WO2013002173A1 - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
WO2013002173A1
WO2013002173A1 PCT/JP2012/066138 JP2012066138W WO2013002173A1 WO 2013002173 A1 WO2013002173 A1 WO 2013002173A1 JP 2012066138 W JP2012066138 W JP 2012066138W WO 2013002173 A1 WO2013002173 A1 WO 2013002173A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing body
explosion
terminal cap
sealed battery
proof valve
Prior art date
Application number
PCT/JP2012/066138
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 廣田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013002173A1 publication Critical patent/WO2013002173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/562Terminals characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/154Lid or cover comprising an axial bore for receiving a central current collector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a sealed battery that is unlikely to leak even when subjected to a physical impact such as dropping.
  • non-aqueous electrolyte secondary batteries have been widely used as drive power sources for power applications such as electric tools and electric assist bicycles, as their output characteristics and cycle characteristics have improved.
  • Non-aqueous electrolyte secondary batteries used for power applications have a higher risk of being subjected to physical shocks such as large vibrations and drops than those used in small electronic devices such as mobile phones and laptop computers. It will be. Therefore, non-aqueous electrolyte secondary batteries are required to have high reliability without causing leakage even when subjected to a physical impact.
  • FIG. 1 An electrode body obtained by winding the positive electrode plate 9 and the negative electrode plate 10 via the separator 11 is accommodated inside the battery case 1.
  • a grooving portion 4 is formed in the vicinity of the opening of the outer can 1.
  • the sealing body 2 is caulked and fixed to the upper part of the grooving part 4 via the insulating gasket 3 so that the opening of the outer can 1 is sealed.
  • the insulating gasket 3 is compressed at a predetermined compression rate, so that the battery is sealed.
  • a laminate of a plurality of members is used as a sealing body used for a non-aqueous electrolyte secondary battery. As shown in FIG. 2, the specific structure is such that a terminal plate 2d, an insulating plate 2c, an explosion-proof valve 2b, and a terminal cap 2a are laminated in order from below. An insulating plate 2c is interposed around the explosion-proof valve 2b and the terminal plate 2d. Then, electrical connection is ensured by welding the central part thereof by ultrasonic welding or the like, and the welded part acts as a current interrupting part that breaks when the pressure inside the battery reaches a predetermined value. .
  • the terminal cap 2a and the explosion-proof valve 2b are integrated by being sandwiched between the insulating gaskets 3 when the sealing body 2 is caulked and fixed.
  • a terminal cap 2a and a part of the explosion-proof valve 2b previously welded may be used.
  • the electrolyte solution leaks from the contact surface of the insulating gasket 3 and the outer can 1, the contact surface of the insulating gasket 3 and the sealing body 2, or the laminated surface of the metal member inside the sealing body. It can be considered as a route.
  • Patent Documents 2 to 4 are known as conventional techniques for improving the sealing performance of a nonaqueous electrolyte secondary battery.
  • JP 2009-140870 A Japanese Patent Laid-Open No. 11-307067 JP 2007-27103 A JP 2004-55372 A
  • Patent Documents 2 and 3 describe that by providing a protrusion on a part of the insulating gasket, the compression ratio of the protrusion is increased when the sealing body is caulked and fixed, and the sealing performance of the battery is improved. ing. According to these techniques, the battery can be sufficiently sealed under normal use conditions. However, when the sealed battery is excessively exposed to a physical impact such as dropping, there is a problem in that liquid leakage occurs along the laminated surface of the metal member in the sealing body.
  • Patent Document 4 describes a technique for securing the airtightness of a laminated surface by welding metal members laminated inside a sealing body and preventing leakage through the laminated surface of the metal members.
  • a technique for securing the airtightness of a laminated surface by welding metal members laminated inside a sealing body and preventing leakage through the laminated surface of the metal members due to the structure and material of the sealing body, there is a technical difficulty in welding them so that the airtightness of the laminated surface of the metal members is ensured, and such a technique is actually adopted. Absent.
  • the present invention has been made in view of the above, and leakage is generated even when a physical impact such as dropping is applied by blocking the leakage path through the laminated surface of the metal member in the sealing body. It is an object to provide a sealed battery that is difficult.
  • the non-aqueous electrolyte secondary battery and its sealing body as the prior art have also been described based on FIGS. 1 and 2, but the technical features of the sealed battery according to the present invention are as shown in FIG.
  • the protrusion 2a3 is provided on the lower surface of the flange 2a2. That is, the sealed battery according to the present invention has a bottomed cylindrical outer can 1 provided with a grooved portion 4 on a side surface, and a sealing body 2 fixed by caulking to the grooved portion 4 via an insulating gasket 3.
  • the sealing body 2 includes members laminated in order of a terminal plate 2d, an insulating plate 2c, an explosion-proof valve 2b, and a terminal cap 2a in order from below, and the terminal plate 2d and the explosion-proof valve 2b Are joined by a welded portion as a current interrupting portion, and the terminal cap 2a includes an external terminal portion 2a1 protruding upward and a circumferential flange portion 2a2 positioned at the periphery thereof, and the flange portion 2a2 Protruding portions 2a3 are formed on the lower surface concentrically with the outer periphery thereof.
  • the upper direction indicates the terminal cap 2a side in FIG. 2, and the lower direction indicates the terminal plate 2d side, and these are used.
