WO2013002079A1 - Laminate and paper container - Google Patents

Laminate and paper container Download PDF

Info

Publication number
WO2013002079A1
WO2013002079A1 PCT/JP2012/065653 JP2012065653W WO2013002079A1 WO 2013002079 A1 WO2013002079 A1 WO 2013002079A1 JP 2012065653 W JP2012065653 W JP 2012065653W WO 2013002079 A1 WO2013002079 A1 WO 2013002079A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
polyamide compound
mol
group
resin
Prior art date
Application number
PCT/JP2012/065653
Other languages
French (fr)
Japanese (ja)
Inventor
大滝 良二
尚史 小田
健太郎 石井
翔太 荒川
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2013522782A priority Critical patent/JP5928463B2/en
Publication of WO2013002079A1 publication Critical patent/WO2013002079A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/10Interconnection of layers at least one layer having inter-reactive properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • B32B2439/40Closed containers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/10Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides

Definitions

  • the present invention relates to a laminated material having oxygen barrier performance and oxygen absorption performance, and a paper container formed by boxing it.
  • a glass bottle, a metal container, a paper container formed by laminating a resin and a paper substrate, and the like are widely used as packaging materials for liquid articles.
  • a paper container formed by laminating a resin and a paper base material is light and safe, and its usage is greatly increased.
  • a paper container unlike a glass bottle or a metal container, a paper container has a property that oxygen can permeate from the outside, and there is a problem in the storage stability of the contents filled and sealed.
  • a method of laminating a gas barrier material such as an aluminum foil, an inorganic oxide vapor deposition film, or a gas barrier resin as a constituent material is performed.
  • the paper container laminated with a gas barrier resin has the characteristics that the above problems hardly occur, but its gas barrier performance is not perfect and its performance may deteriorate due to changes in temperature and humidity. Although it was possible to extend the storage period, deterioration of the contents due to oxidation was unavoidable and was not satisfactory.
  • a method of laminating a layer having oxygen absorption performance in a paper container in which a gas barrier resin or the like is laminated has been disclosed in order to solve the above-described problems.
  • a paper container has been proposed in which an oxygen-absorbing resin layer in which an oxygen scavenger (oxygen absorber) based on metal powder is dispersed in polyolefin or adhesive polyolefin is laminated with a paper base (for example, Patent Document 1).
  • a paper container has been proposed in which an oxygen scavenging resin layer bonded with a polyolefin segment having a carbon-carbon unsaturated bond in the molecule is laminated with a paper base (see, for example, Patent Document 3).
  • Patent Document 4 discloses a technique for expressing oxygen absorption performance by coexisting a cobalt compound with polymetaxylylene adipamide, which is described in Patent Document 3 as an oxygen-absorbing resin layer. By adopting such a layer structure, a paper container having oxygen absorption performance can be manufactured.
  • the paper containers disclosed in Patent Documents 1 and 2 have a performance (oxygen barrier property) that blocks the permeation of oxygen from the outside to the inside of the paper container, and the remaining oxygen and contents in the head space in the paper container Although it also has the ability to absorb dissolved oxygen dissolved in it (oxygen absorption performance), it is excellent in the effect of suppressing the oxidative deterioration of the contents, but it is possible to provide a separate barrier layer in addition to the oxygen absorbing layer Since it is necessary, the material used more than before increases, resulting in poor economic efficiency. In addition, since metal powder is used as an oxygen absorbent, there is a problem in that depending on the contents, the metal odor shifts to the contents and impairs the flavor.
  • the paper container shown in Patent Document 3 can be configured with the same number of layers as a conventional paper container by applying a gas barrier resin as an oxygen-absorbing resin layer, but the oxidation of carbon-carbon unsaturated bonds proceeds.
  • Low molecular weight organic substances such as aldehydes and ketones are generated, and the low molecular weight organic substances permeate the resin laminated inside the oxygen-absorbing resin layer and enter the head space, or in some cases dissolve in the contents There was a problem of impairing the flavor of the contents.
  • the oxygen-absorbing resin composition shown in Patent Document 4 hardly generates aldehydes and ketones that cause problems in Patent Document 3, it adopts a mechanism for absorbing oxygen by oxidative decomposition of polymetaxylylene adipamide.
  • the problem to be solved by the present invention is a paper container that can suppress the oxidative deterioration of the contents, and does not impair the flavor of the contents, and does not deteriorate the strength of the oxygen absorbing layer even during long-term storage It is providing the laminated body for manufacturing a paper container.
  • the present invention provides the following laminated material and paper container. ⁇ 1> a paper base material layer; A laminate comprising a layer formed from a resin composition containing a polyamide compound (A) and a resin (B),
  • the polyamide compound (A) is An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the laminated material of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and extremely decreases the strength of the oxygen absorption barrier layer as oxygen absorption progresses. small. Therefore, the paper container of the present invention formed by boxing the laminated material is excellent in suppressing the oxidative deterioration of the contents, and hardly generates substances that cause a strange odor or a change in flavor. Also excellent. Furthermore, there is almost no deterioration of openability due to a decrease in strength of the oxygen absorption barrier layer.
  • the laminated material of the present invention includes at least a paper base layer and a layer formed from a resin composition containing a polyamide compound and a resin (hereinafter sometimes referred to as “oxygen absorption barrier layer”).
  • the laminated material may further include an arbitrary layer such as a fusion layer or an adhesive layer as necessary.
  • paper base material layer is a basic material constituting the container, it preferably has formability, bending resistance, rigidity, waist, strength, etc.
  • Various paper base materials such as bleached or unbleached paper base, or pure white roll paper, kraft paper, paperboard, processed paper, etc. can be used.
  • the paper base layer preferably has a basis weight in the range of about 80 to 600 g / m 2 and more preferably has a basis weight in the range of 100 to 450 g / m 2 .
  • a desired print pattern such as a character, a figure, a pattern, a symbol, or the like may be arbitrarily formed by a normal printing method.
  • the oxygen absorption barrier layer is formed from a resin composition, and the resin composition will be described later in addition to a conventionally known resin (hereinafter also referred to as “resin (B)”).
  • resin (B) a conventionally known resin
  • polyamide compound (A) a specific polyamide compound
  • the polyamide compound (A) contained in the resin composition may be one type or a combination of two or more types.
  • 1 type may be sufficient as resin (B) contained in a resin composition, and the combination of 2 or more types may be sufficient as it.
  • the suitable range of the mass ratio of the polyamide compound (A) and the resin (B) in the resin composition used in the present invention varies depending on the relative viscosity of the polyamide compound (A).
  • the mass ratio of the polyamide compound (A) / resin (B) can be selected from the range of 5/95 to 95/5. preferable.
  • the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
  • the relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, it is desirable to contain a relatively large amount of the resin (B) from the viewpoint of moldability, and the polyamide compound (A) /
  • the mass ratio of the resin (B) is preferably selected from the range of 5/95 to 50/50.
  • the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
  • the resin composition used in the present invention may be referred to as an additive described later (hereinafter referred to as “additive (C)”) depending on the desired performance and the like.
  • additive (C) an additive described later
  • the total content of the polyamide compound (A) and the resin (B) in the resin composition is 90% by mass to 100% from the viewpoint of moldability, oxygen absorption performance, and oxygen barrier performance.
  • the mass is preferably 95% by mass, and more preferably 95% by mass to 100% by mass.
  • the thickness of the oxygen absorption barrier layer is preferably 2 to 100 ⁇ m, more preferably 5 to 5 ⁇ m from the viewpoint of ensuring workability when a laminated material is boxed while improving oxygen absorption performance and oxygen barrier performance. It is 90 ⁇ m, more preferably 10 to 80 ⁇ m.
  • the polyamide compound (A) includes an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula: 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units containing a total of 50 mol% or more of linear aliphatic dicarboxylic acid units represented by formula (II-2) and aromatic dicarboxylic acid units represented by the following general formula (II-2): Tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) 0.1 to 50 mol%.
  • I-1 aromatic diamine unit represented by the following general formula (I-1)
  • an alicyclic diamine unit represented by the following general formula (I-2) and the following general formula
  • m represents an integer of 2 to 18.
  • n represents an integer of 2 to 18.
  • Ar represents an arylene group.
  • R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group.
  • the polyamide compound (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too large, and the physical properties such as gas barrier properties and mechanical properties of the polyamide compound (A) are deteriorated.
  • the secondary hydrogen-containing carboxylic acid is an amino acid
  • the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization.
  • the content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.
  • the diamine unit content is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties.
  • the content of dicarboxylic acid units is 25 to 50 mol%, preferably 30 to 50 mol%.
  • the proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ⁇ 2 mol% of the content of the diamine unit. More preferred.
  • the degree of polymerization of the polyamide compound (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.
  • the diamine unit in the polyamide compound (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula.
  • a total of 50 mol% or more of diamine units selected from the group consisting of linear aliphatic diamine units represented by (I-3) is contained in the diamine units, and the content is preferably 70 mol% Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
  • Examples of the compound capable of constituting the alicyclic diamine unit represented by the general formula (I-2) include bis (1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like. Aminomethyl) cyclohexanes. These can be used alone or in combination of two or more. Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained.
  • the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more.
  • the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less.
  • m represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 6 to 12.
  • Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine.
  • aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto.
  • hexamethylenediamine is preferable. These can be used alone or in combination of two or more.
  • a diamine unit in the polyamide compound (A) in addition to imparting excellent gas barrier properties to the polyamide compound (A), it improves transparency and color tone and facilitates moldability of general-purpose thermoplastic resins. From the viewpoint, it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2). From the standpoint of imparting appropriate crystallinity to (A), it is preferable to include a linear aliphatic diamine unit represented by the general formula (I-3). In particular, from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A), it is preferable that the aromatic diamine unit represented by the general formula (I-1) is included.
  • the diamine unit in the polyamide compound (A) is a metaxylylenediamine unit from the viewpoint of facilitating moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide compound (A).
  • the content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
  • Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Fats such as 1,4-diaminocyclohexane, alicyclic diamines, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, etc. Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.
  • the dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide compound (A).
  • the dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary for a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide compound (A). It is preferable at the point which can provide a softness
  • n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
  • Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples include 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, but are not limited thereto. These can be used alone or in combination of two or more.
  • the type of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the application.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) provides excellent gas barrier properties to the polyamide compound (A), and from the viewpoint of maintaining heat resistance after heat sterilization of packaging materials and packaging containers.
  • At least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit,
  • the content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide compound (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide compound (A).
  • the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
  • the aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates the molding processability of packaging materials and packaging containers, in addition to imparting further gas barrier properties to the polyamide compound (A). It is preferable at the point which can do.
  • Ar represents an arylene group.
  • the arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
  • Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.
  • the kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use.
  • the aromatic dicarboxylic acid unit in the polyamide compound (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit.
  • the content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit.
  • the content ratio of the isophthalic acid unit to the terephthalic acid unit is not particularly limited and is appropriately determined according to the application.
  • the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and more preferably 0/100 to 30/70.
  • the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit is particularly limited. Rather, it is determined appropriately according to the application.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total of these is 100, the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, still more preferably 0/100 to 30/70.
  • the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
  • Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples thereof include, but are not limited to, dicarboxylic acids such as benzenediacetic acid and 1,4-benzenediacetic acid.
  • the tertiary hydrogen-containing carboxylic acid unit in the polyamide compound (A) has at least one amino group and one carboxyl group or two or more carboxyl groups from the viewpoint of polymerization of the polyamide compound (A).
  • Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).
  • R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]
  • the polyamide compound (A) includes a tertiary hydrogen-containing carboxylic acid unit.
  • a tertiary hydrogen-containing carboxylic acid unit By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide compound (A) can exhibit excellent oxygen absorption performance without containing a transition metal.
  • the mechanism by which the polyamide compound (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows.
  • a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner.
  • the carboxyl group is an electron withdrawing group
  • the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient ( ⁇ + )
  • the tertiary hydrogen also becomes electron deficient ( ⁇ + ) Dissociates as a radical.
  • oxygen and water it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.
  • R, R 1 and R 2 each represent a substituent.
  • substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (eg, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6).
  • Linear, branched or cyclic alkyl groups having the following carbon atoms for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl groups having 2 to 6 carbon atoms, such as ethynyl groups, propargyl groups), aryl groups (aryls having 6 to 16, preferably 6 to 10 carbon atoms) 1 to 12 groups obtained by removing one hydrogen atom from a group, for example, phenyl group, naphthyl group, heterocyclic group (5-membered or 6-
  • An alkylthio group an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group
  • an arylthio group (6 to 12, preferably 6 to 8 carbon atoms).
  • heterocyclic thio groups for example, heterocyclic thio groups having 2 to 10, preferably 2 to 6 carbon atoms, such as - benzothiazolylthio group
  • an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group.
  • those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (Eg, methoxyethyl group), an alkyl group substituted with an aryl group (eg, benzyl group), an aryl group substituted with an alkyl group (eg, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
  • the carbon number mentioned above shall not include the carbon number of the further substituent.
  • a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group.
  • the following description of the number of carbon atoms shall be similarly understood unless otherwise specified.
  • a 1 to A 3 each represents a single bond or a divalent linking group.
  • the divalent linking group include linear, branched or cyclic alkylene groups (C 1-12, preferably C 1-4 alkylene groups such as methylene and ethylene groups), aralkylene groups (carbon numbers). Examples thereof include an aralkylene group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as a benzylidene group, and an arylene group (arylene group having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as a phenylene group).
  • substituents represented by R, R 1 and R 2 examples include the functional groups exemplified above as substituents represented by R, R 1 and R 2 .
  • substituents represented by R, R 1 and R 2 examples include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).
  • the polyamide compound (A) preferably contains at least one structural unit represented by any one of the general formulas (III), (IV), and (V).
  • a carboxylic acid unit having tertiary hydrogen on the ⁇ -carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III).
  • the structural unit is particularly preferred.
  • R in the general formula (III) is as described above.
  • a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable.
  • An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
  • R examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.
  • the compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Alpha-amino acids such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline and the like can be exemplified, but are not limited thereto.
  • examples of the compound that can constitute the structural unit represented by the general formula (IV) include ⁇ -amino acids such as 3-aminobutyric acid, which constitute the structural unit represented by the general formula (V).
  • examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid. These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.
  • ⁇ -amino acids having tertiary hydrogen in the ⁇ carbon are particularly preferable from the viewpoint of availability of raw materials and improvement of oxygen absorption.
  • alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide compound (A), oxygen absorption performance per 1 g of the polyamide compound (A) is good.
  • the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more.
  • sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.
  • ⁇ -aminocarboxylic acid unit In the present invention, when the polyamide compound (A) needs flexibility and the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, An ⁇ -aminocarboxylic acid unit represented by the formula (X) may be further contained.
  • p represents an integer of 2 to 18.
  • the content of the ⁇ -aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35, in all the structural units of the polyamide compound (A). Mol%. However, the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ⁇ -aminocarboxylic acid unit does not exceed 100 mol%.
  • p represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 5 to 12.
  • Examples of the compound that can constitute the ⁇ -aminocarboxylic acid unit represented by the general formula (X) include ⁇ -aminocarboxylic acid having 5 to 19 carbon atoms and lactam having 5 to 19 carbon atoms.
  • Examples of the ⁇ -aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ⁇ -caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.
  • the ⁇ -aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ⁇ -aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
  • the relative viscosity of the polyamide compound (A) is not particularly limited, but is preferably 1.01 to 4.2. As described above, the suitable range of the mass ratio of the polyamide compound (A) / resin (B) varies depending on the relative viscosity of the polyamide compound (A), and the relative viscosity of the polyamide compound (A) is 1.8 or more. When the ratio is 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 95/5, and the relative viscosity of the polyamide compound (A) is 1.
  • the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 50/50.
  • the oxygen absorption rate of the polyamide compound (A) and the oxidative deterioration of the polyamide compound (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide compound (A).
  • the terminal amino group concentration of the polyamide compound (A) is preferably in the range of 5 to 150 ⁇ eq / g, more preferably 10 to 100 ⁇ eq / g, still more preferably 15 ⁇ 80 ⁇ eq / g.
  • the polyamide compound (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit.
  • the ⁇ -aminocarboxylic acid component that can constitute the ⁇ -aminocarboxylic acid unit if necessary, can be produced by polycondensation, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can.
  • a small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide compound (A) may be adjusted from 1.
  • Examples of the polycondensation method of the polyamide compound (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelatinization of a polyamide compound (A), and the polyamide compound (A) of the stable property is obtained.
  • a polyamide comprising a diamine component and a dicarboxylic acid component (polyamide corresponding to the precursor of the polyamide compound (A)) or a polyamide comprising a diamine component, a dicarboxylic acid component and an ⁇ -aminocarboxylic acid component (polyamide compound (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted.
  • a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it.
  • a polyamide compound (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit it is a simple method and suitable.
  • the pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing an aqueous nylon salt solution comprising a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ⁇ -aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While the inside of the can is gradually returned to normal pressure, the temperature is raised to about the melting point of polyamide compound (A) + 10 ° C.
  • the pressurized salt method is useful when a volatile component is used as a monomer, and is a preferable polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high.
  • it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A).
  • the pressurized salt method By using the pressurized salt method, transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, the polyamide compound (A) excellent in properties can be obtained.
  • Normal pressure dropping method In the atmospheric pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the polyamide compound (A) to be produced. Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.
  • a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ⁇ -aminocarboxylic acid component are charged into a polycondensation can, and the components are agitated and melt mixed.
  • the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water.
  • the polycondensation reaction is carried out while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the resulting polyamide compound (A).
  • the dropping of the diamine component is terminated, the temperature inside the can is gradually returned to normal pressure, and the temperature is raised to about the melting point of the polyamide compound (A) + 10 ° C. and held, and then ⁇ 0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued.
  • the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
  • the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. .
  • it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A).
  • a polyamide compound (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. The polyamide compound (A) having a low yellowness can be obtained.
  • the polyamide compound (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization.
  • Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization.
  • a heating device used in solid phase polymerization a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided.
  • a conical heating device can be preferably used, but a known method and device can be used without being limited thereto.
  • a rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.
  • [Phosphorus atom-containing compound, alkali metal compound] In the polycondensation of the polyamide compound (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
  • the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate,
  • a phosphoric acid compound etc. are mentioned.
  • hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect.
  • sodium hypophosphite is preferred.
  • the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
  • the addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, and still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide compound (A).
  • the polyamide compound (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide compound (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound, and the appearance of the molded product is improved.
  • an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide compound (A).
  • an alkali metal compound in order to prevent the polyamide compound (A) from being colored during the polycondensation, it is necessary that a sufficient amount of the phosphorus atom-containing compound is present, but in some cases, the polyamide compound (A) may be gelled.
  • an alkali metal compound As the alkali metal compound, alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable.
  • Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like but can be used without being limited to these compounds.
  • the range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.
  • Resin (B) in the present invention, any resin can be used as the resin (B) and is not particularly limited.
  • a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin.
  • the resin (B) preferably contains at least one selected from the group consisting of these resins.
  • a resin having a high oxygen barrier property such as polyester, polyamide and ethylene-vinyl alcohol copolymer is more preferable in order to effectively exhibit the oxygen absorption effect.
  • a conventionally well-known method can be used for mixing of the polyamide compound (A) and the resin (B), and dry mixing and melt mixing are exemplified.
  • the polyamide compound (A) and the resin (B) are melt-mixed to produce desired pellets and molded bodies, they can be melt-blended using an extruder or the like.
  • the extruder may be a known extruder such as a single screw extruder or a twin screw extruder, but is not limited thereto.
  • polyolefin Specific examples of the polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and the like.
  • Homopolymer ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer, etc., copolymer of ethylene and ⁇ -olefin Ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene- ⁇ , ⁇ -unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene- ⁇ , ⁇ -unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.
  • the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
  • Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc.
  • Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3- Phthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4 ′ Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic
  • Examples of forming derivatives such as 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc.
  • Aromatic dicarboxylic acids containing metal sulfonate groups The like lower alkyl esters thereof derivative.
  • dicarboxylic acids the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
  • carboxylic acids other than these dicarboxylic acids ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
  • glycols ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyto Aliphatic glycols, such as methylene glycol and polytetramethylene glycol, hydroquinone,
  • glycols it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components.
  • polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol.
  • Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
  • cyclic ester examples include ⁇ -caprolactone, ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -valerolactone, glycolide, lactide and the like.
  • ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
  • the polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
  • the polyester whose main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof with respect to the total acid component, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%.
  • the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 mol% or more. It is polyester to contain, More preferably, it is polyester containing 90 mol% or more.
  • naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention examples include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
  • the polyester whose main glycol component is alkylene glycol is preferably a polyester containing 70 mol% or more of alkylene glycol with respect to the total glycol component, more preferably a polyester containing 80 mol% or more, more preferably Polyester containing 90 mol% or more.
  • the alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.
  • the copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol from the viewpoint of achieving both transparency and moldability.
  • a preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit.
  • a linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.
  • polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably contains 70 mol% or more of ethylene-2,6-naphthalate units.
  • a linear polyester more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.
  • polyesters containing 70 mol% or more of propylene terephthalate units linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate.
  • the composition of the entire polyester is transparent in combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol.
  • terephthalic acid / isophthalic acid // ethylene glycol
  • terephthalic acid // ethylene glycol / neopentyl glycol.
  • a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.
  • polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide.
  • This polyglycolic acid may be copolymerized with other components such as lactide.
  • polyamide Polyamide used in the present invention (here, “polyamide” refers to a polyamide resin mixed with “polyamide compound (A)” of the present invention, and refers to “polyamide compound (A)” of the present invention itself.
  • monomer units other than the main structural unit may be copolymerized.
  • lactam or aminocarboxylic acid examples include lactams such as ⁇ -caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid.
  • an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used.
  • an alicyclic diamine may be used.
  • the aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine.
  • linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine.
  • alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.
  • the aliphatic dicarboxylic acid is preferably a linear aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and more preferably a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms.
  • linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof.
  • alicyclic dicarboxylic acid examples include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
  • aromatic diamine examples include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene and the like.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.
  • polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide.
  • a copolymerization component of the polyamide a polyether having at least one terminal amino group or terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used.
  • Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).
  • the partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.
  • the polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like.
  • the melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus.
  • the melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.
  • the ethylene vinyl alcohol copolymer used in the present invention is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, more preferably 29 to 44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
  • the ethylene vinyl alcohol copolymer has a smaller amount of an ⁇ -olefin such as propylene, isobutene, ⁇ -octene, ⁇ -dodecene, ⁇ -octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected.
  • it may contain a comonomer such as a salt, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof.
  • Plant-derived resin Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials.
  • examples of the aliphatic polyester-based biodegradable resin include poly ( ⁇ -hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES) and the like. And polyalkylene alkanoates.
  • resins Various conventionally known resins may be added as the resin (B) in accordance with the performance desired to be imparted to the oxygen-absorbing barrier layer as long as the object of the present invention is not impaired.
  • resins such as polyethylene and polypropylene, various modified products thereof, polyolefin elastomers, polyamide elastomers, styrene-butadiene copolymer resins and hydrogens thereof.
  • additive processed various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12 and nylon 12, etc. From the viewpoint of further imparting oxygen absorption performance, polybutadiene and modified polybutadiene And carbon-carbon unsaturated double bond-containing resins.
  • the resin composition for forming the oxygen absorption barrier layer may further contain an additive (C) as necessary in addition to the polyamide compound (A) and the resin (B) described above.
  • an additive (C) may be used, or a combination of two or more types may be used.
  • the content of the additive (C) in the resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.
  • [Anti-whitening agent] it is preferable to add a diamide compound and / or a diester compound to the resin composition as a suppression of whitening after the hot water treatment or after a long period of time.
  • Diamide compounds and diester compounds are effective in suppressing whitening due to precipitation of oligomers.
  • a diamide compound and a diester compound may be used alone or in combination.
  • the diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms.
  • a whitening prevention effect can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • One kind of diamide compound may be used, or two or more kinds may be used in combination.
  • Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
  • a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine is particularly preferred.
  • the diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms.
  • an effect of preventing whitening can be expected.
  • the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good.
  • the aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred.
  • diester compound may be used, or two or more types may be used in combination.
  • the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30).
  • the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol.
  • a diester compound obtained by combining these is preferred.
  • Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.
  • the addition amount of the diamide compound and / or diester compound is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and still more preferably 0 to the resin composition. 12 to 0.5% by mass.
  • a synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the resin composition and using it together with the crystallization nucleating agent.
  • the oxygen absorption barrier layer may contain a layered silicate.
  • layered silicate By adding layered silicate, not only oxygen gas barrier property but also barrier property against gas such as carbon dioxide gas can be imparted to the paper container.
  • the layered silicate is a 2-octahedron or 3-octahedral layered silicate having a charge density of 0.25 to 0.6.
  • Examples of the 2-octahedron type include montmorillonite, beidellite, and the like.
  • Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.
  • the layered silicate is obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate.
  • an organic swelling agent such as a polymer compound or an organic compound
  • a quaternary ammonium salt can be preferably used.
  • a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.
  • organic swelling agents include trimethyl dodecyl ammonium salts, trimethyl tetradecyl ammonium salts, trimethyl hexadecyl ammonium salts, trimethyl octadecyl ammonium salts, trimethyl alkyl ammonium salts such as trimethyl eicosyl ammonium salts; trimethyl octadecenyl ammonium salts Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tribut
  • hydroxyl group and / or ether group-containing ammonium salts among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadec
  • Salts can also be used as organic swelling agents.
  • organic swelling agents trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred.
  • organic swelling agents can be used alone or as a mixture of a plurality of types.
  • a layered silicate treated with an organic swelling agent is preferably added to the resin composition in an amount of 0.5 to 8% by mass, more preferably 1 to 6% by mass, and still more preferably 2 to 5%. % By mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.
  • the layered silicate is preferably uniformly dispersed without locally agglomerating.
  • the uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more.
  • the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.
  • Oxidation reaction accelerator In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired.
  • the oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide compound (A).
  • the oxidation reaction accelerator examples include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals.
  • a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
  • the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as a metal atom concentration in the resin composition.
  • oxygen absorbent In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention.
  • the oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide compound (A).
  • the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene and isoprene.
  • the addition amount of the oxygen absorbent is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and further preferably 0.5 to 3% by mass in the resin composition. .
  • carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof.
  • the derivatives include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate.
  • the addition amount of the carboxylate is preferably 400 to 10,000 ppm, more preferably 800 to 5000 ppm, and still more preferably 1000 to 3000 ppm as a concentration in the resin composition. If it is 400 ppm or more, the thermal deterioration of the polyamide compound (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide compound (A) will not raise
  • carboxylates which are basic substances, in the molten polyamide compound (A) delays the modification of the polyamide compound (A) by heat and suppresses the formation of a gel that is considered to be the final modified product.
  • the carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process.
  • the shape of the carboxylates is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the resin composition, so the particle size is 0. .2 mm or less is preferable.
  • antioxidant In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties.
  • the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.
  • hindered phenol antioxidant examples include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( , 5-di-t-butyl-4
  • phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol And organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl)
  • the content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but from the viewpoint of controlling the oxygen absorption performance and suppressing the deterioration of mechanical properties, it is preferably in the resin composition.
  • the amount is 0.001 to 3% by mass, more preferably 0.01 to 1% by mass.
  • the resin composition for forming the oxygen absorption barrier layer includes a lubricant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a plasticizer, a flame retardant, and a charge depending on the required application and performance.
  • Additives such as an inhibitor, an anti-coloring agent, and a crystallization nucleating agent may be added. These additives can be added as necessary within a range not impairing the effects of the present invention.
  • the laminated material preferably further includes a fusing layer on the surface (one side surface or both side surfaces) of the laminated material in addition to the paper base material layer and the oxygen absorbing barrier layer.
  • the paper container formed by boxing the laminated material having the fusion layer has the fusion layer as the innermost layer and / or the outermost layer of the paper container.
  • the fusing layer is a layer containing a thermoplastic resin having a fusing property, and is heat-sealed when a laminated material is boxed to form a container.
  • thermoplastic resin having the fusibility various polyolefin resins that can be melted by heat and fused to each other, other thermoplastic resins, and the like can be used.
  • low density polyethylene medium density polyethylene, High density polyethylene, linear (linear) low density polyethylene, ethylene- ⁇ / olefin copolymer polymerized using metallocene catalyst, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid copolymer Polymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer, methylpentene polymer, polybutene polymer, polyvinyl acetate resin, poly (meth) acrylic resin, polychlorinated Polyolefin such as vinyl resin, polyethylene or polypropylene Acid-modified polyolefin resins modified with unsaturated carboxylic acids such as acrylic acid
  • low-density polyethylene low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, and ethylene- ⁇ ⁇ polymerized using a metallocene catalyst from the viewpoint of moldability, hygiene, odor, etc.
  • Olefin copolymers are preferably used.
  • the fused layer is a lubricant, crystallization nucleating agent, anti-whitening agent, matting agent, heat stabilizer, weathering stabilizer, ultraviolet absorber, plasticizer, flame retardant, antistatic agent, coloring as long as the effect is not impaired. Additives such as inhibitors, antioxidants, impact resistance improvers and the like may be included.
  • the fusion layer is provided on both surfaces of the laminated material, the structure of both the fusion layers may be different from each other, but it is stable fusion property that the thermoplastic resin as the main component is the same. Is preferable.
  • the thickness of the fusion layer in the present invention is preferably from 5 to 200 ⁇ m, more preferably from the viewpoint of ensuring workability when boxing the laminated material while exhibiting practical fusion strength.
  • the thickness is 10 to 150 ⁇ m, more preferably 15 to 100 ⁇ m.
  • the laminate may further include an adhesive layer in addition to the paper base layer and the oxygen-absorbing barrier layer.
  • an adhesive layer is provided between the two layers.
  • the adhesive layer preferably contains a thermoplastic resin having adhesiveness.
  • the thermoplastic resin having adhesiveness for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples include polyolefin resins. It is preferable to select a modified resin of the same type as the thermoplastic resin having a fusibility as the thermoplastic resin having adhesiveness.
  • the thickness of the adhesive layer is preferably 2 to 100 ⁇ m, more preferably 5 to 90 ⁇ m, and still more preferably 10 from the viewpoint of ensuring workability when making a laminated material while exhibiting practical adhesive strength. ⁇ 80 ⁇ m.
  • the laminated material may further include an optional layer other than those described above depending on the desired performance and the like.
  • an optional layer other than those described above depending on the desired performance and the like.
  • a method in which a polyethylene layer is provided between the oxygen absorption barrier layer and the paper substrate to lower the extrusion processing temperature of the oxygen absorption barrier layer and prevent thermal deterioration during the extrusion processing is preferably performed.
  • Manufacturing method of laminated material As a method of manufacturing a laminated material, a method of laminating a normal packaging material, for example, a wet lamination method, a dry lamination method, a solventless dry lamination method, an extrusion lamination method, a T-die coextrusion molding method , Coextrusion lamination, inflation, etc.
  • pretreatment such as corona treatment and ozone treatment can be applied to a film or the like, if necessary, for example, isocyanate (urethane), polyethylene Anchor anchors such as imine, polybutadiene, and organic titanium, or known anchors such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, and other adhesives for laminating A coating agent, an adhesive, etc. can be used.
  • pretreatment such as corona treatment and ozone treatment
  • ozone treatment can be applied to a film or the like, if necessary, for example, isocyanate (urethane), polyethylene Anchor anchors such as imine, polybutadiene, and organic titanium, or known anchors such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, and other adhesives for laminating
  • a coating agent, an adhesive, etc. can be used.
  • the paper container of this invention is a paper container formed by boxing the laminated material mentioned above.
  • the laminated material is part or all of the constituent material.
  • the paper container including all of the laminated material means a paper container composed only of the laminated material, and the paper container including the laminated material as a part of the constituent material is a part of the paper container of the laminated material.
  • the rest means a paper container made of other materials. As an example of the latter, there is a paper container configured so that a stored material can be easily confirmed by using a transparent material (for example, a state in which the paper base material layer is removed from the laminated material) in part.
  • the shape of the paper container according to the present invention is not particularly limited as long as it can store and store various commonly known articles such as a columnar shape, a prismatic shape, a truncated cone shape, and a prismatic shape. Further, the capacity of the container is not particularly limited, and can be selected within an appropriate range according to the article to be stored and stored.
  • a method for making a laminated material can be appropriately selected according to the shape of the paper container. For example, a blank plate for a paper container having a predetermined shape subjected to ruled line processing or the like using a laminated material is punched out, and then the body edge of the blank plate is overlapped, and the overlapping end portion is welded to form a cylindrical body portion. Form.
  • a paper container can be manufactured by filling the contents, and then folding and heat-sealing the top using a predetermined ruled line to form a roof having a palm portion, a so-called govel top-shaped top. it can.
  • the manufacturing method of the paper container of this invention is not limited to this, For example, what is called a brick top type
  • the paper container of the present invention is suitable for filling and packaging various articles because it has excellent oxygen absorption performance and oxygen barrier performance and excellent flavor retention of contents.
  • beverages such as milk, dairy products, juices, alcoholic beverages, coffee, teas, seasonings, soups, and other various liquid foods, as well as chemicals such as adhesives, adhesives, agricultural chemicals, insecticides, pharmaceuticals, It can be used for filling and packaging goods such as cosmetics, shampoos, rinses, detergents and other miscellaneous goods.
  • the unit derived from metaxylylenediamine is “MXDA”
  • a unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”
  • the unit derived from hexamethylenediamine is “HMDA”
  • the unit derived from adipic acid is “AA”
  • the unit derived from isophthalic acid is “IPA”
  • the unit derived from DL-alanine is “DL-Ala”
  • the unit derived from DL-leucine is “DL-Leu”
  • the unit derived from DL-valine is “DL-Val”
  • a unit derived from ⁇ -caprolactam is referred to as “ ⁇ -CL”.
  • Polymetaxylylene adipamide is referred to as “N-MXD6”.
  • the ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide compound obtained in the production example were measured by the following methods. Moreover, the film was produced from the polyamide compound obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.
  • the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
  • a powder sample 2 g obtained by finely pulverizing a polyamide compound pellet or pulverized product with a pulverizer was used. The oxygen absorption amount was calculated in the same manner as described above.
  • Production Example 1 (Production of polyamide compound 1) Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die.
  • Adipic acid (Asahi Kasei Chemicals Co., Ltd.) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0.
  • Production Example 5 (Production of polyamide compound 5)
  • An MXDA / AA / DL-Leu copolymer (polyamide compound 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).
  • Production Example 6 (Production of polyamide compound 6)
  • Production Example 7 (Production of polyamide compound 7)
  • Production Example 9 (Production of polyamide compound 9)
  • the diamine component was changed to a mixture of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.) and metaxylylenediamine, and the charge composition ratio of each monomer was changed to metaxylylenediamine: 1,3-
  • bis (aminomethyl) cyclohexane: adipic acid: DL-alanine 33.2: 11.1: 44.6: 11.1 (mol%)
  • An MXDA / 1,3BAC / AA / DL-Ala copolymer (polyamide compound 9) was obtained in the same manner as in Production Example 1 except that the stirring was stopped.
  • Production Example 10 (Production of polyamide compound 10)
  • Table 1 shows the charged monomer compositions of the polyamide compounds 1 to 12 and the measurement results of the ⁇ -amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point and oxygen absorption amount of the obtained polyamide compounds.
  • Examples 1 to 20 and Comparative Examples 1 to 18 a laminated material was produced using the polyamide compounds 1 to 12, and a paper container was produced from the laminated material.
  • the following materials were used as the resin (B).
  • Nylon 6 (N-6) Ube Industries, UBE nylon, grade: 1022B
  • Nylon MXD6 (N-MXD6) The polyamide compound 11 obtained in Production Example 11 was used.
  • Example 1 Using an extrusion laminator comprising an extruder, a T-die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper substrate having a basis weight of 400 g / m 2 was subjected to corona treatment, and then the low-density polyethylene ( A product made by Nippon Polyethylene Co., Ltd., trade name: Novatec LD LC602A, hereinafter abbreviated as LDPE) is extruded and laminated to a thickness of 30 ⁇ m, and the other surface of the paper base material is subjected to corona treatment to obtain LDPE. A laminate having a layer / paper substrate layer configuration was produced.
  • LDPE low-density polyethylene
  • a co-extrusion device is used to produce LDPE from the first extruder and Production Example 1 from the second extruder.
  • the laminate was obtained by coextrusion laminating so that the LDPE layer was laminated on the corona surface of a paper base material on which LDPE had been extrusion laminated in advance.
  • the structure of the obtained laminated material is as follows: LDPE layer (30 ⁇ m) / adhesive PE layer (10 ⁇ m) / polyamide compound ⁇ resin (B) blend layer (20 ⁇ m) / adhesive PE layer (10 ⁇ m) from the inner surface of the container / LDPE layer (30 ⁇ m) / paper substrate layer / LDPE layer (30 ⁇ m).
  • the laminated material was ruled using a punching die and punched to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
  • Example 2 Example 1 except that polyamide compound 2 was used instead of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer, and the mixing ratio of polyamide compound 2 and N-6 was 80:20 (mass ratio). Similarly, a paper container was produced.
  • Example 3 Example 1 except that polyamide compound 3 was used instead of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer, and the mixing ratio of polyamide compound 3 and N-6 was 70:30 (mass ratio). Similarly, a paper container was produced.
  • Example 4 Example 1 except that polyamide compound 4 was used in place of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer, and the mixing ratio of polyamide compound 4 and N-6 was 60:40 (mass ratio). Similarly, a paper container was produced.
  • Comparative Example 1 instead of the polyamide compound ⁇ resin (B) blend layer, a paper container was prepared in the same manner as in Example 1 except that the polyamide (1) was not mixed and a resin (B) layer consisting only of N-6 was provided. Comparative Example 2 A paper container was produced in the same manner as in Example 1 except that the polyamide compound 11 was used in place of the polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer. Comparative Example 3 A paper container was prepared in the same manner as in Example 2 except that the polyamide compound 11 was used in place of the polyamide compound 2 in the polyamide compound ⁇ resin (B) blend layer.
  • Comparative Example 4 A paper container was produced in the same manner as in Example 3 except that the polyamide compound 11 was used in place of the polyamide compound 3 in the polyamide compound ⁇ resin (B) blend layer. Comparative Example 5 A paper container was produced in the same manner as in Example 4 except that the polyamide compound 11 was used instead of the polyamide compound 4 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 5 Using an extrusion laminator consisting of an extruder, a T die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper base having a basis weight of 400 g / m 2 was subjected to corona treatment, and then LDPE was applied to the corona surface with 30 ⁇ m. Extrusion lamination was performed to obtain a thickness, and the other surface of the paper substrate was subjected to corona treatment to produce a laminate having a structure of LDPE layer / paper substrate layer.
  • a co-extrusion device is used to produce LDPE from the first extruder and Production Example 5 from the second extruder.
  • a multilayer melt state is formed through a feed block so that the blend layer is in order, and the polyamide compound ⁇ resin (B) blend layer is laminated on the corona surface of the paper base material on which LDPE has been extrusion laminated in advance.
  • the laminated material was obtained by coextrusion lamination.
  • the structure of the obtained laminated material is as follows: LDPE layer (50 ⁇ m) / adhesive PE layer (15 ⁇ m) / polyamide compound ⁇ resin (B) blend layer (20 ⁇ m) / paper substrate layer / LDPE layer from the inner surface of the container (30 ⁇ m).
  • the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
  • Example 6 A paper container was produced in the same manner as in Example 5 except that polyamide compound 6 was used instead of polyamide compound 5 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 7 A paper container was produced in the same manner as in Example 5 except that polyamide compound 7 was used instead of polyamide compound 5 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 8 A paper container was prepared in the same manner as in Example 5 except that the polyamide compound 10 was used in place of the polyamide compound 5 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 9 Other than using N-MXD6 (polyamide compound 11) instead of N-6 in the polyamide compound x resin (B) blend layer, and mixing ratio of polyamide compound 1 and N-MXD6 was 30:70 (mass ratio) Made a paper container in the same manner as in Example 1.
  • Example 10 A paper container was produced in the same manner as in Example 9 except that polyamide compound 2 was used instead of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 11 Example 9 except that polyamide compound 3 was used instead of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer, and the mixing ratio of polyamide compound 3 and N-MXD6 was 20:80 (mass ratio). Similarly, a paper container was produced.
  • Example 12 A paper container was produced in the same manner as in Example 11 except that the polyamide compound 4 was used in place of the polyamide compound 3 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 13 A paper container was produced in the same manner as in Example 9 except that polyamide compound 8 was used instead of polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 14 A paper container was produced in the same manner as in Example 9 except that the polyamide compound 9 was used in place of the polyamide compound 1 in the polyamide compound ⁇ resin (B) blend layer.
  • Comparative Example 6 instead of the polyamide compound ⁇ resin (B) blend layer, a paper container was prepared in the same manner as in Example 9 except that the polyamide (1) was not mixed and a resin (B) layer consisting only of N-MXD6 was provided.
  • Example 15 A paper container was produced in the same manner as in Example 2 except that PET was used instead of N-6 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 16 A paper container was produced in the same manner as in Example 15 except that the mixing ratio of the polyamide compound 2 and PET was 70:30 (mass ratio).
  • Comparative Example 7 instead of the polyamide compound ⁇ resin (B) blend layer, a paper container was produced in the same manner as in Example 15 except that the polyamide (2) was not mixed and a resin (B) layer made of only PET was provided. Comparative Example 8 A paper container was prepared in the same manner as in Example 15 except that the polyamide compound 11 was used in place of the polyamide compound 2 in the polyamide compound ⁇ resin (B) blend layer. Comparative Example 9 A paper container was prepared in the same manner as in Example 16 except that the polyamide compound 11 was used instead of the polyamide compound 2 in the polyamide compound ⁇ resin (B) blend layer.
  • Example 17 Paper in the same manner as in Example 3 except that EVOH was used instead of N-6 in the polyamide compound ⁇ resin (B) blend layer, and the mixing ratio of polyamide compound 3 and EVOH was 10:90 (mass ratio).
  • a container was prepared.
  • Example 18 A paper container was produced in the same manner as in Example 17 except that the mixing ratio of the polyamide compound 3 and EVOH was 20:80 (mass ratio).
  • Comparative Example 10 In place of the polyamide compound ⁇ resin (B) blend layer, a paper container was prepared in the same manner as in Example 17 except that the polyamide (3) was not mixed and a resin (B) layer consisting only of EVOH was provided. Comparative Example 11 A paper container was prepared in the same manner as in Example 17 except that the polyamide compound 11 was used in place of the polyamide compound 3 in the polyamide compound ⁇ resin (B) blend layer. Comparative Example 12 A paper container was prepared in the same manner as in Example 18 except that the polyamide compound 11 was used instead of the polyamide compound 3 in the polyamide compound ⁇ resin (B) blend layer.
  • Comparative Example 13 Instead of the blend pellet obtained by dry-mixing polyamide compound 1 and N-6 at a ratio of 90:10 (mass ratio) to the blend layer of polyamide compound ⁇ resin (B), polyamide compound 11, N-6, and cobalt stearate (II ) was used in the same manner as in Example 1 except that the blended pellets were dry-mixed at a ratio of 80: 20: 0.12 (mass ratio).
  • Comparative Example 14 Instead of the blend pellet obtained by dry-mixing polyamide compound 1 and N-6 at a ratio of 90:10 (mass ratio) to the blend layer of polyamide compound ⁇ resin (B), polyamide compound 11, N-6 and cobalt stearate (II ) And maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-2000-20) in a dry blend ratio of 80: 20: 0.12: 2.4 (mass ratio).
  • a paper container was produced in the same manner as in Example 1 except that it was used.
  • Comparative Example 15 Dry blend of 40 parts by mass of granular oxygen absorbent coated with 3 parts by mass of calcium chloride and 100 parts by mass of LDPE with respect to 100 parts by mass of reduced iron powder having an average particle size of 30 ⁇ m, followed by extrusion with a 35 mm twin screw extruder, After cooling with a net belt with a blower, LDPE containing oxygen absorbent was obtained through a pelletizer.
  • the first extruder contains LDPE
  • the second extruder contains the oxygen absorbent.
  • LDPE Adhesive PE from the third extruder
  • Blend pellet obtained by dry-mixing the polyamide compound 11 and N-6 obtained in Production Example 11 from the fourth extruder at a ratio of 80:20 (mass ratio), No.
  • LDPE is extruded from the extruder of the above, and in the order of LDPE layer (A) / LDPE layer containing oxygen absorbent / adhesive PE layer / polyamide compound ⁇ resin (B) blend layer / adhesive PE layer / LDPE layer (B)
  • LDPE layer (B) is laminated on the corona surface of the paper base that has been pre-extruded and laminated with LDPE to obtain a laminated material.
  • the structure of the obtained laminated material is as follows: LDPE layer (A) (50 ⁇ m) / oxygen absorbent-containing LDPE layer (50 ⁇ m) / adhesive PE layer (10 ⁇ m) / polyamide compound ⁇ resin (B) It was blend layer (20 ⁇ m) / adhesive PE layer (10 ⁇ m) / LDPE layer (B) (20 ⁇ m) / paper substrate layer / LDPE layer (30 ⁇ m). Next, after applying an anti-heat sealant to the portion corresponding to the opening, the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
  • Comparative Example 16 A paper container was produced in the same manner as in Comparative Example 13 except that the resin (B) was changed from N-6 to PET.
  • Comparative Example 17 Polyamide compound x N-6, cobalt stearate (II) and maleic acid-modified polybutadiene in a blending layer of polyamide compound x resin (B) in a ratio of 80: 20: 0.12: 2.4 (mass ratio) Instead of using the blended pellets, EVOH, cobalt stearate (II), and maleic acid-modified polybutadiene at a ratio of 100: 0.12: 2.4 (mass ratio) were used. A paper container was produced in the same manner as in Comparative Example 14.
  • Comparative Example 18 A paper container was produced in the same manner as in Comparative Example 15 except that the resin (B) was changed from N-6 to PET.
  • Example 1 to 18 and Comparative Examples 1 to 18 were punched out and the oxygen transmission rate was measured.
  • Each paper container is filled with 500 ml of orange juice as a content while being heated and sterilized by hot filling method at about 80 ° C., stored at 25 ° C. for 1 month, and then opened at the opening of the top part of the bell.
  • the flavor retention was sensory evaluated as follows. The evaluation results are shown in Table 2.
  • Oxygen permeability measurement MOCON Co., Ltd., model: OX-TRAN 2/21 was used, and measurement was performed in an atmosphere of 23 ° C. and relative humidity 60% according to ASTM D3985.
  • each of the paper containers of Examples 1 to 18 had an evaluation result of openability and flavor retention, and was excellent in openability and flavor retention.
  • the laminated material (Examples 1 to 8) provided with a layer in which N-6 is blended with polyamide compounds 1 to 7 and 10 having an oxygen absorption function is a laminated material provided with a layer composed only of N-6 (Comparison) Compared with Example 1) and a laminate (Comparative Examples 2 to 5) provided with a layer obtained by blending N-6 with a polyamide compound 11 having no oxygen absorption function, the oxygen transmission rate could be kept small.
  • the laminated materials of Examples 9 to 14 are compared with the laminated material of Comparative Example 6, and the laminated materials of Examples 15 to 16 are compared to the laminated materials of Comparative Examples 7 to 9 and Examples 17 to 18 are compared.
  • the laminated materials of Comparative Examples 10 to 12 are compared with the laminated materials of FIG.
  • the laminated material of Comparative Example 13 was excellent in terms of oxygen permeability, the polyamide compound ⁇ resin (B) blend layer was destroyed when the paper container was opened by peeling off the fused portion of the gobbel top. It could not be opened neatly and was inferior in terms of openability.
  • the polyamide compound 11 and the transition metal compound (cobalt stearate (II)) coexisted to express oxygen absorption performance, the polyamide compound 11 was oxidized and decomposed at the same time, and the polyamide compound ⁇ resin (B) blend layer was deteriorated in strength. it is conceivable that.
  • the laminated material of Comparative Example 14 was excellent in terms of oxygen permeability, the paper container had a bad odor when opened and was inferior in flavor retention.
  • the polyamide compound 12 Since the polyamide compound 12 has a high terminal amino group concentration and is substantially difficult to oxidize, the polyamide compound ⁇ resin (B) blend layer is not greatly deteriorated in strength and coexists with maleic acid-modified polybutadiene and cobalt stearate. Although the oxygen absorption performance was exhibited in, it was considered that a strange odor was generated due to the generation of low molecular weight compounds accompanying the oxidative degradation of polybutadiene. Although the laminated material of Comparative Example 15 was excellent in terms of oxygen permeability, the paper container showed an iron odor when opened.
  • Example 19 Using an extrusion laminator consisting of an extruder, a T die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper base having a basis weight of 400 g / m 2 was subjected to corona treatment, and then LDPE was applied to the corona surface with 30 ⁇ m. Extrusion lamination was performed to obtain a thickness, and the other surface of the paper substrate was subjected to corona treatment to produce a laminate having a structure of LDPE layer / paper substrate layer.
  • Blend pellets obtained by dry-mixing polyamide compound 4, LDPE and adhesive PE at a ratio of 70:20:10 (mass ratio), from the third extruder Adhesive PE, a blend pellet (polyamide compound ⁇ resin (B) blend layer ⁇ ) obtained by dry-mixing the polyamide compound 11 obtained in Production Example 11 from the fourth extruder and N-6 at a ratio of 80:20 (mass ratio).
  • LDPE is extruded from the fifth extruder, LDPE layer (A) / adhesive PE layer / polyamide compound ⁇ resin (B) blend layer ⁇ / polyamide compound ⁇ resin (B) blend layer ⁇ / adhesive P
  • a multilayer melt state is formed through a feed block so that the order of E layer / LDPE layer (B) is reached, and the LDPE layer (B) is laminated on the corona surface of the paper base material that has been extruded and laminated in advance. Co-extrusion lamination was performed to obtain a laminated material.
  • the structure of the obtained laminated material is as follows: LDPE layer (A) (50 ⁇ m) / adhesive PE layer (10 ⁇ m) / polyamide compound ⁇ resin (B) blend layer ⁇ (50 ⁇ m) / polyamide compound ⁇ Resin (B) blend layer ⁇ (20 ⁇ m) / adhesive PE layer (10 ⁇ m) / LDPE layer (B) (20 ⁇ m) / paper substrate layer / LDPE layer (30 ⁇ m).
  • the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
  • Example 20 Instead of the blend pellet obtained by dry-mixing the polyamide compound 4, the LDPE, and the adhesive PE at a ratio of 70:20:10 (mass ratio) to the polyamide compound ⁇ resin (B) blend layer ⁇ , the polyamide compound 4 and the PLA 70: A paper container was produced in the same manner as in Example 19 except that blend pellets consisting of 30 (mass ratio) were used.
  • Example 19 and 20 were evaluated for oxygen permeability, openability, and flavor retention by the same evaluation method as described above.
  • the evaluation results of Examples 19 and 20 are shown in Table 3 together with the evaluation results of Comparative Example 3 described above.
  • a polyamide compound ⁇ resin (B) blend layer ⁇ using polyolefin (Example 19) or plant-derived resin (Example 20) as the resin (B) is laminated on the laminated material of Comparative Example 3 having no oxygen absorption function. By doing so, the oxygen transmission rate could be kept small. Even when a polyolefin or a plant-derived resin was used as the resin (B) blended with the polyamide compound having an oxygen absorbing function, it was confirmed that the laminate material exhibited an oxygen absorbing function.
  • the laminated material of the present invention and the paper container of the present invention formed by boxing the laminated material can be suitably used as a packaging material.

