の濃度は、0.1~40質量%に調整するのが好ましい。 After the polyurethane coating agent (B) is adjusted to an arbitrary resin concentration, the multilayer coating layer (B) is applied by a coating method such as gravure coating method, rod coating method, spray coating method, air knife coating method, roll coating method ( A2) can be applied on top. At this time, the concentration of the resin is preferably adjusted to 0.1 to 40% by mass.
 又、耐熱性オレフィン系多層フィルムの製造に際して耐熱コート層(B)表面を、加熱下または不活性ガスの雰囲気下でコロナ放電もしくはプラズマ放電等を用いて連続的に表面処理を施しても良い。 In addition, the surface of the heat-resistant coating layer (B) may be subjected to continuous surface treatment using corona discharge or plasma discharge under heating or in an inert gas atmosphere during the production of the heat-resistant olefin-based multilayer film.
 本発明の耐熱性オレフィン系多層フィルムは、上記の製造方法によって、実質的に無延伸の多層フィルムとして得られるため、真空成形による深絞り成形、箔押し、エンボス加工等の二次成形も可能となる。 Since the heat-resistant olefin-based multilayer film of the present invention is obtained as a substantially unstretched multilayer film by the above production method, secondary molding such as deep drawing by vacuum molding, foil pressing, embossing, etc. is also possible. .
 さらに、耐熱コート層(B)に印刷等を行なう場合には、印刷インキとの接着性等を向上させるため、前記樹脂層(B)に表面処理を施すことが好ましい。このような表面処理としては、例えば、コロナ処理、プラズマ処理、クロム酸処理、火炎処理、熱風処理、オゾン・紫外線処理等の表面酸化処理、あるいはサンドブラスト等の表面凹凸処理を挙げることができるが、好ましくはコロナ処理である。 Furthermore, when printing or the like is performed on the heat resistant coating layer (B), it is preferable to perform a surface treatment on the resin layer (B) in order to improve adhesion with printing ink. Examples of such surface treatment include corona treatment, plasma treatment, chromic acid treatment, flame treatment, hot air treatment, surface oxidation treatment such as ozone / ultraviolet treatment, and surface unevenness treatment such as sandblasting. Corona treatment is preferable.
 本発明の耐熱性オレフィン系多層フィルムからなる包装材としては、食品、薬品、工業部品、雑貨、雑誌等の用途に用いる包装袋、容器、容器の蓋材等が挙げられる。特に、高速で内容物を充填、包装、シールされる、薬品や工業部品や常温・冷蔵・冷凍保存される食品や菓子類等に好適に用いることができる。 Examples of the packaging material comprising the heat-resistant olefin-based multilayer film of the present invention include packaging bags, containers, container lids and the like used for foods, medicines, industrial parts, miscellaneous goods, magazines and the like. In particular, it can be suitably used for medicines, industrial parts, foods and confectionery stored at room temperature, refrigerated and frozen, which are filled, packaged and sealed at high speed.
 前記包装材は、本発明の耐熱性オレフィン系多層フィルムの層(A1)をヒートシール層として、層(A1)同士を重ねてヒートシール、あるいは層(A1)と耐熱コート層(B)とを重ね合わせてヒートシールすることにより、層(A1)を内側として形成した包装袋であることが好ましい。例えば当該多層フィルム2枚を所望とする包装袋の大きさに切り出して、それらを重ねて3辺をヒートシールして袋状にした後、ヒートシールをしていない1辺から内容物を充填しヒートシールして密封することで包装袋として用いることができる。さらには自動包装機によりロール状のフィルムを円筒形に端部をシールした後、上下をシールすることにより包装袋を形成することも可能である。 The packaging material includes a heat-sealable olefin-based multilayer film layer (A1) of the present invention as a heat seal layer, and the layers (A1) are stacked together to heat-seal, or the layer (A1) and the heat-resistant coat layer (B). It is preferably a packaging bag formed with the layer (A1) on the inside by overlapping and heat-sealing. For example, after cutting out the two multilayer films into the desired size of a packaging bag and overlapping them to heat-seal three sides to form a bag, the contents are filled from one side that is not heat-sealed. It can be used as a packaging bag by heat sealing. Furthermore, it is also possible to form a packaging bag by sealing the upper and lower sides after sealing the end of a roll-shaped film into a cylindrical shape by an automatic packaging machine.