  • the diameter of the protruding portion 2a3 is larger than the inner diameter of the grooving portion 4. If the symbols (ra, rb) shown in FIG. 5 are used, the diameter of the protrusion 2a3 is 2ra, and the inner diameter of the grooving part 4 is 2rb.
  • the shape of the protruding portion 2a3 is not particularly limited as long as the height is formed to be uniform over the entire circumference with respect to the flange portion 2a2. In order to further improve the airtightness of the sealing body 2, it is preferable to make the tip of the protrusion 2a3 have an acute angle. Note that the diameter of the protrusion 2a3 is determined based on the apex thereof. When the apex of the protrusion 2a3 is processed flat, the diameter is determined with reference to the outermost periphery.
  • the terminal cap 2a is preferably made of a harder metal material than the explosion-proof valve 2b.
  • a harder metal material By using such a material, when the sealing body 2 is caulked and fixed to the grooving portion 4, the protrusion 2a3 is likely to bite into the explosion-proof valve 2b, and the airtightness of the sealing body 2 is further improved.
  • materials that can be used for the terminal cap 2a include iron, nickel, and an alloy containing at least one of them as a main component. When using iron, in order to prevent oxidation, it is preferable to use a nickel-plated surface. As an index of the hardness of the metal material, Vickers hardness can be used.
  • Example 1 (Preparation of sealing body)
  • the sealing body a laminate of the terminal cap 2a, the explosion-proof valve 2b, the insulator 2c and the terminal plate 2d shown in FIG. 2 was used.
  • the terminal cap 2a was made of iron plated with nickel, and the explosion-proof valve 2b was made of aluminum.
  • the bottom surface of the flange portion 2a2 of the terminal cap 2a has a projection 2a3 formed concentrically with the outer periphery thereof.
  • the protrusion 2a3 was formed by pressing using a mold so that the tip of the protrusion 2a3 had an acute angle.
  • the diameter of the protruding portion 2a3 and the inner diameter of the grooved portion 4 were adjusted to be 15.6 mm and 14 mm, respectively.
  • the procedure for producing the sealing body is as follows. First, the terminal cap 2a and the explosion-proof valve 2b were pressure-bonded by a press machine to integrate them. Next, the insulator 2c was affixed to the lower part of the explosion-proof valve 2b using a double-sided tape, and the center part of each of the explosion-proof valve 2b and the terminal board 2d was ultrasonically welded to produce the sealing body 2.
  • the positive electrode plate 9 and the negative electrode plate 10 produced as described above were wound through a separator 11 made of a polyethylene microporous film having a thickness of 25 ⁇ m to produce a wound electrode body.
  • Example 2 is the same as Example 1 except that the diameter of the protrusion 2a3 is adjusted to be 13 mm in order to make the diameter of the protrusion 2a3 smaller than the inner diameter of the grooving part 4.
  • a non-aqueous electrolyte secondary battery was produced.
  • Example 6 Except that the metal (aluminum, iron or nickel) or alloy (SUS304) described in Table 2 was used as the material of the flange part 2a2 and the explosion-proof valve 2b, the same as in Example 1 was followed. Such a non-aqueous electrolyte secondary battery was produced. In addition, as for the iron used for Example 5 and 6, all used what gave nickel plating.
  • Example 2 A nonaqueous electrolyte secondary battery according to a comparative example was produced in the same manner as in Example 1 except that the protrusion 2a3 was not formed on the flange 2a2 as shown in FIG.
  • Example 2 is inferior to Example 1 although liquid leakage resistance is improved as compared with Comparative Example 1. From this, it can be seen that the diameter of the protrusion 2a3 is more preferably larger than the inner diameter of the grooved portion 4.
  • Examples 1, 3 and 4 using aluminum as the material of the explosion-proof valve 2b show excellent liquid leakage resistance.
  • the iron, SUS304, and nickel used for each terminal cap 2a of Examples 1, 3, and 4 are common in that they are harder materials than aluminum. That is, it is understood that it is more preferable to select a material harder than the explosion-proof valve as the material for the terminal cap. This is considered to be due to the effect that at least one part of the projection 2a3 formed on the terminal cap 2a bites into the opposed explosion-proof valve 2b. Therefore, it can be seen that it is preferable to make the tip of the protrusion 2a3 have an acute angle.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

[Problem] To provide a sealed battery with which leaks do not easily happen even when having had a fall or other physical shock. [Solution] This sealed battery comprises: a cylindrical exterior can (1) with a closed bottom, further comprising an indentation (4) close to an aperture part; and a sealing body (2) which is swaged in the indentation part (4) with an insulation gasket (3) interposed therebetween. The sealing body (2) further comprises a terminal cap (2a) and an explosion protection valve (2b) which is positioned therebelow. A protrusion part (2a3) is formed on the lower face of a flange part (2a2) of the terminal cap (2a), in a concentric circle shape with the exterior circumference thereof.

Description

密閉型電池Sealed battery
 本発明は、落下などの物理的な衝撃を受けた場合でも、漏液が発生しにくい密閉型電池に関する。 The present invention relates to a sealed battery that is unlikely to leak even when subjected to a physical impact such as dropping.