Abstract

A laminate including a paper base layer and a layer formed from a resin composition containing a polyamide compound (A) and a resin (B), and a paper container formed from the laminate. The polyamide compound (A) includes 25 to 50 mol% of diamine units that comprise 50 mol% or more of a specific diamine unit, 25 to 50 mol% of dicarboxylic acid units that comprise 50 mol% or more of a specific dicarboxylic acid unit, and 0.1 to 50 mol% of a specific constituent unit.

Description

積層材及び紙容器Laminate and paper container
 本発明は、酸素バリア性能及び酸素吸収性能を有する積層材、及びそれを製函してなる紙容器に関する。 The present invention relates to a laminated material having oxygen barrier performance and oxygen absorption performance, and a paper container formed by boxing it.
 従来、液体状物品の包装材料には、ガラス瓶、金属製容器、樹脂と紙基材を積層してなる紙容器等が広く使用されている。特に樹脂と紙基材を積層してなる紙容器は軽量かつ安全であることからその使用量は大きく伸びている。しかし、紙容器はガラス瓶や金属製容器と異なり、外部から酸素が透過してしまう性質があり、それに充填され密封された内容物の保存性に問題があった。この問題を解決する手段として、アルミ箔や無機酸化物蒸着フィルム、ガスバリア性樹脂等のガスバリア性材料を構成材料として積層する方法が行われている。
 しかしながら、アルミ箔を積層した紙容器では、使用後の資源リサイクルにおいて積層樹脂とアルミ箔および紙基材の分別回収が著しく困難であり、また焼却廃棄にあたっては、アルミ箔の灰状の残渣が廃棄物処理を困難にする等の問題があった。また無機酸化物蒸着フィルムを積層した紙容器では、無機酸化物がガラス質で非可撓性の薄膜であって、柔軟性に著しく欠ける薄膜であることから、例えば、外部から熱や圧力等が作用したり、製函時の折り曲げ時に簡単にクラック等が発生してガスバリア性が大きく低下するという問題点があった。ガスバリア性樹脂等を積層した紙容器では上述の問題はほとんど起こらない特徴を有しているが、そのガスバリア性能は完全ではなくかつ温度や湿度が変化することでその性能が悪化する場合があり、保存期間を延長することは可能であるものの、内容物の酸化による劣化は避けられず、満足することができるものではなかった。
Conventionally, a glass bottle, a metal container, a paper container formed by laminating a resin and a paper substrate, and the like are widely used as packaging materials for liquid articles. In particular, a paper container formed by laminating a resin and a paper base material is light and safe, and its usage is greatly increased. However, unlike a glass bottle or a metal container, a paper container has a property that oxygen can permeate from the outside, and there is a problem in the storage stability of the contents filled and sealed. As a means for solving this problem, a method of laminating a gas barrier material such as an aluminum foil, an inorganic oxide vapor deposition film, or a gas barrier resin as a constituent material is performed.
However, with paper containers laminated with aluminum foil, it is extremely difficult to separate and collect the laminated resin, aluminum foil, and paper substrate in resource recycling after use, and ash-like residues of aluminum foil are discarded when incinerated. There were problems such as making it difficult to dispose of materials. In addition, in a paper container laminated with an inorganic oxide vapor-deposited film, the inorganic oxide is a glassy and inflexible thin film, and is a thin film that lacks flexibility. There has been a problem that the gas barrier property is greatly lowered due to the occurrence of cracks or the like when the material is acted or folded during box making. The paper container laminated with a gas barrier resin has the characteristics that the above problems hardly occur, but its gas barrier performance is not perfect and its performance may deteriorate due to changes in temperature and humidity. Although it was possible to extend the storage period, deterioration of the contents due to oxidation was unavoidable and was not satisfactory.
 近年、ガスバリア性樹脂等を積層した紙容器において、上述の課題を解決するために、酸素吸収性能を有する層を積層する方法が開示されている。例えば、金属粉を主剤とする脱酸素剤(酸素吸収剤)をポリオレフィンまたは接着性ポリオレフィンに分散させた酸素吸収性樹脂層を紙基材と積層した紙容器が提案されている(例えば特許文献1~2参照)。また、分子中に炭素-炭素不飽和結合を有するポリオレフィンセグメントを結合した酸素捕捉性樹脂層を紙基材と積層した紙容器が提案されている(例えば特許文献3参照)。
 また、特許文献4には、ポリメタキシリレンアジパミドにコバルト化合物を共存させることで酸素吸収性能を発現させる技術が開示されており、これを酸素吸収性樹脂層として特許文献3に記載されているような層構成を採ることによっても酸素吸収性能を有する紙容器が製造できる。
In recent years, a method of laminating a layer having oxygen absorption performance in a paper container in which a gas barrier resin or the like is laminated has been disclosed in order to solve the above-described problems. For example, a paper container has been proposed in which an oxygen-absorbing resin layer in which an oxygen scavenger (oxygen absorber) based on metal powder is dispersed in polyolefin or adhesive polyolefin is laminated with a paper base (for example, Patent Document 1). To 2). In addition, a paper container has been proposed in which an oxygen scavenging resin layer bonded with a polyolefin segment having a carbon-carbon unsaturated bond in the molecule is laminated with a paper base (see, for example, Patent Document 3).
Patent Document 4 discloses a technique for expressing oxygen absorption performance by coexisting a cobalt compound with polymetaxylylene adipamide, which is described in Patent Document 3 as an oxygen-absorbing resin layer. By adopting such a layer structure, a paper container having oxygen absorption performance can be manufactured.
特開2005-035570号公報JP 2005-035570 A 特開2007-246120号公報JP 2007-246120 A 特開2001-080014号公報JP 2001-080014 A 特表平02-500846号公報Japanese National Patent Publication No. 02-500846
 上記特許文献1~2に示された紙容器は、紙容器外部から内部への酸素の透過を遮断する性能(酸素バリア性)を有し、かつ紙容器内のヘッドスペースの残存酸素や内容物中に溶解している溶存酸素を吸収する性能(酸素吸収性能)も有しているため、内容物の酸化劣化を抑制する効果に優れるものの、酸素吸収層の他に別途バリア層を設けることが必要であるため、従来以上に使用する材料が増え、経済性に劣る。また金属粉を酸素吸収剤として利用するため、内容物によってはその金属臭が内容物に移行して風味を損なう問題があった。
 特許文献3に示された紙容器は酸素吸収性樹脂層としてガスバリア性樹脂を適用することで従来の紙容器と同じ積層数で容器を構成できるが、炭素-炭素不飽和結合は酸化が進行するとアルデヒドやケトン等の低分子量有機物質が発生し、当該低分子量有機物質が酸素吸収性樹脂層の内側に積層された樹脂を透過してヘッドスペースに混入したり、場合によっては内容物中に溶解することがあり、内容物の風味を損なう問題があった。
 特許文献4に示された酸素吸収性樹脂組成物は特許文献3で問題となるようなアルデヒドやケトンの発生はほとんどないが、ポリメタキシリレンアジパミドの酸化分解により酸素を吸収する機構を採るため、低分子量物質の発生が同様に起こる。したがって、特許文献4の酸素吸収性樹脂組成物を酸素吸収層として応用した紙容器を作製した場合、ポリメタキシリレンアジパミドの酸化分解により発生した低分子量物質が内容物に混入する可能性があり、更には酸素吸収が進行するにつれて酸素吸収層の強度低下が進行する問題がある。酸素吸収層の強度低下は紙容器の強度低下を招くだけでなく、注ぎ口の開封性の悪化を招く問題があった。即ち、ゲーベルトップ型形状の頂部を有する紙容器等で多く採用されている、外部から応力を加えることで注ぎ口を開封する機構の紙容器においては、注ぎ口を開封する際に強度低下した酸素吸収層が破壊されて剥離してしまい、所望の剥離面にて剥離しなくなってしまうという現象が起こるようになる。このような現象が起こると、単に開封した注ぎ口の外観が悪くなるだけにとどまらず、内容物を注ぐ際に酸化劣化した酸素吸収層が内容物と接触することになるため、内容物の汚染が問題となる。
The paper containers disclosed in Patent Documents 1 and 2 have a performance (oxygen barrier property) that blocks the permeation of oxygen from the outside to the inside of the paper container, and the remaining oxygen and contents in the head space in the paper container Although it also has the ability to absorb dissolved oxygen dissolved in it (oxygen absorption performance), it is excellent in the effect of suppressing the oxidative deterioration of the contents, but it is possible to provide a separate barrier layer in addition to the oxygen absorbing layer Since it is necessary, the material used more than before increases, resulting in poor economic efficiency. In addition, since metal powder is used as an oxygen absorbent, there is a problem in that depending on the contents, the metal odor shifts to the contents and impairs the flavor.
The paper container shown in Patent Document 3 can be configured with the same number of layers as a conventional paper container by applying a gas barrier resin as an oxygen-absorbing resin layer, but the oxidation of carbon-carbon unsaturated bonds proceeds. Low molecular weight organic substances such as aldehydes and ketones are generated, and the low molecular weight organic substances permeate the resin laminated inside the oxygen-absorbing resin layer and enter the head space, or in some cases dissolve in the contents There was a problem of impairing the flavor of the contents.
Although the oxygen-absorbing resin composition shown in Patent Document 4 hardly generates aldehydes and ketones that cause problems in Patent Document 3, it adopts a mechanism for absorbing oxygen by oxidative decomposition of polymetaxylylene adipamide. Therefore, the generation of low molecular weight substances occurs as well. Therefore, when a paper container in which the oxygen-absorbing resin composition of Patent Document 4 is applied as an oxygen-absorbing layer is produced, there is a possibility that a low molecular weight substance generated by oxidative decomposition of polymetaxylylene adipamide is mixed into the contents. In addition, there is a problem that the strength of the oxygen absorbing layer is lowered as oxygen absorption proceeds. A decrease in the strength of the oxygen absorbing layer not only causes a decrease in the strength of the paper container, but also has a problem of deteriorating the opening of the spout. That is, in paper containers with a mechanism that opens the spout by applying external stress, which is often used in paper containers having a top part of the top of the bell shape, oxygen is reduced in strength when the spout is opened. A phenomenon occurs in which the absorbing layer is broken and peeled off, and no longer peels off at a desired peeled surface. When such a phenomenon occurs, not only the appearance of the opened spout is deteriorated, but also the oxygen-absorbing layer that has deteriorated by oxidation comes into contact with the contents when pouring the contents. Is a problem.
 本発明が解決しようとする課題は、内容物の酸化劣化を抑制できる紙容器であって、内容物の風味を損なわず、長期の保存においても酸素吸収層の強度低下がない紙容器、及び当該紙容器を製造するための積層体を提供することにある。 The problem to be solved by the present invention is a paper container that can suppress the oxidative deterioration of the contents, and does not impair the flavor of the contents, and does not deteriorate the strength of the oxygen absorbing layer even during long-term storage It is providing the laminated body for manufacturing a paper container.
 本発明は、以下の積層材及び紙容器を提供する。
<1>紙基材層と、
 ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層と
を含む積層材であって、
 該ポリアミド化合物(A)が、
 下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
 下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
 下記一般式(III)で表される構成単位0.1~50モル%と
を含有する、積層材。
Figure JPOXMLDOC01-appb-C000003
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
<2>上記積層材を製函してなる紙容器。
The present invention provides the following laminated material and paper container.
<1> a paper base material layer;
A laminate comprising a layer formed from a resin composition containing a polyamide compound (A) and a resin (B),
The polyamide compound (A) is
An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
A laminated material containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
Figure JPOXMLDOC01-appb-C000003
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
<2> A paper container formed by boxing the above laminated material.
 本発明の積層材は、酸素バリア性能を発現するとともに、遷移金属を含有せずに酸素吸収性能を発現することができ、かつ、酸素吸収が進行するにつれての酸素吸収バリア層の強度低下が極めて小さい。したがって、当該積層材を製函してなる本発明の紙容器は、内容物の酸化劣化の抑制に優れるとともに、異臭や風味変化の原因となるような物質の発生がほとんど無く、風味保持性にも優れる。さらに、酸素吸収バリア層の強度低下による開封性の悪化がほとんど無い。 The laminated material of the present invention exhibits oxygen barrier performance, can exhibit oxygen absorption performance without containing a transition metal, and extremely decreases the strength of the oxygen absorption barrier layer as oxygen absorption progresses. small. Therefore, the paper container of the present invention formed by boxing the laminated material is excellent in suppressing the oxidative deterioration of the contents, and hardly generates substances that cause a strange odor or a change in flavor. Also excellent. Furthermore, there is almost no deterioration of openability due to a decrease in strength of the oxygen absorption barrier layer.
<<積層材>>
 本発明の積層材は、紙基材層と、ポリアミド化合物及び樹脂を含有する樹脂組成物から形成される層(以後、「酸素吸収バリア層」と称することもある)とを少なくとも含む。積層材は、必要に応じて、更に融着層や接着層等の任意の層を含んでもよい。
<< Laminate >>
The laminated material of the present invention includes at least a paper base layer and a layer formed from a resin composition containing a polyamide compound and a resin (hereinafter sometimes referred to as “oxygen absorption barrier layer”). The laminated material may further include an arbitrary layer such as a fusion layer or an adhesive layer as necessary.
1.紙基材層
 本発明において、紙基材層は、容器を構成する基本素材となることから、賦型性、耐屈曲性、剛性、腰、強度等を有することが好ましく、例えば強サイズ性の晒または未晒の紙基材、あるいは、純白ロール紙、クラフト紙、板紙、加工紙、その他等の各種の紙基材を使用することができる。
 紙基材層は、約80~600g/m2の範囲の坪量を有することが好ましく、100~450g/m2の範囲の坪量を有することがより好ましい。なお、本発明において、紙基材層には、例えば、文字、図形、絵柄、記号、その他等の所望の印刷絵柄が通常の印刷方式にて任意に形成されていてもよい。
1. Paper base material layer In the present invention, since the paper base material layer is a basic material constituting the container, it preferably has formability, bending resistance, rigidity, waist, strength, etc. Various paper base materials such as bleached or unbleached paper base, or pure white roll paper, kraft paper, paperboard, processed paper, etc. can be used.
The paper base layer preferably has a basis weight in the range of about 80 to 600 g / m 2 and more preferably has a basis weight in the range of 100 to 450 g / m 2 . In the present invention, on the paper base material layer, for example, a desired print pattern such as a character, a figure, a pattern, a symbol, or the like may be arbitrarily formed by a normal printing method.
2.ポリアミド化合物及び樹脂を含有する樹脂組成物から形成される層(酸素吸収バリア層)
 本発明において、酸素吸収バリア層は樹脂組成物から形成されるものであり、当該樹脂組成物が、従来公知の樹脂(以後「樹脂(B)」と呼ぶこともある)に加えて、後述する特定のポリアミド化合物(以後「ポリアミド化合物(A)」と呼ぶこともある)を含有することで優れた酸素吸収性能及び酸素バリア性能を発揮することができる。
 本発明において、樹脂組成物に含有されるポリアミド化合物(A)は1種であってもよいし、2種以上の組合せであってもよい。また、樹脂組成物に含有される樹脂(B)は、1種であってもよいし、2種以上の組合せであってもよい。
2. Layer formed from a resin composition containing a polyamide compound and a resin (oxygen absorption barrier layer)
In the present invention, the oxygen absorption barrier layer is formed from a resin composition, and the resin composition will be described later in addition to a conventionally known resin (hereinafter also referred to as “resin (B)”). By containing a specific polyamide compound (hereinafter sometimes referred to as “polyamide compound (A)”), excellent oxygen absorption performance and oxygen barrier performance can be exhibited.
In the present invention, the polyamide compound (A) contained in the resin composition may be one type or a combination of two or more types. Moreover, 1 type may be sufficient as resin (B) contained in a resin composition, and the combination of 2 or more types may be sufficient as it.
 本発明に用いられる樹脂組成物中におけるポリアミド化合物(A)と樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なる。
 ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~95/5の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
 ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、成形加工性の観点から樹脂(B)を比較的多量に含有しておくことが望ましく、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~50/50の範囲から選択することが好ましい。酸素吸収性能及び酸素バリア性能の観点からは、ポリアミド化合物(A)と樹脂(B)の合計100質量部に対して、ポリアミド化合物(A)の含有量が10質量部以上であることがより好ましく、30質量部以上であることがさらに好ましい。
The suitable range of the mass ratio of the polyamide compound (A) and the resin (B) in the resin composition used in the present invention varies depending on the relative viscosity of the polyamide compound (A).
When the relative viscosity of the polyamide compound (A) is 1.8 or more and 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) can be selected from the range of 5/95 to 95/5. preferable. From the viewpoint of oxygen absorption performance and oxygen barrier performance, the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
When the relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, it is desirable to contain a relatively large amount of the resin (B) from the viewpoint of moldability, and the polyamide compound (A) / The mass ratio of the resin (B) is preferably selected from the range of 5/95 to 50/50. From the viewpoint of oxygen absorption performance and oxygen barrier performance, the content of the polyamide compound (A) is more preferably 10 parts by mass or more with respect to a total of 100 parts by mass of the polyamide compound (A) and the resin (B). More preferably, it is 30 parts by mass or more.
 本発明に用いられる樹脂組成物は、ポリアミド化合物(A)及び樹脂(B)に加えて、所望する性能等に応じて、後述する添加剤(以後「添加剤(C)」と呼ぶこともある)を含んでいてもよいが、樹脂組成物中のポリアミド化合物(A)と樹脂(B)の合計の含有量は、成形加工性や酸素吸収性能、酸素バリア性能の観点から90質量%~100質量%であることが好ましく、95質量%~100質量%であることがより好ましい。
 酸素吸収バリア層の厚みは、酸素吸収性能及び酸素バリア性能を高めつつ、積層材を製函するときの加工性を確保するという観点から、2~100μmとすることが好ましく、より好ましくは5~90μmであり、更に好ましくは10~80μmである。
In addition to the polyamide compound (A) and the resin (B), the resin composition used in the present invention may be referred to as an additive described later (hereinafter referred to as “additive (C)”) depending on the desired performance and the like. However, the total content of the polyamide compound (A) and the resin (B) in the resin composition is 90% by mass to 100% from the viewpoint of moldability, oxygen absorption performance, and oxygen barrier performance. The mass is preferably 95% by mass, and more preferably 95% by mass to 100% by mass.
The thickness of the oxygen absorption barrier layer is preferably 2 to 100 μm, more preferably 5 to 5 μm from the viewpoint of ensuring workability when a laminated material is boxed while improving oxygen absorption performance and oxygen barrier performance. It is 90 μm, more preferably 10 to 80 μm.
2-1.ポリアミド化合物(A)
<ポリアミド化合物(A)の構成>
 本発明において、ポリアミド化合物(A)は、下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、3級水素含有カルボン酸単位(好ましくは下記一般式(III)で表される構成単位)0.1~50モル%とを含有する。
2-1. Polyamide compound (A)
<Configuration of polyamide compound (A)>
In the present invention, the polyamide compound (A) includes an aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and the following general formula: 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of linear aliphatic diamine units represented by (I-3), and the following general formula (II-1) 25 to 50 mol% of dicarboxylic acid units containing a total of 50 mol% or more of linear aliphatic dicarboxylic acid units represented by formula (II-2) and aromatic dicarboxylic acid units represented by the following general formula (II-2): Tertiary hydrogen-containing carboxylic acid unit (preferably a structural unit represented by the following general formula (III)) 0.1 to 50 mol%.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
[前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
 ただし、前記ジアミン単位、前記ジカルボン酸単位、前記3級水素含有カルボン酸単位の合計は100モル%を超えないものとする。ポリアミド化合物(A)は、本発明の効果を損なわない範囲で、前記以外の構成単位を更に含んでいてもよい。
[In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
However, the total of the diamine unit, the dicarboxylic acid unit, and the tertiary hydrogen-containing carboxylic acid unit shall not exceed 100 mol%. The polyamide compound (A) may further contain structural units other than those described above as long as the effects of the present invention are not impaired.
 ポリアミド化合物(A)において、3級水素含有カルボン酸単位の含有量は0.1~50モル%である。3級水素含有カルボン酸単位の含有量が0.1モル%未満では十分な酸素吸収性能を発現しない。一方、3級水素含有カルボン酸単位の含有量が50モル%を超えると、3級水素含有量が多すぎるため、ポリアミド化合物(A)のガスバリア性や機械物性等の物性が低下し、特に3級水素含有カルボン酸がアミノ酸である場合は、ペプチド結合が連続するため耐熱性が十分でなくなるだけでなく、アミノ酸の2量体からなる環状物ができ、重合を阻害する。3級水素含有カルボン酸単位の含有量は、酸素吸収性能やポリアミド化合物(A)の性状の観点から、好ましくは0.2モル%以上、より好ましくは1モル%以上であり、また、好ましくは40モル%以下であり、より好ましくは30モル%以下である。 In the polyamide compound (A), the content of the tertiary hydrogen-containing carboxylic acid unit is 0.1 to 50 mol%. If the content of the tertiary hydrogen-containing carboxylic acid unit is less than 0.1 mol%, sufficient oxygen absorption performance is not exhibited. On the other hand, when the content of the tertiary hydrogen-containing carboxylic acid unit exceeds 50 mol%, the tertiary hydrogen content is too large, and the physical properties such as gas barrier properties and mechanical properties of the polyamide compound (A) are deteriorated. When the secondary hydrogen-containing carboxylic acid is an amino acid, the peptide bond is continuous, so that the heat resistance is not sufficient, and a cyclic product composed of a dimer of amino acids is formed, thereby inhibiting polymerization. The content of the tertiary hydrogen-containing carboxylic acid unit is preferably 0.2 mol% or more, more preferably 1 mol% or more, and preferably from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A). It is 40 mol% or less, More preferably, it is 30 mol% or less.
 ポリアミド化合物(A)において、ジアミン単位の含有量は25~50モル%であり、酸素吸収性能やポリマー性状の観点から、好ましくは30~50モル%である。同様に、ポリアミド化合物(A)において、ジカルボン酸単位の含有量は25~50モル%であり、好ましくは30~50モル%である。
 ジアミン単位とジカルボン酸単位との含有量の割合は、重合反応の観点から、ほぼ同量であることが好ましく、ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%であることがより好ましい。ジカルボン酸単位の含有量がジアミン単位の含有量の±2モル%の範囲を超えると、ポリアミド化合物(A)の重合度が上がりにくくなるため重合度を上げるのに多くの時間を要し、熱劣化が生じやすくなる。
In the polyamide compound (A), the diamine unit content is 25 to 50 mol%, and preferably 30 to 50 mol% from the viewpoint of oxygen absorption performance and polymer properties. Similarly, in the polyamide compound (A), the content of dicarboxylic acid units is 25 to 50 mol%, preferably 30 to 50 mol%.
The proportion of the content of the diamine unit and the dicarboxylic acid unit is preferably substantially the same from the viewpoint of the polymerization reaction, and the content of the dicarboxylic acid unit is ± 2 mol% of the content of the diamine unit. More preferred. If the content of the dicarboxylic acid unit exceeds the range of ± 2 mol% of the content of the diamine unit, the degree of polymerization of the polyamide compound (A) becomes difficult to increase, so it takes a lot of time to increase the degree of polymerization, Deterioration is likely to occur.
[ジアミン単位]
 ポリアミド化合物(A)中のジアミン単位は、前記一般式(I-1)で表される芳香族ジアミン単位、前記一般式(I-2)で表される脂環族ジアミン単位、及び前記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を、ジアミン単位中に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Diamine unit]
The diamine unit in the polyamide compound (A) is an aromatic diamine unit represented by the general formula (I-1), an alicyclic diamine unit represented by the general formula (I-2), and the general formula. A total of 50 mol% or more of diamine units selected from the group consisting of linear aliphatic diamine units represented by (I-3) is contained in the diamine units, and the content is preferably 70 mol% Above, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
 前記一般式(I-1)で表される芳香族ジアミン単位を構成しうる化合物としては、オルトキシリレンジアミン、メタキシリレンジアミン、及びパラキシリレンジアミンが挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute the aromatic diamine unit represented by the general formula (I-1) include orthoxylylenediamine, metaxylylenediamine, and paraxylylenediamine. These can be used alone or in combination of two or more.
 前記一般式(I-2)で表される脂環族ジアミン単位を構成しうる化合物としては、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等のビス(アミノメチル)シクロヘキサン類が挙げられる。これらは単独で又は2種以上を組み合わせて用いることができる。
 ビス(アミノメチル)シクロヘキサン類は、構造異性体を持つが、cis体比率を高くすることで、結晶性が高く、良好な成形性を得られる。一方、cis体比率を低くすれば、結晶性が低い、透明なものが得られる。したがって、結晶性を高くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を70モル%以上とすることが好ましく、より好ましくは80モル%以上、更に好ましくは90モル%以上とする。一方、結晶性を低くしたい場合は、ビス(アミノメチル)シクロヘキサン類におけるcis体含有比率を50モル%以下とすることが好ましく、より好ましくは40モル%以下、更に好ましくは30モル%以下とする。
Examples of the compound capable of constituting the alicyclic diamine unit represented by the general formula (I-2) include bis (1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like. Aminomethyl) cyclohexanes. These can be used alone or in combination of two or more.
Bis (aminomethyl) cyclohexanes have structural isomers, but by increasing the cis-isomer ratio, the crystallinity is high and good moldability can be obtained. On the other hand, if the cis-isomer ratio is lowered, a transparent material with low crystallinity can be obtained. Therefore, when it is desired to increase the crystallinity, the cis-isomer content ratio in the bis (aminomethyl) cyclohexane is preferably 70 mol% or more, more preferably 80 mol% or more, and still more preferably 90 mol% or more. . On the other hand, when it is desired to lower the crystallinity, the cis body content ratio in the bis (aminomethyl) cyclohexanes is preferably 50 mol% or less, more preferably 40 mol% or less, still more preferably 30 mol% or less. .
 前記一般式(I-3)中、mは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは6~12である。
 前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を構成しうる化合物としては、エチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンを例示できるが、これらに限定されるものではない。これらの中でも、ヘキサメチレンジアミンが好ましい。これらは単独で又は2種以上を組み合わせて用いることができる。
In the general formula (I-3), m represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 6 to 12.
Examples of the compound that can constitute the linear aliphatic diamine unit represented by the general formula (I-3) include ethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, and heptamethylenediamine. And aliphatic diamines such as octamethylene diamine, nonamethylene diamine, decamethylene diamine, undecamethylene diamine, and dodecamethylene diamine, but are not limited thereto. Among these, hexamethylenediamine is preferable. These can be used alone or in combination of two or more.
 ポリアミド化合物(A)中のジアミン単位としては、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、透明性や色調の向上や、汎用的な熱可塑性樹脂の成形性を容易にする観点からは、前記一般式(I-1)で表される芳香族ジアミン単位及び/又は前記一般式(I-2)で表される脂環族ジアミン単位を含むことが好ましく、ポリアミド化合物(A)に適度な結晶性を付与する観点からは、前記一般式(I-3)で表される直鎖脂肪族ジアミン単位を含むことが好ましい。特に、酸素吸収性能やポリアミド化合物(A)の性状の観点からは、前記一般式(I-1)で表される芳香族ジアミン単位を含むことが好ましい。 As a diamine unit in the polyamide compound (A), in addition to imparting excellent gas barrier properties to the polyamide compound (A), it improves transparency and color tone and facilitates moldability of general-purpose thermoplastic resins. From the viewpoint, it preferably contains an aromatic diamine unit represented by the general formula (I-1) and / or an alicyclic diamine unit represented by the general formula (I-2). From the standpoint of imparting appropriate crystallinity to (A), it is preferable to include a linear aliphatic diamine unit represented by the general formula (I-3). In particular, from the viewpoint of oxygen absorption performance and properties of the polyamide compound (A), it is preferable that the aromatic diamine unit represented by the general formula (I-1) is included.
 ポリアミド化合物(A)中のジアミン単位は、ポリアミド化合物(A)に優れたガスバリア性を発現させることに加え、汎用的な熱可塑性樹脂の成形性を容易にする観点から、メタキシリレンジアミン単位を50モル%以上含むことが好ましく、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The diamine unit in the polyamide compound (A) is a metaxylylenediamine unit from the viewpoint of facilitating moldability of a general-purpose thermoplastic resin in addition to exhibiting excellent gas barrier properties in the polyamide compound (A). The content is preferably 50 mol% or more, and the content is preferably 70 mol% or more, more preferably 80 mol% or more, still more preferably 90 mol% or more, and preferably 100 mol% or less.
 前記一般式(I-1)~(I-3)のいずれかで表されるジアミン単位以外のジアミン単位を構成しうる化合物としては、パラフェニレンジアミン等の芳香族ジアミン、1,3-ジアミノシクロヘキサン、1,4-ジアミノシクロヘキサン等の脂環族ジアミン、N-メチルエチレンジアミン、2-メチル-1,5-ペンタンジアミン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン等の脂肪族ジアミン、ハンツマン社製のジェファーミンやエラスタミン(いずれも商品名)に代表されるエーテル結合を有するポリエーテル系ジアミン等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute a diamine unit other than the diamine unit represented by any one of the general formulas (I-1) to (I-3) include aromatic diamines such as paraphenylenediamine, and 1,3-diaminocyclohexane. Fats such as 1,4-diaminocyclohexane, alicyclic diamines, N-methylethylenediamine, 2-methyl-1,5-pentanediamine, 1-amino-3-aminomethyl-3,5,5-trimethylcyclohexane, etc. Examples include, but are not limited to, group diamines, polyether diamines having ether bonds represented by Huntsman's Jeffamine and elastamine (both are trade names), and the like. These can be used alone or in combination of two or more.
[ジカルボン酸単位]
 ポリアミド化合物(A)中のジカルボン酸単位は、重合時の反応性、並びにポリアミド化合物(A)の結晶性及び成形性の観点から、前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は前記一般式(II-2)で表される芳香族ジカルボン酸単位を、ジカルボン酸単位に合計で50モル%以上含み、当該含有量は、好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。
[Dicarboxylic acid unit]
The dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic group represented by the general formula (II-1) from the viewpoints of reactivity during polymerization and crystallinity and moldability of the polyamide compound (A). The dicarboxylic acid unit and / or the aromatic dicarboxylic acid unit represented by the general formula (II-2) is contained in the dicarboxylic acid unit in a total of 50 mol% or more, and the content is preferably 70 mol% or more, more Preferably it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガラス転移温度や結晶性を付与することに加え、包装材料や包装容器として必要な柔軟性を付与できる点で好ましい。
 前記一般式(II-1)中、nは2~18の整数を表し、好ましくは3~16、より好ましくは4~12、更に好ましくは4~8である。
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位を構成しうる化合物としては、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、1,10-デカンジカルボン酸、1,11-ウンデカンジカルボン酸、1,12-ドデカンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is necessary for a packaging material and a packaging container in addition to imparting an appropriate glass transition temperature and crystallinity to the polyamide compound (A). It is preferable at the point which can provide a softness | flexibility.
In the general formula (II-1), n represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 12, and still more preferably 4 to 8.
Examples of the compound that can constitute the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) include succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, 1, Examples include 10-decanedicarboxylic acid, 1,11-undecanedicarboxylic acid, 1,12-dodecanedicarboxylic acid, but are not limited thereto. These can be used alone or in combination of two or more.
 前記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に優れたガスバリア性を付与することに加え、包装材料や包装容器の加熱殺菌後の耐熱性を保持する観点から、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを、直鎖脂肪族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The type of the linear aliphatic dicarboxylic acid unit represented by the general formula (II-1) is appropriately determined according to the application. The linear aliphatic dicarboxylic acid unit in the polyamide compound (A) provides excellent gas barrier properties to the polyamide compound (A), and from the viewpoint of maintaining heat resistance after heat sterilization of packaging materials and packaging containers. It is preferable that at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit is contained in a total of 50 mol% or more in the linear aliphatic dicarboxylic acid unit, The content is more preferably 70 mol% or more, still more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less.
 ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)のガスバリア性及び適切なガラス転移温度や融点等の熱的性質の観点からは、アジピン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。また、ポリアミド化合物(A)中の直鎖脂肪族ジカルボン酸単位は、ポリアミド化合物(A)に適度なガスバリア性及び成形加工適性を付与する観点からは、セバシン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましく、ポリアミド化合物(A)が低吸水性、耐候性、耐熱性を要求される用途に用いられる場合は、1,12-ドデカンジカルボン酸単位を直鎖脂肪族ジカルボン酸単位中に50モル%以上含むことが好ましい。 The linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is a linear aliphatic unit from the viewpoint of gas barrier properties of the polyamide compound (A) and thermal properties such as an appropriate glass transition temperature and melting point. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit. In addition, the linear aliphatic dicarboxylic acid unit in the polyamide compound (A) is converted from the sebacic acid unit to the linear aliphatic dicarboxylic acid unit from the viewpoint of imparting appropriate gas barrier properties and molding processability to the polyamide compound (A). When the polyamide compound (A) is used for applications requiring low water absorption, weather resistance, and heat resistance, the 1,12-dodecanedicarboxylic acid unit is a linear aliphatic group. It is preferable to contain 50 mol% or more in the dicarboxylic acid unit.
 前記一般式(II-2)で表される芳香族ジカルボン酸単位は、ポリアミド化合物(A)に更なるガスバリア性を付与することに加え、包装材料や包装容器の成形加工性を容易にすることができる点で好ましい。
 前記一般式(II-2)中、Arはアリーレン基を表す。前記アリーレン基は、好ましくは炭素数6~30、より好ましくは炭素数6~15のアリーレン基であり、例えば、フェニレン基、ナフチレン基等が挙げられる。
 前記一般式(II-2)で表される芳香族ジカルボン酸単位を構成しうる化合物としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸等を例示できるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。
The aromatic dicarboxylic acid unit represented by the general formula (II-2) facilitates the molding processability of packaging materials and packaging containers, in addition to imparting further gas barrier properties to the polyamide compound (A). It is preferable at the point which can do.
In the general formula (II-2), Ar represents an arylene group. The arylene group is preferably an arylene group having 6 to 30 carbon atoms, more preferably 6 to 15 carbon atoms, and examples thereof include a phenylene group and a naphthylene group.
Examples of the compound that can constitute the aromatic dicarboxylic acid unit represented by the general formula (II-2) include terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid, but are not limited thereto. is not. These can be used alone or in combination of two or more.
 前記一般式(II-2)で表される芳香族ジカルボン酸単位の種類は用途に応じて適宜決定される。ポリアミド化合物(A)中の芳香族ジカルボン酸単位は、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを、芳香族ジカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、更に好ましくは80モル%以上、特に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。また、これらの中でもイソフタル酸及び/又はテレフタル酸を芳香族ジカルボン酸単位中に含むことが好ましい。イソフタル酸単位とテレフタル酸単位との含有比(イソフタル酸単位/テレフタル酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、適度なガラス転移温度や結晶性を下げる観点からは、両単位の合計を100としたとき、モル比で好ましくは0/100~100/0、より好ましくは0/100~60/40、更に好ましくは0/100~40/60、更に好ましくは0/100~30/70である。 The kind of the aromatic dicarboxylic acid unit represented by the general formula (II-2) is appropriately determined according to the use. The aromatic dicarboxylic acid unit in the polyamide compound (A) is a total of at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in the aromatic dicarboxylic acid unit. The content is preferably 70 mol% or more, more preferably 80 mol% or more, particularly preferably 90 mol% or more, and preferably 100 mol% or less. is there. Among these, it is preferable to contain isophthalic acid and / or terephthalic acid in the aromatic dicarboxylic acid unit. The content ratio of the isophthalic acid unit to the terephthalic acid unit (isophthalic acid unit / terephthalic acid unit) is not particularly limited and is appropriately determined according to the application. For example, from the viewpoint of reducing an appropriate glass transition temperature and crystallinity, when the total of both units is 100, the molar ratio is preferably 0/100 to 100/0, more preferably 0/100 to 60/40, More preferably, it is 0/100 to 40/60, and more preferably 0/100 to 30/70.
 ポリアミド化合物(A)中のジカルボン酸単位において、前記直鎖脂肪族ジカルボン酸単位と前記芳香族ジカルボン酸単位との含有比(直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位)は、特に制限はなく、用途に応じて適宜決定される。例えば、ポリアミド化合物(A)のガラス転移温度を上げて、ポリアミド化合物(A)の結晶性を低下させることを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは0/100~60/40、より好ましくは0/100~40/60、更に好ましくは0/100~30/70である。また、ポリアミド化合物(A)のガラス転移温度を下げてポリアミド化合物(A)に柔軟性を付与することを目的とした場合、直鎖脂肪族ジカルボン酸単位/芳香族ジカルボン酸単位は、両単位の合計を100としたとき、モル比で好ましくは40/60~100/0、より好ましくは60/40~100/0、更に好ましくは70/30~100/0である。 In the dicarboxylic acid unit in the polyamide compound (A), the content ratio of the linear aliphatic dicarboxylic acid unit to the aromatic dicarboxylic acid unit (linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit) is particularly limited. Rather, it is determined appropriately according to the application. For example, when the purpose is to increase the glass transition temperature of the polyamide compound (A) to lower the crystallinity of the polyamide compound (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total of these is 100, the molar ratio is preferably 0/100 to 60/40, more preferably 0/100 to 40/60, still more preferably 0/100 to 30/70. Further, when the purpose is to lower the glass transition temperature of the polyamide compound (A) to impart flexibility to the polyamide compound (A), the linear aliphatic dicarboxylic acid unit / aromatic dicarboxylic acid unit is When the total is 100, the molar ratio is preferably 40/60 to 100/0, more preferably 60/40 to 100/0, still more preferably 70/30 to 100/0.
 前記一般式(II-1)又は(II-2)で表されるジカルボン酸単位以外のジカルボン酸単位を構成しうる化合物としては、シュウ酸、マロン酸、フマル酸、マレイン酸、1,3-ベンゼン二酢酸、1,4-ベンゼン二酢酸等のジカルボン酸を例示できるが、これらに限定されるものではない。 Examples of the compound that can constitute a dicarboxylic acid unit other than the dicarboxylic acid unit represented by the general formula (II-1) or (II-2) include oxalic acid, malonic acid, fumaric acid, maleic acid, 1,3- Examples thereof include, but are not limited to, dicarboxylic acids such as benzenediacetic acid and 1,4-benzenediacetic acid.
[3級水素含有カルボン酸単位]
 本発明において、ポリアミド化合物(A)における3級水素含有カルボン酸単位は、ポリアミド化合物(A)の重合の観点から、アミノ基及びカルボキシル基を少なくとも1つずつ有するか、又はカルボキシル基を2つ以上有する。具体例としては、下記一般式(III)、(IV)又は(V)のいずれかで表される構成単位が挙げられる。
[Tertiary hydrogen-containing carboxylic acid unit]