 また、層(A1)とヒートシール可能な別のフィルム、シート、容器とヒートシールすることにより包装袋・容器・容器の蓋を形成することも可能である。その際、使用する別のフィルムとしては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリエステル系樹脂等の熱可塑性樹脂を利用したフィルムやシートを用いることができる。 It is also possible to form a lid of a packaging bag / container / container by heat-sealing with another film, sheet, or container heat-sealable with the layer (A1). In that case, as another film to be used, a film or sheet using a thermoplastic resin such as a polyethylene resin, a polypropylene resin, or a polyester resin can be used.
 本発明の耐熱性オレフィン系多層フィルムを用いた包装材には、初期の引き裂き強度を弱め、開封性を向上するため、シール部にVノッチ、Iノッチ、ミシン目、微多孔などの任意の引き裂き開始部を形成してもよい。 In the packaging material using the heat-resistant olefin-based multilayer film of the present invention, any tear such as V-notch, I-notch, perforation, micro-porosity, etc. is used in the seal portion in order to weaken initial tear strength and improve openability. A starting portion may be formed.
 以下に実施例と比較例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、例中の部及び%は特に断りの無い限り質量基準である。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples, but the present invention is not limited thereto. In the examples, “part” and “%” are based on mass unless otherwise specified.
 〔ポリウレタンコーティング剤の塗工性評価〕
 バーコーターでA4サイズのフィルムに5g/mとなるようにコーティング剤を塗工し、目視にてはじきの数を計測した。
 ○:はじきが無い。
 ×:はじきが一箇所以上ある。
[Evaluation of coating properties of polyurethane coatings]
The coating agent was applied to an A4 size film at 5 g / m 2 with a bar coater, and the number of repellings was visually measured.
○: No repelling.
X: There are one or more repels.
 〔フィルムの耐熱性評価〕
 コーティング剤を塗工した後、80℃で2分間乾燥させた時のフィルムの外観について目視にて評価した。
 ○:よれ、皺、フィルムの変形等の外観不良がほとんど無い。
 △:若干のよれ、皺、フィルムの変形等の外観不良が見られる。
 ×:著しいよれ、皺、フィルムの変形等の外観不良が見られる。
[Evaluation of heat resistance of film]
After coating the coating agent, the appearance of the film was visually evaluated when dried at 80 ° C. for 2 minutes.
○: Almost no defects in appearance such as kinks, wrinkles and film deformation.
Δ: Appearance defects such as slight kinks, wrinkles and film deformation are observed.
X: Appearance defects such as significant kinks, wrinkles, and film deformation are observed.
 〔コート層の密着性評価〕
 セロハンテープ(ニチバン製)剥離試験を行い、目視にて評価した。
 ○:コート層の剥離無し。
 △:コート層の一部剥離有り。
 ×:コート層の剥離有り。
[Coating layer adhesion evaluation]
A cellophane tape (manufactured by Nichiban) peel test was conducted and visually evaluated.
○: No peeling of the coat layer.
Δ: Partial peeling of coat layer.
X: There exists peeling of a coating layer.
 包装機械適性
 実施例、比較例で作成したフィルムを自動包装機にて、下記縦ピロー包装を行い、製袋した。
 包装機:合理化技研株式会社 ユニパッカーNUV472
Suitability for packaging machine The films prepared in Examples and Comparative Examples were subjected to the following vertical pillow packaging with an automatic packaging machine to form a bag.
Packaging machine: Rika Kaken Co., Ltd. Unipacker NUV472
 横シール:速度30袋/分、縦ヒートシール温度150℃、エアーゲージ圧4kg/cm2、横ヒートシール温度140℃から200℃まで10℃刻みで変更しながら樹脂層(B)同士をシールした。縦200mm×横150mmの平袋とした。 Horizontal sealing: Resin layers (B) were sealed while changing in increments of 10 ° C. from a temperature of 30 bags / minute, a vertical heat sealing temperature of 150 ° C., an air gauge pressure of 4 kg / cm 2, and a horizontal heat sealing temperature of 140 ° C. to 200 ° C. A flat bag measuring 200 mm long and 150 mm wide was used.
 収縮・シワ試験
 横(合掌貼り)シール、縦シールを行なった平袋のシール部の外観観察により収縮およびヒートシールバーへのフィルム融着状況およびシワ等の入り具合により評価した。
 ○:シール部の収縮、シールバーへの融着およびシワ等なし
 △:シール部の収縮、シールバーへの融着およびシワ等若干あり
 ×:シール部の収縮、シールバーへの融着およびシワ等あり
Shrinkage / Wrinkle Test The appearance of the sealed portion of the flat bag which was subjected to horizontal (gap-attached) seal and vertical seal was evaluated by shrinkage and the state of film fusion to the heat seal bar and the condition of wrinkles.