 近年、非水電解液二次電池はその出力特性やサイクル特性の改善に伴い電動工具や電動アシスト自転車といった動力用途の駆動電源として広く用いられるようになっている。動力用途向けに使用される非水電解液二次電池は、携帯電話やノートパソコンといった小型の電子機器に使用される場合に比べて、大きな振動や落下などの物理的な衝撃を受けるリスクが高まることになる。そのため、非水電解液二次電池には物理的な衝撃を受けた場合であっても漏液が発生することなく、高い信頼性を有することが求められている。 In recent years, non-aqueous electrolyte secondary batteries have been widely used as drive power sources for power applications such as electric tools and electric assist bicycles, as their output characteristics and cycle characteristics have improved. Non-aqueous electrolyte secondary batteries used for power applications have a higher risk of being subjected to physical shocks such as large vibrations and drops than those used in small electronic devices such as mobile phones and laptop computers. It will be. Therefore, non-aqueous electrolyte secondary batteries are required to have high reliability without causing leakage even when subjected to a physical impact.
 ここで、非水電解液二次電池の具体的な構造について図1に基づいて説明する。電池の外装缶1の内部には、セパレータ11を介して正極極板9及び負極極板10を巻回して得られた電極体が収容されている。外装缶1の開口部の近傍には、溝入れ部4が形成されている。溝入れ部4の上部に絶縁ガスケット3を介して封口体2がかしめ固定されることにより、外装缶1の開口部が封口されている。絶縁ガスケット3が所定の圧縮率で圧縮されることによって電池の密閉性が確保される。 Here, a specific structure of the non-aqueous electrolyte secondary battery will be described with reference to FIG. An electrode body obtained by winding the positive electrode plate 9 and the negative electrode plate 10 via the separator 11 is accommodated inside the battery case 1. In the vicinity of the opening of the outer can 1, a grooving portion 4 is formed. The sealing body 2 is caulked and fixed to the upper part of the grooving part 4 via the insulating gasket 3 so that the opening of the outer can 1 is sealed. The insulating gasket 3 is compressed at a predetermined compression rate, so that the battery is sealed.
 非水電解液二次電池に使用される封口体としては、特許文献1に記載されているように複数の部材を積層したものが用いられている。具体的な構造は、図2に示すように下方から順に端子板2d、絶縁板2c、防爆弁2b及び端子キャップ2aが積層したものとなっている。防爆弁2bと端子板2dの周辺部には絶縁板2cが介在している。そして、それらの中心部が超音波溶接等によって溶接されることで電気的な接続が確保され、当該溶接部は、電池内部の圧力が所定値に達したときに破断する電流遮断部として作用する。端子キャップ2aと防爆弁2bは、封口体2をかしめ固定する際に絶縁ガスケット3に挟み込まれて一体化される。封口体2の電気抵抗を低減するために、予め端子キャップ2aと防爆弁2bの一部を溶接したものが使用される場合もある。 As a sealing body used for a non-aqueous electrolyte secondary battery, as described in Patent Document 1, a laminate of a plurality of members is used. As shown in FIG. 2, the specific structure is such that a terminal plate 2d, an insulating plate 2c, an explosion-proof valve 2b, and a terminal cap 2a are laminated in order from below. An insulating plate 2c is interposed around the explosion-proof valve 2b and the terminal plate 2d. Then, electrical connection is ensured by welding the central part thereof by ultrasonic welding or the like, and the welded part acts as a current interrupting part that breaks when the pressure inside the battery reaches a predetermined value. . The terminal cap 2a and the explosion-proof valve 2b are integrated by being sandwiched between the insulating gaskets 3 when the sealing body 2 is caulked and fixed. In order to reduce the electrical resistance of the sealing body 2, a terminal cap 2a and a part of the explosion-proof valve 2b previously welded may be used.
 上記のような密閉型電池の構造から、絶縁ガスケット3と外装缶1の接触面、絶縁ガスケット3と封口体2の接触面又は封口体内部の金属部材の積層面が、電解液が漏液する経路になりうるものと考えられる。 Due to the structure of the sealed battery as described above, the electrolyte solution leaks from the contact surface of the insulating gasket 3 and the outer can 1, the contact surface of the insulating gasket 3 and the sealing body 2, or the laminated surface of the metal member inside the sealing body. It can be considered as a route.
 非水電解液二次電池の密閉性を向上させるための従来技術として、特許文献2~4が挙げられる。 Patent Documents 2 to 4 are known as conventional techniques for improving the sealing performance of a nonaqueous electrolyte secondary battery.
特開2009-140870号公報JP 2009-140870 A 特開平11-307067号公報Japanese Patent Laid-Open No. 11-307067 特開2007-27103号公報JP 2007-27103 A 特開2004-55372号公報JP 2004-55372 A
 特許文献2及び3には、絶縁ガスケットの一部に突起部を設けることで、封口体をかしめ固定したときに当該突起部の圧縮率が高められ、電池の密閉性が向上することが記載されている。これらの技術によれば、通常の使用条件においては電池の密閉性を十分に確保することができる。しかし、密閉型電池が落下などの物理的な衝撃に過度に曝された場合には、封口体中の金属部材の積層面を経路とする漏液が発生するとの課題を有している。 Patent Documents 2 and 3 describe that by providing a protrusion on a part of the insulating gasket, the compression ratio of the protrusion is increased when the sealing body is caulked and fixed, and the sealing performance of the battery is improved. ing. According to these techniques, the battery can be sufficiently sealed under normal use conditions. However, when the sealed battery is excessively exposed to a physical impact such as dropping, there is a problem in that liquid leakage occurs along the laminated surface of the metal member in the sealing body.