In the present invention, the tertiary hydrogen-containing carboxylic acid unit in the polyamide compound (A) has at least one amino group and one carboxyl group or two or more carboxyl groups from the viewpoint of polymerization of the polyamide compound (A). Have. Specific examples include structural units represented by any of the following general formulas (III), (IV), or (V).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
[前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表し、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。] [In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent, and A 1 to A 3 each represent a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. ]
 本発明において、ポリアミド化合物(A)は、3級水素含有カルボン酸単位を含む。このような3級水素含有カルボン酸単位を共重合成分として含有することで、ポリアミド化合物(A)は、遷移金属を含有せずとも優れた酸素吸収性能を発揮することができる。 In the present invention, the polyamide compound (A) includes a tertiary hydrogen-containing carboxylic acid unit. By containing such a tertiary hydrogen-containing carboxylic acid unit as a copolymerization component, the polyamide compound (A) can exhibit excellent oxygen absorption performance without containing a transition metal.
 本発明において、3級水素含有カルボン酸単位を有するポリアミド化合物(A)が良好な酸素吸収性能を示す機構についてはまだ明らかにされていないが以下のように推定される。3級水素含有カルボン酸単位を構成しうる化合物は、同一炭素原子上に電子求引性基と電子供与性基とが結合しているため、その炭素原子上に存在する不対電子がエネルギー的に安定化されるキャプトデーティブ(Captodative)効果と呼ばれる現象によって非常に安定なラジカルが生成すると考えられる。すなわち、カルボキシル基は電子求引性基であり、それに隣接する3級水素が結合している炭素が電子不足(δ+)になるため、当該3級水素も電子不足(δ+)となり、プロトンとして解離してラジカルを形成する。ここに酸素及び水が存在したときに、酸素がこのラジカルと反応することで、酸素吸収性能を示すと考えられる。また、高湿度かつ高温の環境であるほど、反応性は高いことが判明している。 In the present invention, the mechanism by which the polyamide compound (A) having a tertiary hydrogen-containing carboxylic acid unit exhibits good oxygen absorption performance has not yet been clarified, but is estimated as follows. In a compound that can constitute a tertiary hydrogen-containing carboxylic acid unit, an electron-withdrawing group and an electron-donating group are bonded to the same carbon atom, so that unpaired electrons existing on the carbon atom are energetic. It is considered that a very stable radical is generated by a phenomenon called a captodative effect that is stabilized in a stable manner. That is, the carboxyl group is an electron withdrawing group, and the carbon to which the adjacent tertiary hydrogen is bonded becomes electron deficient (δ + ), so the tertiary hydrogen also becomes electron deficient (δ + ) Dissociates as a radical. When oxygen and water are present here, it is considered that oxygen reacts with this radical to show oxygen absorption performance. It has also been found that the higher the humidity and temperature, the higher the reactivity.
 前記一般式(III)~(V)中、R、R1及びR2はそれぞれ置換基を表す。本発明におけるR、R1及びR2で表される置換基としては、例えば、ハロゲン原子(例えば、塩素原子、臭素原子、ヨウ素原子)、アルキル基(1~15個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルキル基、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、t-ブチル基、n-オクチル基、2-エチルヘキシル基、シクロプロピル基、シクロペンチル基)、アルケニル基(2~10個、好ましくは2~6個の炭素原子を有する直鎖、分岐又は環状アルケニル基、例えば、ビニル基、アリル基)、アルキニル基(2~10個、好ましくは2~6個の炭素原子を有するアルキニル基、例えば、エチニル基、プロパルギル基)、アリール基(6~16個、好ましくは6~10個の炭素原子を有するアリール基、例えば、フェニル基、ナフチル基)、複素環基(5員環又は6員環の芳香族又は非芳香族の複素環化合物から1個の水素原子を取り除くことによって得られる、1~12個、好ましくは2~6個の炭素原子を有する一価の基、例えば1-ピラゾリル基、1-イミダゾリル基、2-フリル基)、シアノ基、水酸基、ニトロ基、アルコキシ基(1~10個、好ましくは1~6個の炭素原子を有する直鎖、分岐又は環状アルコキシ基、例えば、メトキシ基、エトキシ基)、アリールオキシ基(6~12個、好ましくは6~8個の炭素原子を有するアリールオキシ基、例えば、フェノキシ基)、アシル基(ホルミル基、2~10個、好ましくは2~6個の炭素原子を有するアルキルカルボニル基、或いは7~12個、好ましくは7~9個の炭素原子を有するアリールカルボニル基、例えば、アセチル基、ピバロイル基、ベンゾイル基)、アミノ基(アミノ基、1~10個、好ましくは1~6個の炭素原子を有するアルキルアミノ基、6~12個、好ましくは6~8個の炭素原子を有するアニリノ基、或いは1~12個、好ましくは2~6個の炭素原子を有する複素環アミノ基、例えば、アミノ基、メチルアミノ基、アニリノ基)、メルカプト基、アルキルチオ基(1~10個、好ましくは1~6個の炭素原子を有するアルキルチオ基、例えば、メチルチオ基、エチルチオ基)、アリールチオ基(6~12個、好ましくは6~8個の炭素原子を有するアリールチオ基、例えば、フェニルチオ基)、複素環チオ基(2~10個、好ましくは2~6個の炭素原子を有する複素環チオ基、例えば2-ベンゾチアゾリルチオ基)、イミド基(2~10個、好ましくは4~8個の炭素原子を有するイミド基、例えば、N-スクシンイミド基、N-フタルイミド基)等が挙げられる。 In the general formulas (III) to (V), R, R 1 and R 2 each represent a substituent. Examples of the substituent represented by R, R 1 and R 2 in the present invention include a halogen atom (eg, chlorine atom, bromine atom, iodine atom), alkyl group (1 to 15, preferably 1 to 6). Linear, branched or cyclic alkyl groups having the following carbon atoms, for example, methyl group, ethyl group, n-propyl group, isopropyl group, t-butyl group, n-octyl group, 2-ethylhexyl group, cyclopropyl group, cyclopentyl Group), an alkenyl group (a linear, branched or cyclic alkenyl group having 2 to 10, preferably 2 to 6 carbon atoms, such as a vinyl group, an allyl group), an alkynyl group (2 to 10, preferably Alkynyl groups having 2 to 6 carbon atoms, such as ethynyl groups, propargyl groups), aryl groups (aryls having 6 to 16, preferably 6 to 10 carbon atoms) 1 to 12 groups obtained by removing one hydrogen atom from a group, for example, phenyl group, naphthyl group, heterocyclic group (5-membered or 6-membered aromatic or non-aromatic heterocyclic compound) , Preferably a monovalent group having 2 to 6 carbon atoms, such as 1-pyrazolyl group, 1-imidazolyl group, 2-furyl group, cyano group, hydroxyl group, nitro group, alkoxy group (1-10, Preferably a linear, branched or cyclic alkoxy group having 1 to 6 carbon atoms, such as a methoxy group, an ethoxy group, an aryloxy group (6-12, preferably 6-8 carbon atoms aryl) An oxy group, such as a phenoxy group, an acyl group (formyl group, 2-10, preferably an alkylcarbonyl group having 2-6 carbon atoms, or 7-12, preferably 7-9 carbon atoms. Arylcarbonyl group having, for example, acetyl group, pivaloyl group, benzoyl group), amino group (amino group, 1-10, preferably alkylamino group having 1-6 carbon atoms, 6-12, preferably Is an anilino group having 6 to 8 carbon atoms, or a heterocyclic amino group having 1 to 12, preferably 2 to 6 carbon atoms, such as an amino group, a methylamino group, an anilino group), a mercapto group An alkylthio group (an alkylthio group having 1 to 10, preferably 1 to 6 carbon atoms, such as a methylthio group, an ethylthio group), an arylthio group (6 to 12, preferably 6 to 8 carbon atoms). Arylthio groups having, for example, phenylthio groups), heterocyclic thio groups (for example, heterocyclic thio groups having 2 to 10, preferably 2 to 6 carbon atoms, such as - benzothiazolylthio group), an imido group (2 to 10, preferably an imido group having 4 to 8 carbon atoms, for example, N- succinimido group, N- phthalimido group).
 これらの官能基の中で水素原子を有するものは更に上記の基で置換されていてもよく、例えば、水酸基で置換されたアルキル基(例えば、ヒドロキシエチル基)、アルコキシ基で置換されたアルキル基(例えば、メトキシエチル基)、アリール基で置換されたアルキル基(例えば、ベンジル基)、アルキル基で置換されたアリール基(例えば、p-トリル基)、アルキル基で置換されたアリールオキシ基(例えば、2-メチルフェノキシ基)等を挙げられるが、これらに限定されるものではない。
 なお、官能基が更に置換されている場合、上述した炭素数には、更なる置換基の炭素数は含まれないものとする。例えば、ベンジル基は、フェニル基で置換された炭素数1のアルキル基と見なし、フェニル基で置換された炭素数7のアルキル基とは見なさない。以降の炭素数に記載についても、特に断りが無い限り、同様に解するものとする。
Among these functional groups, those having a hydrogen atom may be further substituted with the above groups, for example, an alkyl group substituted with a hydroxyl group (for example, hydroxyethyl group), an alkyl group substituted with an alkoxy group (Eg, methoxyethyl group), an alkyl group substituted with an aryl group (eg, benzyl group), an aryl group substituted with an alkyl group (eg, p-tolyl group), an aryloxy group substituted with an alkyl group ( Examples thereof include, but are not limited to, 2-methylphenoxy group.
In addition, when a functional group is further substituted, the carbon number mentioned above shall not include the carbon number of the further substituent. For example, a benzyl group is regarded as a C 1 alkyl group substituted with a phenyl group, and is not regarded as a C 7 alkyl group substituted with a phenyl group. The following description of the number of carbon atoms shall be similarly understood unless otherwise specified.
 前記一般式(IV)及び(V)中、A1~A3はそれぞれ単結合又は2価の連結基を表す。ただし、前記一般式(IV)においてA1及びA2がともに単結合である場合を除く。2価の連結基としては、例えば、直鎖、分岐もしくは環状のアルキレン基(炭素数1~12、好ましくは炭素数1~4のアルキレン基、例えばメチレン基、エチレン基)、アラルキレン基(炭素数7~30、好ましくは炭素数7~13のアラルキレン基、例えばベンジリデン基)、アリーレン基(炭素数6~30、好ましくは炭素数6~15のアリーレン基、例えば、フェニレン基)等が挙げられる。これらは更に置換基を有していてもよく、当該置換基としては、R、R1及びR2で表される置換基として上記に例示した官能基が挙げられる。例えば、アルキル基で置換されたアリーレン基(例えば、キシリレン基)等を挙げられるが、これらに限定されるものではない。 In the general formulas (IV) and (V), A 1 to A 3 each represents a single bond or a divalent linking group. However, the case where both A 1 and A 2 in the general formula (IV) are single bonds is excluded. Examples of the divalent linking group include linear, branched or cyclic alkylene groups (C 1-12, preferably C 1-4 alkylene groups such as methylene and ethylene groups), aralkylene groups (carbon numbers). Examples thereof include an aralkylene group having 7 to 30 carbon atoms, preferably 7 to 13 carbon atoms, such as a benzylidene group, and an arylene group (arylene group having 6 to 30 carbon atoms, preferably 6 to 15 carbon atoms such as a phenylene group). These may further have a substituent, and examples of the substituent include the functional groups exemplified above as substituents represented by R, R 1 and R 2 . Examples thereof include, but are not limited to, an arylene group substituted with an alkyl group (for example, a xylylene group).
 本発明において、ポリアミド化合物(A)は、前記一般式(III)、(IV)又は(V)のいずれかで表される構成単位の少なくとも1種を含むことが好ましい。これらの中でも、原料の入手性や酸素吸収性向上の観点から、α炭素(カルボキシル基に隣接する炭素原子)に3級水素を有するカルボン酸単位がより好ましく、前記一般式(III)で表される構成単位が特に好ましい。 In the present invention, the polyamide compound (A) preferably contains at least one structural unit represented by any one of the general formulas (III), (IV), and (V). Among these, from the viewpoint of improving the availability of raw materials and oxygen absorption, a carboxylic acid unit having tertiary hydrogen on the α-carbon (carbon atom adjacent to the carboxyl group) is more preferable, and is represented by the general formula (III). The structural unit is particularly preferred.
 前記一般式(III)中におけるRについては上述した通りであるが、その中でも置換もしくは無置換のアルキル基及び置換もしくは無置換のアリール基がより好ましく、置換もしくは無置換の炭素数1~6のアルキル基及び置換もしくは無置換の炭素数6~10のアリール基が更に好ましく、置換もしくは無置換の炭素数1~4のアルキル基及び置換もしくは無置換のフェニル基が特に好ましい。
 好ましいRの具体例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、t-ブチル基、1-メチルプロピル基、2-メチルプロピル基、ヒドロキシメチル基、1-ヒドロキシエチル基、メルカプトメチル基、メチルスルファニルエチル基、フェニル基、ナフチル基、ベンジル基、4-ヒドロキシベンジル基等を例示できるが、これらに限定されるものではない。これらの中でも、メチル基、エチル基、イソプロピル基、2-メチルプロピル基、及びベンジル基がより好ましい。
R in the general formula (III) is as described above. Among them, a substituted or unsubstituted alkyl group and a substituted or unsubstituted aryl group are more preferable, and a substituted or unsubstituted C 1-6 carbon atom is more preferable. An alkyl group and a substituted or unsubstituted aryl group having 6 to 10 carbon atoms are more preferred, and a substituted or unsubstituted alkyl group having 1 to 4 carbon atoms and a substituted or unsubstituted phenyl group are particularly preferred.
Specific examples of preferred R include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, 1-methylpropyl group, 2-methylpropyl group, hydroxymethyl group, 1- Examples thereof include, but are not limited to, a hydroxyethyl group, a mercaptomethyl group, a methylsulfanylethyl group, a phenyl group, a naphthyl group, a benzyl group, and a 4-hydroxybenzyl group. Among these, a methyl group, an ethyl group, an isopropyl group, a 2-methylpropyl group, and a benzyl group are more preferable.
 前記一般式(III)で表される構成単位を構成しうる化合物としては、アラニン、2-アミノ酪酸、バリン、ノルバリン、ロイシン、ノルロイシン、tert-ロイシン、イソロイシン、セリン、トレオニン、システイン、メチオニン、2-フェニルグリシン、フェニルアラニン、チロシン、ヒスチジン、トリプトファン、プロリン等のα-アミノ酸を例示できるが、これらに限定されるものではない。
 また、前記一般式(IV)で表される構成単位を構成しうる化合物としては、3-アミノ酪酸等のβ-アミノ酸を例示でき、前記一般式(V)で表される構成単位を構成しうる化合物としては、メチルマロン酸、メチルコハク酸、リンゴ酸、酒石酸等のジカルボン酸を例示できるが、これらに限定されるものではない。
 これらはD体、L体、ラセミ体のいずれであってもよく、アロ体であってもよい。また、これらは単独で又は2種以上を組み合わせて用いることができる。
The compounds that can constitute the structural unit represented by the general formula (III) include alanine, 2-aminobutyric acid, valine, norvaline, leucine, norleucine, tert-leucine, isoleucine, serine, threonine, cysteine, methionine, 2 -Alpha-amino acids such as phenylglycine, phenylalanine, tyrosine, histidine, tryptophan, proline and the like can be exemplified, but are not limited thereto.
In addition, examples of the compound that can constitute the structural unit represented by the general formula (IV) include β-amino acids such as 3-aminobutyric acid, which constitute the structural unit represented by the general formula (V). Examples of the compound that can be used include, but are not limited to, dicarboxylic acids such as methylmalonic acid, methylsuccinic acid, malic acid, and tartaric acid.
These may be any of D-form, L-form and racemate, or allo-form. Moreover, these can be used individually or in combination of 2 or more types.
 これらの中でも、原料の入手性や酸素吸収性向上等の観点から、α炭素に3級水素を有するα-アミノ酸が特に好ましい。また、α-アミノ酸の中でも、供給しやすさ、安価な価格、重合しやすさ、ポリマーの黄色度(YI)の低さといった点から、アラニンが最も好ましい。アラニンは、分子量が比較的低く、ポリアミド化合物(A)1g当たりの共重合率が高いため、ポリアミド化合物(A)1g当たりの酸素吸収性能は良好である。 Among these, α-amino acids having tertiary hydrogen in the α carbon are particularly preferable from the viewpoint of availability of raw materials and improvement of oxygen absorption. Among α-amino acids, alanine is most preferable from the viewpoints of ease of supply, inexpensive price, ease of polymerization, and low yellowness (YI) of the polymer. Since alanine has a relatively low molecular weight and a high copolymerization rate per 1 g of the polyamide compound (A), oxygen absorption performance per 1 g of the polyamide compound (A) is good.
 また、前記3級水素含有カルボン酸単位を構成しうる化合物の純度は、重合速度の遅延等の重合に及ぼす影響やポリマーの黄色度等の品質面への影響の観点から、95%以上であることが好ましく、より好ましくは98.5%以上、更に好ましくは99%以上である。また、不純物として含まれる硫酸イオンやアンモニウムイオンは、500ppm以下が好ましく、より好ましくは200ppm以下、更に好ましくは50ppm以下である。 Further, the purity of the compound that can constitute the tertiary hydrogen-containing carboxylic acid unit is 95% or more from the viewpoint of the influence on the polymerization such as the delay of the polymerization rate and the influence on the quality such as the yellowness of the polymer. Preferably, it is 98.5% or more, more preferably 99% or more. Further, sulfate ions and ammonium ions contained as impurities are preferably 500 ppm or less, more preferably 200 ppm or less, and still more preferably 50 ppm or less.
[ω-アミノカルボン酸単位]
 本発明において、ポリアミド化合物(A)は、ポリアミド化合物(A)に柔軟性等が必要な場合には、前記ジアミン単位、前記ジカルボン酸単位及び前記3級水素含有カルボン酸単位に加えて、下記一般式(X)で表されるω-アミノカルボン酸単位を更に含有してもよい。
[Ω-aminocarboxylic acid unit]
In the present invention, when the polyamide compound (A) needs flexibility and the like, in addition to the diamine unit, the dicarboxylic acid unit and the tertiary hydrogen-containing carboxylic acid unit, An ω-aminocarboxylic acid unit represented by the formula (X) may be further contained.
Figure JPOXMLDOC01-appb-C000006
[前記一般式(X)中、pは2~18の整数を表す。]
 前記ω-アミノカルボン酸単位の含有量は、ポリアミド化合物(A)の全構成単位中、好ましくは0.1~49.9モル%、より好ましくは3~40モル%、更に好ましくは5~35モル%である。ただし、前記のジアミン単位、ジカルボン酸単位、3級水素含有カルボン酸単位、及びω-アミノカルボン酸単位の合計は100モル%を超えないものとする。
 前記一般式(X)中、pは2~18の整数を表し、好ましくは3~16、より好ましくは4~14、更に好ましくは5~12である。
Figure JPOXMLDOC01-appb-C000006
[In the general formula (X), p represents an integer of 2 to 18. ]
The content of the ω-aminocarboxylic acid unit is preferably from 0.1 to 49.9 mol%, more preferably from 3 to 40 mol%, still more preferably from 5 to 35, in all the structural units of the polyamide compound (A). Mol%. However, the total of the diamine unit, dicarboxylic acid unit, tertiary hydrogen-containing carboxylic acid unit, and ω-aminocarboxylic acid unit does not exceed 100 mol%.
In the general formula (X), p represents an integer of 2 to 18, preferably 3 to 16, more preferably 4 to 14, and still more preferably 5 to 12.
 前記一般式(X)で表されるω-アミノカルボン酸単位を構成しうる化合物としては、炭素数5~19のω-アミノカルボン酸や炭素数5~19のラクタムが挙げられる。炭素数5~19のω-アミノカルボン酸としては、6-アミノヘキサン酸及び12-アミノドデカン酸等が挙げられ、炭素数5~19のラクタムとしては、ε-カプロラクタム及びラウロラクタムを挙げることができるが、これらに限定されるものではない。これらは単独で又は2種以上を組み合わせて用いることができる。 Examples of the compound that can constitute the ω-aminocarboxylic acid unit represented by the general formula (X) include ω-aminocarboxylic acid having 5 to 19 carbon atoms and lactam having 5 to 19 carbon atoms. Examples of the ω-aminocarboxylic acid having 5 to 19 carbon atoms include 6-aminohexanoic acid and 12-aminododecanoic acid, and examples of the lactam having 5 to 19 carbon atoms include ε-caprolactam and laurolactam. However, it is not limited to these. These can be used alone or in combination of two or more.
 前記ω-アミノカルボン酸単位は、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を、ω-アミノカルボン酸単位中に合計で50モル%以上含むことが好ましく、当該含有量は、より好ましくは70モル%以上、より好ましくは80モル%以上、更に好ましくは90モル%以上であり、また、好ましくは100モル%以下である。 The ω-aminocarboxylic acid unit preferably contains 6-aminohexanoic acid units and / or 12-aminododecanoic acid units in a total of 50 mol% or more in the ω-aminocarboxylic acid unit, and the content is More preferably, it is 70 mol% or more, More preferably, it is 80 mol% or more, More preferably, it is 90 mol% or more, Preferably it is 100 mol% or less.
[ポリアミド化合物(A)の重合度]
 ポリアミド化合物(A)の重合度については、相対粘度が使われる。ポリアミド化合物(A)の相対粘度は、特に限定されるわけではないが、好ましくは1.01~4.2である。
 上述したように、ポリアミド化合物(A)/樹脂(B)の質量比の好適な範囲は、ポリアミド化合物(A)の相対粘度に応じて異なり、ポリアミド化合物(A)の相対粘度が1.8以上4.2以下である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~95/5の範囲から選択することが好ましく、ポリアミド化合物(A)の相対粘度が1.01以上1.8未満である場合、ポリアミド化合物(A)/樹脂(B)の質量比は、5/95~50/50の範囲から選択することが好ましい。
 なお、ここでいう相対粘度は、ポリアミド化合物(A)1gを96%硫酸100mLに溶解し、キャノンフェンスケ型粘度計にて25℃で測定した落下時間(t)と、同様に測定した96%硫酸そのものの落下時間(t0)の比であり、次式で示される。
   相対粘度=t/t0
[Polymerization degree of polyamide compound (A)]
Relative viscosity is used for the degree of polymerization of the polyamide compound (A). The relative viscosity of the polyamide compound (A) is not particularly limited, but is preferably 1.01 to 4.2.
As described above, the suitable range of the mass ratio of the polyamide compound (A) / resin (B) varies depending on the relative viscosity of the polyamide compound (A), and the relative viscosity of the polyamide compound (A) is 1.8 or more. When the ratio is 4.2 or less, the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 95/5, and the relative viscosity of the polyamide compound (A) is 1. When the ratio is 01 or more and less than 1.8, the mass ratio of the polyamide compound (A) / resin (B) is preferably selected from the range of 5/95 to 50/50.
The relative viscosity here is 96% measured in the same manner as the dropping time (t) measured at 25 ° C. with a Cannon Fenceke viscometer by dissolving 1 g of polyamide compound (A) in 100 mL of 96% sulfuric acid. It is the ratio of the drop time (t 0 ) of sulfuric acid itself, and is represented by the following formula.
Relative viscosity = t / t 0
[末端アミノ基濃度]
 ポリアミド化合物(A)の酸素吸収速度、及び酸素吸収によるポリアミド化合物(A)の酸化劣化は、ポリアミド化合物(A)の末端アミノ基濃度を変えることで制御することが可能である。本発明では、酸素吸収速度と酸化劣化のバランスの観点から、ポリアミド化合物(A)の末端アミノ基濃度は5~150μeq/gの範囲が好ましく、より好ましくは10~100μeq/g、更に好ましくは15~80μeq/gである。
[Terminal amino group concentration]
The oxygen absorption rate of the polyamide compound (A) and the oxidative deterioration of the polyamide compound (A) due to oxygen absorption can be controlled by changing the terminal amino group concentration of the polyamide compound (A). In the present invention, from the viewpoint of the balance between oxygen absorption rate and oxidative degradation, the terminal amino group concentration of the polyamide compound (A) is preferably in the range of 5 to 150 μeq / g, more preferably 10 to 100 μeq / g, still more preferably 15 ~ 80 μeq / g.
<ポリアミド化合物(A)の製造方法>
 ポリアミド化合物(A)は、前記ジアミン単位を構成しうるジアミン成分と、前記ジカルボン酸単位を構成しうるジカルボン酸成分と、前記3級水素含有カルボン酸単位を構成しうる3級水素含有カルボン酸成分と、必要により前記ω-アミノカルボン酸単位を構成しうるω-アミノカルボン酸成分とを重縮合させることで製造することができ、重縮合条件等を調整することで重合度を制御することができる。重縮合時に分子量調整剤として少量のモノアミンやモノカルボン酸を加えてもよい。また、重縮合反応を抑制して所望の重合度とするために、ポリアミド化合物(A)を構成するジアミン成分とカルボン酸成分との比率(モル比)を1からずらして調整してもよい。
<Production method of polyamide compound (A)>
The polyamide compound (A) includes a diamine component that can constitute the diamine unit, a dicarboxylic acid component that can constitute the dicarboxylic acid unit, and a tertiary hydrogen-containing carboxylic acid component that can constitute the tertiary hydrogen-containing carboxylic acid unit. And the ω-aminocarboxylic acid component that can constitute the ω-aminocarboxylic acid unit, if necessary, can be produced by polycondensation, and the degree of polymerization can be controlled by adjusting the polycondensation conditions and the like. it can. A small amount of monoamine or monocarboxylic acid may be added as a molecular weight modifier during polycondensation. Further, in order to suppress the polycondensation reaction and obtain a desired degree of polymerization, the ratio (molar ratio) between the diamine component and the carboxylic acid component constituting the polyamide compound (A) may be adjusted from 1.
 ポリアミド化合物(A)の重縮合方法としては、反応押出法、加圧塩法、常圧滴下法、加圧滴下法等が挙げられるが、これらに限定されない。また、反応温度は出来る限り低い方が、ポリアミド化合物(A)の黄色化やゲル化を抑制でき、安定した性状のポリアミド化合物(A)が得られる。 Examples of the polycondensation method of the polyamide compound (A) include, but are not limited to, a reactive extrusion method, a pressurized salt method, an atmospheric pressure dropping method, and a pressure dropping method. Moreover, the one where reaction temperature is as low as possible can suppress the yellowing and gelatinization of a polyamide compound (A), and the polyamide compound (A) of the stable property is obtained.
[反応押出法]
 反応押出法では、ジアミン成分及びジカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)又はジアミン成分、ジカルボン酸成分及びω-アミノカルボン酸成分からなるポリアミド(ポリアミド化合物(A)の前駆体に相当するポリアミド)と、3級水素含有カルボン酸成分とを押出機で溶融混練して反応させる方法である。3級水素含有カルボン酸成分をアミド交換反応により、ポリアミドの骨格中に組み込む方法であり、十分に反応させるためには、反応押出に適したスクリューを用い、L/Dの大きい2軸押出機を用いるのが好ましい。少量の3級水素含有カルボン酸単位を含むポリアミド化合物(A)を製造する場合に、簡便な方法であり好適である。
[Reactive extrusion method]
In the reactive extrusion method, a polyamide comprising a diamine component and a dicarboxylic acid component (polyamide corresponding to the precursor of the polyamide compound (A)) or a polyamide comprising a diamine component, a dicarboxylic acid component and an ω-aminocarboxylic acid component (polyamide compound (A And a tertiary hydrogen-containing carboxylic acid component are melt-kneaded with an extruder and reacted. This is a method of incorporating a tertiary hydrogen-containing carboxylic acid component into a polyamide skeleton by an amide exchange reaction. In order to sufficiently react, a screw suitable for reactive extrusion is used, and a twin screw extruder having a large L / D is used. It is preferable to use it. When producing a polyamide compound (A) containing a small amount of a tertiary hydrogen-containing carboxylic acid unit, it is a simple method and suitable.
[加圧塩法]
 加圧塩法では、ナイロン塩を原料として加圧下にて溶融重縮合を行う方法である。具体的には、ジアミン成分と、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とからなるナイロン塩水溶液を調製した後、該水溶液を濃縮し、次いで加圧下にて昇温し、縮合水を除去しながら重縮合させる。缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
 加圧塩法は、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧塩法を用いることで、3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。
[Pressure salt method]
The pressurized salt method is a method of performing melt polycondensation under pressure using a nylon salt as a raw material. Specifically, after preparing an aqueous nylon salt solution comprising a diamine component, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and an ω-aminocarboxylic acid component as necessary, the aqueous solution is concentrated, Next, the temperature is raised under pressure, and polycondensation is performed while removing condensed water. While the inside of the can is gradually returned to normal pressure, the temperature is raised to about the melting point of polyamide compound (A) + 10 ° C. and held, and then further gradually reduced to −0.02 MPaG and kept at the same temperature. Continue polycondensation. When a certain stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
The pressurized salt method is useful when a volatile component is used as a monomer, and is a preferable polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. In particular, it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A). By using the pressurized salt method, transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, the polyamide compound (A) excellent in properties can be obtained.
[常圧滴下法]
 常圧滴下法では、常圧下にて、ジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを加熱溶融した混合物に、ジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。なお、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。
 常圧滴下法は、前記加圧塩法と比較すると、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、また、原料成分の気化・凝縮を必要としないため、反応速度の低下が少なく、工程時間を短縮できる。
[Normal pressure dropping method]
In the atmospheric pressure dropping method, a diamine component is continuously dropped into a mixture obtained by heating and melting a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ω-aminocarboxylic acid component under normal pressure. Then, polycondensation is performed while removing condensed water. The polycondensation reaction is performed while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the polyamide compound (A) to be produced.
Compared with the pressurized salt method, the atmospheric pressure dropping method does not use water to dissolve the salt, so the yield per batch is large, and the reaction rate is not required for vaporization / condensation of raw material components. The process time can be shortened.
[加圧滴下法]
 加圧滴下法では、まず、重縮合缶にジカルボン酸成分と、3級水素含有カルボン酸成分と、必要に応じてω-アミノカルボン酸成分とを仕込み、各成分を撹拌して溶融混合し混合物を調製する。次いで、缶内を好ましくは0.3~0.4MPaG程度に加圧しながら混合物にジアミン成分を連続的に滴下し、縮合水を除去しながら重縮合させる。この際、生成するポリアミド化合物(A)の融点よりも反応温度が下回らないように、反応系を昇温しながら重縮合反応を行う。設定モル比に達したらジアミン成分の滴下を終了し、缶内を徐々に常圧に戻しながら、ポリアミド化合物(A)の融点+10℃程度まで昇温し、保持した後、更に、-0.02MPaGまで徐々に減圧しつつ、そのままの温度で保持し、重縮合を継続する。一定の撹拌トルクに達したら、缶内を窒素で0.3MPaG程度に加圧してポリアミド化合物(A)を回収する。
 加圧滴下法は、加圧塩法と同様に、揮発性成分をモノマーとして使用する場合に有用であり、3級水素含有カルボン酸成分の共重合率が高い場合には好ましい重縮合方法である。特に、3級水素含有カルボン酸単位をポリアミド化合物(A)の全構成単位中に15モル%以上含むポリアミド化合物(A)を製造する場合に、好適である。加圧滴下法を用いることで3級水素含有カルボン酸成分の蒸散を防ぎ、更には、3級水素含有カルボン酸成分同士の重縮合を抑制でき、重縮合反応をスムーズに進めることが可能であるため、性状に優れたポリアミド化合物(A)が得られる。更に、加圧滴下法は、加圧塩法に比べて、塩を溶解するための水を使用しないため、バッチ当たりの収量が大きく、常圧滴下法と同様に反応時間を短くできることから、ゲル化等を抑制し、黄色度が低いポリアミド化合物(A)を得ることができる。
[Pressure drop method]
In the pressure drop method, first, a dicarboxylic acid component, a tertiary hydrogen-containing carboxylic acid component, and, if necessary, an ω-aminocarboxylic acid component are charged into a polycondensation can, and the components are agitated and melt mixed. To prepare. Next, the diamine component is continuously dropped into the mixture while the inside of the can is preferably pressurized to about 0.3 to 0.4 MPaG, and polycondensation is performed while removing condensed water. At this time, the polycondensation reaction is carried out while raising the temperature of the reaction system so that the reaction temperature does not fall below the melting point of the resulting polyamide compound (A). When the set molar ratio is reached, the dropping of the diamine component is terminated, the temperature inside the can is gradually returned to normal pressure, and the temperature is raised to about the melting point of the polyamide compound (A) + 10 ° C. and held, and then −0.02 MPaG The pressure is gradually reduced until it is maintained at the same temperature, and the polycondensation is continued. When a certain stirring torque is reached, the inside of the can is pressurized to about 0.3 MPaG with nitrogen to recover the polyamide compound (A).
Like the pressurized salt method, the pressure dropping method is useful when a volatile component is used as a monomer, and is a preferred polycondensation method when the copolymerization rate of the tertiary hydrogen-containing carboxylic acid component is high. . In particular, it is suitable for producing a polyamide compound (A) containing 15 mol% or more of tertiary hydrogen-containing carboxylic acid units in all structural units of the polyamide compound (A). By using the pressure dropping method, the transpiration of the tertiary hydrogen-containing carboxylic acid component can be prevented, and further, the polycondensation between the tertiary hydrogen-containing carboxylic acid components can be suppressed, and the polycondensation reaction can proceed smoothly. Therefore, a polyamide compound (A) excellent in properties can be obtained. Furthermore, since the pressure drop method does not use water for dissolving the salt compared to the pressure salt method, the yield per batch is large, and the reaction time can be shortened as in the atmospheric pressure drop method. The polyamide compound (A) having a low yellowness can be obtained.
[重合度を高める工程]
 上記重縮合方法で製造されたポリアミド化合物(A)は、そのまま使用することもできるが、更に重合度を高めるための工程を経てもよい。更に重合度を高める工程としては、押出機内での反応押出や固相重合等が挙げられる。固相重合で用いられる加熱装置としては、連続式の加熱乾燥装置やタンブルドライヤー、コニカルドライヤー、ロータリードライヤー等と称される回転ドラム式の加熱装置およびナウタミキサーと称される内部に回転翼を備えた円錐型の加熱装置が好適に使用できるが、これらに限定されることなく公知の方法、装置を使用することができる。特にポリアミド化合物(A)の固相重合を行う場合は、上述の装置の中で回転ドラム式の加熱装置が、系内を密閉化でき、着色の原因となる酸素を除去した状態で重縮合を進めやすいことから好ましく用いられる。
[Process of increasing the degree of polymerization]
The polyamide compound (A) produced by the polycondensation method can be used as it is, but may be subjected to a step for further increasing the degree of polymerization. Further examples of the step of increasing the degree of polymerization include reactive extrusion in an extruder and solid phase polymerization. As a heating device used in solid phase polymerization, a continuous heating drying device, a tumble dryer, a conical dryer, a rotary drum heating device called a rotary dryer, etc., and a rotary blade inside a nauta mixer are provided. A conical heating device can be preferably used, but a known method and device can be used without being limited thereto. In particular, when solid-phase polymerization of the polyamide compound (A) is performed, a rotating drum type heating device in the above-described device can seal the inside of the system and perform polycondensation in a state where oxygen that causes coloring is removed. It is preferably used because it is easy to proceed.
[リン原子含有化合物、アルカリ金属化合物]
 ポリアミド化合物(A)の重縮合においては、アミド化反応を促進する観点から、リン原子含有化合物を添加することが好ましい。
 リン原子含有化合物としては、ジメチルホスフィン酸、フェニルメチルホスフィン酸等のホスフィン酸化合物;次亜リン酸、次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム、次亜リン酸マグネシウム、次亜リン酸カルシウム、次亜リン酸エチル等のジ亜リン酸化合物;ホスホン酸、ホスホン酸ナトリウム、ホスホン酸カリウム、ホスホン酸リチウム、ホスホン酸マグネシウム、ホスホン酸カルシウム、フェニルホスホン酸、エチルホスホン酸、フェニルホスホン酸ナトリウム、フェニルホスホン酸カリウム、フェニルホスホン酸リチウム、フェニルホスホン酸ジエチル、エチルホスホン酸ナトリウム、エチルホスホン酸カリウム等のホスホン酸化合物;亜ホスホン酸、亜ホスホン酸ナトリウム、亜ホスホン酸リチウム、亜ホスホン酸カリウム、亜ホスホン酸マグネシウム、亜ホスホン酸カルシウム、フェニル亜ホスホン酸、フェニル亜ホスホン酸ナトリウム、フェニル亜ホスホン酸カリウム、フェニル亜ホスホン酸リチウム、フェニル亜ホスホン酸エチル等の亜ホスホン酸化合物;亜リン酸、亜リン酸水素ナトリウム、亜リン酸ナトリウム、亜リン酸リチウム、亜リン酸カリウム、亜リン酸マグネシウム、亜リン酸カルシウム、亜リン酸トリエチル、亜リン酸トリフェニル、ピロ亜リン酸等の亜リン酸化合物等が挙げられる。
 これらの中でも特に次亜リン酸ナトリウム、次亜リン酸カリウム、次亜リン酸リチウム等の次亜リン酸金属塩が、アミド化反応を促進する効果が高くかつ着色防止効果にも優れるため好ましく用いられ、特に次亜リン酸ナトリウムが好ましい。なお、本発明で使用できるリン原子含有化合物はこれらの化合物に限定されない。
 リン原子含有化合物の添加量は、ポリアミド化合物(A)中のリン原子濃度換算で0.1~1000ppmであることが好ましく、より好ましくは1~600ppmであり、更に好ましくは5~400ppmである。0.1ppm以上であれば、重合中にポリアミド化合物(A)が着色しにくく透明性が高くなる。1000ppm以下であれば、ポリアミド化合物(A)がゲル化しにくく、また、リン原子含有化合物に起因すると考えられるフィッシュアイの成形品中への混入も低減でき、成形品の外観が良好となる。
[Phosphorus atom-containing compound, alkali metal compound]
In the polycondensation of the polyamide compound (A), it is preferable to add a phosphorus atom-containing compound from the viewpoint of promoting the amidation reaction.
Examples of the phosphorus atom-containing compound include phosphinic acid compounds such as dimethylphosphinic acid and phenylmethylphosphinic acid; hypophosphorous acid, sodium hypophosphite, potassium hypophosphite, lithium hypophosphite, magnesium hypophosphite, Diphosphite compounds such as calcium hypophosphite and ethyl hypophosphite; phosphonic acid, sodium phosphonate, potassium phosphonate, lithium phosphonate, magnesium phosphonate, calcium phosphonate, phenylphosphonic acid, ethylphosphonic acid, phenylphosphone Phosphonic acid compounds such as sodium phosphate, potassium phenylphosphonate, lithium phenylphosphonate, diethyl phenylphosphonate, sodium ethylphosphonate, potassium ethylphosphonate; phosphonous acid, sodium phosphonite, lithium phosphonite, Phosphonous compounds such as potassium sulfonate, magnesium phosphonite, calcium phosphonite, phenylphosphonite, sodium phenylphosphonite, potassium phenylphosphonite, lithium phenylphosphonite, ethyl phenylphosphonite; Phosphorous acid, sodium hydrogen phosphite, sodium phosphite, lithium phosphite, potassium phosphite, magnesium phosphite, calcium phosphite, triethyl phosphite, triphenyl phosphite, pyrophosphorous acid, etc. A phosphoric acid compound etc. are mentioned.
Among these, hypophosphite metal salts such as sodium hypophosphite, potassium hypophosphite, lithium hypophosphite and the like are particularly preferable because they are highly effective in promoting amidation reaction and excellent in anti-coloring effect. In particular, sodium hypophosphite is preferred. In addition, the phosphorus atom containing compound which can be used by this invention is not limited to these compounds.
The addition amount of the phosphorus atom-containing compound is preferably 0.1 to 1000 ppm, more preferably 1 to 600 ppm, and still more preferably 5 to 400 ppm in terms of the phosphorus atom concentration in the polyamide compound (A). If it is 0.1 ppm or more, the polyamide compound (A) is difficult to be colored during the polymerization, and the transparency becomes high. If it is 1000 ppm or less, the polyamide compound (A) is hardly gelled, and it is possible to reduce the mixing of fish eyes considered to be caused by the phosphorus atom-containing compound, and the appearance of the molded product is improved.
 また、ポリアミド化合物(A)の重縮合系内には、リン原子含有化合物と併用してアルカリ金属化合物を添加することが好ましい。重縮合中のポリアミド化合物(A)の着色を防止するためには十分な量のリン原子含有化合物を存在させる必要があるが、場合によってはポリアミド化合物(A)のゲル化を招くおそれがあるため、アミド化反応速度を調整するためにもアルカリ金属化合物を共存させることが好ましい。
 アルカリ金属化合物としては、アルカリ金属水酸化物やアルカリ金属酢酸塩、アルカリ金属炭酸塩、アルカリ金属アルコキシド等が好ましい。本発明で用いることのできるアルカリ金属化合物の具体例としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、酢酸リチウム、酢酸ナトリウム、酢酸カリウム、酢酸ルビジウム、酢酸セシウム、ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、ナトリウムブトキシド、カリウムメトキシド、リチウムメトキシド、炭酸ナトリウム等が挙げられるが、これらの化合物に限定されることなく用いることができる。なお、リン原子含有化合物とアルカリ金属化合物の比率(モル比)は、重合速度制御の観点や、黄色度を低減する観点から、リン原子含有化合物/アルカリ金属化合物=1.0/0.05~1.0/1.5の範囲が好ましく、より好ましくは、1.0/0.1~1.0/1.2、更に好ましくは、1.0/0.2~1.0/1.1である。
Moreover, it is preferable to add an alkali metal compound in combination with the phosphorus atom-containing compound in the polycondensation system of the polyamide compound (A). In order to prevent the polyamide compound (A) from being colored during the polycondensation, it is necessary that a sufficient amount of the phosphorus atom-containing compound is present, but in some cases, the polyamide compound (A) may be gelled. In order to adjust the amidation reaction rate, it is preferable to coexist an alkali metal compound.
As the alkali metal compound, alkali metal hydroxide, alkali metal acetate, alkali metal carbonate, alkali metal alkoxide, and the like are preferable. Specific examples of the alkali metal compound that can be used in the present invention include lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, lithium acetate, sodium acetate, potassium acetate, rubidium acetate, cesium acetate. Sodium methoxide, sodium ethoxide, sodium propoxide, sodium butoxide, potassium methoxide, lithium methoxide, sodium carbonate and the like, but can be used without being limited to these compounds. The ratio (molar ratio) between the phosphorus atom-containing compound and the alkali metal compound is such that the phosphorus atom-containing compound / alkali metal compound = 1.0 / 0.05 to 1.0 from the viewpoint of controlling the polymerization rate and reducing the yellowness. The range of 1.0 / 1.5 is preferable, more preferably 1.0 / 0.1 to 1.0 / 1.2, and still more preferably 1.0 / 0.2 to 1.0 / 1. 1.
2-2.樹脂(B)
 本発明において、樹脂(B)としては任意の樹脂を使用することができ、特に限定されない。樹脂(B)としては、例えば熱可塑性樹脂を用いることができ、具体的にはポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体及び植物由来樹脂を挙げることができる。本発明において樹脂(B)としては、これら樹脂からなる群から選ばれる少なくとも一種を含むことが好ましい。
 これらの中でも、酸素吸収効果を効果的に発揮するためには、ポリエステル、ポリアミド及びエチレン-ビニルアルコール共重合体のような酸素バリア性の高い樹脂がより好ましい。
 ポリアミド化合物(A)と樹脂(B)との混合は、従来公知の方法を用いることができ、乾式混合や溶融混合が例示される。ポリアミド化合物(A)と樹脂(B)とを溶融混合し、所望のペレット、成形体を製造する場合、押出機等を用いて溶融ブレンドすることができる。押出機は単軸押出機、2軸押出機等の公知の押出機を用いることができるが、これらに限定されない。
2-2. Resin (B)
In the present invention, any resin can be used as the resin (B) and is not particularly limited. As the resin (B), for example, a thermoplastic resin can be used, and specific examples thereof include polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin. In the present invention, the resin (B) preferably contains at least one selected from the group consisting of these resins.