○: There is no shrinkage of the seal part, fusion to the seal bar and wrinkles, etc. Δ: There is some shrinkage of the seal part, fusion to the seal bar and wrinkles, etc. ×: Shrinkage of the seal part, fusion to the seal bar and wrinkles Etc.
 横シール性
 上記条件で製袋したフィルムを23℃で自然冷却後、15mm幅の短冊状に試験片を切り出した。この試験片を23℃、50%RHの恒温室において引張試験機(株式会社エー・アンド・ディー製)を用いて、300mm/分の速度で90°剥離を行い、ヒートシール強度を測定した。得られたヒートシール強度の値から、下記の基準によってヒートシール性を評価した。
 ○:ヒートシール強度が300g/15mm幅以上。
 ×:ヒートシール強度が300g/15mm幅未満。またはフィルムの溶融・収縮大きくて測定不能
Lateral sealing property After film-making under the above conditions at 23 ° C., the film was naturally cooled, and then a test piece was cut into a strip of 15 mm width. The test piece was peeled 90 ° at a rate of 300 mm / min using a tensile tester (manufactured by A & D Co., Ltd.) in a thermostatic chamber at 23 ° C. and 50% RH, and the heat seal strength was measured. The heat sealability was evaluated according to the following criteria from the obtained heat seal strength value.
○: Heat seal strength is 300 g / 15 mm width or more.
X: Heat seal strength is less than 300 g / 15 mm width. Or the film melts and shrinks too much to measure
 〔ポリウレタンコーティング剤(b-1)の調製例1〕
 温度計、窒素ガス導入管、攪拌機を備えた反応容器中で窒素ガスを導入しながら、テレフタル酸830部、イソフタル酸830部、エチレングリコール374部、ネオペンチルグリコール598部及びジブチル錫オキサイド0.5部を仕込み180~230℃で酸価が1以下になるまで230℃で15時間重縮合反応を行い、水酸基価74.5、酸価0.2のポリエステルポリオール(b-1A)を得た。ポリエステルポリオール(b-1A)の1000部を減圧下100℃で脱水し、その後80℃まで冷却後、メチルエチルケトン886部を加え十分に攪拌し溶解させ、ネオペンチルグリコール80部を加え、次いでトリレンジイソソシアネート250部を加えて75℃で8時間反応させ、ウレタン化工程を実施した。イソシアネート値が0.1%以下になったのを確認した後、50℃まで冷却後、メチルエチルケトン2216部にて希釈して、不揮発分30%の流動開始温度105℃のポリウレタン樹脂を含有するポリウレタンコーティング剤(b-1)を調製した。
[Preparation Example 1 of polyurethane coating agent (b-1)]
While introducing nitrogen gas in a reaction vessel equipped with a thermometer, a nitrogen gas inlet tube, and a stirrer, 830 parts of terephthalic acid, 830 parts of isophthalic acid, 374 parts of ethylene glycol, 598 parts of neopentyl glycol and 0.5% of dibutyltin oxide The polyester polyol (b-1A) having a hydroxyl value of 74.5 and an acid value of 0.2 was obtained by carrying out a polycondensation reaction at 230 ° C. for 15 hours until the acid value became 1 or less at 180 to 230 ° C. 1000 parts of the polyester polyol (b-1A) was dehydrated at 100 ° C. under reduced pressure, then cooled to 80 ° C., added with 886 parts of methyl ethyl ketone, sufficiently stirred and dissolved, added with 80 parts of neopentyl glycol, 250 parts of the cyanate was added and reacted at 75 ° C. for 8 hours to carry out the urethanization step. After confirming that the isocyanate value is 0.1% or less, after cooling to 50 ° C., dilute with 2216 parts of methyl ethyl ketone, and a polyurethane coating containing a polyurethane resin with a non-volatile content of 30% and a flow start temperature of 105 ° C. Agent (b-1) was prepared.
 〔ポリウレタンコーティング剤(b-2)の調製例2〕
 ポリエステルポリオール(b-1A)の1000部を減圧下100℃で脱水し、その後80℃まで冷却後、メチルエチルケトン886部を加え十分に攪拌し溶解させ、ネオペンチルグリコール80部を加え、次いでトリレンジイソソシアネート250部を加えて75℃で8時間反応させ、ウレタン化工程を実施した。イソシアネート値が1.0%以下になったのを確認した後、50℃まで冷却後、トリエチルアミン73部にて中和した後、水7000部にて乳化し、エチレンジアミン10.6部、ジエチレントリアミン3.5部を加えることで鎖伸長を完了した。得られた透明な反応生成物を減圧下、40~60℃にてメチルエチルケトンを除去した後、水を加えて濃度調節を行い、不揮発分20%の流動開始温度195℃の水性ポリウレタン樹脂を含有するポリウレタンコーティング剤(b-2)を調製した。
[Preparation Example 2 of polyurethane coating agent (b-2)]
1000 parts of the polyester polyol (b-1A) was dehydrated at 100 ° C. under reduced pressure, then cooled to 80 ° C., added with 886 parts of methyl ethyl ketone, sufficiently stirred and dissolved, added with 80 parts of neopentyl glycol, 250 parts of the cyanate was added and reacted at 75 ° C. for 8 hours to carry out the urethanization step. After confirming that the isocyanate value became 1.0% or less, the mixture was cooled to 50 ° C., neutralized with 73 parts of triethylamine, emulsified with 7000 parts of water, 10.6 parts of ethylenediamine and diethylenetriamine. The chain extension was completed by adding 5 parts. After removing methyl ethyl ketone from the obtained transparent reaction product under reduced pressure at 40 to 60 ° C., the concentration is adjusted by adding water, and it contains an aqueous polyurethane resin having a flow starting temperature of 195 ° C. with a nonvolatile content of 20%. A polyurethane coating agent (b-2) was prepared.