 特許文献4には封口体内部で積層する金属部材を溶接することによりその積層面の気密性を確保し、金属部材の積層面を介する漏液を防止する技術が記載されている。しかし、封口体の構成や材質から、金属部材の積層面の気密性が確保されるようにそれらを溶接すること自体に技術的な困難性があり、実際にはこのような技術は採用されていない。 Patent Document 4 describes a technique for securing the airtightness of a laminated surface by welding metal members laminated inside a sealing body and preventing leakage through the laminated surface of the metal members. However, due to the structure and material of the sealing body, there is a technical difficulty in welding them so that the airtightness of the laminated surface of the metal members is ensured, and such a technique is actually adopted. Absent.
 本発明は上記に鑑みてなされたものであり、封口体中の金属部材の積層面を介する漏液経路を遮断することにより、落下等の物理的衝撃が加えられた場合でも漏液が発生しにくい密閉型電池を提供することを目的とする。 The present invention has been made in view of the above, and leakage is generated even when a physical impact such as dropping is applied by blocking the leakage path through the laminated surface of the metal member in the sealing body. It is an object to provide a sealed battery that is difficult.
 上記課題を解決するための手段について図1~3を用いて以下に説明する。なお、従来技術としての非水電解液二次電池及びその封口体についても図1及び2に基づいて説明したが、本発明に係る密閉型電池の技術的な特徴は、図3に示すように、フランジ部2a2の下面に突起部2a3を有する点にある。すなわち本発明に係る密閉型電池は、側面に溝入れ部4を備えた有底円筒状の外装缶1と、前記溝入れ部4に絶縁ガスケット3を介してかしめ固定された封口体2を有する密閉型電池であって、前記封口体2は、下方から順に端子板2d、絶縁板2c、防爆弁2b及び端子キャップ2aの順で積層された部材を含み、前記端子板2dと前記防爆弁2bは、電流遮断部としての溶接部で接合されており、前記端子キャップ2aは、上方に突出した外部端子部2a1とその周縁に位置する円周状のフランジ部2a2を備え、前記フランジ部2a2の下面にはその外周と同心円状に突起部2a3が形成されていることを特徴とするものである。 The means for solving the above problem will be described below with reference to FIGS. The non-aqueous electrolyte secondary battery and its sealing body as the prior art have also been described based on FIGS. 1 and 2, but the technical features of the sealed battery according to the present invention are as shown in FIG. The protrusion 2a3 is provided on the lower surface of the flange 2a2. That is, the sealed battery according to the present invention has a bottomed cylindrical outer can 1 provided with a grooved portion 4 on a side surface, and a sealing body 2 fixed by caulking to the grooved portion 4 via an insulating gasket 3. In the sealed battery, the sealing body 2 includes members laminated in order of a terminal plate 2d, an insulating plate 2c, an explosion-proof valve 2b, and a terminal cap 2a in order from below, and the terminal plate 2d and the explosion-proof valve 2b Are joined by a welded portion as a current interrupting portion, and the terminal cap 2a includes an external terminal portion 2a1 protruding upward and a circumferential flange portion 2a2 positioned at the periphery thereof, and the flange portion 2a2 Protruding portions 2a3 are formed on the lower surface concentrically with the outer periphery thereof.
 本明細書では、上方向は図2における端子キャップ2a側を、下方向は端子板2d側を指すものとして、これらを使用している。 In the present specification, the upper direction indicates the terminal cap 2a side in FIG. 2, and the lower direction indicates the terminal plate 2d side, and these are used.
 本発明に係る密閉型電池においては、突起部2a3の直径が溝入れ部4の内径よりも大きいことが好ましい。図5に示した記号(ra、rb)を用いれば、突起部2a3の直径は2ra、溝入れ部4の内径は2rbと表される。突起部2a3の形状については、その高さがフランジ部2a2に対して全周に亘って均一な高さに形成されていれば特に限定されない。封口体2の気密性をより高めるためには、突起部2a3の先端を鋭角になるようにすることが好ましい。なお、突起部2a3の直径は、その頂点を基準として決定される。突起部2a3の頂点が平坦に加工されている場合は、その最外周を基準として直径が決定される。 In the sealed battery according to the present invention, it is preferable that the diameter of the protruding portion 2a3 is larger than the inner diameter of the grooving portion 4. If the symbols (ra, rb) shown in FIG. 5 are used, the diameter of the protrusion 2a3 is 2ra, and the inner diameter of the grooving part 4 is 2rb. The shape of the protruding portion 2a3 is not particularly limited as long as the height is formed to be uniform over the entire circumference with respect to the flange portion 2a2. In order to further improve the airtightness of the sealing body 2, it is preferable to make the tip of the protrusion 2a3 have an acute angle. Note that the diameter of the protrusion 2a3 is determined based on the apex thereof. When the apex of the protrusion 2a3 is processed flat, the diameter is determined with reference to the outermost periphery.