Among these, a resin having a high oxygen barrier property such as polyester, polyamide and ethylene-vinyl alcohol copolymer is more preferable in order to effectively exhibit the oxygen absorption effect.
A conventionally well-known method can be used for mixing of the polyamide compound (A) and the resin (B), and dry mixing and melt mixing are exemplified. When the polyamide compound (A) and the resin (B) are melt-mixed to produce desired pellets and molded bodies, they can be melt-blended using an extruder or the like. The extruder may be a known extruder such as a single screw extruder or a twin screw extruder, but is not limited thereto.
[ポリオレフィン]
 ポリオレフィンの具体例としては、ポリエチレン(低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン)、ポリプロピレン、ポリブテン-1、ポリ-4-メチルペンテン-1等のオレフィン単独重合体;エチレン-プロピレンランダム共重合体、エチレン-プロピレンブロック共重合体、エチレン-プロピレン-ポリブテン-1共重合体、エチレン-環状オレフィン共重合体等のエチレンとα-オレフィンとの共重合体;エチレン-(メタ)アクリル酸共重合体等のエチレン-α,β-不飽和カルボン酸共重合体、エチレン-(メタ)アクリル酸エチル共重合体等のエチレン-α,β-不飽和カルボン酸エステル共重合体、エチレン-α,β-不飽和カルボン酸共重合体のイオン架橋物、エチレン-酢酸ビニル共重合体等のその他のエチレン共重合体;これらのポリオレフィンを無水マレイン酸等の酸無水物等でグラフト変性したグラフト変性ポリオレフィン等を挙げることができる。
[Polyolefin]
Specific examples of the polyolefin include olefins such as polyethylene (low density polyethylene, medium density polyethylene, high density polyethylene, linear (linear) low density polyethylene), polypropylene, polybutene-1, poly-4-methylpentene-1, and the like. Homopolymer; ethylene-propylene random copolymer, ethylene-propylene block copolymer, ethylene-propylene-polybutene-1 copolymer, ethylene-cyclic olefin copolymer, etc., copolymer of ethylene and α-olefin Ethylene-α, β-unsaturated carboxylic acid copolymer such as ethylene- (meth) acrylic acid copolymer, ethylene-α, β-unsaturated carboxylic acid such as ethylene- (meth) acrylic acid ethyl copolymer Ester copolymer, ionic cross-linked product of ethylene-α, β-unsaturated carboxylic acid copolymer, ethylene - Other ethylene copolymers such as vinyl acetate copolymer; may be mentioned graft-modified polyolefin grafted modifying these polyolefins with an acid anhydride such as maleic anhydride.
[ポリエステル]
 本発明において、ポリエステルとは、ジカルボン酸を含む多価カルボン酸およびこれらのエステル形成性誘導体から選ばれる一種又は二種以上とグリコールを含む多価アルコールから選ばれる一種又は二種以上とからなるもの、又はヒドロキシカルボン酸およびこれらのエステル形成性誘導体からなるもの、又は環状エステルからなるものをいう。
[polyester]
In the present invention, the polyester is composed of one or more selected from polycarboxylic acids containing dicarboxylic acids and ester-forming derivatives thereof, and one or more selected from polyhydric alcohols containing glycol. Or a hydroxycarboxylic acid and an ester-forming derivative thereof, or a cyclic ester.
 ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、テトラデカンジカルボン酸、ヘキサデカンジカルボン酸、3-シクロブタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、2,5-ノルボルナンジカルボン酸、ダイマー酸等に例示される飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、フマル酸、マレイン酸、イタコン酸等に例示される不飽和脂肪族ジカルボン酸又はこれらのエステル形成性誘導体、オルソフタル酸、イソフタル酸、テレフタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ビフェニルスルホンジカルボン酸、4,4’-ビフェニルエーテルジカルボン酸、1,2-ビス(フェノキシ)エタン-p,p’-ジカルボン酸、アントラセンジカルボン酸等に例示される芳香族ジカルボン酸又はこれらのエステル形成性誘導体、5-ナトリウムスルホイソフタル酸、2-ナトリウムスルホテレフタル酸、5-リチウムスルホイソフタル酸、2-リチウムスルホテレフタル酸、5-カリウムスルホイソフタル酸、2-カリウムスルホテレフタル酸等に例示される金属スルホネート基含有芳香族ジカルボン酸又はそれらの低級アルキルエステル誘導体等が挙げられる。 Dicarboxylic acids include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 3- Exemplified as cyclobutanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc. Saturated aliphatic dicarboxylic acids or ester-forming derivatives thereof, unsaturated aliphatic dicarboxylic acids exemplified by fumaric acid, maleic acid, itaconic acid or the like, or ester-forming derivatives thereof, orthophthalic acid, isophthalic acid, terephthalic acid 1,3- Phthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4 ′ Aromatic dicarboxylic acids exemplified by biphenylsulfone dicarboxylic acid, 4,4′-biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane-p, p′-dicarboxylic acid, anthracene dicarboxylic acid, etc. Examples of forming derivatives such as 5-sodium sulfoisophthalic acid, 2-sodium sulfoterephthalic acid, 5-lithium sulfoisophthalic acid, 2-lithium sulfoterephthalic acid, 5-potassium sulfoisophthalic acid, 2-potassium sulfoterephthalic acid, etc. Aromatic dicarboxylic acids containing metal sulfonate groups The like lower alkyl esters thereof derivative.
 上記のジカルボン酸のなかでも、特に、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸の使用が、得られるポリエステルの物理特性等の点で好ましく、必要に応じて他のジカルボン酸を共重合してもよい。 Among the above dicarboxylic acids, the use of terephthalic acid, isophthalic acid, and naphthalenedicarboxylic acid is particularly preferable in terms of the physical properties of the resulting polyester, and other dicarboxylic acids may be copolymerized as necessary. .
 これらジカルボン酸以外の多価カルボン酸として、エタントリカルボン酸、プロパントリカルボン酸、ブタンテトラカルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、3,4,3’,4’-ビフェニルテトラカルボン酸、およびこれらのエステル形成性誘導体等が挙げられる。 As polyvalent carboxylic acids other than these dicarboxylic acids, ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3,4,3 ′, 4′-biphenyltetracarboxylic acid, And ester-forming derivatives thereof.
 グリコールとしてはエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、2,3-ブチレングリコール、1,4-ブチレングリコール、1,5-ペンタンジオール、ネオペンチルグリコール、1,6-ヘキサンジオール、1,2-シクロヘキサンジオール、1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、1,10-デカメチレングリコール、1,12-ドデカンジオール、ポリエチレングリコール、ポリトリメチレングリコール、ポリテトラメチレングリコール等に例示される脂肪族グリコール、ヒドロキノン、4,4’-ジヒドロキシビスフェノール、1,4-ビス(β-ヒドロキシエトキシ)ベンゼン、1,4-ビス(β-ヒドロキシエトキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)エーテル、ビス(p-ヒドロキシフェニル)スルホン、ビス(p-ヒドロキシフェニル)メタン、1,2-ビス(p-ヒドロキシフェニル)エタン、ビスフェノールA、ビスフェノールC、2,5-ナフタレンジオール、これらのグリコールにエチレンオキシドが付加されたグリコール等に例示される芳香族グリコールが挙げられる。 As glycols, ethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, diethylene glycol, triethylene glycol, 1,2-butylene glycol, 1,3-butylene glycol, 2,3-butylene glycol, 1,4 -Butylene glycol, 1,5-pentanediol, neopentyl glycol, 1,6-hexanediol, 1,2-cyclohexanediol, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,2-cyclohexanedimethanol 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,4-cyclohexanediethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, polyto Aliphatic glycols, such as methylene glycol and polytetramethylene glycol, hydroquinone, 4,4'-dihydroxybisphenol, 1,4-bis (β-hydroxyethoxy) benzene, 1,4-bis (β-hydroxyethoxyphenyl) ) Sulfone, bis (p-hydroxyphenyl) ether, bis (p-hydroxyphenyl) sulfone, bis (p-hydroxyphenyl) methane, 1,2-bis (p-hydroxyphenyl) ethane, bisphenol A, bisphenol C, 2 , 5-naphthalenediol, and aromatic glycols exemplified by glycols obtained by adding ethylene oxide to these glycols.
 上記のグリコールのなかでも、特に、エチレングリコール、1,3-プロピレングリコール、1,4-ブチレングリコール、1,4-シクロヘキサンジメタノールを主成分として使用することが好適である。これらグリコール以外の多価アルコールとして、トリメチロールメタン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、グリセロール、ヘキサントリオール等が挙げられる。ヒドロキシカルボン酸としては、乳酸、クエン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、3-ヒドロキシ酪酸、p-ヒドロキシ安息香酸、p-(2-ヒドロキシエトキシ)安息香酸、4-ヒドロキシシクロヘキサンカルボン酸、又はこれらのエステル形成性誘導体等が挙げられる。 Among the above glycols, it is particularly preferable to use ethylene glycol, 1,3-propylene glycol, 1,4-butylene glycol, and 1,4-cyclohexanedimethanol as main components. Examples of polyhydric alcohols other than these glycols include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, and hexanetriol. Hydroxycarboxylic acids include lactic acid, citric acid, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, p- (2-hydroxyethoxy) benzoic acid, 4-hydroxycyclohexanecarboxylic acid, or these And ester-forming derivatives thereof.
 環状エステルとしては、ε-カプロラクトン、β-プロピオラクトン、β-メチル-β-プロピオラクトン、δ-バレロラクトン、グリコリド、ラクチド等が挙げられる。 Examples of the cyclic ester include ε-caprolactone, β-propiolactone, β-methyl-β-propiolactone, δ-valerolactone, glycolide, lactide and the like.
 多価カルボン酸、ヒドロキシカルボン酸のエステル形成性誘導体としては、これらのアルキルエステル、酸クロライド、酸無水物等が例示される。 Examples of ester-forming derivatives of polyvalent carboxylic acids and hydroxycarboxylic acids include these alkyl esters, acid chlorides, acid anhydrides, and the like.
 本発明で用いられるポリエステルとしては、主たる酸成分がテレフタル酸またはそのエステル形成性誘導体もしくはナフタレンジカルボン酸またはそのエステル形成性誘導体であり、主たるグリコール成分がアルキレングリコールであるポリエステルが好ましい。 The polyester used in the present invention is preferably a polyester in which the main acid component is terephthalic acid or an ester-forming derivative thereof or naphthalenedicarboxylic acid or an ester-forming derivative thereof, and the main glycol component is alkylene glycol.
 主たる酸成分がテレフタル酸またはそのエステル形成性誘導体であるポリエステルとは、全酸成分に対してテレフタル酸またはそのエステル形成性誘導体を70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。主たる酸成分がナフタレンジカルボン酸またはそのエステル形成性誘導体であるポリエステルも同様に、ナフタレンジカルボン酸またはそのエステル形成性誘導体を70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。 The polyester whose main acid component is terephthalic acid or an ester-forming derivative thereof is preferably a polyester containing 70 mol% or more of terephthalic acid or an ester-forming derivative thereof with respect to the total acid component, more preferably 80 Polyesters containing at least mol%, more preferably polyesters containing at least 90 mol%. Similarly, the polyester in which the main acid component is naphthalenedicarboxylic acid or an ester-forming derivative thereof is also preferably a polyester containing 70 mol% or more of naphthalenedicarboxylic acid or an ester-forming derivative thereof, more preferably 80 mol% or more. It is polyester to contain, More preferably, it is polyester containing 90 mol% or more.
 本発明で用いられるナフタレンジカルボン酸またはそのエステル形成性誘導体としては、上述のジカルボン酸類に例示した1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、またはこれらのエステル形成性誘導体が好ましい。 Examples of the naphthalenedicarboxylic acid or ester-forming derivative thereof used in the present invention include 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid exemplified in the above dicarboxylic acids, 6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, or ester-forming derivatives thereof are preferred.
 主たるグリコール成分がアルキレングリコールであるポリエステルとは、全グリコール成分に対してアルキレングリコールを70モル%以上含有するポリエステルであることが好ましく、より好ましくは80モル%以上含有するポリエステルであり、さらに好ましくは90モル%以上含有するポリエステルである。ここで言うアルキレングリコールは、分子鎖中に置換基や脂環構造を含んでいてもよい。 The polyester whose main glycol component is alkylene glycol is preferably a polyester containing 70 mol% or more of alkylene glycol with respect to the total glycol component, more preferably a polyester containing 80 mol% or more, more preferably Polyester containing 90 mol% or more. The alkylene glycol here may contain a substituent or an alicyclic structure in the molecular chain.
 上記テレフタル酸/エチレングリコール以外の共重合成分は、イソフタル酸、2,6-ナフタレンジカルボン酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノール、1,2-プロパンジオール、1,3-プロパンジオールおよび2-メチル-1,3-プロパンジオールからなる群より選ばれる少なくとも1種以上であることが、透明性と成形性を両立する上で好ましく、特にイソフタル酸、ジエチレングリコール、ネオペンチルグリコール、1,4-シクロヘキサンジメタノールからなる群より選ばれる少なくとも1種以上であることがより好ましい。 The copolymer components other than the terephthalic acid / ethylene glycol are isophthalic acid, 2,6-naphthalenedicarboxylic acid, diethylene glycol, neopentyl glycol, 1,4-cyclohexanedimethanol, 1,2-propanediol, 1,3-propane. It is preferably at least one selected from the group consisting of diol and 2-methyl-1,3-propanediol from the viewpoint of achieving both transparency and moldability. In particular, isophthalic acid, diethylene glycol, neopentyl glycol, 1 More preferred is at least one selected from the group consisting of 1,4-cyclohexanedimethanol.
 本発明に用いられるポリエステルの好ましい一例は、主たる繰り返し単位がエチレンテレフタレートから構成されるポリエステルであり、より好ましくはエチレンテレフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレンテレフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのはエチレンテレフタレート単位を90モル%以上含む線状ポリエステルである。 A preferred example of the polyester used in the present invention is a polyester whose main repeating unit is composed of ethylene terephthalate, more preferably a linear polyester containing 70 mol% or more of ethylene terephthalate units, and still more preferably an ethylene terephthalate unit. A linear polyester containing 80 mol% or more is preferable, and a linear polyester containing 90 mol% or more of ethylene terephthalate units is particularly preferable.
 また本発明に用いられるポリエステルの好ましい他の一例は、主たる繰り返し単位がエチレン-2,6-ナフタレートから構成されるポリエステルであり、より好ましくはエチレン-2,6-ナフタレート単位を70モル%以上含む線状ポリエステルであり、さらに好ましくはエチレン-2,6-ナフタレート単位を80モル%以上含む線状ポリエステルであり、特に好ましいのは、エチレン-2,6-ナフタレート単位を90モル%以上含む線状ポリエステルである。 Another preferred example of the polyester used in the present invention is a polyester in which the main repeating unit is composed of ethylene-2,6-naphthalate, and more preferably contains 70 mol% or more of ethylene-2,6-naphthalate units. A linear polyester, more preferably a linear polyester containing 80 mol% or more of ethylene-2,6-naphthalate units, and particularly preferably a linear polyester containing 90 mol% or more of ethylene-2,6-naphthalate units. Polyester.
 また本発明に用いられるポリエステルの好ましいその他の例としては、プロピレンテレフタレート単位を70モル%以上含む線状ポリエステル、プロピレンナフタレート単位を70モル%以上含む線状ポリエステル、1,4-シクロヘキサンジメチレンテレフタレート単位を70モル%以上含む線状ポリエステル、ブチレンナフタレート単位を70モル%以上含む線状ポリエステル、またはブチレンテレフタレート単位を70モル%以上含む線状ポリエステルである。 Other preferable examples of the polyester used in the present invention include linear polyesters containing 70 mol% or more of propylene terephthalate units, linear polyesters containing 70 mol% or more of propylene naphthalate units, and 1,4-cyclohexanedimethylene terephthalate. A linear polyester containing 70 mol% or more of units, a linear polyester containing 70 mol% or more of butylene naphthalate units, or a linear polyester containing 70 mol% or more of butylene terephthalate units.
 特にポリエステル全体の組成として、テレフタル酸/イソフタル酸//エチレングリコールの組合せ、テレフタル酸//エチレングリコール/1,4-シクロヘキサンジメタノールの組合せ、テレフタル酸//エチレングリコール/ネオペンチルグリコールの組合せは透明性と成形性とを両立する上で好ましい。なお、当然ではあるが、エステル化(エステル交換)反応、重縮合反応中に、エチレングリコールの二量化により生じるジエチレングリコールを少量(5モル%以下)含んでもよいことは言うまでもない。 In particular, the composition of the entire polyester is transparent in combination of terephthalic acid / isophthalic acid // ethylene glycol, terephthalic acid // ethylene glycol / 1,4-cyclohexanedimethanol, and terephthalic acid // ethylene glycol / neopentyl glycol. This is preferable in order to satisfy both the moldability and the moldability. Needless to say, a small amount (5 mol% or less) of diethylene glycol produced by dimerization of ethylene glycol may be included in the esterification (transesterification) reaction or polycondensation reaction.
 また本発明に用いられるポリエステルの好ましいその他の例としては、グリコール酸やグリコール酸メチルの重縮合もしくは、グリコリドの開環重縮合にて得られるポリグリコール酸が挙げられる。このポリグリコール酸には、ラクチド等の他成分を共重合しても構わない。 Other preferable examples of the polyester used in the present invention include polyglycolic acid obtained by polycondensation of glycolic acid or methyl glycolate or ring-opening polycondensation of glycolide. This polyglycolic acid may be copolymerized with other components such as lactide.
[ポリアミド]
 本発明で使用するポリアミド(ここで言う「ポリアミド」は、本発明の「ポリアミド化合物(A)」と混合されるポリアミド樹脂を指すものであり、本発明の「ポリアミド化合物(A)」自体を指すものではない)は、ラクタムもしくはアミノカルボン酸から誘導される単位を主構成単位とするポリアミドや、脂肪族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする脂肪族ポリアミド、脂肪族ジアミンと芳香族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド、芳香族ジアミンと脂肪族ジカルボン酸とから誘導される単位を主構成単位とする部分芳香族ポリアミド等が挙げられ、必要に応じて、主構成単位以外のモノマー単位を共重合してもよい。
[polyamide]
Polyamide used in the present invention (here, “polyamide” refers to a polyamide resin mixed with “polyamide compound (A)” of the present invention, and refers to “polyamide compound (A)” of the present invention itself. Is not a polyamide having a unit derived from a lactam or an aminocarboxylic acid as a main structural unit, an aliphatic polyamide having a unit derived from an aliphatic diamine and an aliphatic dicarboxylic acid as a main structural unit, Partially aromatic polyamides whose main constituent units are units derived from aromatic diamines and aromatic dicarboxylic acids, partially aromatic polyamides whose main constituent units are units derived from aromatic diamines and aliphatic dicarboxylic acids, etc. As necessary, monomer units other than the main structural unit may be copolymerized.
 前記ラクタムもしくはアミノカルボン酸としては、ε-カプロラクタムやラウロラクタム等のラクタム類、アミノカプロン酸、アミノウンデカン酸等のアミノカルボン酸類、パラ-アミノメチル安息香酸のような芳香族アミノカルボン酸等が使用できる。 Examples of the lactam or aminocarboxylic acid include lactams such as ε-caprolactam and laurolactam, aminocarboxylic acids such as aminocaproic acid and aminoundecanoic acid, and aromatic aminocarboxylic acids such as para-aminomethylbenzoic acid. .
 前記脂肪族ジアミンとしては、炭素数2~12の脂肪族ジアミンあるいはその機能的誘導体が使用できる。さらに、脂環族のジアミンであってもよい。脂肪族ジアミンは直鎖状の脂肪族ジアミンであっても分岐を有する鎖状の脂肪族ジアミンであってもよい。このような直鎖状の脂肪族ジアミンの具体例としては、エチレンジアミン、1-メチルエチレンジアミン、1,3-プロピレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、デカメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミン等の脂肪族ジアミンが挙げられる。また、脂環族ジアミンの具体例としては、シクロヘキサンジアミン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン等が挙げられる。 As the aliphatic diamine, an aliphatic diamine having 2 to 12 carbon atoms or a functional derivative thereof can be used. Furthermore, an alicyclic diamine may be used. The aliphatic diamine may be a linear aliphatic diamine or a branched chain aliphatic diamine. Specific examples of such linear aliphatic diamines include ethylenediamine, 1-methylethylenediamine, 1,3-propylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, octamethylenediamine, Examples include aliphatic diamines such as nonamethylenediamine, decamethylenediamine, undecamethylenediamine, and dodecamethylenediamine. Specific examples of the alicyclic diamine include cyclohexanediamine, 1,3-bis (aminomethyl) cyclohexane, 1,4-bis (aminomethyl) cyclohexane, and the like.
 また、前記脂肪族ジカルボン酸としては、直鎖状の脂肪族ジカルボン酸や脂環族ジカルボン酸が好ましく、さらに炭素数4~12のアルキレン基を有する直鎖状脂肪族ジカルボン酸が特に好ましい。このような直鎖状脂肪族ジカルボン酸の例としては、アジピン酸、セバシン酸、マロン酸、コハク酸、グルタル酸、ピメリン酸、スベリン酸、アゼライン酸、ウンデカン酸、ウンデカジオン酸、ドデカンジオン酸、ダイマー酸およびこれらの機能的誘導体等を挙げることができる。脂環族ジカルボン酸としては、1,4-シクロヘキサンジカルボン酸、ヘキサヒドロテレフタル酸、ヘキサヒドロイソフタル酸等の脂環式ジカルボン酸が挙げられる。 The aliphatic dicarboxylic acid is preferably a linear aliphatic dicarboxylic acid or an alicyclic dicarboxylic acid, and more preferably a linear aliphatic dicarboxylic acid having an alkylene group having 4 to 12 carbon atoms. Examples of such linear aliphatic dicarboxylic acids include adipic acid, sebacic acid, malonic acid, succinic acid, glutaric acid, pimelic acid, suberic acid, azelaic acid, undecanoic acid, undecadioic acid, dodecanedioic acid, dimer Examples thereof include acids and functional derivatives thereof. Examples of the alicyclic dicarboxylic acid include alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, and hexahydroisophthalic acid.
 また、前記芳香族ジアミンとしては、メタキシリレンジアミン、パラキシリレンジアミン、パラ-ビス(2-アミノエチル)ベンゼン等が挙げられる。 Examples of the aromatic diamine include metaxylylenediamine, paraxylylenediamine, para-bis (2-aminoethyl) benzene and the like.
 また、前記芳香族ジカルボン酸としては、テレフタル酸、イソフタル酸、フタル酸、2,6-ナフタレンジカルボン酸、ジフェニル-4,4’-ジカルボン酸、ジフェノキシエタンジカルボン酸およびその機能的誘導体等が挙げられる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, phthalic acid, 2,6-naphthalenedicarboxylic acid, diphenyl-4,4′-dicarboxylic acid, diphenoxyethanedicarboxylic acid, and functional derivatives thereof. It is done.
 具体的なポリアミドとしては、ポリアミド4、ポリアミド6、ポリアミド10、ポリアミド11、ポリアミド12、ポリアミド4,6、ポリアミド6,6、ポリアミド6,10、ポリアミド6T、ポリアミド9T、ポリアミド6IT、ポリメタキシリレンアジパミド(ポリアミドMXD6)、イソフタル酸共重合ポリメタキシリレンアジパミド(ポリアミドMXD6I)、ポリメタキシリレンセバカミド(ポリアミドMXD10)、ポリメタキシリレンドデカナミド(ポリアミドMXD12)、ポリ1,3-ビス(アミノメチル)シクロヘキサンアジパミド(ポリアミドBAC6)、ポリパラキシリレンセバカミド(ポリアミドPXD10)等がある。より好ましいポリアミドとしては、ポリアミド6、ポリアミドMXD6、ポリアミドMXD6Iが挙げられる。 Specific polyamides include polyamide 4, polyamide 6, polyamide 10, polyamide 11, polyamide 12, polyamide 4, 6, polyamide 6, 6, polyamide 6, 10, polyamide 6T, polyamide 9T, polyamide 6IT, polymetaxylylene azide. Pamide (polyamide MXD6), isophthalic acid copolymer polymetaxylylene adipamide (polyamide MXD6I), polymetaxylylene sebamide (polyamide MXD10), polymetaxylylene decanamide (polyamide MXD12), poly 1,3-bis (Aminomethyl) cyclohexane adipamide (polyamide BAC6), polyparaxylylene sebacamide (polyamide PXD10) and the like. More preferable polyamides include polyamide 6, polyamide MXD6, and polyamide MXD6I.
 また、前記ポリアミドの共重合成分として、少なくとも一つの末端アミノ基、もしくは末端カルボキシル基を有する数平均分子量が2000~20000のポリエーテル、又は前記末端アミノ基を有するポリエーテルの有機カルボン酸塩、又は前記末端カルボキシル基を有するポリエーテルのアミノ塩を用いることもできる。具体的な例としては、ビス(アミノプロピル)ポリ(エチレンオキシド)(数平均分子量が2000~20000のポリエチレングリコール)が挙げられる。 Further, as a copolymerization component of the polyamide, a polyether having at least one terminal amino group or terminal carboxyl group and a number average molecular weight of 2000 to 20000, or an organic carboxylate of the polyether having the terminal amino group, or An amino salt of a polyether having a terminal carboxyl group can also be used. Specific examples include bis (aminopropyl) poly (ethylene oxide) (polyethylene glycol having a number average molecular weight of 2000 to 20000).
 また、前記部分芳香族ポリアミドは、トリメリット酸、ピロメリット酸等の3塩基以上の多価カルボン酸から誘導される構成単位を実質的に線状である範囲内で含有していてもよい。 The partially aromatic polyamide may contain a structural unit derived from a polybasic carboxylic acid having three or more bases such as trimellitic acid and pyromellitic acid within a substantially linear range.
 前記ポリアミドは、基本的には従来公知の、水共存下での溶融重縮合法あるいは水不存在下の溶融重縮合法や、これらの溶融重縮合法で得られたポリアミドを更に固相重合する方法等によって製造することができる。溶融重縮合反応は1段階で行ってもよいし、また多段階に分けて行ってもよい。これらは回分式反応装置から構成されていてもよいし、また連続式反応装置から構成されていてもよい。また溶融重縮合工程と固相重合工程は連続的に運転してもよいし、分割して運転してもよい。 The polyamide is basically a conventionally known melt polycondensation method in the presence of water or a melt polycondensation method in the absence of water, or a polyamide obtained by these melt polycondensation methods. It can be manufactured by a method or the like. The melt polycondensation reaction may be performed in one step or may be performed in multiple steps. These may be comprised from a batch-type reaction apparatus, and may be comprised from the continuous-type reaction apparatus. The melt polycondensation step and the solid phase polymerization step may be operated continuously or may be operated separately.
[エチレン-ビニルアルコール共重合体]
 本発明で使用されるエチレンビニルアルコール共重合体としては、特に限定されないが、好ましくはエチレン含量15~60モル%、更に好ましくは20~55モル%、より好ましくは29~44モル%であり、酢酸ビニル成分のケン化度が好ましくは90モル%以上、更に好ましくは95モル%以上のものである。
 またエチレンビニルアルコール共重合体には、本発明の効果に悪影響を与えない範囲で、更に少量のプロピレン、イソブテン、α-オクテン、α-ドデセン、α-オクタデセン等のα-オレフィン、不飽和カルボン酸又はその塩・部分アルキルエステル・完全アルキルエステル・ニトリル・アミド・無水物、不飽和スルホン酸又はその塩等のコモノマーを含んでいてもよい。
[Ethylene-vinyl alcohol copolymer]
The ethylene vinyl alcohol copolymer used in the present invention is not particularly limited, but preferably has an ethylene content of 15 to 60 mol%, more preferably 20 to 55 mol%, more preferably 29 to 44 mol%, The degree of saponification of the vinyl acetate component is preferably 90 mol% or more, more preferably 95 mol% or more.
Further, the ethylene vinyl alcohol copolymer has a smaller amount of an α-olefin such as propylene, isobutene, α-octene, α-dodecene, α-octadecene, and unsaturated carboxylic acid as long as the effects of the present invention are not adversely affected. Alternatively, it may contain a comonomer such as a salt, a partial alkyl ester, a complete alkyl ester, a nitrile, an amide, an anhydride, an unsaturated sulfonic acid or a salt thereof.
[植物由来樹脂]
 植物由来樹脂の具体例としては、上記樹脂と重複する部分もあるが、特に限定されることなく公知の種々の石油以外を原料とする脂肪族ポリエステル系生分解性樹脂が挙げられる。脂肪族ポリエステル系生分解性樹脂としては、例えば、ポリグリコール酸(PGA)、ポリ乳酸(PLA)等のポリ(α-ヒドロキシ酸);ポリブチレンサクシネート(PBS)、ポリエチレンサクシネート(PES)等のポリアルキレンアルカノエート等が挙げられる。
[Plant-derived resin]
Specific examples of the plant-derived resin include a portion overlapping with the above resin, but are not particularly limited, and examples thereof include aliphatic polyester-based biodegradable resins other than various known petroleum materials. Examples of the aliphatic polyester-based biodegradable resin include poly (α-hydroxy acids) such as polyglycolic acid (PGA) and polylactic acid (PLA); polybutylene succinate (PBS), polyethylene succinate (PES) and the like. And polyalkylene alkanoates.
[その他の樹脂]
 本発明の目的を阻害しない範囲で、酸素吸収バリア層に付与したい性能等に応じて、従来公知の種々の樹脂を樹脂(B)として添加してもよい。例えば、耐衝撃性、耐ピンホール性、柔軟性を付与する観点からは、ポリエチレンやポリプロピレン等のポリオレフィンやそれらの各種変性物、ポリオレフィン系エラストマー、ポリアミド系エラストマー、スチレン-ブタジエン共重合樹脂やその水素添加処理物、ポリエステル系エラストマー等に代表される各種熱可塑性エラストマー、ナイロン6,66,12、ナイロン12等の各種ポリアミド等が挙げられ、酸素吸収性能をさらに付与する観点からは、ポリブタジエンや変性ポリブタジエン等の炭素-炭素不飽和二重結合含有樹脂、を挙げることができる。
[Other resins]
Various conventionally known resins may be added as the resin (B) in accordance with the performance desired to be imparted to the oxygen-absorbing barrier layer as long as the object of the present invention is not impaired. For example, from the viewpoint of imparting impact resistance, pinhole resistance, and flexibility, polyolefins such as polyethylene and polypropylene, various modified products thereof, polyolefin elastomers, polyamide elastomers, styrene-butadiene copolymer resins and hydrogens thereof. Additives processed, various thermoplastic elastomers typified by polyester elastomers, various polyamides such as nylon 6, 66, 12 and nylon 12, etc. From the viewpoint of further imparting oxygen absorption performance, polybutadiene and modified polybutadiene And carbon-carbon unsaturated double bond-containing resins.
2-3.添加剤(C)
 本発明において、酸素吸収バリア層を形成するための樹脂組成物には、前述したポリアミド化合物(A)及び樹脂(B)以外に、必要に応じて更に添加剤(C)を含有してもよい。添加剤(C)は1種であってもよいし、2種以上の組合せであってもよい。樹脂組成物中における添加剤(C)の含有量は、添加剤の種類にもよるが、10質量%以下が好ましく、5質量%以下がより好ましい。
2-3. Additive (C)
In the present invention, the resin composition for forming the oxygen absorption barrier layer may further contain an additive (C) as necessary in addition to the polyamide compound (A) and the resin (B) described above. . One type of additive (C) may be used, or a combination of two or more types may be used. The content of the additive (C) in the resin composition is preferably 10% by mass or less, more preferably 5% by mass or less, although it depends on the type of additive.
[白化防止剤]
 本発明においては、熱水処理後や長時間の経時後の白化抑制として、ジアミド化合物及び/又はジエステル化合物を樹脂組成物に添加することが好ましい。ジアミド化合物及びジエステル化合物は、オリゴマーの析出による白化の抑制に効果がある。ジアミド化合物とジエステル化合物を単独で用いてもよいし、併用してもよい。
[Anti-whitening agent]
In the present invention, it is preferable to add a diamide compound and / or a diester compound to the resin composition as a suppression of whitening after the hot water treatment or after a long period of time. Diamide compounds and diester compounds are effective in suppressing whitening due to precipitation of oligomers. A diamide compound and a diester compound may be used alone or in combination.
 本発明に用いられるジアミド化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジアミンの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジアミンの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジアミド化合物は1種類でもよいし、2種以上を併用してもよい。 The diamide compound used in the present invention is preferably a diamide compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diamine having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diamine has 2 or more carbon atoms, a whitening prevention effect can be expected. In addition, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diamine has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One kind of diamide compound may be used, or two or more kinds may be used in combination.
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジアミンとしては、エチレンジアミン、ブチレンジアミン、ヘキサンジアミン、キシリレンジアミン、ビス(アミノメチル)シクロヘキサン等が例示できる。これらを組み合わせて得られるジアミド化合物が好ましい。
 炭素数8~30の脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物、または主としてモンタン酸からなる脂肪族ジカルボン酸と炭素数2~10のジアミンから得られるジアミド化合物が好ましく、特に好ましくは主としてステアリン酸からなる脂肪族ジカルボン酸と主としてエチレンジアミンからなるジアミンから得られるジアミド化合物である。
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diamine include ethylenediamine, butylenediamine, hexanediamine, xylylenediamine, and bis (aminomethyl) cyclohexane. A diamide compound obtained by combining these is preferred.
A diamide compound obtained from a diamine composed mainly of an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and mainly ethylenediamine, or a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diamine having 2 to 10 carbon atoms is particularly preferred. Is a diamide compound obtained from an aliphatic dicarboxylic acid mainly composed of stearic acid and a diamine mainly composed of ethylenediamine.
 本発明に用いられるジエステル化合物としては、炭素数8~30の脂肪族ジカルボン酸と炭素数2~10のジオールから得られるジエステル化合物が好ましい。脂肪族ジカルボン酸の炭素数が8以上、ジオールの炭素数が2以上であると白化防止効果が期待できる。また、脂肪族ジカルボン酸の炭素数が30以下、ジオールの炭素数が10以下で酸素吸収バリア層中への均一分散が良好となる。脂肪族ジカルボン酸は側鎖や二重結合があってもよいが、直鎖飽和脂肪族ジカルボン酸が好ましい。ジエステル化合物は1種類でもよいし、2種以上を併用してもよい。
 前記脂肪族ジカルボン酸としては、ステアリン酸(C18)、エイコサン酸(C20)、ベヘン酸(C22)、モンタン酸(C28)、トリアコンタン酸(C30)等が例示できる。前記ジオールとしては、エチレングリコール、プロパンジオール、ブタンジオール、ヘキサンジオール、キシリレングリコール、シクロヘキサンジメタノール等が例示できる。これらを組み合わせて得られるジエステル化合物が好ましい。
 特に好ましくは主としてモンタン酸からなる脂肪族ジカルボン酸と主としてエチレングリコール及び/又は1,3-ブタンジオールからなるジオールから得られるジエステル化合物である。
The diester compound used in the present invention is preferably a diester compound obtained from an aliphatic dicarboxylic acid having 8 to 30 carbon atoms and a diol having 2 to 10 carbon atoms. When the aliphatic dicarboxylic acid has 8 or more carbon atoms and the diol has 2 or more carbon atoms, an effect of preventing whitening can be expected. Further, when the aliphatic dicarboxylic acid has 30 or less carbon atoms and the diol has 10 or less carbon atoms, uniform dispersion in the oxygen-absorbing barrier layer is good. The aliphatic dicarboxylic acid may have a side chain or a double bond, but a linear saturated aliphatic dicarboxylic acid is preferred. One type of diester compound may be used, or two or more types may be used in combination.
Examples of the aliphatic dicarboxylic acid include stearic acid (C18), eicosanoic acid (C20), behenic acid (C22), montanic acid (C28), and triacontanoic acid (C30). Examples of the diol include ethylene glycol, propanediol, butanediol, hexanediol, xylylene glycol, and cyclohexanedimethanol. A diester compound obtained by combining these is preferred.
Particularly preferred are diester compounds obtained from an aliphatic dicarboxylic acid mainly composed of montanic acid and a diol mainly composed of ethylene glycol and / or 1,3-butanediol.
 本発明において、ジアミド化合物及び/又はジエステル化合物の添加量は、樹脂組成物中に好ましくは0.005~0.5質量%、より好ましくは0.05~0.5質量%、さらに好ましくは0.12~0.5質量%である。樹脂組成物中に0.005質量%以上添加し、かつ結晶化核剤と併用することにより白化防止の相乗効果が期待できる。また、添加量が樹脂組成物中に0.5質量%以下であると、当該樹脂組成物を成形して得られる成形体の曇値を低く保つことが可能となる。 In the present invention, the addition amount of the diamide compound and / or diester compound is preferably 0.005 to 0.5% by mass, more preferably 0.05 to 0.5% by mass, and still more preferably 0 to the resin composition. 12 to 0.5% by mass. A synergistic effect of preventing whitening can be expected by adding 0.005% by mass or more to the resin composition and using it together with the crystallization nucleating agent. Moreover, it becomes possible to keep the fog value of the molded object obtained by shape | molding the said resin composition low as the addition amount is 0.5 mass% or less in a resin composition.
[層状珪酸塩]
 本発明において、酸素吸収バリア層は層状珪酸塩を含有してもよい。層状珪酸塩を添加することで、紙容器に酸素ガスバリア性だけでなく、炭酸ガス等のガスに対するバリア性を付与することができる。
[Layered silicate]
In the present invention, the oxygen absorption barrier layer may contain a layered silicate. By adding layered silicate, not only oxygen gas barrier property but also barrier property against gas such as carbon dioxide gas can be imparted to the paper container.
 層状珪酸塩は、0.25~0.6の電荷密度を有する2-八面体型や3-八面体型の層状珪酸塩であり、2-八面体型としては、モンモリロナイト、バイデライト等、3-八面体型としてはヘクトライト、サボナイト等が挙げられる。これらの中でも、モンモリロナイトが好ましい。 The layered silicate is a 2-octahedron or 3-octahedral layered silicate having a charge density of 0.25 to 0.6. Examples of the 2-octahedron type include montmorillonite, beidellite, and the like. Examples of the octahedron type include hectorite and saponite. Among these, montmorillonite is preferable.
 層状珪酸塩は、高分子化合物や有機系化合物等の有機膨潤化剤を予め層状珪酸塩に接触させて、層状珪酸塩の層間を拡げたものとすることが好ましい。有機膨潤化剤として、第4級アンモニウム塩が好ましく使用できるが、好ましくは、炭素数12以上のアルキル基又はアルケニル基を少なくとも一つ以上有する第4級アンモニウム塩が用いられる。 It is preferable that the layered silicate is obtained by expanding an interlayer of the layered silicate by previously bringing an organic swelling agent such as a polymer compound or an organic compound into contact with the layered silicate. As the organic swelling agent, a quaternary ammonium salt can be preferably used. Preferably, a quaternary ammonium salt having at least one alkyl group or alkenyl group having 12 or more carbon atoms is used.
 有機膨潤化剤の具体例として、トリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、トリメチルエイコシルアンモニウム塩等のトリメチルアルキルアンモニウム塩;トリメチルオクタデセニルアンモニウム塩、トリメチルオクタデカジエニルアンモニウム塩等のトリメチルアルケニルアンモニウム塩;トリエチルドデシルアンモニウム塩、トリエチルテトラデシルアンモニウム塩、トリエチルヘキサデシルアンモニウム塩、トリエチルオクタデシルアンモニウム等のトリエチルアルキルアンモニウム塩;トリブチルドデシルアンモニウム塩、トリブチルテトラデシルアンモニウム塩、トリブチルヘキサデシルアンモニウム塩、トリブチルオクタデシルアンモニウム塩等のトリブチルアルキルアンモニウム塩;ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩等のジメチルジアルキルアンモニウム塩;ジメチルジオクタデセニルアンモニウム塩、ジメチルジオクタデカジエニルアンモニウム塩等のジメチルジアルケニルアンモニウム塩;ジエチルジドデシルアンモニウム塩、ジエチルジテトラデシルアンモニウム塩、ジエチルジヘキサデシルアンモニウム塩、ジエチルジオクタデシルアンモニウム等のジエチルジアルキルアンモニウム塩;ジブチルジドデシルアンモニウム塩、ジブチルジテトラデシルアンモニウム塩、ジブチルジヘキサデシルアンモニウム塩、ジブチルジオクタデシルアンモニウム塩等のジブチルジアルキルアンモニウム塩;メチルベンジルジヘキサデシルアンモニウム塩等のメチルベンジルジアルキルアンモニウム塩;ジベンジルジヘキサデシルアンモニウム塩等のジベンジルジアルキルアンモニウム塩;トリドデシルメチルアンモニウム塩、トリテトラデシルメチルアンモニウム塩、トリオクタデシルメチルアンモニウム塩等のトリアルキルメチルアンモニウム塩;トリドデシルエチルアンモニウム塩等のトリアルキルエチルアンモニウム塩;トリドデシルブチルアンモニウム塩等のトリアルキルブチルアンモニウム塩;4-アミノ-n-酪酸、6-アミノ-n-カプロン酸、8-アミノカプリル酸、10-アミノデカン酸、12-アミノドデカン酸、14-アミノテトラデカン酸、16-アミノヘキサデカン酸、18-アミノオクタデカン酸等のω-アミノ酸等が挙げられる。また、水酸基及び/又はエーテル基含有のアンモニウム塩、中でも、メチルジアルキル(PAG)アンモニウム塩、エチルジアルキル(PAG)アンモニウム塩、ブチルジアルキル(PAG)アンモニウム塩、ジメチルビス(PAG)アンモニウム塩、ジエチルビス(PAG)アンモニウム塩、ジブチルビス(PAG)アンモニウム塩、メチルアルキルビス(PAG)アンモニウム塩、エチルアルキルビス(PAG)アンモニウム塩、ブチルアルキルビス(PAG)アンモニウム塩、メチルトリ(PAG)アンモニウム塩、エチルトリ(PAG)アンモニウム塩、ブチルトリ(PAG)アンモニウム塩、テトラ(PAG)アンモニウム塩(ただし、アルキルはドデシル、テトラデシル、ヘキサデシル、オクタデシル、エイコシル等の炭素数12以上のアルキル基を表し、PAGはポリアルキレングリコール残基、好ましくは、炭素数20以下のポリエチレングリコール残基またはポリプロピレングリコール残基を表す)等の少なくとも一のアルキレングリコール残基を含有する4級アンモニウム塩も有機膨潤化剤として使用することができる。中でもトリメチルドデシルアンモニウム塩、トリメチルテトラデシルアンモニウム塩、トリメチルヘキサデシルアンモニウム塩、トリメチルオクタデシルアンモニウム塩、ジメチルジドデシルアンモニウム塩、ジメチルジテトラデシルアンモニウム塩、ジメチルジヘキサデシルアンモニウム塩、ジメチルジオクタデシルアンモニウム塩、ジメチルジタロウアンモニウム塩が好ましい。なお、これらの有機膨潤化剤は、単独でも複数種類の混合物としても使用できる。 Specific examples of organic swelling agents include trimethyl dodecyl ammonium salts, trimethyl tetradecyl ammonium salts, trimethyl hexadecyl ammonium salts, trimethyl octadecyl ammonium salts, trimethyl alkyl ammonium salts such as trimethyl eicosyl ammonium salts; trimethyl octadecenyl ammonium salts Trimethylalkenylammonium salts such as trimethyloctadecadienylammonium salt; triethylalkylammonium salts such as triethyldodecylammonium salt, triethyltetradecylammonium salt, triethylhexadecylammonium salt, triethyloctadecylammonium salt; tributyldodecylammonium salt, tributyltetradecyl Ammonium salt, tributyl hexadecyl ammonium salt, Tributylalkylammonium salts such as butyloctadecylammonium salt; dimethyldialkylammonium salts such as dimethyldidodecylammonium salt, dimethylditetradecylammonium salt, dimethyldihexadecylammonium salt, dimethyldioctadecylammonium salt, dimethylditallowammonium salt; dimethyl Dioctadecenyl ammonium salt, dimethyl dialkenyl ammonium salt such as dimethyl dioctadecadienyl ammonium salt; diethyl didodecyl ammonium salt, diethyl ditetradecyl ammonium salt, diethyl dihexadecyl ammonium salt, diethyl dioctadecyl ammonium salt, etc. Diethyl dialkyl ammonium salt; dibutyl didodecyl ammonium salt, dibutyl ditetradecyl ammonium salt, di Dibutyl dialkyl ammonium salts such as til dihexadecyl ammonium salt and dibutyl dioctadecyl ammonium salt; methyl benzyl dialkyl ammonium salts such as methyl benzyl dihexadecyl ammonium salt; dibenzyl dialkyl ammonium salts such as dibenzyl dihexadecyl ammonium salt; Trialkylmethylammonium salts such as dodecylmethylammonium salt, tritetradecylmethylammonium salt, trioctadecylmethylammonium salt; trialkylethylammonium salts such as tridodecylethylammonium salt; trialkylbutylammonium salts such as tridodecylbutylammonium salt 4-amino-n-butyric acid, 6-amino-n-caproic acid, 8-aminocaprylic acid, 10-aminodecanoic acid, 12-aminodo Examples thereof include omega-amino acids such as decanoic acid, 14-aminotetradecanoic acid, 16-aminohexadecanoic acid, 18-aminooctadecanoic acid and the like. In addition, hydroxyl group and / or ether group-containing ammonium salts, among them, methyl dialkyl (PAG) ammonium salt, ethyl dialkyl (PAG) ammonium salt, butyl dialkyl (PAG) ammonium salt, dimethyl bis (PAG) ammonium salt, diethyl bis (PAG) ) Ammonium salt, dibutyl bis (PAG) ammonium salt, methyl alkyl bis (PAG) ammonium salt, ethyl alkyl bis (PAG) ammonium salt, butyl alkyl bis (PAG) ammonium salt, methyl tri (PAG) ammonium salt, ethyl tri (PAG) ammonium Salt, butyltri (PAG) ammonium salt, tetra (PAG) ammonium salt (wherein alkyl is carbon number such as dodecyl, tetradecyl, hexadecyl, octadecyl, eicosyl, etc.) A quaternary ammonium containing at least one alkylene glycol residue such as a polyalkylene glycol residue, preferably a polyethylene glycol residue or a polypropylene glycol residue having 20 or less carbon atoms). Salts can also be used as organic swelling agents. Among them, trimethyldodecyl ammonium salt, trimethyl tetradecyl ammonium salt, trimethyl hexadecyl ammonium salt, trimethyl octadecyl ammonium salt, dimethyl didodecyl ammonium salt, dimethyl ditetradecyl ammonium salt, dimethyl dihexadecyl ammonium salt, dimethyl dioctadecyl ammonium salt, dimethyl A ditallow ammonium salt is preferred. These organic swelling agents can be used alone or as a mixture of a plurality of types.