 実施例1
 樹脂層(A1)用樹脂として、プロピレン-エチレンコポリマー〔MFR:8g/10分(230℃、21.18N)、融点:138℃;以下、「COPP」と記載〕を用いた。また、樹脂層(A2)用樹脂として、エチレン-(メタ)アクリル酸メチル共重合体〔密度:0.940g/cm、MA含有量18%;以下、「MA1」と記載〕を用いた。これらの樹脂をそれぞれ、樹脂層(A1)用押出機(口径50mm)及び樹脂層(A2)用押出機(口径50mm)に供給して200~250℃で溶融し、その溶融した樹脂をフィードブロックを有するTダイ・チルロール法の共押出多層フィルム製造装置(フィードブロック及びTダイ温度:250℃)にそれぞれ供給して共溶融押出を行って、フィルムの層構成が(A1)/(A2)の2層構成で、各層の厚さが36μm/9μm(合計45μm)である共押出多層フィルムを得た。この支持体の(A2)層の面に濡れ張力が40mN/mとなるようコロナ放電処理をした後、調製例1で得られたポリウレタンコーティング剤(b-1)を乾燥後の膜厚が5μmになるように塗布し、実施例1の耐熱性オレフィン系多層フィルムを作製した。
Example 1
As the resin for the resin layer (A1), a propylene-ethylene copolymer [MFR: 8 g / 10 min (230 ° C., 21.18 N), melting point: 138 ° C .; hereinafter referred to as “COPP”] was used. As the resin for the resin layer (A2), an ethylene- (meth) methyl acrylate copolymer (density: 0.940 g / cm 3 , MA content 18%; hereinafter referred to as “MA1”) was used. Each of these resins is supplied to an extruder for the resin layer (A1) (caliber 50 mm) and an extruder for the resin layer (A2) (caliber 50 mm) and melted at 200 to 250 ° C., and the melted resin is fed into the feed block. Co-extruded multilayer film manufacturing apparatus (feed block and T-die temperature: 250 ° C.) having T die / chill roll method and co-melt extrusion are carried out, and the layer structure of the film is (A1) / (A2) A two-layered co-extruded multilayer film was obtained in which the thickness of each layer was 36 μm / 9 μm (total 45 μm). The surface of the (A2) layer of the support was subjected to corona discharge treatment so that the wetting tension was 40 mN / m, and then the polyurethane coating agent (b-1) obtained in Preparation Example 1 was dried to a thickness of 5 μm. The heat resistant olefin-based multilayer film of Example 1 was produced.
 実施例2
 実施例1におけるポリウレタンコーティング剤(b-1)を、調製例2で得られたポリウレタンコーティング剤(b-2)とする以外は実施例1と同様に耐熱性オレフィン系多層フィルムを作成した。
Example 2
A heat-resistant olefin-based multilayer film was prepared in the same manner as in Example 1 except that the polyurethane coating agent (b-1) in Example 1 was changed to the polyurethane coating agent (b-2) obtained in Preparation Example 2.
 実施例3
 実施例1の樹脂層(A2)の酸変性オレフィン系樹脂をエチレン-アクリル酸メチル共重合体〔MA含有量12%、密度:0.933g/cm;以下、「MA2」と記載〕に置き換え、ポリウレタンコーティング剤(b-1)を乾燥後の膜厚が3μmになるように塗布し以外は実施例1と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 3
The acid-modified olefin resin of the resin layer (A2) of Example 1 was replaced with an ethylene-methyl acrylate copolymer (MA content 12%, density: 0.933 g / cm 3 ; hereinafter referred to as “MA2”). A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the polyurethane coating agent (b-1) was applied so that the film thickness after drying was 3 μm.
 実施例4
 実施例1の樹脂層(A2)の酸変性オレフィン系樹脂をエチレン-アクリル酸メチル-無水マレイン酸共重合体〔密度:1.00g/cm、コポリマー含有量15%;以下、「MA3」と記載〕に置き換えた以外は実施例1と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 4
The acid-modified olefin resin of the resin layer (A2) of Example 1 is an ethylene-methyl acrylate-maleic anhydride copolymer [density: 1.00 g / cm 3 , copolymer content: 15%; hereinafter referred to as “MA3”. A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the description was replaced.
 実施例5
 実施例2の樹脂層(A2)用の樹脂MA1を50%とプロピレン-エチレン共重合体〔密度:0.900g/cm、MFR:7~9g/10分(230℃、21.18N)、融点:150℃;以下「COPP」と記載〕50%との配合物に置き換えた以外は実施例2と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 5