 本発明に係る密閉型電池においては、端子キャップ2aが防爆弁2bよりも硬質な金属材料からなることが好ましい。このような材料を用いることで、封口体2を溝入れ部4にかしめ固定したときに、突起部2a3が防爆弁2bに食い込みやすくなり、封口体2の気密性がより高められることになる。端子キャップ2aに使用しうる材料を例示すると鉄、ニッケル及びこれらの少なくとも1つを主成分とする合金が挙げられる。鉄を用いる場合には、酸化を防止するために、表面にニッケルめっきを施したものを用いることが好ましい。金属材料の硬さの指標としてはビッカース硬さ(Vickers hardness)を用いることができる。 In the sealed battery according to the present invention, the terminal cap 2a is preferably made of a harder metal material than the explosion-proof valve 2b. By using such a material, when the sealing body 2 is caulked and fixed to the grooving portion 4, the protrusion 2a3 is likely to bite into the explosion-proof valve 2b, and the airtightness of the sealing body 2 is further improved. Examples of materials that can be used for the terminal cap 2a include iron, nickel, and an alloy containing at least one of them as a main component. When using iron, in order to prevent oxidation, it is preferable to use a nickel-plated surface. As an index of the hardness of the metal material, Vickers hardness can be used.
 以下、本発明を実施するための最良の形態を実施例及び比較例を用いて詳細に説明する。ただし、以下に示す実施例は、本発明の技術思想を具体化するための非水電解液二次電池の製造方法の一例を例示するものであって、本発明をこの実施例に限定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。 Hereinafter, the best mode for carrying out the present invention will be described in detail using examples and comparative examples. However, the following examples illustrate an example of a method for manufacturing a non-aqueous electrolyte secondary battery for embodying the technical idea of the present invention, and the present invention is limited to this example. However, the present invention can be equally applied to various modifications without departing from the technical idea shown in the claims.
(実施例)
(実施例1)
(封口体の作製)
 封口体には、図2に示す端子キャップ2a、防爆弁2b、絶縁体2c及び端子板2dを積層したものを用いた。端子キャップ2aには鉄にニッケルめっきを施したものを用い、防爆弁2bにはアルミニウムを用いた。端子キャップ2aのフランジ部2a2の下面には、図3に示すように、その外周と同心円状となるように突起部2a3を形成したものを用いた。突起部2a3は金型を用いてプレス加工することにより、その先端部が鋭角となるように形成した。突起部2a3の直径及び溝入れ部4の内径はそれぞれ15.6mm、14mmとなるように調整した。封口体の作製手順は次の通りである。まず、端子キャップ2aと防爆弁2bをプレス機にて圧着させてこれらを一体化させた。次に、防爆弁2bの下部に両面テープを用いて絶縁体2cを貼り付け、防爆弁2bと端子板2dのそれぞれの中心部を超音波溶接して封口体2を作製した。
(Example)
Example 1
(Preparation of sealing body)
As the sealing body, a laminate of the terminal cap 2a, the explosion-proof valve 2b, the insulator 2c and the terminal plate 2d shown in FIG. 2 was used. The terminal cap 2a was made of iron plated with nickel, and the explosion-proof valve 2b was made of aluminum. As shown in FIG. 3, the bottom surface of the flange portion 2a2 of the terminal cap 2a has a projection 2a3 formed concentrically with the outer periphery thereof. The protrusion 2a3 was formed by pressing using a mold so that the tip of the protrusion 2a3 had an acute angle. The diameter of the protruding portion 2a3 and the inner diameter of the grooved portion 4 were adjusted to be 15.6 mm and 14 mm, respectively. The procedure for producing the sealing body is as follows. First, the terminal cap 2a and the explosion-proof valve 2b were pressure-bonded by a press machine to integrate them. Next, the insulator 2c was affixed to the lower part of the explosion-proof valve 2b using a double-sided tape, and the center part of each of the explosion-proof valve 2b and the terminal board 2d was ultrasonically welded to produce the sealing body 2.
(正極極板の作製)
 正極活物質としてのコバルト酸リチウム(LiCoO)が94質量部、導電剤としての炭素粉末が3質量部、結着剤としてのポリフッ化ビニリデン粉末が3質量部となるように混合した後、N-メチル-ピロリドン(NMP)溶液中に分散させて正極合剤スラリーを調製した。この正極合剤スラリーを集電体としてのアルミニウム箔(厚み20μm)の両面にドクターブレード法により塗布して正極合剤層を形成して、乾燥させた。その後、圧延ローラーを用いて圧延、切断して極板幅が55mmの短冊状の正極極板9を作製した。
(Preparation of positive electrode plate)
After mixing so that lithium cobaltate (LiCoO 2 ) as a positive electrode active material was 94 parts by mass, carbon powder as a conductive agent was 3 parts by mass, and polyvinylidene fluoride powder as a binder was 3 parts by mass, N A positive electrode mixture slurry was prepared by dispersing in a methyl-pyrrolidone (NMP) solution. This positive electrode mixture slurry was applied to both surfaces of an aluminum foil (thickness 20 μm) as a current collector by a doctor blade method to form a positive electrode mixture layer and dried. Then, it rolled and cut | disconnected using the rolling roller and produced the strip-shaped positive electrode plate 9 whose electrode plate width is 55 mm.