 本発明では、有機膨潤化剤で処理した層状珪酸塩を樹脂組成物中に0.5~8質量%添加したものが好ましく用いられ、より好ましくは1~6質量%、更に好ましくは2~5質量%である。層状珪酸塩の添加量が0.5質量%以上であればガスバリア性の改善効果が十分に得られ、8質量%以下であれば酸素吸収バリア層の柔軟性が悪化することによるピンホールの発生等の問題が生じにくい。 In the present invention, a layered silicate treated with an organic swelling agent is preferably added to the resin composition in an amount of 0.5 to 8% by mass, more preferably 1 to 6% by mass, and still more preferably 2 to 5%. % By mass. If the amount of layered silicate added is 0.5% by mass or more, the effect of improving the gas barrier property is sufficiently obtained, and if it is 8% by mass or less, pinholes are generated due to deterioration of the flexibility of the oxygen absorption barrier layer. Such problems are unlikely to occur.
 酸素吸収バリア層において、層状珪酸塩は局所的に凝集することなく均一に分散していることが好ましい。ここでいう均一分散とは、酸素吸収バリア層中において層状珪酸塩が平板状に分離し、それらの50%以上が5nm以上の層間距離を有することをいう。ここで層間距離とは平板状物の重心間距離のことをいう。この距離が大きい程分散状態が良好となり、透明性等の外観が良好で、かつ酸素、炭酸ガス等のガスバリア性を向上させることができる。 In the oxygen absorption barrier layer, the layered silicate is preferably uniformly dispersed without locally agglomerating. The uniform dispersion here means that the layered silicate is separated into a flat plate in the oxygen absorption barrier layer, and 50% or more of them have an interlayer distance of 5 nm or more. Here, the interlayer distance refers to the distance between the centers of gravity of the flat objects. The larger the distance, the better the dispersion state, the better the appearance such as transparency, and the better the gas barrier properties such as oxygen and carbon dioxide.
[酸化反応促進剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸化反応促進剤を添加してもよい。酸化反応促進剤はポリアミド化合物(A)が有する酸素吸収性能を促進することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸化反応促進剤としては、鉄、コバルト、ニッケル等の周期律表第VIII族金属、銅や銀等の第I族金属、スズ、チタン、ジルコニウム等の第IV族金属、バナジウムの第V族、クロム等の第VI族、マンガン等の第VII族の金属の低価数の無機酸塩もしくは有機酸塩、又は上記遷移金属の錯塩を例示することができる。これらの中でも、酸素反応促進効果に優れるコバルト塩やコバルト塩とマンガン塩との組合せが好ましい。
 本発明において、酸素反応促進剤の添加量は、樹脂組成物中に好ましくは金属原子濃度として10~800ppm、より好ましくは50~600ppm、さらに好ましくは100~400ppmである。
[Oxidation reaction accelerator]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxidation reaction accelerator may be added as long as the effects of the present invention are not impaired. The oxidation reaction accelerator can enhance the oxygen absorption performance of the oxygen absorption barrier layer by promoting the oxygen absorption performance of the polyamide compound (A). Examples of the oxidation reaction accelerator include Group VIII metals such as iron, cobalt and nickel, Group I metals such as copper and silver, Group IV metals such as tin, titanium and zirconium, Group V of vanadium, Examples thereof include low-valent inorganic or organic acid salts of Group VI metals such as chromium and Group VII metals such as manganese, or complex salts of the above transition metals. Among these, a cobalt salt excellent in an oxygen reaction promoting effect or a combination of a cobalt salt and a manganese salt is preferable.
In the present invention, the addition amount of the oxygen reaction accelerator is preferably 10 to 800 ppm, more preferably 50 to 600 ppm, and still more preferably 100 to 400 ppm as a metal atom concentration in the resin composition.
[酸素吸収剤]
 酸素吸収バリア層の酸素吸収性能を更に高めるために、本発明の効果を損なわない範囲で従来公知の酸素吸収剤を添加してもよい。酸素吸収剤はポリアミド化合物(A)が有する酸素吸収性能と別に酸素吸収バリア層に酸素吸収性能を付与することで、酸素吸収バリア層の酸素吸収性能を高めることができる。酸素吸収剤としては、ビタミンCやビタミンE、ブタジエンやイソプレンのように分子内に炭素-炭素二重結合をもつ化合物に代表される酸化性有機化合物を例示することできる。
 本発明において、酸素吸収剤の添加量は、樹脂組成物中に好ましくは0.01~5質量%、より好ましくは0.1~4質量%、さらに好ましくは0.5~3質量%である。
[Oxygen absorber]
In order to further enhance the oxygen absorption performance of the oxygen absorption barrier layer, a conventionally known oxygen absorbent may be added within a range not impairing the effects of the present invention. The oxygen absorbent can enhance the oxygen absorption performance of the oxygen absorption barrier layer by imparting oxygen absorption performance to the oxygen absorption barrier layer separately from the oxygen absorption performance of the polyamide compound (A). Examples of the oxygen absorbent include oxidizable organic compounds typified by compounds having a carbon-carbon double bond in the molecule, such as vitamin C, vitamin E, butadiene and isoprene.
In the present invention, the addition amount of the oxygen absorbent is preferably 0.01 to 5% by mass, more preferably 0.1 to 4% by mass, and further preferably 0.5 to 3% by mass in the resin composition. .
[ゲル化防止・フィッシュアイ低減剤]
 本発明においては、酢酸ナトリウム、酢酸カルシウム、酢酸マグネシウム、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸ナトリウムおよびそれらの誘導体から選択される1種以上のカルボン酸塩類を添加することが好ましい。ここで該誘導体としては、12-ヒドロキシステアリン酸カルシウム、12-ヒドロキシステアリン酸マグネシウム、12-ヒドロキシステアリン酸ナトリウム等の12-ヒドロキシステアリン酸金属塩等が挙げられる。前記カルボン酸塩類を添加することで、成形加工中に起こるポリアミド化合物(A)のゲル化防止や成形体中のフィッシュアイを低減することができ、成形加工の適性が向上する。
[Anti-gelling / Fish Eye Reducing Agent]
In the present invention, it is preferable to add one or more carboxylates selected from sodium acetate, calcium acetate, magnesium acetate, calcium stearate, magnesium stearate, sodium stearate and derivatives thereof. Examples of the derivatives include 12-hydroxystearic acid metal salts such as calcium 12-hydroxystearate, magnesium 12-hydroxystearate, and sodium 12-hydroxystearate. By adding the carboxylates, it is possible to prevent gelation of the polyamide compound (A) that occurs during the molding process and to reduce fish eyes in the molded article, thereby improving the suitability of the molding process.
 前記カルボン酸塩類の添加量としては、樹脂組成物中の濃度として、好ましくは400~10000ppm、より好ましくは800~5000ppm、更に好ましくは1000~3000ppmである。400ppm以上であれば、ポリアミド化合物(A)の熱劣化を抑制でき、ゲル化を防止できる。また、10000ppm以下であれば、ポリアミド化合物(A)が成形不良を起こさず、着色や白化することもない。溶融したポリアミド化合物(A)中に塩基性物質であるカルボン酸塩類が存在すると、ポリアミド化合物(A)の熱による変性が遅延し、最終的な変性物と考えられるゲルの生成を抑制すると推測される。
 なお、前述のカルボン酸塩類はハンドリング性に優れ、この中でもステアリン酸金属塩は安価である上、滑剤としての効果を有しており、成形加工をより安定化することができるため好ましい。更に、カルボン酸塩類の形状に特に制限はないが、粉体でかつその粒径が小さい方が乾式混合する場合、樹脂組成物に均一に分散させることが容易であるため、その粒径は0.2mm以下が好ましい。
The addition amount of the carboxylate is preferably 400 to 10,000 ppm, more preferably 800 to 5000 ppm, and still more preferably 1000 to 3000 ppm as a concentration in the resin composition. If it is 400 ppm or more, the thermal deterioration of the polyamide compound (A) can be suppressed, and gelation can be prevented. Moreover, if it is 10000 ppm or less, a polyamide compound (A) will not raise | generate a shaping | molding defect, and neither coloring nor whitening will occur. It is speculated that the presence of carboxylates, which are basic substances, in the molten polyamide compound (A) delays the modification of the polyamide compound (A) by heat and suppresses the formation of a gel that is considered to be the final modified product. The
The carboxylates described above are excellent in handling properties, and among them, metal stearate is preferable because it is inexpensive and has an effect as a lubricant, and can stabilize the molding process. Further, the shape of the carboxylates is not particularly limited, but when the powder and the smaller particle size are dry-mixed, it is easy to uniformly disperse in the resin composition, so the particle size is 0. .2 mm or less is preferable.
[酸化防止剤]
 本発明においては、酸素吸収性能を制御する観点や機械物性低下を抑える観点から酸化防止剤を添加することが好ましい。酸化防止剤としては、銅系酸化防止剤、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、チオ系酸化防止剤等を例示することができ、中でもヒンダードフェノール系酸化防止剤、リン系酸化防止剤が好ましい。
[Antioxidant]
In the present invention, it is preferable to add an antioxidant from the viewpoint of controlling oxygen absorption performance and suppressing deterioration of mechanical properties. Examples of the antioxidant include copper-based antioxidants, hindered phenol-based antioxidants, hindered amine-based antioxidants, phosphorus-based antioxidants, and thio-based antioxidants. Antioxidants and phosphorus antioxidants are preferred.
 ヒンダードフェノール系酸化防止剤の具体例としては、トリエチレングリコール-ビス[3-(3-t-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2-チオビス(4-メチル-6-1-ブチルフェノール)、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロキシシンナムアミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルホスホネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルスルホン酸エチルカルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-イソシアヌレート、2,6-ジ-t-ブチル-p-クレゾール、ブチル化ヒドロキシアニソール、2,6-ジ-t-ブチル-4-エチルフェノール、ステアリル-β-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス-(4-メチル-6-t-ブチルフェノール)、2,2’-メチレン-ビス-(4-エチル-6-t-ブチルフェノール)、4,4’-チオビス-(3-メチル-6-t-ブチルフェノール)、オクチル化ジフェニルアミン、2,4-ビス[(オクチルチオ)メチル]-O-クレゾール、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール、3,9-ビス[1,1-ジメチル-2-[β-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ]エチル]-2,4,8,10-テトラオキサスピロ[5,5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス[3,3’-ビス-(4’-ヒドロキシ-3’-t-ブチルフェニル)ブチリックアシッド]グリコールエステル、1,3,5-トリス(3’,5’-ジ-t-ブチル-4’-ヒドロキシベンジル)-sec-トリアジン-2,4,6-(1H,3H,5H)トリオン、d-α-トコフェロール等が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。ヒンダードフェノール化合物の市販品の具体例としては、BASF社製のIrganox1010やIrganox1098が挙げられる(いずれも商品名)。 Specific examples of the hindered phenol antioxidant include triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate, 4,4′-butylidenebis (3-methyl- 6-t-butylphenol), 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,4-bis- (n-octylthio) -6- (4-Hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- ( , 5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2-thiobis (4-methyl-6-butylphenol), N, N′-hexamethylenebis (3,5-di-t- Butyl-4-hydroxy-hydroxycinnamamide), 3,5-di-t-butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-tris (3,3 5-di-butyl-4-hydroxybenzyl) benzene, ethyl calcium bis (3,5-di-t-butyl-4-hydroxybenzylsulfonate, tris- (3,5-di-t-butyl-4-hydroxy) Benzyl) -isocyanurate, 2,6-di-t-butyl-p-cresol, butylated hydroxyanisole, 2,6-di-t-butyl-4-ethylpheno , Stearyl-β- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylenebis- (4-methyl-6-t-butylphenol), 2,2'-methylene- Bis- (4-ethyl-6-tert-butylphenol), 4,4′-thiobis- (3-methyl-6-tert-butylphenol), octylated diphenylamine, 2,4-bis [(octylthio) methyl] -O -Cresol, isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 4,4'-butylidenebis (3-methyl-6-tert-butylphenol, 3,9-bis [1, 1-dimethyl-2- [β- (3-tert-butyl-4-hydroxy-5-methylphenyl) propionyloxy] ethyl] -2,4,8,10-tetrao Saspiro [5,5] undecane, 1,1,3-tris (2-methyl-4-hydroxy-5-tert-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3 , 5-di-tert-butyl-4-hydroxybenzyl) benzene, bis [3,3′-bis- (4′-hydroxy-3′-tert-butylphenyl) butyric acid] glycol ester, 1,3, 5-tris (3 ′, 5′-di-t-butyl-4′-hydroxybenzyl) -sec-triazine-2,4,6- (1H, 3H, 5H) trione, d-α-tocopherol, etc. It is done. These can be used alone or as a mixture thereof. Specific examples of commercially available hindered phenol compounds include Irganox 1010 and Irganox 1098 manufactured by BASF (both are trade names).
 リン系酸化防止剤の具体例としては、トリフェニルホスファイト、トリオクタデシルホスファイト、トリデシルホスファイト、トリノニルフェニルホスファイト、ジフェニルイソデシルホスファイト、ビス(2,6-ジ-tert-ブチル-4-メチルフェニル)ペンタエリスリトールジホスファイト、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジホスファイト、トリス(2,4-ジ-tert-ブチルフェニル)ホスファイト、ジステアリルペンタエリスリトールジホスファイト、テトラ(トリデシル-4,4’-イソプロピリデンジフェニルジホスファイト、2,2-メチレンビス(4,6-ジ-tert-ブチルフェニル)オクチルホスファイト等の有機リン化合物が挙げられる。これらは単独であるいはこれらの混合物で用いることができる。 Specific examples of phosphorus antioxidants include triphenyl phosphite, trioctadecyl phosphite, tridecyl phosphite, trinonylphenyl phosphite, diphenylisodecyl phosphite, bis (2,6-di-tert-butyl- 4-methylphenyl) pentaerythritol diphosphite, bis (2,4-di-tert-butylphenyl) pentaerythritol diphosphite, tris (2,4-di-tert-butylphenyl) phosphite, distearyl pentaerythritol And organic phosphorus compounds such as diphosphite, tetra (tridecyl-4,4′-isopropylidene diphenyl diphosphite, 2,2-methylenebis (4,6-di-tert-butylphenyl) octyl phosphite, etc. Want to be alone It can be used in a mixture thereof.
 酸化防止剤の含有量は、組成物の各種性能を損なわない範囲であれば特に制限無く使用できるが、酸素吸収性能を制御する観点や機械物性低下を抑える観点から、樹脂組成物中に好ましくは0.001~3質量%、より好ましくは0.01~1質量%である。 The content of the antioxidant can be used without particular limitation as long as it does not impair the various performances of the composition, but from the viewpoint of controlling the oxygen absorption performance and suppressing the deterioration of mechanical properties, it is preferably in the resin composition. The amount is 0.001 to 3% by mass, more preferably 0.01 to 1% by mass.
[その他の添加剤]
 酸素吸収バリア層を形成するための樹脂組成物には、要求される用途や性能に応じて、滑剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、結晶化核剤等の添加剤を添加させてもよい。これらの添加剤は、本発明の効果を損なわない範囲で、必要に応じて添加することができる。
[Other additives]
The resin composition for forming the oxygen absorption barrier layer includes a lubricant, a matting agent, a heat stabilizer, a weather stabilizer, an ultraviolet absorber, a plasticizer, a flame retardant, and a charge depending on the required application and performance. Additives such as an inhibitor, an anti-coloring agent, and a crystallization nucleating agent may be added. These additives can be added as necessary within a range not impairing the effects of the present invention.
3.任意の層
3-1.融着層
 本発明において、積層材は紙基材層と酸素吸収バリア層に加えて、融着層を積層材の表面(片側表面又は両側表面)に更に含むことが好ましい。融着層を有する積層材を製函してなる紙容器は、融着層を紙容器の最内層及び/又は最外層として有することになる。融着層は融着性を有する熱可塑性樹脂を含む層であって、積層材を製函して容器を成形する際に熱融着される。
 前記融着性を有する熱可塑性樹脂としては、熱によって溶融し相互に融着し得る各種ポリオレフィン系樹脂や、その他熱可塑性樹脂等を使用することができ、例えば、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン-α・オレフィン共重合体、ポリプロピレン、エチレン-酢酸ビニル共重合体、アイオノマー樹脂、エチレン-アクリル酸共重合体、エチレン-アクリル酸エチル共重合体、エチレン-メタクリル酸共重合体、エチレン-プロピレン共重合体、メチルペンテンポリマー、ポリブテンポリマー、ポリ酢酸ビニル系樹脂、ポリ(メタ)アクリル系樹脂、ポリ塩化ビニル系樹脂、ポリエチレンまたはポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂等を挙げることができ、それらは単独で使用してもよく、2種類以上の材料を混合したものとしてもよい。これらの中でも成形加工性や衛生性、臭気等の観点から低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状(線状)低密度ポリエチレン、メタロセン触媒を使用して重合したエチレン-α・オレフィン共重合体が好ましく使用される。
 また融着層はその効果を損なわない範囲で滑剤、結晶化核剤、白化防止剤、艶消剤、耐熱安定剤、耐候安定剤、紫外線吸収剤、可塑剤、難燃剤、帯電防止剤、着色防止剤、酸化防止剤、耐衝撃性改良材等の添加剤を含んでもよい。
 なお、積層材の両面に融着層が設けられる場合、両融着層の構成は互いに異なっていてもよいが、主成分となる熱可塑性樹脂を同一のものとすることが安定した融着性を発揮することができるので好ましい。
3. Optional layer 3-1. Fusing Layer In the present invention, the laminated material preferably further includes a fusing layer on the surface (one side surface or both side surfaces) of the laminated material in addition to the paper base material layer and the oxygen absorbing barrier layer. The paper container formed by boxing the laminated material having the fusion layer has the fusion layer as the innermost layer and / or the outermost layer of the paper container. The fusing layer is a layer containing a thermoplastic resin having a fusing property, and is heat-sealed when a laminated material is boxed to form a container.
As the thermoplastic resin having the fusibility, various polyolefin resins that can be melted by heat and fused to each other, other thermoplastic resins, and the like can be used. For example, low density polyethylene, medium density polyethylene, High density polyethylene, linear (linear) low density polyethylene, ethylene-α / olefin copolymer polymerized using metallocene catalyst, polypropylene, ethylene-vinyl acetate copolymer, ionomer resin, ethylene-acrylic acid copolymer Polymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-propylene copolymer, methylpentene polymer, polybutene polymer, polyvinyl acetate resin, poly (meth) acrylic resin, polychlorinated Polyolefin such as vinyl resin, polyethylene or polypropylene Acid-modified polyolefin resins modified with unsaturated carboxylic acids such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc., may be used alone Two or more kinds of materials may be mixed. Among these, low-density polyethylene, medium-density polyethylene, high-density polyethylene, linear (linear) low-density polyethylene, and ethylene-α · polymerized using a metallocene catalyst from the viewpoint of moldability, hygiene, odor, etc. Olefin copolymers are preferably used.
In addition, the fused layer is a lubricant, crystallization nucleating agent, anti-whitening agent, matting agent, heat stabilizer, weathering stabilizer, ultraviolet absorber, plasticizer, flame retardant, antistatic agent, coloring as long as the effect is not impaired. Additives such as inhibitors, antioxidants, impact resistance improvers and the like may be included.
In addition, when the fusion layer is provided on both surfaces of the laminated material, the structure of both the fusion layers may be different from each other, but it is stable fusion property that the thermoplastic resin as the main component is the same. Is preferable.
 本発明における融着層の厚みは、実用的な融着強度を発揮しつつ、積層材を製函する時の加工性を確保するという観点から、5~200μmとすることが好ましく、より好ましくは10~150μmであり、更に好ましくは15~100μmである。 The thickness of the fusion layer in the present invention is preferably from 5 to 200 μm, more preferably from the viewpoint of ensuring workability when boxing the laminated material while exhibiting practical fusion strength. The thickness is 10 to 150 μm, more preferably 15 to 100 μm.
3-2.接着層
 本発明において、積層材は紙基材層と酸素吸収バリア層に加えて、接着層を更に含んでもよい。積層材において、隣接する2つの層(例えば、酸素吸収バリア層と融着層)の間で実用的な層間接着強度が得られない場合に、当該2つの層の間に接着剤層を設けることが好ましい。
 接着層は、接着性を有する熱可塑性樹脂を含むことが好ましい。接着性を有する熱可塑性樹脂としては、例えば、ポリエチレン又はポリプロピレン等のポリオレフィン系樹脂をアクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、フマル酸、イタコン酸等の不飽和カルボン酸で変性した酸変性ポリオレフィン樹脂が挙げられる。融着性を有する熱可塑性樹脂と同種の樹脂を変性したものを、接着性を有する熱可塑性樹脂として選択することが好ましい。
3-2. Adhesive layer In the present invention, the laminate may further include an adhesive layer in addition to the paper base layer and the oxygen-absorbing barrier layer. In a laminated material, when a practical interlayer adhesive strength cannot be obtained between two adjacent layers (for example, an oxygen absorption barrier layer and a fusion layer), an adhesive layer is provided between the two layers. Is preferred.
The adhesive layer preferably contains a thermoplastic resin having adhesiveness. As the thermoplastic resin having adhesiveness, for example, an acid modification in which a polyolefin resin such as polyethylene or polypropylene is modified with an unsaturated carboxylic acid such as acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid, etc. Examples include polyolefin resins. It is preferable to select a modified resin of the same type as the thermoplastic resin having a fusibility as the thermoplastic resin having adhesiveness.
 接着層の厚みは、実用的な接着強度を発揮しつつ、積層材を製函する時の加工性を確保するという観点から、好ましくは2~100μm、より好ましくは5~90μm、更に好ましくは10~80μmである。 The thickness of the adhesive layer is preferably 2 to 100 μm, more preferably 5 to 90 μm, and still more preferably 10 from the viewpoint of ensuring workability when making a laminated material while exhibiting practical adhesive strength. ~ 80 μm.
3-3.その他の任意の層
 本発明において、積層材は所望する性能等に応じて上述以外の任意の層を更に含んでもよい。例えば、酸素吸収バリア層と紙基材の間にポリエチレン層を設けて酸素吸収バリア層の押出加工温度を下げ、押出加工中の熱劣化を防止するような方法が好ましく行われる。これ以外にも各種性能を持たせるための任意の層を構成する材料としては、上述の各種ポリオレフィン類、ナイロン6やナイロンMXD6等の各種ポリアミド類、ポリエチレンテレフタレート、ポリグリコール酸等の各種ポリエステル類、エチレンビニルアルコール共重合体等の熱可塑性樹脂を単独で又は混合したものが挙げられる。また、各種金属箔、金属酸化物膜が蒸着された樹脂フィルム等を用いることもできる。
3-3. Other Arbitrary Layers In the present invention, the laminated material may further include an optional layer other than those described above depending on the desired performance and the like. For example, a method in which a polyethylene layer is provided between the oxygen absorption barrier layer and the paper substrate to lower the extrusion processing temperature of the oxygen absorption barrier layer and prevent thermal deterioration during the extrusion processing is preferably performed. In addition to this, as a material constituting an arbitrary layer for imparting various performances, the above-mentioned various polyolefins, various polyamides such as nylon 6 and nylon MXD6, various polyesters such as polyethylene terephthalate and polyglycolic acid, The thing which mixed thermoplastic resins, such as an ethylene vinyl alcohol copolymer, individually or mixed is mentioned. In addition, various metal foils, resin films on which metal oxide films are deposited, and the like can also be used.
4.積層材の製造方法
 積層材を製造する方法としては、通常の包装材料を積層する方法、例えば、ウェットラミネーション法、ドライラミネーション法、無溶剤型ドライラミネーション法、押出ラミネーション法、Tダイ共押出成形法、共押出ラミネーション法、インフレーション法、その他等で行うことができる。更に、本発明において、上記の積層を行う際、必要に応じて、例えば、コロナ処理、オゾン処理等の前処理をフィルム等に施すことができ、また、例えば、イソシアネート系(ウレタン系)、ポリエチレンイミン系、ポリブタジェン系、有機チタン系等のアンカーコーティング剤、あるいはポリウレタン系、ポリアクリル系、ポリエステル系、エポキシ系、ポリ酢酸ビニル系、セルロース系、その他等の、ラミネート用接着剤等の公知のアンカーコート剤、接着剤等を使用することができる。
4). Manufacturing method of laminated material As a method of manufacturing a laminated material, a method of laminating a normal packaging material, for example, a wet lamination method, a dry lamination method, a solventless dry lamination method, an extrusion lamination method, a T-die coextrusion molding method , Coextrusion lamination, inflation, etc. Furthermore, in the present invention, when performing the above-mentioned lamination, for example, pretreatment such as corona treatment and ozone treatment can be applied to a film or the like, if necessary, for example, isocyanate (urethane), polyethylene Anchor anchors such as imine, polybutadiene, and organic titanium, or known anchors such as polyurethane, polyacrylic, polyester, epoxy, polyvinyl acetate, cellulose, and other adhesives for laminating A coating agent, an adhesive, etc. can be used.
<<紙容器>>
 本発明の紙容器は、上述した積層材を製函してなる紙容器である。
 本発明の紙容器は、上記積層材をその構成材の一部または全部とする。上記積層材を全部とする紙容器は、上記積層材のみによって構成された紙容器を意味し、上記積層材をその構成材の一部とする紙容器は、紙容器の一部を上記積層材によって構成し、残りは他の素材より構成された紙容器を意味する。後者の例としては、透明な素材(例えば、上記積層材から紙基材層を除いた様態)を一部に用いることで、収納した物品を確認し易いように構成した紙容器が挙げられる。
 本発明に係る紙容器の形状は、円柱状、角柱状、円錐台状、および角柱台状等、通常知られている種々の物品の収納、保存が可能なものであれば特に制限はない。また、容器の容量についても特に限定は無く、収納、保存する物品に応じて適切な範囲で選ぶことができる。
<< Paper container >>
The paper container of this invention is a paper container formed by boxing the laminated material mentioned above.
In the paper container of the present invention, the laminated material is part or all of the constituent material. The paper container including all of the laminated material means a paper container composed only of the laminated material, and the paper container including the laminated material as a part of the constituent material is a part of the paper container of the laminated material. The rest means a paper container made of other materials. As an example of the latter, there is a paper container configured so that a stored material can be easily confirmed by using a transparent material (for example, a state in which the paper base material layer is removed from the laminated material) in part.
The shape of the paper container according to the present invention is not particularly limited as long as it can store and store various commonly known articles such as a columnar shape, a prismatic shape, a truncated cone shape, and a prismatic shape. Further, the capacity of the container is not particularly limited, and can be selected within an appropriate range according to the article to be stored and stored.
 本発明において、積層材の製函方法は、紙容器の形状に応じて適宜選択することができる。例えば、積層材を用いて罫線加工等を施した所定形状の紙容器用ブランク板を打ち抜き、次いで該ブランク板の胴部端縁を重ね合わせ、その重合端部を溶着して筒状胴部を形成する。次に、前記のように形成された筒状胴部を充填包装機に装着し、その底部部分を所定の罫線を用いて折り込み熱融着して底部を形成し、次いで開口している頂部から内容物を充填し、しかる後に前記頂部を所定の罫線を用いて折り込み熱融着して、合掌部分を有する屋根型、いわゆるゲーベルトップ型形状の頂部を形成して、紙容器を製造することができる。なお、本発明の紙容器の製造方法はこれに限定されるものではなく、種々の方法を用いて、例えば頂部を平坦とした所謂ブリックトップ型形状の紙容器も製造することができる。 In the present invention, a method for making a laminated material can be appropriately selected according to the shape of the paper container. For example, a blank plate for a paper container having a predetermined shape subjected to ruled line processing or the like using a laminated material is punched out, and then the body edge of the blank plate is overlapped, and the overlapping end portion is welded to form a cylindrical body portion. Form. Next, the cylindrical body formed as described above is attached to the filling and packaging machine, and the bottom part is folded and heat-sealed using a predetermined ruled line to form the bottom, and then from the top of the opening A paper container can be manufactured by filling the contents, and then folding and heat-sealing the top using a predetermined ruled line to form a roof having a palm portion, a so-called govel top-shaped top. it can. In addition, the manufacturing method of the paper container of this invention is not limited to this, For example, what is called a brick top type | mold paper container which made the top part flat can also be manufactured using various methods.
 本発明の紙容器は、酸素吸収性能及び酸素バリア性能に優れ、かつ内容物の風味保持性に優れるため、種々の物品の充填包装に適している。例えば、牛乳、乳製品、ジュース、酒類、コーヒー等の飲料、茶類、調味料、スープ、その他種々の液体食品、更には、接着剤、粘着剤、農薬、殺虫剤等の化学品、医薬品、化粧品、シャンプー、リンス、洗剤等の雑貨品、その他等の物品の充填包装に使用することができる。 The paper container of the present invention is suitable for filling and packaging various articles because it has excellent oxygen absorption performance and oxygen barrier performance and excellent flavor retention of contents. For example, beverages such as milk, dairy products, juices, alcoholic beverages, coffee, teas, seasonings, soups, and other various liquid foods, as well as chemicals such as adhesives, adhesives, agricultural chemicals, insecticides, pharmaceuticals, It can be used for filling and packaging goods such as cosmetics, shampoos, rinses, detergents and other miscellaneous goods.
 以下、実施例により本発明を更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 なお、以下の実施例において、共重合体を構成する単位に関して、
  メタキシリレンジアミンに由来する単位を「MXDA」、
  1,3-ビス(アミノメチル)シクロヘキサンに由来する単位を「1,3BAC」、
  ヘキサメチレンジアミンに由来する単位を「HMDA」、
  アジピン酸に由来する単位を「AA」、
  イソフタル酸に由来する単位を「IPA」、
  DL-アラニンに由来する単位を「DL-Ala」、
  DL-ロイシンに由来する単位を「DL-Leu」、
  DL-バリンに由来する単位を「DL-Val」、
  ε-カプロラクタムに由来する単位を「ε-CL」という。
 また、ポリメタキシリレンアジパミドを「N-MXD6」という。
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples.
In the following examples, regarding the units constituting the copolymer,
The unit derived from metaxylylenediamine is “MXDA”,
A unit derived from 1,3-bis (aminomethyl) cyclohexane is referred to as “1,3BAC”,
The unit derived from hexamethylenediamine is “HMDA”,
The unit derived from adipic acid is “AA”,
The unit derived from isophthalic acid is “IPA”,
The unit derived from DL-alanine is “DL-Ala”,
The unit derived from DL-leucine is “DL-Leu”,
The unit derived from DL-valine is “DL-Val”,
A unit derived from ε-caprolactam is referred to as “ε-CL”.
Polymetaxylylene adipamide is referred to as “N-MXD6”.
 製造例で得られたポリアミド化合物のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度及び融点は以下の方法で測定した。また、製造例で得られたポリアミド化合物からフィルムを作製し、その酸素吸収量を以下の方法で測定した。 The α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature and melting point of the polyamide compound obtained in the production example were measured by the following methods. Moreover, the film was produced from the polyamide compound obtained by the manufacture example, and the oxygen absorption amount was measured with the following method.
(1)α-アミノ酸含有率
 1H-NMR(400MHz,日本電子(株)製、商品名:JNM-AL400、測定モード:NON(1H))を用いて、ポリアミド化合物のα-アミノ酸含有率の定量を実施した。具体的には、溶媒としてギ酸-dを用いてポリアミド化合物の5質量%の溶液を調製し、1H-NMR測定を実施した。
(1) α-Amino acid content 1 α-amino acid content of polyamide compound using 1 H-NMR (400 MHz, manufactured by JEOL Ltd., trade name: JNM-AL400, measurement mode: NON ( 1 H)) Quantification was performed. Specifically, a 5 mass% solution of a polyamide compound was prepared using formic acid-d as a solvent, and 1 H-NMR measurement was performed.
(2)相対粘度
 ペレット状サンプル1gを精秤し、96%硫酸100mlに20~30℃で撹拌溶解した。完全に溶解した後、速やかにキャノンフェンスケ型粘度計に溶液5mlを取り、25℃の恒温漕中で10分間放置後、落下時間(t)を測定した。また、96%硫酸そのものの落下時間(t0)も同様に測定した。t及びt0から次式により相対粘度を算出した。
   相対粘度=t/t0
(2) Relative viscosity 1 g of a pellet sample was precisely weighed and dissolved in 100 ml of 96% sulfuric acid at 20-30 ° C. with stirring. After completely dissolving, 5 ml of the solution was quickly taken into a Cannon-Fenceke viscometer and allowed to stand for 10 minutes in a constant temperature bath at 25 ° C., and then the drop time (t) was measured. Further, the dropping time (t 0 ) of 96% sulfuric acid itself was measured in the same manner. The relative viscosity was calculated from t and t 0 according to the following formula.
Relative viscosity = t / t 0
(3)末端アミノ基濃度〔NH2
 ポリアミド化合物を精秤し、フェノール/エタノール=4/1容量溶液に20~30℃で撹拌溶解させ、完全に溶解した後、撹拌しつつ、メタノール5mlで容器内壁を洗い流し、0.01mol/L塩酸水溶液で中和滴定して末端アミノ基濃度〔NH2〕を求めた。
(3) Terminal amino group concentration [NH 2 ]
The polyamide compound is precisely weighed and dissolved in a phenol / ethanol = 4/1 volume solution by stirring at 20-30 ° C. After complete dissolution, the inner wall of the container is washed with 5 ml of methanol while stirring, and 0.01 mol / L hydrochloric acid is dissolved. The terminal amino group concentration [NH 2 ] was determined by neutralization titration with an aqueous solution.
(4)ガラス転移温度及び融点
 示差走査熱量計((株)島津製作所製、商品名:DSC-60)を用い、昇温速度10℃/分で窒素気流下にDSC測定(示差走査熱量測定)を行い、ガラス転移温度(Tg)及び融点(Tm)を求めた。
(4) Glass transition temperature and melting point DSC measurement using a differential scanning calorimeter (manufactured by Shimadzu Corporation, trade name: DSC-60) under a nitrogen stream at a rate of temperature increase of 10 ° C./minute (differential scanning calorimetry) The glass transition temperature (Tg) and the melting point (Tm) were determined.
(5)酸素吸収量
 Tダイを設置した30mmφ二軸押出機((株)プラスチック工学研究所製)を用い、(ポリアミド化合物の融点+20℃)のシリンダー・Tダイ温度にて、ポリアミド化合物から厚さ約100μmの無延伸単層フィルムを成形した。
 製造した無延伸単層フィルムから切り出した10cm×10cmの試験片2枚を、アルミ箔積層フィルムからなる25cm×18cmの3方シール袋に、水10mlを含ませた綿と共に仕込み、袋内空気量が400mlとなるようにして密封した。袋内の湿度は100%RH(相対湿度)とした。40℃下で7日保存後、14日保存後、28日保存後のそれぞれに袋内の酸素濃度を酸素濃度計(東レエンジニアリング(株)製、商品名:LC-700F)で測定し、この酸素濃度から酸素吸収量を計算した。
 なお、製造例8及び9で得られたポリアミド化合物については、上記フィルムサンプルに代えて、ポリアミド化合物のペレット又は粉砕物を粉砕機で細かくした粉状サンプル2gを薬包紙に包んだものを用いて、上記と同様に酸素吸収量を計算した。
(5) Oxygen absorption amount Using a 30mmφ twin screw extruder (manufactured by Plastic Engineering Laboratory Co., Ltd.) equipped with a T die, the thickness of the polyamide compound is increased from the polyamide compound melting point (+ 20 ° C) to the cylinder T die temperature. An unstretched single layer film having a thickness of about 100 μm was formed.
Two test pieces of 10 cm x 10 cm cut out from the produced unstretched single layer film were charged into a 25 cm x 18 cm three-side sealed bag made of an aluminum foil laminated film together with cotton containing 10 ml of water, and the amount of air in the bag Was sealed to 400 ml. The humidity in the bag was 100% RH (relative humidity). After storing at 40 ° C. for 7 days, 14 days, and 28 days, the oxygen concentration in the bag was measured with an oxygen concentration meter (trade name: LC-700F, manufactured by Toray Engineering Co., Ltd.). The amount of oxygen absorbed was calculated from the oxygen concentration.
In addition, for the polyamide compounds obtained in Production Examples 8 and 9, instead of the above film sample, a powder sample 2 g obtained by finely pulverizing a polyamide compound pellet or pulverized product with a pulverizer was used. The oxygen absorption amount was calculated in the same manner as described above.
製造例1(ポリアミド化合物1の製造)
 撹拌機、分縮器、全縮器、圧力調整器、温度計、滴下槽及びポンプ、アスピレーター、窒素導入管、底排弁、ストランドダイを備えた内容積50Lの耐圧反応容器に、精秤したアジピン酸(旭化成ケミカルズ(株)製)13000g(88.96mol)、DL-アラニン((株)武蔵野化学研究所製)880.56g(9.88mol)、次亜リン酸ナトリウム11.7g(0.11mol)、酢酸ナトリウム6.06g(0.074mol)を入れ、十分に窒素置換した後、反応容器内を密閉し、容器内を0.4MPaに保ちながら撹拌下170℃まで昇温した。170℃に到達した後、反応容器内の溶融した原料へ滴下槽に貯めたメタキシリレンジアミン(三菱ガス化学(株)製)12082.2g(88.71mol)の滴下を開始し、容器内を0.4MPaに保ちながら生成する縮合水を系外へ除きながら反応槽内を連続的に240℃まで昇温した。メタキシリレンジアミンの滴下終了後、反応容器内を徐々に常圧に戻し、次いでアスピレーターを用いて反応槽内を80kPaに減圧して縮合水を除いた。減圧中に撹拌機の撹拌トルクを観察し、所定のトルクに達した時点で撹拌を止め、反応槽内を窒素で加圧し、底排弁を開け、ストランドダイからポリマーを抜き出してストランド化した後、冷却してペレタイザーによりペレット化してMXDA/AA/DL-Ala共重合体(ポリアミド化合物1)を得た。なお、各モノマーの仕込み組成比は、メタキシリレンジアミン:アジピン酸:DL-アラニン=47.3:47.4:5.3(mol%)であった。
Production Example 1 (Production of polyamide compound 1)
Weighed precisely in a pressure-resistant reaction vessel with an internal volume of 50 L equipped with a stirrer, partial condenser, full condenser, pressure regulator, thermometer, dripping tank and pump, aspirator, nitrogen inlet pipe, bottom exhaust valve, and strand die. Adipic acid (Asahi Kasei Chemicals Co., Ltd.) 13000 g (88.96 mol), DL-alanine (Musashino Chemical Laboratory Co., Ltd.) 880.56 g (9.88 mol), sodium hypophosphite 11.7 g (0. 11 mol) and 6.06 g (0.074 mol) of sodium acetate were added, and after sufficiently purging with nitrogen, the inside of the reaction vessel was sealed, and the temperature was raised to 170 ° C. with stirring while keeping the inside of the vessel at 0.4 MPa. After reaching 170 ° C., dropping of 12082.2 g (88.71 mol) of metaxylylenediamine (manufactured by Mitsubishi Gas Chemical Co., Inc.) stored in the dropping tank into the molten raw material in the reaction vessel was started, While maintaining 0.4 MPa, the temperature inside the reaction vessel was continuously raised to 240 ° C. while removing the condensed water produced outside the system. After completion of the dropwise addition of metaxylylenediamine, the inside of the reaction vessel was gradually returned to normal pressure, and then the inside of the reaction vessel was reduced to 80 kPa using an aspirator to remove condensed water. After observing the stirring torque of the stirrer during decompression, when stirring reaches the specified torque, stop stirring, pressurize the inside of the reaction tank with nitrogen, open the bottom drain valve, extract the polymer from the strand die and form a strand Then, the mixture was cooled and pelletized with a pelletizer to obtain an MXDA / AA / DL-Ala copolymer (polyamide compound 1). The composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 47.3: 47.4: 5.3 (mol%).
製造例2(ポリアミド化合物2の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=44.4:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物2)を得た。
Production Example 2 (Production of polyamide compound 2)
MXDA / AA in the same manner as in Production Example 1 except that the composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 44.4: 44.5: 11.1 (mol%). / DL-Ala copolymer (polyamide compound 2) was obtained.
製造例3(ポリアミド化合物3の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=41.1:41.3:17.6(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物3)を得た。
Production Example 3 (Production of polyamide compound 3)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 41.1: 41.3: 17.6 (mol%). / DL-Ala copolymer (polyamide compound 3) was obtained.
製造例4(ポリアミド化合物4の製造)
 各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-アラニン=37.5:37.5:25.0(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Ala共重合体(ポリアミド化合物4)を得た。
Production Example 4 (Production of polyamide compound 4)
MXDA / AA in the same manner as in Production Example 1 except that the charged composition ratio of each monomer was metaxylylenediamine: adipic acid: DL-alanine = 37.5: 37.5: 25.0 (mol%). / DL-Ala copolymer (polyamide compound 4) was obtained.
製造例5(ポリアミド化合物5の製造)
 α-アミノ酸をDL-ロイシン(Ningbo Haishuo Bio-technology製)に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン=44.3:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu共重合体(ポリアミド化合物5)を得た。
Production Example 5 (Production of polyamide compound 5)
The α-amino acid was changed to DL-leucine (manufactured by Ningbo Haishu Bio-technology), and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine = 44.3: 44.6: 11.1. An MXDA / AA / DL-Leu copolymer (polyamide compound 5) was obtained in the same manner as in Production Example 1 except that the amount was (mol%).
製造例6(ポリアミド化合物6の製造)
 α-アミノ酸をDL-バリン(Sinogel Amino Acid Co.,Ltd製)に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-バリン=44.3:44.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/DL-Val共重合体(ポリアミド化合物6)を得た。
Production Example 6 (Production of polyamide compound 6)
The α-amino acid was changed to DL-valine (manufactured by Sinogel Amino Acid Co., Ltd), and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-valine = 44.3: 44.6: 11. Except that the content was 0.1 (mol%), an MXDA / AA / DL-Val copolymer (polyamide compound 6) was obtained in the same manner as in Production Example 1.