50% of resin MA1 for resin layer (A2) of Example 2 and propylene-ethylene copolymer [density: 0.900 g / cm 3 , MFR: 7 to 9 g / 10 min (230 ° C., 21.18 N), Melting point: 150 ° C .; hereinafter referred to as “COPP”] A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 2 except that the composition was replaced with 50%.
 実施例6
 実施例2の樹脂層(A2)用の樹脂MA1を20%とCOPPを80%との配合物に置き換えた以外は実施例1と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 6
A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the resin MA1 for the resin layer (A2) of Example 2 was replaced with a blend of 20% and COPP of 80%.
 実施例7
 実施例5の樹脂層(A1)のCOPPを高密度ポリエチレン〔密度:0.963g/cm、MFR:7g/10分(190℃、21.18N)、融点130℃;以下、「HDPE」と記載〕に置き換えた以外は実施例5と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 7
COPP of the resin layer (A1) of Example 5 was made of high-density polyethylene [density: 0.963 g / cm 3 , MFR: 7 g / 10 min (190 ° C., 21.18 N), melting point 130 ° C .; hereinafter referred to as “HDPE”. A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 5 except that the description was replaced.
 実施例8
 実施例5の樹脂層(A1)のCOPPを低密度ポリエチレン〔密度:0.905g/cm、MFR:5.3g/10分(190℃、21.18N)、融点100℃;以下、「LDPE」と記載〕に置き換え、ポリウレタンコーティング剤(b-1)を乾燥後の膜厚が10μmになるように塗布した以外は実施例5と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 8
The COPP of the resin layer (A1) of Example 5 was made of low-density polyethylene [density: 0.905 g / cm 3 , MFR: 5.3 g / 10 min (190 ° C., 21.18 N), melting point 100 ° C .; In the same manner as in Example 5, except that the polyurethane coating agent (b-1) was applied so that the film thickness after drying was 10 μm, a heat-resistant olefin-based multilayer film was produced.
 実施例9
 実施例1のアクリル酸変性樹脂をエチレン-(メタ)アクリル酸共重合体〔密度:0.940g/cm、酸変性率12%;以下、「MA4」と記載〕に置き換えた以外は実施例2と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 9
Example 1 except that the acrylic acid-modified resin of Example 1 was replaced with an ethylene- (meth) acrylic acid copolymer (density: 0.940 g / cm 3 , acid modification rate 12%; hereinafter referred to as “MA4”). In the same manner as in No. 2, a heat-resistant olefin-based multilayer film was produced.
 実施例10
 実施例1のフィルムの層構成(A1)/(A2)の各層の厚さを114μm/6μm(合計120μm)とした以外は実施例1と同様にして耐熱性オレフィン系多層フィルムを作製した。
Example 10
A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the thickness of each layer of the layer structure (A1) / (A2) of Example 1 was 114 μm / 6 μm (total 120 μm).
 実施例11
 実施例1のフィルムの層構成(A1)/(A2)の各層の厚さを90μm/30μm(合計120μm)とした以外は実施例1と同様にして耐熱性オレフィンフ系多層フィルムを作製した。
Example 11
A heat-resistant olefin-based multilayer film was produced in the same manner as in Example 1 except that the thickness of each layer of the layer structure (A1) / (A2) of Example 1 was 90 μm / 30 μm (total 120 μm).
 比較例1
 実施例1の樹脂層(A2)の酸変性オレフィン系樹脂をCOPPに置き換えた以外は実施例1と同様にしてオレフィン系多層フィルムを作製した。
Comparative Example 1
An olefin-based multilayer film was produced in the same manner as in Example 1 except that the acid-modified olefin resin in the resin layer (A2) of Example 1 was replaced with COPP.
 比較例2
 比較例1のポリウレタンコーティング剤(b-1)を、ポリウレタンコーティング剤(b-1)(b-2)に置き換えた以外は比較例1と同様にオレフィン系多層フィルムを作製した。
Comparative Example 2
An olefin-based multilayer film was produced in the same manner as in Comparative Example 1, except that the polyurethane coating agent (b-1) in Comparative Example 1 was replaced with the polyurethane coating agents (b-1) and (b-2).
 比較例3
 実施例1の樹脂層(A2)の酸変性オレフィン系樹脂をHDPEに置き換えた以外は実施例1と同様にしてオレフィン系多層フィルムを作製した。
Comparative Example 3
An olefin-based multilayer film was produced in the same manner as in Example 1 except that the acid-modified olefin-based resin in the resin layer (A2) of Example 1 was replaced with HDPE.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (11)