(負極極板の作製)
 負極活物質としての天然黒鉛が97.5質量部、結着剤としてのスチレンブタジエンゴム(SBR)が1.5質量部、増粘剤としてのカルボキシメチルセルロース(CMC)が1質量部となるように混合した後、水中に分散させて負極合剤スラリーとした。この負極合剤スラリーを集電体としての銅箔(厚み18μm)の両面に塗布して負極合剤層を形成して、乾燥させた。その後、圧延ローラーを用いて圧延、切断して極板幅が57mmの短冊状の負極極板10を作製した。
(Preparation of negative electrode plate)
97.5 parts by mass of natural graphite as the negative electrode active material, 1.5 parts by mass of styrene butadiene rubber (SBR) as the binder, and 1 part by mass of carboxymethyl cellulose (CMC) as the thickener. After mixing, the mixture was dispersed in water to obtain a negative electrode mixture slurry. This negative electrode mixture slurry was applied to both surfaces of a copper foil (thickness 18 μm) as a current collector to form a negative electrode mixture layer and dried. Then, it rolled and cut | disconnected using the rolling roller and produced the strip-shaped negative electrode plate 10 whose electrode plate width is 57 mm.
(巻回電極体の作製)
 上記のようにして作製した正極極板9及び負極極板10を厚さ25μmのポリエチレン製微多孔膜からなるセパレータ11を介して巻回して、巻回電極体を作製した。
(Production of wound electrode body)
The positive electrode plate 9 and the negative electrode plate 10 produced as described above were wound through a separator 11 made of a polyethylene microporous film having a thickness of 25 μm to produce a wound electrode body.
(電解液の作製)
 エチレンカーボネートとジメチルカーボネートを質量比3:7で混合した非水溶媒に、電解質塩としてのLiPFを1mol/L溶解させて、非水電解液とした。
(Preparation of electrolyte)
1 mol / L of LiPF 6 as an electrolyte salt was dissolved in a non-aqueous solvent in which ethylene carbonate and dimethyl carbonate were mixed at a mass ratio of 3: 7 to obtain a non-aqueous electrolyte.
(非水電解液二次電池の作製)
 上記のようにして作製した巻回電極体を外装缶1に挿入し、外装缶の開口部付近の側面に溝入れ部4を形成して、非水電解液を注液した。そして、開口部に絶縁ガスケット3を介して封口体2をかしめ固定することにより円筒形非水電解液二次電池(高さ65mm、直径18mm)を作製した。
(Preparation of non-aqueous electrolyte secondary battery)
The wound electrode body produced as described above was inserted into the outer can 1, the grooved portion 4 was formed on the side surface in the vicinity of the opening of the outer can, and a non-aqueous electrolyte was injected. And the sealing body 2 was caulked and fixed to the opening via the insulating gasket 3 to produce a cylindrical non-aqueous electrolyte secondary battery (height 65 mm, diameter 18 mm).
(実施例2)
 溝入れ部4の内径よりも突起部2a3の直径を小さくするために、突起部2a3の直径が13mmとなるように調整したことを除いては、実施例1と同様にして実施例2に係る非水電解液二次電池を作製した。
(Example 2)
Example 2 is the same as Example 1 except that the diameter of the protrusion 2a3 is adjusted to be 13 mm in order to make the diameter of the protrusion 2a3 smaller than the inner diameter of the grooving part 4. A non-aqueous electrolyte secondary battery was produced.
(実施例3~6)
 フランジ部2a2及び防爆弁2bの材料として表2に記載する金属(アルミニウム、鉄又はニッケル)又は合金(SUS304)を使用したことを除いては、実施例1と同様にして実施例3~6に係る非水電解液二次電池を作製した。なお、実施例5及び6に使用する鉄は、いずれもニッケルめっきを施したものを使用した。
(Examples 3 to 6)
Except that the metal (aluminum, iron or nickel) or alloy (SUS304) described in Table 2 was used as the material of the flange part 2a2 and the explosion-proof valve 2b, the same as in Example 1 was followed. Such a non-aqueous electrolyte secondary battery was produced. In addition, as for the iron used for Example 5 and 6, all used what gave nickel plating.
(比較例)
 図4(b)に示すようにフランジ部2a2に突起部2a3を形成しなかったことを除いては、実施例1と同様にして比較例に係る非水電解液二次電池を作製した。
(Comparative example)
A nonaqueous electrolyte secondary battery according to a comparative example was produced in the same manner as in Example 1 except that the protrusion 2a3 was not formed on the flange 2a2 as shown in FIG.