製造例7(ポリアミド化合物7の製造)
 ジカルボン酸成分をイソフタル酸(エイ・ジイ・インタナショナル・ケミカル(株)製)とアジピン酸の混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:イソフタル酸:DL-アラニン=44.3:39.0:5.6:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/AA/IPA/DL-Ala共重合体(ポリアミド化合物7)を得た。
Production Example 7 (Production of polyamide compound 7)
The dicarboxylic acid component was changed to a mixture of isophthalic acid (manufactured by EI International Chemical Co., Ltd.) and adipic acid, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: isophthalic acid: DL- MXDA / AA / IPA / DL-Ala copolymer (polyamide compound 7) in the same manner as in Production Example 1 except that alanine = 44.3: 39.0: 5.6: 11.1 (mol%) Got.
製造例8(ポリアミド化合物8の製造)
 コモノマーとしてε-カプロラクタム(宇部興産(株)製)を使用し、α-アミノ酸をDL-ロイシンに変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸:DL-ロイシン:ε-カプロラクタム=41.0:41.3:11.8:5.9(mol%)とし、さらに減圧操作を行わずに所定のトルクに達した時点で撹拌を止めたこと以外は製造例1と同様にしてMXDA/AA/DL-Leu/ε-CL共重合体(ポリアミド化合物8)を得た。
Production Example 8 (Production of polyamide compound 8)
Ε-Caprolactam (manufactured by Ube Industries, Ltd.) was used as a comonomer, α-amino acid was changed to DL-leucine, and the composition ratio of each monomer was changed to metaxylylenediamine: adipic acid: DL-leucine: ε- Caprolactam = 41.0: 41.3: 11.8: 5.9 (mol%), and the same as in Production Example 1 except that stirring was stopped when a predetermined torque was reached without further depressurization operation Thus, an MXDA / AA / DL-Leu / ε-CL copolymer (polyamide compound 8) was obtained.
製造例9(ポリアミド化合物9の製造)
 ジアミン成分を1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:1,3-ビス(アミノメチル)シクロヘキサン:アジピン酸:DL-アラニン=33.2:11.1:44.6:11.1(mol%)とし、さらに減圧操作を行わずに所定のトルクに達した時点で撹拌を止めたこと以外は製造例1と同様にしてMXDA/1,3BAC/AA/DL-Ala共重合体(ポリアミド化合物9)を得た。
Production Example 9 (Production of polyamide compound 9)
The diamine component was changed to a mixture of 1,3-bis (aminomethyl) cyclohexane (Mitsubishi Gas Chemical Co., Ltd.) and metaxylylenediamine, and the charge composition ratio of each monomer was changed to metaxylylenediamine: 1,3- When bis (aminomethyl) cyclohexane: adipic acid: DL-alanine = 33.2: 11.1: 44.6: 11.1 (mol%) and when a predetermined torque is reached without further decompression operation An MXDA / 1,3BAC / AA / DL-Ala copolymer (polyamide compound 9) was obtained in the same manner as in Production Example 1 except that the stirring was stopped.
製造例10(ポリアミド化合物10の製造)
 ジアミン成分をヘキサメチレンジアミン(昭和化学(株)製)とメタキシリレンジアミンの混合物に変更し、各モノマーの仕込み組成比を、メタキシリレンジアミン:ヘキサメチレンジアミン:アジピン酸:DL-アラニン=33.3:11.1:44.5:11.1(mol%)としたこと以外は製造例1と同様にしてMXDA/HMDA/AA/DL-Ala共重合体(ポリアミド化合物10)を得た。
Production Example 10 (Production of polyamide compound 10)
The diamine component was changed to a mixture of hexamethylenediamine (manufactured by Showa Chemical Co., Ltd.) and metaxylylenediamine, and the composition ratio of each monomer was changed to metaxylylenediamine: hexamethylenediamine: adipic acid: DL-alanine = 33. .3: 11.1: 44.5: 11.1 (mol%) was obtained in the same manner as in Production Example 1 to obtain an MXDA / HMDA / AA / DL-Ala copolymer (polyamide compound 10). .
製造例11(ポリアミド化合物11の製造)
 DL-アラニンを添加せず、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸=49.8:50.2(mol%)としたこと以外は製造例1と同様にしてN-MXD6(ポリアミド化合物11)を得た。
Production Example 11 (Production of polyamide compound 11)
N-MXD6 was prepared in the same manner as in Production Example 1 except that DL-alanine was not added and the charged composition ratio of each monomer was metaxylylenediamine: adipic acid = 49.8: 50.2 (mol%). (Polyamide compound 11) was obtained.
製造例12(ポリアミド化合物12の製造)
 DL-アラニンを添加せず、各モノマーの仕込み組成比を、メタキシリレンジアミン:アジピン酸=50.2:49.8(mol%)としたこと以外は製造例1と同様にしてN-MXD6(ポリアミド化合物12)を得た。
Production Example 12 (Production of polyamide compound 12)
N-MXD6 was prepared in the same manner as in Production Example 1 except that DL-alanine was not added and the charged composition ratio of each monomer was metaxylylenediamine: adipic acid = 50.2: 49.8 (mol%). (Polyamide compound 12) was obtained.
 表1に、ポリアミド化合物1~12の仕込みモノマー組成、並びに得られたポリアミド化合物のα-アミノ酸含有率、相対粘度、末端アミノ基濃度、ガラス転移温度、融点及び酸素吸収量の測定結果を示す。 Table 1 shows the charged monomer compositions of the polyamide compounds 1 to 12 and the measurement results of the α-amino acid content, relative viscosity, terminal amino group concentration, glass transition temperature, melting point and oxygen absorption amount of the obtained polyamide compounds.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 次に、実施例1~20及び比較例1~18において、上記ポリアミド化合物1~12を用いて積層材を作製し、さらに該積層材から紙容器を作製した。
 また樹脂(B)として以下の材料を用いた。
(1)ナイロン6(N-6):宇部興産(株)製、UBEナイロン、グレード:1022B
(2)ナイロンMXD6(N-MXD6):製造例11で得たポリアミド化合物11を用いた。
(3)ポリエチレン(LDPE):日本ポリエチレン(株)製、商品名:ノバテックLD LC602A
(4)接着性ポリエチレン(接着性PE):三菱化学(株)製、商品名:モディックL504
(5)ポリ乳酸(PLA):ユニチカ(株)、商品名:テラマックTP-4000
(6)ポリエチレンテレフタレート(PET):日本ユニペット(株)製、グレード:RT553C
(7)エチレン-ビニルアルコール共重合体(EVOH):(株)クラレ製、エバール、グレード:F104B
Next, in Examples 1 to 20 and Comparative Examples 1 to 18, a laminated material was produced using the polyamide compounds 1 to 12, and a paper container was produced from the laminated material.
The following materials were used as the resin (B).
(1) Nylon 6 (N-6): Ube Industries, UBE nylon, grade: 1022B
(2) Nylon MXD6 (N-MXD6): The polyamide compound 11 obtained in Production Example 11 was used.
(3) Polyethylene (LDPE): manufactured by Nippon Polyethylene Co., Ltd., trade name: Novatec LD LC602A
(4) Adhesive polyethylene (adhesive PE): manufactured by Mitsubishi Chemical Corporation, trade name: Modic L504
(5) Polylactic acid (PLA): Unitika Ltd., trade name: Terramac TP-4000
(6) Polyethylene terephthalate (PET): Nihon Unipet Co., Ltd. Grade: RT553C
(7) Ethylene-vinyl alcohol copolymer (EVOH): Kuraray Co., Ltd., Eval, Grade: F104B
実施例1
 押出機、Tダイ、冷却ロール、コロナ処理機及び引き取り機からなる押出ラミネーターを用い、坪量400g/m2の紙基材の片面にコロナ処理を施した後、該コロナ面に低密度ポリエチレン(日本ポリエチレン(株)製、商品名:ノバテックLD LC602A、以下LDPEと略する)を30μmの厚さになるように押出ラミネートし、さらに上記紙基材の他方の面にコロナ処理を施して、LDPE層/紙基材層の構成を有する積層体を製造した。
 次に、第1~第3押出機、フィードブロック、Tダイ、冷却ロール及び巻き取り機からなる共押出装置を用い、第1の押出機からLDPE、第2の押出機から製造例1で製造したポリアミド化合物1とN-6を90:10(質量比)の割合で乾式混合したブレンドペレット、第3の押出機から接着性ポリエチレン(三菱化学(株)製、商品名:モディックL504、以下接着性PEと略する)を押し出し、LDPE層/接着性PE層/ポリアミド化合物×樹脂(B)ブレンド層/接着性PE層/LDPE層の順となるようにフィードブロックを介して多層溶融状態を形成させ、予めLDPEを押出ラミネートした紙基材のコロナ面にLDPE層が積層されるように共押出ラミネートして積層材を得た。得られた積層材の構成は、容器の内側となる面からLDPE層(30μm)/接着性PE層(10μm)/ポリアミド化合物×樹脂(B)ブレンド層(20μm)/接着性PE層(10μm)/LDPE層(30μm)/紙基材層/LDPE層(30μm)であった。
 次に、開封口に当たる部分に抗ヒートシール剤を塗布した後、上記積層材を打ち抜き型を用いて罫線入れ及び打ち抜きを行い、ブランク板を得た後、該ブランク板を端面処理し、胴部を熱溶着してスリーブとし、該スリーブを成形充填機にて、内容量500mlのゲーベルトップ型紙容器を作製した。
Example 1
Using an extrusion laminator comprising an extruder, a T-die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper substrate having a basis weight of 400 g / m 2 was subjected to corona treatment, and then the low-density polyethylene ( A product made by Nippon Polyethylene Co., Ltd., trade name: Novatec LD LC602A, hereinafter abbreviated as LDPE) is extruded and laminated to a thickness of 30 μm, and the other surface of the paper base material is subjected to corona treatment to obtain LDPE. A laminate having a layer / paper substrate layer configuration was produced.
Next, using the first to third extruders, the feed block, the T die, the cooling roll and the winder, a co-extrusion device is used to produce LDPE from the first extruder and Production Example 1 from the second extruder. Blended pellets obtained by dry-mixing polyamide compound 1 and N-6 at a ratio of 90:10 (mass ratio), adhesive polyethylene (product name: Modic L504, manufactured by Mitsubishi Chemical Corporation) from the third extruder, Abbreviated as PE) and form a multilayer melt state through the feed block in the order of LDPE layer / adhesive PE layer / polyamide compound × resin (B) blend layer / adhesive PE layer / LDPE layer The laminate was obtained by coextrusion laminating so that the LDPE layer was laminated on the corona surface of a paper base material on which LDPE had been extrusion laminated in advance. The structure of the obtained laminated material is as follows: LDPE layer (30 μm) / adhesive PE layer (10 μm) / polyamide compound × resin (B) blend layer (20 μm) / adhesive PE layer (10 μm) from the inner surface of the container / LDPE layer (30 μm) / paper substrate layer / LDPE layer (30 μm).
Next, after applying an anti-heat sealant to the portion corresponding to the opening, the laminated material was ruled using a punching die and punched to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
実施例2
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物2を使用し、ポリアミド化合物2とN-6の混合比を80:20(質量比)としたこと以外は実施例1と同様にして紙容器を作製した。
実施例3
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物3を使用し、ポリアミド化合物3とN-6の混合比を70:30(質量比)としたこと以外は実施例1と同様にして紙容器を作製した。
実施例4
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物4を使用し、ポリアミド化合物4とN-6の混合比を60:40(質量比)としたこと以外は実施例1と同様にして紙容器を作製した。
Example 2
Example 1 except that polyamide compound 2 was used instead of polyamide compound 1 in the polyamide compound × resin (B) blend layer, and the mixing ratio of polyamide compound 2 and N-6 was 80:20 (mass ratio). Similarly, a paper container was produced.
Example 3
Example 1 except that polyamide compound 3 was used instead of polyamide compound 1 in the polyamide compound × resin (B) blend layer, and the mixing ratio of polyamide compound 3 and N-6 was 70:30 (mass ratio). Similarly, a paper container was produced.
Example 4
Example 1 except that polyamide compound 4 was used in place of polyamide compound 1 in the polyamide compound × resin (B) blend layer, and the mixing ratio of polyamide compound 4 and N-6 was 60:40 (mass ratio). Similarly, a paper container was produced.
比較例1
 ポリアミド化合物×樹脂(B)ブレンド層に代えて、ポリアミド化合物1を混合せずN-6のみからなる樹脂(B)層を設けた以外は実施例1と同様にして紙容器を作製した。
比較例2
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物11を使用したこと以外は実施例1と同様にして紙容器を作製した。
比較例3
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物2に代えてポリアミド化合物11を使用したこと以外は実施例2と同様にして紙容器を作製した。
比較例4
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物3に代えてポリアミド化合物11を使用したこと以外は実施例3と同様にして紙容器を作製した。
比較例5
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物4に代えてポリアミド化合物11を使用したこと以外は実施例4と同様にして紙容器を作製した。
Comparative Example 1
Instead of the polyamide compound × resin (B) blend layer, a paper container was prepared in the same manner as in Example 1 except that the polyamide (1) was not mixed and a resin (B) layer consisting only of N-6 was provided.
Comparative Example 2
A paper container was produced in the same manner as in Example 1 except that the polyamide compound 11 was used in place of the polyamide compound 1 in the polyamide compound × resin (B) blend layer.
Comparative Example 3
A paper container was prepared in the same manner as in Example 2 except that the polyamide compound 11 was used in place of the polyamide compound 2 in the polyamide compound × resin (B) blend layer.
Comparative Example 4
A paper container was produced in the same manner as in Example 3 except that the polyamide compound 11 was used in place of the polyamide compound 3 in the polyamide compound × resin (B) blend layer.
Comparative Example 5
A paper container was produced in the same manner as in Example 4 except that the polyamide compound 11 was used instead of the polyamide compound 4 in the polyamide compound × resin (B) blend layer.
実施例5
 押出機、Tダイ、冷却ロール、コロナ処理機及び引き取り機からなる押出ラミネーターを用い、坪量400g/m2の紙基材の片面にコロナ処理を施した後、該コロナ面にLDPEを30μmの厚さになるように押出ラミネートし、さらに上記紙基材の他方の面にコロナ処理を施して、LDPE層/紙基材層の構成を有する積層体を製造した。
 次に、第1~第3押出機、フィードブロック、Tダイ、冷却ロール及び巻き取り機からなる共押出装置を用い、第1の押出機からLDPE、第2の押出機から製造例5で製造したポリアミド化合物5とN-6を80:20(質量比)の割合で乾式混合したブレンドペレット、第3の押出機から接着性PEを押し出し、LDPE層/接着性PE層/ポリアミド化合物×樹脂(B)ブレンド層の順となるようにフィードブロックを介して多層溶融状態を形成させ、予めLDPEを押出ラミネートした紙基材のコロナ面にポリアミド化合物×樹脂(B)ブレンド層が積層されるように共押出ラミネートして積層材を得た。得られた積層材の構成は、容器の内側となる面からLDPE層(50μm)/接着性PE層(15μm)/ポリアミド化合物×樹脂(B)ブレンド層(20μm)/紙基材層/LDPE層(30μm)であった。
 次に、開封口に当たる部分に抗ヒートシール剤を塗布した後、上記積層材を打ち抜き型を用いて、罫線入れおよび打ち抜きを行いブランク板を得た後、該ブランク板を端面処理し、胴部を熱溶着してスリーブとし、該スリーブを成形充填機にて、内容量500mlのゲーベルトップ型紙容器を作製した。
Example 5
Using an extrusion laminator consisting of an extruder, a T die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper base having a basis weight of 400 g / m 2 was subjected to corona treatment, and then LDPE was applied to the corona surface with 30 μm. Extrusion lamination was performed to obtain a thickness, and the other surface of the paper substrate was subjected to corona treatment to produce a laminate having a structure of LDPE layer / paper substrate layer.
Next, using the first to third extruders, the feed block, the T die, the cooling roll, and the winder, a co-extrusion device is used to produce LDPE from the first extruder and Production Example 5 from the second extruder. The blended pellets obtained by dry-mixing the polyamide compound 5 and N-6 at a ratio of 80:20 (mass ratio), the adhesive PE was extruded from the third extruder, and the LDPE layer / adhesive PE layer / polyamide compound × resin ( B) A multilayer melt state is formed through a feed block so that the blend layer is in order, and the polyamide compound × resin (B) blend layer is laminated on the corona surface of the paper base material on which LDPE has been extrusion laminated in advance. The laminated material was obtained by coextrusion lamination. The structure of the obtained laminated material is as follows: LDPE layer (50 μm) / adhesive PE layer (15 μm) / polyamide compound × resin (B) blend layer (20 μm) / paper substrate layer / LDPE layer from the inner surface of the container (30 μm).
Next, after applying an anti-heat sealant to the portion corresponding to the opening, the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
実施例6
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物5に代えてポリアミド化合物6を使用したこと以外は実施例5と同様にして紙容器を作製した。
実施例7
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物5に代えてポリアミド化合物7を使用したこと以外は実施例5と同様にして紙容器を作製した。
実施例8
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物5に代えてポリアミド化合物10を使用したこと以外は実施例5と同様にして紙容器を作製した。
Example 6
A paper container was produced in the same manner as in Example 5 except that polyamide compound 6 was used instead of polyamide compound 5 in the polyamide compound × resin (B) blend layer.
Example 7
A paper container was produced in the same manner as in Example 5 except that polyamide compound 7 was used instead of polyamide compound 5 in the polyamide compound × resin (B) blend layer.
Example 8
A paper container was prepared in the same manner as in Example 5 except that the polyamide compound 10 was used in place of the polyamide compound 5 in the polyamide compound × resin (B) blend layer.
実施例9
 ポリアミド化合物×樹脂(B)ブレンド層にN-6に代えてN-MXD6(ポリアミド化合物11)を使用し、ポリアミド化合物1とN-MXD6の混合比を30:70(質量比)としたこと以外は実施例1と同様にして紙容器を作製した。
実施例10
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物2を使用したこと以外は実施例9と同様にして紙容器を作製した。
実施例11
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物3を使用し、ポリアミド化合物3とN-MXD6の混合比を20:80(質量比)としたこと以外は実施例9と同様にして紙容器を作製した。
実施例12
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物3に代えてポリアミド化合物4を使用したこと以外は実施例11と同様にして紙容器を作製した。
実施例13
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物8を使用したこと以外は実施例9と同様にして紙容器を作製した。
実施例14
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1に代えてポリアミド化合物9を使用したこと以外は実施例9と同様にして紙容器を作製した。
Example 9
Other than using N-MXD6 (polyamide compound 11) instead of N-6 in the polyamide compound x resin (B) blend layer, and mixing ratio of polyamide compound 1 and N-MXD6 was 30:70 (mass ratio) Made a paper container in the same manner as in Example 1.
Example 10
A paper container was produced in the same manner as in Example 9 except that polyamide compound 2 was used instead of polyamide compound 1 in the polyamide compound × resin (B) blend layer.
Example 11
Example 9 except that polyamide compound 3 was used instead of polyamide compound 1 in the polyamide compound × resin (B) blend layer, and the mixing ratio of polyamide compound 3 and N-MXD6 was 20:80 (mass ratio). Similarly, a paper container was produced.
Example 12
A paper container was produced in the same manner as in Example 11 except that the polyamide compound 4 was used in place of the polyamide compound 3 in the polyamide compound × resin (B) blend layer.
Example 13
A paper container was produced in the same manner as in Example 9 except that polyamide compound 8 was used instead of polyamide compound 1 in the polyamide compound × resin (B) blend layer.
Example 14
A paper container was produced in the same manner as in Example 9 except that the polyamide compound 9 was used in place of the polyamide compound 1 in the polyamide compound × resin (B) blend layer.
比較例6
 ポリアミド化合物×樹脂(B)ブレンド層に代えて、ポリアミド化合物1を混合せずN-MXD6のみからなる樹脂(B)層を設けた以外は実施例9と同様にして紙容器を作製した。
Comparative Example 6
Instead of the polyamide compound × resin (B) blend layer, a paper container was prepared in the same manner as in Example 9 except that the polyamide (1) was not mixed and a resin (B) layer consisting only of N-MXD6 was provided.
実施例15
 ポリアミド化合物×樹脂(B)ブレンド層にN-6に代えてPETを使用したこと以外は実施例2と同様にして紙容器を作製した。
実施例16
 ポリアミド化合物2とPETの混合比を70:30(質量比)としたこと以外は実施例15と同様にして紙容器を作製した。
Example 15
A paper container was produced in the same manner as in Example 2 except that PET was used instead of N-6 in the polyamide compound × resin (B) blend layer.
Example 16
A paper container was produced in the same manner as in Example 15 except that the mixing ratio of the polyamide compound 2 and PET was 70:30 (mass ratio).
比較例7
 ポリアミド化合物×樹脂(B)ブレンド層に代えて、ポリアミド化合物2を混合せずPETのみからなる樹脂(B)層を設けた以外は実施例15と同様にして紙容器を作製した。
比較例8
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物2に代えてポリアミド化合物11を使用したこと以外は実施例15と同様にして紙容器を作製した。
比較例9
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物2に代えてポリアミド化合物11を使用したこと以外は実施例16と同様にして紙容器を作製した。
Comparative Example 7
Instead of the polyamide compound × resin (B) blend layer, a paper container was produced in the same manner as in Example 15 except that the polyamide (2) was not mixed and a resin (B) layer made of only PET was provided.
Comparative Example 8
A paper container was prepared in the same manner as in Example 15 except that the polyamide compound 11 was used in place of the polyamide compound 2 in the polyamide compound × resin (B) blend layer.
Comparative Example 9
A paper container was prepared in the same manner as in Example 16 except that the polyamide compound 11 was used instead of the polyamide compound 2 in the polyamide compound × resin (B) blend layer.
実施例17
 ポリアミド化合物×樹脂(B)ブレンド層にN-6に代えてEVOHを使用し、ポリアミド化合物3とEVOHの混合比を10:90(質量比)としたこと以外は実施例3と同様にして紙容器を作製した。
実施例18
 ポリアミド化合物3とEVOHの混合比を20:80(質量比)としたこと以外は実施例17と同様にして紙容器を作製した。
Example 17
Paper in the same manner as in Example 3 except that EVOH was used instead of N-6 in the polyamide compound × resin (B) blend layer, and the mixing ratio of polyamide compound 3 and EVOH was 10:90 (mass ratio). A container was prepared.
Example 18
A paper container was produced in the same manner as in Example 17 except that the mixing ratio of the polyamide compound 3 and EVOH was 20:80 (mass ratio).
比較例10
 ポリアミド化合物×樹脂(B)ブレンド層に代えて、ポリアミド化合物3を混合せずEVOHのみからなる樹脂(B)層を設けた以外は実施例17と同様にして紙容器を作製した。
比較例11
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物3に代えてポリアミド化合物11を使用したこと以外は実施例17と同様にして紙容器を作製した。
比較例12
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物3に代えてポリアミド化合物11を使用したこと以外は実施例18と同様にして紙容器を作製した。
Comparative Example 10
In place of the polyamide compound × resin (B) blend layer, a paper container was prepared in the same manner as in Example 17 except that the polyamide (3) was not mixed and a resin (B) layer consisting only of EVOH was provided.
Comparative Example 11
A paper container was prepared in the same manner as in Example 17 except that the polyamide compound 11 was used in place of the polyamide compound 3 in the polyamide compound × resin (B) blend layer.
Comparative Example 12
A paper container was prepared in the same manner as in Example 18 except that the polyamide compound 11 was used instead of the polyamide compound 3 in the polyamide compound × resin (B) blend layer.
比較例13
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1とN-6を90:10(質量比)の割合で乾式混合したブレンドペレットに代えて、ポリアミド化合物11とN-6とステアリン酸コバルト(II)とを80:20:0.12(質量比)の割合で乾式混合したブレンドペレットを使用したこと以外は実施例1と同様にして紙容器を作製した。
Comparative Example 13
Instead of the blend pellet obtained by dry-mixing polyamide compound 1 and N-6 at a ratio of 90:10 (mass ratio) to the blend layer of polyamide compound × resin (B), polyamide compound 11, N-6, and cobalt stearate (II ) Was used in the same manner as in Example 1 except that the blended pellets were dry-mixed at a ratio of 80: 20: 0.12 (mass ratio).
比較例14
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物1とN-6を90:10(質量比)の割合で乾式混合したブレンドペレットに代えて、ポリアミド化合物11とN-6とステアリン酸コバルト(II)とマレイン酸変性ポリブタジエン(日本石油化学(株)製、商品名:M-2000-20)とを80:20:0.12:2.4(質量比)の割合で乾式混合したブレンドペレットを使用したこと以外は実施例1と同様にして紙容器を作製した。
Comparative Example 14
Instead of the blend pellet obtained by dry-mixing polyamide compound 1 and N-6 at a ratio of 90:10 (mass ratio) to the blend layer of polyamide compound × resin (B), polyamide compound 11, N-6 and cobalt stearate (II ) And maleic acid-modified polybutadiene (manufactured by Nippon Petrochemical Co., Ltd., trade name: M-2000-20) in a dry blend ratio of 80: 20: 0.12: 2.4 (mass ratio). A paper container was produced in the same manner as in Example 1 except that it was used.
比較例15
 平均粒径30μmの還元鉄粉100質量部に対して塩化カルシウム3質量部をコーティングした粒状の酸素吸収剤40質量部とLDPE60質量部をドライブレンドし、35mm二軸押出機にて押し出しを行い、ブロワ付きネットベルトで冷却後ペレタイザーを経て、酸素吸収剤含有LDPEを得た。
 次に、押出機、Tダイ、冷却ロール、コロナ処理機及び引き取り機からなる押出ラミネーターを用い、坪量400g/m2の紙基材の片面にコロナ処理を施した後、該コロナ面にLDPEを30μmの厚さになるように押出ラミネートし、さらに上記紙基材の他方の面にコロナ処理を施して、LDPE層/紙基材層の構成を有する積層体を製造した。
 次に、第1~第5押出機、フィードブロック、Tダイ、冷却ロール及び巻き取り機からなる共押出装置を用い、第1の押出機からLDPE、第2の押出機から前記酸素吸収剤含有LDPE、第3の押出機から接着性PE、第4の押出機から製造例11で得たポリアミド化合物11とN-6を80:20(質量比)の割合で乾式混合したブレンドペレット、第5の押出機からLDPEを押し出し、LDPE層(A)/酸素吸収剤含有LDPE層/接着性PE層/ポリアミド化合物×樹脂(B)ブレンド層/接着性PE層/LDPE層(B)の順となるようにフィードブロックを介して多層溶融状態を形成させ、予めLDPEを押し出しラミネートした紙基材のコロナ面にLDPE層(B)が積層されるように共押出ラミネートして、積層材を得た。得られた積層材の構成は、容器の内側となる面からLDPE層(A)(50μm)/酸素吸収剤含有LDPE層(50μm)/接着性PE層(10μm)/ポリアミド化合物×樹脂(B)ブレンド層(20μm)/接着性PE層(10μm)/LDPE層(B)(20μm)/紙基材層/LDPE層(30μm)であった。
 次に、開封口に当たる部分に抗ヒートシール剤を塗布した後、上記積層材を打ち抜き型を用いて、罫線入れおよび打ち抜きを行いブランク板を得た後、該ブランク板を端面処理し、胴部を熱溶着してスリーブとし、該スリーブを成形充填機にて、内容量500mlのゲーベルトップ型紙容器を作製した。
Comparative Example 15
Dry blend of 40 parts by mass of granular oxygen absorbent coated with 3 parts by mass of calcium chloride and 100 parts by mass of LDPE with respect to 100 parts by mass of reduced iron powder having an average particle size of 30 μm, followed by extrusion with a 35 mm twin screw extruder, After cooling with a net belt with a blower, LDPE containing oxygen absorbent was obtained through a pelletizer.
Next, using an extrusion laminator composed of an extruder, a T-die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper substrate having a basis weight of 400 g / m 2 was subjected to corona treatment, and then the LDPE was applied to the corona surface. Was laminated by extrusion to give a thickness of 30 μm, and the other side of the paper substrate was subjected to corona treatment to produce a laminate having a structure of LDPE layer / paper substrate layer.
Next, using a co-extrusion apparatus comprising a first to fifth extruder, a feed block, a T die, a cooling roll, and a winder, the first extruder contains LDPE, and the second extruder contains the oxygen absorbent. LDPE, Adhesive PE from the third extruder, Blend pellet obtained by dry-mixing the polyamide compound 11 and N-6 obtained in Production Example 11 from the fourth extruder at a ratio of 80:20 (mass ratio), No. 5 LDPE is extruded from the extruder of the above, and in the order of LDPE layer (A) / LDPE layer containing oxygen absorbent / adhesive PE layer / polyamide compound × resin (B) blend layer / adhesive PE layer / LDPE layer (B) In this way, a multilayer melt state is formed through a feed block, and co-extrusion laminating is performed so that the LDPE layer (B) is laminated on the corona surface of the paper base that has been pre-extruded and laminated with LDPE to obtain a laminated material. . The structure of the obtained laminated material is as follows: LDPE layer (A) (50 μm) / oxygen absorbent-containing LDPE layer (50 μm) / adhesive PE layer (10 μm) / polyamide compound × resin (B) It was blend layer (20 μm) / adhesive PE layer (10 μm) / LDPE layer (B) (20 μm) / paper substrate layer / LDPE layer (30 μm).
Next, after applying an anti-heat sealant to the portion corresponding to the opening, the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
比較例16
 樹脂(B)をN-6からPETに代えたこと以外は比較例13と同様にして紙容器を作製した。
Comparative Example 16
A paper container was produced in the same manner as in Comparative Example 13 except that the resin (B) was changed from N-6 to PET.
比較例17
 ポリアミド化合物×樹脂(B)ブレンド層にポリアミド化合物11とN-6とステアリン酸コバルト(II)とマレイン酸変性ポリブタジエンとを80:20:0.12:2.4(質量比)の割合で乾式混合したブレンドペレットに代えて、EVOHとステアリン酸コバルト(II)とマレイン酸変性ポリブタジエンとを100:0.12:2.4(質量比)の割合で乾式混合したブレンドペレットを使用したこと以外は比較例14と同様にして紙容器を作製した。
Comparative Example 17
Polyamide compound x N-6, cobalt stearate (II) and maleic acid-modified polybutadiene in a blending layer of polyamide compound x resin (B) in a ratio of 80: 20: 0.12: 2.4 (mass ratio) Instead of using the blended pellets, EVOH, cobalt stearate (II), and maleic acid-modified polybutadiene at a ratio of 100: 0.12: 2.4 (mass ratio) were used. A paper container was produced in the same manner as in Comparative Example 14.
比較例18
 樹脂(B)をN-6からPETに代えたこと以外は比較例15と同様にして紙容器を作製した。
Comparative Example 18
A paper container was produced in the same manner as in Comparative Example 15 except that the resin (B) was changed from N-6 to PET.
 上記実施例1~18及び比較例1~18で作製した積層材を打ち抜き、酸素透過率の測定を行った。また各紙容器に内容物としてオレンジジュース500mlを、約80℃のホット充填法により加熱殺菌しながら充填し密封し、1ヶ月間25℃で保存後、ゲーベルトップ部分の開封口を開封し、開封性、風味保持性を以下の通り官能評価した。評価結果を表2に示す。
(1)酸素透過率測定
 MOCON社製、型式:OX-TRAN 2/21を使用し、ASTM D3985に準じて、23℃、相対湿度60%の雰囲気下にて測定した。
(2)開封性
 共押出しされた部分に置ける層間剥離が無く、容易に開封できるものを○、そうでないものを×とした。
(3)風味保持性
 開封時にヘッドスペースの匂いを嗅ぎ、オレンジジュースの香り以外の匂いが認められないものを○、オレンジジュースの香り以外の匂いが認められるものを×とした。
The laminates produced in Examples 1 to 18 and Comparative Examples 1 to 18 were punched out and the oxygen transmission rate was measured. Each paper container is filled with 500 ml of orange juice as a content while being heated and sterilized by hot filling method at about 80 ° C., stored at 25 ° C. for 1 month, and then opened at the opening of the top part of the bell. The flavor retention was sensory evaluated as follows. The evaluation results are shown in Table 2.
(1) Oxygen permeability measurement MOCON Co., Ltd., model: OX-TRAN 2/21 was used, and measurement was performed in an atmosphere of 23 ° C. and relative humidity 60% according to ASTM D3985.
(2) Unsealing property The case where there was no delamination that could be placed on the co-extruded portion and it could be easily opened was designated as ◯, and the case where it was not.
(3) Flavor retention The odor of the headspace was smelled when opened, and the case where no odor other than the scent of orange juice was observed was evaluated as ◯, and the case where the scent other than the scent of orange juice was observed was evaluated as x.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~18の紙容器はいずれも、開封性及び風味保持性の評価結果が○であり、開封性及び風味保持性に優れていた。
 また、N-6に酸素吸収機能を有するポリアミド化合物1~7、10をブレンドした層を設けた積層材(実施例1~8)は、N-6のみからなる層を設けた積層材(比較例1)やN-6に酸素吸収機能を有さないポリアミド化合物11をブレンドした層を設けた積層材(比較例2~5)と比較して、酸素透過率を小さく抑えることができた。同様に、実施例9~14の積層材は比較例6の積層材と比較して、実施例15~16の積層材は比較例7~9の積層材と比較して、実施例17~18の積層材は比較例10~12の積層材と比較して、酸素透過率を小さく抑えることができた。
Each of the paper containers of Examples 1 to 18 had an evaluation result of openability and flavor retention, and was excellent in openability and flavor retention.
In addition, the laminated material (Examples 1 to 8) provided with a layer in which N-6 is blended with polyamide compounds 1 to 7 and 10 having an oxygen absorption function (Examples 1 to 8) is a laminated material provided with a layer composed only of N-6 (Comparison) Compared with Example 1) and a laminate (Comparative Examples 2 to 5) provided with a layer obtained by blending N-6 with a polyamide compound 11 having no oxygen absorption function, the oxygen transmission rate could be kept small. Similarly, the laminated materials of Examples 9 to 14 are compared with the laminated material of Comparative Example 6, and the laminated materials of Examples 15 to 16 are compared to the laminated materials of Comparative Examples 7 to 9 and Examples 17 to 18 are compared. Compared with the laminated materials of Comparative Examples 10 to 12, the laminated material of FIG.
 比較例13の積層材は、酸素透過率の点では優れていたものの、その紙容器はゲーベルトップ部の融着部分を剥がして開封した際、ポリアミド化合物×樹脂(B)ブレンド層が破壊して綺麗に開封することができず、開封性の点で劣っていた。ポリアミド化合物11と遷移金属化合物(ステアリン酸コバルト(II))を共存させることで酸素吸収性能が発現したものの、同時にポリアミド化合物11が酸化分解し、ポリアミド化合物×樹脂(B)ブレンド層が強度劣化したためと考えられる。
 比較例14の積層材は、酸素透過率の点では優れていたものの、その紙容器は開封時に異臭が認められ、風味保持性の点で劣っていた。ポリアミド化合物12は末端アミノ基濃度を高く、実質上酸化しにくいため、ポリアミド化合物×樹脂(B)ブレンド層が大きく強度劣化することはなく、かつ、マレイン酸変性ポリブタジエンとステアリン酸コバルトを共存させることで酸素吸収性能が発現したものの、ポリブタジエンの酸化劣化に伴う低分子量化合物の発生により異臭が生じたものと考えられる。
 比較例15の積層材は、酸素透過率の点では優れていたものの、その紙容器は開封時に鉄臭が認められた。ポリアミド化合物×樹脂(B)ブレンド層が酸素バリア性能を発現し、酸素吸収剤含有LDPEが酸素吸収性能を発現したものの、酸素吸収剤として鉄粉を使用しているため、当該鉄粉に起因する鉄臭が生じたためと考えられる。
 また、比較例13~15の樹脂(B)を他の材料に変更しても(比較例16~18)、その問題は解決されないことがわかった。
Although the laminated material of Comparative Example 13 was excellent in terms of oxygen permeability, the polyamide compound × resin (B) blend layer was destroyed when the paper container was opened by peeling off the fused portion of the gobbel top. It could not be opened neatly and was inferior in terms of openability. Although the polyamide compound 11 and the transition metal compound (cobalt stearate (II)) coexisted to express oxygen absorption performance, the polyamide compound 11 was oxidized and decomposed at the same time, and the polyamide compound × resin (B) blend layer was deteriorated in strength. it is conceivable that.
Although the laminated material of Comparative Example 14 was excellent in terms of oxygen permeability, the paper container had a bad odor when opened and was inferior in flavor retention. Since the polyamide compound 12 has a high terminal amino group concentration and is substantially difficult to oxidize, the polyamide compound × resin (B) blend layer is not greatly deteriorated in strength and coexists with maleic acid-modified polybutadiene and cobalt stearate. Although the oxygen absorption performance was exhibited in, it was considered that a strange odor was generated due to the generation of low molecular weight compounds accompanying the oxidative degradation of polybutadiene.
Although the laminated material of Comparative Example 15 was excellent in terms of oxygen permeability, the paper container showed an iron odor when opened. Although the polyamide compound × resin (B) blend layer expresses oxygen barrier performance and the oxygen absorbent-containing LDPE expresses oxygen absorption performance, iron powder is used as the oxygen absorbent, which is attributed to the iron powder. This is thought to be due to the iron odor.
It was also found that the problem could not be solved even if the resin (B) of Comparative Examples 13 to 15 was changed to another material (Comparative Examples 16 to 18).
実施例19
 押出機、Tダイ、冷却ロール、コロナ処理機及び引き取り機からなる押出ラミネーターを用い、坪量400g/m2の紙基材の片面にコロナ処理を施した後、該コロナ面にLDPEを30μmの厚さになるように押出ラミネートし、さらに上記紙基材の他方の面にコロナ処理を施して、LDPE層/紙基材層の構成を有する積層体を製造した。
 次に、第1~第5押出機、フィードブロック、Tダイ、冷却ロール及び巻き取り機からなる共押出装置を用い、第1の押出機からLDPE、第2の押出機から製造例4で得たポリアミド化合物4とLDPEと接着性PEとを70:20:10(質量比)の割合で乾式混合したブレンドペレット(ポリアミド化合物×樹脂(B)ブレンド層αとなる)、第3の押出機から接着性PE、第4の押出機から製造例11で得たポリアミド化合物11とN-6を80:20(質量比)の割合で乾式混合したブレンドペレット(ポリアミド化合物×樹脂(B)ブレンド層βとなる)、第5の押出機からLDPEを押し出し、LDPE層(A)/接着性PE層/ポリアミド化合物×樹脂(B)ブレンド層α/ポリアミド化合物×樹脂(B)ブレンド層β/接着性PE層/LDPE層(B)の順となるようにフィードブロックを介して多層溶融状態を形成させ、予めLDPEを押し出しラミネートした紙基材のコロナ面にLDPE層(B)が積層されるように共押出ラミネートして、積層材を得た。得られた積層材の構成は、容器の内側となる面からLDPE層(A)(50μm)/接着性PE層(10μm)/ポリアミド化合物×樹脂(B)ブレンド層α(50μm)/ポリアミド化合物×樹脂(B)ブレンド層β(20μm)/接着性PE層(10μm)/LDPE層(B)(20μm)/紙基材層/LDPE層(30μm)であった。
 次に、開封口に当たる部分に抗ヒートシール剤を塗布した後、上記積層材を打ち抜き型を用いて、罫線入れおよび打ち抜きを行いブランク板を得た後、該ブランク板を端面処理し、胴部を熱溶着してスリーブとし、該スリーブを成形充填機にて、内容量500mlのゲーベルトップ型紙容器を作製した。
Example 19
Using an extrusion laminator consisting of an extruder, a T die, a cooling roll, a corona treatment machine, and a take-up machine, one side of a paper base having a basis weight of 400 g / m 2 was subjected to corona treatment, and then LDPE was applied to the corona surface with 30 μm. Extrusion lamination was performed to obtain a thickness, and the other surface of the paper substrate was subjected to corona treatment to produce a laminate having a structure of LDPE layer / paper substrate layer.
Next, using a co-extrusion apparatus consisting of a first to fifth extruder, a feed block, a T die, a cooling roll and a winder, the LDPE is obtained from the first extruder and the production example 4 is obtained from the second extruder. Blend pellets (polyamide compound × resin (B) blend layer α) obtained by dry-mixing polyamide compound 4, LDPE and adhesive PE at a ratio of 70:20:10 (mass ratio), from the third extruder Adhesive PE, a blend pellet (polyamide compound × resin (B) blend layer β) obtained by dry-mixing the polyamide compound 11 obtained in Production Example 11 from the fourth extruder and N-6 at a ratio of 80:20 (mass ratio). LDPE is extruded from the fifth extruder, LDPE layer (A) / adhesive PE layer / polyamide compound × resin (B) blend layer α / polyamide compound × resin (B) blend layer β / adhesive P A multilayer melt state is formed through a feed block so that the order of E layer / LDPE layer (B) is reached, and the LDPE layer (B) is laminated on the corona surface of the paper base material that has been extruded and laminated in advance. Co-extrusion lamination was performed to obtain a laminated material. The structure of the obtained laminated material is as follows: LDPE layer (A) (50 μm) / adhesive PE layer (10 μm) / polyamide compound × resin (B) blend layer α (50 μm) / polyamide compound × Resin (B) blend layer β (20 μm) / adhesive PE layer (10 μm) / LDPE layer (B) (20 μm) / paper substrate layer / LDPE layer (30 μm).
Next, after applying an anti-heat sealant to the portion corresponding to the opening, the laminated material was punched and punched using a punching die to obtain a blank plate. Were heat-welded to form a sleeve, and the sleeve was used in a molding and filling machine to produce a 500 ml internal capacity container with a capacity of 500 ml.
実施例20
 ポリアミド化合物×樹脂(B)ブレンド層αにポリアミド化合物4とLDPEと接着性PEを70:20:10(質量比)の割合で乾式混合したブレンドペレットに代えて、ポリアミド化合物4とPLAを70:30(質量比)からなるブレンドペレットを使用したこと以外は実施例19と同様にして紙容器を作製した。
Example 20
Instead of the blend pellet obtained by dry-mixing the polyamide compound 4, the LDPE, and the adhesive PE at a ratio of 70:20:10 (mass ratio) to the polyamide compound × resin (B) blend layer α, the polyamide compound 4 and the PLA 70: A paper container was produced in the same manner as in Example 19 except that blend pellets consisting of 30 (mass ratio) were used.
 上記実施例19及び20で作製した積層材及び紙容器について、上述の評価方法と同様の評価方法で、酸素透過率、開封性、風味保持性を評価した。実施例19及び20の評価結果を上述した比較例3の評価結果と共に表3に示す。 The laminated materials and paper containers prepared in Examples 19 and 20 were evaluated for oxygen permeability, openability, and flavor retention by the same evaluation method as described above. The evaluation results of Examples 19 and 20 are shown in Table 3 together with the evaluation results of Comparative Example 3 described above.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 樹脂(B)としてポリオレフィン(実施例19)や植物由来樹脂(実施例20)を用いたポリアミド化合物×樹脂(B)ブレンド層αを、酸素吸収機能を有さない比較例3の積層材に積層することによって、酸素透過率を小さく抑えることができた。酸素吸収機能を有するポリアミド化合物とブレンドする樹脂(B)としてポリオレフィンや植物由来樹脂を用いた場合も、積層材は酸素吸収機能を発揮することが確認された。 A polyamide compound × resin (B) blend layer α using polyolefin (Example 19) or plant-derived resin (Example 20) as the resin (B) is laminated on the laminated material of Comparative Example 3 having no oxygen absorption function. By doing so, the oxygen transmission rate could be kept small. Even when a polyolefin or a plant-derived resin was used as the resin (B) blended with the polyamide compound having an oxygen absorbing function, it was confirmed that the laminate material exhibited an oxygen absorbing function.
 本発明の積層材及び該積層材を製函してなる本発明の紙容器は、包装材料として好適に用いることができる。 The laminated material of the present invention and the paper container of the present invention formed by boxing the laminated material can be suitably used as a packaging material.