  1. ポリオレフィン系樹脂(a1)を主成分とする層(A1)と、酸変性オレフィン系樹脂(a2)を含有する層(A2)と、耐熱コート層(B)とが、(A1)/(A2)/(B)の順で積層されてなり、前記層(A1)と前記層(A2)との合計厚みに対する層(A2)の比率が5~40%であり、耐熱コート層(B)がポリウレタンコーティング剤(b)からなる層であることを特徴とする耐熱性オレフィン系多層フィルム。 The layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat resistant coating layer (B) are (A1) / (A2). / (B), the ratio of the layer (A2) to the total thickness of the layer (A1) and the layer (A2) is 5 to 40%, and the heat-resistant coating layer (B) is polyurethane. A heat-resistant olefin-based multilayer film, which is a layer comprising a coating agent (b).
  2. 前記ポリオレフィン系樹脂(a1)の融点が100℃以上である請求項1記載の耐熱性オレフィン系多層フィルム。 The heat-resistant olefin-based multilayer film according to claim 1, wherein the polyolefin-based resin (a1) has a melting point of 100 ° C or higher.
  3. 前記酸変性オレフィン系樹脂(a2)における変性率が3~40%の範囲である請求項1又は2記載の耐熱性オレフィン系多層フィルム。 The heat-resistant olefin-based multilayer film according to claim 1 or 2, wherein the acid-modified olefin-based resin (a2) has a modification rate of 3 to 40%.
  4. 前記層(A2)が更にポリオレフィン系樹脂を含有する請求項1~3の何れか1項記載の耐熱性オレフィン系多層フィルム。 The heat-resistant olefin-based multilayer film according to any one of claims 1 to 3, wherein the layer (A2) further contains a polyolefin-based resin.
  5. 前記層(A2)を形成する樹脂成分100質量部中に、前記酸変性オレフィン系樹脂(a2)を20質量部以上含有するものである請求項1~4の何れか1項記載の耐熱性オレフィン系多層フィルム。 The heat-resistant olefin according to any one of claims 1 to 4, wherein the acid-modified olefin resin (a2) is contained in 20 parts by mass or more in 100 parts by mass of the resin component forming the layer (A2). Based multilayer film.
  6. 前記ポリウレタンコーティング剤(b)が、芳香族ジカルボン酸/脂肪(環)族ジカルボン酸=70/30~100/0(質量比)からなる酸成分(b-1)とグリコール成分(b-2)より構成されるポリエステルポリオールと、ポリイソシアネート化合物(b-3)とを含むポリウレタン樹脂である請求項1~5の何れか1項記載の耐熱性オレフィン系多層フィルム。 The polyurethane coating agent (b) comprises an acid component (b-1) comprising an aromatic dicarboxylic acid / aliphatic (ring) dicarboxylic acid = 70/30 to 100/0 (mass ratio) and a glycol component (b-2). The heat-resistant olefin-based multilayer film according to any one of claims 1 to 5, wherein the heat-resistant olefin-based multilayer film is a polyurethane resin containing a polyester polyol composed of a polyisocyanate compound (b-3).
  7. 前記ポリウレタンコーティング剤(b)の流動開始温度が100℃以上である請求項1~6の何れか1項記載の耐熱性オレフィン系多層フィルム。 The heat-resistant olefin-based multilayer film according to any one of claims 1 to 6, wherein the polyurethane coating agent (b) has a flow start temperature of 100 ° C or higher.
  8. 請求項1~7の何れか1項記載の耐熱性オレフィン系多層フィルムを用いることを特徴とする包装材。 A packaging material comprising the heat-resistant olefin-based multilayer film according to any one of claims 1 to 7.
  9. 前記耐熱性オレフィン系多層フィルムを単体で用いたものである請求項8記載の包装材。 The packaging material according to claim 8, wherein the heat-resistant olefin-based multilayer film is used alone.
  10. 前記耐熱性オレフィン系多層フィルムの層(A1)を内面にして製袋されたものである請求項8又は9記載の包装材。 The packaging material according to claim 8 or 9, wherein the heat-resistant olefin-based multilayer film is formed into a bag with the layer (A1) as an inner surface.
  11. ポリオレフィン系樹脂(a1)を主成分とする層(A1)と、酸変性オレフィン系樹脂(a2)を含有する層(A2)と、耐熱コート層(B)とが、(A1)/(A2)/(B)の順で積層されてなる多層フィルムの製造方法であり、前記層(A1)と前記層(A2)とを共押出積層法を用いて積層した後、層(A2)上にポリウレタンコーティング剤(b)を塗布することを特徴とする耐熱性オレフィン系多層フィルムの製造方法。 The layer (A1) containing the polyolefin resin (a1) as a main component, the layer (A2) containing the acid-modified olefin resin (a2), and the heat resistant coating layer (B) are (A1) / (A2). / (B) is a method for producing a multilayer film, in which the layer (A1) and the layer (A2) are laminated using a coextrusion lamination method, and then the polyurethane is formed on the layer (A2). A method for producing a heat-resistant olefin-based multilayer film, which comprises applying a coating agent (b).
PCT/JP2012/066144 2011-06-27 2012-06-25 Heat-resistant olefin multilayer film, method for producing same, and packaging material comprising same WO2013002176A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280032338.4A CN103635317B (en) 2011-06-27 2012-06-25 Heat-resistant olefin multilayer film, its manufacture method and use its packaging material
JP2012543826A JP5158458B2 (en) 2011-06-27 2012-06-25 Heat-resistant olefin-based multilayer film, production method thereof, and packaging material using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-141688 2011-06-27
JP2011141688 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002176A1 true WO2013002176A1 (en) 2013-01-03