(落下試験)
 各実施例及び比較例の各電池について、1.85mの高さからコンクリート上に、電池の封口体面、側面及び缶底面が下向きになるように各1回ずつ(計3回)自然落下させた。これを1セットとする落下試験を漏液が発生するまで繰り返して行った。漏液の有無は、各セット毎に電池質量を測定して確認した。表1及び2に各実施例及び比較例の電池に漏液が発生したときのセット数をまとめて示す。
(Drop test)
Each battery of each Example and Comparative Example was naturally dropped once (three times in total) on the concrete from a height of 1.85 m so that the sealing body surface, side surface and bottom surface of the can face downward. . The drop test with this as one set was repeated until leakage occurred. The presence or absence of liquid leakage was confirmed by measuring the battery mass for each set. Tables 1 and 2 collectively show the number of sets when leakage occurs in the batteries of the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から、実施例1の落下試験時の耐漏液性が、比較例に比べて飛躍的に向上していることがわかる。漏液が発生した比較例の電池を調べると、封口体中の金属部材の積層面を経路とする漏液が発生していることがわかった。一方、漏液が発生した実施例1の電池を調べると、絶縁ガスケット3と外装缶1の接触面又は絶縁ガスケット3と封口体2の接触面を経路とする漏液が発生していたことがわかった。この漏液は、過度の落下試験によって外装缶1のかしめ固定部が変形したことによって絶縁ガスケット3の圧縮率が低下したために発生したものと考えられる。以上の結果から、端子キャップ2aに突起部2a3を形成させることで、封口体内部の気密性は落下試験による物理的な衝撃が加えられても長期に亘って保持されることがわかる。 From Table 1, it can be seen that the leakage resistance during the drop test of Example 1 is dramatically improved as compared to the comparative example. When the battery of the comparative example in which the liquid leakage occurred was examined, it was found that the liquid leakage occurred along the laminated surface of the metal member in the sealing body. On the other hand, when the battery of Example 1 in which leakage occurred was examined, it was found that leakage occurred along the contact surface of the insulating gasket 3 and the outer can 1 or the contact surface of the insulating gasket 3 and the sealing body 2. all right. This liquid leakage is considered to have occurred because the compressibility of the insulating gasket 3 was lowered due to deformation of the caulking fixing portion of the outer can 1 by an excessive drop test. From the above results, it can be seen that by forming the protrusion 2a3 on the terminal cap 2a, the hermeticity inside the sealing body is maintained for a long time even when a physical impact is applied by a drop test.
 また、実施例2は、比較例1に比べると耐漏液性は改善しているものの、実施例1に比べると劣っている。このことから突起部2a3の直径は溝入れ部4の内径より大きいことがより好ましいことがわかる。 In addition, Example 2 is inferior to Example 1 although liquid leakage resistance is improved as compared with Comparative Example 1. From this, it can be seen that the diameter of the protrusion 2a3 is more preferably larger than the inner diameter of the grooved portion 4.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2から、防爆弁2bの材料としてアルミニウムを用いた実施例1、3及び4が優れた耐漏液性を示していることがわかる。実施例1、3及び4のそれぞれの端子キャップ2aに使用した鉄、SUS304及びニッケルはいずれもアルミニウムに比べて硬質の材料である点が共通している。つまり、端子キャップの材料として、防爆弁よりも硬質なものを選択することがより好ましいことがわかる。これは、端子キャップ2aに形成された突起部2a3の少なくとも1部が対向する防爆弁2bに食い込むことによる効果と考えられる。したがって、突起部2a3の形状としては、その先端が鋭角になるようにすることが好ましいことがわかる。 From Table 2, it can be seen that Examples 1, 3 and 4 using aluminum as the material of the explosion-proof valve 2b show excellent liquid leakage resistance. The iron, SUS304, and nickel used for each terminal cap 2a of Examples 1, 3, and 4 are common in that they are harder materials than aluminum. That is, it is understood that it is more preferable to select a material harder than the explosion-proof valve as the material for the terminal cap. This is considered to be due to the effect that at least one part of the projection 2a3 formed on the terminal cap 2a bites into the opposed explosion-proof valve 2b. Therefore, it can be seen that it is preferable to make the tip of the protrusion 2a3 have an acute angle.
非水電解液二次電池の断面図である。It is sectional drawing of a nonaqueous electrolyte secondary battery. 封口体の分解図である。It is an exploded view of a sealing body. 端子キャップを下方向から見た平面図である。It is the top view which looked at the terminal cap from the downward direction. (a)実施例に係るかしめ固定部の拡大断面図である。(b)比較例に係るかしめ固定部の断面図である。(A) It is an expanded sectional view of the caulking fixing part which concerns on an Example. (B) It is sectional drawing of the crimping fixing part which concerns on a comparative example. 突起部の半径ra及び溝入れ部の内半径rbを示す、かしめ固定部の拡大断面図である。It is an expanded sectional view of the caulking fixing part showing the radius ra of the protrusion and the inner radius rb of the grooving part.
1 外装缶 
2 封口体 
2a 端子キャップ
2a1 外部端子部
2a2 フランジ部
2a3 突起部
2b 防爆弁
2c 絶縁板
2d 端子板
3 絶縁ガスケット
4 溝入れ部
5 上部絶縁板
6 下部絶縁板
7 正極集電タブ 
8 負極集電タブ
9 正極極板
10 負極極板
11 セパレータ
12 外装缶の中心軸
1 Exterior can
2 Sealing body
2a Terminal cap 2a1 External terminal portion 2a2 Flange portion 2a3 Protrusion portion 2b Explosion-proof valve 2c Insulating plate 2d Terminal plate 3 Insulating gasket 4 Groove portion 5 Upper insulating plate 6 Lower insulating plate 7 Positive electrode current collecting tab
8 Negative current collecting tab 9 Positive electrode plate 10 Negative electrode plate 11 Separator 12 Central axis of outer can

Claims (4)

  1.  側面に溝入れ部を備えた有底円筒状の外装缶と、前記溝入れ部に絶縁ガスケットを介してかしめ固定された封口体を有する密閉型電池であって、
     前記封口体は、下方から順に端子板、絶縁板、防爆弁及び端子キャップが積層した部材を含み、
    前記端子板と前記防爆弁は電流遮断部としての溶接部で接合されており、
     前記端子キャップは、上方に突出した外部端子部とその周縁に位置する円周状のフランジ部を備え、前記フランジ部の下面にはその外周と同心円状に突起部が形成されていることを特徴とする密閉型電池。
    A sealed battery having a bottomed cylindrical outer can having a grooved portion on a side surface and a sealing body fixed by caulking to the grooved portion through an insulating gasket,
    The sealing body includes a member in which a terminal plate, an insulating plate, an explosion-proof valve, and a terminal cap are laminated in order from the bottom,
    The terminal plate and the explosion-proof valve are joined by a weld as a current interrupting part,
    The terminal cap includes an external terminal portion protruding upward and a circumferential flange portion positioned at the periphery thereof, and a protrusion is formed concentrically with the outer periphery of the lower surface of the flange portion. A sealed battery.