Claims (11)

  1.  紙基材層と、
     ポリアミド化合物(A)及び樹脂(B)を含有する樹脂組成物から形成される層と
    を含む積層材であって、
     該ポリアミド化合物(A)が、
     下記一般式(I-1)で表される芳香族ジアミン単位、下記一般式(I-2)で表される脂環族ジアミン単位、及び下記一般式(I-3)で表される直鎖脂肪族ジアミン単位からなる群から選ばれる少なくとも1つのジアミン単位を合計で50モル%以上含むジアミン単位25~50モル%と、
     下記一般式(II-1)で表される直鎖脂肪族ジカルボン酸単位及び/又は下記一般式(II-2)で表される芳香族ジカルボン酸単位を合計で50モル%以上含むジカルボン酸単位25~50モル%と、
     下記一般式(III)で表される構成単位0.1~50モル%と
    を含有する、積層材。
    Figure JPOXMLDOC01-appb-C000001
    [前記一般式(I-3)中、mは2~18の整数を表す。前記一般式(II-1)中、nは2~18の整数を表す。前記一般式(II-2)中、Arはアリーレン基を表す。前記一般式(III)中、Rは置換もしくは無置換のアルキル基又は置換もしくは無置換のアリール基を表す。]
    A paper base layer;
    A laminate comprising a layer formed from a resin composition containing a polyamide compound (A) and a resin (B),
    The polyamide compound (A) is
    An aromatic diamine unit represented by the following general formula (I-1), an alicyclic diamine unit represented by the following general formula (I-2), and a straight chain represented by the following general formula (I-3) 25 to 50 mol% of diamine units containing a total of 50 mol% or more of at least one diamine unit selected from the group consisting of aliphatic diamine units;
    A dicarboxylic acid unit containing a total of 50 mol% or more of a linear aliphatic dicarboxylic acid unit represented by the following general formula (II-1) and / or an aromatic dicarboxylic acid unit represented by the following general formula (II-2) 25 to 50 mol%,
    A laminated material containing 0.1 to 50 mol% of a structural unit represented by the following general formula (III).
    Figure JPOXMLDOC01-appb-C000001
    [In the general formula (I-3), m represents an integer of 2 to 18. In the general formula (II-1), n represents an integer of 2 to 18. In the general formula (II-2), Ar represents an arylene group. In the general formula (III), R represents a substituted or unsubstituted alkyl group or a substituted or unsubstituted aryl group. ]
  2.  前記一般式(III)におけるRが、置換もしくは無置換の炭素数1~6のアルキル基又は置換もしくは無置換の炭素数6~10のアリール基である、請求項1に記載の積層材。 The laminate material according to claim 1, wherein R in the general formula (III) is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms or a substituted or unsubstituted aryl group having 6 to 10 carbon atoms.
  3.  前記ジアミン単位が、メタキシリレンジアミン単位を50モル%以上含む、請求項1又は2に記載の積層材。 The laminate material according to claim 1 or 2, wherein the diamine unit contains 50 mol% or more of a metaxylylenediamine unit.
  4.  前記直鎖脂肪族ジカルボン酸単位が、アジピン酸単位、セバシン酸単位、及び1,12-ドデカンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~3のいずれかに記載の積層材。 The linear aliphatic dicarboxylic acid unit contains at least one selected from the group consisting of an adipic acid unit, a sebacic acid unit, and a 1,12-dodecanedicarboxylic acid unit in total of 50 mol% or more. The laminated material in any one of.
  5.  前記芳香族ジカルボン酸単位が、イソフタル酸単位、テレフタル酸単位、及び2,6-ナフタレンジカルボン酸単位からなる群から選ばれる少なくとも1つを合計で50モル%以上含む、請求項1~4のいずれかに記載の積層材。 The aromatic dicarboxylic acid unit contains at least one selected from the group consisting of an isophthalic acid unit, a terephthalic acid unit, and a 2,6-naphthalenedicarboxylic acid unit in total of 50 mol% or more. The laminated material of crab.
  6.  前記ポリアミド化合物(A)が更に、下記一般式(X)で表されるω-アミノカルボン酸単位を、ポリアミド化合物(A)の全構成単位中0.1~49.9モル%含有する、請求項1~5のいずれかに記載の積層材。
    Figure JPOXMLDOC01-appb-C000002
    [前記一般式(X)中、pは2~18の整数を表す。]
    The polyamide compound (A) further contains 0.1 to 49.9 mol% of ω-aminocarboxylic acid units represented by the following general formula (X) in all the structural units of the polyamide compound (A). Item 6. The laminated material according to any one of Items 1 to 5.
    Figure JPOXMLDOC01-appb-C000002
    [In the general formula (X), p represents an integer of 2 to 18. ]
  7.  前記ω-アミノカルボン酸単位が、6-アミノヘキサン酸単位及び/又は12-アミノドデカン酸単位を合計で50モル%以上含む、請求項6に記載の積層材。 The laminate according to claim 6, wherein the ω-aminocarboxylic acid unit contains a total of 50 mol% or more of 6-aminohexanoic acid units and / or 12-aminododecanoic acid units.
  8.  前記樹脂組成物が、前記樹脂(B)として、ポリオレフィン、ポリエステル、ポリアミド、エチレン-ビニルアルコール共重合体及び植物由来樹脂からなる群から選ばれる少なくとも1種を含有する、請求項1~7のいずれかに記載の積層材。 The resin composition according to any one of claims 1 to 7, wherein the resin composition (B) contains at least one selected from the group consisting of polyolefin, polyester, polyamide, ethylene-vinyl alcohol copolymer, and plant-derived resin. The laminated material of crab.
  9.  前記ポリアミド化合物(A)の相対粘度が1.8以上4.2以下であり、かつ
     前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95~95/5である、請求項1~8のいずれかに記載の積層材。
    The polyamide compound (A) has a relative viscosity of 1.8 or more and 4.2 or less, and a mass ratio of the polyamide compound (A) / the resin (B) of 5/95 to 95/5. Item 9. The laminated material according to any one of Items 1 to 8.
  10.  前記ポリアミド化合物(A)の相対粘度が1.01以上1.8未満であり、かつ
     前記ポリアミド化合物(A)/前記樹脂(B)の質量比が、5/95~50/50である、請求項1~8のいずれかに記載の積層材。
    The relative viscosity of the polyamide compound (A) is 1.01 or more and less than 1.8, and the mass ratio of the polyamide compound (A) / the resin (B) is 5/95 to 50/50. Item 9. The laminated material according to any one of Items 1 to 8.
  11.  請求項1~10のいずれかに記載の積層材を製函してなる紙容器。 A paper container formed by boxing the laminated material according to any one of claims 1 to 10.
PCT/JP2012/065653 2011-06-27 2012-06-19 Laminate and paper container WO2013002079A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013522782A JP5928463B2 (en) 2011-06-27 2012-06-19 Laminate and paper container

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-142189 2011-06-27
JP2011142189 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013002079A1 true WO2013002079A1 (en) 2013-01-03

Family

ID=47423977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065653 WO2013002079A1 (en) 2011-06-27 2012-06-19 Laminate and paper container

Country Status (4)

Country Link
JP (1) JP5928463B2 (en)
AR (1) AR086759A1 (en)
TW (1) TW201311450A (en)
WO (1) WO2013002079A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382377B2 (en) 2011-08-10 2016-07-05 Basf Se Polymer mixtures as deposit inhibitors in water-bearing systems
JP2016169291A (en) * 2015-03-12 2016-09-23 三菱瓦斯化学株式会社 Polyamide resin composition and method for producing the same, film, and multilayer film
WO2017006626A1 (en) * 2016-01-28 2017-01-12 五條製紙株式会社 Electrophotographic base material
WO2017150410A1 (en) * 2016-03-03 2017-09-08 宇部興産株式会社 Polyamide resin and film comprising same
JP2020507672A (en) * 2017-02-09 2020-03-12 トレビラ ホールディングス ゲーエムベーハー Polymer blends for improved gas barrier properties

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (en) * 1990-03-13 1991-12-04 Ajinomoto Co Inc New polyamide
JPH11207904A (en) * 1998-01-28 1999-08-03 Tokyo Seishi Kk Paper container
JP2004161326A (en) * 2002-11-13 2004-06-10 Mitsubishi Gas Chem Co Inc Paper container
JP2008503371A (en) * 2004-06-22 2008-02-07 アルケマ フランス Polyamide-based multilayer structure for substrate coating
WO2011081099A1 (en) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 Polyamide compound
WO2011132456A1 (en) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 Polyamide compound
WO2012090797A1 (en) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 Polyamide composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03273027A (en) * 1990-03-13 1991-12-04 Ajinomoto Co Inc New polyamide
JPH11207904A (en) * 1998-01-28 1999-08-03 Tokyo Seishi Kk Paper container
JP2004161326A (en) * 2002-11-13 2004-06-10 Mitsubishi Gas Chem Co Inc Paper container
JP2008503371A (en) * 2004-06-22 2008-02-07 アルケマ フランス Polyamide-based multilayer structure for substrate coating
WO2011081099A1 (en) * 2009-12-28 2011-07-07 三菱瓦斯化学株式会社 Polyamide compound
WO2011132456A1 (en) * 2010-04-20 2011-10-27 三菱瓦斯化学株式会社 Polyamide compound
WO2012090797A1 (en) * 2010-12-27 2012-07-05 三菱瓦斯化学株式会社 Polyamide composition

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
I.ARVANITOYANNIS ET AL., POLYMER, vol. 36, no. 15, 1995, pages 2957 - 2967 *
I.ARVANITOYANNIS ET AL.: "Studies in Polymer Science", BIODEGRADABLE PLASTICS AND POLYMERS, vol. 12, 1994, pages 562 - 569 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9382377B2 (en) 2011-08-10 2016-07-05 Basf Se Polymer mixtures as deposit inhibitors in water-bearing systems
JP2016169291A (en) * 2015-03-12 2016-09-23 三菱瓦斯化学株式会社 Polyamide resin composition and method for producing the same, film, and multilayer film
WO2017006626A1 (en) * 2016-01-28 2017-01-12 五條製紙株式会社 Electrophotographic base material
WO2017150410A1 (en) * 2016-03-03 2017-09-08 宇部興産株式会社 Polyamide resin and film comprising same
JP2020507672A (en) * 2017-02-09 2020-03-12 トレビラ ホールディングス ゲーエムベーハー Polymer blends for improved gas barrier properties

Also Published As

Publication number Publication date
JP5928463B2 (en) 2016-06-01
AR086759A1 (en) 2014-01-22
JPWO2013002079A1 (en) 2015-02-23
TW201311450A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
JP5648683B2 (en) Polyamide compound
JP5975031B2 (en) Film and film packaging container
JP5928463B2 (en) Laminate and paper container
WO2012002000A1 (en) Polyamide compound
JP5954323B2 (en) Multilayer film and film packaging container
WO2011148682A1 (en) Polyamide compound
JP5971244B2 (en) Direct blow bottle
JP2013039964A (en) Multilayer container for printing ink
JP5954325B2 (en) Multilayer sheet
JP6011531B2 (en) Tubular container
JP5954326B2 (en) Laminate and paper container
JP5895935B2 (en) Direct blow multilayer bottle
JP5971245B2 (en) Sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805226

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522782

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805226

Country of ref document: EP

Kind code of ref document: A1