Family

ID=47424069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066144 WO2013002176A1 (en) 2011-06-27 2012-06-25 Heat-resistant olefin multilayer film, method for producing same, and packaging material comprising same

Country Status (4)

Country Link
JP (1) JP5158458B2 (en)
CN (1) CN103635317B (en)
TW (1) TW201304955A (en)
WO (1) WO2013002176A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016050033A (en) * 2014-09-02 2016-04-11 Dic株式会社 Lid material
JP2016106063A (en) * 2013-03-06 2016-06-16 Dic株式会社 Lamination film and packaging material
JP2019521877A (en) * 2016-05-31 2019-08-08 ダウ グローバル テクノロジーズ エルエルシー Coated film and package formed therefrom
WO2022173414A1 (en) * 2021-02-09 2022-08-18 Amcor Flexibles North America, Inc. Packaging film and package
WO2023199751A1 (en) * 2022-04-12 2023-10-19 Dic株式会社 Layered body and packaging material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106003954B (en) * 2016-05-17 2018-04-13 杭州齐元新材料有限公司 Antibacterial heat-sealable material and its application in Easy tearing lid aluminum foil material
DE102018101747A1 (en) * 2018-01-26 2019-08-01 Brückner Maschinenbau GmbH & Co. KG Inline coated biaxially oriented polypropylene film and process for its preparation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150156A (en) * 1989-08-10 1991-06-26 Mitsui Petrochem Ind Ltd Manufacture of laminated formed object
JPH03190727A (en) * 1989-12-20 1991-08-20 Sumitomo Chem Co Ltd Laminate and manufacture thereof
JPH08300575A (en) * 1995-05-12 1996-11-19 Solvay & Cie Multilayer tube or sheet
JPH107840A (en) * 1996-06-26 1998-01-13 Tsutsunaka Plast Ind Co Ltd Resin-reinforcing glass fiber and molding of reinforced thermoplastic resin
JP2005288742A (en) * 2004-03-31 2005-10-20 Toagosei Co Ltd Manufacturing method of flocked product for automobile using olefinic resin as base material
JP2006021530A (en) * 2004-06-11 2006-01-26 Mitsubishi Chem Mkv Co Laminate
JP2007112116A (en) * 2005-09-26 2007-05-10 Unitika Ltd Gas barrier laminate and laminated article
JP2008132659A (en) * 2006-11-28 2008-06-12 Bridgestone Flowtech Corp Multi-layer tube
JP2011105907A (en) * 2009-11-20 2011-06-02 Dic Corp Heat-resistant polyurethane resin

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000026798A (en) * 1998-07-09 2000-01-25 Dainippon Ink & Chem Inc Primer coating agent
CN101272905A (en) * 2005-09-26 2008-09-24 尤尼吉可株式会社 Gas barrier multilayer body
CN100484979C (en) * 2006-12-19 2009-05-06 中国石油化工股份有限公司 Method for preparing temperature-resistant hard polyurethane foam

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03150156A (en) * 1989-08-10 1991-06-26 Mitsui Petrochem Ind Ltd Manufacture of laminated formed object
JPH03190727A (en) * 1989-12-20 1991-08-20 Sumitomo Chem Co Ltd Laminate and manufacture thereof
JPH08300575A (en) * 1995-05-12 1996-11-19 Solvay & Cie Multilayer tube or sheet
JPH107840A (en) * 1996-06-26 1998-01-13 Tsutsunaka Plast Ind Co Ltd Resin-reinforcing glass fiber and molding of reinforced thermoplastic resin
JP2005288742A (en) * 2004-03-31 2005-10-20 Toagosei Co Ltd Manufacturing method of flocked product for automobile using olefinic resin as base material
JP2006021530A (en) * 2004-06-11 2006-01-26 Mitsubishi Chem Mkv Co Laminate
JP2007112116A (en) * 2005-09-26 2007-05-10 Unitika Ltd Gas barrier laminate and laminated article
JP2008132659A (en) * 2006-11-28 2008-06-12 Bridgestone Flowtech Corp Multi-layer tube
JP2011105907A (en) * 2009-11-20 2011-06-02 Dic Corp Heat-resistant polyurethane resin

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016106063A (en) * 2013-03-06 2016-06-16 Dic株式会社 Lamination film and packaging material
JP2016050033A (en) * 2014-09-02 2016-04-11 Dic株式会社 Lid material
JP2019521877A (en) * 2016-05-31 2019-08-08 ダウ グローバル テクノロジーズ エルエルシー Coated film and package formed therefrom
WO2022173414A1 (en) * 2021-02-09 2022-08-18 Amcor Flexibles North America, Inc. Packaging film and package
WO2023199751A1 (en) * 2022-04-12 2023-10-19 Dic株式会社 Layered body and packaging material
JP7435918B1 (en) 2022-04-12 2024-02-21 Dic株式会社 Laminates and packaging materials

Also Published As

Publication number Publication date
JP5158458B2 (en) 2013-03-06
JPWO2013002176A1 (en) 2015-02-23
TW201304955A (en) 2013-02-01
CN103635317B (en) 2015-10-14
CN103635317A (en) 2014-03-12

Similar Documents

Publication Publication Date Title
JP5158458B2 (en) Heat-resistant olefin-based multilayer film, production method thereof, and packaging material using the same
US10563086B2 (en) Solvent-based low temperature heat seal coating
JP6255910B2 (en) Multilayer film and packaging material using the same
JP5891766B2 (en) Barrier laminate film and packaging material using the same
JP2002200108A (en) Moistureproof packaging material, moistureproof outer bag for heating element using the same moistureproof packaging container such as moistureproof collective packaging bag for heating element or the like and heating element housed in them
JP6057040B1 (en) Sealant film and laminate film
JP2016106063A (en) Lamination film and packaging material
JP6375805B2 (en) Laminated film and packaging material
JP2000263727A (en) Laminated material and packaging container using the same
JP2007268934A (en) Paper container
JP6428624B2 (en) Barrier laminate and packaging material using the same
JP5761472B1 (en) Barrier laminate and packaging material using the same
JP6168255B2 (en) Sealant film and laminate film
JP2004148681A (en) Laminated vapor deposition film and its application
JP2013075438A (en) Coextruded multilayer film, laminate film, and packaging material using them
JP7215082B2 (en) Packaging material, method for producing packaging material, packaging bag, method for producing package, and composition for forming medium layer
WO2015037409A1 (en) Barrier laminate and packaging material using same
JP6467828B2 (en) Lid material
JP6476830B2 (en) Mineral oil barrier packaging material and package using the same
JP4549872B2 (en) Transparent gas barrier laminate
JP6481403B2 (en) Mineral oil barrier packaging material and package using the same
JP6481406B2 (en) Mineral oil barrier packaging material and package using the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012543826

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804003

Country of ref document: EP

Kind code of ref document: A1