  2.  前記フランジ部と同心円状に形成された前記突起部の直径が、前記溝入れ部の内径よりも大きい請求項1記載の密閉型電池。 The sealed battery according to claim 1, wherein a diameter of the protrusion formed concentrically with the flange portion is larger than an inner diameter of the grooving portion.
  3.  前記端子キャップは、前記防爆弁よりも硬質の材料からなる請求項1又は2に記載の密閉型電池。 The sealed battery according to claim 1 or 2, wherein the terminal cap is made of a material harder than the explosion-proof valve.
  4.  前記端子キャップは鉄、ニッケル及びこれらの少なくとも1つを主成分とする合金のいずれかからなり、かつ前記防爆弁はアルミニウム又はアルミニウムを主成分とする合金からなる請求項1又は2に記載の密閉型電池。
     
    The hermetic seal according to claim 1 or 2, wherein the terminal cap is made of iron, nickel, or an alloy containing at least one of them as a main component, and the explosion-proof valve is made of aluminum or an alloy containing aluminum as a main component. Type battery.
PCT/JP2012/066138 2011-06-30 2012-06-25 Sealed battery WO2013002173A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146412 2011-06-30
JP2011146412 2011-06-30

Publications (1)

Publication Number Publication Date
WO2013002173A1 true WO2013002173A1 (en) 2013-01-03

Family

ID=47424066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066138 WO2013002173A1 (en) 2011-06-30 2012-06-25 Sealed battery

Country Status (1)

Country Link
WO (1) WO2013002173A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751131A (en) * 2021-01-22 2021-05-04 上海兰钧新能源科技有限公司 Novel battery box structure, battery pack and electric vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124469U (en) * 1990-03-29 1991-12-17
JPH1125949A (en) * 1997-07-04 1999-01-29 Toray Ind Inc Sealed battery
JP2002075328A (en) * 2000-09-04 2002-03-15 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2005285637A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Battery and method for forming its sealed body
JP2009530767A (en) * 2006-03-13 2009-08-27 エルジー・ケム・リミテッド Cylindrical secondary battery with high charge / discharge rate
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03124469U (en) * 1990-03-29 1991-12-17
JPH1125949A (en) * 1997-07-04 1999-01-29 Toray Ind Inc Sealed battery
JP2002075328A (en) * 2000-09-04 2002-03-15 Japan Storage Battery Co Ltd Sealed lead-acid battery
JP2005285637A (en) * 2004-03-30 2005-10-13 Sanyo Electric Co Ltd Battery and method for forming its sealed body
JP2009530767A (en) * 2006-03-13 2009-08-27 エルジー・ケム・リミテッド Cylindrical secondary battery with high charge / discharge rate
JP2010086782A (en) * 2008-09-30 2010-04-15 Sanyo Electric Co Ltd Sealed type battery and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112751131A (en) * 2021-01-22 2021-05-04 上海兰钧新能源科技有限公司 Novel battery box structure, battery pack and electric vehicle
CN112751131B (en) * 2021-01-22 2024-04-19 上海兰钧新能源科技有限公司 Novel battery box structure, battery pack and electric vehicle

Similar Documents

Publication Publication Date Title
JP6538650B2 (en) Cylindrical sealed battery
US20110217576A1 (en) Wound electrode assembly and battery
JPWO2018180828A1 (en) Cylindrical battery
JP5230210B2 (en) Sealed battery
JP2011187337A (en) Cylindrical battery cell with non-aqueous electrolyte
WO2013031056A1 (en) Rectangular battery
JP5110958B2 (en) Sealed battery
JP2016126975A (en) Cylindrical battery
JP2013026123A (en) Secondary battery and electrode plate
WO2018100853A1 (en) Cylindrical battery
JPWO2020004135A1 (en) Non-aqueous electrolyte secondary battery
WO2021117426A1 (en) Sealed battery
JP6906193B2 (en) battery
WO2022107712A1 (en) Cylindrical battery
WO2013002173A1 (en) Sealed battery
JPWO2019069890A1 (en) Non-aqueous electrolyte secondary battery
US8420241B2 (en) Sealed cell
EP4007023A1 (en) Battery
JP2018160439A (en) Nonaqueous electrolyte secondary battery
JP7320166B2 (en) secondary battery
WO2019194227A1 (en) Cell
US20230420772A1 (en) Battery
JP2018139187A (en) Wound type battery
WO2021230014A1 (en) Hermetically sealed battery
WO2023181853A1 (en) Cylindrical battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP