WO2013002048A1 - Convexo-concave microstructure transcription template - Google Patents

Convexo-concave microstructure transcription template Download PDF

Info

Publication number
WO2013002048A1
WO2013002048A1 PCT/JP2012/065454 JP2012065454W WO2013002048A1 WO 2013002048 A1 WO2013002048 A1 WO 2013002048A1 JP 2012065454 W JP2012065454 W JP 2012065454W WO 2013002048 A1 WO2013002048 A1 WO 2013002048A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
mold
barrier region
convex structure
fine concavo
Prior art date
Application number
PCT/JP2012/065454
Other languages
French (fr)
Japanese (ja)
Inventor
潤 古池
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN201280030510.2A priority Critical patent/CN103650106B/en
Priority to KR1020137027189A priority patent/KR101556836B1/en
Publication of WO2013002048A1 publication Critical patent/WO2013002048A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a fine concavo-convex structure transfer mold for producing a target object having a fine concavo-convex structure transferred on the surface thereof.
  • the use of members that are precisely processed and controlled in the nano / micrometer size region greatly affects the control function.
  • wavelength control on the scale of several hundreds of nm is mainly required, so that processing accuracy of several nm to several tens of nm is important.
  • the precision processing technology has reproducibility, uniformity, and throughput of processing accuracy.
  • micro-processing techniques include, for example, a method of directly micro-processing using an electron beam and a method of batch drawing on a large area by interference exposure.
  • fine pattern processing by a step & repeat method using a stepper device in semiconductor technology is also known.
  • each method requires a plurality of processing steps and requires a large capital investment. Therefore, it is difficult to say that the technique is good in productivity in terms of throughput and cost.
  • the nanoimprint method is a technique for transferring a fine pattern onto a resin (transfer material) with a processing accuracy of several nanometers to several tens of nanometers by using a finely patterned member as a mold. Since it can be carried out with simple processes, it is attracting attention as a precision replication processing technology that is indispensable in industry.
  • the optical nanoimprint method using a photopolymerizable resin such as a radical polymerizable resin or a cationic polymerizable resin as a transfer material is easy to apply to a roll-to-roll process capable of rapid and repetitive transfer, thereby improving transfer accuracy and throughput. It is attractive in that it combines.
  • the material on the mold side is mainly limited to quartz, sapphire, and a glass mold, and due to its rigid material, there is a problem of lack of versatility in continuous manufacturing techniques and processing processes.
  • a flexible resin mold is required as an alternative to the rigid mold.
  • the mold release treatment uses a mold release agent, the environmental load is large and the productivity is lowered. Therefore, a mold having a high mold release property that does not require a mold release treatment is required.
  • a highly releasable resin mold having flexibility has been reported in view of such demands (see, for example, Patent Document 1).
  • transfer molding is performed from a master mold (original plate) using a fluorine-containing resin as a transfer material, or surface segregation of fluorine components is used. Either transfer molding or transfer molding with silicone having excellent releasability represented by polydimethylsiloxane is required. In addition, a surface treatment method using a release agent for the transfer molded resin mold may be used.
  • the resin mold surface that has been transferred and molded has low free energy, and the affinity for the transfer material is reduced.
  • a technique for transferring a fine concavo-convex structure onto a transfer material using a resin mold as a mold a method of directly applying the transfer material onto the fine concavo-convex structure of the resin mold can be mentioned.
  • the affinity is low, there is a problem that the coating property of the transfer material is lowered.
  • the present invention has been made in view of such points, and an object of the present invention is to provide a mold for transferring a fine concavo-convex structure in which a transfer material has good coatability while having high releasability.
  • the fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region.
  • a barrier region provided so as to be adjacent to the transfer region, the transfer region and the barrier region include a plurality of recesses, and an average roughness factor Rf1 of the transfer region, and the barrier region Rf1> Rf2 is established between the average roughness factor Rf2 and Ar1> Ar2 between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Established It is characterized in.
  • the fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region.
  • a barrier region provided so that the portion is adjacent to the transfer region, the transfer region and the barrier region include a plurality of convex portions, and an average roughness factor Rf1 of the transfer region, and the barrier
  • the relationship Rf1 ⁇ Rf2 is established between the average roughness factor Rf2 of the region
  • the relationship Ar1> Ar2 is established between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Is established It is characterized in.
  • the fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region.
  • a barrier region provided so as to be adjacent to the transfer region, the transfer region and the barrier region include a plurality of recesses, and an average roughness factor Rf1 of the transfer region, and the barrier region Rf1 ⁇ Rf2 is established between the average roughness factor Rf2 and Ar1 ⁇ Ar2 between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Established It is characterized in.
  • the fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention includes a substrate and fine concavo-convex transferred to the object to be processed on a part of one main surface of the substrate.
  • the non-transfer region in which the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region
  • a barrier region provided so that a part thereof is adjacent to the transfer region, the transfer region and the barrier region include a plurality of convex portions, and an average roughness factor Rf1 of the transfer region;
  • the relationship Rf1> Rf2 is established between the barrier region average roughness factor Rf2, and Ar1 ⁇ Ar2 between the transfer region average aperture ratio Ar1 and the barrier region average aperture ratio Ar2. connection of Characterized in that it holds.
  • FIG. 1 and FIG. 2 are schematic views showing a mold for applying a transfer material to transfer a fine concavo-convex structure.
  • the mold 110 is provided with a finely patterned transfer region, that is, a pattern portion 111.
  • the area other than the pattern part 111 in the mold 110 is a non-transfer area that is not finely patterned, that is, a non-pattern part 112.
  • the resin mold 121 when the resin mold 121 is obtained from a master mold (original), in general, particularly when a roll-to-roll process is performed, as shown in FIG.
  • the pattern part 122 and the non-pattern part 123 are formed.
  • the release property is prioritized, the release force of the resin mold 121 is increased, and the free energy is greatly reduced. Affinity with the mold 121 is greatly reduced.
  • the transfer material is applied onto the resin mold 121, as shown in FIG. 2B, the coating liquid 124 repelled on the non-pattern part 123 is transferred to the pattern part 122 as indicated by an arrow.
  • the coating defect (2) occurs in which the film thickness distribution of the coating liquid 124 varies on the pattern portion 122.
  • the fine pattern of the pattern part 111 shown in FIG. 1 has a fine uneven structure, in particular, the nanoscale, and the mold releasability of the mold 110 is increased, and the affinity between the coating liquid 113 and the mold 110 is increased.
  • the force F ( ⁇ ) applied to the coating liquid 113 becomes stronger, and the degree of coating defects (1) and (2) becomes larger.
  • F ( ⁇ ) applied in the direction from the non-pattern part 112 to the pattern part 111 is apparently increased.
  • the degree of penetration of the coating liquid 113 repelled on the portion 112 into the pattern portion 111 is increased, and the degree of coating failure (2) is further increased.
  • the present inventor relaxes the stress applied to the inside of the liquid film of the coating liquid 113 and suppresses the coating failure (1) represented by the division of the liquid, or the inside of the droplet of the coating liquid 113.
  • the stress applied to the pattern portion is maximized, and the droplet of the coating liquid 113 repelled on the non-pattern portion 112 is prevented from entering the inside of the pattern portion 111, thereby suppressing the coating failure (2). Therefore, it has been found that a barrier region 114 is provided between the pattern part 111 and the non-pattern part 112 as shown in FIG.
  • the contact angle of the coating liquid 113 changes continuously, and the force F ( ⁇ ) also changes continuously. Therefore, a good coating property can be maintained without causing a coating failure (1) due to the stress concentration inside the droplet of the coating solution 113.
  • the stress in the liquid film of the coating liquid 113 on the barrier region 114 can be increased. Therefore, as shown in FIG. 4B, the droplet of the coating liquid 113 repelled on the non-pattern part 112 cannot get over the barrier region 114 as shown by the arrow, and the coating on the pattern part 111 And, in particular, the coating property of the edge portion of the pattern portion 111 is kept good, and the coating failure (2) is suppressed.
  • the fine uneven structure transfer mold of the present invention (hereinafter also simply referred to as a transfer mold) includes the following four types.
  • the coating defect (2) can be suppressed, and the coating property for the pattern portion 111 can be kept in good quality.
  • the coating failure (1) is suppressed and the coating property to the pattern part 111 is kept in good quality. be able to.
  • the first transfer mold (I) of the present invention is a transfer mold having a transfer region and a barrier region each having at least a plurality of recesses on one main surface of a substrate, the transfer template
  • the relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region
  • Ar1> Ar2 is established.
  • the second transfer template (II) of the present invention is a transfer template having a transfer region and a barrier region each having at least a plurality of convex portions on one main surface of the substrate, A relationship of Rf1 ⁇ Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region The relationship Ar1> Ar2 is established.
  • the third transfer template (III) of the present invention is a transfer template including a transfer region and a barrier region each having at least a plurality of recesses on one main surface of a substrate, wherein the transfer The relationship Rf1 ⁇ Rf2 is established between the average roughness factor Rf1 of the region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region A relationship of Ar1 ⁇ Ar2 is established.
  • the fourth transfer mold (IV) of the present invention is a transfer mold having a transfer region and a barrier region each having at least a plurality of convex portions on one main surface of the substrate,
  • the relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the transfer area and the average roughness factor Rf2 of the barrier area, and the average aperture ratio Ar1 of the transfer area and the average aperture ratio Ar2 of the barrier area
  • the relationship Ar1 ⁇ Ar2 is established.
  • both the barrier region 114 region and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of concave portions, and the roughness factor Rf2 of the barrier region 114 is the roughness factor of the pattern portion 111.
  • the average aperture ratio Ar2 of the barrier region 114 is set to be smaller than Rf1 and smaller than the average aperture ratio Ar1 of the pattern portion 111.
  • both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of convex portions, and the roughness factor Rf2 of the barrier region 114 is equal to that of the pattern portion 111.
  • the average aperture ratio Ar2 of the barrier region 114 is set to be smaller than the average aperture ratio Ar1 of the pattern portion 111, which is larger than the roughness factor Rf1.
  • both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of concave portions, and the roughness factor Rf2 of the barrier region 114 is the transfer region, that is, the pattern portion 111.
  • the average aperture ratio Ar2 of the barrier region 114 is set to be greater than the average aperture ratio Ar1 of the pattern portion 111.
  • both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of convex portions, and the roughness factor Rf2 of the barrier region 114 is equal to that of the pattern portion 111.
  • the average aperture ratio Ar2 of the barrier region 114 is set to be smaller than the roughness factor Rf1 and larger than the average aperture ratio Ar1 of the pattern portion 111.
  • type refers to a case where the fine concavo-convex structure is constituted by a plurality of concave portions, and a case where the fine concavo-convex structure is constituted by a plurality of convex portions is called a convex type.
  • transfer template the description common to all of the first to fourth transfer templates (I) to (IV) will be simply referred to as the transfer template,
  • descriptions such as transfer templates (I) and (II) mean that features common to transfer templates (I) and transfer templates (II) are described.
  • a transfer mold for example, a cylindrical or columnar master mold (original), a reel-shaped resin mold obtained by transfer from the master mold, or a flat plate having a flat plate shape represented by a disk Examples thereof include a master mold and a film-shaped resin mold obtained by transfer from the master mold.
  • the fine concavo-convex structure provided in the transfer molds (I) and (III) is not particularly limited, but a plurality of concave portions (holes) having a conical shape, a pyramid shape, an elliptical cone shape, a cylindrical shape, a prismatic shape, or an elliptical columnar shape. Shape). Further, the fine concavo-convex structure may be constituted by linear convex portions and concave portions (line and space structure) extending in a specific direction. In the hole shape, each hole may be adjacent to each other through a smooth convex portion.
  • the fine concavo-convex structure provided in the transfer molds (II) and (IV) is not particularly limited, but a plurality of convex shapes having a conical shape, a pyramid shape, an elliptical cone shape, a cylindrical shape, a prismatic shape, or an elliptical columnar shape. It may be configured with a portion (dot shape). Further, the fine concavo-convex structure may be constituted by linear convex portions and concave portions (line and space structure) extending in a specific direction. The dot shape may be such that each dot is adjacent through a smooth recess.
  • the dot shape means “a shape in which a plurality of columnar (conical) bodies (convex portions) 131a are arranged on the surface of the base 131” as shown in FIG. 5A.
  • the hole shape means “a shape in which a plurality of columnar (conical) holes (concave portions) 132 b are formed on the surface of the base material 132” as shown in FIG. 5B.
  • the distance between the protrusions or the recesses is 50 nm or more and 5000 nm or less, and the height of the protrusions or the depth of the recesses is 10 nm or more and 2000 nm or less.
  • the height of the convex portion or the depth of the concave portion is 50 nm or more and 1,000 nm or less, it is possible to further improve the coating property on the pattern portion 111 and the function of the barrier region 114, and the coating on the pattern portion 111. Since workability improves, it is preferable.
  • the adjacent distance between the projections or recesses is small, the height of the projections or the depth of the recesses, It is preferable that the height from the bottom to the top of the convex portion is large.
  • the convex part means a part higher than the average height of the fine concavo-convex structure
  • the concave part means a part lower than the average height of the fine concavo-convex structure.
  • the aspect ratio (convex height / convex bottom diameter or concave depth / concave opening diameter) of the fine concavo-convex structure is 0.1 to from the viewpoint of coating accuracy, barrier region function, and transfer accuracy. It is preferably 5.0, more preferably 0.3 to 3.0, and most preferably 0.5 to 1.5.
  • the pattern portion 111 of the transfer mold in order to reduce the surface free energy of the pattern portion 111, that is, to improve the releasability and to keep the coating property good, the pattern portion 111 is It is preferable to have a fine concavo-convex structure in which the mode of the coating liquid that can be finally taken in terms of energy is a Wenzel mode. From such a viewpoint, it is preferable that the aperture ratio in the pattern portion 111 is 45% or more in the pattern portion 111 of the fine uneven structure in the transfer mold. In particular, it is preferably 50% or more, and more preferably 55% or more.
  • the aperture ratio in the pattern part 111 is 65% or more, a potential from the convex part of the fine concavo-convex structure of the pattern part 111 toward the concave part works, and the convex part is filled after the coating liquid is filled into the concave part. Since it can avoid that a coating liquid re-moves to a part, coating property improves further and is more preferable.
  • the aperture ratio in the pattern part 111 is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
  • the area of the hole opening is larger than the area of the hole bottom because the above effect can be exhibited more. Furthermore, it is preferable that the opening rod and the side surface of the recess are continuously and smoothly connected, because the pinning effect at the solid-liquid interface (TPCL) can be reduced and the above effect can be further exhibited.
  • the area of the dot apex is smaller than the area of the dot bottom, because the above effects can be exhibited. Furthermore, it is preferable that the dot top ridges and the dot side surfaces are connected continuously and smoothly because the pinning effect at the solid-liquid interface (TPCL) can be reduced and the above effect can be further exhibited.
  • the coating failure (2) can be suppressed by the following mechanism.
  • the surface free energy is greatly reduced in order to express the release property strongly, the affinity between the non-pattern part 112 and the coating liquid 113 becomes very small.
  • the transfer material by providing the barrier region 114 between the pattern portion 111 and the non-pattern portion 112, the force applied from the inside of the concave portion of the fine concavo-convex structure to the upper portion of the convex portion by the pattern portion 111 and the barrier region 114, the transfer material
  • the fine uneven structure recognizability of the coating liquid and the state (mode) of the transfer material coating liquid at the initial stage of coating change, and stress on the inside of the droplet (liquid film) of the coating liquid 113 on the barrier region 114 Can be bigger.
  • the droplets of the coating liquid 113 repelled on the non-pattern part 112 cannot get over the barrier region 114, and the coating defect on the pattern part 111 is improved by suppressing the coating failure (2). Can keep.
  • the coating failure (1) can be suppressed by the following mechanism.
  • the pattern part 111 is provided by providing the barrier region 114 between the pattern part 111 and the non-pattern part 112.
  • the barrier region 114 the force applied from the inside of the concave portion of the fine concavo-convex structure to the upper portion of the convex portion, the fine concavo-convex structure recognizability of the coating liquid, and the state (mode) of the coating liquid in the initial stage of coating change gently
  • the force F ( ⁇ ) applied to the coating liquid 113 on the barrier region 114 also changes continuously. Therefore, the stress concentration inside the liquid film of the coating liquid 113 can be suppressed, and good coating properties on the pattern part 111 can be maintained.
  • the contact angle of water with the pattern portion 111 of the transfer mold is preferably 60 ° or more from the viewpoint of transferability (release property) of the transfer material. In particular, it is preferably 70 ° or more, and more preferably 80 ° or more. From the viewpoint of further reducing the surface free energy with respect to the pattern portion 111 of the transfer mold and improving the transfer accuracy, it is preferably 85 degrees or more, more preferably 90 degrees or more.
  • the upper limit value of the contact angle of water with respect to the pattern part 111 is preferably less than 180 degrees because the coating property can be improved. In particular, it is preferably 160 ° or less, and more preferably 140 ° or less.
  • the contact angle adopts the contact angle measurement method established in JIS R3257 (1999) as the “wetting test method for substrate glass surface”, and the transfer according to the present invention is used as a base material for contact angle measurement.
  • the pattern part 111 of the mold for use shall be used.
  • the effect of the barrier region 114 in the transfer mold is further exhibited when the contact angle of water with respect to the barrier region 114 is 90 degrees or more.
  • the transfer molds (I) and (II) the force applied from the inside of the concave portion of the fine concavo-convex structure to the top of the convex portion in the pattern portion 111 and the barrier region 114, the fine concavo-convex structure recognition of the coating liquid 113 This is because the difference in the property and the change in the state (mode) of the coating liquid at the initial stage of coating can be further increased.
  • the fine uneven structure in the transfer mold has convex portions (or concave portions) at a pitch P in the first direction D1 with respect to the first direction D1 and the second direction D2 orthogonal in the plane.
  • the convex portions (or concave portions) are arranged in the second direction D2 with the pitch S, the regularity of the deviation ⁇ with respect to the first direction D1 of the convex portions (or concave portions) forming a row in the second direction D2 May be a high array (see FIG. 6A) or a low regularity of the shift ⁇ (see FIG. 6B).
  • the shift ⁇ is a distance between line segments parallel to the second direction D2 passing through the center of the closest convex portion in adjacent rows parallel to the first direction D1.
  • a distance between a line segment passing through the center of the convex portion of the (N + 1) th row and parallel to the second direction D2 is defined as a shift ⁇ .
  • the array shown in FIG. 6A can be said to be an array having periodicity because the shift ⁇ is substantially constant regardless of which column is the (N) th column.
  • the array shown in FIG. 6B can be said to be an array having aperiodicity because the value of the shift ⁇ changes depending on which column is the (N) th column.
  • the pitch P and the pitch S can be appropriately designed according to the intended use.
  • the pitch P and the pitch S may be equal.
  • the convex part (or concave part) is drawn in an independent state without overlapping, the convex part (or convex part) arranged in both or one of the first direction D1 and the second direction D2. Or the recessed part) may overlap.
  • the fine concavo-convex structure has a pitch of 200 nm to 800 nm, a height of 100 nm to 1000 nm, a nanoscale regular arrangement, and It is preferable to have a micro-scale large periodicity.
  • transfer templates (I) and (III) are preferable.
  • the pitch of the fine concavo-convex structure is 100 nm to 500 nm and the height is 50 nm to 500 nm, the internal quantum efficiency of the LED can be improved.
  • the modulation is made in a nanoscale regular arrangement and has a microscale periodicity, and the pitch has a microscale period, the light extraction efficiency can be improved at the same time.
  • An efficient LED can be manufactured.
  • the pattern portion 111 and the barrier region 114 in the transfer mold of the present invention exhibit high releasability by satisfying a predetermined contact angle range, and coating by satisfying a predetermined aperture ratio. The property can be kept good.
  • the barrier region 114 in the transfer mold is adjacent to at least a part of the pattern portion 111.
  • the term “adjacent” includes a case where it is provided adjacent to the pattern portion 111 having a fine concavo-convex structure as shown in FIG. 7A.
  • a barrier region 114 having a fine concavo-convex structure is provided via a non-pattern barrier region 115 having no fine concavo-convex structure provided adjacent to a pattern portion 111 having a fine concavo-convex structure. Including the case where it is provided.
  • the thickness (width) of the non-pattern barrier region 115 that does not have the fine uneven structure provided between the pattern part 111 having the fine uneven structure and the barrier region 114 having the fine uneven structure is 30 mm or less. is necessary. By being 30 mm or less, the above-described effects can be exhibited, and the coatability for the pattern portion 111 can be improved.
  • the thickness (width) is preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, and 1 mm or less. And most preferred.
  • the pattern portion 111 having the fine uneven structure it is provided adjacent to the pattern portion 111 having the fine uneven structure, that is, between the pattern portion 111 having the fine uneven structure and the barrier region 114 having the fine uneven structure.
  • the case where the thickness (width) of the non-pattern barrier region 115 that does not have a fine concavo-convex structure is 0 mm is preferable because the above effect can be exhibited most.
  • the barrier region 114 provided adjacent to the pattern part 111 is not necessarily continuous.
  • 7C and 7D illustrate the case where the barrier region 114 is interrupted.
  • the effect of the present invention can be exhibited as long as the barrier region 114 is adjacent to at least a part of the pattern portion 111. That is, the barrier region 114 may be provided continuously as shown in FIG. 7A or discontinuously as shown in FIGS. 7C and 7D. In the case of discontinuous provision, the number of breaks in the barrier region 114 is not particularly limited.
  • the width W of these interruptions is preferably 30 mm or less, more preferably 10 mm or less, and preferably 5 mm or less, more preferably 3 mm or less, and 1 mm. The following is most preferable.
  • the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved.
  • the barrier region 114 may be continuous as described above. It may be discontinuous.
  • the non-pattern barrier region 115 may be continuous or discontinuous.
  • the discontinuity width of the barrier region 114 and the discontinuity width W of the non-pattern barrier region 115 are preferably 30 mm or less, more preferably 10 mm or less, and preferably 5 mm or less, and more preferably 3 mm or less. Preferably, it is most preferable in it being 1 mm or less.
  • FIG. 7B it is most preferable that the barrier region 114 and the non-pattern barrier region 115 are both continuously connected because the coating property to the pattern part 111 can be further improved.
  • the pattern part 111 in the transfer mold is disposed on the surface of the base material in a state surrounded by or sandwiched by the barrier region 114 because coating properties on the entire pattern part 111 are further improved.
  • the state in which the pattern unit 111 is surrounded by the barrier region 114 refers to a state in which the pattern unit 111 has a closed region and the barrier region 114 is disposed around the region.
  • the state where the pattern part 111 is sandwiched between the barrier regions 114 refers to a state where the barrier regions 114 are arranged in parallel at both ends of the pattern part 111. In either case, the pattern part 111 is disposed inside the barrier region 114.
  • the arrangement of the pattern part 111 and the barrier region 114 in this case can also include the non-pattern barrier region 115 shown in FIG.
  • the pattern portion 111 includes the break of the barrier region 114 described with reference to FIGS. 7C and 7D. 7E, FIG. 7F, and FIG. 7G include the discontinuity of the barrier region 114 and the discontinuity of the non-pattern barrier region 115 described with reference to FIGS.
  • the state in which the pattern unit 111 is surrounded by the barrier region 114 indicates a state in which the pattern unit 111 has a closed region and the barrier region 114 is disposed around the pattern unit 111. As shown in FIG. 8, they may be connected continuously or disconnected.
  • FIG. 8A represents a case where the pattern part 111 is entirely surrounded by the barrier region 114.
  • 8B, 8C, and 8D represent a state where the barrier region 114 surrounding the pattern unit 111 is interrupted.
  • FIG. 8B and FIG. 8C a plurality of discontinuous points are illustrated, but the discontinuity may be one place as illustrated in FIG. 8D. That is, the number and location of breaks are not limited. Even in the case where there is such a discontinuous portion, the effect of the present invention can be obtained.
  • the state where the barrier region 114 is discontinuous in the state where the pattern portion 111 is surrounded by the barrier region 114 is also included.
  • the width W of these discontinuities is preferably 30 mm or less, more preferably 10 mm or less, preferably 5 mm or less, more preferably 3 mm or less, and most preferably 1 mm or less.
  • the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved.
  • the non-pattern barrier region 115 described with reference to FIGS. 7B, 7E, 7F, and 7G can also be included.
  • the state in which the pattern part 111 is sandwiched between the barrier regions 114 refers to a state in which the barrier regions 114 are arranged in parallel at both ends of the pattern part 111, but the barrier region 114 that sandwiches the pattern part 111 is As shown in FIG. 9, it may be connected continuously or may be interrupted.
  • FIG. 9A represents a case where the pattern unit 111 is disposed between the barrier regions 114.
  • 9B, FIG. 9C, and FIG. 9D represent a state in which the barrier region 114 surrounding the pattern unit 111 is interrupted.
  • FIG. 9B and FIG. 9C a plurality of discontinuous portions are illustrated, but the discontinuity may be one place as illustrated in FIG. 9D. That is, the number and location of breaks are not limited.
  • the state in which the barrier region 114 is interrupted in the state where the pattern portion 111 is sandwiched between the barrier regions 114 is also included.
  • the width (W) of these breaks is preferably 30 mm or less, more preferably 10 mm or less, preferably 5 mm or less, more preferably 3 mm or less, and most preferably 1 mm or less.
  • the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved.
  • the non-pattern barrier region 115 described with reference to FIGS. 7B, 7E, 7F, and 7G can be included in the same manner.
  • the pattern part 111 is arranged near the center of the non-pattern part 112, but the arrangement part of the pattern part 111 is not particularly limited. Further, the upper side and the lower side of the pattern part 111 (sides not in contact with the barrier region 114 in FIG. 9A) extend in the vertical direction, the pattern part 111 is sandwiched between the barrier areas 114, and the pattern part 111 sandwiched between the barrier areas 114. May be sandwiched between the non-pan portions 112.
  • the pattern portion 111 has a fine concavo-convex structure with an average roughness factor of Rf1 and an average aperture ratio Ar1
  • the barrier region 114 has a fine concavo-convex structure with an average roughness factor of Rf2 and an average aperture ratio Ar2.
  • the roughness factor Rf is a dimensionless value that serves as an index of miniaturization, and means how many times the unit area has increased due to the formation of a fine uneven structure. That is, the roughness factor Rf of the surface that does not give the fine concavo-convex structure is 1.
  • the average aperture ratio is a dimensionless value that serves as an index of the void ratio, and means the ratio of voids present in the surface of the fine concavo-convex structure.
  • the roughness factor Rf and the average aperture ratio Ar are defined as follows.
  • FIG. 10A shows a state in which the fine concavo-convex structure has a dot shape or a hole shape and is regularly arranged, and the fine concavo-convex structure has a dot shape or a hole shape and is regularly arranged. Yes. From these fine concavo-convex structures, a fine concavo-convex structure group (N) forming N rows and a fine concavo-convex structure group (N + 1) forming N + 1 rows are selected. Subsequently, two adjacent fine uneven structures m and m + 1 are selected from the fine uneven structure group (N).
  • the fine concavo-convex structures l and l + 1 that are closest to the fine concavo-convex structures m and m + 1 are selected from the fine concavo-convex structure group (N + 1).
  • a region that connects the centers of these fine concavo-convex structures m, m + 1, l, and l + 1 is defined as a unit cell 201.
  • the area of the unit cell 201 is So, and the sum of the side areas of the fine concavo-convex structures m, m + 1, 1, and l + 1 in the unit cell 201 is S1.
  • the opening ratio is defined by (Sh / So) ⁇ 100.
  • the above columns are defined as follows.
  • the circumferential direction is taken as a row.
  • the transport direction is set as a row.
  • the base material constituting the transfer mold is a flat plate having a disk shape
  • the circumferential direction is a row.
  • the base material is a transfer mold made of a flat plate having a disk shape as a master and is a transfer mold formed by transfer, that is, a film-like resin mold
  • the circumferential direction of the master is set as a row.
  • FIG. 10B shows a state where the fine uneven structure is a dot shape or a hole shape and has a weak regularity arrangement or a random arrangement. Is shown.
  • the average pitch of the fine concavo-convex structure is smaller than 500 nm
  • a 1 ⁇ m ⁇ 1 ⁇ m square is taken in the region having the fine concavo-convex structure, and this is used as the unit cell 202.
  • the unit cell 202 When the average pitch of the fine concavo-convex structure is 500 nm or more and 1000 nm or less, the unit cell 202 is 2 ⁇ m ⁇ 2 ⁇ m, and when the average pitch of the fine pattern is more than 1000 nm and 1500 nm or less, the unit cell 202 is 3 ⁇ m ⁇ 3 ⁇ m.
  • the area of the unit cell 202 is So, and the sum of the side areas of all the fine concavo-convex structures included in the unit cell 202 is S1.
  • the roughness factor Rf is defined as 1+ (S1 / So).
  • the average pitch means an average value of the distances between the centers of adjacent dots or the centers of adjacent holes.
  • the average score is preferably 10 or more.
  • the opening ratio is defined by (Sh / So) ⁇ 100.
  • FIG. 10C shows the line-and-space structure.
  • Each line may be arranged at equal intervals, or the intervals may vary.
  • the Nth line and the (N + 1) th line are selected.
  • a line segment of 1 ⁇ m is drawn on each of these lines.
  • a unit cell 203 is a square or rectangle formed by connecting the end points of these line segments.
  • the area of the unit cell 203 is So, and the sum of the side areas of all the fine concavo-convex structures included in the unit cell 203 is S1.
  • the roughness factor Rf is defined as 1+ (S1 / So).
  • the opening ratio is defined by (Sh / So) ⁇ 100.
  • the average roughness factor Rf means an average value of the roughness factor Rf.
  • the average value of the roughness factor Rf is defined as an average value of 10 roughness factors Rf calculated at random within a range of 5 ⁇ m ⁇ 5 ⁇ m.
  • the roughness factor Rf can be designed with the height, pitch, aspect, etc. of the fine relief structure.
  • the side area of the fine concavo-convex structure included in the unit cell 201 may be reduced.
  • the height of the fine uneven structure may be reduced, the pitch may be increased, or the aspect may be decreased.
  • the roughness factor Rf changes continuously.
  • any one of the height, pitch, and aspect of the fine concavo-convex structure may be changed, or a plurality thereof may be changed. From the viewpoint of manufacturing the fine concavo-convex structure, it is preferable to change both the pitch and the aspect or either one.
  • the aspect can be easily changed by controlling the width of the bottom of the convex portion or the width of the concave portion opening.
  • the roughness factor Rf2 can be reduced by increasing the aperture ratio
  • the fine concavo-convex structure is concave
  • the roughness factor Rf2 can be reduced by reducing the aperture ratio.
  • the side area of the fine concavo-convex structure included in the unit cell may be increased.
  • the height of the fine uneven structure may be increased, the pitch may be reduced, or the aspect may be increased.
  • any one of the height, pitch, and aspect of the fine concavo-convex structure may be changed, or a plurality thereof may be changed. From the viewpoint of manufacturing the fine concavo-convex structure, it is preferable to change both the pitch and the aspect or either one.
  • the aspect can be easily changed by controlling the width of the bottom of the convex portion or the width of the concave portion opening.
  • the roughness factor Rf2 can be increased by reducing the aperture ratio.
  • the roughness factor Rf2 can be increased by increasing the aperture ratio.
  • the average roughness factor Rf2 of the barrier region 114 is set smaller than the average roughness factor Rf1 of the pattern portion 111.
  • FIG. 11 is a schematic diagram showing a state where the fine concavo-convex structure is a dot shape or a hole shape and the pitch in the second direction D2 is changed.
  • the top part (convex part) of the fine concavo-convex structure that is a dot shape or the opening part (concave part) of the fine concavo-convex structure that is a hole shape is represented in a circular shape in plan view.
  • the vertical axis indicates the first direction D1
  • the horizontal axis indicates the second direction D2
  • the origin indicates the center O of the pattern portion 111 in the second direction D2.
  • the interval between the convex portions or the concave portions in the second direction D2 is wider than the interval between the convex portions or the concave portions of the pattern portion 111, and the density of the convex portions or the concave portions in the barrier region 114 is the convex portion of the pattern portion 111. It is sparser than the density of the part or the concave part. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is smaller than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
  • each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Is smaller than the average roughness factor Rf1 of the pattern portion 111.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern part 111, and the fine concavo-convex structure is concave.
  • the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern portion 111.
  • the interval between the convex portions or the concave portions in the second direction D2 of the barrier region 114 is larger than the interval between the convex portions or the concave portions of the pattern portion 111.
  • the distance between the convex portions or concave portions can be changed in the same manner with respect to the first direction D1, or the first direction D1 and the first direction You may even change the space
  • the interval between the convex portions or the concave portions is changed.
  • the density of the convex portions or concave portions of the barrier region 114 is changed to the pattern portion. It can be made sparser than the density of the convex portions or concave portions of 111.
  • the density of the convex part or the concave part of the barrier region 114 is set by making the diameter of the convex part top part or the concave part opening diameter in the pattern part 111 larger than the diameter of the convex part top part or the concave part opening diameter of the barrier region 114. Can be made sparser than the density of the convex portions or concave portions of the pattern portion 111.
  • the roughness factor Rf can be changed by changing the height of the convex portion or the depth of the concave portion. Specifically, the relationship of Rf1> Rf2 is satisfied by making the height of the convex portion or the concave portion of the pattern portion 111 larger than the height of the convex portion or the concave portion of the barrier region 114. I can do it. Moreover, the controllability of the roughness factor is improved by simultaneously changing the interval between the convex portions or the concave portions described above, the diameter of the top portion of the convex portion, the diameter of the concave portion opening, the height of the convex portion, or the depth of the concave portion.
  • the average roughness factor Rf2 of the barrier region 114 is set larger than the average roughness factor Rf1 of the pattern portion 111.
  • FIG. 12 is a schematic diagram showing a state where the fine concavo-convex structure is a dot shape or a hole shape and the pitch in the second direction D2 is changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the interval between the convex portions or the concave portions in the second direction D2 is narrower than the interval between the convex portions or the concave portions of the pattern portion 111, and the density of the convex portions or the concave portions in the barrier region 114 is the convex portion of the pattern portion 111. It is denser than the density of the part or the concave part. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is larger than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
  • each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Is larger than the average roughness factor Rf1 of the pattern part 111.
  • the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the fine uneven structure is concave.
  • the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111.
  • the interval between the convex portions or the concave portions in the second direction D2 of the barrier region 114 is smaller than the interval between the convex portions or the concave portions of the pattern portion 111. Is made denser than the density of the convex portions or concave portions of the pattern portion 111, the distance between the convex portions or concave portions may be similarly changed with respect to the first direction D1, or the first direction D1 and the first direction You may even change the space
  • the density of the convex portions or concave portions of the barrier region 114 is changed to the pattern portion. It can be made denser than the density of the convex portions or concave portions of 111. Specifically, the density of the convex portions or the concave portions of the barrier region 114 is reduced by making the diameter of the convex portion top portion or the concave portion opening diameter in the pattern portion 111 smaller than the diameter of the convex portion top portion or the concave portion opening diameter of the barrier region 114. Can be made denser than the density of the convex portions or concave portions of the pattern portion 111.
  • the roughness factor Rf can be changed by changing the height of the convex portion or the depth of the concave portion. Specifically, the relationship of Rf1 ⁇ Rf2 is satisfied by making the height of the convex portion or the concave portion of the pattern portion 111 smaller than the height of the convex portion or the concave portion of the barrier region 114. I can do it. Moreover, the controllability of the roughness factor is improved by simultaneously changing the interval between the convex portions or the concave portions described above, the diameter of the top portion of the convex portion, the diameter of the concave portion opening, the height of the convex portion, or the depth of the concave portion.
  • the fine concavo-convex structure in the barrier region 114 of the transfer mold preferably has a roughness factor gradient.
  • the gradient of the roughness factor Rf increases as the pattern portion 111 is approached.
  • the average roughness factor Rf2 has a gradient that increases from the pattern portion 111 toward the barrier region 114. At this time, the average roughness factor Rf2 is The following definitions shall be followed.
  • the fine concavo-convex structure of the barrier region 114 is composed of a plurality of convex portions.
  • the ratio of the convex portion side area to the unit cell may be increased.
  • the average roughness factor Rf2 is increased.
  • the average roughness factor Rf2 decreases because the area of the convex portion included in the unit cell decreases from the stage where the convex portions begin to contact each other inside the unit cell.
  • the gradient of the average roughness factor Rf2 is defined by the range until the adjacent convex portions come into contact with each other in the barrier region 114.
  • the fine concavo-convex structure of the barrier region 114 is composed of a plurality of concave portions.
  • the ratio of the recess side area to the unit cell may be increased.
  • the average roughness factor Rf2 is increased.
  • the average roughness factor Rf2 decreases because the area of the concave portion included in the unit cell decreases from the stage where the concave portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (III), the gradient of the average roughness factor Rf2 is defined by the range in the barrier region 114 until adjacent concave portions come into contact with each other.
  • the transfer templates (I) and (II) By having such a gradient of the roughness factor Rf2, in the transfer templates (I) and (II), there is an inhibition property that the coating liquid 113 repelled on the non-pattern part 112 enters the pattern part 111. Since it improves further, a coating defect (2) can be suppressed effectively.
  • the fact that the roughness factor Rf2 has a gradient means that the stress applied to the inside of the coating liquid 113 has a gradient, and stress concentration can be avoided. As a result, coating failure (1) can be suppressed.
  • the side area of the fine concavo-convex structure included in the unit cells 201 to 203 may be continuously changed.
  • the height of the fine concavo-convex structure may be changed continuously
  • the pitch may be changed continuously
  • the aspect may be changed continuously.
  • any one of the height, pitch, and aspect of the fine concavo-convex structure may be continuously changed, or a plurality may be continuously changed. From the viewpoint of producing a fine concavo-convex structure, it is preferable to continuously change both the pitch and the aspect or either one.
  • the average roughness factor Rf2 of the barrier region 114 is set smaller than the average roughness factor Rf1 of the pattern portion 111. Further, the roughness factor Rf ⁇ b> 2 of the barrier region 114 has a gradient that increases as it approaches the pattern part 111.
  • FIG. 13 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the second direction D2 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented by a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the second direction D2 increases as the distance from the inner side of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse.
  • the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is smaller than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
  • each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern region 111 extends to the barrier region. In 114 direction, it has a decreasing gradient.
  • FIG. 14 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the first direction D1 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure which is a dot shape or the opening part (concave part) of the fine concavo-convex structure which is a hole shape is represented in a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the first direction D1 increases as the distance from the inner side of the barrier region 114, that is, the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse.
  • the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern region 111 extends to the barrier region. In 114 direction, it has a decreasing gradient.
  • FIG. 15 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the first direction D1 and the second direction D2 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the first direction D1 and the second direction D2 increases as the distance from the inside of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions decreases. It has become.
  • the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a gradient that increases in the direction of the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern portion 111 extends to the barrier region 114. Have a smaller gradient.
  • FIG. 16 is a schematic diagram showing a state in which the fine concavo-convex structure is a line and space structure and the pitch in the second direction D2 is continuously changed.
  • the convex part or concave part of the fine concavo-convex structure which is a line and space structure is represented by a rectangular shape in plan view.
  • the vertical axis indicates the first direction D1
  • the horizontal axis indicates the second direction D2
  • the origin indicates the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the second direction D2 increases as the distance from the inner side of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse.
  • each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases from the inside (transfer area side) to the outside of the barrier area 114.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114.
  • the direction has a decreasing gradient.
  • the case where the duty indicated by the line width / space width is larger than 0.5 in the pattern portion 111 is a concave shape.
  • a case where the duty is smaller than 0.5 is defined as a convex shape, and in this case, a line constituted by the convex portions is defined as a convex portion having a fine uneven structure.
  • the roughness factor Rf2 has a gradient.
  • the average roughness factor Rf2 of the barrier region 114 is set larger than the average roughness factor Rf1 of the pattern portion 111. Further, the roughness factor Rf2 of the barrier region 114 has a gradient that decreases as it approaches the transfer region.
  • FIG. 17 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the second direction D2 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense.
  • the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is larger than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
  • each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
  • the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region. In 114 direction, there is a gradient that increases.
  • FIG. 18 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the first direction D1 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented by a circular shape in plan view.
  • the vertical axis indicates the first direction D1
  • the horizontal axis indicates the second direction D2
  • the origin indicates the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the first direction D1 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense.
  • the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
  • the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases.
  • FIG. 19 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the first direction D1 and the second direction D2 is continuously changed.
  • the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view.
  • the vertical axis represents the first direction D1
  • the horizontal axis represents the second direction D2
  • the origin represents the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the first direction D1 and the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, from the pattern portion 111 side to the outer side. It has become.
  • the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
  • the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases.
  • FIG. 20 is a schematic diagram showing a state where the fine uneven structure is a line and space structure and the pitch in the second direction D2 is continuously changed.
  • the convex part or concave part of the fine concavo-convex structure which is a line and space structure is represented by a rectangular shape in plan view.
  • the vertical axis indicates the first direction D1
  • the horizontal axis indicates the second direction D2
  • the origin indicates the center O of the pattern portion 111 in the second direction D2.
  • the distance between the convex portions or the concave portions in the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense.
  • the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
  • the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114.
  • the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases.
  • the case where the duty indicated by the line width / space width is larger than 0.5 in the pattern portion 111 is a concave shape.
  • a case where the duty is smaller than 0.5 is defined as a convex shape, and in this case, a line constituted by the convex portions is defined as a convex portion having a fine uneven structure.
  • FIG. 21A shows a model in which the average roughness factor Rf2 decreases stepwise within the barrier region 114.
  • FIG. 21B shows a model in which the average roughness factor Rf2 decreases linearly within the barrier region 114.
  • FIG. 21C shows a model in which the average roughness factor Rf2 decreases as a convex function within the barrier region 114.
  • FIG. 21D shows a model in which the average roughness factor Rf2 decreases with a downward convex function in the barrier region 114.
  • FIG. 21E shows a model in which the average roughness factor Rf2 decreases in an S-curve shape having both a gradual decrease, a rapid decrease, and a gradual decrease in the barrier region 114.
  • FIG. 21F shows a case where the average roughness factor Rf2 decreases without continuity between the average roughness factor Rf1 in the pattern part 111 and the average roughness factor Rf2 in the barrier region 114.
  • the average roughness factor Rf2 of the barrier region 114 smaller than the average roughness factor Rf1 of the pattern part 111, a change in the average roughness factor Rf2 as exemplified in FIG.
  • the stress relaxation effect applied to the inside of the coating liquid film for suppressing the coating failure (1) and the non-patterned portion 112 for suppressing the coating failure (2) It is possible to exert an effect of inhibiting the penetration of the coating droplet repelled into the pattern part 111.
  • the width (distance) of the stepped step as shown in FIG. 21A is preferably as long as the number of step steps is finer as long as it is larger than the period of the fine concavo-convex structure from the viewpoint of coatability.
  • the step width is preferably 5 mm or less, and more preferably 1 mm or less. Most preferably, it is 100 ⁇ m or less.
  • the contact angle of the coating liquid 113 continuously changes, and the force F applied to the coating liquid 113 Since ( ⁇ ) also changes continuously, stress concentration inside the droplet (liquid film) of the coating liquid 113 does not occur, and the coating defect (1) is suppressed and good coating properties are maintained. be able to. Therefore, the mold (IV) is preferable in the order of the models shown in FIGS. 21E, 21C, 21B, 21D, 21A, and 21F.
  • the mold (I) is preferable in the order of the models shown in FIGS. 21F, 21D, 21A, 21E, and 21C.
  • Examples of the gradient of the average roughness factor Rf2 of the barrier region 114 that decreases as the pattern portions 111 of the transfer templates (II) and (III) are closer include a gradient as shown in FIG.
  • the vertical axis represents the magnitude of the roughness factor Rf
  • the horizontal axis represents the distance from the center position of the pattern unit 111.
  • FIG. 22A shows a model in which the average roughness factor Rf2 increases stepwise within the barrier region 114.
  • FIG. 22B shows a model in which the average roughness factor Rf2 increases linearly within the barrier region 114.
  • FIG. 22C shows a model in which the average roughness factor Rf2 increases as a downward convex function in the barrier region 114.
  • FIG. 22D shows a model in which the average roughness factor Rf2 increases as a convex function within the barrier region 114.
  • FIG. 22E shows a model in which the average roughness factor Rf2 increases in a S-curve shape having both a rapid increase, a gradual increase, and a rapid increase in the barrier region 114.
  • FIG. 22F shows a case where the average roughness factor Rf2 increases without a continuity between the average roughness factor Rf1 in the pattern portion 111 and the average roughness factor Rf2 in the barrier region 114.
  • the average roughness factor Rf2 of the barrier region 114 that is larger than the average roughness factor Rf1 of the pattern part 111 includes a change in the average roughness factor Rf2 as illustrated in FIG.
  • the width (distance) of the stepped step as shown in FIG. 22A is larger than the period of the fine concavo-convex structure from the viewpoint of coating properties, it is preferable that the number of steps is larger and finer.
  • the step width is preferably 5 mm or less, and more preferably 1 mm or less. Most preferably, it is 100 ⁇ m or less.
  • the transfer template (II) is preferable in the order of FIGS. 22F, 22E, 22D, 22A, 22B, and 22C.
  • the average roughness factor Rf2 has a gradient that increases as described above from the pattern portion 111 toward the barrier region 114.
  • the average roughness factor Rf2 conforms to the following definition.
  • the fine concavo-convex structure of the barrier region 114 is composed of a plurality of convex portions.
  • the ratio of the convex portion side area to the unit cell may be increased.
  • the average roughness factor Rf2 is increased.
  • the average roughness factor Rf2 decreases because the area of the convex portion included in the unit cell decreases from the stage where the convex portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (II), the gradient of the average roughness factor Rf2 is defined by the range until the adjacent convex portions come into contact with each other in the barrier region 114. On the other hand, in the case of the transfer mold (III), the fine concavo-convex structure of the barrier region 114 is composed of a plurality of concave portions. In order to increase the average roughness factor Rf2 in the direction from the pattern portion 111 toward the barrier region 114, the ratio of the recess side area to the unit cell may be increased.
  • the average roughness factor Rf2 is increased.
  • the average roughness factor Rf2 decreases because the area of the concave portion included in the unit cell decreases from the stage where the concave portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (III), the gradient of the average roughness factor Rf2 is defined by the range in the barrier region 114 until adjacent concave portions come into contact with each other.
  • the roughness factor Rf affects the contact angle of the coating solution. According to the Kathy Baxter equation or the Wenzel equation, in a water-repellent material having a contact angle larger than 90 °, the larger the roughness factor Rf, the larger the contact angle, and the smaller the roughness factor Rf (the contact angle is larger than 90 °). It is known that the contact angle (in range) is small.
  • the roughness factor Rf changes abruptly at the interface between the portion with the fine concavo-convex structure, that is, the pattern portion 111 and the portion without it, that is, the non-pattern portion 112.
  • the interface between the pattern part 111 and the non-pattern part 112 is replaced with a barrier region 114, so that the interface between the original pattern part 111 and the non-pattern part 112 is compared.
  • the generated stress is significantly increased. That is, in a mold in which surface free energy is greatly reduced so as to express high releasability, even if the coating liquid repelled on the non-pattern part 112 and tries to enter the pattern part 111, It is pushed back to the non-pattern part 112 side by a large stress generated on the barrier region 114. For this reason, the coating property on the pattern part 111 can be kept favorable.
  • FIG. 23 is a schematic view showing a transfer template according to the first embodiment.
  • the transfer mold (hereinafter simply referred to as a mold) 300 has a cylindrical shape or a columnar shape.
  • the mold 300 includes a pattern portion 301 and a barrier region 302 having a fine uneven structure on the outer peripheral surface.
  • the non-pattern barrier region described above, the discontinuity of the non-pattern barrier region, and the discontinuity of the barrier region are not described, but include these.
  • the expression that the pattern part 301 is sandwiched between the barrier regions 302 is used, and this also applies the definition of sandwiching described above.
  • the pattern portion 301 is arranged in a state of being sandwiched between barrier regions 302.
  • the arrangement of the pattern portion 301 and the barrier region 302 is defined as follows.
  • a center position in the longitudinal direction of the mold 300 is defined as a point O.
  • An axis is taken from this point O in the longitudinal direction, and each position in the mold 300 will be described on this axis.
  • Points A and F are edge portions of the mold 300.
  • the pattern part 301 exists between the point C and the point D.
  • the barrier region 302 exists between the point B and the point C and between the point D and the point E.
  • the distance between point C and point O is smaller than the distance between point B and point O (distance CO ⁇ distance BO).
  • the distance between point D and point O is smaller than the distance between point E and point O (distance DO ⁇ distance EO).
  • the entire outer periphery of the mold 300 has a fine concavo-convex structure.
  • the size of the barrier region 302 (distance BC, distance DE) is preferably as large as possible from the viewpoint of direct coating properties on the film transferred from the mold 300 as long as the pattern part 301 having a necessary area can be obtained. . Although it varies depending on the viscosity of the solution to be used and the shape of the fine concavo-convex structure in the pattern portion 301, it is preferably approximately 10 ⁇ m or more, more preferably 50 ⁇ m or more. From the viewpoint of transferability of the barrier region 302 and the pattern part 301, it is preferably 100 ⁇ m or more, preferably 1 mm or more, more preferably 3 mm or more, and still more preferably 5 mm or more.
  • the width of the barrier region 302 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
  • the average roughness factor Rf2 of the barrier region 302 is smaller than the average roughness factor Rf1 of the pattern portion 301.
  • the average roughness factor Rf2 of the barrier region 302 continuously decreases from the inside of the barrier region 302, that is, from the pattern portion 301 side to the outside. That is, the average roughness factor Rf2 of the barrier region 302 preferably has a gradient.
  • the average roughness factor Rf2 of the barrier region 302 is preferably larger than the average roughness factor Rf1 of the pattern portion 301.
  • the average roughness factor Rf2 of the barrier region 302 increases continuously from the inside of the barrier region 302, that is, from the pattern portion 301 side to the outside. That is, the average roughness factor Rf2 of the barrier region 302 preferably has a gradient.
  • the coating property of the coating liquid is good.
  • the affinity between the coating liquid and the non-patterned portion 303 is high in a range in which releasability is expressed, the contact angle of the coating liquid continuously changes, and the force F ( ⁇ ) Also changes continuously. Therefore, by using the transfer molds (III) and (IV), the stress concentration inside the droplet (liquid film) of the coating liquid is alleviated, and the coating failure (1) is suppressed and good coating is achieved. This is because sex can be maintained.
  • the affinity between the coating liquid and the non-pattern part is low, the stress applied to the coating liquid on the barrier region 302 can be increased by a sudden change in the contact angle. Therefore, when the transfer molds (I) and (II) are used, the coating liquid droplets repelled on the non-patterned portion cannot get over the barrier region 302, resulting in poor coating (2). This is because the coating property on the pattern portion 301 can be kept good by being suppressed. Further, when the mold 300 has a fine concavo-convex structure using a photocurable resin as a transfer material to produce a resin mold, the cured photocuring obtained by the effect of stress relaxation inside the transfer material by the barrier region 302 is obtained. The stress inside the conductive resin film can also be relaxed, and the residual stress can be reduced.
  • FIG. 24 is a schematic diagram showing a transfer template according to the second embodiment.
  • the transfer mold (hereinafter simply referred to as a mold) 310 is a film mold transferred from the mold 300 according to the first embodiment, that is, a reel-shaped resin mold. That is, the mold 300 according to the first embodiment is used as a master (master mold) for transferring the fine concavo-convex structure to the mold 310 according to the present embodiment.
  • this mold 310 includes a pattern portion 311 and a barrier region 312 having a fine concavo-convex structure on the surface.
  • the above-described non-pattern barrier region, discontinuity of the non-pattern barrier region, and discontinuity of the barrier region are not described, but include these.
  • the expression that the pattern part 311 is sandwiched between the barrier regions 312 will be used, but this also applies the definition of sandwiching described above.
  • the pattern part 311 is arranged in a state of being sandwiched between the barrier regions 312.
  • the arrangement of the pattern part 311 and the barrier region 312 is defined as follows.
  • the axis is taken in the width direction of the film, and the center between one end and the other end of the film is defined as a point O. Each position on the mold 310 on this axis will be described.
  • the fine concavo-convex structure of the pattern portion 311 and the barrier region 312 is also formed in a direction perpendicular to the axis in the width direction of the film.
  • Point A and point F are the edge portions of the film constituting the mold 310.
  • the pattern part 311 exists between the point C and the point D.
  • a point O exists between the points C and D.
  • the barrier region 312 exists between the point B and the point C and between the point D and the point E.
  • the distance between point C and point O is smaller than the distance between point B and point O (distance CO ⁇ distance BO).
  • the distance between point D and point O is smaller than the distance between point E and point O (distance DO ⁇ distance EO).
  • the entire surface of the film has a fine concavo-convex structure.
  • the transfer material is applied and transferred onto the object to be processed, it is difficult to transfer the fine concavo-convex structure near the edge. Therefore, from the viewpoint of throughput, it is preferable that point A ⁇ point B and point E ⁇ point F.
  • the size of the barrier region 312 is preferably as large as possible from the viewpoint of direct coating properties on the film as long as the pattern portion 311 having a necessary area can be obtained.
  • it varies depending on the viscosity of the solution to be used and the shape of the fine concavo-convex structure in the pattern portion 311, it is preferably approximately 10 ⁇ m or more, more preferably 50 ⁇ m or more.
  • it is preferably 100 ⁇ m or more, preferably 1 mm or more, more preferably 3 mm or more, More preferably, it is 5 mm or more.
  • the width of the barrier region 312 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
  • the average roughness factor Rf2 of the barrier region 312 is preferably smaller than the average roughness factor Rf1 of the pattern portion 311.
  • the average roughness factor Rf2 of the barrier region 312 continuously decreases, that is, has a gradient from the inside of the barrier region 312, that is, from the pattern portion 311 side to the outside.
  • the average roughness factor Rf2 of the barrier region 12 is preferably larger than the average roughness factor Rf1 of the pattern portion 311.
  • the average roughness factor Rf2 of the barrier region 312 increases continuously from the inside of the barrier region 312, that is, from the pattern portion 311 side to the outside. That is, the average roughness factor Rf2 of the barrier region 312 preferably has a gradient.
  • pattern portion 311 having a fine concavo-convex structure and non-pattern portion 313 having no fine concavo-convex structure are arranged by disposing a barrier region 312 that satisfies the above-described relationship of the average roughness factor Rf2 with respect to the average roughness factor Rf1 of the pattern part 311. Becomes a structure that changes gently.
  • the contact angle of the coating liquid continuously changes, and the force F ( ⁇ ) applied to the coating liquid is also continuous. Changes. Therefore, by using the transfer molds (III) and (IV), the stress concentration inside the droplet (liquid film) of the coating liquid is alleviated, and the coating defect (1) is suppressed and good coating properties are achieved. Can keep. Further, when the affinity between the coating liquid and the non-pattern part 313 is low, the stress applied to the coating liquid in the barrier region 312 can be increased by a sudden change in the contact angle.
  • the coating liquid that is repelled on the non-patterned portion 313 cannot drop over the barrier region 312, resulting in poor coating (2). It can suppress and can maintain the coating property on the pattern part 311 favorably. Therefore, it is possible to provide the mold 310 having a good transfer material coating property.
  • FIG. 25 is a schematic diagram showing a transfer template according to the third embodiment.
  • the mold 320 is a disk-shaped flat plate mold.
  • a resin flat plate mold (film-shaped resin mold) transferred from the mold 320 using the mold 320 as an original plate (master mold) has the same configuration as the mold 320.
  • the mold 320 includes a pattern part 321 and a barrier region 322 having a fine uneven structure on the surface.
  • the non-pattern barrier region, the non-pan barrier region, and the barrier region are not described.
  • the expression that the pattern part 321 is surrounded by the barrier region 322 is used, and this also applies the definition of surrounding described above.
  • the pattern part 321 is arranged in a state surrounded by the barrier region 322.
  • the arrangement of the pattern part 321 and the barrier region 322 is defined as follows.
  • the center of the flat plate constituting the mold 320 is a point O.
  • the pattern portion 321 and the barrier region 322 exist in point symmetry with respect to a straight line passing through the point O. In the following description, one line segment starting from the point O is considered. Each position in the mold 320 will be described on this line segment.
  • the point C is an edge portion of a flat plate constituting the mold 320.
  • the pattern part 321 exists inside a circle having the point O as the center and the line segment OA as the radius.
  • the line segment OA is shorter than the line segment OB (distance OA ⁇ distance OB).
  • the size of the barrier region 322 is preferably as large as possible from the viewpoint of direct coating on a flat plate, as long as the pattern portion 321 having a necessary area can be obtained.
  • the distance between the points A and B is preferably approximately 10 ⁇ m or more, and more preferably 50 ⁇ m or more.
  • it is preferably 100 ⁇ m or more, and preferably 1 mm or more from the viewpoint of satisfactorily exerting the effect of the barrier region 322 against the vibration of the mold when applying the coating liquid to the mold 320.
  • it is 3 mm or more, more preferably 5 mm or more.
  • the width of the barrier region 322 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
  • the average roughness factor Rf2 of the barrier region 322 is smaller than the average roughness factor Rf1 of the pattern part 321.
  • the average roughness factor Rf2 of the barrier region 322 continuously decreases, that is, has a gradient from the inside of the barrier region 322, that is, from the pattern portion 321 side to the outside.
  • the average roughness factor Rf2 of the barrier region 322 is preferably larger than the average roughness factor Rf1 of the pattern portion 321.
  • the average roughness factor Rf2 of the barrier region 322 increases continuously from the inside of the barrier region 322, that is, from the pattern portion 321 side to the outside. That is, the average roughness factor Rf2 of the barrier region 322 preferably has a gradient.
  • the barrier region 322 that satisfies the relationship of the average roughness factor Rf2 described above with respect to the average roughness factor Rf1 of the pattern part 321.
  • the roughness factor Rf changes gently.
  • the coating liquid droplets repelled on the non-patterned portion 323 cannot get over the barrier region 322, and the coating failure (2) is suppressed.
  • the coating property on the pattern part 321 can be kept good. Therefore, it is possible to provide the mold 320 having a good transfer material coating property.
  • a non-pattern portion may be provided inside a circle centered on the point O and smaller than the radius OA due to the manufacturing method of the pattern portion 321 with respect to the flat substrate.
  • the coating property to the mold 320 can be improved by separately providing a barrier region surrounding the non-pattern part.
  • a flat pattern portion is represented on the surface of the flat substrate, but a fine processing method using a stepper is adopted as a method of manufacturing the pattern portion on the flat substrate.
  • the outer shape of the pattern portion does not become circular.
  • the contour of the pattern part has a stepped step shape.
  • a barrier region may be provided so as to surround the periphery.
  • the cylindrical or columnar substrate or flat substrate constituting the master mold is made of quartz, non-alkali glass, low alkali glass, soda lime, typified by synthetic quartz or fused silica.
  • quartz, non-alkali glass, low alkali glass, soda lime typified by synthetic quartz or fused silica.
  • examples thereof include glass, silicon wafer, nickel plate, sapphire, diamond, diamond-like carbon, inorganic material typified by fluorine-containing diamond-like carbon, SiC substrate, mica substrate, polycarbonate (PC) substrate and the like.
  • examples of the resin mold material obtained by transfer from a cylindrical or columnar master include cured products such as thermoplastic resins, thermosetting resins, photocurable resins, and sol-gel materials.
  • a fine concavo-convex structure is formed only with these materials, or a fine concavo-convex structure composed of these materials is provided on a support substrate.
  • a resin mold is composed of a cured product such as a thermosetting resin, a photocurable resin, or a sol-gel material having a fine relief structure on the surface of the support film.
  • a release layer is formed on the fine concavo-convex structure of this resin mold, or the resin having a fine concavo-convex structure made of polydimethylsiloxane (PDMS), a resin containing a methyl group, or a fluorine-containing resin. It is preferable to be configured.
  • PDMS polydimethylsiloxane
  • the thickness of the release layer is preferably 30 nm or less from the viewpoint of transfer accuracy, and is preferably a monomolecular layer or more. From the viewpoint of releasability, the thickness of the release layer is more preferably 2 nm or more, and more preferably 20 nm or less from the viewpoint of transfer accuracy.
  • the material constituting the release layer may be appropriately selected depending on the transfer material, and is not limited.
  • Known commercially available products include, for example, Zonyl TC Coat (DuPont), Cytop CTL-107M (Asahi Glass), Cytop CTL-107A (Asahi Glass), Novec EGC-1720 (3M), OPTOOL DSX (manufactured by Daikin Industries), OPTOOL DACHP (manufactured by Daikin Industries), Durasurf HD-2101Z (manufactured by Daikin Industries), Durasurf HD2100 (manufactured by Daikin Industries), Durasurf HD-1101Z (manufactured by Daikin Industries) ), “Fuategent” manufactured by Neos (for example, M series: Footent 251, Footent 215M, Footent 250, FTX-245M, FTX-290M; S series: FTX-207S, FTX-211S, FTX-220S, FTX-230S; F series FTX-209F, FTX-213F
  • TSF4421 (manufactured by GE Toshiba Silicone), XF42-334 (manufactured by GE Toshiba Silicone), XF42-B3629 (manufactured by GE Toshiba Silicone), XF42-A3161 (manufactured by GE Toshiba Silicone), FZ-3720 (Toray Dow Corning), BY 16-839 (Toray Dowco) -Surfing), SF8411 (Toray Dow Corning), FZ-3736 (Toray Dow Corning), BY 16-876 (Toray Dow Corning), SF8421 (Toray Dow Corning), SF8416 (made by Toray Dow Corning), SH203 (made by Toray Dow Corning), SH230 (made by Toray Dow Corning), SH510 (made by Toray Dow Corning), SH550 (made by Toray Dow Corning), SH710 (Toray Dow Corning), SF8419 (Toray Dow Corning), SF8422 (Toray Dow Corning), BY16 Series (Toray Dow Corning), F
  • the material constituting the release layer is preferably a material containing a methyl group, a material containing silicone, or a material containing fluorine from the viewpoint of releasability.
  • a silicone-based resin typified by a silane coupling agent or PDMS is preferable because the thickness of the release layer can be easily reduced and the transfer accuracy can be maintained.
  • the material used for the release layer may be used alone or in combination.
  • the material which comprises a release layer has a contact angle with respect to water of 90 degree
  • the contact angle means a contact angle when a solid film (a film having no fine pattern) is produced using a material constituting the release layer.
  • a metal layer, a metal oxide layer, or a layer made of a metal and a metal oxide may be provided on the fine uneven structure of the resin mold. Providing these layers in advance is preferable because when the release layer described above is provided, the releasability and transfer accuracy are further improved.
  • the metal include chrome, aluminum, tungsten, molybdenum, nickel, gold, and platinum.
  • the metal oxide for example, other oxides of the metals, SiO 2, ZnO, Al 2 O 3, ZrO 2, CaO, SnO 2 and the like. Silicon carbide, diamond-like carbon, fluorine-containing diamond-like carbon, or the like can also be used. Mixtures of these may be used.
  • the metal is preferably Cr from the viewpoint of transfer accuracy, and the metal oxide is preferably SiO 2 , Al 2 O 3 , ZrO 2 , or ZnO.
  • the metal layer may be a single layer or a multilayer.
  • the first metal layer is formed on the fine concavo-convex structure of the mold, and the first metal layer is further formed on the first metal layer.
  • Two metal layers may be formed.
  • an N + 1th metal layer can be formed on the Nth metal layer in order to improve adhesion and chargeability.
  • the number of layers is preferably N ⁇ 4, more preferably N ⁇ 2, and more preferably N ⁇ 1 from the viewpoint of transfer accuracy.
  • a first metal layer made of SiO 2 can be provided on the surface of the fine concavo-convex structure, and a second metal layer made of Cr can be provided on the first metal layer.
  • the metal constituting the metal layer is preferably Cr from the viewpoint of transfer accuracy, and the metal oxide is preferably SiO 2 , Al 2 O 3 , ZrO 2 , or ZnO.
  • the release layer described above may be provided directly on the fine uneven structure of the resin mold or on the metal layer.
  • the material for forming the fine concavo-convex structure of the resin mold is preferably composed of a resin made of polydimethylsiloxane (PDMS), a resin containing a methyl group, or a fluorine-containing resin. It is more preferable that the resin is composed of a containing resin.
  • the fluorine-containing resin is not particularly limited as long as it contains a fluorine element and has a contact angle with water larger than 90 degrees.
  • the resin mold preferably has a shape in which only a self-supporting resin layer having a fine uneven structure on the surface or a resin layer having a fine uneven structure on the surface is formed on a support substrate. In particular, from the viewpoint of handling when using a mold, a shape in which a resin layer is formed on a supporting substrate is preferable.
  • the fluorine concentration (Es) on the resin surface (near the fine concavo-convex structure) in the resin layer larger than the average fluorine concentration (Eb) in the resin layer, the free energy on the resin surface is reduced, and the transfer material and Thus, a transfer mold excellent in releasability can be obtained.
  • the ratio of the average fluorine element concentration (Eb) in the resin constituting the resin layer and the fluorine element concentration (Es) of the resin layer surface (surface layer) portion satisfies 1 ⁇ Es / Eb ⁇ 30000, It is more preferable because the effect is more exhibited. In particular, it is preferable because the releasability is further improved as the range becomes 3 ⁇ Es / Eb ⁇ 1500 and 10 ⁇ Es / Eb ⁇ 100.
  • the fluorine element on the resin layer surface (surface layer) part constituting the resin mold Since the concentration (Es) becomes sufficiently higher than the average fluorine concentration (Eb) in the resin layer and the free energy on the resin mold surface is effectively reduced, the releasability from the transfer material is improved.
  • the average fluorine element concentration (Eb) in the resin layer constituting the resin mold relatively lower than the fluorine element concentration (Es) of the resin layer surface (surface layer) part constituting the resin mold, while the strength of the resin itself is improved, the free energy can be kept high in the vicinity of the supporting base material in the resin mold, so that the adhesion of the supporting base material is improved.
  • a resin mold can be obtained that has excellent adhesion to the support substrate, excellent releasability from the transfer material, and can repeatedly transfer the nanometer-sized uneven shape from the resin to the resin.
  • the free energy of the resin layer surface which comprises a resin mold can be made lower, and a repetitive transfer property becomes favorable, it is preferable. Furthermore, if it is in the range of 30 ⁇ Es / Eb ⁇ 160, the free energy on the surface of the resin layer constituting the resin mold can be reduced, the strength of the resin can be maintained, and repeated transferability is further improved, which is preferable. 31 ⁇ Es / Eb ⁇ 155 is more preferable. If 46 ⁇ Es / Eb ⁇ 155, the above effect can be further exhibited, which is preferable.
  • the repetitive transfer property means that the resin mold can be easily duplicated from the resin mold.
  • a resin mold G2 having a concave and convex structure with a resin mold G1 having a convex and concave structure, and a resin mold G2 having a concave and convex structure.
  • the mold G3 can be transferred and formed.
  • a plurality of resin molds GM + 1 can be obtained using one resin mold GM as a mold. It also means that the used transfer template can be reused. Thus, environmental compatibility improves by using the resin mold which satisfy
  • the resin surface (near the fine concavo-convex structure) of the resin layer constituting the resin mold is, for example, approximately 1 to 10 from the fine concavo-convex structure surface of the resin layer constituting the resin mold toward the support base.
  • % Means a portion that penetrates in the thickness direction, or a portion that penetrates 2 nm to 20 nm in the thickness direction.
  • the fluorine element concentration (Es) on the resin surface (near the fine uneven structure) of the resin layer constituting the resin mold can be quantified by XPS method. Since the penetration length of X-rays in the XPS method is as shallow as several nm, it is suitable for quantifying the Es value.
  • Es / Eb can be calculated using energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope.
  • the average fluorine concentration (Eb) in the resin constituting the resin layer constituting the resin mold can be calculated from the charged amount. Or it can measure with a gas chromatograph mass spectrometer (GC / MS).
  • GC / MS gas chromatograph mass spectrometer
  • the average fluorine element concentration can be identified by physically peeling the resin layer constituting the resin mold and subjecting the resin layer to gas chromatography mass spectrometry.
  • an average fluorine element concentration (Eb) in the resin is also identified by decomposing a section from which the resin layer constituting the resin mold is physically separated by a flask combustion method and subsequently subjecting to ion chromatography analysis. be able to.
  • the photopolymerizable radical polymerization resin is a mixture of non-fluorine-containing (meth) acrylate, fluorine-containing (meth) acrylate and a photopolymerization initiator.
  • the curable resin composition (4) containing the sol-gel material represented by the metal alkoxide can also be used.
  • the curable resin composition (1) when the composition (1) is cured in a state where the composition (1) is in contact with a hydrophobic interface having a low surface free energy, a resin mold is obtained.
  • the fluorine element concentration (Es) on the surface (surface layer) of the resin layer constituting the resin mold can be made larger than the average fluorine element concentration (Eb) in the resin constituting the resin layer constituting the resin mold, and further the average fluorine in the resin
  • the element concentration (Eb) can be adjusted to be smaller.
  • the (meth) acrylate constituting the curable resin composition (1) is not limited as long as it is a polymerizable monomer other than (B) fluorine-containing (meth) acrylate described later, but acryloyl.
  • a monomer having a group or a methacryloyl group, a monomer having a vinyl group, or a monomer having an allyl group is preferable, and a monomer having an acryloyl group or a methacryloyl group is more preferable. And it is preferable that they are non-fluorine containing monomers.
  • (meth) acrylate means an acrylate or a methacrylate.
  • the polymerizable monomer is preferably a polyfunctional monomer having a plurality of polymerizable groups, and the number of polymerizable groups is preferably an integer of 1 to 6 because of excellent polymerizability.
  • the average number of polymerizable groups is preferably 1 to 4.5, and 1.5 to 3.5 is most preferable because of excellent transfer accuracy.
  • the number of polymerizable groups may be 3 or more in order to increase the crosslinking point after the polymerization reaction and to obtain physical stability (strength, heat resistance, etc.) of the cured product. preferable.
  • a monomer having 1 or 2 polymerizable groups it is preferably used in combination with monomers having different polymerizable numbers.
  • the (meth) acrylate monomer examples include the following compounds.
  • (meth) acrylic acid As a monomer having an acryloyl group or a methacryloyl group, (meth) acrylic acid, aromatic (meth) acrylate [phenoxyethyl acrylate, benzyl acrylate, etc.
  • Hydrocarbon-based (meth) acrylate [stearyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, allyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol di Acrylate, trimethylolpropane triacrylate, pentaaerythritol triacrylate, dipentaerythritol hexaacrylate and the like.
  • Hydrocarbon-based (meth) acrylates containing etheric oxygen atoms [ethoxyethyl acrylate, methoxyethyl acrylate, glycidyl acrylate, tetrahydrofurfryl acrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyoxyethylene glycol diacrylate , Tripropylene glycol diacrylate and the like.
  • Hydrocarbon-based (meth) acrylates [2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl vinyl ether, N, N-diethylaminoethyl acrylate, N, N-dimethylaminoethyl acrylate, N-vinyl pyrrolidone, dimethylaminoethyl methacrylate, etc. ], Silicone-based acrylates, and the like.
  • Others include EO-modified glycerol tri (meth) acrylate, ECH-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, EO-modified phosphate triacrylate, trimethylolpropane tri (meth) Acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, EO-modified trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meta) ) Acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate Alkyl
  • Examples of the monomer having an allyl group include p-isopropenylphenol, and examples of the monomer having a vinyl group include styrene, ⁇ -methylstyrene, acrylonitrile, and vinylcarbazole.
  • EO modification means ethylene oxide modification
  • ECH modification means epichlorohydrin modification
  • PO modification means propylene oxide modification.
  • the fluorine-containing (meth) acrylate constituting the curable resin composition (1) includes a polyfluoroalkylene chain and / or a perfluoro (polyoxyalkylene) chain, and a polymerizable group. It is preferable to have a linear perfluoroalkylene group or a perfluorooxyalkylene group having an etheric oxygen atom inserted between carbon atoms and a carbon atom and having a trifluoromethyl group in the side chain. Moreover, a linear polyfluoroalkylene chain having a trifluoromethyl group at the molecular side chain or molecular structure terminal and / or a linear perfluoro (polyoxyalkylene) chain is particularly preferred.
  • the polyfluoroalkylene chain is preferably a polyfluoroalkylene group having 2 to 24 carbon atoms.
  • the polyfluoroalkylene group may have a functional group.
  • the perfluoro (polyoxyalkylene) chain is a group consisting of (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, (CF 2 CF 2 CF 2 O) units and (CF 2 O) units. It is preferably composed of one or more perfluoro (oxyalkylene) units selected from: (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, or (CF 2 CF 2 CF 2 O). ) Units.
  • the perfluoro (polyoxyalkylene) chain is particularly preferably composed of (CF 2 CF 2 O) units because the physical properties (heat resistance, acid resistance, etc.) of the fluoropolymer are excellent.
  • the number of perfluoro (oxyalkylene) units is preferably an integer of 2 to 200, more preferably an integer of 2 to 50, since the release property and hardness of the fluoropolymer are high.
  • Examples of the polymerizable group include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an epoxy group, a dichitacene group, a cyano group, an isocyanate group, or a formula — (CH 2 ) aSi (M1) 3-b (M2) b.
  • a hydrolyzable silyl group is preferable, and an acryloyl group or a methacryloyl group is more preferable.
  • M1 is a substituent which is converted into a hydroxyl group by a hydrolysis reaction. Examples of such a substituent include a halogen atom, an alkoxy group, and an acyloxy group.
  • M2 is a monovalent hydrocarbon group. Examples of M2 include an alkyl group, an alkyl group substituted with one or more aryl groups, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group, and an alkyl group or an alkenyl group is preferable.
  • M2 is an alkyl group
  • an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable.
  • M2 is an alkenyl group
  • an alkenyl group having 2 to 4 carbon atoms is preferable, and a vinyl group or an allyl group is more preferable.
  • a is an integer of 1 to 3, and 3 is preferable.
  • b is 0 or an integer of 1 to 3, and 0 is preferable.
  • hydrolyzable silyl groups include (CH 3 O) 3 SiCH 2 —, (CH 3 CH 2 O) 3 SiCH 2 —, (CH 3 O) 3 Si (CH 2 ) 3 — or (CH 3 CH 2 O ) 3 Si (CH 2 ) 3 — is preferred.
  • the number of polymerizable groups is preferably an integer of 1 to 4 and more preferably an integer of 1 to 3 because of excellent polymerizability. When two or more compounds are used, the average number of polymerizable groups is preferably 1 to 3.
  • the fluorine-containing (meth) acrylate has a functional group, it has excellent adhesion to the support substrate.
  • the functional group include a carboxyl group, a sulfonic acid group, a functional group having an ester bond, a functional group having an amide bond, a hydroxyl group, an amino group, a cyano group, a urethane group, an isocyanate group, and a functional group having an isocyanuric acid derivative. It is done.
  • it preferably contains at least one functional group of a functional group having a carboxyl group, a urethane group, or an isocyanuric acid derivative.
  • the isocyanuric acid derivatives include those having an isocyanuric acid skeleton and a structure in which at least one hydrogen atom bonded to the nitrogen atom is substituted with another group.
  • fluorine-containing (meth) acrylate fluoro (meth) acrylate, fluorodiene, or the like can be used.
  • Specific examples of the fluorine-containing (meth) acrylate include the following compounds.
  • the fluorine-containing (meth) acrylate used in the present invention is a fluorine-containing urethane (meth) acrylate represented by the following chemical formula (1)
  • it is effective in a state where the average fluorine element concentration (Eb) in the resin is lowered.
  • the fluorine element concentration (Es) at the surface (surface layer) of the fine concavo-convex structure of the resin mold can be increased, and the adhesiveness to the support substrate and the releasability can be expressed more effectively, which is more preferable.
  • urethane (meth) acrylate for example, “OPTOOL DAC” manufactured by Daikin Industries, Ltd. can be used.
  • a fluorine-containing (meth) acrylate may be used individually by 1 type, and may use 2 or more types together. Further, it can be used in combination with surface modifiers such as abrasion resistance, scratch resistance, fingerprint adhesion prevention, antifouling property, leveling property and water / oil repellency. For example, “Factent” manufactured by Neos Co., Ltd.
  • the fluorine-containing (meth) acrylate preferably has a molecular weight Mw of 50 to 50000, preferably a molecular weight Mw of 50 to 5000, and more preferably a molecular weight Mw of 100 to 5000 from the viewpoint of compatibility.
  • a diluting solvent may be used.
  • a solvent having a boiling point of a single solvent of 40 ° C. to 180 ° C. is preferable, 60 ° C. to 180 ° C. is more preferable, and 60 ° C. to 140 ° C. is further preferable. Two or more kinds of diluents may be used.
  • the solvent content may be at least an amount that can be dispersed in the curable resin composition (1), and is preferably more than 0 to 50 parts by weight with respect to 100 parts by weight of the curable composition (1). Considering that the amount of residual solvent after drying is removed as much as possible, more than 0 to 10 parts by weight is more preferable.
  • the solvent content is preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of (meth) acrylate. If the solvent content is 0.5 part by weight or more and 20 parts by weight or less, the curability of the curable resin composition (1) can be maintained, more preferably 1 part by weight or more and 15 parts by weight or less.
  • the solvent is contained in order to reduce the film thickness of the curable resin composition (1), if the solvent content is 300 parts by weight or more and 10,000 parts by weight or less with respect to 100 parts by weight of (meth) acrylate, Since the solution stability in the drying process after a process can be maintained, it is preferable and it is more preferable if it is 300 to 1000 weight part.
  • the photopolymerization initiator constituting the curable resin composition (1) causes a radical reaction or an ionic reaction by light, and a photopolymerization initiator that causes a radical reaction is preferable.
  • Examples of the photopolymerization initiator include the following photopolymerization initiators.
  • Acetophenone-based photopolymerization initiators can be used alone or in combination of two or more.
  • Acetophenone-based photopolymerization initiators acetophenone, p-tert-butyltrichloroacetophenone, chloroacetophenone, 2,2-diethoxyacetophenone, hydroxyacetophenone, 2,2-dimethoxy-2′-phenylacetophenone, 2-aminoacetophenone, dialkyl Aminoacetophenone and the like.
  • Benzoin-based photopolymerization initiators benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2-methyl Propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl ketal and the like.
  • Benzophenone-based photopolymerization initiators benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) ) Benzophenone, perfluorobenzophenone, etc.
  • Thioxanthone photopolymerization initiators thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, dimethylthioxanthone, and the like.
  • Anthraquinone photopolymerization initiators 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone.
  • Ketal photopolymerization initiators acetophenone dimethyl ketal and benzyl dimethyl ketal.
  • photopolymerization initiators ⁇ -acyl oxime ester, benzyl- (o-ethoxycarbonyl) - ⁇ -monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram Sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate, and the like.
  • Photopolymerization initiator having a fluorine atom perfluoro tert-butyl peroxide, perfluorobenzoyl peroxide or the like.
  • the curable resin composition (1) may contain a photosensitizer.
  • the photosensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allyl thiourea, s-benzisoisouronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate.
  • Examples of commercially available initiators include “Irgacure (registered trademark)” manufactured by BASF Japan Ltd. (for example, Irgacure 651, 184, 500, 2959, 127, 754, 907, 369, 379, 379EG, 819, 1800, 784, OXE01, OXE02), “Darocur (registered trademark)” (for example, Darocur 1173, MBF, TPO, 4265) and the like.
  • Irgacure (registered trademark) manufactured by BASF Japan Ltd.
  • “Darocur (registered trademark)” for example, Darocur 1173, MBF, TPO, 4265
  • the photopolymerization initiator may be used alone or in combination of two or more.
  • the dispersibility of the fluorine-containing (meth) acrylate, and the fine concavo-convex structure surface (surface layer) portion of the curable resin composition (1) and the internal curability may be selected.
  • the combined use of an ⁇ -hydroxyketone photopolymerization initiator and an ⁇ -aminoketone photopolymerization initiator can be mentioned.
  • the curable resin composition (2) can be obtained by removing (B) fluorine-containing (meth) acrylate from the above-described photopolymerizable mixture.
  • the resin constituting the resin mold is a cured product of the curable resin composition (2), it is preferable from the viewpoint of transfer accuracy of the transfer material that either or both of the metal layer and the release layer are provided.
  • silicone can be added to the curable resin composition (1) described above, or the curable resin composition (2) added with silicone.
  • silicone By including silicone, the transfer accuracy of the transfer material is improved due to the releasability and slipperiness unique to silicone.
  • a linear low-polymerization silicone oil that exhibits fluidity at room temperature typified by polydimethylsiloxane (PDMS), which is a polymer of dimethylchlorosilane.
  • PDMS polydimethylsiloxane
  • these modified silicone oils silicone rubbers obtained by cross-linking linear PDMS or PDMS with a high degree of polymerization to show rubbery elasticity, modified silicone rubbers thereof, resinous silicones, PDMS and 4 Examples thereof include a silicone resin (or DQ resin) that is a resin having a three-dimensional network structure composed of functional siloxane.
  • an organic molecule is used as the cross-linking agent, or tetrafunctional siloxane (Q unit) is used.
  • Modified silicone oils and modified silicone resins are modified polysiloxane side chains and / or terminals, and are classified into reactive silicones and non-reactive silicones.
  • the reactive silicone is preferably a silicone containing an —OH group (hydroxyl group), a silicone containing an alkoxy group, a silicone containing a trialkoxy group, or a silicone containing an epoxy group.
  • the non-reactive silicone a silicone containing a phenyl group, a silicone containing both a methyl group and a phenyl group, and the like are preferable.
  • a single polysiloxane molecule having two or more modifications as described above may be used.
  • modified silicones include TSF4421 (manufactured by GE Toshiba Silicone), XF42-334 (manufactured by GE Toshiba Silicone), XF42-B3629 (manufactured by GE Toshiba Silicone), and XF42-A3161 (GE Toshiba Silicone).
  • FZ-3720 (manufactured by Toray Dow Corning), BY 16-839 (manufactured by Toray Dow Corning), SF8411 (manufactured by Dow Corning Toray), FZ-3736 (manufactured by Dow Corning Toray) , BY 16-876 (Toray Dow Corning), SF8421 (Toray Dow Corning), SF8416 (Toray Dow Corning), SH203 (Toray Dow Corning), SH230 (Toray Dow Corning) SH510 (manufactured by Toray Dow Corning), SH550 Toray Dow Corning), SH710 (Toray Dow Corning), SF8419 (Toray Dow Corning), SF8422 (Toray Dow Corning), BY16 series (Toray Dow Corning), FZ3785 (Toray Dow Corning), KF-410 (Shin-Etsu Chemical Co., Ltd.), KF-412 (Shin-Etsu Chemical Co., Ltd.), KF-413 (Shin-Etsu Chemical Co.
  • Examples of the reactive silicone include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, vinyl modification, mercapto modification, phenol modification, one-terminal reactivity, and heterofunctional modification.
  • silicone compound containing any of vinyl, methacrylic, amino, epoxy, or alicyclic epoxy groups silicone can be incorporated into the resin mold via chemical bonding, so transfer Accuracy is improved.
  • the inclusion of a silicone compound containing any one of a vinyl group, a methacryl group, an epoxy group, and an alicyclic epoxy group is preferable because the above effects can be further exhibited.
  • silicone compound containing either an epoxy group or an alicyclic epoxy group from a viewpoint of the adhesiveness to a support base material.
  • the silicone compound containing any one of vinyl group, methacryl group, amino group, epoxy group or alicyclic epoxy group only one kind may be used or a plurality may be used in combination.
  • the silicone having a photopolymerizable group and the silicone having no photopolymerizable group may be used in combination or independently.
  • silicone compounds containing vinyl groups include KR-2020 (manufactured by Shin-Etsu Silicone), X-40-2667 (manufactured by Shin-Etsu Silicone), CY52-162 (manufactured by Toray Dow Corning), and CY52-190 (Toray).
  • Dow Corning CY52-276 (Toray Dow Corning), CY52-205 (Toray Dow Corning), SE1885 (Toray Dow Corning), SE1886 (Toray Dow Corning), SR-7010 Toray Dow Corning), XE5844 (GE Toshiba Silicone) and the like.
  • silicone compounds containing a methacryl group examples include X-22-164 (manufactured by Shin-Etsu Silicone), X-22-164AS (manufactured by Shin-Etsu Silicone), X-22-164A (manufactured by Shin-Etsu Silicone), X- 22-164B (manufactured by Shin-Etsu Silicone), X-22-164C (manufactured by Shin-Etsu Silicone), X-22-164E (manufactured by Shin-Etsu Silicone) and the like.
  • silicone compound containing an amino group examples include PAM-E (manufactured by Shin-Etsu Silicone), KF-8010 (manufactured by Shin-Etsu Silicone), X-22-161A (manufactured by Shin-Etsu Silicone), X-22-161B ( Shin-Etsu Silicone), KF-8012 (Shin-Etsu Silicone), KF-8008 (Shin-Etsu Silicone), X-22-166B-3 (Shin-Etsu Silicone), TSF4700 (Momentive Performance Materials Japan) ), TSF4701 (made by Momentive Performance Materials Japan), TSF4702 (made by Momentive Performance Materials Japan), TSF4703 (made by Momentive Performance Materials Japan), TSF4704 (momentive Formalance Materials Japan), TSF4705 (Momentive Performance Materials Japan), TSF4706 (Momentive Performance Materials Japan), TSF4707 (Momentive Performance Materials Japan) Product), TSF4708 (
  • silicone compound containing an epoxy group examples include X-22-163 (manufactured by Shin-Etsu Silicone), KF-105 (manufactured by Shin-Etsu Silicone), X-22-163A (manufactured by Shin-Etsu Silicone), X-22- 163B (manufactured by Shin-Etsu Silicone), X-22-163C (manufactured by Shin-Etsu Silicone), TSF-4730 (manufactured by Momentive Performance Materials Japan), YF3965 (manufactured by Momentive Performance Materials Japan), etc. Is mentioned.
  • silicone containing an alicyclic epoxy group examples include X-22-169AS (manufactured by Shin-Etsu Silicone), X-22-169B (manufactured by Shin-Etsu Silicone), and the like.
  • the curable resin composition (4) is obtained by adding a sol-gel material described below to the curable resin compositions (1) to (3) or a composition composed only of the sol-gel material. Can be adopted.
  • a sol-gel material to the curable resin composition (1) to the curable resin composition (3), the effect of improving the replication efficiency of the mold by adopting the shrinkage specific to the sol-gel material, and the inorganic characteristic of the sol-gel material As a result, the durability of the fine concavo-convex structure is improved, and the repeated use of the transfer mold is improved.
  • sol-gel material constituting the resin mold a group of compounds that are cured by hydrolysis and polycondensation by the action of heat and catalyst, metal alkoxide, metal alcoholate, metal chelate compound, halogenated silane, liquid glass, It is not particularly limited as long as it is spin-on-glass or a reaction product thereof. These are collectively called metal alkoxides.
  • a metal alkoxide is a bond between a metal species represented by Si, Ti, Zr, Zn, Sn, B, In, and Al and a functional group such as a hydroxy group, a methoxy group, an ethoxy group, a propyl group, or an isopropyl group.
  • This is a group of compounds.
  • These functional groups cause hydrolysis / polycondensation reaction with water, an organic solvent, a hydrolysis catalyst, or the like to generate a metalloxane bond (—Me—O—Me— bond, where Me is a metal species).
  • a metalloxane bond such as —Si—O—Si— is generated.
  • a bond such as -M1-O-Si- can be generated.
  • the metal alkoxide of the metal species (Si) for example, dimethyldiethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, p-styryltriethoxysilane, methylphenyldioxysilane
  • examples thereof include ethoxysilane, tetraethoxysilane, p-styryltriethoxysilane, and the like, and compounds in which the ethoxy group of these compound groups is replaced with a methoxy group, a propyl group, or an isopropyl group.
  • a compound having a hydroxy group such as diphenylsilanediol and dimethylsilanediol can be selected.
  • one or more of the functional groups may be directly substituted with a phenyl group or the like without using an oxygen atom from a metal species.
  • a phenyl group or the like for example, diphenylsilanediol, dimethylsilanediol, etc. are mentioned.
  • Halogenated silane is a group of compounds in which the metal species of the metal alkoxide is silicon and the functional group undergoing hydrolytic polycondensation is replaced with a halogen atom.
  • liquid glass examples include TGA series manufactured by Apollo Ring.
  • Other sol-gel compounds can be added in accordance with the desired physical properties.
  • a silsesquioxane compound can also be used as the metal alkoxide.
  • Silsesquioxane is a compound in which one organic group and three oxygen atoms are bonded to one silicon atom.
  • the silsesquioxane is not particularly limited as long as it is a polysiloxane represented by the composition formula (RSiO 3/2 ) n.
  • the polysiloxane having any structure such as a cage type, a ladder type, or a random structure. It may be.
  • R may be a substituted or unsubstituted siloxy group or any other substituent.
  • n is preferably 8 to 12, more preferably 8 to 10 and further preferably n is 8, in order to improve the curability of the curable resin composition (4).
  • the n Rs may be the same or different.
  • silsesquioxane compound examples include polyhydrogen silsesquioxane, polymethyl silsesquioxane, polyethyl silsesquioxane, polypropyl silsesquioxane, polyisopropyl silsesquioxane, polybutyl silsesquioxane, and polybutyl silsesquioxane.
  • at least one of n Rs for these silsesquioxanes may be substituted with a substituent exemplified below.
  • substituents examples include trifluoromethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3 -Pentafluoropropyl, 2,2,2-trifluoro-1-trifluoromethylethyl, 2,2,3,4,4,4-hexafluorobutyl, 2,2,3,3,4,4,5 , 5-octafluoropentyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3 , 4,4,5,5-octafluoropentyl, 3,3,3-trifluoropropyl, nonafluoro-1,1,2,2-tetrahydrohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl , Heptade Fluoro-1,1,2,
  • the metal alkoxide may be in a prepolymer state in which the polymerization reaction partially reacts and an unreacted functional group remains.
  • a prepolymer in which metal species are connected via an oxygen element can be obtained. That is, a prepolymer having a large molecular weight can be produced by partial condensation.
  • the degree of partial condensation can be controlled by the reaction atmosphere, the combination of metal alkoxides, and the like, and the degree of partial condensation used in the prepolymer state can be appropriately selected depending on the application and method of use, and is not particularly limited.
  • the viscosity of the curable resin composition containing a partial condensate is 50 cP or more, transfer accuracy and stability to water vapor are further improved, and when it is 100 cP or more, these effects can be more exhibited. Therefore, it is still preferable.
  • it is preferably 150 cP or more, and more preferably 250 cP or more.
  • the upper limit value of the viscosity is not particularly limited as long as it can be transferred and formed, but is preferably 5000 cP or less and more preferably 4000 cP or less from the viewpoint of transfer accuracy.
  • the prepolymer which promoted partial condensation can be obtained by polycondensation based on a dehydration reaction and / or polycondensation based on a dealcoholization reaction.
  • a prepolymer can be obtained by heating a solution comprising a metal alkoxide, water, and a solvent (alcohol, ketone, ether, etc.) in the range of 20 ° C. to 150 ° C. to obtain hydrolysis and polycondensation.
  • the degree of polycondensation can be controlled by temperature, reaction time, and pressure (decompression force), and can be selected as appropriate. Moreover, it is also possible to reduce the molecular weight distribution of the prepolymer by gradually performing hydrolysis and polycondensation using water (water vapor based on humidity) in the environmental atmosphere without adding water. Furthermore, in order to promote polycondensation, the method of irradiating energy rays is also mentioned.
  • the light source of the energy beam can be appropriately selected depending on the type of the metal alkoxide, and is not particularly limited. However, a UV-LED light source, a metal halide light source, a high-pressure mercury lamp light source, or the like can be employed.
  • a photoacid generator to the metal alkoxide and irradiating the composition with energy rays, photoacid is generated from the photoacid generator, and polycondensation of the metal alkoxide using the photoacid as a catalyst.
  • a prepolymer can be obtained.
  • the prepolymer can also be obtained by performing the above operation in the state of chelating the metal alkoxide.
  • the prepolymer is defined as a state in which at least four or more metal elements are connected via oxygen atoms.
  • a state in which a metal element is condensed to -O-M1-O-M2-O-M3-O-M4-O- or more is defined as a prepolymer.
  • M1, M2, M3, and M4 are metal elements, and may be the same metal element or different.
  • a metal alkoxide having titanium as a metal species is pre-condensed to form a metalloxane bond composed of —O—Ti—O—, the range of n ⁇ 4 in the general formula of [—O—Ti—] n And prepolymer.
  • a metal alkoxide having titanium as a metal species and a metal alkoxide having silicon as a metal species are pre-condensed to generate a metalloxane bond composed of —O—Ti—O—Si—O—, [ the prepolymer in the range of n ⁇ 2 in -O-Ti-O-Si-] n in the general formula.
  • a dissimilar metal element such as —O—Ti—O—Si—, the elements are not necessarily alternately arranged like —O—Ti—O—Si—.
  • a prepolymer is used in the range of n ⁇ 4.
  • the element A and the element B are used, and the chemical composition is expressed as -AB-, but this is an expression for explaining the bond between the element A and the element B.
  • the same expression is used even when the element A has three or more bonds.
  • the expression -A-B- represents at least the chemical bond between the element A and the element B, and includes that the element A forms a chemical bond with other than the element B.
  • the metal alkoxide can contain a fluorine-containing silane coupling agent.
  • a fluorine-containing silane coupling agent By including a fluorine-containing silane coupling agent, it is possible to reduce the energy of the surface of the fine concavo-convex structure of the resin mold made of a cured product of the metal alkoxide. Transfer accuracy is improved. This means that the release layer is previously incorporated in the mold.
  • fluorine-containing silane coupling agent for example, a general formula F 3 C— (CF 2 ) n — (CH 2 ) m —Si (O—R) 3 (where n is an integer of 1 to 11, m Is an integer of 1 to 4 and R is an alkyl group having 1 to 3 carbon atoms.),
  • a polyfluoroalkylene chain and / or a perfluoro (polyoxyalkylene) chain. May be included.
  • a linear perfluoroalkylene group or a perfluorooxyalkylene group having an etheric oxygen atom inserted between carbon atoms and a trifluoromethyl group in the side chain is more preferred.
  • a linear polyfluoroalkylene chain having a trifluoromethyl group at the molecular side chain or molecular structure terminal and / or a linear perfluoro (polyoxyalkylene) chain is particularly preferred.
  • the polyfluoroalkylene chain is preferably a polyfluoroalkylene group having 2 to 24 carbon atoms.
  • the perfluoro (polyoxyalkylene) chain consists of (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, (CF 2 CF 2 CF 2 O) units, and (CF 2 O) units.
  • the perfluoro (polyoxyalkylene) chain is particularly preferably composed of (CF 2 CF 2 O) units from the viewpoint of excellent segregation on the surface.
  • the metal alkoxide can contain polysilane.
  • Polysilane is a compound in which a silicon element constitutes a main chain, and the main chain is composed of repeating —Si—Si—.
  • energy rays for example, UV
  • a siloxane bond is generated.
  • a siloxane bond can be effectively generated by UV irradiation, and the transfer accuracy when a mold is transferred and formed using a metal alkoxide as a raw material is improved.
  • the resin mold may be a hybrid including an inorganic segment and an organic segment.
  • the transfer accuracy when the resin mold is produced by transfer is improved, and the physical durability of the fine concavo-convex structure is also improved.
  • the effect of suppressing the penetration of the transfer material into the fine concavo-convex structure of the resin mold is increased, and as a result, the transfer accuracy can be improved.
  • the hybrid include a resin that can be photopolymerized (or thermally polymerized) with an inorganic precursor, and a molecule in which an organic polymer and an inorganic segment are bonded by a covalent bond.
  • the sol-gel material when used as the inorganic precursor, it means that a photopolymerizable resin is included in addition to the sol-gel material containing the silane coupling agent.
  • a photopolymerizable resin is included in addition to the sol-gel material containing the silane coupling agent.
  • a metal alkoxide, a silane coupling material having a photopolymerizable group, a metal alkoxide, a silane coupling material having a photopolymerizable group, a radical polymerization resin, or the like can be mixed. .
  • silicone may be added thereto.
  • the mixing ratio of the metal alkoxide containing the silane coupling agent and the photopolymerizable resin is preferably in the range of 3: 7 to 7: 3 from the viewpoint of transfer accuracy.
  • thermoplastic resin that composes the resin mold includes polypropylene, polyethylene, polyethylene terephthalate, polymethylpetacrylate, cycloolefin polymer, cycloolefin copolymer, transparent fluororesin, polyethylene, polypropylene, polystyrene, acrylonitrile / styrene polymer, acrylonitrile.
  • thermosetting resin constituting the resin mold examples include polyimide, epoxy resin, and urethane resin.
  • the material of the support substrate (film) constituting the resin mold there is no particular limitation on the material of the support substrate (film) constituting the resin mold, and any material such as inorganic materials such as glass, ceramic and metal, and organic materials such as plastic can be used.
  • any material such as inorganic materials such as glass, ceramic and metal, and organic materials such as plastic can be used.
  • plates, sheets, films, thin films, woven fabrics, non-woven fabrics, and other arbitrary shapes and composites thereof can be used, but they are flexible and have excellent continuous productivity. It is particularly preferable to include a thin film, a woven fabric, a non-woven fabric and the like.
  • the flexible material examples include polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin (COP), cross-linked polyethylene resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene ether resin, and modified polyphenylene ether resin.
  • polymethyl methacrylate resin polycarbonate resin
  • polystyrene resin polystyrene resin
  • COP cycloolefin resin
  • cross-linked polyethylene resin polyvinyl chloride resin
  • polyacrylate resin polyphenylene ether resin
  • modified polyphenylene ether resin modified polyphenylene ether resin
  • thermoplastic resins such as polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polybutylene terephthalate Crystalline thermoplastic resins such as resins, aromatic polyester resins, polyacetal resins, polyamide resins, and ultraviolet (UV) curable resins such as acrylic, epoxy, and urethane resins And thermosetting resins.
  • the supporting base material can be configured by combining an ultraviolet curable resin or a thermosetting resin with an inorganic substrate such as glass, the above thermoplastic resin, or a triacetate resin, or using them alone.
  • a filling layer transfer mold can be manufactured by filling and disposing the filling layer in the concave portion of the pattern portion of the transfer mold.
  • the packed bed transfer mold 400 includes a transfer mold 401.
  • the transfer mold 401 has a fine concavo-convex structure on the surface of the resin layer 403 provided on the support substrate 402.
  • a recessed layer 403 a provided in the resin layer 403 is filled with a filling layer 404.
  • S means the average position of the convex top 403b of the fine concavo-convex structure of the transfer mold 401.
  • B means the average position of the bottom of the concave portion 403 a of the fine concavo-convex structure of the transfer mold 401.
  • Scc means the average position of the exposed surface of the filling layer 404 disposed inside the concave portion 403a of the fine concavo-convex structure of the transfer mold 401.
  • the shortest distance between the position S and the position B is the average depth (height) h of the fine concavo-convex structure of the transfer mold 401.
  • the shortest distance between the position S and the position Scc is an index expressing the degree of filling of the filling layer 404 and is expressed as lcc.
  • the filling layer 404 is disposed so as to satisfy the range of 0 ⁇ lcc ⁇ 1.0 h inside the concave portion 403 a of the fine concavo-convex structure of the transfer mold 401.
  • lcc ⁇ 0.9h more preferably lcc ⁇ 0.7h
  • lcc ⁇ Most preferred is 0.6 h.
  • the lower limit value is preferably 0.02h ⁇ lcc, more preferably 0.05h ⁇ lcc, and most preferably 0.1h ⁇ lcc.
  • the filling of the filling layer 404 will be described.
  • a solution obtained by diluting the filling layer material to the transfer mold 401 and removing the excess solvent, the filling layer transfer mold 400 can be obtained.
  • an aqueous solvent for example, alcohol, ketone, ether, etc.
  • Coating methods include roller coating, bar coating, die coating, spray coating, gravure coating, micro gravure coating, ink jet method, air knife coating method, flow coating method, curtain coating method, spin coating method, etc. Etc. are applicable.
  • the concentration for diluting the packed bed material is not particularly limited as long as the solid content of the packed bed material per unit volume is smaller than the volume of the concavo-convex structure existing under the unit area.
  • the contact angle of water with the pattern portion of the transfer mold 401 is 90 degrees or more, and the aperture ratio of the pattern portion is 45. % Or more, preferably 50% or more, more preferably 55% or more, and most preferably 65% or more.
  • the solvent for diluting the packed bed material is preferably an aqueous solvent because the above effect can be further exhibited.
  • the aqueous solvent include alcohol, ether, ester, and ketone. In particular, alcohol, ether, and ketone are preferable.
  • the contact angle of water with respect to the barrier region is preferably 90 degrees or more from the viewpoint of hindering penetration of the pattern portion by the coating liquid repelled on the non-pan portion.
  • the filling layer material includes a material whose state changes in the solvent volatilization process after the dilution coating, it is estimated that the driving force of reducing the area of the material itself also works at the same time.
  • the change in form include an exothermic reaction and a change in which the viscosity increases.
  • a sol-gel material typified by a metal alkoxide
  • the energy of the sol-gel material becomes unstable, so that the driving force that moves away from the solvent liquid surface (solvent-air interface) that decreases as the solvent is dried works.
  • the sol-gel material is satisfactorily inside the recess of the pattern part. Is placed in the filling.
  • the filling rate of the macro packed bed in the pattern portion can be equalized.
  • coating failure (2) as an example, as shown in FIG. 27, the above-described coating was performed on a general transfer mold 501 without a barrier region, and a filling layer transfer mold 500 was manufactured.
  • the filling layer 504 filled and applied to the pattern portion 505 has a large distribution of filling rate due to the penetration of the coating liquid repelled on the non-pattern portion 506.
  • a barrier region 407 is provided at the boundary between the pattern part 405 and the non-pattern part 406. Since the penetration of the coating liquid repelled on the non-pattern part 406 can be effectively inhibited, the distribution of the filling rate can be reduced. That is, the filling rate is substantially the same at any of the points A, B, and C. The reason why the filling rate is almost the same at any of points A, B, and C is to provide the barrier region 407, and by providing the barrier region 407 within the above-described condition range.
  • the filling layer transfer mold 400 having a very small filling rate distribution of the filling layer 404 can be manufactured, the in-plane distribution when the difficult-to-process substrate is finely processed using the filling layer transfer mold 400 is reduced.
  • the effect of the fine concavo-convex structure provided on the difficult-to-process base material can be uniformly exhibited in the plane.
  • FIG. 29 is a process diagram showing each process of the inorganic substrate processing method using the packed bed transfer mold according to the present embodiment.
  • an organic layer 410 is formed on the filling layer transfer mold 400, and the organic layer 410 is bonded to the inorganic base material 411.
  • the filling layer transfer mold 400 may be bonded to the organic layer 410 formed on the inorganic base material 411.
  • the filling layer 404 and the organic layer 410 are bonded to each other by, for example, energy beam irradiation or heat treatment.
  • the transfer layer 401 and the organic layer 410 can be transferred and formed on the inorganic substrate 411 by peeling the transfer template 401 as shown in FIG. 29C. Thereafter, as shown in FIG.
  • the organic layer 410 can be easily finely processed by dry etching from the filling layer 403 side. Furthermore, as shown in FIG. 29E, the inorganic substrate 411 can be easily formed as shown in FIG. 29F by using the fine mask pattern having a high aspect ratio formed of the obtained filling layer 404 and organic layer 410 as a mask. Can be processed.
  • the inorganic base material 411 can be processed in this way, difficult-to-process base materials such as sapphire can be processed easily.
  • the surface of the sapphire substrate can be easily processed by the above method.
  • An LED can be manufactured by forming a semiconductor light emitting element on the processed sapphire surface.
  • the pitch of the fine concavo-convex structure of the transfer template is 100 nm to 500 nm and the height is 50 nm to 500 nm
  • the internal quantum efficiency of the LED can be improved.
  • the hole shape is a regular arrangement on the nanoscale and has a large microscale periodicity, and a modulation having a microscale period added to the pitch, the light extraction efficiency can be improved at the same time. It becomes possible and a highly efficient LED can be manufactured.
  • 30 and 31 are process diagrams for explaining a method for forming a fine concavo-convex structure on an object to be processed using the fine concavo-convex structure transfer mold according to the present embodiment.
  • the transfer mold 10 has a concavo-convex structure 11 formed on the main surface thereof.
  • the concavo-convex structure 11 includes a plurality of concave portions 11a and convex portions 11b.
  • the transfer mold 10 is, for example, a film-shaped or sheet-shaped resin mold.
  • a second mask layer 12 for patterning a first mask layer to be described later is filled into the recess 11a of the concavo-convex structure 11 of the transfer mold 10.
  • the second mask layer 12 is made of, for example, a sol-gel material.
  • a first mask layer 13 is formed on the concavo-convex structure 11 including the second mask layer 12.
  • the first mask layer 13 is used for patterning an object to be processed which will be described later.
  • the first mask layer 13 is made of, for example, a photocurable resin or a thermosetting resin.
  • a protective layer 14 can be provided on the upper side of the first mask layer 13.
  • the protective layer 14 protects the first mask layer 13 and is not essential.
  • the laminate composed of the transfer mold 10, the second mask layer 12, and the first mask layer 13 is referred to as a fine pattern forming laminate 15 or simply a laminate 15.
  • an object 20 as shown in FIG. 31A is prepared.
  • the workpiece 20 is, for example, a sapphire substrate.
  • the laminated body 15 after removing the protective layer 14 on the main surface of the object 20 to be processed, and the exposed surface of the first mask layer 13 as the main surface of the object 20 to be processed. Laminate them face to face (thermocompression bonding).
  • the stacked body 15 is irradiated with energy rays to cure the first mask layer 13, and the stacked body 15 is bonded to the object to be processed 20.
  • the transfer mold 10 is peeled from the first mask layer 13 and the second mask layer 12.
  • an intermediate body 21 including the object to be processed 20, the first mask layer 13, and the second mask layer 12 is obtained.
  • the first mask layer 13 is patterned by ashing, for example, as shown in FIG. 31D. Further, the processed object 20 is subjected to, for example, reactive ion etching using the patterned first mask layer 13 as a mask, and a fine uneven pattern 22 is formed on the main surface of the processed object 20 as shown in FIG. 31E. Form. Finally, the first mask layer 13 remaining on the main surface of the target object 20 is removed to obtain the target object 20 having the fine uneven pattern 22 as shown in FIG. 31F.
  • the process from obtaining the laminate 15 from the transfer mold 10 shown in FIGS. 30A to 30C is performed in one line (hereinafter referred to as the first line). Thereafter, FIGS. 31A to 31F are performed on another line (hereinafter referred to as a second line).
  • the first line and the second line are performed in separate facilities. For this reason, for example, when the transfer mold 10 is in the form of a film and has flexibility, the laminate 15 is stored or transported in the form of a roll (roll). The laminate 15 is stored or transported by stacking a plurality of laminates 15 when the transfer mold 10 is in the form of a sheet.
  • the first line is a supplier line of the laminate 15 and the second line is a user line of the laminate 15.
  • the processed object 20 can be finely processed by reflecting the accuracy of the fine uneven structure of the transfer mold 10 constituting the laminate 15. That is, it is possible to ensure the accuracy of the fine concavo-convex structure with the laminate 15, and the workpiece 20 can be finely processed with high accuracy in the plane without using a complicated process or apparatus.
  • the laminated body 15 can be used at a place optimal for manufacturing a device using the processed object 20 to be processed. That is, a device having a stable function can be manufactured.
  • the first line is the supplier line of the laminate 15 and the second line is the user line of the laminate 15, which is optimal for the processing of the workpiece 20.
  • the laminated body 15 can be used in an optimum environment for manufacturing a device using the processed object 20 thus prepared. For this reason, it is possible to improve the throughput of the processing object 20 and the device assembly.
  • the laminate 15 is a laminate composed of a transfer mold 10 and a functional layer provided on the fine concavo-convex structure of the transfer mold 10. That is, it is possible to ensure the placement accuracy of the mask layer that governs the processing accuracy of the workpiece 20 with the accuracy of the fine concavo-convex structure of the transfer mold 10 of the laminate 15.
  • the first line is used as the supplier line of the laminate 15 and the second line is used as the user line of the laminate 15 to manufacture the device using the processed object 20.
  • the object to be processed 20 can be processed and used with high accuracy using the laminate 15.
  • DACHP Fluorine-containing urethane (meth) acrylate (OPTOOL DAC HP (manufactured by Daikin Industries))
  • M350 Trimethylolpropane triacrylate (M350, manufactured by Toagosei Co., Ltd.)
  • I. 184 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure (registered trademark) 184, manufactured by BASF) ⁇ I. 369...
  • the surface (surface layer) fluorine element concentration of the resin mold was measured by X-ray photoelectron spectroscopy (XPS). Since the penetration depth of X-rays into the sample surface in XPS is as shallow as several nm, the measured value of XPS was adopted as the fluorine element concentration (Es) on the resin mold surface (surface layer) in the present invention.
  • the resin mold was cut out as a small piece of about 2 mm square and covered with a 1 mm ⁇ 2 mm slot type mask and subjected to XPS measurement under the following conditions.
  • a cylindrical mold A having only a pattern part 301 (refer to FIG. 23 below) and a cylindrical mold B having a pattern part 301 and a barrier region 302 were produced.
  • the concavo-convex structure of the pattern portion 301 is such that both the cylindrical molds A and B have a pitch of 460 nm, a height of 460 nm, and a convex portion top diameter of 50 nm.
  • the barrier region 302 in the cylindrical mold B was formed with a width of 5 mm outside the pattern portion 301.
  • Durasurf HD-1101Z manufactured by Daikin Chemical Industries
  • Durasurf HD-ZV manufactured by Daikin Chemical Industries
  • PET film A curable resin composition was applied to an easily adhesive surface of A4100 (manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 6 ⁇ m.
  • the PET film coated with the curable resin composition was pressed against each of the cylindrical molds A and B with a nip roll (0.1 MPa), and the temperature was 25 ° C., the humidity was 60%, and the bottom of the lamp center.
  • Ultraviolet rays are irradiated using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • a reel-shaped resin mold C (length: 200 m, width: 300 mm) was transferred.
  • the shape of the surface fine uneven structure in the pattern portion 311 of the reel-shaped resin mold C was confirmed by observation with a scanning electron microscope.
  • the hole-shaped structure had a pitch of 460 nm, a depth of 460 nm, and an opening width of 230 nm.
  • PET film A4100 (manufactured by Toyobo Co., Ltd .: 300 mm wide, 100 ⁇ m thick) curable resin similar to the resin used when the resin mold C was prepared by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) The composition was applied so as to have a coating film thickness of 6 ⁇ m.
  • the PET film coated with the curable resin composition is pressed against the fine concavo-convex structure surface of the resin mold C obtained by direct transfer from the cylindrical mold A or B with a nip roll (0.1 MPa), Irradiate ultraviolet rays using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • a plurality of reel-shaped resin molds D (200 m in length and 300 mm in width) having a fine concavo-convex structure similar to the cylindrical mold A or B, which is continuously photocured and has a fine concavo-convex structure transferred to the surface. Obtained.
  • the shape of the surface fine concavo-convex structure of the reel-shaped resin mold D was confirmed by observation with a scanning electron microscope. As a result, the dot-shaped structure had a pitch of 460 nm, a height of 460 nm, and a convex top diameter of 50 nm.
  • the ratio (Es / Eb) between the surface (surface layer) fluorine element concentration (Es) and the average fluorine element concentration (Eb) of the resin mold D having the obtained dot shape is 40 to 80 depending on the charged amount of DACHP. It was confirmed that the contact angles of the transfer region 311 and the barrier region 312 of the resin mold D with respect to water are both greater than 90 degrees.
  • Materials E, F, and G were diluted with PGME or MIBK.
  • the dilution ratio is in the range of 1% to 5%, from the state in which only the fine uneven structure of the resin mold D is filled to the state in which the fine uneven structure is completely filled and the coating film is formed on the fine uneven structure Tried until.
  • the coating of the materials E, F, and G on the fine concavo-convex structure surface of the resin mold D was performed using the same apparatus as that used in the production of the above (b) reel-shaped transfer mold (IV).
  • the diluted material was applied to the fine concavo-convex structure surface of the resin mold D by microgravure coating, and the state of passing through an 80 degree dry atmosphere was confirmed.
  • (D) Structure of barrier region In the fine uneven structure in the barrier region, the average roughness factor Rf1 of the pattern portion and the average roughness factor Rf2 of the barrier region are continuous, and the average roughness factor Rf2 of the barrier region is a non-pattern portion.
  • FIG. 32 is a graph showing the relationship between the circumferential pitch and distance (graph 100) and the roughness factor Rf and distance (graph 101) in this case.
  • the feed pitch is circumferential pitch ⁇ (0.866).
  • the pitch at point 0 (distance 0 mm) is 460 nm and is continuous with the pattern portion.
  • the circumferential pitch increases exponentially.
  • the roughness factor Rf2 continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side.
  • the aperture ratio increases from the pattern portion side to the barrier region side.
  • FIG. 33 is a graph showing the relationship between the feed pitch and distance (graph 102) and the roughness factor Rf and distance (graph 103) in this case.
  • the horizontal axis of the graph shown in FIG. 33 indicates the distance [mm] from the interface (point 0) between the pattern portion and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown.
  • the axial pitch is constant at 460 nm.
  • the feed pitch at point 0 (distance 0 mm) is 398 nm and is continuous with the pattern portion.
  • the feed pitch increases exponentially as the distance from point 0 increases.
  • the roughness factor Rf continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side.
  • the aperture ratio increases from the pattern portion side to the barrier region side.
  • Example 1 When the resin mold D derived from the mold B having the barrier region is used (Example 1), regardless of the materials E to G and their concentrations, the interface between the pattern portion and the barrier region, and the barrier region and the non-pattern portion No unevenness was observed at the interface, and a good coating was obtained. This is because, as shown in FIG. 4A, the stress inside the film of the coating liquid 113 is relaxed on the barrier region 111, the film of the coating liquid 113 is not split, and the coating is performed well. It is.
  • a similar study was conducted using a flat plate mold instead of a reel-shaped resin mold. Quartz glass was used as the base material of the flat plate mold, and a fine concavo-convex structure was formed on the flat plate quartz surface by a direct drawing lithography method using a semiconductor laser.
  • a flat plate mold As the flat plate mold, a flat plate mold A2 having only a pattern portion and a flat plate mold B2 having a pattern portion and a barrier region were produced.
  • the fine concavo-convex structure in the pattern part has a pitch of 460 nm, a height of 460 nm, a convex part bottom width of 230 nm, and a convex part top diameter of 40 nm in both the flat plate molds A2 and B2.
  • the barrier region in the flat plate mold B2 was prepared using a width of 5 mm around the pattern portion.
  • the material H was formed on the quartz substrate by spin coating to a thickness of 500 nm to 1000 nm.
  • the coated surface of the resin mold was bonded to the material H film, pressed at 0.05 MPa, and then irradiated with UV. Finally, the resin mold was peeled off.
  • Table 2 shows the results of Examples and Comparative Examples.
  • (H) Cylindrical mold preparation Quartz glass was used as the substrate of the cylindrical mold, and a fine concavo-convex structure was formed on the quartz glass surface by a direct drawing lithography method using a semiconductor laser.
  • a cylindrical mold I having only a pattern part 301 (refer to FIG. 23 hereafter) and a cylindrical mold J having a pattern part 301 and a barrier region 302 were produced.
  • the fine concavo-convex structure of the pattern portion 301 is set such that the cylindrical molds I and J have a pitch of 460 nm, a height of 460 nm, and an opening width of 430 nm.
  • the barrier region 302 in the cylindrical mold J was formed with a width of 5 mm outside the pattern portion 301.
  • Durasurf HD-1110Z (manufactured by Daikin Chemical Industries) was applied to the cylindrical molds I and J, heated at 60 ° C. for 1 hour, and then allowed to stand at room temperature for 24 hours and fixed. Thereafter, it was washed 3 times with Durasurf HD-ZV (manufactured by Daikin Chemical Industries), and a mold release treatment was performed.
  • PET film A curable resin composition was applied to an easily adhesive surface of A4100 (manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 ⁇ m) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 6 ⁇ m.
  • a PET film coated with the curable resin composition is pressed against each of the cylindrical molds I and J with a nip roll (0.1 MPa), and the temperature is 25 ° C., the humidity is 60%, and the center of the lamp is below.
  • Ultraviolet rays are irradiated using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • a reel-shaped resin mold K (length: 200 m, width: 300 mm) was transferred.
  • the dot shape had a pitch of 460 nm and a height of 460 nm.
  • PET film A4100 (manufactured by Toyobo Co., Ltd .: 300 mm wide, 100 ⁇ m thick) curable resin similar to the resin used when the resin mold K was produced by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) The composition was applied so as to have a coating film thickness of 6 ⁇ m. Next, the PET film coated with the curable resin composition was pressed with a nip roll (0.1 MPa) against the fine concavo-convex structure surface of the resin mold K obtained by direct transfer from the cylindrical mold I or J. Irradiate ultraviolet rays using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd.
  • H bulb UV exposure apparatus manufactured by Fusion UV Systems Japan Co., Ltd.
  • the integrated exposure amount under the lamp center is 600 mJ / cm 2 at a temperature of 25 ° C. and a humidity of 60%.
  • a plurality of reel-shaped resin molds L (length: 200 m, width: 300 mm) having a fine uneven structure similar to the cylindrical mold I or J, which is continuously photocured and has a fine uneven structure transferred to the surface. Obtained.
  • the hole shape was a pitch of 460 nm, a height of 460 nm, and an opening width of 430 nm.
  • the ratio (Es / Eb) between the surface (surface layer) fluorine element concentration (Es) and the average fluorine element concentration (Eb) of the obtained resin mold D having the hole shape is 40 to 80 depending on the charged amount of DACHP. It was confirmed that the contact angles of the pattern part 311 of the resin mold L and the barrier region 312 with respect to water are both greater than 90 degrees.
  • Materials E, F, and G were diluted with PGME or MIBK.
  • the dilution ratio is in the range of 1% to 5%, from the state in which only the fine uneven structure of the resin mold L is filled to the state in which the fine uneven structure is completely filled and the coating film is formed on the fine uneven structure Tried until.
  • the coating of the materials E, F, and G on the fine concavo-convex structure surface of the resin mold L was performed using the same apparatus as the above (i) production of the reel-shaped transfer mold (I).
  • the diluted materials E, F, and G were applied to the fine concavo-convex structure surface of the resin mold L by microgravure coating, and the state of passing through a dry atmosphere of 80 degrees was confirmed.
  • the other is that, in the fine uneven structure in the barrier region, the average roughness factor Rf1 of the pattern portion and the average roughness factor Rf2 of the barrier region are discontinuous, and the average roughness factor Rf2 of the barrier region is non-patterned (
  • FIG. 34 is a diagram relating to the barrier region A, and is a graph showing the relationship between the feed pitch and distance (graph 104) and the roughness factor Rf and distance (graph 105) in this case.
  • the horizontal axis of the graph shown in FIG. 34 indicates the distance [mm] from the interface (point 0) between the pattern part and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown.
  • the feed pitch at point 0 (distance 0 mm) is 398 nm and is continuous with the pattern portion.
  • the feed pitch increases exponentially as the distance from point 0 increases.
  • the roughness factor Rf continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side.
  • the aperture ratio decreases from the pattern portion side to the barrier region side.
  • FIG. 35 is a diagram relating to the barrier region B, and is a graph showing the relationship between the feed pitch and distance (graph 106) and the roughness factor Rf and distance (graph 107) in this case.
  • the horizontal axis of the graph shown in FIG. 35 indicates the distance [mm] from the interface (point 0) between the pattern part and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown.
  • Rf (A) and feed pitch (B) of the pattern part are also used as reference points in order to show discontinuity of Rf and feed pitch of the pattern part and the barrier region at the position of point 0 (distance 0 mm). Described.
  • the coating liquid repelled in the non-pattern part is repelled regardless of the materials E to G and the concentration thereof. It moved on the non-patterned part of the resin mold due to self-flow until it became stable and the flow caused by the vibration of the resin mold, but it could not get over the barrier area and was parallel to the barrier area on the non-patterned side of the barrier area. Arranged. For this reason, no coating spots were observed at the pattern edge portion.
  • the coating liquid that was repelled on the non-pattern part, headed toward the pattern part side, and prevented from entering the pattern part by the barrier area was arranged along the non-pattern part side of the barrier area. Good coating results were obtained both with the barrier region A and with the barrier region B, but the barrier property of the coating liquid repelled on the non-patterned portion (the repelling condition in the barrier region) is The case where the barrier region B was provided was stronger.
  • a similar examination was performed using a flat plate mold instead of a cylindrical mold. Quartz glass was used as the base material of the flat plate mold, and a fine concavo-convex structure was formed on the flat plate quartz surface by a direct drawing lithography method using a semiconductor laser.
  • a flat plate mold I2 having only a pattern portion and a flat plate mold J2 having a pattern portion and a barrier region were produced.
  • the fine concavo-convex structure in the pattern part was set to have a pitch of 460 nm, a depth of 460 nm, and an opening width of 430 nm for both of the flat plate molds I2 and J2.
  • the barrier region in the flat plate mold J2 was produced using a width of 5 mm around the pattern portion.
  • a photocurable resin (MUR / manufactured by Maruzen Petrochemical Co., Ltd.) was formed on a sapphire substrate by spin coating at 750 nm.
  • the coating surface of the resin mold was bonded to the material H film, and was bonded at 0.01 MPa using a laminator. Then, after pressing at 0.05 MPa, UV irradiation was performed. The UV irradiation was performed until the integrated light amount reached 1200 mJ / cm 2 . Finally, the resin mold was peeled off.
  • Table 3 shows the results of Examples and Comparative Examples.
  • ⁇ Preparation of transfer template (I)> By following the above embodiment, the contact angle of water to the transfer area (pattern part) and the aperture ratio of the transfer area (pattern part) and the barrier area by changing the pitch, opening diameter, and Es / Eb value of the fine concavo-convex structure.
  • a transfer mold (I) (reel-shaped resin mold) in which the roughness factors of the transfer area (pattern part) and the barrier area were controlled was produced.
  • the reel-shaped resin mold is ⁇ Transfer mold (I)>
  • the produced transfer template (I) is shown in Table 4.
  • the barrier region was designed by controlling the opening diameter with respect to the transfer region (pattern part).
  • the opening diameter was controlled by adjusting exposure energy, rotation speed, and pressure and time during dry etching when a cylindrical mold was produced.
  • Transfer template (I) No. described in Table 4 1 to 7 were prepared, and the material F was diluted to 3% by weight with PGME and coated on the transfer mold (I) using a bar coater. The coating speed was 25 mm / sec. After coating, the transfer mold (I) was placed in a drying oven at 80 ° C. for 5 minutes to remove the solvent and dry.
  • Evaluation was as follows: coating property, releasability, and preparation of a filling layer transfer mold (referred to as “filling layer” in Table 4), and were judged visually and by a scanning electron microscope.
  • the coating failure (1) that is, the coating failure due to the division of the coating liquid on the interface between the pattern part and the non-pattern part can be suppressed.
  • the filling layer transfer mold shown in FIG. 1 was further coated under the following conditions, and the surface state was photographed and observed.
  • a new coating solution a benzylic acrylic polymer to which an acrylate monomer and a photopolymerization initiator were added was used. The concentration was adjusted to 12.6% with propylene glycol monomethyl ether and methyl ethyl ketone, and 25 mm / sec.
  • the film was formed by the bar coating method. After film formation, the solvent was dried by leaving it in an oven at 80 degrees for 5 minutes.
  • the produced transfer template (II) is shown in Table 5.
  • the barrier region was designed by controlling the convex portion diameter with respect to the pattern portion.
  • the convex part diameter was controlled by adjusting the exposure energy and rotational speed, and the pressure and time of dry etching when producing a cylindrical mold.
  • the transfer template (II) shown in Table 5 was prepared, the material F was diluted to 3% with PGME, and coating was performed on the transfer template (II) using a bar coater.
  • Coating speed is 25mm / sec. It was. After coating, the transfer mold (II) was placed in a drying oven at 80 ° C. for 5 minutes to remove the solvent and dry.
  • Evaluation was as follows: coating property, releasability, and preparation of a filling layer transfer mold (referred to as “filling layer” in Table 5), and were judged visually and by a scanning electron microscope.
  • it has the effect of providing a mold for transferring a fine concavo-convex structure with good releasability and good transfer material coating properties.
  • it can be controlled in the nano / micrometer size region. This is useful for the production of optical elements and biomaterials.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

Provided is a convexo-concave microstructure transcription template that exerts good transfer material coatability and good releasability at the same time. This convexo-concave microstructure transcription template (110) has: a base material; a patterned section (111) where a convexo-concave microstructure, which is to be transferred onto an object to be processed, is formed in a portion of one of the primary surfaces of the base material; a non-patterned section (112) where the convexo-concave microstructure is not formed and that consists of an area of the one primary surface other than the transfer area; and a barrier area (114) that is provided between the patterned section (111) and the non-patterned section so as to border, at least partially, the patterned section (111). The patterned section (111) and the barrier area (114) contain multiple concave sections. The relationship expressed as Rf1 > Rf2 is established between the average roughness factor (Rf1) of the patterned section (111) and the average roughness factor (Rf2) of barrier area (114), and the relationship expressed as Ar1 > Ar2 is established between the average aperture ratio (Ar1) of the patterned section (111) and the average aperture ratio (Ar2) of the barrier area (114).

Description

微細凹凸構造転写用鋳型Mold for transfer of fine relief structure
 本発明は、表面に微細凹凸構造が転写された被処理体を作製するための微細凹凸構造転写用鋳型に関する。 The present invention relates to a fine concavo-convex structure transfer mold for producing a target object having a fine concavo-convex structure transferred on the surface thereof.
 ナノ・マイクロメートルサイズ領域に制御対象を有する光学素子やバイオ材料を開発する上で、ナノ・マイクロメートルサイズ領域において精密に加工制御された部材を用いることは、制御機能に大きく影響を与える。とりわけ民生用の光学素子の場合、主に数百nmスケールでの波長制御が求められるため、数nm~数十nmの加工精度が重要である。さらに、量産性の観点から、加工精度の再現性、均一性、スループット性も兼ね備えた精密加工技術であることが望まれる。 In developing optical elements and biomaterials that have control targets in the nano / micrometer size region, the use of members that are precisely processed and controlled in the nano / micrometer size region greatly affects the control function. In particular, in the case of optical elements for consumer use, wavelength control on the scale of several hundreds of nm is mainly required, so that processing accuracy of several nm to several tens of nm is important. Furthermore, from the viewpoint of mass productivity, it is desired that the precision processing technology has reproducibility, uniformity, and throughput of processing accuracy.
 公知の微細加工技術としては、例えば、電子線を使って直接微細加工する方法や、干渉露光で大面積に一括描画する方法等がある。最近では、半導体技術でのステッパ装置を応用したステップ&リピート法での微細パタン加工も知られている。しかしながら、いずれの方法も複数の加工工程を必要とし、高額な設備投資が必要であるため、スループット性やコスト面で生産性の良い技術とは言い難い。 Known micro-processing techniques include, for example, a method of directly micro-processing using an electron beam and a method of batch drawing on a large area by interference exposure. Recently, fine pattern processing by a step & repeat method using a stepper device in semiconductor technology is also known. However, each method requires a plurality of processing steps and requires a large capital investment. Therefore, it is difficult to say that the technique is good in productivity in terms of throughput and cost.
 これらの課題を解決する上で提案されている加工方法の1つに、ナノインプリント法がある。ナノインプリント法は、微細パタン加工された部材を鋳型として用いて、樹脂(転写材)に数nm~数十nmの加工精度で微細パタンを転写して複製する技術である。簡易な工程で実施できるため、産業上欠かせない精密複製加工技術として注目されている。特に、ラジカル重合性樹脂や、カチオン重合性樹脂といった光重合性樹脂を転写材として用いる光ナノインプリント法は、迅速に繰り返し転写が可能なロールツーロール法プロセスに応用し易く、転写精度とスループット性を兼ね備えるという点で魅力的とされる。しかし、モールド側の材質に関しては、主に石英やサファイア、ガラス製モールドに制限され、その剛性材質ゆえに連続製造技術や加工プロセスにおいて汎用性に欠ける課題がある。これらの剛性モールドが有する課題を解決するためには、剛性モールドの代替としてフレキシブル性を有す樹脂モールドが必要となる。さらに、モールドに対する離型処理は、離型剤を用いるため環境負荷が大きいことや、生産性を低下させることから、離型処理のいらない、高離型性を具備したモールドが要求される。このような要求をふまえて、近年、フレキシブル性を具備した高離型性樹脂モールドが報告されている(例えば、特許文献1参照)。 One of the processing methods proposed for solving these problems is the nanoimprint method. The nanoimprint method is a technique for transferring a fine pattern onto a resin (transfer material) with a processing accuracy of several nanometers to several tens of nanometers by using a finely patterned member as a mold. Since it can be carried out with simple processes, it is attracting attention as a precision replication processing technology that is indispensable in industry. In particular, the optical nanoimprint method using a photopolymerizable resin such as a radical polymerizable resin or a cationic polymerizable resin as a transfer material is easy to apply to a roll-to-roll process capable of rapid and repetitive transfer, thereby improving transfer accuracy and throughput. It is attractive in that it combines. However, the material on the mold side is mainly limited to quartz, sapphire, and a glass mold, and due to its rigid material, there is a problem of lack of versatility in continuous manufacturing techniques and processing processes. In order to solve the problems of these rigid molds, a flexible resin mold is required as an alternative to the rigid mold. Furthermore, since the mold release treatment uses a mold release agent, the environmental load is large and the productivity is lowered. Therefore, a mold having a high mold release property that does not require a mold release treatment is required. In recent years, a highly releasable resin mold having flexibility has been reported in view of such demands (see, for example, Patent Document 1).
特開2006-198883号公報JP 2006-198883 A
 モールドの高離型性を発現させるためには、特許文献1に開示のように、フッ素含有樹脂を転写材としてマスターモールド(原版)から転写成型するか、またはフッ素成分の表面偏析を利用して転写成型するかまたはポリジメチルシロキサンに代表される離型性に優れたシリコーンによる転写成型が必要となる。その他、転写成型された樹脂モールドに対して離型剤を使用した表面処理手法等が挙げられる。 In order to develop high mold releasability, as disclosed in Patent Document 1, transfer molding is performed from a master mold (original plate) using a fluorine-containing resin as a transfer material, or surface segregation of fluorine components is used. Either transfer molding or transfer molding with silicone having excellent releasability represented by polydimethylsiloxane is required. In addition, a surface treatment method using a release agent for the transfer molded resin mold may be used.
 いずれの手法においても、転写成型された樹脂モールド表面は、自由エネルギーが低くなり、転写材に対する親和性が低下する。樹脂モールドを鋳型として用いて転写材に微細凹凸構造を転写する手法として、樹脂モールドの微細凹凸構造上に、直接、転写材を塗工する方法が挙げられるが、転写材と樹脂モールド表面との親和性が低い場合には、転写材の塗工性が低下するという課題があった。 In any method, the resin mold surface that has been transferred and molded has low free energy, and the affinity for the transfer material is reduced. As a technique for transferring a fine concavo-convex structure onto a transfer material using a resin mold as a mold, a method of directly applying the transfer material onto the fine concavo-convex structure of the resin mold can be mentioned. When the affinity is low, there is a problem that the coating property of the transfer material is lowered.
 これらの課題を解決する手法として、転写材との親和性をより高めるための樹脂モールドへの酸素アッシングといった表面処理を施す手法や、または転写材自体に界面活性剤に代表されるレベリング剤を添加する手法が提案されている。しかしながら、樹脂モールドへの表面処理は、離型性を悪化させるため、転写材の転写精度を減少させる可能性が示唆される。さらに、樹脂モールドは有機物にて構成されているため、これらの処理により、その形状が乱れ、転写忠実性に劣ることも示唆される。一方、転写材へのレベリング剤の添加は、転写材への不純物の添加を意味するため、本来求められる転写材の機能を減少させる可能性が示唆される。 To solve these problems, surface treatment such as oxygen ashing to the resin mold to increase the affinity with the transfer material, or a leveling agent typified by a surfactant is added to the transfer material itself A technique has been proposed. However, since the surface treatment to the resin mold deteriorates the releasability, it is suggested that the transfer accuracy of the transfer material may be reduced. Furthermore, since the resin mold is made of an organic material, it is suggested that the shape of the resin mold is disturbed and the transfer fidelity is poor. On the other hand, the addition of the leveling agent to the transfer material means the addition of impurities to the transfer material, which suggests the possibility of reducing the originally required function of the transfer material.
 本発明は、かかる点に鑑みてなされたものであり、高離型性を具備しつつも、転写材の塗工性が良好な微細凹凸構造転写用鋳型を提供することを目的とする。 The present invention has been made in view of such points, and an object of the present invention is to provide a mold for transferring a fine concavo-convex structure in which a transfer material has good coatability while having high releasability.
 本発明の被処理体に微細凹凸構造を転写するための微細凹凸構造転写用鋳型は、基材と、前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、前記転写領域および前記バリア領域は複数の凹部を含み、且つ、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立することを特徴とする。 The fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region. A barrier region provided so as to be adjacent to the transfer region, the transfer region and the barrier region include a plurality of recesses, and an average roughness factor Rf1 of the transfer region, and the barrier region Rf1> Rf2 is established between the average roughness factor Rf2 and Ar1> Ar2 between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Established It is characterized in.
 本発明の被処理体に微細凹凸構造を転写するための微細凹凸構造転写用鋳型は、基材と、前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、前記転写領域および前記バリア領域は複数の凸部を含み、且つ、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立することを特徴とする。 The fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region. A barrier region provided so that the portion is adjacent to the transfer region, the transfer region and the barrier region include a plurality of convex portions, and an average roughness factor Rf1 of the transfer region, and the barrier The relationship Rf1 <Rf2 is established between the average roughness factor Rf2 of the region, and the relationship Ar1> Ar2 is established between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Is established It is characterized in.
 本発明の被処理体に微細凹凸構造を転写するための微細凹凸構造転写用鋳型は、基材と、前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、前記転写領域および前記バリア領域は複数の凹部を含み、且つ、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立することを特徴とする。 The fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention has a substrate and a fine concavo-convex structure transferred to the object to be processed on a part of one main surface of the substrate. At least one of the formed transfer region, the non-transfer region where the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region. A barrier region provided so as to be adjacent to the transfer region, the transfer region and the barrier region include a plurality of recesses, and an average roughness factor Rf1 of the transfer region, and the barrier region Rf1 <Rf2 is established between the average roughness factor Rf2 and Ar1 <Ar2 between the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region. Established It is characterized in.
 さらに、本発明の被処理体に微細凹凸構造を転写するための微細凹凸構造転写用鋳型は、基材と、前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、前記転写領域および前記バリア領域は複数の凸部を含み、且つ、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立することを特徴とする。 Furthermore, the fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to the object to be processed of the present invention includes a substrate and fine concavo-convex transferred to the object to be processed on a part of one main surface of the substrate. At least between the transfer region in which the structure is formed, the non-transfer region in which the fine concavo-convex structure other than the transfer region in one main surface of the substrate is not formed, and the transfer region and the non-transfer region A barrier region provided so that a part thereof is adjacent to the transfer region, the transfer region and the barrier region include a plurality of convex portions, and an average roughness factor Rf1 of the transfer region; The relationship Rf1> Rf2 is established between the barrier region average roughness factor Rf2, and Ar1 <Ar2 between the transfer region average aperture ratio Ar1 and the barrier region average aperture ratio Ar2. connection of Characterized in that it holds.
 本発明によれば、高離型性を具備しつつも、転写材の塗工性が良好な微細凹凸構造転写用鋳型を提供できる。 According to the present invention, it is possible to provide a mold for transferring a fine concavo-convex structure having a high releasability and a good transfer material coating property.
転写材を塗工して微細凹凸構造を転写する鋳型を示す模式図である。It is a schematic diagram which shows the casting_mold | template which applies a transfer material and transfers a fine uneven structure. 転写材を塗工して微細凹凸構造を転写する鋳型を示す模式図である。It is a schematic diagram which shows the casting_mold | template which applies a transfer material and transfers a fine uneven structure. 本実施の形態に係る微細凹凸構造転写用鋳型を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure transfer mold according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure transfer mold according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の凸部または凹部の配列について示す模式図である。It is a schematic diagram shown about the arrangement | sequence of the convex part or the recessed part of the casting_mold | template for fine concavo-convex structure which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型のバリア領域を示す模式図である。It is a schematic diagram which shows the barrier area | region of the casting_mold | template for fine concavo-convex structure which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型のバリア領域を示す模式図である。It is a schematic diagram which shows the barrier area | region of the casting_mold | template for fine concavo-convex structure which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型のバリア領域を示す模式図である。It is a schematic diagram which shows the barrier area | region of the casting_mold | template for fine concavo-convex structure which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造におけるラフネスファクタRfを説明する説明図である。It is explanatory drawing explaining the roughness factor Rf in the fine concavo-convex structure of the mold for fine concavo-convex structure transfer concerning this embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型の微細凹凸構造を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure of the mold for fine concavo-convex structure transfer according to the present embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型のバリア領域の平均ラフネスファクタRf2が有する勾配例を説明する説明図である。It is explanatory drawing explaining the example of the gradient which the average roughness factor Rf2 of the barrier area | region of the mold for fine concavo-convex structure transfer concerning this embodiment has. 本実施の形態に係る微細凹凸構造転写用鋳型のバリア領域の平均ラフネスファクタRf2が有する勾配例を説明する説明図である。It is explanatory drawing explaining the example of the gradient which the average roughness factor Rf2 of the barrier area | region of the mold for fine concavo-convex structure transfer concerning this embodiment has. 第1の実施形態に係る微細凹凸構造転写用鋳型を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure transfer mold according to the first embodiment. 第2の実施形態に係る微細凹凸構造転写用鋳型を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure transfer mold according to the second embodiment. 第3の実施形態に係る微細凹凸構造転写用鋳型を示す模式図である。It is a schematic diagram which shows the fine concavo-convex structure transfer mold according to the third embodiment. 本実施の形態に係る充填層転写用鋳型を示す模式図である。It is a schematic diagram which shows the casting_mold | template for filling layer transfer which concerns on this Embodiment. バリア領域のない充填層転写用鋳型を示す模式図である。It is a schematic diagram which shows the casting_mold | template for filling layer transfer without a barrier area | region. 本実施の形態に係る充填層転写用鋳型を示す模式図である。It is a schematic diagram which shows the casting_mold | template for filling layer transfer which concerns on this Embodiment. 本実施の形態に係る充填層転写用鋳型を用いて無機基材の加工方法の各工程を示す工程図である。It is process drawing which shows each process of the processing method of an inorganic base material using the casting_mold | template for packed bed transfer which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型を用いた被処理体への微細凹凸構造形成方法を説明するための工程図である。It is process drawing for demonstrating the fine uneven | corrugated structure formation method to the to-be-processed object using the casting_mold | template for fine uneven | corrugated structure transfer which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造転写用鋳型を用いた被処理体への微細凹凸構造形成方法を説明するための工程図である。It is process drawing for demonstrating the fine uneven | corrugated structure formation method to the to-be-processed object using the casting_mold | template for fine uneven | corrugated structure transfer which concerns on this Embodiment. 本実施の形態に係る微細凹凸構造の周ピッチと距離、および、ラフネスファクタRfと距離との関係を示すグラフである。It is a graph which shows the relationship between the circumferential pitch and distance of the fine concavo-convex structure concerning this Embodiment, and the roughness factor Rf and distance. 本発明の実施例に係る微細凹凸構造の送りピッチと距離、および、ラフネスファクタRfと距離との関係を示すグラフである。It is a graph which shows the relationship between the feed pitch and distance of the fine concavo-convex structure which concerns on the Example of this invention, and the roughness factor Rf and distance. 本発明の実施例に係る微細凹凸構造の送りピッチと距離、および、ラフネスファクタRfと距離との関係を示すグラフである。It is a graph which shows the relationship between the feed pitch and distance of the fine concavo-convex structure which concerns on the Example of this invention, and the roughness factor Rf and distance. 本発明の実施例に係る微細凹凸構造の送りピッチと距離、および、ラフネスファクタRfと距離との関係を示すグラフである。It is a graph which shows the relationship between the feed pitch and distance of the fine concavo-convex structure which concerns on the Example of this invention, and the roughness factor Rf and distance.
 本発明の実施の形態について、以下、具体的に説明する。 Embodiments of the present invention will be specifically described below.
 図1および図2は、転写材を塗工して微細凹凸構造を転写する鋳型を示す模式図である。図1Aに示すように、鋳型110は、微細パタン加工された転写領域、すなわちパタン部111を備えている。鋳型110におけるパタン部111以外の領域は、微細パタン加工されていない非転写領域、すなわち非パタン部112である。 FIG. 1 and FIG. 2 are schematic views showing a mold for applying a transfer material to transfer a fine concavo-convex structure. As shown in FIG. 1A, the mold 110 is provided with a finely patterned transfer region, that is, a pattern portion 111. The area other than the pattern part 111 in the mold 110 is a non-transfer area that is not finely patterned, that is, a non-pattern part 112.
 この鋳型110に転写材を含む塗工液113を塗工すると、パタン部111と非パタン部112とでは、塗工液113にかかる力F(θ)の方向が逆となる(図1B参照)、または力の方向は同じでも、その絶対値が大きく異なる。このような力F(θ)が、パタン部111と非パタン部112との界面部に集中する。このとき、(1)離型性の発現する表面自由エネルギーの範囲において、鋳型110の表面自由エネルギーを増加させ、塗工性を向上させる場合、塗工液113の液滴内部には大きな応力が加わるため、パタン部111と非パタン部112との界面において液膜の***が起こり、これにより塗工液113の塗工不良が誘発される(以下、この現象を「塗工不良(1)」とも記す)。 When the coating liquid 113 containing a transfer material is applied to the mold 110, the direction of the force F (θ) applied to the coating liquid 113 is reversed between the pattern part 111 and the non-pattern part 112 (see FIG. 1B). Even if the direction of the force is the same, the absolute values are greatly different. Such a force F (θ) is concentrated at the interface between the pattern part 111 and the non-pattern part 112. At this time, (1) when the surface free energy of the mold 110 is increased and the coating property is improved within the range of the surface free energy where the releasability is expressed, a large stress is applied to the inside of the droplet of the coating solution 113. For this reason, the liquid film is split at the interface between the pattern part 111 and the non-pattern part 112, thereby inducing a coating failure of the coating liquid 113 (hereinafter, this phenomenon is referred to as “coating failure (1)”). Also noted).
 一方、(2)離型性を強く発現させるために、鋳型110の表面自由エネルギーを大きく減少させた場合、非パタン部112と塗工液113の親和性が極端に低くなり、塗工された転写材は、非パタン部112上でミリメートル以上のスケールではじかれる。この場合、はじかれた非パタン部112上の塗工液113の液滴が、パタン部111内部へと部分的に侵入し、結果、パタン部111上の塗工液113の膜厚(特にパタン部111のエッジ部)に斑が生じる。このような、非パタン部112上ではじかれた塗工液113による、パタン部111上の塗工斑も、塗工不良に含まれる(以下、この現象を「塗工不良(2)」とも記す)。 On the other hand, (2) when the surface free energy of the mold 110 is greatly reduced in order to strongly develop the mold release property, the affinity between the non-pattern part 112 and the coating liquid 113 is extremely low, and the mold 110 is coated. The transfer material is repelled on the non-pattern part 112 on a scale of millimeter or more. In this case, the droplet of the coating liquid 113 on the repelled non-pattern part 112 partially penetrates into the pattern part 111, and as a result, the film thickness of the coating liquid 113 on the pattern part 111 (particularly the pattern Spots appear on the edge of the portion 111. Such coating spots on the pattern portion 111 due to the coating liquid 113 repelled on the non-pattern portion 112 are also included in the coating failure (hereinafter, this phenomenon is also referred to as “coating failure (2)”). Write down).
 また、図2Aに示すように、樹脂モールド121を、マスターモールド(原版)から得るとき、一般的に、特にロール・ツー・ロールプロセスを経る場合は、図2Aに示すように、樹脂モールド121には、パタン部122と非パタン部123が形成される。このような樹脂モールド121を鋳型として使用しそのパタンを転写形成するとき、離型性を優先させ、樹脂モールド121の離型力を高め自由エネルギーを大きく減少させた場合、塗工液124と樹脂モールド121との親和性が大きく低下する。このため、樹脂モールド121上に転写材を塗工した際に、図2Bに示すように、非パタン部123上にてはじかれた塗工液124が、矢印で示すように、パタン部122へと侵入し、パタン部122上で塗工液124の膜厚分布にばらつきが生じるという塗工不良(2)が発生する。 Further, as shown in FIG. 2A, when the resin mold 121 is obtained from a master mold (original), in general, particularly when a roll-to-roll process is performed, as shown in FIG. The pattern part 122 and the non-pattern part 123 are formed. When such a resin mold 121 is used as a mold and the pattern is transferred and formed, the release property is prioritized, the release force of the resin mold 121 is increased, and the free energy is greatly reduced. Affinity with the mold 121 is greatly reduced. For this reason, when the transfer material is applied onto the resin mold 121, as shown in FIG. 2B, the coating liquid 124 repelled on the non-pattern part 123 is transferred to the pattern part 122 as indicated by an arrow. The coating defect (2) occurs in which the film thickness distribution of the coating liquid 124 varies on the pattern portion 122.
 さらに、図1に示すパタン部111が有する微細パタンが微細凹凸構造であるほど、特に、ナノスケールになるほど、また、鋳型110の離型性が大きくなり、塗工液113と鋳型110との親和性が低下するほど、塗工液113にかかる力F(θ)は強くなり、塗工不良(1)、(2)の程度がより大きくなる。また、パタン部111と非パタン部112との間に存在する樹脂等の厚み斑の方向によっては、非パタン部112からパタン部111の方向に加わるF(θ)が見かけ上大きくなり、非パタン部112上にてはじかれた塗工液113の、パタン部111への侵入度合が増加し、塗工不良(2)の程度がより大きくなる。 Furthermore, the fine pattern of the pattern part 111 shown in FIG. 1 has a fine uneven structure, in particular, the nanoscale, and the mold releasability of the mold 110 is increased, and the affinity between the coating liquid 113 and the mold 110 is increased. As the property decreases, the force F (θ) applied to the coating liquid 113 becomes stronger, and the degree of coating defects (1) and (2) becomes larger. Further, depending on the direction of the thickness variation of the resin or the like existing between the pattern part 111 and the non-pattern part 112, F (θ) applied in the direction from the non-pattern part 112 to the pattern part 111 is apparently increased. The degree of penetration of the coating liquid 113 repelled on the portion 112 into the pattern portion 111 is increased, and the degree of coating failure (2) is further increased.
 そこで、本発明者は、塗工液113の液膜内部に加わる応力を緩和し、液体の***に代表される塗工不良(1)を抑制するために、または塗工液113の液滴内部に加わる応力を最大限に大きくし、非パタン部112上ではじかれた塗工液113の液滴が、パタン部111内部へと侵入することを阻害し、塗工不良(2)を抑制するために、図3に示すように、パタン部111と非パタン部112との間にバリア領域114を設けることを見出した。 Therefore, the present inventor relaxes the stress applied to the inside of the liquid film of the coating liquid 113 and suppresses the coating failure (1) represented by the division of the liquid, or the inside of the droplet of the coating liquid 113. The stress applied to the pattern portion is maximized, and the droplet of the coating liquid 113 repelled on the non-pattern portion 112 is prevented from entering the inside of the pattern portion 111, thereby suppressing the coating failure (2). Therefore, it has been found that a barrier region 114 is provided between the pattern part 111 and the non-pattern part 112 as shown in FIG.
 図4Aに示すように、パタン部111と非パタン部112との間にバリア領域114を設けることにより、塗工液113の接触角が連続的に変化し、塗工液113にかかる力F(θ)も連続的に変化する。そのため、塗工液113の液滴内部への応力集中に起因する塗工不良(1)は起こらずに、良好な塗工性を保つことができる。 As shown in FIG. 4A, by providing the barrier region 114 between the pattern part 111 and the non-pattern part 112, the contact angle of the coating liquid 113 changes continuously, and the force F ( θ) also changes continuously. Therefore, a good coating property can be maintained without causing a coating failure (1) due to the stress concentration inside the droplet of the coating solution 113.
 また、バリア領域114を設けることにより、バリア領域114上における塗工液113の液膜内部への応力を大きくすることができる。そのため、図4Bに示すように、非パタン部112上ではじかれた塗工液113の液滴は、矢印で示すように、バリア領域114を乗り越えることができず、パタン部111上の塗工性、特にパタン部111のエッジ部の塗工性が良好に保たれて塗工不良(2)が抑制される。 Further, by providing the barrier region 114, the stress in the liquid film of the coating liquid 113 on the barrier region 114 can be increased. Therefore, as shown in FIG. 4B, the droplet of the coating liquid 113 repelled on the non-pattern part 112 cannot get over the barrier region 114 as shown by the arrow, and the coating on the pattern part 111 And, in particular, the coating property of the edge portion of the pattern portion 111 is kept good, and the coating failure (2) is suppressed.
 本発明の微細凹凸構造転写用鋳型(以下、単に転写用鋳型とも言う)は、下記の4種類を包含する。第1の転写用鋳型(I)および、第2の転写用鋳型(II)を使用することにより、塗工不良(2)を抑制し、パタン部111に対する塗工性を良質に保つことができる。一方で、第3の転写用鋳型(III)および、第4の転写用鋳型(IV)を使用することにより、塗工不良(1)を抑制し、パタン部111に対する塗工性を良質に保つことができる。 The fine uneven structure transfer mold of the present invention (hereinafter also simply referred to as a transfer mold) includes the following four types. By using the first transfer mold (I) and the second transfer mold (II), the coating defect (2) can be suppressed, and the coating property for the pattern portion 111 can be kept in good quality. . On the other hand, by using the third transfer template (III) and the fourth transfer template (IV), the coating failure (1) is suppressed and the coating property to the pattern part 111 is kept in good quality. be able to.
 本発明の第1の転写用鋳型(I)においては、基材の一主面上に、少なくともいずれも複数の凹部を具備する転写領域およびバリア領域を具備する転写用鋳型であって、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立する。 The first transfer mold (I) of the present invention is a transfer mold having a transfer region and a barrier region each having at least a plurality of recesses on one main surface of a substrate, the transfer template The relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region The relationship Ar1> Ar2 is established.
 本発明の第2の転写用鋳型(II)においては、基材の一主面上に、少なくともいずれも複数の凸部を具備する転写領域およびバリア領域を具備する転写用鋳型であって、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立する。 The second transfer template (II) of the present invention is a transfer template having a transfer region and a barrier region each having at least a plurality of convex portions on one main surface of the substrate, A relationship of Rf1 <Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region The relationship Ar1> Ar2 is established.
 本発明の第3の転写用鋳型(III)においては、基材の一主面上に、少なくともいずれも複数の凹部を具備する転写領域およびバリア領域を具備する転写用鋳型であって、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立する。 The third transfer template (III) of the present invention is a transfer template including a transfer region and a barrier region each having at least a plurality of recesses on one main surface of a substrate, wherein the transfer The relationship Rf1 <Rf2 is established between the average roughness factor Rf1 of the region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio Ar2 of the barrier region A relationship of Ar1 <Ar2 is established.
 本発明の第4の転写用鋳型(IV)においては、基材の一主面上に、少なくともいずれも複数の凸部を具備する転写領域およびバリア領域を具備する転写用鋳型であって、前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立する。 The fourth transfer mold (IV) of the present invention is a transfer mold having a transfer region and a barrier region each having at least a plurality of convex portions on one main surface of the substrate, The relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the transfer area and the average roughness factor Rf2 of the barrier area, and the average aperture ratio Ar1 of the transfer area and the average aperture ratio Ar2 of the barrier area The relationship Ar1 <Ar2 is established.
 第1の転写用鋳型(I)においては、バリア領114域およびパタン部111ともに複数の凹部から構成される微細凹凸構造を具備し、バリア領域114のラフネスファクタRf2は、パタン部111のラフネスファクタRf1よりも小さく、且つ、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さく設定される。 In the first transfer mold (I), both the barrier region 114 region and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of concave portions, and the roughness factor Rf2 of the barrier region 114 is the roughness factor of the pattern portion 111. The average aperture ratio Ar2 of the barrier region 114 is set to be smaller than Rf1 and smaller than the average aperture ratio Ar1 of the pattern portion 111.
 また、第2の転写用鋳型(II)においては、バリア領域114およびパタン部111ともに複数の凸部から構成される微細凹凸構造を具備し、バリア領域114のラフネスファクタRf2は、パタン部111のラフネスファクタRf1よりも大きく、且つ、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さく設定される。このような、バリア領域114を設けることにより、バリア領域114上における塗工液113の液滴内部に加わる応力を最大限に大きくすることで、非パタン部112上にてはじかれた塗工液113の液滴が、パタン部111内部へと侵入することを阻害でき、塗工不良(2)を抑制できる。 In the second transfer template (II), both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of convex portions, and the roughness factor Rf2 of the barrier region 114 is equal to that of the pattern portion 111. The average aperture ratio Ar2 of the barrier region 114 is set to be smaller than the average aperture ratio Ar1 of the pattern portion 111, which is larger than the roughness factor Rf1. By providing such a barrier region 114, the stress applied to the inside of the droplets of the coating solution 113 on the barrier region 114 is maximized, so that the coating solution repelled on the non-patterned portion 112. It is possible to prevent the 113 droplets from entering the inside of the pattern part 111 and to suppress the coating failure (2).
 第3の転写用鋳型(III)においては、バリア領域114およびパタン部111ともに複数の凹部から構成される微細凹凸構造を具備し、バリア領域114のラフネスファクタRf2は、転写領域、すなわちパタン部111のラフネスファクタRf1よりも大きく、且つ、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きく設定される。 In the third transfer template (III), both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of concave portions, and the roughness factor Rf2 of the barrier region 114 is the transfer region, that is, the pattern portion 111. The average aperture ratio Ar2 of the barrier region 114 is set to be greater than the average aperture ratio Ar1 of the pattern portion 111.
 また、第4の転写用鋳型(IV)においては、バリア領域114およびパタン部111ともに複数の凸部から構成される微細凹凸構造を具備し、バリア領域114のラフネスファクタRf2は、パタン部111のラフネスファクタRf1よりも小さく、且つ、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きく設定される。このような、バリア領域114を設けることにより、バリア領域114上にて、塗工液113の液膜内部に加わる応力を緩和し、パタン部111と非パタン部112界面における液膜の***を抑制でき、塗工不良(1)を抑制することができる。 In the fourth transfer template (IV), both the barrier region 114 and the pattern portion 111 have a fine concavo-convex structure composed of a plurality of convex portions, and the roughness factor Rf2 of the barrier region 114 is equal to that of the pattern portion 111. The average aperture ratio Ar2 of the barrier region 114 is set to be smaller than the roughness factor Rf1 and larger than the average aperture ratio Ar1 of the pattern portion 111. By providing such a barrier region 114, the stress applied to the inside of the liquid film of the coating liquid 113 is relaxed on the barrier region 114, and the division of the liquid film at the interface between the pattern part 111 and the non-pattern part 112 is suppressed. And coating failure (1) can be suppressed.
 下記表1に、上述の第1~第4の転写用鋳型(I)~(IV)についてまとめた。 Table 1 below summarizes the above-described first to fourth transfer templates (I) to (IV).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1においてタイプとは、微細凹凸構造が、複数の凹部で構成されている場合を凹型、複数の凸部で構成されている場合を凸型と呼ぶ。 In Table 1, “type” refers to a case where the fine concavo-convex structure is constituted by a plurality of concave portions, and a case where the fine concavo-convex structure is constituted by a plurality of convex portions is called a convex type.
 以下、本発明の転写用鋳型の説明において、第1~第4の転写用鋳型(I)~(IV)のすべてに共通する説明の際は、単に転写用鋳型と記載し、第1~第4の転写用鋳型(I)~(IV)のいずれかの特徴を記載する場合は、第1の転写用鋳型(I)、第2の転写用鋳型(II)、第3の転写用鋳型(III)、または第4の転写用鋳型(IV)と記載する。また、転写用鋳型(I)、(II)といったような記載は、転写用鋳型(I)および転写用鋳型(II)に共通の特徴を記載することを意味する。 Hereinafter, in the description of the transfer template of the present invention, the description common to all of the first to fourth transfer templates (I) to (IV) will be simply referred to as the transfer template, When the characteristics of any of the four transfer templates (I) to (IV) are described, the first transfer template (I), the second transfer template (II), the third transfer template ( III) or the fourth transcription template (IV). In addition, descriptions such as transfer templates (I) and (II) mean that features common to transfer templates (I) and transfer templates (II) are described.
 このような転写用鋳型としては、例えば、円筒状または円柱状のマスターモールド(原版)と、このマスターモールドからの転写で得られるリール状樹脂モールド、また、円盤に代表される平板形状を有する平板マスターモールドと、このマスターモールドからの転写で得られるフィルム状樹脂モールドが挙げられる。 As such a transfer mold, for example, a cylindrical or columnar master mold (original), a reel-shaped resin mold obtained by transfer from the master mold, or a flat plate having a flat plate shape represented by a disk Examples thereof include a master mold and a film-shaped resin mold obtained by transfer from the master mold.
 転写用鋳型(I)、(III)が具備する微細凹凸構造は、特に限定されないが、円錐形状、角錐形状、楕円錘形状、円柱形状、角柱形状、または楕円柱形状である複数の凹部(ホール形状)で構成されてもよい。また、微細凹凸構造は、特定方向にそれぞれ延在する線状の凸部および凹部(ラインアンドスペース構造)で構成されてもよい。ホール形状は、各ホールが滑らかな凸部を通じ隣接していてもよい。 The fine concavo-convex structure provided in the transfer molds (I) and (III) is not particularly limited, but a plurality of concave portions (holes) having a conical shape, a pyramid shape, an elliptical cone shape, a cylindrical shape, a prismatic shape, or an elliptical columnar shape. Shape). Further, the fine concavo-convex structure may be constituted by linear convex portions and concave portions (line and space structure) extending in a specific direction. In the hole shape, each hole may be adjacent to each other through a smooth convex portion.
 一方、転写用鋳型(II)、(IV)の具備する微細凹凸構造は、特に限定されないが、円錐形状、角錐形状、楕円錘形状、円柱形状、角柱形状、または楕円柱形状である複数の凸部(ドット形状)で構成されてもよい。また、微細凹凸構造は、特定方向にそれぞれ延在する線状の凸部および凹部(ラインアンドスペース構造)で構成されてもよい。ドット形状は、各ドットが滑らかな凹部を通じ隣接していてもよい。 On the other hand, the fine concavo-convex structure provided in the transfer molds (II) and (IV) is not particularly limited, but a plurality of convex shapes having a conical shape, a pyramid shape, an elliptical cone shape, a cylindrical shape, a prismatic shape, or an elliptical columnar shape. It may be configured with a portion (dot shape). Further, the fine concavo-convex structure may be constituted by linear convex portions and concave portions (line and space structure) extending in a specific direction. The dot shape may be such that each dot is adjacent through a smooth recess.
 ここで、ドット形状とは、図5Aに示すように、基材131の表面に「柱状(錐状)体(凸部)131aが複数配置された形状」を意味する。また、ホール形状とは、図5Bに示すように、基材132の表面に「柱状(錐状)の穴(凹部)132bが複数形成された形状」を意味する。微細凹凸構造において、凸部または凹部同士の距離が50nm以上5000nm以下であり、凸部の高さまたは凹部の深さが10nm以上2000nm以下であることが好ましい。特に、凸部の高さまたは凹部の深さが50nm以上1000nm以下であると、パタン部111に対する塗工性と、バリア領域114の機能をいっそう向上することが可能となり、パタン部111への塗工性が向上すため好ましい。用途にもよるが、凸部または凹部同士の隣接距離(凸部の頂点同士の間隔または凹部の開口部中心点間の間隔)が小さく、凸部の高さまたは凹部の深さ、すなわち凹部の底から凸部の頂点までの高さが大きいことが好ましい。ここで、凸部とは、微細凹凸構造の平均高さより高い部位をいい、凹部とは、微細凹凸構造の平均高さより低い部位をいうものとする。また、微細凹凸構造のアスペクト比(凸部高さ/凸部底部径、または凹部深さ/凹部開口径)は、塗工精度、バリア領域の機能、および、転写精度の観点から0.1~5.0であると好ましく、0.3~3.0であるとより好ましく、0.5~1.5であると最も好ましい。 Here, the dot shape means “a shape in which a plurality of columnar (conical) bodies (convex portions) 131a are arranged on the surface of the base 131” as shown in FIG. 5A. In addition, the hole shape means “a shape in which a plurality of columnar (conical) holes (concave portions) 132 b are formed on the surface of the base material 132” as shown in FIG. 5B. In the fine concavo-convex structure, it is preferable that the distance between the protrusions or the recesses is 50 nm or more and 5000 nm or less, and the height of the protrusions or the depth of the recesses is 10 nm or more and 2000 nm or less. In particular, when the height of the convex portion or the depth of the concave portion is 50 nm or more and 1,000 nm or less, it is possible to further improve the coating property on the pattern portion 111 and the function of the barrier region 114, and the coating on the pattern portion 111. Since workability improves, it is preferable. Depending on the application, the adjacent distance between the projections or recesses (the interval between the apexes of the projections or the interval between the center points of the openings of the recesses) is small, the height of the projections or the depth of the recesses, It is preferable that the height from the bottom to the top of the convex portion is large. Here, the convex part means a part higher than the average height of the fine concavo-convex structure, and the concave part means a part lower than the average height of the fine concavo-convex structure. Also, the aspect ratio (convex height / convex bottom diameter or concave depth / concave opening diameter) of the fine concavo-convex structure is 0.1 to from the viewpoint of coating accuracy, barrier region function, and transfer accuracy. It is preferably 5.0, more preferably 0.3 to 3.0, and most preferably 0.5 to 1.5.
 転写用鋳型のパタン部111において、パタン部111の表面自由エネルギーを低くし、即ち、離型性を向上させ、且つ塗工性を良好に保つために、パタン部111は塗工液に対して、エネルギー的に最終的にとりうる塗工液のモードがWenzelモードになるような微細凹凸構造を具備すると好ましい。このような観点から、転写用鋳型における微細凹凸構造のパタン部111において、パタン部111における開口率が45%以上であると好ましい。特に、50%以上であると好ましく、55%以上であるとより好ましい。また、パタン部111における開口率が65%以上であると、パタン部111の微細凹凸構造の凸部上から凹部内部方向へのポテンシャルが働き、凹部内部へ塗工液が充填された後に、凸部上へと塗工液が再移動することを回避できるため、塗工性がいっそう向上し、より好ましい。さらには、パタン部111における開口率は、70%以上が好ましく、より好ましくは75%以上であり、80%以上であるとさらに好ましい。 In the pattern portion 111 of the transfer mold, in order to reduce the surface free energy of the pattern portion 111, that is, to improve the releasability and to keep the coating property good, the pattern portion 111 is It is preferable to have a fine concavo-convex structure in which the mode of the coating liquid that can be finally taken in terms of energy is a Wenzel mode. From such a viewpoint, it is preferable that the aperture ratio in the pattern portion 111 is 45% or more in the pattern portion 111 of the fine uneven structure in the transfer mold. In particular, it is preferably 50% or more, and more preferably 55% or more. Further, when the aperture ratio in the pattern part 111 is 65% or more, a potential from the convex part of the fine concavo-convex structure of the pattern part 111 toward the concave part works, and the convex part is filled after the coating liquid is filled into the concave part. Since it can avoid that a coating liquid re-moves to a part, coating property improves further and is more preferable. Furthermore, the aperture ratio in the pattern part 111 is preferably 70% or more, more preferably 75% or more, and further preferably 80% or more.
 また、転写用鋳型(I)、(III)におけるパタン部111のホール状の微細凹凸構造において、ホール開口部の面積が、ホール底部の面積よりも大きいと、上記効果をより発揮できるため好ましい。さらに、開口淵と凹部側面とは、連続的に滑らかにつながっていると、固液気界面(TPCL)におけるピン止め効果を小さくすることができ、上記効果をよりいっそう発揮できるため好ましい。 Also, in the hole-shaped fine concavo-convex structure of the pattern portion 111 in the transfer molds (I) and (III), it is preferable that the area of the hole opening is larger than the area of the hole bottom because the above effect can be exhibited more. Furthermore, it is preferable that the opening rod and the side surface of the recess are continuously and smoothly connected, because the pinning effect at the solid-liquid interface (TPCL) can be reduced and the above effect can be further exhibited.
 また、転写用鋳型(II)、(IV)におけるパタン部111のドット状の微細凹凸構造において、ドット頂点の面積が、ドット底部の面積よりも小さいと、上記効果をより発揮できるため好ましい。さらに、ドット頂部淵とドット側面とは、連続的に滑らかにつながっていると、固液気界面(TPCL)におけるピン止め効果を小さくすることができ、上記効果をよりいっそう発揮できるため好ましい。 Further, in the dot-shaped fine concavo-convex structure of the pattern portion 111 in the transfer molds (II) and (IV), it is preferable that the area of the dot apex is smaller than the area of the dot bottom, because the above effects can be exhibited. Furthermore, it is preferable that the dot top ridges and the dot side surfaces are connected continuously and smoothly because the pinning effect at the solid-liquid interface (TPCL) can be reduced and the above effect can be further exhibited.
 なお、転写用鋳型(I)、(II)を使用することで、以下のメカニズムにより塗工不良(2)を抑制することができる。離型性を強く発現させるために、表面自由エネルギーを大きく減少させた場合、非パタン部112と塗工液113との親和性が非常に小さくなる。この場合、パタン部111と非パタン部112との間にバリア領域114を設けることで、パタン部111とバリア領域114とで、微細凹凸構造の凹部内部から凸部上部へと加わる力、転写材塗工液の微細凹凸構造認識性および塗工初期の転写材塗工液の状態(モード)が変化し、バリア領域114上にて塗工液113の液滴(液膜)内部への応力を大きくすることができる。そのため、非パタン部112上ではじかれた塗工液113の液滴は、バリア領域114を乗り越えることができず、塗工不良(2)を抑制しパタン部111上の塗工性を良好に保つことができる。 In addition, by using the transfer molds (I) and (II), the coating failure (2) can be suppressed by the following mechanism. When the surface free energy is greatly reduced in order to express the release property strongly, the affinity between the non-pattern part 112 and the coating liquid 113 becomes very small. In this case, by providing the barrier region 114 between the pattern portion 111 and the non-pattern portion 112, the force applied from the inside of the concave portion of the fine concavo-convex structure to the upper portion of the convex portion by the pattern portion 111 and the barrier region 114, the transfer material The fine uneven structure recognizability of the coating liquid and the state (mode) of the transfer material coating liquid at the initial stage of coating change, and stress on the inside of the droplet (liquid film) of the coating liquid 113 on the barrier region 114 Can be bigger. For this reason, the droplets of the coating liquid 113 repelled on the non-pattern part 112 cannot get over the barrier region 114, and the coating defect on the pattern part 111 is improved by suppressing the coating failure (2). Can keep.
 一方で、転写用鋳型(III)、(IV)を使用することで、以下のメカニズムにより塗工不良(1)を抑制することができる。非パタン部112と塗工液113との親和性が、離型性を有す範囲で高い場合、パタン部111と非パタン部112との間に、バリア領域114を設けることで、パタン部111とバリア領域114とで、微細凹凸構造の凹部内部から凸部上部へと加わる力、塗工液の微細凹凸構造認識性および塗工初期の塗工液の状態(モード)がなだらかに変化するため、バリア領域114上における塗工液113にかかる力F(θ)も連続的に変化する。そのため、塗工液113の液膜内部への応力集中を抑制することができ、パタン部111上における良好な塗工性を保つことができる。 On the other hand, by using the transfer templates (III) and (IV), the coating failure (1) can be suppressed by the following mechanism. When the affinity between the non-pattern part 112 and the coating liquid 113 is high in a range having releasability, the pattern part 111 is provided by providing the barrier region 114 between the pattern part 111 and the non-pattern part 112. And the barrier region 114, the force applied from the inside of the concave portion of the fine concavo-convex structure to the upper portion of the convex portion, the fine concavo-convex structure recognizability of the coating liquid, and the state (mode) of the coating liquid in the initial stage of coating change gently The force F (θ) applied to the coating liquid 113 on the barrier region 114 also changes continuously. Therefore, the stress concentration inside the liquid film of the coating liquid 113 can be suppressed, and good coating properties on the pattern part 111 can be maintained.
 転写用鋳型のパタン部111に対する水の接触角は、転写材の転写性(離型性)の観点から60度以上であると好ましい。特に70度以上であると好ましく、80度以上であるとより好ましい。転写用鋳型のパタン部111に対する表面自由エネルギーをより低下させ、転写精度を向上させる観点から、85度以上であると好ましく、90度以上であるとより好ましい。一方でパタン部111に対する水の接触角の上限値は180度未満であると、塗工性を向上できるため好ましい。特に、160度以下であると好ましく、140度以下であるとより好ましい。更に、塗工液の滑り性を抑制し、塗工性をより高める観点から120度以下であると好ましい。このような離型性を発現する領域においても、上記開口率を満たし、バリア領域114を設けることで、パタン部111に対する塗工を良好に行うことができる。なお、接触角は、『基板ガラス表面のぬれ性試験方法』として,JIS R3257(1999)に制定された接触角測定方法を採用し、接触角測定対象となる基材として、本発明に係る転写用鋳型のパタン部111を使用するものとする。 The contact angle of water with the pattern portion 111 of the transfer mold is preferably 60 ° or more from the viewpoint of transferability (release property) of the transfer material. In particular, it is preferably 70 ° or more, and more preferably 80 ° or more. From the viewpoint of further reducing the surface free energy with respect to the pattern portion 111 of the transfer mold and improving the transfer accuracy, it is preferably 85 degrees or more, more preferably 90 degrees or more. On the other hand, the upper limit value of the contact angle of water with respect to the pattern part 111 is preferably less than 180 degrees because the coating property can be improved. In particular, it is preferably 160 ° or less, and more preferably 140 ° or less. Furthermore, it is preferable that it is 120 degrees or less from a viewpoint of suppressing the slipperiness of a coating liquid and improving coating property more. Even in a region that exhibits such releasability, coating on the pattern portion 111 can be performed satisfactorily by satisfying the opening ratio and providing the barrier region 114. Note that the contact angle adopts the contact angle measurement method established in JIS R3257 (1999) as the “wetting test method for substrate glass surface”, and the transfer according to the present invention is used as a base material for contact angle measurement. The pattern part 111 of the mold for use shall be used.
 さらに、転写用鋳型におけるバリア領域114による効果は、バリア領域114に対する水の接触角が90度以上であると一層発揮される。これは、転写用鋳型(I)、(II)の場合は、パタン部111とバリア領域114における、微細凹凸構造の凹部内部から凸部上部へと加わる力、塗工液113の微細凹凸構造認識性および塗工初期の塗工液の状態(モード)の変化の差をいっそう大きくできることによる。一方で、転写用鋳型(III)、(IV)の場合は、パタン部111とバリア領域114における、微細凹凸構造の凹部内部から凸部上部へと加わる力、塗工液113の微細凹凸構造認識性および塗工初期の塗工液の状態(モード)の変化をいっそうなだらかにできることによる。 Further, the effect of the barrier region 114 in the transfer mold is further exhibited when the contact angle of water with respect to the barrier region 114 is 90 degrees or more. In the case of the transfer molds (I) and (II), the force applied from the inside of the concave portion of the fine concavo-convex structure to the top of the convex portion in the pattern portion 111 and the barrier region 114, the fine concavo-convex structure recognition of the coating liquid 113 This is because the difference in the property and the change in the state (mode) of the coating liquid at the initial stage of coating can be further increased. On the other hand, in the case of the transfer templates (III) and (IV), the force applied from the inside of the concave portion of the fine concavo-convex structure to the upper portion of the convex portion 111 and the barrier region 114, and the fine concavo-convex structure recognition of the coating liquid 113 This is because the property and mode of the coating liquid at the initial stage of coating can be changed more gently.
 また、転写用鋳型における微細凹凸構造は、図6に示すように、面内において直交する第1方向D1と第2方向D2に対し、第1方向D1にピッチPで凸部(または凹部)が配列し、かつ、第2方向D2にピッチSで凸部(または凹部)が配列する場合において、第2方向D2に列をなす凸部(または凹部)の第1方向D1に対するずれαの規則性が高い配列であってもよいし(図6A参照)、ずれαの規則性が低い配列であってもよい(図6B参照)。ずれαとは、第1方向D1に平行な隣り合う列において、最も近接する凸部の中心を通る第2方向D2に平行な線分間の距離をいう。例えば、図6Aに示すように、第1方向D1に平行な第(N)列の任意の凸部の中心を通る第2方向D2に平行な線分と、この凸部から最も近い距離にある第(N+1)列の凸部の中心を通る第2方向D2に平行な線分との間の距離が、ずれαと規定される。図6Aに示す配列は、どの列を第(N)列としても、ずれαはほぼ一定であるため、周期性を備えた配列といえる。一方、図6Bに示す配列は、どの列を第(N)列とするかによって、ずれαの値が変わるため、非周期性を備えた配列といえる。 Further, as shown in FIG. 6, the fine uneven structure in the transfer mold has convex portions (or concave portions) at a pitch P in the first direction D1 with respect to the first direction D1 and the second direction D2 orthogonal in the plane. When the convex portions (or concave portions) are arranged in the second direction D2 with the pitch S, the regularity of the deviation α with respect to the first direction D1 of the convex portions (or concave portions) forming a row in the second direction D2 May be a high array (see FIG. 6A) or a low regularity of the shift α (see FIG. 6B). The shift α is a distance between line segments parallel to the second direction D2 passing through the center of the closest convex portion in adjacent rows parallel to the first direction D1. For example, as shown in FIG. 6A, a line segment parallel to the second direction D2 passing through the center of an arbitrary convex portion in the (N) th row parallel to the first direction D1 and the closest distance from the convex portion. A distance between a line segment passing through the center of the convex portion of the (N + 1) th row and parallel to the second direction D2 is defined as a shift α. The array shown in FIG. 6A can be said to be an array having periodicity because the shift α is substantially constant regardless of which column is the (N) th column. On the other hand, the array shown in FIG. 6B can be said to be an array having aperiodicity because the value of the shift α changes depending on which column is the (N) th column.
 ピッチPおよびピッチSは、想定する用途に応じて適宜設計することができる。例えば、ピッチPとピッチSとは等しいピッチであってもよい。また、図6においては、凸部(または凹部)が重なりを持たず独立した状態で描かれているが、第1方向D1と第2方向D2の両方、またはいずれか一方に配列する凸部(または凹部)が重なっていてもよい。 The pitch P and the pitch S can be appropriately designed according to the intended use. For example, the pitch P and the pitch S may be equal. Moreover, in FIG. 6, although the convex part (or concave part) is drawn in an independent state without overlapping, the convex part (or convex part) arranged in both or one of the first direction D1 and the second direction D2. Or the recessed part) may overlap.
 例えば、LEDのサファイア基材表面の加工を行うための転写用鋳型の場合、微細凹凸構造は、ピッチが200nm~800nm、高さが100nm~1000nmである、ナノスケールで正規配列をなし、かつ、マイクロスケールの大きな周期性を有すると好ましい。特に、転写用鋳型(I)、(III)であると好ましい。中でも、微細凹凸構造のピッチが100nm~500nm、高さが50nm~500nmであると、LEDの内部量子効率を向上できる。さらに、配列として、ナノスケールで正規配列をなし、かつ、マイクロスケールの大きな周期性を有する、ピッチにマイクロスケールの周期を有する変調を加えると、光取り出し効率も同時に向上させることが可能となり、高効率なLEDを製造することができる。 For example, in the case of a transfer mold for processing the surface of a sapphire substrate of an LED, the fine concavo-convex structure has a pitch of 200 nm to 800 nm, a height of 100 nm to 1000 nm, a nanoscale regular arrangement, and It is preferable to have a micro-scale large periodicity. In particular, transfer templates (I) and (III) are preferable. In particular, when the pitch of the fine concavo-convex structure is 100 nm to 500 nm and the height is 50 nm to 500 nm, the internal quantum efficiency of the LED can be improved. Furthermore, if the modulation is made in a nanoscale regular arrangement and has a microscale periodicity, and the pitch has a microscale period, the light extraction efficiency can be improved at the same time. An efficient LED can be manufactured.
 本発明の転写用鋳型におけるパタン部111およびバリア領域114は、上記説明したように、所定の接触角範囲を満たすことで高離型性を発現し、且つ所定の開口率を満たすことで塗工性を良好に保つことが出来る。 As described above, the pattern portion 111 and the barrier region 114 in the transfer mold of the present invention exhibit high releasability by satisfying a predetermined contact angle range, and coating by satisfying a predetermined aperture ratio. The property can be kept good.
 また、転写用鋳型におけるバリア領域114は、パタン部111の少なくとも一部に隣接すると好ましい。ここで隣接するとは、図7Aに示すように、微細凹凸構造を具備するパタン部111に隣接して設けられる場合を含む。この場合の他、図7Bに示すように、微細凹凸構造を具備するパタン部111に隣接して設けられる微細凹凸構造を具備しない非パタンバリア領域115を介し、微細凹凸構造を具備するバリア領域114が設けられる場合を含む。このとき、微細凹凸構造を具備するパタン部111と微細凹凸構造を具備するバリア領域114との間に設けられる微細凹凸構造を具備しない非パタンバリア領域115の厚み(幅)は30mm以下であることが必要である。30mm以下であることにより、上記効果を発揮可能であり、パタン部111に対する塗工性を改善できる。特に、パタン部111に対する塗工性をいっそう改善する観点から、前記厚み(幅)は、10mm以下であると好ましく、5mm以下であるとより好ましく、3mm以下であるとなお好ましく、1mm以下であると最も好ましい。なお、図7Aに示す微細凹凸構造を具備するパタン部111に隣接して設けられる場合、すなわち、微細凹凸構造を具備するパタン部111と微細凹凸構造を具備するバリア領域114との間に設けられる微細凹凸構造を具備しない非パタンバリア領域115の厚み(幅)が0mmの場合が、上記効果をもっとも発揮できるため、好ましい。 Further, it is preferable that the barrier region 114 in the transfer mold is adjacent to at least a part of the pattern portion 111. Here, the term “adjacent” includes a case where it is provided adjacent to the pattern portion 111 having a fine concavo-convex structure as shown in FIG. 7A. In addition to this case, as shown in FIG. 7B, a barrier region 114 having a fine concavo-convex structure is provided via a non-pattern barrier region 115 having no fine concavo-convex structure provided adjacent to a pattern portion 111 having a fine concavo-convex structure. Including the case where it is provided. At this time, the thickness (width) of the non-pattern barrier region 115 that does not have the fine uneven structure provided between the pattern part 111 having the fine uneven structure and the barrier region 114 having the fine uneven structure is 30 mm or less. is necessary. By being 30 mm or less, the above-described effects can be exhibited, and the coatability for the pattern portion 111 can be improved. In particular, from the viewpoint of further improving the coatability on the pattern part 111, the thickness (width) is preferably 10 mm or less, more preferably 5 mm or less, still more preferably 3 mm or less, and 1 mm or less. And most preferred. 7A, it is provided adjacent to the pattern portion 111 having the fine uneven structure, that is, between the pattern portion 111 having the fine uneven structure and the barrier region 114 having the fine uneven structure. The case where the thickness (width) of the non-pattern barrier region 115 that does not have a fine concavo-convex structure is 0 mm is preferable because the above effect can be exhibited most.
 また、パタン部111に隣接して設けられるバリア領域114は必ずしも連続している必要はない。図7Cおよび図7Dは、バリア領域114が途切れている場合を図示している。図7Cおよび図7Dに示すように、バリア領域114はパタン部111の少なくとも一部に隣接していれば、本発明の効果を発揮できる。すなわち、バリア領域114は、連続的に図7Aのように設けられても、非連続的に図7Cおよび図7Dのように設けられてもよい。また、非連続的に設けられる場合、バリア領域114の途切れの数は、特に限定されない。特に、本発明の効果をいっそう発揮する観点から、これらの途切れの幅Wは、30mm以下が好ましく、10mm以下であるとより好ましく、5mm以下であるとよく、3mm以下であるとなお好ましく、1mm以下であるともっとも好ましい。なお、図7Aに示すように、バリア領域114が連続的に連なっている状態の場合、パタン部111への塗工性をいっそう向上できるためもっとも好ましい。 Further, the barrier region 114 provided adjacent to the pattern part 111 is not necessarily continuous. 7C and 7D illustrate the case where the barrier region 114 is interrupted. As shown in FIG. 7C and FIG. 7D, the effect of the present invention can be exhibited as long as the barrier region 114 is adjacent to at least a part of the pattern portion 111. That is, the barrier region 114 may be provided continuously as shown in FIG. 7A or discontinuously as shown in FIGS. 7C and 7D. In the case of discontinuous provision, the number of breaks in the barrier region 114 is not particularly limited. In particular, from the viewpoint of further demonstrating the effects of the present invention, the width W of these interruptions is preferably 30 mm or less, more preferably 10 mm or less, and preferably 5 mm or less, more preferably 3 mm or less, and 1 mm. The following is most preferable. As shown in FIG. 7A, the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved.
 同様に、上記図7Bを使用し説明した非パタンバリア領域115が配置される場合も、図7E、図7Fおよび図7Gに示すように、上記説明したようにバリア領域114は連続的であっても非連続的であってもよい。また、同様に非パタンバリア領域115も連続的であっても非連続的であってもよい。このような場合の、バリア領域114の途切れ幅、および非パタンバリア領域115の途切れ幅Wは、30mm以下が好ましく、10mm以下であるとより好ましく、5mm以下であるとよく、3mm以下であるとなお好ましく、1mm以下であるともっとも好ましい。なお、図7Bに示すように、バリア領域114および非パタンバリア領域115が共に連続的に連なっている状態の場合、パタン部111への塗工性をいっそう向上できるためもっとも好ましい。 Similarly, even when the non-pattern barrier region 115 described with reference to FIG. 7B is arranged, as shown in FIGS. 7E, 7F, and 7G, the barrier region 114 may be continuous as described above. It may be discontinuous. Similarly, the non-pattern barrier region 115 may be continuous or discontinuous. In such a case, the discontinuity width of the barrier region 114 and the discontinuity width W of the non-pattern barrier region 115 are preferably 30 mm or less, more preferably 10 mm or less, and preferably 5 mm or less, and more preferably 3 mm or less. Preferably, it is most preferable in it being 1 mm or less. As shown in FIG. 7B, it is most preferable that the barrier region 114 and the non-pattern barrier region 115 are both continuously connected because the coating property to the pattern part 111 can be further improved.
 また、転写用鋳型におけるパタン部111は、バリア領域114に囲まれた状態または挟まれた状態で基材の表面に配置されると、パタン部111全面に対する塗工性がより向上するため好ましい。パタン部111が、バリア領域114に囲まれた状態とは、パタン部111が閉じられた領域を有し、その周囲にバリア領域114が配置された状態を指す。また、パタン部111が、バリア領域114に挟まれた状態とは、パタン部111の両端部にバリア領域114が並設して配置された状態を指す。どちらの場合も、パタン部111は、バリア領域114の内側に配置されている。 Further, it is preferable that the pattern part 111 in the transfer mold is disposed on the surface of the base material in a state surrounded by or sandwiched by the barrier region 114 because coating properties on the entire pattern part 111 are further improved. The state in which the pattern unit 111 is surrounded by the barrier region 114 refers to a state in which the pattern unit 111 has a closed region and the barrier region 114 is disposed around the region. The state where the pattern part 111 is sandwiched between the barrier regions 114 refers to a state where the barrier regions 114 are arranged in parallel at both ends of the pattern part 111. In either case, the pattern part 111 is disposed inside the barrier region 114.
 なお、この場合のパタン部111とバリア領域114の配置も、図7Bに示す非パタンバリア領域115を具備することが可能であり、前記範囲を満たすものとする。 It should be noted that the arrangement of the pattern part 111 and the barrier region 114 in this case can also include the non-pattern barrier region 115 shown in FIG.
 ここで、パタン部111が、バリア領域114に囲まれた状態または挟まれた状態のいずれの場合であっても、上記図7Cおよび図7Dを用いて説明したバリア領域114の途切れを含み、また、図7E,図7Fおよび図7Gを用いて説明したバリア領域114の途切れおよび非パタンバリア領域115の途切れを含むものとする。 Here, regardless of whether the pattern portion 111 is surrounded or sandwiched by the barrier region 114, the pattern portion 111 includes the break of the barrier region 114 described with reference to FIGS. 7C and 7D. 7E, FIG. 7F, and FIG. 7G include the discontinuity of the barrier region 114 and the discontinuity of the non-pattern barrier region 115 described with reference to FIGS.
 パタン部111が、バリア領域114に囲まれた状態は、パタン部111が閉じられた領域を有し、その周囲にバリア領域114が配置された状態を指すが、パタン部111を囲むバリア領域114は、図8に示すように、連続的につながっていてもまたは途切れていてもよい。図8Aは、パタン部111がバリア領域114により全面を囲まれている場合を表現している。図8B、図8Cおよび図8Dは、パタン部111を囲むバリア領域114が途切れている状態を表現している。図8Bおよび図8Cにおいては、複数の途切れた箇所を図示しているが、途切れは図8Dに示すように一か所であってもよい。すなわち、途切れの数および場所は限定されない。このような途切れた部分がある場合においても、本発明の効果は得られるため、パタン部111が、バリア領域114に囲まれた状態において、バリア領域114が途切れた状態も含むものとする。これらの途切れの幅Wは、30mm以下が好ましく、10mm以下であるとより好ましく、5mm以下であるとよく、3mm以下であるとなお好ましく、1mm以下であるともっとも好ましい。なお、図8Aに示すように、バリア領域114が連続的に連なっている状態の場合、パタン部111への塗工性をいっそう向上できるためもっとも好ましい。なお、図7B,図7E,図7Fおよび図7Gを用いて説明した非パタンバリア領域115も同様に含むことができる。 The state in which the pattern unit 111 is surrounded by the barrier region 114 indicates a state in which the pattern unit 111 has a closed region and the barrier region 114 is disposed around the pattern unit 111. As shown in FIG. 8, they may be connected continuously or disconnected. FIG. 8A represents a case where the pattern part 111 is entirely surrounded by the barrier region 114. 8B, 8C, and 8D represent a state where the barrier region 114 surrounding the pattern unit 111 is interrupted. In FIG. 8B and FIG. 8C, a plurality of discontinuous points are illustrated, but the discontinuity may be one place as illustrated in FIG. 8D. That is, the number and location of breaks are not limited. Even in the case where there is such a discontinuous portion, the effect of the present invention can be obtained. Therefore, the state where the barrier region 114 is discontinuous in the state where the pattern portion 111 is surrounded by the barrier region 114 is also included. The width W of these discontinuities is preferably 30 mm or less, more preferably 10 mm or less, preferably 5 mm or less, more preferably 3 mm or less, and most preferably 1 mm or less. As shown in FIG. 8A, the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved. It should be noted that the non-pattern barrier region 115 described with reference to FIGS. 7B, 7E, 7F, and 7G can also be included.
 また、パタン部111が、バリア領域114に挟まれた状態とは、パタン部111の両端部にバリア領域114が並設して配置された状態をさすが、パタン部111を挟み込むバリア領域114は、図9に示すように、連続的につながっていても、または途切れていてもよい。図9Aは、パタン部111がバリア領域114により挟まれて配置される場合を表現している。図9B、図9Cおよび図9Dは、パタン部111を囲むバリア領域114が途切れている状態を表現している。図9Bおよび図9Cにおいては、複数の途切れた箇所を図示しているが、途切れは図9Dに示すように一か所であってもよい。すなわち、途切れの数および場所は限定されない。このような途切れた部分がある場合においても、本発明の効果は得られるため、パタン部111が、バリア領域114に挟まれた状態において、バリア領域114が途切れた状態も含むものとする。これらの途切れの幅(W)は、30mm以下が好ましく、10mm以下であるとより好ましく、5mm以下であるとよく、3mm以下であるとなお好ましく、1mm以下であるともっとも好ましい。なお、図9Aに示すように、バリア領域114が連続的に連なっている状態の場合、パタン部111への塗工性をいっそう向上できるためもっとも好ましい。なお、図7B,図7E,図7Fおよび図7Gを用い説明した非パタンバリア領域115も同様に含むことができる。なお、図9においては、パタン部111は非パタン部112の中央付近に配置されているが、パタン部111の配置箇所は特に限定されない。また、パタン部111の上辺および下辺(図9Aにおけるバリア領域114と接していない辺)を上下方向に伸ばし、パタン部111がバリア領域114に挟まれ、バリア領域114にて挟まれたパタン部111が非パン部112に挟まれる構成としてもよい。 The state in which the pattern part 111 is sandwiched between the barrier regions 114 refers to a state in which the barrier regions 114 are arranged in parallel at both ends of the pattern part 111, but the barrier region 114 that sandwiches the pattern part 111 is As shown in FIG. 9, it may be connected continuously or may be interrupted. FIG. 9A represents a case where the pattern unit 111 is disposed between the barrier regions 114. 9B, FIG. 9C, and FIG. 9D represent a state in which the barrier region 114 surrounding the pattern unit 111 is interrupted. In FIG. 9B and FIG. 9C, a plurality of discontinuous portions are illustrated, but the discontinuity may be one place as illustrated in FIG. 9D. That is, the number and location of breaks are not limited. Even in the case where there is such a discontinuous portion, the effect of the present invention can be obtained. Therefore, the state in which the barrier region 114 is interrupted in the state where the pattern portion 111 is sandwiched between the barrier regions 114 is also included. The width (W) of these breaks is preferably 30 mm or less, more preferably 10 mm or less, preferably 5 mm or less, more preferably 3 mm or less, and most preferably 1 mm or less. As shown in FIG. 9A, the state in which the barrier regions 114 are continuously connected is most preferable because the coating property to the pattern part 111 can be further improved. Note that the non-pattern barrier region 115 described with reference to FIGS. 7B, 7E, 7F, and 7G can be included in the same manner. In FIG. 9, the pattern part 111 is arranged near the center of the non-pattern part 112, but the arrangement part of the pattern part 111 is not particularly limited. Further, the upper side and the lower side of the pattern part 111 (sides not in contact with the barrier region 114 in FIG. 9A) extend in the vertical direction, the pattern part 111 is sandwiched between the barrier areas 114, and the pattern part 111 sandwiched between the barrier areas 114. May be sandwiched between the non-pan portions 112.
 転写用鋳型において、パタン部111は、平均ラフネスファクタがRf1および平均開口率Ar1である微細凹凸構造を具備し、バリア領域114は、平均ラフネスファクタがRf2および平均開口率Ar2である微細凹凸構造を具備する。ラフネスファクタRfとは、微細化の指標となる無次元値であり、単位面積が、微細凹凸構造化により何倍に増加したかを意味している。すなわち、微細凹凸構造を付与しない表面のラフネスファクタRfは1となる。また、平均開口率とは、空隙割合の指標となる無次元値であり、微細凹凸構造表面内における空隙の存在割合を意味している。ラフネスファクタRfおよび平均開口率Arは次のように定義される。 In the transfer mold, the pattern portion 111 has a fine concavo-convex structure with an average roughness factor of Rf1 and an average aperture ratio Ar1, and the barrier region 114 has a fine concavo-convex structure with an average roughness factor of Rf2 and an average aperture ratio Ar2. It has. The roughness factor Rf is a dimensionless value that serves as an index of miniaturization, and means how many times the unit area has increased due to the formation of a fine uneven structure. That is, the roughness factor Rf of the surface that does not give the fine concavo-convex structure is 1. The average aperture ratio is a dimensionless value that serves as an index of the void ratio, and means the ratio of voids present in the surface of the fine concavo-convex structure. The roughness factor Rf and the average aperture ratio Ar are defined as follows.
1.微細凹凸構造がドット形状またはホール形状であり、規則性のある配列の場合
 図10Aは、微細凹凸構造がドット形状またはホール形状であり、かつ、規則性を持って配列されている状態を示している。これらの微細凹凸構造から、N列をなす微細凹凸構造群(N)と、N+1列をなす微細凹凸構造群(N+1)とを選択する。続いて、微細凹凸構造群(N)の中から、隣り合う2つの微細凹凸構造mおよびm+1を選択する。続いて微細凹凸構造群(N+1)の中から、微細凹凸構造mおよびm+1に最も近い距離にある、微細凹凸構造lおよびl+1を選択する。これらの微細凹凸構造m、m+1、lおよびl+1の中心を結び作られる領域を、単位セル201とする。単位セル201の面積をSoとし、単位セル201内における微細凹凸構造m、m+1、1およびl+1の側面積の和をS1とする。この場合のラフネスファクタRfは、1+(S1/So)で定義される。なお、単位セル201内に微細凹凸構造が存在しなければ、S1=0となるため、ラフネスファクタRf=1となり、単位セル201内に微細凹凸構造が存在すればラフネスファクタRf>1となる。
1. FIG. 10A shows a state in which the fine concavo-convex structure has a dot shape or a hole shape and is regularly arranged, and the fine concavo-convex structure has a dot shape or a hole shape and is regularly arranged. Yes. From these fine concavo-convex structures, a fine concavo-convex structure group (N) forming N rows and a fine concavo-convex structure group (N + 1) forming N + 1 rows are selected. Subsequently, two adjacent fine uneven structures m and m + 1 are selected from the fine uneven structure group (N). Subsequently, the fine concavo-convex structures l and l + 1 that are closest to the fine concavo-convex structures m and m + 1 are selected from the fine concavo-convex structure group (N + 1). A region that connects the centers of these fine concavo-convex structures m, m + 1, l, and l + 1 is defined as a unit cell 201. The area of the unit cell 201 is So, and the sum of the side areas of the fine concavo-convex structures m, m + 1, 1, and l + 1 in the unit cell 201 is S1. In this case, the roughness factor Rf is defined as 1+ (S1 / So). If the fine uneven structure is not present in the unit cell 201, S1 = 0, so that the roughness factor Rf = 1, and if the fine uneven structure is present in the unit cell 201, the roughness factor Rf> 1.
 単位セル201内の開口部の面積をShとすると、その開口率は、(Sh/So)×100で定義される。 Suppose that the area of the opening in the unit cell 201 is Sh, the opening ratio is defined by (Sh / So) × 100.
 なお、上記の列とは、次のように定義される。転写用鋳型を構成する基材が円筒状または円柱状である場合は、その周方向を列とする。また、転写用鋳型を構成する基材がリール状樹脂である場合は、その搬送方向を列とする。さらに、転写用鋳型を構成する基材が円盤形状を有する平板である場合は、その円周方向を列とする。また、基材が円盤形状を有する平板からなる転写用鋳型をマスターとし、転写形成された転写用鋳型、すなわちフィルム状樹脂モールドである場合、前記マスターの円周方向を列とする。 Note that the above columns are defined as follows. When the substrate constituting the transfer mold is cylindrical or columnar, the circumferential direction is taken as a row. Further, when the base material constituting the transfer mold is a reel-shaped resin, the transport direction is set as a row. Furthermore, when the base material constituting the transfer mold is a flat plate having a disk shape, the circumferential direction is a row. Moreover, when the base material is a transfer mold made of a flat plate having a disk shape as a master and is a transfer mold formed by transfer, that is, a film-like resin mold, the circumferential direction of the master is set as a row.
2.微細凹凸構造がドット形状またはホール形状であり、規則性の弱い配列またはランダム配列の場合
 図10Bは、微細凹凸構造がドット形状またはホール形状であり、規則性の弱い配列またはランダム配列されている状態を示している。このときには、微細凹凸構造の平均ピッチが500nmより小さい場合、これらの微細凹凸構造を有する領域内に、1μm×1μmの正方形をとり、これを単位セル202とする。なお、微細凹凸構造の平均ピッチが500nm以上1000nm以下の場合は、単位セル202は2μm×2μmとし、微細パタンの平均ピッチが1000nm超1500nm以下の場合は、単位セル202は3μm×3μmとする。単位セル202の面積をSoとし、単位セル202内に含まれる全ての微細凹凸構造の側面積の和をS1とする。この場合のラフネスファクタRfは、1+(S1/So)で定義される。なお、ここで平均ピッチとは、隣接するドットの中心または隣接するホールの中心同士の距離の平均値を意味する。平均点数としては10点以上が好ましい。
2. In the case where the fine uneven structure is a dot shape or a hole shape and has a weak regularity arrangement or a random arrangement. FIG. 10B shows a state where the fine uneven structure is a dot shape or a hole shape and has a weak regularity arrangement or a random arrangement. Is shown. At this time, when the average pitch of the fine concavo-convex structure is smaller than 500 nm, a 1 μm × 1 μm square is taken in the region having the fine concavo-convex structure, and this is used as the unit cell 202. When the average pitch of the fine concavo-convex structure is 500 nm or more and 1000 nm or less, the unit cell 202 is 2 μm × 2 μm, and when the average pitch of the fine pattern is more than 1000 nm and 1500 nm or less, the unit cell 202 is 3 μm × 3 μm. The area of the unit cell 202 is So, and the sum of the side areas of all the fine concavo-convex structures included in the unit cell 202 is S1. In this case, the roughness factor Rf is defined as 1+ (S1 / So). Here, the average pitch means an average value of the distances between the centers of adjacent dots or the centers of adjacent holes. The average score is preferably 10 or more.
 単位セル202内の開口部の面積をShとすると、その開口率は、(Sh/So)×100で定義される。 Assuming that the area of the opening in the unit cell 202 is Sh, the opening ratio is defined by (Sh / So) × 100.
3.微細凹凸構造がラインアンドスペース構造の場合
 図10Cは、微細凹凸構造がラインアンドスペース構造を示している。各ラインは、等間隔で配列されていても、間隔が変動していてもよい。これらの微細凹凸構造から、N列目のラインと、N+1列目のラインとを選択する。続いて、これらのライン上に、それぞれ1μmの線分を引く。これらの線分の端点を結んでできた正方形または長方形を単位セル203とする。単位セル203の面積をSoとし、単位セル203内に含まれる全ての微細凹凸構造の側面積の和をS1とする。この場合のラフネスファクタRfは、1+(S1/So)で定義される。
3. When the fine concavo-convex structure is a line-and-space structure FIG. 10C shows the line-and-space structure. Each line may be arranged at equal intervals, or the intervals may vary. From these fine concavo-convex structures, the Nth line and the (N + 1) th line are selected. Subsequently, a line segment of 1 μm is drawn on each of these lines. A unit cell 203 is a square or rectangle formed by connecting the end points of these line segments. The area of the unit cell 203 is So, and the sum of the side areas of all the fine concavo-convex structures included in the unit cell 203 is S1. In this case, the roughness factor Rf is defined as 1+ (S1 / So).
 単位セル203内の開口部の面積をShとすると、その開口率は、(Sh/So)×100で定義される。 Suppose that the area of the opening in the unit cell 203 is Sh, the opening ratio is defined by (Sh / So) × 100.
 また、平均ラフネスファクタRfは、ラフネスファクタRfの平均値を意味している。ラフネスファクタRfの平均値は、5μm×5μmの範囲内において、ランダムに10点のラフネスファクタRfを算出し、これらの加算平均値と定義される。 Further, the average roughness factor Rf means an average value of the roughness factor Rf. The average value of the roughness factor Rf is defined as an average value of 10 roughness factors Rf calculated at random within a range of 5 μm × 5 μm.
 ラフネスファクタRfは、微細凹凸構造の高さ、ピッチ、アスペクト等で設計することができる。例えば、ラフネスファクタRf2を小さくするためには、上記単位セル201内部に含まれる微細凹凸構造の側面積を小さくすればよい。例えば、微細凹凸構造の高さを減少させるか、ピッチを大きくするか、またはアスペクトを低くすればよい。これらの変化を連続的に生じさせることで、ラフネスファクタRfは連続的に変化する。また、微細凹凸構造の高さ、ピッチ、アスペクトのいずれか1つを変化させても、複数を変化させてもよい。微細凹凸構造製造の観点から、ピッチとアスペクトの両方、またはいずれか一方を変化させることが好ましい。アスペクトは、凸部底部の幅または凹部開口幅を制御することで、容易に変化させることが可能となる。また、微細凹凸構造が凸型の場合、開口率を大きくすることでラフネスファクタRf2を小さく出来、微細凹凸構造が凹型の場合、開口率を小さくすることでラフネスファクタRf2を小さくできる。 The roughness factor Rf can be designed with the height, pitch, aspect, etc. of the fine relief structure. For example, in order to reduce the roughness factor Rf2, the side area of the fine concavo-convex structure included in the unit cell 201 may be reduced. For example, the height of the fine uneven structure may be reduced, the pitch may be increased, or the aspect may be decreased. By causing these changes to occur continuously, the roughness factor Rf changes continuously. In addition, any one of the height, pitch, and aspect of the fine concavo-convex structure may be changed, or a plurality thereof may be changed. From the viewpoint of manufacturing the fine concavo-convex structure, it is preferable to change both the pitch and the aspect or either one. The aspect can be easily changed by controlling the width of the bottom of the convex portion or the width of the concave portion opening. When the fine concavo-convex structure is convex, the roughness factor Rf2 can be reduced by increasing the aperture ratio, and when the fine concavo-convex structure is concave, the roughness factor Rf2 can be reduced by reducing the aperture ratio.
 また、例えば、ラフネスファクタRf2を大きくするためには、上記単位セル内部に含まれる微細凹凸構造の側面積を大きくすればよい。例えば、微細凹凸構造の高さを増加させるか、ピッチを小さくするか、またはアスペクトを高くすればよい。また、微細凹凸構造の高さ、ピッチ、アスペクトのいずれか1つを変化させても、複数を変化させてもよい。微細凹凸構造製造の観点から、ピッチとアスペクトの両方、またはいずれか一方を変化させることが好ましい。アスペクトは、凸部底部の幅または凹部開口幅を制御することで、容易に変化させることが可能となる。また、微細凹凸構造が凸型の場合、開口率を小さくすることでラフネスファクタRf2を大きく出来、微細凹凸構造が凹型の場合、開口率を大きくすることでラフネスファクタRf2を大きくできる。 For example, in order to increase the roughness factor Rf2, the side area of the fine concavo-convex structure included in the unit cell may be increased. For example, the height of the fine uneven structure may be increased, the pitch may be reduced, or the aspect may be increased. In addition, any one of the height, pitch, and aspect of the fine concavo-convex structure may be changed, or a plurality thereof may be changed. From the viewpoint of manufacturing the fine concavo-convex structure, it is preferable to change both the pitch and the aspect or either one. The aspect can be easily changed by controlling the width of the bottom of the convex portion or the width of the concave portion opening. When the fine concavo-convex structure is convex, the roughness factor Rf2 can be increased by reducing the aperture ratio. When the fine concavo-convex structure is concave, the roughness factor Rf2 can be increased by increasing the aperture ratio.
 次に、転写用鋳型(I)、(IV)におけるラフネスファクタRf1,Rf2の例について説明する。 Next, examples of roughness factors Rf1 and Rf2 in the transfer templates (I) and (IV) will be described.
 転写用鋳型(I)、(IV)においては、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも小さく設定される。 In the transfer templates (I) and (IV), the average roughness factor Rf2 of the barrier region 114 is set smaller than the average roughness factor Rf1 of the pattern portion 111.
 図11は、微細凹凸構造がドット形状またはホール形状の場合であって、第2方向D2のピッチを変化させた状態を示す模式図である。図11において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図11において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、第2方向D2における凸部または凹部の間隔は、パタン部111の凸部または凹部の間隔よりも広くなり、バリア領域114の凸部または凹部の密度は、パタン部111の凸部または凹部の密度よりも疎になっている。換言すると、パタン部111における隣接する凸部間の距離または隣接する凹部間の距離は、バリア領域114における隣接する凸部間の距離または隣接する凹部間の距離よりも小さい。 FIG. 11 is a schematic diagram showing a state where the fine concavo-convex structure is a dot shape or a hole shape and the pitch in the second direction D2 is changed. In FIG. 11, the top part (convex part) of the fine concavo-convex structure that is a dot shape or the opening part (concave part) of the fine concavo-convex structure that is a hole shape is represented in a circular shape in plan view. In FIG. 11, the vertical axis indicates the first direction D1, the horizontal axis indicates the second direction D2, and the origin indicates the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the interval between the convex portions or the concave portions in the second direction D2 is wider than the interval between the convex portions or the concave portions of the pattern portion 111, and the density of the convex portions or the concave portions in the barrier region 114 is the convex portion of the pattern portion 111. It is sparser than the density of the part or the concave part. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is smaller than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
 微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも小さくなっている。 When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Is smaller than the average roughness factor Rf1 of the pattern portion 111.
 また、微細凹凸構造が凸型の場合、すなわち転写用鋳型(IV)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、微細凹凸構造が凹型の場合、すなわち転写用鋳型(I)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなる。 In the case where the fine concavo-convex structure is convex, that is, in the case of the transfer mold (IV), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern part 111, and the fine concavo-convex structure is concave. In this case, that is, in the case of the transfer template (I), the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern portion 111.
 図11においては、バリア領域114の第2方向D2における凸部または凹部の間隔を、パタン部111の凸部または凹部の間隔よりも大きくしているが、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも疎にするためには、第1方向D1に対して同様に凸部または凹部の間隔を変化させても、または、第1方向D1と第2方向D2のいずれに対しても凸部または凹部の間隔を変化さえてもよい。なお、図11においては、凸部または凹部の間隔を変化させているが、凸部の頂部径または凹部の開口径を変化させても、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも疎にすることが出来る。具体的には、パタン部111における凸部頂部の径または凹部開口径を、バリア領域114の凸部頂部の径または凹部開口径よりも大きくすることで、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも疎にすることが出来る。また、凸部の高さまたは凹部の深さを変化させることで、ラフネスファクタRfを変化させることが出来る。具体的には、パタン部111の凸部の高さまたは凹部の深さを、バリア領域114の凸部の高さまたは凹部の深さよりも大きくすることで、Rf1>Rf2の関係を満足することが出来る。また上記説明した凸部または凹部の間隔、凸部頂部径または凹部開口部径または凸部の高さまたは凹部の深さを同時に変化させることで、ラフネスファクタの制御性が向上する。 In FIG. 11, the interval between the convex portions or the concave portions in the second direction D2 of the barrier region 114 is larger than the interval between the convex portions or the concave portions of the pattern portion 111. Can be made sparser than the density of the convex portions or concave portions of the pattern portion 111, the distance between the convex portions or concave portions can be changed in the same manner with respect to the first direction D1, or the first direction D1 and the first direction You may even change the space | interval of a convex part or a recessed part with respect to any of the two directions D2. In FIG. 11, the interval between the convex portions or the concave portions is changed. However, even if the top diameter of the convex portions or the opening diameter of the concave portions is changed, the density of the convex portions or concave portions of the barrier region 114 is changed to the pattern portion. It can be made sparser than the density of the convex portions or concave portions of 111. Specifically, the density of the convex part or the concave part of the barrier region 114 is set by making the diameter of the convex part top part or the concave part opening diameter in the pattern part 111 larger than the diameter of the convex part top part or the concave part opening diameter of the barrier region 114. Can be made sparser than the density of the convex portions or concave portions of the pattern portion 111. Further, the roughness factor Rf can be changed by changing the height of the convex portion or the depth of the concave portion. Specifically, the relationship of Rf1> Rf2 is satisfied by making the height of the convex portion or the concave portion of the pattern portion 111 larger than the height of the convex portion or the concave portion of the barrier region 114. I can do it. Moreover, the controllability of the roughness factor is improved by simultaneously changing the interval between the convex portions or the concave portions described above, the diameter of the top portion of the convex portion, the diameter of the concave portion opening, the height of the convex portion, or the depth of the concave portion.
 次に、転写用鋳型(II)、(IV)におけるラフネスファクタRf1,Rf2の例について説明する。 Next, examples of roughness factors Rf1 and Rf2 in the transfer templates (II) and (IV) will be described.
 転写用鋳型(II)、(III)においては、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも大きく設定される。 In the transfer templates (II) and (III), the average roughness factor Rf2 of the barrier region 114 is set larger than the average roughness factor Rf1 of the pattern portion 111.
 図12は、微細凹凸構造がドット形状またはホール形状の場合であって、第2方向D2のピッチを変化させた状態を示す模式図である。図12において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図12において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、第2方向D2における凸部または凹部の間隔は、パタン部111の凸部または凹部の間隔よりも狭くなり、バリア領域114の凸部または凹部の密度は、パタン部111の凸部または凹部の密度よりも密になっている。換言すると、パタン部111における隣接する凸部間の距離または隣接する凹部間の距離は、バリア領域114における隣接する凸部間の距離または隣接する凹部間の距離よりも大きい。 FIG. 12 is a schematic diagram showing a state where the fine concavo-convex structure is a dot shape or a hole shape and the pitch in the second direction D2 is changed. In FIG. 12, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view. In FIG. 12, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the interval between the convex portions or the concave portions in the second direction D2 is narrower than the interval between the convex portions or the concave portions of the pattern portion 111, and the density of the convex portions or the concave portions in the barrier region 114 is the convex portion of the pattern portion 111. It is denser than the density of the part or the concave part. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is larger than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114.
 微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも大きくなっている。 When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Is larger than the average roughness factor Rf1 of the pattern part 111.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(II)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、微細凹凸構造が凹型である場合、すなわち転写用鋳型(III)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなる。 When the fine uneven structure is convex, that is, in the case of the transfer mold (II), the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the fine uneven structure is concave. In other words, in the case of the transfer template (III), the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111.
 図12においては、バリア領域114の第2方向D2における凸部または凹部の間隔を、パタン部111の凸部または凹部の間隔よりも小さくしているが、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも密にするためには、第1方向D1に対して同様に凸部または凹部の間隔を変化させても、または、第1方向D1と第2方向D2のいずれに対しても凸部または凹部の間隔を変化さえてもよい。なお、図12においては、凸部または凹部の間隔を変化させているが、凸部の頂部径または凹部の開口径を変化させても、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも密にすることが出来る。具体的には、パタン部111における凸部頂部の径または凹部開口径を、バリア領域114の凸部頂部の径または凹部開口径よりも小さくすることで、バリア領域114の凸部または凹部の密度を、パタン部111の凸部または凹部の密度よりも密にすることが出来る。また、凸部の高さまたは凹部の深さを変化させることで、ラフネスファクタRfを変化させることが出来る。具体的には、パタン部111の凸部の高さまたは凹部の深さを、バリア領域114の凸部の高さまたは凹部の深さよりも小さくすることで、Rf1<Rf2の関係を満足することが出来る。また上記説明した凸部または凹部の間隔、凸部頂部径または凹部開口部径または凸部の高さまたは凹部の深さを同時に変化させることで、ラフネスファクタの制御性が向上する。 In FIG. 12, the interval between the convex portions or the concave portions in the second direction D2 of the barrier region 114 is smaller than the interval between the convex portions or the concave portions of the pattern portion 111. Is made denser than the density of the convex portions or concave portions of the pattern portion 111, the distance between the convex portions or concave portions may be similarly changed with respect to the first direction D1, or the first direction D1 and the first direction You may even change the space | interval of a convex part or a recessed part with respect to any of the two directions D2. In FIG. 12, the interval between the convex portions or the concave portions is changed. However, even if the top diameter of the convex portions or the opening diameter of the concave portions is changed, the density of the convex portions or concave portions of the barrier region 114 is changed to the pattern portion. It can be made denser than the density of the convex portions or concave portions of 111. Specifically, the density of the convex portions or the concave portions of the barrier region 114 is reduced by making the diameter of the convex portion top portion or the concave portion opening diameter in the pattern portion 111 smaller than the diameter of the convex portion top portion or the concave portion opening diameter of the barrier region 114. Can be made denser than the density of the convex portions or concave portions of the pattern portion 111. Further, the roughness factor Rf can be changed by changing the height of the convex portion or the depth of the concave portion. Specifically, the relationship of Rf1 <Rf2 is satisfied by making the height of the convex portion or the concave portion of the pattern portion 111 smaller than the height of the convex portion or the concave portion of the barrier region 114. I can do it. Moreover, the controllability of the roughness factor is improved by simultaneously changing the interval between the convex portions or the concave portions described above, the diameter of the top portion of the convex portion, the diameter of the concave portion opening, the height of the convex portion, or the depth of the concave portion.
 転写用鋳型のバリア領域114における微細凹凸構造はラフネスファクタの勾配を有することが好ましい。このラフネスファクタRfの勾配は、転写用鋳型(I)、(IV)の場合は、パタン部111に近づくほど大きくなる勾配であると、より好ましく、転写用鋳型(II)、(III)の場合は、パタン部111に近づくほど小さくなる勾配であると、より好ましい。なお、転写用鋳型(II)、(III)の場合、平均ラフネスファクタRf2は、パタン部111からバリア領域114方向へと、大きくなるような勾配を有すが、このときの平均ラフネスファクタRf2は、以下の定義に従うものとする。転写用鋳型(II)の場合、バリア領域114の微細凹凸構造は複数の凸部から構成される。平均ラフネスファクタRf2を、パタン部111からバリア領域114方向へと大きくするには、単位セルに対する凸部側面積の割合を大きくすればよい。ここで、例えば、単位セルの大きさを一定とし、凸部の径を大きくした場合、平均ラフネスファクタRf2は大きくなる。しかしながら、凸部同士が単位セルの内部において接触しはじめた段階から、単位セル内部に含まれる凸部側面積は減少するため、平均ラフネスファクタRf2は減少する。よって、転写用鋳型(II)の場合、バリア領域114内部において、隣接する凸部同士が接触するまでの範囲をもって、上記平均ラフネスファクタRf2の勾配を定義するものとする。一方、転写用鋳型(III)の場合、バリア領域114の微細凹凸構造は複数の凹部から構成される。平均ラフネスファクタRf2を、パタン部111からバリア領域114方向へと大きくするには、単位セルに対する凹部側面積の割合を大きくすればよい。ここで、例えば、単位セルの大きさを一定とし、凹部の径を大きくした場合、平均ラフネスファクタRf2は大きくなる。しかしながら、凹部同士が単位セルの内部において接触しはじめた段階から、単位セルの内部に含まれる凹部側面積は減少するため、平均ラフネスファクタRf2は減少する。よって、転写用鋳型(III)の場合、バリア領域114内部において、隣接する凹部同士が接触するまでの範囲をもって、上記平均ラフネスファクタRf2の勾配を定義するものとする。 The fine concavo-convex structure in the barrier region 114 of the transfer mold preferably has a roughness factor gradient. In the case of the transfer templates (I) and (IV), it is more preferable that the gradient of the roughness factor Rf increases as the pattern portion 111 is approached. In the case of the transfer templates (II) and (III) Is more preferably a gradient that becomes smaller as it approaches the pattern part 111. In the case of the transfer templates (II) and (III), the average roughness factor Rf2 has a gradient that increases from the pattern portion 111 toward the barrier region 114. At this time, the average roughness factor Rf2 is The following definitions shall be followed. In the case of the transfer mold (II), the fine concavo-convex structure of the barrier region 114 is composed of a plurality of convex portions. In order to increase the average roughness factor Rf2 in the direction from the pattern portion 111 toward the barrier region 114, the ratio of the convex portion side area to the unit cell may be increased. Here, for example, when the size of the unit cell is constant and the diameter of the convex portion is increased, the average roughness factor Rf2 is increased. However, the average roughness factor Rf2 decreases because the area of the convex portion included in the unit cell decreases from the stage where the convex portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (II), the gradient of the average roughness factor Rf2 is defined by the range until the adjacent convex portions come into contact with each other in the barrier region 114. On the other hand, in the case of the transfer mold (III), the fine concavo-convex structure of the barrier region 114 is composed of a plurality of concave portions. In order to increase the average roughness factor Rf2 in the direction from the pattern portion 111 toward the barrier region 114, the ratio of the recess side area to the unit cell may be increased. Here, for example, when the size of the unit cell is constant and the diameter of the recess is increased, the average roughness factor Rf2 is increased. However, the average roughness factor Rf2 decreases because the area of the concave portion included in the unit cell decreases from the stage where the concave portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (III), the gradient of the average roughness factor Rf2 is defined by the range in the barrier region 114 until adjacent concave portions come into contact with each other.
 このようなラフネスファクタRf2の勾配を有することで、転写用鋳型(I)、(II)においては、非パタン部112上にてはじかれた塗工液113がパタン部111に侵入する阻害性がいっそう向上するため、塗工不良(2)を効果的に抑制できる。また、転写用鋳型(III)、(IV)においては、ラフネスファクタRf2に勾配があることは、塗工液113の膜内部に加わる応力が勾配を持つことを意味し、応力集中をさけることが出来、結果、塗工不良(1)を抑制することができる。 By having such a gradient of the roughness factor Rf2, in the transfer templates (I) and (II), there is an inhibition property that the coating liquid 113 repelled on the non-pattern part 112 enters the pattern part 111. Since it improves further, a coating defect (2) can be suppressed effectively. In addition, in the transfer templates (III) and (IV), the fact that the roughness factor Rf2 has a gradient means that the stress applied to the inside of the coating liquid 113 has a gradient, and stress concentration can be avoided. As a result, coating failure (1) can be suppressed.
 ラフネスファクタRf2に勾配を持たせるためには、上記単位セル201~203内部に含まれる微細凹凸構造の側面積を連続的に変化させればよい。例えば、微細凹凸構造の高さを連続的に変化させるか、ピッチを連続的に変化させるか、または、アスペクトを連続的に変化させればよい。また、微細凹凸構造の高さ、ピッチ、アスペクトのいずれか1つを連続的に変化させても、複数を連続的に変化させてもよい。微細凹凸構造製造の観点から、ピッチとアスペクトの両方、またはいずれか一方を連続的に変化させることが好ましい。 In order to give a gradient to the roughness factor Rf2, the side area of the fine concavo-convex structure included in the unit cells 201 to 203 may be continuously changed. For example, the height of the fine concavo-convex structure may be changed continuously, the pitch may be changed continuously, or the aspect may be changed continuously. In addition, any one of the height, pitch, and aspect of the fine concavo-convex structure may be continuously changed, or a plurality may be continuously changed. From the viewpoint of producing a fine concavo-convex structure, it is preferable to continuously change both the pitch and the aspect or either one.
 次に、転写用鋳型(I)、(IV)におけるラフネスファクタRf1,Rf2の例を示す。この例は、ラフネスファクタRf2に勾配を有す場合である。 Next, examples of roughness factors Rf1 and Rf2 in the transfer templates (I) and (IV) are shown. In this example, the roughness factor Rf2 has a gradient.
 転写用鋳型(I)、(IV)においては、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも小さく設定される。また、バリア領域114のラフネスファクタRf2は、パタン部111に近づくほど大きくなる勾配を有す。 In the transfer templates (I) and (IV), the average roughness factor Rf2 of the barrier region 114 is set smaller than the average roughness factor Rf1 of the pattern portion 111. Further, the roughness factor Rf <b> 2 of the barrier region 114 has a gradient that increases as it approaches the pattern part 111.
 図13は、微細凹凸構造がドット形状またはホール形状の場合であって、第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図13において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図13において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第2方向D2における凸部または凹部の間隔は広くなり、凸部または凹部の密度が疎になっている。換言すると、パタン部111における隣接する凸部間の距離または隣接する凹部間の距離は、バリア領域114における隣接する凸部間の距離または隣接する凹部間の距離よりも小さい。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は減少する。 FIG. 13 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the second direction D2 is continuously changed. In FIG. 13, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented by a circular shape in plan view. In FIG. 13, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the second direction D2 increases as the distance from the inner side of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is smaller than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(IV)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(I)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。 When the fine concavo-convex structure is convex, that is, in the case of the transfer mold (IV), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer mold (I), the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern region 111 extends to the barrier region. In 114 direction, it has a decreasing gradient.
 図14は、微細凹凸構造がドット形状またはホール形状の場合であって、第1方向D1のピッチを連続的に変化させた状態を示す模式図である。図14において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図14において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第1方向D1における凸部または凹部の間隔は広くなり、凸部または凹部の密度が疎になっている。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は減少する。 FIG. 14 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the first direction D1 is continuously changed. In FIG. 14, the top part (convex part) of the fine concavo-convex structure which is a dot shape or the opening part (concave part) of the fine concavo-convex structure which is a hole shape is represented in a circular shape in plan view. In FIG. 14, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the first direction D1 increases as the distance from the inner side of the barrier region 114, that is, the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(IV)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(I)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。 When the fine concavo-convex structure is convex, that is, in the case of the transfer mold (IV), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer mold (I), the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern region 111 extends to the barrier region. In 114 direction, it has a decreasing gradient.
 図15は、微細凹凸構造がドット形状またはホール形状の場合であって、第1方向D1および第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図15において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図15において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第1方向D1および第2方向D2における凸部または凹部の間隔は広くなり、凸部または凹部の密度が疎になっている。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は減少する。 FIG. 15 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the first direction D1 and the second direction D2 is continuously changed. In FIG. 15, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view. In FIG. 15, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the first direction D1 and the second direction D2 increases as the distance from the inside of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions decreases. It has become. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases as it goes from the inner side of the barrier region 114, that is, from the pattern part 111 side to the outer side.
 また、微細凹凸構造が凸型である、すなわち転写用鋳型(IV)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。微細凹凸構造が凹型である場合、転写用鋳型(I)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。 Further, in the case where the fine concavo-convex structure is convex, that is, in the case of the transfer mold (IV), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a gradient that increases in the direction of the barrier region 114. When the fine concavo-convex structure is concave, in the case of the transfer mold (I), the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern portion 111, and the pattern portion 111 extends to the barrier region 114. Have a smaller gradient.
 図16は、微細凹凸構造がラインアンドスペース構造の場合であって、第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図16において、ラインアンドスペース構造である微細凹凸構造の凸部または凹部を、平面視にて長方形状で表わしている。図16において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第2方向D2における凸部または凹部の間隔は広くなり、凸部または凹部の密度が疎になっている。 FIG. 16 is a schematic diagram showing a state in which the fine concavo-convex structure is a line and space structure and the pitch in the second direction D2 is continuously changed. In FIG. 16, the convex part or concave part of the fine concavo-convex structure which is a line and space structure is represented by a rectangular shape in plan view. In FIG. 16, the vertical axis indicates the first direction D1, the horizontal axis indicates the second direction D2, and the origin indicates the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the second direction D2 increases as the distance from the inner side of the barrier region 114, that is, from the pattern portion 111 side increases, and the density of the convex portions or the concave portions becomes sparse.
 微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側(転写領域側)から外側に行くほど、平均ラフネスファクタRf2は減少する。 When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 decreases from the inside (transfer area side) to the outside of the barrier area 114.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(IV)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。微細凹凸構造が凹型である場合、転写用鋳型(I)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。なお、ラインアンドスペース構造の場合、ライン幅/スペース幅で示されるDutyが、パタン部111において、0.5より大きい場合を凹型とし、この場合、凹部から構成されるスペースを微細凹凸構造の凹部とする。一方、Dutyが0.5より小さい場合を凸型とし、この場合、凸部から構成されるラインを微細凹凸構造の凸部とする。 When the fine concavo-convex structure is convex, that is, in the case of the transfer mold (IV), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114. When the fine concavo-convex structure is concave, in the case of the transfer mold (I), the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. The direction has a decreasing gradient. In the case of the line-and-space structure, the case where the duty indicated by the line width / space width is larger than 0.5 in the pattern portion 111 is a concave shape. And On the other hand, a case where the duty is smaller than 0.5 is defined as a convex shape, and in this case, a line constituted by the convex portions is defined as a convex portion having a fine uneven structure.
 次に、転写用鋳型(II)、(III)におけるラフネスファクタRf1,Rf2の例について説明する。この例は、ラフネスファクタRf2に勾配を有す場合である。 Next, examples of roughness factors Rf1 and Rf2 in the transfer templates (II) and (III) will be described. In this example, the roughness factor Rf2 has a gradient.
 転写用鋳型(II)、(III)においては、バリア領域114の平均ラフネスファクタRf2は、パタン部111の平均ラフネスファクタRf1よりも大きく設定される。また、バリア領域114のラフネスファクタRf2は、転写領域に近づくほど小さくなる勾配を有す。 In the transfer templates (II) and (III), the average roughness factor Rf2 of the barrier region 114 is set larger than the average roughness factor Rf1 of the pattern portion 111. Further, the roughness factor Rf2 of the barrier region 114 has a gradient that decreases as it approaches the transfer region.
 図17は、微細凹凸構造がドット形状またはホール形状の場合であって、第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図17において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図17において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第2方向D2における凸部または凹部の間隔は狭くなり、凸部または凹部の密度が密になっている。換言すると、パタン部111における隣接する凸部間の距離または隣接する凹部間の距離は、バリア領域114における隣接する凸部間の距離または隣接する凹部間の距離よりも大きい。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は増加する。 FIG. 17 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the second direction D2 is continuously changed. In FIG. 17, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view. In FIG. 17, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense. In other words, the distance between adjacent convex portions or the distance between adjacent concave portions in the pattern portion 111 is larger than the distance between adjacent convex portions or the distance between adjacent concave portions in the barrier region 114. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(II)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(III)の場合、バリア領域114の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。 When the fine concavo-convex structure is convex, that is, in the case of the transfer mold (II), the average aperture ratio Ar2 of the barrier region 114 is smaller than the average aperture ratio Ar1 of the pattern section 111, and the pattern section 111 To the barrier region 114 toward the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer template (III), the average aperture ratio Ar2 of the barrier region 114 is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region. In 114 direction, there is a gradient that increases.
 図18は、微細凹凸構造がドット形状またはホール形状の場合であって、第1方向D1のピッチを連続的に変化させた状態を示す模式図である。図18において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図18において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第1方向D1における凸部または凹部の間隔は狭くなり、凸部または凹部の密度が密になっている。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は増加する。 FIG. 18 is a schematic diagram showing a state in which the fine uneven structure has a dot shape or a hole shape, and the pitch in the first direction D1 is continuously changed. In FIG. 18, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented by a circular shape in plan view. In FIG. 18, the vertical axis indicates the first direction D1, the horizontal axis indicates the second direction D2, and the origin indicates the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the first direction D1 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(II)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(III)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。 Further, when the fine concavo-convex structure is convex, that is, in the case of the transfer mold (II), the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer mold (III), the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases.
 図19は、微細凹凸構造がドット形状またはホール形状の場合であって、第1方向D1および第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図19において、ドット形状である微細凹凸構造の頂部(凸部)またはホール形状である微細凹凸構造の開口部(凹部)を、平面視にて円形状で表わしている。図19において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第1方向D1および第2方向D2における凸部または凹部の間隔は狭くなり、凸部または凹部の密度が密になっている。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は増加する。 FIG. 19 is a schematic diagram showing a state in which the fine concavo-convex structure is a dot shape or a hole shape, and the pitch in the first direction D1 and the second direction D2 is continuously changed. In FIG. 19, the top part (convex part) of the fine concavo-convex structure having a dot shape or the opening part (concave part) of the fine concavo-convex structure having a hole shape is represented in a circular shape in plan view. In FIG. 19, the vertical axis represents the first direction D1, the horizontal axis represents the second direction D2, and the origin represents the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the first direction D1 and the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, from the pattern portion 111 side to the outer side. It has become. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(II)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(III)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。 Further, when the fine concavo-convex structure is convex, that is, in the case of the transfer mold (II), the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer mold (III), the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases.
 図20は、微細凹凸構造がラインアンドスペース構造の場合であって、第2方向D2のピッチを連続的に変化させた状態を示す模式図である。図20において、ラインアンドスペース構造である微細凹凸構造の凸部または凹部を、平面視にて長方形状で表わしている。図20において、縦軸は第1方向D1、横軸は第2方向D2、原点はパタン部111の第2方向D2における中心Oを示している。バリア領域114において、バリア領域114の内側、すなわちパタン部111側から外側へ行くほど、第2方向D2における凸部または凹部の間隔は狭くなり、凸部または凹部の密度が密になっている。微細凹凸構造一つ一つの形状がバリア領域114とパタン部111にて同様の場合、すなわち、バリア領域114とパタン部111とでピッチのみが変化している場合、バリア領域114の平均ラフネスファクタRf2は勾配を有しており、バリア領域114の内側、すなわちパタン部111側から外側に行くほど、平均ラフネスファクタRf2は増加する。 FIG. 20 is a schematic diagram showing a state where the fine uneven structure is a line and space structure and the pitch in the second direction D2 is continuously changed. In FIG. 20, the convex part or concave part of the fine concavo-convex structure which is a line and space structure is represented by a rectangular shape in plan view. In FIG. 20, the vertical axis indicates the first direction D1, the horizontal axis indicates the second direction D2, and the origin indicates the center O of the pattern portion 111 in the second direction D2. In the barrier region 114, the distance between the convex portions or the concave portions in the second direction D2 becomes narrower toward the inner side of the barrier region 114, that is, the outer side from the pattern portion 111 side, and the density of the convex portions or the concave portions becomes dense. When the shape of each fine concavo-convex structure is the same in the barrier region 114 and the pattern portion 111, that is, when only the pitch is changed between the barrier region 114 and the pattern portion 111, the average roughness factor Rf2 of the barrier region 114 Has a slope, and the average roughness factor Rf2 increases toward the inside of the barrier region 114, that is, from the pattern part 111 side to the outside.
 また、微細凹凸構造が凸型である場合、すなわち転写用鋳型(II)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも小さくなり、且つ、パタン部111からバリア領域114方向に、小さくなる勾配を有す。微細凹凸構造が凹型である場合、すなわち転写用鋳型(III)の場合、バリア領域の平均開口率Ar2は、パタン部111の平均開口率Ar1よりも大きくなり、且つ、パタン部111からバリア領域114方向に、大きくなる勾配を有す。なお、ラインアンドスペース構造の場合、ライン幅/スペース幅で示されるDutyが、パタン部111において、0.5より大きい場合を凹型とし、この場合、凹部から構成されるスペースを微細凹凸構造の凹部とする。一方、Dutyが0.5より小さい場合を凸型とし、この場合、凸部から構成されるラインを微細凹凸構造の凸部とする。 Further, when the fine concavo-convex structure is convex, that is, in the case of the transfer mold (II), the average aperture ratio Ar2 of the barrier region is smaller than the average aperture ratio Ar1 of the pattern section 111, and from the pattern section 111 There is a decreasing gradient in the direction of the barrier region 114. When the fine concavo-convex structure is concave, that is, in the case of the transfer mold (III), the average aperture ratio Ar2 of the barrier region is larger than the average aperture ratio Ar1 of the pattern portion 111, and from the pattern portion 111 to the barrier region 114. In the direction, there is a gradient that increases. In the case of the line-and-space structure, the case where the duty indicated by the line width / space width is larger than 0.5 in the pattern portion 111 is a concave shape. And On the other hand, a case where the duty is smaller than 0.5 is defined as a convex shape, and in this case, a line constituted by the convex portions is defined as a convex portion having a fine uneven structure.
 次に、転写用鋳型(I)、(IV)における平均ラフネスファクタRf2の勾配の例について説明する。 Next, an example of the gradient of the average roughness factor Rf2 in the transfer templates (I) and (IV) will be described.
  転写用鋳型(I)、(IV)が有するパタン部111に近づくほど大きくなるバリア領域114の平均ラフネスファクタRf2の勾配としては、例えば、図21に示すような勾配が挙げられる。図21において、縦軸はラフネスファクタRfの大きさを示し、横軸はパタン部111の中心位置からの距離を示す。図21Aは、バリア領域114内で、平均ラフネスファクタRf2が階段状に減少するモデルを示している。図21Bは、バリア領域114内で、平均ラフネスファクタRf2が線形的に減少するモデルを示している。図21Cは、バリア領域114内で、平均ラフネスファクタRf2が上に凸の関数で減少するモデルを示している。図21Dは、バリア領域114内で、平均ラフネスファクタRf2が下に凸の関数で減少するモデルを示している。図21Eは、バリア領域114内で、平均ラフネスファクタRf2が緩やかな減少-急激な減少-緩やかな減少を併せ持つS字カーブ状に減少するモデルを示している。図21Fは、平均ラフネスファクタRf2が、パタン部111内の平均ラフネスファクタRf1、バリア領域114内の平均ラフネスファクタRf2に連続性がなく減少している場合を示している。 As the gradient of the average roughness factor Rf2 of the barrier region 114 that becomes larger as the pattern portions 111 of the transfer templates (I) and (IV) are closer to each other, for example, a gradient as shown in FIG. In FIG. 21, the vertical axis represents the magnitude of the roughness factor Rf, and the horizontal axis represents the distance from the center position of the pattern unit 111. FIG. 21A shows a model in which the average roughness factor Rf2 decreases stepwise within the barrier region 114. FIG. FIG. 21B shows a model in which the average roughness factor Rf2 decreases linearly within the barrier region 114. FIG. 21C shows a model in which the average roughness factor Rf2 decreases as a convex function within the barrier region 114. FIG. 21D shows a model in which the average roughness factor Rf2 decreases with a downward convex function in the barrier region 114. FIG. 21E shows a model in which the average roughness factor Rf2 decreases in an S-curve shape having both a gradual decrease, a rapid decrease, and a gradual decrease in the barrier region 114. FIG. 21F shows a case where the average roughness factor Rf2 decreases without continuity between the average roughness factor Rf1 in the pattern part 111 and the average roughness factor Rf2 in the barrier region 114.
 パタン部111の平均ラフネスファクタRf1より小さいバリア領域114の平均ラフネスファクタRf2としては、図21に例示するような平均ラフネスファクタRf2の変化が挙げられる。これらの勾配を有することで、塗工不良(1)を抑制するための、塗工液膜内部に加わる応力の緩和効果や、塗工不良(2)を抑制するための、非パタン部112上にてはじかれた塗工液滴のパタン部111への侵入阻害効果を発揮することができる。 As the average roughness factor Rf2 of the barrier region 114 smaller than the average roughness factor Rf1 of the pattern part 111, a change in the average roughness factor Rf2 as exemplified in FIG. By having these gradients, the stress relaxation effect applied to the inside of the coating liquid film for suppressing the coating failure (1) and the non-patterned portion 112 for suppressing the coating failure (2). It is possible to exert an effect of inhibiting the penetration of the coating droplet repelled into the pattern part 111.
 図21Aに示すような階段状ステップの幅(距離)は、塗工性の観点から、微細凹凸構造の周期よりも大きければ、ステップの段数が多く細かいほど好ましい。塗工性の観点から、ステップ幅は、5mm以下であることが好ましく、1mm以下であるとより好ましい。最も好ましくは、100μm以下である。 The width (distance) of the stepped step as shown in FIG. 21A is preferably as long as the number of step steps is finer as long as it is larger than the period of the fine concavo-convex structure from the viewpoint of coatability. From the viewpoint of coatability, the step width is preferably 5 mm or less, and more preferably 1 mm or less. Most preferably, it is 100 μm or less.
 特に、塗工液113と非パタン部112との親和性が離型性を発現する範囲で高い場合は、塗工液113の接触角が連続的に変化し、塗工液113にかかる力F(θ)も連続的に変化することで、塗工液113の液滴(液膜)内部への応力集中は起こらずに、塗工不良(1)を抑制して良好な塗工性を保つことができる。そのため、鋳型(IV)においては、図21E,図21C,図21B,図21D,図21A,図21Fに示すモデルの順に好ましい。一方、塗工液113と非パタン部112との親和性が低い場合は、パタン部111の凹凸構造の凹部内部から凸部上部へと加わる力、転写材塗工液の微細凹凸構造認識性および塗工初期の転写材塗工液の状態(モード)が変化し、バリア領域114上にて塗工液113の液滴内部への応力を大きくすることができる。そのため、非パタン部112上ではじかれた塗工液113の液滴は、バリア領域114を乗り越えることができず、塗工不良(2)を抑制しパタン部111上の塗工性を良好に保つことができる。そのため、鋳型(I)においては、図21F,図21D,図21A,図21E,図21Cに示すモデルの順に好ましい。 In particular, when the affinity between the coating liquid 113 and the non-pattern part 112 is high in a range where the releasability is expressed, the contact angle of the coating liquid 113 continuously changes, and the force F applied to the coating liquid 113 Since (θ) also changes continuously, stress concentration inside the droplet (liquid film) of the coating liquid 113 does not occur, and the coating defect (1) is suppressed and good coating properties are maintained. be able to. Therefore, the mold (IV) is preferable in the order of the models shown in FIGS. 21E, 21C, 21B, 21D, 21A, and 21F. On the other hand, when the affinity between the coating liquid 113 and the non-patterned portion 112 is low, the force applied from the inside of the concave portion of the concave / convex structure of the pattern portion 111 to the upper portion of the convex portion, The state (mode) of the transfer material coating liquid at the initial stage of coating changes, and the stress inside the droplet of the coating liquid 113 on the barrier region 114 can be increased. For this reason, the droplets of the coating liquid 113 repelled on the non-pattern part 112 cannot get over the barrier region 114, and the coating defect on the pattern part 111 is improved by suppressing the coating failure (2). Can keep. Therefore, the mold (I) is preferable in the order of the models shown in FIGS. 21F, 21D, 21A, 21E, and 21C.
 次に、転写用鋳型(II)、(III)における平均ラフネスファクタRf2の勾配の例について説明する。 Next, an example of the gradient of the average roughness factor Rf2 in the transfer templates (II) and (III) will be described.
 転写用鋳型(II)、(III)が有するパタン部111に近づくほど小さくなるバリア領域114の平均ラフネスファクタRf2の勾配としては、例えば、図22に示すような勾配が挙げられる。図22において、縦軸はラフネスファクタRfの大きさを示し、横軸はパタン部111の中心位置からの距離を示す。図22Aは、バリア領域114内で、平均ラフネスファクタRf2が階段状に増加するモデルを示している。図22Bは、バリア領域114内で、平均ラフネスファクタRf2が線形的に増加するモデルを示している。図22Cは、バリア領域114内で、平均ラフネスファクタRf2が下に凸の関数で増加するモデルを示している。図22Dは、バリア領域114内で、平均ラフネスファクタRf2が上に凸の関数で増加するモデルを示している。図22Eは、バリア領域内114で、平均ラフネスファクタRf2が急激な増加-緩やかな増加―急激な増加を併せ持つS字カーブ状に増加するモデルを示している。図22Fは、平均ラフネスファクタRf2が、パタン部111内の平均ラフネスファクタRf1とバリア領域114内の平均ラフネスファクタRf2に連続性がなく増加する場合を示している。 Examples of the gradient of the average roughness factor Rf2 of the barrier region 114 that decreases as the pattern portions 111 of the transfer templates (II) and (III) are closer include a gradient as shown in FIG. In FIG. 22, the vertical axis represents the magnitude of the roughness factor Rf, and the horizontal axis represents the distance from the center position of the pattern unit 111. FIG. 22A shows a model in which the average roughness factor Rf2 increases stepwise within the barrier region 114. FIG. FIG. 22B shows a model in which the average roughness factor Rf2 increases linearly within the barrier region 114. FIG. 22C shows a model in which the average roughness factor Rf2 increases as a downward convex function in the barrier region 114. FIG. 22D shows a model in which the average roughness factor Rf2 increases as a convex function within the barrier region 114. FIG. 22E shows a model in which the average roughness factor Rf2 increases in a S-curve shape having both a rapid increase, a gradual increase, and a rapid increase in the barrier region 114. FIG. 22F shows a case where the average roughness factor Rf2 increases without a continuity between the average roughness factor Rf1 in the pattern portion 111 and the average roughness factor Rf2 in the barrier region 114.
 パタン部111の平均ラフネスファクタRf1より大きい、バリア領域114の平均ラフネスファクタRf2としては、図22に例示するような平均ラフネスファクタRf2の変化が挙げられる。これらの勾配を有することで、塗工不良(1)を抑制するための、塗工液膜内部に加わる応力の緩和効果や、塗工不良(2)を抑制するための、非パタン部112上にてはじかれた塗工液滴のパタン部111への侵入阻害効果を発揮することができる。 The average roughness factor Rf2 of the barrier region 114 that is larger than the average roughness factor Rf1 of the pattern part 111 includes a change in the average roughness factor Rf2 as illustrated in FIG. By having these gradients, the stress relaxation effect applied to the inside of the coating liquid film for suppressing the coating failure (1) and the non-patterned portion 112 for suppressing the coating failure (2). It is possible to exert an effect of inhibiting the penetration of the coating droplet repelled into the pattern part 111.
 図22Aに示すような階段状ステップの幅(距離)は、塗工性の観点から、微細凹凸構造の周期よりも大きければ、ステップの段数が多く細かいほど好ましい。塗工性の観点から、ステップ幅は、5mm以下であることが好ましく、1mm以下であるとより好ましい。最も好ましくは、100μm以下である。 If the width (distance) of the stepped step as shown in FIG. 22A is larger than the period of the fine concavo-convex structure from the viewpoint of coating properties, it is preferable that the number of steps is larger and finer. From the viewpoint of coatability, the step width is preferably 5 mm or less, and more preferably 1 mm or less. Most preferably, it is 100 μm or less.
 特に、塗工液113と非パタン部112との親和性が離型性を発現する範囲で高い場合は、塗工液113の接触角が連続的に変化し、塗工液113にかかる力F(θ)も連続的に変化することで、塗工液113の液滴(液膜)内部への応力集中を抑制でき、塗工不良(1)を抑制して良好な塗工性を保つことができる。そのため、転写用鋳型(III)においては、図22D,図22B,図22A,図22C,図22E,図22Fに示すモデルの順に好ましい。一方、塗工液113と非パタン部112との親和性が低い場合は、パタン部111の凹凸構造の凹部内部から凸部上部へと加わる力、転写材塗工液の微細凹凸構造認識性および塗工初期の転写材塗工液の状態(モード)が変化し、バリア領域114上にて塗工液113の液滴内部への応力を大きくすることができる。そのため、非パタン部112上ではじかれた塗工液液滴は、バリア領域114を乗り越えることができず、塗工不良(2)を抑制しパタン部111上の塗工性を良好に保つことができる。そのため、転写用鋳型(II)においては、図22F,図22E,図22D、図22A、図22B、図22Cの順に好ましい。 In particular, when the affinity between the coating liquid 113 and the non-pattern part 112 is high in a range where the releasability is expressed, the contact angle of the coating liquid 113 continuously changes, and the force F applied to the coating liquid 113 By continuously changing (θ), it is possible to suppress stress concentration inside the droplet (liquid film) of the coating liquid 113 and to suppress poor coating (1) and maintain good coating properties. Can do. Therefore, in the transfer mold (III), the models shown in FIGS. 22D, 22B, 22A, 22C, 22E, and 22F are preferable in this order. On the other hand, when the affinity between the coating liquid 113 and the non-patterned portion 112 is low, the force applied from the inside of the concave portion of the concave / convex structure of the pattern portion 111 to the upper portion of the convex portion, The state (mode) of the transfer material coating liquid at the initial stage of coating changes, and the stress inside the droplet of the coating liquid 113 on the barrier region 114 can be increased. Therefore, the coating liquid droplets repelled on the non-pattern part 112 cannot get over the barrier region 114, and the coating property on the pattern part 111 is kept good by suppressing the coating failure (2). Can do. Therefore, the transfer template (II) is preferable in the order of FIGS. 22F, 22E, 22D, 22A, 22B, and 22C.
 なお、転写用鋳型(II)、(III)の場合、平均ラフネスファクタRf2は、パタン部111からバリア領域114方向へと、上記説明したような大きくなるような勾配を有すが、このときの平均ラフネスファクタRf2は、以下の定義に従うものとする。転写用鋳型(II)の場合、バリア領域114の微細凹凸構造は複数の凸部から構成される。平均ラフネスファクタRf2を、パタン部111からバリア領域114方向へと大きくするには、単位セルに対する凸部側面積の割合を大きくすればよい。ここで、例えば、単位セルの大きさを一定とし、凸部の径を大きくした場合、平均ラフネスファクタRf2は大きくなる。しかしながら、凸部同士が単位セル内部において接触しはじめた段階から、単位セル内部に含まれる凸部側面積は減少するため、平均ラフネスファクタRf2は減少する。よって、転写用鋳型(II)の場合、バリア領域114内部において、隣接する凸部同士が接触するまでの範囲をもって、上記平均ラフネスファクタRf2の勾配を定義するものとする。一方、転写用鋳型(III)の場合、バリア領域114の微細凹凸構造は複数の凹部から構成される。平均ラフネスファクタRf2を、パタン部111からバリア領域114方向へと大きくするには、単位セルに対する凹部側面積の割合を大きくすればよい。ここで、例えば、単位セルの大きさを一定とし、凹部の径を大きくした場合、平均ラフネスファクタRf2は大きくなる。しかしながら、凹部同士が単位セル内部において接触しはじめた段階から、単位セル内部に含まれる凹部側面積は減少するため、平均ラフネスファクタRf2は減少する。よって、転写用鋳型(III)の場合、バリア領域114内部において、隣接する凹部同士が接触するまでの範囲をもって、上記平均ラフネスファクタRf2の勾配を定義するものとする。 In the case of the transfer templates (II) and (III), the average roughness factor Rf2 has a gradient that increases as described above from the pattern portion 111 toward the barrier region 114. The average roughness factor Rf2 conforms to the following definition. In the case of the transfer mold (II), the fine concavo-convex structure of the barrier region 114 is composed of a plurality of convex portions. In order to increase the average roughness factor Rf2 in the direction from the pattern portion 111 toward the barrier region 114, the ratio of the convex portion side area to the unit cell may be increased. Here, for example, when the size of the unit cell is constant and the diameter of the convex portion is increased, the average roughness factor Rf2 is increased. However, the average roughness factor Rf2 decreases because the area of the convex portion included in the unit cell decreases from the stage where the convex portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (II), the gradient of the average roughness factor Rf2 is defined by the range until the adjacent convex portions come into contact with each other in the barrier region 114. On the other hand, in the case of the transfer mold (III), the fine concavo-convex structure of the barrier region 114 is composed of a plurality of concave portions. In order to increase the average roughness factor Rf2 in the direction from the pattern portion 111 toward the barrier region 114, the ratio of the recess side area to the unit cell may be increased. Here, for example, when the size of the unit cell is constant and the diameter of the recess is increased, the average roughness factor Rf2 is increased. However, the average roughness factor Rf2 decreases because the area of the concave portion included in the unit cell decreases from the stage where the concave portions begin to contact each other inside the unit cell. Therefore, in the case of the transfer template (III), the gradient of the average roughness factor Rf2 is defined by the range in the barrier region 114 until adjacent concave portions come into contact with each other.
 ラフネスファクタRfは塗工液の接触角に影響を与える。キャシーバクスターの式、またはウェンツェルの式より、接触角が90°より大きい撥水性材料においては、ラフネスファクタRfが大きいほど接触角は大きくなり、ラフネスファクタRfが小さいほど(接触角が90°より大きい範囲で)接触角は小さくなることが知られている。微細凹凸構造がある部分、すなわちパタン部111と、それが無い部分、すなわち非パタン部112との界面では、ラフネスファクタRfが急激な変化を起こす。これは、液滴または塗工液から見ると、パタン部111と非パタン部112との界面上において、液滴または塗工液内部に、大きな応力が加わることを意味する。すなわち、塗工液と鋳型との親和性が離型性を発現する範囲にて大きい場合は、パタン部111と非パタン部112との界面上において、塗工液膜に大きな応力が働き、その結果、塗工液膜は***する。転写用鋳型(III)、(IV)においては、パタン部111と非パタン部112との界面を、バリア領域114に置き換えることで、該塗工液膜内部に発生する応力を緩和し、塗工液膜の***を抑制し、塗工性を良好に保っている。一方、転写用鋳型(I)、(II)においては、パタン部111と非パタン部112との界面をバリア領域114に置き換えることで、もともとのパタン部111と非パタン部112との界面に比べ発生する応力が著しく大きくなる。すなわち、高離型性を発現するような表面自由エネルギーを大きく減少させた鋳型において、非パタン部112上にてはじかれ液滴化した塗工液が、パタン部111へと侵入しようとしても、バリア領域114上にて発生する大きな応力により非パタン部112側へと押し戻される。この為、パタン部111上の塗工性を良好に保つことができる。 The roughness factor Rf affects the contact angle of the coating solution. According to the Kathy Baxter equation or the Wenzel equation, in a water-repellent material having a contact angle larger than 90 °, the larger the roughness factor Rf, the larger the contact angle, and the smaller the roughness factor Rf (the contact angle is larger than 90 °). It is known that the contact angle (in range) is small. The roughness factor Rf changes abruptly at the interface between the portion with the fine concavo-convex structure, that is, the pattern portion 111 and the portion without it, that is, the non-pattern portion 112. This means that a large stress is applied to the inside of the droplet or the coating liquid on the interface between the pattern part 111 and the non-pattern part 112 when viewed from the droplet or the coating liquid. That is, when the affinity between the coating liquid and the mold is large in the range in which the mold releasability is exhibited, a large stress acts on the coating liquid film on the interface between the pattern part 111 and the non-pattern part 112, As a result, the coating liquid film is split. In the transfer molds (III) and (IV), by replacing the interface between the pattern part 111 and the non-pattern part 112 with the barrier region 114, the stress generated in the coating liquid film is alleviated and the coating is performed. Suppresses the splitting of the liquid film and maintains good coatability. On the other hand, in the transfer templates (I) and (II), the interface between the pattern part 111 and the non-pattern part 112 is replaced with a barrier region 114, so that the interface between the original pattern part 111 and the non-pattern part 112 is compared. The generated stress is significantly increased. That is, in a mold in which surface free energy is greatly reduced so as to express high releasability, even if the coating liquid repelled on the non-pattern part 112 and tries to enter the pattern part 111, It is pushed back to the non-pattern part 112 side by a large stress generated on the barrier region 114. For this reason, the coating property on the pattern part 111 can be kept favorable.
(第1の実施形態)
 図23は、第1の実施形態に係る転写用鋳型を示す模式図である。図23に示すように、この転写用鋳型(以下、単に鋳型という)300は、円筒状または円柱状で構成される。鋳型300は、外周表面に微細凹凸構造を有するパタン部301およびバリア領域302を具備する。なお、図23においては、上記説明した非パタンバリア領域や、非パタンバリア領域の途切れ、バリア領域の途切れは記載していないが、これらを含むものとする。また、以下において、パタン部301がバリア領域302に挟まれる、という表現を使用するが、これも上記説明した、挟まれの定義を適用するものとする。
(First embodiment)
FIG. 23 is a schematic view showing a transfer template according to the first embodiment. As shown in FIG. 23, the transfer mold (hereinafter simply referred to as a mold) 300 has a cylindrical shape or a columnar shape. The mold 300 includes a pattern portion 301 and a barrier region 302 having a fine uneven structure on the outer peripheral surface. In FIG. 23, the non-pattern barrier region described above, the discontinuity of the non-pattern barrier region, and the discontinuity of the barrier region are not described, but include these. In the following description, the expression that the pattern part 301 is sandwiched between the barrier regions 302 is used, and this also applies the definition of sandwiching described above.
 図23に示すように、パタン部301は、バリア領域302に挟まれた状態で配置されている。パタン部301とバリア領域302の配置は次のように定義される。鋳型300の長手方向の中心位置を点Oとする。この点Oから長手方向へ軸をとり、この軸上で鋳型300における各位置を説明する。点Aおよび点Fは、鋳型300のエッジ部である。パタン部301は、点Cと点Dとの間に存在する。点Cと点Dの間に点Oが存在する。フィルムへの転写性の観点から、点Cと点Dとの中点が、点Oであることが好ましい(距離CO=距離DO)。バリア領域302は、点Bと点Cとの間、および、点Dと点Eとの間に存在する。点Cと点Oとの距離は、点Bと点Oとの距離よりも小さい(距離CO<距離BO)。点Dと点Oとの距離は、点Eと点Oとの距離よりも小さい(距離DO<距離EO)。点Bと点Eとの中点が、点Oであってもよい(距離BO=距離EO)。 As shown in FIG. 23, the pattern portion 301 is arranged in a state of being sandwiched between barrier regions 302. The arrangement of the pattern portion 301 and the barrier region 302 is defined as follows. A center position in the longitudinal direction of the mold 300 is defined as a point O. An axis is taken from this point O in the longitudinal direction, and each position in the mold 300 will be described on this axis. Points A and F are edge portions of the mold 300. The pattern part 301 exists between the point C and the point D. A point O exists between the points C and D. From the viewpoint of transferability to a film, it is preferable that the midpoint between points C and D is point O (distance CO = distance DO). The barrier region 302 exists between the point B and the point C and between the point D and the point E. The distance between point C and point O is smaller than the distance between point B and point O (distance CO <distance BO). The distance between point D and point O is smaller than the distance between point E and point O (distance DO <distance EO). The midpoint between point B and point E may be point O (distance BO = distance EO).
 鋳型300のエッジ部を示す点A,Fと、バリア領域302の外側の端部を示す点B,Eとは、点A=点B、点E=点Fの両方、またはいずれか一方の関係を満たしていてもよい。点A=点B、かつ、点E=点Fの場合には、鋳型300の外周全面が微細凹凸構造を具備することとなる。しかしながら、鋳型300からフィルム(図示せず)へと微細凹凸構造を転写する際に、エッジ部に近い部分の微細凹凸構造を転写することは困難である。したがって、スループット性の観点から、点A≠点B、かつ、点E≠点Fであることが好ましい。 The points A and F indicating the edge portion of the mold 300 and the points B and E indicating the outer end portion of the barrier region 302 are either point A = point B, point E = point F, or any one of the relations. May be satisfied. When point A = point B and point E = point F, the entire outer periphery of the mold 300 has a fine concavo-convex structure. However, when transferring the fine concavo-convex structure from the mold 300 to a film (not shown), it is difficult to transfer the fine concavo-convex structure at a portion close to the edge portion. Therefore, from the viewpoint of throughput, it is preferable that point A ≠ point B and point E ≠ point F.
 バリア領域302の大きさ(距離BC,距離DE)は、必要な面積のパタン部301を得られるのであれば、鋳型300から転写形成されたフィルムへの直接塗工性の観点から、大きいほど好ましい。使用する溶液の粘度や、パタン部301における微細凹凸構造の形状によっても変わるが、概ね10μm以上が好ましく、50μm以上がより好ましい。バリア領域302およびパタン部301の転写性の観点から、100μm以上が好ましく、1mm以上であることが好ましく、3mm以上がより好ましく、5mm以上であることがなお好ましい。バリア領域302上にて強い応力により***した転写材塗工液がパタン部301側へと移動するのを抑制するために、バリア領域302の幅は、30mm以下が好ましく、15mm以下が好ましく、8mm以下が最も好ましい。 The size of the barrier region 302 (distance BC, distance DE) is preferably as large as possible from the viewpoint of direct coating properties on the film transferred from the mold 300 as long as the pattern part 301 having a necessary area can be obtained. . Although it varies depending on the viscosity of the solution to be used and the shape of the fine concavo-convex structure in the pattern portion 301, it is preferably approximately 10 μm or more, more preferably 50 μm or more. From the viewpoint of transferability of the barrier region 302 and the pattern part 301, it is preferably 100 μm or more, preferably 1 mm or more, more preferably 3 mm or more, and still more preferably 5 mm or more. In order to prevent the transfer material coating liquid split on the barrier region 302 due to strong stress from moving to the pattern portion 301 side, the width of the barrier region 302 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
 図23に示す鋳型300が、鋳型(I)、(IV)に相当する場合、バリア領域302の平均ラフネスファクタRf2は、パタン部301の平均ラフネスファクタRf1より小さい。特に、塗工性をより改善するために、バリア領域302の平均ラフネスファクタRf2は、バリア領域302の内側、すなわちパタン部301側から外側にかけて連続的に減少することが好ましい。すなわち、バリア領域302の平均ラフネスファクタRf2は、勾配を有することが好ましい。一方、転写用鋳型(II)、(III)においては、バリア領域302の平均ラフネスファクタRf2は、パタン部301の平均ラフネスファクタRf1より大きくすることが好ましい。特に、塗工性をより改善するために、バリア領域302の平均ラフネスファクタRf2は、バリア領域302の内側、すなわちパタン部301側から外側にかけて連続的に増加することが好ましい。すなわち、バリア領域302の平均ラフネスファクタRf2は、勾配を有することが好ましい。 23, when the mold 300 corresponds to the molds (I) and (IV), the average roughness factor Rf2 of the barrier region 302 is smaller than the average roughness factor Rf1 of the pattern portion 301. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 302 continuously decreases from the inside of the barrier region 302, that is, from the pattern portion 301 side to the outside. That is, the average roughness factor Rf2 of the barrier region 302 preferably has a gradient. On the other hand, in the transfer templates (II) and (III), the average roughness factor Rf2 of the barrier region 302 is preferably larger than the average roughness factor Rf1 of the pattern portion 301. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 302 increases continuously from the inside of the barrier region 302, that is, from the pattern portion 301 side to the outside. That is, the average roughness factor Rf2 of the barrier region 302 preferably has a gradient.
 図23に示す鋳型300においては、微細凹凸構造を有するパタン部301と、微細凹凸構造を有さない非パタン部303(図23における点A-B間、点E-F間)との間に、パタン部301の平均ラフネスファクタRf1に対し、上記説明した平均ラフネスファクタRf2の関係性を満たすバリア領域302を配置している。これにより、微細凹凸構造を有さない領域、すなわち非パタン部303とパタン部301との間のラフネスファクタRfがなだらかに変化する構造となる。この構造により、鋳型300を原版(マスターモールド)として使用して転写形成された樹脂モールドを、被処理体への微細凹凸構造の転写に使用した場合に、塗工液の塗工性が良好になる。これは、塗工液と非パタン部303との親和性が離型性を発現する範囲で高い場合は、塗工液の接触角が連続的に変化し、塗工液にかかる力F(θ)も連続的に変化する。そのため、転写用鋳型(III)、(IV)を使用することで、塗工液の液滴(液膜)内部の応力集中は緩和され、塗工不良(1)を抑制して良好な塗工性を保つことができるためである。また、塗工液と非パタン部との親和性が低い場合は、バリア領域302上における塗工液に加わる応力を急激な接触角の変化により大きくできる。そのため、転写用鋳型(I)、(II)を使用した場合は、非パタン部上ではじかれた塗工液液滴は、バリア領域302を乗り越えることができず、塗工不良(2)を抑制してパタン部301上の塗工性を良好に保つことができるためである。また、鋳型300の微細凹凸構造を、光硬化性樹脂を転写材として使用し、樹脂モールドを作製する場合に、バリア領域302による転写材内部の応力緩和の効果により、得られた硬化した光硬化性樹脂膜内部の応力も緩和することもでき、残留応力を小さくできる。 In the mold 300 shown in FIG. 23, between the pattern part 301 having a fine concavo-convex structure and the non-pattern part 303 having no fine concavo-convex structure (between points AB and EF in FIG. 23). The barrier region 302 that satisfies the above-described relationship of the average roughness factor Rf2 with respect to the average roughness factor Rf1 of the pattern portion 301 is disposed. As a result, the roughness factor Rf between the non-patterned portion 303 and the pattern portion 301 changes smoothly in a region that does not have a fine concavo-convex structure. With this structure, when a resin mold transferred and formed using the mold 300 as an original plate (master mold) is used for transferring a fine concavo-convex structure to an object to be processed, the coating property of the coating liquid is good. Become. This is because, when the affinity between the coating liquid and the non-patterned portion 303 is high in a range in which releasability is expressed, the contact angle of the coating liquid continuously changes, and the force F (θ ) Also changes continuously. Therefore, by using the transfer molds (III) and (IV), the stress concentration inside the droplet (liquid film) of the coating liquid is alleviated, and the coating failure (1) is suppressed and good coating is achieved. This is because sex can be maintained. Further, when the affinity between the coating liquid and the non-pattern part is low, the stress applied to the coating liquid on the barrier region 302 can be increased by a sudden change in the contact angle. Therefore, when the transfer molds (I) and (II) are used, the coating liquid droplets repelled on the non-patterned portion cannot get over the barrier region 302, resulting in poor coating (2). This is because the coating property on the pattern portion 301 can be kept good by being suppressed. Further, when the mold 300 has a fine concavo-convex structure using a photocurable resin as a transfer material to produce a resin mold, the cured photocuring obtained by the effect of stress relaxation inside the transfer material by the barrier region 302 is obtained. The stress inside the conductive resin film can also be relaxed, and the residual stress can be reduced.
(第2の実施形態)
 図24は、第2の実施形態に係る転写用鋳型を示す模式図である。図24に示すように、この転写用鋳型(以下、単に鋳型という)310は、第1の実施形態に係る鋳型300から転写形成されるフィルム鋳型、すなわち、リール状樹脂モールドである。つまり、第1の実施形態に係る鋳型300を、本実施の形態に係る鋳型310へ微細凹凸構造の転写のための原版(マスターモールド)として使用している。図24に示すように、この鋳型310は、表面に微細凹凸構造を有するパタン部311およびバリア領域312を具備する。なお、図24においては、上記説明した非パタンバリア領域や、非パタンバリア領域の途切れ、バリア領域の途切れは記載していないが、これらを含むものとする。また、以下において、パタン部311がバリア領域312に挟まれる、という表現を使用するが、これも上記説明した、挟まれの定義を適用するものとする。
(Second Embodiment)
FIG. 24 is a schematic diagram showing a transfer template according to the second embodiment. As shown in FIG. 24, the transfer mold (hereinafter simply referred to as a mold) 310 is a film mold transferred from the mold 300 according to the first embodiment, that is, a reel-shaped resin mold. That is, the mold 300 according to the first embodiment is used as a master (master mold) for transferring the fine concavo-convex structure to the mold 310 according to the present embodiment. As shown in FIG. 24, this mold 310 includes a pattern portion 311 and a barrier region 312 having a fine concavo-convex structure on the surface. In FIG. 24, the above-described non-pattern barrier region, discontinuity of the non-pattern barrier region, and discontinuity of the barrier region are not described, but include these. In the following, the expression that the pattern part 311 is sandwiched between the barrier regions 312 will be used, but this also applies the definition of sandwiching described above.
 図24に示すように、パタン部311は、バリア領域312に挟まれた状態で配置されている。パタン部311とバリア領域312の配置は、次のように定義される。フィルムの幅方向に軸を取り、フィルムの一端部と他端部との中心を点Oとする。この軸上で鋳型310における各位置を説明する。なお、パタン部311およびバリア領域312が有する微細凹凸構造は、フィルムの幅方向の軸と垂直な方向にも形成されている。 As shown in FIG. 24, the pattern part 311 is arranged in a state of being sandwiched between the barrier regions 312. The arrangement of the pattern part 311 and the barrier region 312 is defined as follows. The axis is taken in the width direction of the film, and the center between one end and the other end of the film is defined as a point O. Each position on the mold 310 on this axis will be described. The fine concavo-convex structure of the pattern portion 311 and the barrier region 312 is also formed in a direction perpendicular to the axis in the width direction of the film.
 点Aおよび点Fは、鋳型310を構成するフィルムのエッジ部である。パタン部311は、点Cと点Dとの間に存在する。点Cと点Dの間に点Oが存在する。フィルムへの転写性および、鋳型310への転写材の直接塗工性の観点から、点Cと点Dとの中点が、点Oであることが好ましい(距離CO=距離DO)。バリア領域312は、点Bと点Cとの間、および、点Dと点Eとの間に存在する。点Cと点Oとの距離は、点Bと点Oとの距離よりも小さい(距離CO<距離BO)。点Dと点Oとの距離は、点Eと点Oとの距離よりも小さい(距離DO<距離EO)。点Bと点Eとの中点が、点Oであってもよい(距離BO=距離EO)。 Point A and point F are the edge portions of the film constituting the mold 310. The pattern part 311 exists between the point C and the point D. A point O exists between the points C and D. From the viewpoint of transferability to the film and direct coating property of the transfer material to the mold 310, the midpoint between the points C and D is preferably the point O (distance CO = distance DO). The barrier region 312 exists between the point B and the point C and between the point D and the point E. The distance between point C and point O is smaller than the distance between point B and point O (distance CO <distance BO). The distance between point D and point O is smaller than the distance between point E and point O (distance DO <distance EO). The midpoint between point B and point E may be point O (distance BO = distance EO).
 フィルムのエッジ部を示す点A,Fと、バリア領域312の外側の端部を示す点B,Eとは、点A=点B、点E=点Fの両方、またはいずれか一方の関係を満たしていてもよい。点A=点B、かつ、点E=点Fの場合には、フィルムの表面全面が微細凹凸構造を具備することとなる。しかしながら、第1の実施形態の鋳型300から第2の実施形態の鋳型310を構成するフィルムへと微細凹凸構造を転写する際、および、第2の実施形態の鋳型310の微細凹凸構造面上に転写材を塗工し、被処理体上へと転写する際に、エッジ部に近い部分の微細凹凸構造を転写することは困難である。したがって、スループット性の観点から、点A≠点B、かつ、点E≠点Fであることが好ましい。 The points A and F indicating the edge portion of the film and the points B and E indicating the outer end portion of the barrier region 312 have a relationship of either point A = point B, point E = point F, or any one of them. It may be satisfied. When point A = point B and point E = point F, the entire surface of the film has a fine concavo-convex structure. However, when transferring the fine concavo-convex structure from the mold 300 of the first embodiment to the film constituting the mold 310 of the second embodiment, and on the surface of the fine concavo-convex structure of the mold 310 of the second embodiment. When the transfer material is applied and transferred onto the object to be processed, it is difficult to transfer the fine concavo-convex structure near the edge. Therefore, from the viewpoint of throughput, it is preferable that point A ≠ point B and point E ≠ point F.
 バリア領域312の大きさ(距離BC,距離DE)は、必要な面積のパタン部311を得られるのであれば、フィルムへの直接塗工性の観点から大きいほど好ましい。使用する溶液の粘度や、パタン部311における微細凹凸構造の形状によっても変わるが、概ね10μm以上が好ましく、50μm以上がより好ましい。特に、鋳型310を使用する際に発生するウェブの振動や撓みに対してもバリア領域312の効果を発揮する観点から、100μm以上が好ましく、1mm以上であることが好ましく、3mm以上がより好ましく、5mm以上であることがなお好ましい。バリア領域312上にて強い応力により***した転写材塗工液がパタン部311側へと移動するのを抑制するために、バリア領域312の幅は、30mm以下が好ましく、15mm以下が好ましく、8mm以下が最も好ましい。 The size of the barrier region 312 (distance BC, distance DE) is preferably as large as possible from the viewpoint of direct coating properties on the film as long as the pattern portion 311 having a necessary area can be obtained. Although it varies depending on the viscosity of the solution to be used and the shape of the fine concavo-convex structure in the pattern portion 311, it is preferably approximately 10 μm or more, more preferably 50 μm or more. In particular, from the viewpoint of exhibiting the effect of the barrier region 312 against the vibration and deflection of the web generated when using the mold 310, it is preferably 100 μm or more, preferably 1 mm or more, more preferably 3 mm or more, More preferably, it is 5 mm or more. In order to suppress the transfer material coating liquid split on the barrier region 312 due to strong stress from moving to the pattern portion 311 side, the width of the barrier region 312 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
 本実施の形態に係る鋳型310において、鋳型(I)、(IV)においては、バリア領域312の平均ラフネスファクタRf2は、パタン部311の平均ラフネスファクタRf1より小さくすることが好ましい。特に、塗工性をより改善するために、バリア領域312の平均ラフネスファクタRf2は、バリア領域312の内側、すなわちパタン部311側から外側にかけて連続的に減少する、すなわち勾配を有することが好ましい。一方、転写用鋳型(II)、(III)においては、バリア領域12の平均ラフネスファクタRf2は、パタン部311の平均ラフネスファクタRf1より大きくすることが好ましい。特に、塗工性をより改善するために、バリア領域312の平均ラフネスファクタRf2は、バリア領域312の内側、すなわちパタン部311側から外側にかけて連続的に増加することが好ましい。すなわち、バリア領域312の平均ラフネスファクタRf2は、勾配を有することが好ましい。 In the mold 310 according to this embodiment, in the molds (I) and (IV), the average roughness factor Rf2 of the barrier region 312 is preferably smaller than the average roughness factor Rf1 of the pattern portion 311. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 312 continuously decreases, that is, has a gradient from the inside of the barrier region 312, that is, from the pattern portion 311 side to the outside. On the other hand, in the transfer templates (II) and (III), the average roughness factor Rf2 of the barrier region 12 is preferably larger than the average roughness factor Rf1 of the pattern portion 311. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 312 increases continuously from the inside of the barrier region 312, that is, from the pattern portion 311 side to the outside. That is, the average roughness factor Rf2 of the barrier region 312 preferably has a gradient.
 本実施の形態に係る鋳型310においては、微細凹凸構造を有するパタン部311と、微細凹凸構造を有さない非パタン部313(図24における点A-B間、点E-F間)との間に、パタン部311の平均ラフネスファクタRf1に対し、上記説明した平均ラフネスファクタRf2の関係性を満たすバリア領域312を配置することにより、非パタン部313とパタン部311との間のラフネスファクタRfがなだらかに変化する構造となる。塗工液と非パタン部313との親和性が離型性を発現する範囲で高い場合は、塗工液の接触角が連続的に変化し、塗工液にかかる力F(θ)も連続的に変化する。そのため、転写用鋳型(III)、(IV)を使用することで塗工液の液滴(液膜)内部の応力集中は緩和され、塗工不良(1)を抑制して良好な塗工性を保つことができる。また、塗工液と非パタン部313との親和性が低い場合は、バリア領域312における塗工液に加わる応力を急激な接触角の変化により大きくできる。そのため、鋳型(I)、(II)を使用することにより、非パタン部313上ではじかれ液滴化した塗工液は、バリア領域312を乗り越えることができず、塗工不良(2)を抑制してパタン部311上の塗工性を良好に保つことができる。したがって、転写材の塗工性が良好な鋳型310を提供することが可能となる。 In mold 310 according to the present embodiment, pattern portion 311 having a fine concavo-convex structure and non-pattern portion 313 having no fine concavo-convex structure (between points AB and EF in FIG. 24) Between these, the roughness region Rf between the non-pattern part 313 and the pattern part 311 is arranged by disposing a barrier region 312 that satisfies the above-described relationship of the average roughness factor Rf2 with respect to the average roughness factor Rf1 of the pattern part 311. Becomes a structure that changes gently. When the affinity between the coating liquid and the non-pattern part 313 is high in a range where the releasability is expressed, the contact angle of the coating liquid continuously changes, and the force F (θ) applied to the coating liquid is also continuous. Changes. Therefore, by using the transfer molds (III) and (IV), the stress concentration inside the droplet (liquid film) of the coating liquid is alleviated, and the coating defect (1) is suppressed and good coating properties are achieved. Can keep. Further, when the affinity between the coating liquid and the non-pattern part 313 is low, the stress applied to the coating liquid in the barrier region 312 can be increased by a sudden change in the contact angle. Therefore, by using the molds (I) and (II), the coating liquid that is repelled on the non-patterned portion 313 cannot drop over the barrier region 312, resulting in poor coating (2). It can suppress and can maintain the coating property on the pattern part 311 favorably. Therefore, it is possible to provide the mold 310 having a good transfer material coating property.
(第3の実施形態)
 図25は、第3の実施形態に係る転写用鋳型を示す模式図である。図25に示すように、この鋳型320は、円盤形状の平板鋳型である。
(Third embodiment)
FIG. 25 is a schematic diagram showing a transfer template according to the third embodiment. As shown in FIG. 25, the mold 320 is a disk-shaped flat plate mold.
 なお、この鋳型320を原版(マスターモールド)として、鋳型320から転写形成された樹脂平板鋳型(フィルム状樹脂モールド)も、鋳型320と同様の構成となる。鋳型320は、表面に微細凹凸構造を有するパタン部321およびバリア領域322を具備する。なお、図25においては、上記説明した非パタンバリア領域や、非パンバリア領域の途切れ、バリア領域の途切れは記載していないが、これらを含むものとする。また、以下において、パタン部321がバリア領域322に囲まれる、という表現を使用するが、これも上記説明した、囲まれの定義を適用するものとする。 Note that a resin flat plate mold (film-shaped resin mold) transferred from the mold 320 using the mold 320 as an original plate (master mold) has the same configuration as the mold 320. The mold 320 includes a pattern part 321 and a barrier region 322 having a fine uneven structure on the surface. In FIG. 25, the non-pattern barrier region, the non-pan barrier region, and the barrier region are not described. In the following description, the expression that the pattern part 321 is surrounded by the barrier region 322 is used, and this also applies the definition of surrounding described above.
 図25に示すように、パタン部321は、バリア領域322に囲まれた状態で配置されている。パタン部321とバリア領域322の配置は次のように定義される。鋳型320を構成する平板の中心を点Oとする。この点Oを通る直線に対し、パタン部321およびバリア領域322はそれぞれ点対称に存在する。以下の説明では、点Oを始点とする1つの線分を考える。この線分上で鋳型320における各位置を説明する。 As shown in FIG. 25, the pattern part 321 is arranged in a state surrounded by the barrier region 322. The arrangement of the pattern part 321 and the barrier region 322 is defined as follows. The center of the flat plate constituting the mold 320 is a point O. The pattern portion 321 and the barrier region 322 exist in point symmetry with respect to a straight line passing through the point O. In the following description, one line segment starting from the point O is considered. Each position in the mold 320 will be described on this line segment.
 この線分において、点Cは、鋳型320を構成する平板のエッジ部である。パタン部321は、点Oを中心とし、線分OAを半径とする円の内側に存在する。バリア領域322は、線分OAを半径とする円よりも外側であって、点Oを中心とし、線分OBを半径とする円の内側に存在する。すなわち、バリア領域322は、大半径=線分OB、小半径=線分OAで表わされる円環形状を有する。線分OAは、線分OBよりも短い(距離OA<距離OB)。また、平板のエッジ部を示す点Cと、バリア領域322の外側の端部を示す点Bとは、点C=点Bの関係を満たしていてもよい。この場合には、平板の表面全面が微細凹凸構造を具備することとなる。 In this line segment, the point C is an edge portion of a flat plate constituting the mold 320. The pattern part 321 exists inside a circle having the point O as the center and the line segment OA as the radius. The barrier region 322 is outside the circle whose radius is the line segment OA and is inside the circle whose center is the point O and whose radius is the line segment OB. That is, the barrier region 322 has an annular shape represented by a large radius = line segment OB and a small radius = line segment OA. The line segment OA is shorter than the line segment OB (distance OA <distance OB). Further, the point C indicating the edge portion of the flat plate and the point B indicating the outer end portion of the barrier region 322 may satisfy the relationship of point C = point B. In this case, the entire surface of the flat plate has a fine uneven structure.
 バリア領域322の大きさは、必要な面積のパタン部321を得られるのであれば、平板への直接塗工性の観点から大きいほど好ましい。使用する溶液の粘度や、パタン部321における微細凹凸構造の形状によっても変わるが、点Aと点Bとの距離は、概ね10μm以上が好ましく、50μm以上がより好ましい。特に、鋳型320に対し塗工液を塗工する際の鋳型の振動等に対しても良好にバリア領域322の効果を発揮する観点から、100μm以上であることが好ましく、1mm以上であることが好ましく、3mm以上がより好ましく、5mm以上であることがなお好ましい。バリア領域322上にて強い応力により***した転写材塗工液がパタン部321側へと移動するのを抑制するために、バリア領域322の幅は、30mm以下が好ましく、15mm以下が好ましく、8mm以下が最も好ましい。 The size of the barrier region 322 is preferably as large as possible from the viewpoint of direct coating on a flat plate, as long as the pattern portion 321 having a necessary area can be obtained. Although it varies depending on the viscosity of the solution to be used and the shape of the fine concavo-convex structure in the pattern portion 321, the distance between the points A and B is preferably approximately 10 μm or more, and more preferably 50 μm or more. In particular, it is preferably 100 μm or more, and preferably 1 mm or more from the viewpoint of satisfactorily exerting the effect of the barrier region 322 against the vibration of the mold when applying the coating liquid to the mold 320. Preferably, it is 3 mm or more, more preferably 5 mm or more. In order to suppress the transfer material coating liquid that has been split due to strong stress on the barrier region 322 from moving to the pattern portion 321 side, the width of the barrier region 322 is preferably 30 mm or less, preferably 15 mm or less, and 8 mm. The following are most preferred.
 鋳型320において、鋳型(I)、(IV)においては、バリア領域322の平均ラフネスファクタRf2は、パタン部321の平均ラフネスファクタRf1より小さくすることが好ましい。特に、塗工性をより改善するために、バリア領域322の平均ラフネスファクタRf2は、バリア領域322の内側、すなわちパタン部321側から外側にかけて連続的に減少する、すなわち勾配を有することが好ましい。鋳型(II)、(III)においては、バリア領域322の平均ラフネスファクタRf2は、パタン部321の平均ラフネスファクタRf1より大きくすることが好ましい。特に、塗工性をより改善するために、バリア領域322の平均ラフネスファクタRf2は、バリア領域322の内側、すなわちパタン部321側から外側にかけて連続的に増加することが好ましい。すなわち、バリア領域322の平均ラフネスファクタRf2は、勾配を有することが好ましい。 In the mold 320, in the molds (I) and (IV), it is preferable that the average roughness factor Rf2 of the barrier region 322 is smaller than the average roughness factor Rf1 of the pattern part 321. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 322 continuously decreases, that is, has a gradient from the inside of the barrier region 322, that is, from the pattern portion 321 side to the outside. In the molds (II) and (III), the average roughness factor Rf2 of the barrier region 322 is preferably larger than the average roughness factor Rf1 of the pattern portion 321. In particular, in order to further improve the coatability, it is preferable that the average roughness factor Rf2 of the barrier region 322 increases continuously from the inside of the barrier region 322, that is, from the pattern portion 321 side to the outside. That is, the average roughness factor Rf2 of the barrier region 322 preferably has a gradient.
 鋳型320においては、微細凹凸構造を有するパタン部321と、微細凹凸構造を有さない非パタン領域323(図25における大半径=線分OC、小半径=線分OBで表わされる円環形状領域)との間に、パタン部321の平均ラフネスファクタRf1に対し、上記説明した平均ラフネスファクタRf2の関係性を満たすバリア領域322を配置することにより、非パタン部323とパタン部321との間のラフネスファクタRfがなだらかに変化する構造となる。この構造により、塗工液と非パタン部323との親和性が離型性を発現する範囲で高い場合は、塗工液の接触角が連続的に変化し、塗工液にかかる力F(θ)も連続的に変化する。そのため、転写用鋳型(III)、(IV)を使用することで塗工液の液滴(液膜)内部の応力集中は緩和され、塗工不良(1)を抑制して良好な塗工性を保つことができる。また、塗工液と非パタン部323との親和性が低い場合は、バリア領域322上における塗工液に加わる応力を急激な接触角の変化により大きくできる。そのため、鋳型(I)、(II)を使用することで、非パタン部323上ではじかれた塗工液液滴は、バリア領域322を乗り越えることができず、塗工不良(2)を抑制してパタン部321上の塗工性を良好に保つことができる。したがって、転写材の塗工性が良好な鋳型320を提供することが可能となる。 In the mold 320, a pattern portion 321 having a fine concavo-convex structure and a non-pattern region 323 having no fine concavo-convex structure (an annular region represented by a large radius = a line segment OC and a small radius = a line segment OB in FIG. 25). ) Between the non-pattern part 323 and the pattern part 321 by disposing the barrier region 322 that satisfies the relationship of the average roughness factor Rf2 described above with respect to the average roughness factor Rf1 of the pattern part 321. The roughness factor Rf changes gently. With this structure, when the affinity between the coating liquid and the non-patterned portion 323 is high in a range where the releasability is expressed, the contact angle of the coating liquid changes continuously, and the force F ( θ) also changes continuously. Therefore, by using the transfer molds (III) and (IV), the stress concentration inside the droplet (liquid film) of the coating liquid is alleviated, and the coating defect (1) is suppressed and good coating properties are achieved. Can keep. In addition, when the affinity between the coating liquid and the non-pattern part 323 is low, the stress applied to the coating liquid on the barrier region 322 can be increased by a sudden change in the contact angle. Therefore, by using the molds (I) and (II), the coating liquid droplets repelled on the non-patterned portion 323 cannot get over the barrier region 322, and the coating failure (2) is suppressed. Thus, the coating property on the pattern part 321 can be kept good. Therefore, it is possible to provide the mold 320 having a good transfer material coating property.
 また、鋳型320においては、平板状基材に対するパタン部321の製造方法上、点Oを中心とし半径OAよりも小さい円の内側に非パタン部が設けられることがある。この場合、該非パタン部の周囲を囲むようなバリア領域を別途設けることで、鋳型320に対する塗工性を改善できる。また、上記説明においては図25に示されるように平板状基材表面に外形が円形のパタン部を代表したが、平板状基材に対するパタン部の製造方法としてステッパを使用した微細加工方法を採用した場合、パタン部の外形は円形にはならない。特に、ステッパを採用した場合、パタン部の輪郭は階段状のステップを持つ形状となる。この場合、その周囲を囲むようにバリア領域を設ければよい。 Further, in the mold 320, a non-pattern portion may be provided inside a circle centered on the point O and smaller than the radius OA due to the manufacturing method of the pattern portion 321 with respect to the flat substrate. In this case, the coating property to the mold 320 can be improved by separately providing a barrier region surrounding the non-pattern part. Further, in the above description, as shown in FIG. 25, a flat pattern portion is represented on the surface of the flat substrate, but a fine processing method using a stepper is adopted as a method of manufacturing the pattern portion on the flat substrate. In this case, the outer shape of the pattern portion does not become circular. In particular, when a stepper is employed, the contour of the pattern part has a stepped step shape. In this case, a barrier region may be provided so as to surround the periphery.
 次に、本発明の実施の形態に係る転写用鋳型を構成する材質について説明する。 Next, the materials constituting the transfer mold according to the embodiment of the present invention will be described.
 マスターモールドを構成する円筒状または円柱状の基材または平板の基材は、表面への微細加工の観点から、合成石英や溶融石英に代表される石英、無アルカリガラス、低アルカリガラス、ソーダライムガラスに代表されるガラス、シリコンウェハ、ニッケル版、サファイア、ダイヤモンド、ダイヤモンドライクカーボン、フッ素含有ダイヤモンドライクカーボン等に代表される無機材料や、SiC基板やマイカ基板、ポリカーボネート(PC)基板等が挙げられる。 From the viewpoint of microfabrication on the surface, the cylindrical or columnar substrate or flat substrate constituting the master mold is made of quartz, non-alkali glass, low alkali glass, soda lime, typified by synthetic quartz or fused silica. Examples thereof include glass, silicon wafer, nickel plate, sapphire, diamond, diamond-like carbon, inorganic material typified by fluorine-containing diamond-like carbon, SiC substrate, mica substrate, polycarbonate (PC) substrate and the like. .
 一方、円筒状または円柱状の原版(マスターモールド)からの転写で得られる樹脂モールドの材質としては、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂またはゾルゲル材料等の硬化物が挙げられる。これらの材質のみで微細凹凸構造を形成するかまたは支持基材上にこれらの材質から構成される微細凹凸構造が設けられる。 On the other hand, examples of the resin mold material obtained by transfer from a cylindrical or columnar master (master mold) include cured products such as thermoplastic resins, thermosetting resins, photocurable resins, and sol-gel materials. A fine concavo-convex structure is formed only with these materials, or a fine concavo-convex structure composed of these materials is provided on a support substrate.
 支持基材として支持フィルムを用いた場合は、この支持フィルムの表面に設けられた表面に微細凹凸構造を有する熱硬化性樹脂、光硬化性樹脂またはゾルゲル材料等の硬化物から樹脂モールドが構成される。離型性の観点から、この樹脂モールドの微細凹凸構造上に離型層を形成するか、または、微細凹凸構造がポリジメチルシロキサン(PDMS)からなる樹脂、メチル基を含む樹脂またはフッ素含有樹脂で構成されていることが好ましい。 When a support film is used as the support substrate, a resin mold is composed of a cured product such as a thermosetting resin, a photocurable resin, or a sol-gel material having a fine relief structure on the surface of the support film. The From the viewpoint of releasability, a release layer is formed on the fine concavo-convex structure of this resin mold, or the resin having a fine concavo-convex structure made of polydimethylsiloxane (PDMS), a resin containing a methyl group, or a fluorine-containing resin. It is preferable to be configured.
 離型層の厚みは、転写精度の観点から30nm以下であることが好ましく、単分子層以上の厚みであることが好ましい。離型性の観点から、離型層の厚みは、2nm以上であることがより好ましく、転写精度の観点から20nm以下であることがより好ましい。離型層を構成する材料は、転写材料により適宜選定すればよく、限定されない。 The thickness of the release layer is preferably 30 nm or less from the viewpoint of transfer accuracy, and is preferably a monomolecular layer or more. From the viewpoint of releasability, the thickness of the release layer is more preferably 2 nm or more, and more preferably 20 nm or less from the viewpoint of transfer accuracy. The material constituting the release layer may be appropriately selected depending on the transfer material, and is not limited.
 公知市販のものとしては、例えば、ゾニールTCコート(デュポン社製),サイトップCTL-107M(旭硝子社製),サイトップCTL-107A(旭硝子社製),ノベックEGC-1720(3M社製),オプツールDSX(ダイキン工業社製),オプツールDACHP(ダイキン工業社製),デュラサーフHD-2101Z(ダイキン工業社製),デュラサーフHD2100(ダイキン工業社製),デュラサーフHD-1101Z(ダイキン工業社製),ネオス社製「フタージェント」(例えば,Mシリーズ:フタージェント251,フタージェント215M,フタージェント250,FTX-245M,FTX-290M;Sシリーズ:FTX-207S,FTX-211S,FTX-220S,FTX-230S;Fシリーズ:FTX-209F,FTX-213F,フタージェント222F,FTX-233F,フタージェント245F;Gシリーズ:フタージェント208G,FTX-218G,FTX-230G,FTS-240G;オリゴマーシリーズ:フタージェント730FM,フタージェント730LM;フタージェントPシリーズ;フタージェント710FL;FTX-710HL等),DIC社製「メガファック」(例えば,F-114,F-410,F-493,F-494,F-443,F-444,F-445,F-470,F-471,F-474,F-475,F-477,F-479,F-480SF,F-482,F-483,F-489,F-172D,F-178K,F-178RM,MCF-350SF等),ダイキン社製「オプツールTM」(例えば,DSX,DAC,AES),「エフトーンTM」(例えば,AT-100),「ゼッフルTM」(例えば,GH-701),「ユニダインTM」,「ダイフリーTM」,「オプトエースTM」,住友スリーエム社製「ノベックEGC-1720」,フロロテクノロジー社製「フロロサーフ」等,シリコーン系樹脂(ジメチルシリコーン系オイルKF96(信越シリコーン社製),変性シリコーンの市販品としては,具体的にはTSF4421(GE東芝シリコーン社製),XF42-334(GE東芝シリコーン社製),XF42-B3629(GE東芝シリコーン社製),XF42-A3161(GE東芝シリコーン社製),FZ-3720(東レ・ダウコーニング社製),BY 16-839(東レ・ダウコーニング社製),SF8411(東レ・ダウコーニング社製),FZ-3736(東レ・ダウコーニング社製),BY 16-876(東レ・ダウコーニング社製),SF8421(東レ・ダウコーニング社製),SF8416(東レ・ダウコーニング社製),SH203(東レ・ダウコーニング社製),SH230(東レ・ダウコーニング社製),SH510(東レ・ダウコーニング社製),SH550(東レ・ダウコーニング社製),SH710(東レ・ダウコーニング社製),SF8419(東レ・ダウコーニング社製),SF8422(東レ・ダウコーニング社製),BY16シリーズ(東レ・ダウコーニング社製),FZ3785(東レ・ダウコーニング社製),KF-410(信越化学工業社製),KF-412(信越化学工業社製),KF-413(信越化学工業社製),KF-414(信越化学工業社製),KF-415(信越化学工業社製),KF-351A(信越化学工業社製),KF-4003(信越化学工業社製),KF-4701(信越化学工業社製),KF-4917(信越化学工業社製),KF-7235B(信越化学工業社製),KR213(信越化学工業社製),KR500(信越化学工業社製),KF-9701(信越化学工業社製),X21-5841(信越化学工業社製),X-22-2000(信越化学工業社製),X-22-3710(信越化学工業社製),X-22-7322(信越化学工業社製),X-22-1877(信越化学工業社製),X-22-2516(信越化学工業社製),PAM-E(信越化学工業社製)),アルカン系樹脂(アルキル系単分子膜を形成するSAMLAY等)が挙げられる。 Known commercially available products include, for example, Zonyl TC Coat (DuPont), Cytop CTL-107M (Asahi Glass), Cytop CTL-107A (Asahi Glass), Novec EGC-1720 (3M), OPTOOL DSX (manufactured by Daikin Industries), OPTOOL DACHP (manufactured by Daikin Industries), Durasurf HD-2101Z (manufactured by Daikin Industries), Durasurf HD2100 (manufactured by Daikin Industries), Durasurf HD-1101Z (manufactured by Daikin Industries) ), “Fuategent” manufactured by Neos (for example, M series: Footent 251, Footent 215M, Footent 250, FTX-245M, FTX-290M; S series: FTX-207S, FTX-211S, FTX-220S, FTX-230S; F series FTX-209F, FTX-213F, aftergent 222F, FTX-233F, aftergent 245F; G series: aftergent 208G, FTX-218G, FTX-230G, FTS-240G; oligomer series: aftergent 730FM, aftergent 730LM; (F-114, F-410, F-493, F-494, F-443, F-444, F) -445, F-470, F-471, F-474, F-475, F-477, F-479, F-480SF, F-482, F-483, F-489, F-172D, F-178K , F-178RM, MCF-350SF, etc.), manufactured by Daikin "OPTOOL TM" (eg DSX, DAC, AES), "EFTONE TM" (eg AT-100), "Zeffle TM" (eg GH-701), "Unidyne TM", "Die Free TM", "Opto" Commercially available silicone resins (dimethyl silicone oil KF96 (manufactured by Shin-Etsu Silicone)), modified silicones such as Ace TM, Sumitomo 3M “Novec EGC-1720”, Fluoro Technology “Fluorosurf”, etc. TSF4421 (manufactured by GE Toshiba Silicone), XF42-334 (manufactured by GE Toshiba Silicone), XF42-B3629 (manufactured by GE Toshiba Silicone), XF42-A3161 (manufactured by GE Toshiba Silicone), FZ-3720 (Toray Dow Corning), BY 16-839 (Toray Dowco) -Surfing), SF8411 (Toray Dow Corning), FZ-3736 (Toray Dow Corning), BY 16-876 (Toray Dow Corning), SF8421 (Toray Dow Corning), SF8416 (made by Toray Dow Corning), SH203 (made by Toray Dow Corning), SH230 (made by Toray Dow Corning), SH510 (made by Toray Dow Corning), SH550 (made by Toray Dow Corning), SH710 (Toray Dow Corning), SF8419 (Toray Dow Corning), SF8422 (Toray Dow Corning), BY16 Series (Toray Dow Corning), FZ3785 (Toray Dow Corning) , KF-410 (Shin-Etsu Chemical Co., Ltd.), KF-412 (Shin-Etsu Chemical Co., Ltd.) KF-413 (Shin-Etsu Chemical Co., Ltd.), KF-414 (Shin-Etsu Chemical Co., Ltd.), KF-415 (Shin-Etsu Chemical Co., Ltd.), KF-351A (Shin-Etsu Chemical Co., Ltd.), KF-4003 (Manufactured by Shin-Etsu Chemical Co., Ltd.), KF-4701 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-4917 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-7235B (manufactured by Shin-Etsu Chemical Co., Ltd.), KR213 (manufactured by Shin-Etsu Chemical Co., Ltd.), KR500 (manufactured by Shin-Etsu Chemical Co., Ltd.), KF-9701 (manufactured by Shin-Etsu Chemical Co., Ltd.), X21-5841 (manufactured by Shin-Etsu Chemical Co., Ltd.), X-22-2000 (manufactured by Shin-Etsu Chemical Co., Ltd.), X-22-3710 ( Shin-Etsu Chemical Co., Ltd.), X-22-7322 (Shin-Etsu Chemical Co., Ltd.), X-22-1877 (Shin-Etsu Chemical Co., Ltd.), X-22-2516 (Shin-Etsu Chemical Co., Ltd.), PAM-E ( Shin-Etsu Chemical Co., Ltd.)), A Kang resin (SAMLAY like to form an alkyl-based monomolecular film) and the like.
 特に、離型層を構成する材料は、メチル基含む材料、シリコーンを含む材料またはフッ素を含む材料であることが離型性の観点から好ましい。特に、シランカップリング剤またはPDMSに代表されるシリコーン系樹脂であると、離型層の膜厚を容易に薄くでき、かつ、転写精度を保持できるため好ましい。離型層に使用される材料は、1種類を単独で用いても、複数を同時に使用してもよい。また、離型層を構成する材料は、水に対する接触角が90度以上であることが好ましい。ここで接触角とは、離型層を構成する材料を用いベタ膜(微細パタンの無い膜)を作製した際の接触角を意味する。 Particularly, the material constituting the release layer is preferably a material containing a methyl group, a material containing silicone, or a material containing fluorine from the viewpoint of releasability. In particular, a silicone-based resin typified by a silane coupling agent or PDMS is preferable because the thickness of the release layer can be easily reduced and the transfer accuracy can be maintained. The material used for the release layer may be used alone or in combination. Moreover, it is preferable that the material which comprises a release layer has a contact angle with respect to water of 90 degree | times or more. Here, the contact angle means a contact angle when a solid film (a film having no fine pattern) is produced using a material constituting the release layer.
 また、樹脂モールドの微細凹凸構造上に、金属層、金属酸化物層または金属と金属酸化物から成る層(以下、単に金属層という)を設けてもよい。これらの層をあらかじめ設けることで、前述した離型層を設けた時に、より一層離型性および転写精度が向上するため好ましい。金属としては、例えば、クロム、アルミ、タングステン、モリブデン、ニッケル、金、プラチナが挙げられる。金属酸化物としては、例えば、前記金属の酸化物の他、SiO、ZnO,Al,ZrO,CaO,SnOが挙げられる。また、シリコンカーバイド、ダイヤモンドライクカーボンやフッ素含有ダイヤモンドライクカーボン等も使用できる。これらの混合物を使用してもよい。なお、金属としては、転写精度の観点からCrが好ましく、金属酸化物としては、SiO,Al,ZrO,ZnOが好ましい。 Further, a metal layer, a metal oxide layer, or a layer made of a metal and a metal oxide (hereinafter simply referred to as a metal layer) may be provided on the fine uneven structure of the resin mold. Providing these layers in advance is preferable because when the release layer described above is provided, the releasability and transfer accuracy are further improved. Examples of the metal include chrome, aluminum, tungsten, molybdenum, nickel, gold, and platinum. As the metal oxide, for example, other oxides of the metals, SiO 2, ZnO, Al 2 O 3, ZrO 2, CaO, SnO 2 and the like. Silicon carbide, diamond-like carbon, fluorine-containing diamond-like carbon, or the like can also be used. Mixtures of these may be used. The metal is preferably Cr from the viewpoint of transfer accuracy, and the metal oxide is preferably SiO 2 , Al 2 O 3 , ZrO 2 , or ZnO.
 金属層は、単層であっても多層であってもよい。特に、最表面に形成する金属層とモールドの微細凹凸構造との密着性が悪い場合等は、モールドの微細凹凸構造上に第1の金属層を形成し、さらに第1の金属層上に第2の金属層を形成するとよい。同様に、密着性や帯電性の改善のために、第Nの金属層上に、第N+1の金属層を形成することができる。層数としては、転写精度の観点から、N≦4が好ましく、N≦2がより好ましく、N≦1がより好ましい。例えば、N=2の場合、微細凹凸構造表面にSiOからなる第1の金属層を設け、第1の金属層上にCrからなる第2の金属層を設けることができる。また、金属層を構成する金属としては転写精度の観点から、Crが好ましく、金属酸化物としては、SiO,Al,ZrO,ZnOが好ましい。 The metal layer may be a single layer or a multilayer. In particular, when the adhesion between the metal layer formed on the outermost surface and the fine concavo-convex structure of the mold is poor, the first metal layer is formed on the fine concavo-convex structure of the mold, and the first metal layer is further formed on the first metal layer. Two metal layers may be formed. Similarly, an N + 1th metal layer can be formed on the Nth metal layer in order to improve adhesion and chargeability. The number of layers is preferably N ≦ 4, more preferably N ≦ 2, and more preferably N ≦ 1 from the viewpoint of transfer accuracy. For example, when N = 2, a first metal layer made of SiO 2 can be provided on the surface of the fine concavo-convex structure, and a second metal layer made of Cr can be provided on the first metal layer. The metal constituting the metal layer is preferably Cr from the viewpoint of transfer accuracy, and the metal oxide is preferably SiO 2 , Al 2 O 3 , ZrO 2 , or ZnO.
 上述した離型層は、樹脂モールドの微細凹凸構造上に直接設けても、金属層上に設けてもよい。 The release layer described above may be provided directly on the fine uneven structure of the resin mold or on the metal layer.
 特に、樹脂モールドの、微細凹凸構造を形成する材料としては、ポリジメチルシロキサン(PDMS)からなる樹脂、メチル基を含む樹脂またはフッ素含有樹脂のいずれかで構成されていることが好ましく、特に、フッ素含有樹脂で構成されていることがより好ましい。フッ素含有樹脂は、フッ素元素を含有しており、かつ、水に対する接触角が90度より大きければ特に限定されない。樹脂モールドは、表面に微細凹凸構造を具備した自立性のある樹脂層のみ、または、表面に微細凹凸構造を具備した樹脂層が、支持基材の上に成形された形状が好ましい。特に、モールドを使用する際のハンドリングの観点から、支持基材上に樹脂層が成形された形状が好ましい。 In particular, the material for forming the fine concavo-convex structure of the resin mold is preferably composed of a resin made of polydimethylsiloxane (PDMS), a resin containing a methyl group, or a fluorine-containing resin. It is more preferable that the resin is composed of a containing resin. The fluorine-containing resin is not particularly limited as long as it contains a fluorine element and has a contact angle with water larger than 90 degrees. The resin mold preferably has a shape in which only a self-supporting resin layer having a fine uneven structure on the surface or a resin layer having a fine uneven structure on the surface is formed on a support substrate. In particular, from the viewpoint of handling when using a mold, a shape in which a resin layer is formed on a supporting substrate is preferable.
 また、樹脂層中の樹脂表面(微細凹凸構造付近)のフッ素濃度(Es)を、樹脂層中の平均フッ素濃度(Eb)より大きくすることで、樹脂表面の自由エネルギーが低下し、転写材との離型性に優れる転写用鋳型を得ることができる。 Also, by making the fluorine concentration (Es) on the resin surface (near the fine concavo-convex structure) in the resin layer larger than the average fluorine concentration (Eb) in the resin layer, the free energy on the resin surface is reduced, and the transfer material and Thus, a transfer mold excellent in releasability can be obtained.
 さらに、樹脂層を構成する樹脂中の平均フッ素元素濃度(Eb)と樹脂層表面(表層)部のフッ素元素濃度(Es)との比が、1<Es/Eb≦30000を満たすことで、上記効果をより発揮するためより好ましい。特に、3≦Es/Eb≦1500、10≦Es/Eb≦100の範囲となるにしたがって、より離型性が向上するため好ましい。 Furthermore, the ratio of the average fluorine element concentration (Eb) in the resin constituting the resin layer and the fluorine element concentration (Es) of the resin layer surface (surface layer) portion satisfies 1 <Es / Eb ≦ 30000, It is more preferable because the effect is more exhibited. In particular, it is preferable because the releasability is further improved as the range becomes 3 ≦ Es / Eb ≦ 1500 and 10 ≦ Es / Eb ≦ 100.
 なお、上記する最も広い範囲(1<Es/Eb≦30000)の中にあって、20≦Es/Eb≦200の範囲であれば、樹脂モールドを構成する樹脂層表面(表層)部のフッ素元素濃度(Es)が、樹脂層中の平均フッ素濃度(Eb)より十分高くなり、樹脂モールド表面の自由エネルギーが効果的に減少するので、転写材との離型性が向上する。また、樹脂モールドを構成する樹脂層中の平均フッ素元素濃度(Eb)を、樹脂モールドを構成する樹脂層表面(表層)部のフッ素元素濃度(Es)に対して相対的に低くすることにより、樹脂自体の強度が向上するとともに、樹脂モールド中における支持基材付近では、自由エネルギーを高く保つことができるので、支持基材の密着性が向上する。これにより、支持基材との密着性に優れ、転写材との離型性に優れ、しかも、ナノメートルサイズの凹凸形状を樹脂から樹脂へ繰り返し転写できる樹脂モールドを得ることができるので特に好ましい。また、26≦Es/Eb≦189の範囲であれば、樹脂モールドを構成する樹脂層表面の自由エネルギーをより低くすることができ、繰り返し転写性が良好になるため好ましい。さらに、30≦Es/Eb≦160の範囲であれば、樹脂モールドを構成する樹脂層表面の自由エネルギーを減少させるとともに、樹脂の強度を維持することができ、繰り返し転写性がより向上するため好ましく、31≦Es/Eb≦155であればより好ましい。46≦Es/Eb≦155であれば、上記効果をより一層発現できるため好ましい。なお、上記繰り返し転写性とは、樹脂モールドから樹脂モールドを容易に複製できることを意味する。すなわち、樹脂モールドの微細凹凸構造が凸型の樹脂モールドG1を鋳型として、微細凹凸構造が凹型の樹脂モールドG2を転写形成可能であり、樹脂モールドG2を鋳型として、微細凹凸構造が凸型の樹脂モールドG3を転写形成することが可能となる。同様に、微細凹凸構造が凸型の樹脂モールドGNを鋳型として、微細凹凸構造が凹型の樹脂モールドGN+1を転写形成することが可能となる。また、一つの樹脂モールドG1を鋳型として複数枚の樹脂モールドG2を得ることも、一つの樹脂モールドG2を鋳型として複数枚の樹脂モールドG3を得ることも可能となる。同様に、一つの樹脂モールドGMを鋳型として複数枚の樹脂モールドGM+1を得ることも可能となる。また、使用済みの転写用鋳型を再利用できることも意味する。このように、上記Es/Ebを満たす樹脂モールドを使用することにより、環境対応性が向上する。 In the widest range described above (1 <Es / Eb ≦ 30000) and in the range of 20 ≦ Es / Eb ≦ 200, the fluorine element on the resin layer surface (surface layer) part constituting the resin mold Since the concentration (Es) becomes sufficiently higher than the average fluorine concentration (Eb) in the resin layer and the free energy on the resin mold surface is effectively reduced, the releasability from the transfer material is improved. Further, by making the average fluorine element concentration (Eb) in the resin layer constituting the resin mold relatively lower than the fluorine element concentration (Es) of the resin layer surface (surface layer) part constituting the resin mold, While the strength of the resin itself is improved, the free energy can be kept high in the vicinity of the supporting base material in the resin mold, so that the adhesion of the supporting base material is improved. This is particularly preferable because a resin mold can be obtained that has excellent adhesion to the support substrate, excellent releasability from the transfer material, and can repeatedly transfer the nanometer-sized uneven shape from the resin to the resin. Moreover, if it is the range of 26 <= Es / Eb <= 189, since the free energy of the resin layer surface which comprises a resin mold can be made lower, and a repetitive transfer property becomes favorable, it is preferable. Furthermore, if it is in the range of 30 ≦ Es / Eb ≦ 160, the free energy on the surface of the resin layer constituting the resin mold can be reduced, the strength of the resin can be maintained, and repeated transferability is further improved, which is preferable. 31 ≦ Es / Eb ≦ 155 is more preferable. If 46 ≦ Es / Eb ≦ 155, the above effect can be further exhibited, which is preferable. The repetitive transfer property means that the resin mold can be easily duplicated from the resin mold. That is, it is possible to transfer and form a resin mold G2 having a concave and convex structure with a resin mold G1 having a convex and concave structure, and a resin mold G2 having a concave and convex structure. The mold G3 can be transferred and formed. Similarly, it is possible to transfer and form the resin mold GN + 1 having a concave and convex structure using the resin mold GN having a convex and concave structure as a mold. In addition, it is possible to obtain a plurality of resin molds G2 using one resin mold G1 as a mold, or to obtain a plurality of resin molds G3 using one resin mold G2 as a mold. Similarly, a plurality of resin molds GM + 1 can be obtained using one resin mold GM as a mold. It also means that the used transfer template can be reused. Thus, environmental compatibility improves by using the resin mold which satisfy | fills said Es / Eb.
 ここで、樹脂モールドを構成する樹脂層の樹脂表面(微細凹凸構造付近)とは、例えば、樹脂モールドを構成する樹脂層の微細凹凸構造面から、支持基材側に向かって、略1~10%厚み方向に侵入した部分、または厚み方向に2nm~20nm侵入した部分を意味する。なお、樹脂モールドを構成する樹脂層の樹脂表面(微細凹凸構造付近)のフッ素元素濃度(Es)は、XPS法により定量できる。XPS法のX線の浸入長は数nmと浅いため、Es値を定量する上で適している。他の解析手法として、透過型電子顕微鏡を使ったエネルギー分散型X線分光法(TEM―EDX)を用い、Es/Ebを算出することもできる。また、樹脂モールドを構成する樹脂層を構成する樹脂中の平均フッ素濃度(Eb)は、仕込み量から計算することができる。またはガスクロマトグラフ質量分析計(GC/MS)で測定することができる。例えば、樹脂モールドを構成する樹脂層を物理的に剥離してガスクロマトグラフ質量分析にかけることで、平均フッ素元素濃度を同定することができる。一方、樹脂モールドを構成する樹脂層を物理的に剥離した切片を、フラスコ燃焼法にて分解し、続いてイオンクロマトグラフ分析にかけることでも、樹脂中の平均フッ素元素濃度(Eb)を同定することができる。 Here, the resin surface (near the fine concavo-convex structure) of the resin layer constituting the resin mold is, for example, approximately 1 to 10 from the fine concavo-convex structure surface of the resin layer constituting the resin mold toward the support base. % Means a portion that penetrates in the thickness direction, or a portion that penetrates 2 nm to 20 nm in the thickness direction. In addition, the fluorine element concentration (Es) on the resin surface (near the fine uneven structure) of the resin layer constituting the resin mold can be quantified by XPS method. Since the penetration length of X-rays in the XPS method is as shallow as several nm, it is suitable for quantifying the Es value. As another analysis method, Es / Eb can be calculated using energy dispersive X-ray spectroscopy (TEM-EDX) using a transmission electron microscope. Moreover, the average fluorine concentration (Eb) in the resin constituting the resin layer constituting the resin mold can be calculated from the charged amount. Or it can measure with a gas chromatograph mass spectrometer (GC / MS). For example, the average fluorine element concentration can be identified by physically peeling the resin layer constituting the resin mold and subjecting the resin layer to gas chromatography mass spectrometry. On the other hand, an average fluorine element concentration (Eb) in the resin is also identified by decomposing a section from which the resin layer constituting the resin mold is physically separated by a flask combustion method and subsequently subjecting to ion chromatography analysis. be able to.
 樹脂モールドを構成する樹脂層を構成する樹脂のうち、光重合可能なラジカル重合系の樹脂としては、非フッ素含有の(メタ)アクリレート、フッ素含有(メタ)アクリレートおよび光重合開始剤の混合物である硬化性樹脂組成物(1)や、非フッ素含有の(メタ)アクリレートおよび光重合開始剤の混合物である硬化性樹脂組成物(2)や、非フッ素含有の(メタ)アクリレート、シリコーンおよび光重合開始剤の混合物である硬化性樹脂組成物(3)である硬化性樹脂組成物等を用いることが好ましい。また、金属アルコキシドに代表されるゾルゲル材料を含む硬化性樹脂組成物(4)を用いることもできる。特に、硬化性樹脂組成物(1)を用いることで、表面自由エネルギーの低い疎水性界面等に該組成物(1)を接触させた状態で上記組成物(1)を硬化させると、樹脂モールドを構成する樹脂層表面(表層)部のフッ素元素濃度(Es)を、樹脂モールドを構成する樹脂層を構成する樹脂中の平均フッ素元素濃度(Eb)より大きくでき、さらには樹脂中の平均フッ素元素濃度(Eb)をより小さくするように調整することができる。 Of the resins constituting the resin layer constituting the resin mold, the photopolymerizable radical polymerization resin is a mixture of non-fluorine-containing (meth) acrylate, fluorine-containing (meth) acrylate and a photopolymerization initiator. Curable resin composition (1), curable resin composition (2) which is a mixture of non-fluorine-containing (meth) acrylate and photopolymerization initiator, non-fluorine-containing (meth) acrylate, silicone and photopolymerization It is preferable to use a curable resin composition or the like that is a curable resin composition (3) that is a mixture of initiators. Moreover, the curable resin composition (4) containing the sol-gel material represented by the metal alkoxide can also be used. In particular, by using the curable resin composition (1), when the composition (1) is cured in a state where the composition (1) is in contact with a hydrophobic interface having a low surface free energy, a resin mold is obtained. The fluorine element concentration (Es) on the surface (surface layer) of the resin layer constituting the resin mold can be made larger than the average fluorine element concentration (Eb) in the resin constituting the resin layer constituting the resin mold, and further the average fluorine in the resin The element concentration (Eb) can be adjusted to be smaller.
(A)(メタ)アクリレート
 硬化性樹脂組成物(1)を構成する(メタ)アクリレートとしては、後述する(B)フッ素含有(メタ)アクリレート以外の重合性モノマーであれば制限はないが、アクリロイル基またはメタクリロイル基を有するモノマー、ビニル基を有するモノマー、アリル基を有するモノマーが好ましく、アクリロイル基またはメタクリロイル基を有するモノマーがより好ましい。そして、それらは非フッ素含有のモノマーであることが好ましい。なお、(メタ)アクリレートはアクリレートまたはメタアクリレートを意味する。
(A) (Meth) acrylate The (meth) acrylate constituting the curable resin composition (1) is not limited as long as it is a polymerizable monomer other than (B) fluorine-containing (meth) acrylate described later, but acryloyl. A monomer having a group or a methacryloyl group, a monomer having a vinyl group, or a monomer having an allyl group is preferable, and a monomer having an acryloyl group or a methacryloyl group is more preferable. And it is preferable that they are non-fluorine containing monomers. In addition, (meth) acrylate means an acrylate or a methacrylate.
 また、重合性モノマーとしては、重合性基を複数具備した多官能性モノマーであることが好ましく、重合性基の数は、重合性に優れることから1~6の整数が好ましい。また、2種類以上の重合性モノマーを混合して用いる場合、重合性基の平均数は1~4.5が好ましく、転写精度に優れる為1.5~3.5が最も好ましい。単一モノマーを使用する場合は、重合反応後の架橋点を増やし、硬化物の物理的安定性(強度、耐熱性等)を得るため、重合性基の数が3以上のモノマーであることが好ましい。また、重合性基の数が1または2であるモノマーの場合、重合性数の異なるモノマーと併用して使用することが好ましい。 The polymerizable monomer is preferably a polyfunctional monomer having a plurality of polymerizable groups, and the number of polymerizable groups is preferably an integer of 1 to 6 because of excellent polymerizability. When two or more kinds of polymerizable monomers are mixed and used, the average number of polymerizable groups is preferably 1 to 4.5, and 1.5 to 3.5 is most preferable because of excellent transfer accuracy. When a single monomer is used, the number of polymerizable groups may be 3 or more in order to increase the crosslinking point after the polymerization reaction and to obtain physical stability (strength, heat resistance, etc.) of the cured product. preferable. In the case of a monomer having 1 or 2 polymerizable groups, it is preferably used in combination with monomers having different polymerizable numbers.
 (メタ)アクリレートモノマーの具体例としては、下記の化合物が挙げられる。アクリロイル基またはメタクリロイル基を有するモノマーとしては、(メタ)アクリル酸、芳香族系の(メタ)アクリレート[フェノキシエチルアクリレート、ベンジルアクリレート等。]、炭化水素系の(メタ)アクリレート[ステアリルアクリレート、ラウリルアクリレート、2-エチルヘキシルアクリレート、アリルアクリレート、1,3-ブタンジオールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、トリメチロールプロパントリアクリレート、ペンタアエリスリトールトリアクリレート、ジペンタエリスリトールヘキサアクリレート等。]、エーテル性酸素原子を含む炭化水素系の(メタ)アクリレート[エトキシエチルアクリレート、メトキシエチルアクリレート、グリシジルアクリレート、テトラヒドロフルフリールアクリレート、ジエチレングリコールジアクリレート、ネオペンチルグリコールジアクリレート、ポリオキシエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート等。]、官能基を含む炭化水素系の(メタ)アクリレート[2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルビニルエーテル、N,N-ジエチルアミノエチルアクリレート、N,N-ジメチルアミノエチルアクリレート、N-ビニルピロリドン、ジメチルアミノエチルメタクリレート等。]、シリコーン系のアクリレート等。他には、EO変性グリセロールトリ(メタ)アクリレート、ECH変性グリセロールトリ(メタ)アクリレート、PO変性グリセロールトリ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、EO変性リン酸トリアクリレート、トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、EO変性トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、アルキル変性ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、アルキル変性ジペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジエチレングリコールモノエチルエーテル(メタ)アクリレート、ジメチロールジシクロペンタンジ(メタ)アクリレート、ジ(メタ)アクリル化イソシアヌレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、EO変性1,6-ヘキサンジオールジ(メタ)アクリレート、ECH変性1,6-ヘキサンジオールジ(メタ)アクリレート、アリロキシポリエチレングリコールアクリレート、1,9-ノナンジオールジ(メタ)アクリレート、EO変性ビスフェノールAジ(メタ)アクリレート、PO変性ビスフェノールAジ(メタ)アクリレート、変性ビスフェノールAジ(メタ)アクリレート、EO変性ビスフェノールFジ(メタ)アクリレート、ECH変性ヘキサヒドロフタル酸ジアクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、EO変性ネオペンチルグリコールジアクリレート、PO変性ネオペンチルグリコールジアクリレート、カプロラクトン変性ヒドロキシピバリン酸エステルネオペンチルグリコール、ステアリン酸変性ペンタエリスリトールジ(メタ)アクリレート、ECH変性プロピレングリコールジ(メタ)アクリレート、ECH変性フタル酸ジ(メタ)アクリレート、ポリ(エチレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリ(プロピレングリコール-テトラメチレングリコール)ジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、シリコーンジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエステル(ジ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート、ネオペンチルグリコール変性トリメチロールプロパンジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、トリグリセロールジ(メタ)アクリレート、EO変性トリプロピレングリコールジ(メタ)アクリレート、ジビニルエチレン尿素、ジビニルプロピレン尿素、2-エチル-2-ブチルプロパンジオールアクリレート、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、3-メトキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、アクリル酸ダイマー、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート、EO変性クレゾール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、イソアミル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、ラウリル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メチル(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、ネオペンチルグリコールベンゾエート(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、パラクミルフェノキシエチレングリコール(メタ)アクリレート、ECH変性フェノキシアクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシヘキサエチレングリコール(メタ)アクリレート、フェノキシテトラエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリエチレングリコール-ポリプロピレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、ステアリル(メタ)アクリレート、EO変性コハク酸(メタ)アクリレート、tert-ブチル(メタ)アクリレート、トリブロモフェニル(メタ)アクリレート、EO変性トリブロモフェニル(メタ)アクリレート、トリドデシル(メタ)アクリレート、イソシアヌル酸EO変性ジおよびトリアクリレート、ε―カプロラクトン変性トリス(アクロキシエチル)イソシアヌレート、ジトリメチロールプロパンテトラアクリレート等が挙げられる。アリル基を有するモノマーとしては、p-イソプロペニルフェノール、ビニル基を有するモノマーとしては、スチレン、α-メチルスチレン、アクリロニトリル、ビニルカルバゾール等が挙げられる。なお、EO変性とはエチレンオキシド変性をECH変性とはエピクロロヒドリン変性を、PO変性とはプロピレンオキシド変性を意味する。 Specific examples of the (meth) acrylate monomer include the following compounds. As a monomer having an acryloyl group or a methacryloyl group, (meth) acrylic acid, aromatic (meth) acrylate [phenoxyethyl acrylate, benzyl acrylate, etc. ], Hydrocarbon-based (meth) acrylate [stearyl acrylate, lauryl acrylate, 2-ethylhexyl acrylate, allyl acrylate, 1,3-butanediol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol di Acrylate, trimethylolpropane triacrylate, pentaaerythritol triacrylate, dipentaerythritol hexaacrylate and the like. ], Hydrocarbon-based (meth) acrylates containing etheric oxygen atoms [ethoxyethyl acrylate, methoxyethyl acrylate, glycidyl acrylate, tetrahydrofurfryl acrylate, diethylene glycol diacrylate, neopentyl glycol diacrylate, polyoxyethylene glycol diacrylate , Tripropylene glycol diacrylate and the like. ], Hydrocarbon-based (meth) acrylates [2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl vinyl ether, N, N-diethylaminoethyl acrylate, N, N-dimethylaminoethyl acrylate, N-vinyl pyrrolidone, dimethylaminoethyl methacrylate, etc. ], Silicone-based acrylates, and the like. Others include EO-modified glycerol tri (meth) acrylate, ECH-modified glycerol tri (meth) acrylate, PO-modified glycerol tri (meth) acrylate, pentaerythritol triacrylate, EO-modified phosphate triacrylate, trimethylolpropane tri (meth) Acrylate, caprolactone-modified trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, EO-modified trimethylolpropane tri (meth) acrylate, dipentaerythritol hexa (meta) ) Acrylate, caprolactone-modified dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate Alkyl modified dipentaerythritol penta (meth) acrylate, dipentaerythritol poly (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, alkyl modified dipentaerythritol tri (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate, penta Erythritol tetra (meth) acrylate, diethylene glycol monoethyl ether (meth) acrylate, dimethylol dicyclopentane di (meth) acrylate, di (meth) acrylated isocyanurate, 1,3-butylene glycol di (meth) acrylate, 1, 4-butanediol di (meth) acrylate, EO-modified 1,6-hexanediol di (meth) acrylate, ECH-modified 1,6-hexanediol di (Meth) acrylate, allyloxypolyethylene glycol acrylate, 1,9-nonanediol di (meth) acrylate, EO modified bisphenol A di (meth) acrylate, PO modified bisphenol A di (meth) acrylate, modified bisphenol A di (meth) acrylate , EO-modified bisphenol F di (meth) acrylate, ECH-modified hexahydrophthalic acid diacrylate, neopentyl glycol di (meth) acrylate, hydroxypivalic acid neopentyl glycol di (meth) acrylate, EO-modified neopentyl glycol diacrylate, PO Modified neopentyl glycol diacrylate, caprolactone modified hydroxypivalate ester neopentyl glycol, stearic acid modified pentaerythritol di (meth) Acrylate, ECH-modified propylene glycol di (meth) acrylate, ECH-modified phthalic acid di (meth) acrylate, poly (ethylene glycol-tetramethylene glycol) di (meth) acrylate, poly (propylene glycol-tetramethylene glycol) di (meth) Acrylate, polypropylene glycol di (meth) acrylate, silicone di (meth) acrylate, tetraethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, polyester (di) acrylate, polyethylene glycol di (meth) acrylate, di Methylol tricyclodecane di (meth) acrylate, neopentyl glycol modified trimethylol propane di (meth) acrylate, dipropylene glycol di (Meth) acrylate, tripropylene glycol di (meth) acrylate, triglycerol di (meth) acrylate, EO-modified tripropylene glycol di (meth) acrylate, divinylethyleneurea, divinylpropyleneurea, 2-ethyl-2-butylpropanediol acrylate 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-methoxyethyl (Meth) acrylate, 3-methoxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, acrylic acid dimer, benzyl (meth) acrylate, butanedio Rumono (meth) acrylate, butoxyethyl (meth) acrylate, butyl (meth) acrylate, cetyl (meth) acrylate, EO-modified cresol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, dipropylene glycol (Meth) acrylate, isoamyl (meth) acrylate, isobutyl (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyloxyethyl (Meth) acrylate, isomyristyl (meth) acrylate, lauryl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxypolyethylene Lenglycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methyl (meth) acrylate, methoxytripropylene glycol (meth) acrylate, neopentyl glycol benzoate (meth) acrylate, nonylphenoxypolyethylene glycol (meth) acrylate, nonyl Phenoxy polypropylene glycol (meth) acrylate, octyl (meth) acrylate, paracumylphenoxyethylene glycol (meth) acrylate, ECH-modified phenoxy acrylate, phenoxydiethylene glycol (meth) acrylate, phenoxyhexaethylene glycol (meth) acrylate, phenoxytetraethylene glycol ( (Meth) acrylate, phenoxyethyl (meth) acryl , Polyethylene glycol (meth) acrylate, polyethylene glycol-polypropylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, stearyl (meth) acrylate, EO-modified succinic acid (meth) acrylate, tert-butyl (meth) acrylate, Tribromophenyl (meth) acrylate, EO-modified tribromophenyl (meth) acrylate, tridodecyl (meth) acrylate, isocyanuric acid EO-modified di- and triacrylate, ε-caprolactone-modified tris (acryloxyethyl) isocyanurate, ditrimethylolpropane tetra An acrylate etc. are mentioned. Examples of the monomer having an allyl group include p-isopropenylphenol, and examples of the monomer having a vinyl group include styrene, α-methylstyrene, acrylonitrile, and vinylcarbazole. Here, EO modification means ethylene oxide modification, ECH modification means epichlorohydrin modification, and PO modification means propylene oxide modification.
(B)フッ素含有(メタ)アクリレート
 硬化性樹脂組成物(1)を構成するフッ素含有(メタ)アクリレートとしては、ポリフルオロアルキレン鎖および/またはペルフルオロ(ポリオキシアルキレン)鎖と、重合性基とを有することが好ましく、直鎖状ペルフルオロアルキレン基、または、炭素原子-炭素原子間にエーテル性酸素原子が挿入され且つトリフルオロメチル基を側鎖に有するペルフルオロオキシアルキレン基がさらに好ましい。また、トリフルオロメチル基を分子側鎖または分子構造末端に有する直鎖状のポリフルオロアルキレン鎖および/または直鎖状のペルフルオロ(ポリオキシアルキレン)鎖が特に好ましい。
(B) Fluorine-containing (meth) acrylate The fluorine-containing (meth) acrylate constituting the curable resin composition (1) includes a polyfluoroalkylene chain and / or a perfluoro (polyoxyalkylene) chain, and a polymerizable group. It is preferable to have a linear perfluoroalkylene group or a perfluorooxyalkylene group having an etheric oxygen atom inserted between carbon atoms and a carbon atom and having a trifluoromethyl group in the side chain. Moreover, a linear polyfluoroalkylene chain having a trifluoromethyl group at the molecular side chain or molecular structure terminal and / or a linear perfluoro (polyoxyalkylene) chain is particularly preferred.
 ポリフルオロアルキレン鎖は、炭素数2~炭素数24のポリフルオロアルキレン基が好ましい。また、ポリフルオロアルキレン基は、官能基を有していてもよい。 The polyfluoroalkylene chain is preferably a polyfluoroalkylene group having 2 to 24 carbon atoms. The polyfluoroalkylene group may have a functional group.
 ペルフルオロ(ポリオキシアルキレン)鎖は、(CFCFO)単位、(CFCF(CF)O)単位、(CFCFCFO)単位および(CFO)単位からなる群から選ばれた1種以上のペルフルオロ(オキシアルキレン)単位からなることが好ましく、(CFCFO)単位、(CFCF(CF)O)単位、または(CFCFCFO)単位からなることがより好ましい。ペルフルオロ(ポリオキシアルキレン)鎖は、含フッ素重合体の物性(耐熱性、耐酸性等)が優れることから、(CFCFO)単位からなることが特に好ましい。ペルフルオロ(オキシアルキレン)単位の数は、含フッ素重合体の離型性と硬度が高いことから、2~200の整数が好ましく、2~50の整数がより好ましい。 The perfluoro (polyoxyalkylene) chain is a group consisting of (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, (CF 2 CF 2 CF 2 O) units and (CF 2 O) units. It is preferably composed of one or more perfluoro (oxyalkylene) units selected from: (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, or (CF 2 CF 2 CF 2 O). ) Units. The perfluoro (polyoxyalkylene) chain is particularly preferably composed of (CF 2 CF 2 O) units because the physical properties (heat resistance, acid resistance, etc.) of the fluoropolymer are excellent. The number of perfluoro (oxyalkylene) units is preferably an integer of 2 to 200, more preferably an integer of 2 to 50, since the release property and hardness of the fluoropolymer are high.
 重合性基としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、エポキシ基、ジオキタセン基、シアノ基、イソシアネート基または式-(CH)aSi(M1)3-b(M2)で表される加水分解性シリル基が好ましく、アクリロイル基またはメタクリロイル基がより好ましい。ここで、M1は加水分解反応により水酸基に変換される置換基である。このような置換基としては、ハロゲン原子、アルコキシ基、アシロキシ基等が挙げられる。ハロゲン原子としては、塩素原子が好ましい。アルコキシ基としては、メトキシ基またはエトキシ基が好ましく、メトキシ基がより好ましい。M1としては、アルコキシ基が好ましく、メトキシ基がより好ましい。M2は、1価の炭化水素基である。M2としては、アルキル基、1以上のアリール基で置換されたアルキル基、アルケニル基、アルキニル基、シクロアルキル基、アリール基等が挙げられ、アルキル基またはアルケニル基が好ましい。M2がアルキル基である場合、炭素数1~炭素数4のアルキル基が好ましく、メチル基またはエチル基がより好ましい。M2がアルケニル基である場合、炭素数2~炭素数4のアルケニル基が好ましく、ビニル基またはアリル基がより好ましい。aは1~3の整数であり、3が好ましい。bは0または1~3の整数であり、0が好ましい。加水分解性シリル基としては、(CHO)SiCH-、(CHCHO)SiCH-、(CHO)Si(CH-または(CHCHO)Si(CH-が好ましい。 Examples of the polymerizable group include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an epoxy group, a dichitacene group, a cyano group, an isocyanate group, or a formula — (CH 2 ) aSi (M1) 3-b (M2) b. A hydrolyzable silyl group is preferable, and an acryloyl group or a methacryloyl group is more preferable. Here, M1 is a substituent which is converted into a hydroxyl group by a hydrolysis reaction. Examples of such a substituent include a halogen atom, an alkoxy group, and an acyloxy group. As the halogen atom, a chlorine atom is preferable. As an alkoxy group, a methoxy group or an ethoxy group is preferable, and a methoxy group is more preferable. As M1, an alkoxy group is preferable, and a methoxy group is more preferable. M2 is a monovalent hydrocarbon group. Examples of M2 include an alkyl group, an alkyl group substituted with one or more aryl groups, an alkenyl group, an alkynyl group, a cycloalkyl group, and an aryl group, and an alkyl group or an alkenyl group is preferable. When M2 is an alkyl group, an alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group or an ethyl group is more preferable. When M2 is an alkenyl group, an alkenyl group having 2 to 4 carbon atoms is preferable, and a vinyl group or an allyl group is more preferable. a is an integer of 1 to 3, and 3 is preferable. b is 0 or an integer of 1 to 3, and 0 is preferable. Examples of hydrolyzable silyl groups include (CH 3 O) 3 SiCH 2 —, (CH 3 CH 2 O) 3 SiCH 2 —, (CH 3 O) 3 Si (CH 2 ) 3 — or (CH 3 CH 2 O ) 3 Si (CH 2 ) 3 — is preferred.
 重合性基の数は、重合性に優れることから1~4の整数が好ましく、1~3の整数がより好ましい。2種以上の化合物を用いる場合、重合性基の平均数は1~3が好ましい。 The number of polymerizable groups is preferably an integer of 1 to 4 and more preferably an integer of 1 to 3 because of excellent polymerizability. When two or more compounds are used, the average number of polymerizable groups is preferably 1 to 3.
 フッ素含有(メタ)アクリレートは、官能基を有すると支持基材との密着性に優れる。官能基としては、カルボキシル基、スルホン酸基、エステル結合を有する官能基、アミド結合を有する官能基、水酸基、アミノ基、シアノ基、ウレタン基、イソシアネート基、イソシアヌル酸誘導体を有する官能基等が挙げられる。特に、カルボキシル基、ウレタン基、イソシアヌル酸誘導体を有する官能基の少なくとも1つの官能基を含むことが好ましい。なお、イソシアヌル酸誘導体には、イソシアヌル酸骨格を有するもので、窒素原子に結合する少なくとも1つの水素原子が他の基で置換されている構造のものが包含される。フッ素含有(メタ)アクリレートとしては、フルオロ(メタ)アクリレート、フルオロジエン等を用いることができる。フッ素含有(メタ)アクリレートの具体例としては、下記の化合物が挙げられる。 When the fluorine-containing (meth) acrylate has a functional group, it has excellent adhesion to the support substrate. Examples of the functional group include a carboxyl group, a sulfonic acid group, a functional group having an ester bond, a functional group having an amide bond, a hydroxyl group, an amino group, a cyano group, a urethane group, an isocyanate group, and a functional group having an isocyanuric acid derivative. It is done. In particular, it preferably contains at least one functional group of a functional group having a carboxyl group, a urethane group, or an isocyanuric acid derivative. The isocyanuric acid derivatives include those having an isocyanuric acid skeleton and a structure in which at least one hydrogen atom bonded to the nitrogen atom is substituted with another group. As the fluorine-containing (meth) acrylate, fluoro (meth) acrylate, fluorodiene, or the like can be used. Specific examples of the fluorine-containing (meth) acrylate include the following compounds.
 フルオロ(メタ)アクリレートとしては、CH=CHCOO(CH(CF10F、CH=CHCOO(CH(CFF、CH=CHCOO(CH(CFF、CH=C(CH)COO(CH(CF10F、CH=C(CH)COO(CH(CFF、CH=C(CH)COO(CH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCH(CFF、CH=C(CH)COOCH(CFF、CH=CHCOOCHCFCFH、CH=CHCOOCH(CFCFH、CH=CHCOOCH(CFCFH、CH=C(CH)COOCH(CFCF)H、CH=C(CH)COOCH(CFCFH、CH=C(CH)COOCH(CFCFH、CH=CHCOOCHCFOCFCFOCF、CH=CHCOOCHCFO(CFCFO)CF、CH=C(CH)COOCHCFOCFCFOCF、CH=C(CH)COOCHCFO(CFCFO)CF、CH=CHCOOCHCF(CF)OCFCF(CF)O(CFF、CH=CHCOOCHCF(CF)O(CFCF(CF)O)(CFF、CH=C(CH)COOCHCF(CF)OCFCF(CF)O(CFF、CH=C(CH)COOCHCF(CF)O(CFCF(CF)O)(CFF、CH=CFCOOCHCH(OH)CH(CFCF(CF、CH=CFCOOCHCH(CHOH)CH(CFCF(CF、CH=CFCOOCHCH(OH)CH(CF10F、CH=CFCOOCHCH(OH)CH(CF10F、CH=CHCOOCHCH(CFCFCHCHOCOCH=CH、CH=C(CH)COOCHCH(CFCFCHCHOCOC(CH)=CH、CH=CHCOOCHCyFCHOCOCH=CH、CH=C(CH)COOCHCyFCHOCOC(CH)=CH等のフルオロ(メタ)アクリレートが挙げられる(但し、CyFはペルフルオロ(1,4-シクロへキシレン基)を示す。)。 The fluoro (meth) acrylate, CH 2 = CHCOO (CH 2 ) 2 (CF 2) 10 F, CH 2 = CHCOO (CH 2) 2 (CF 2) 8 F, CH 2 = CHCOO (CH 2) 2 ( CF 2 ) 6 F, CH 2 ═C (CH 3 ) COO (CH 2 ) 2 (CF 2 ) 10 F, CH 2 ═C (CH 3 ) COO (CH 2 ) 2 (CF 2 ) 8 F, CH 2 = C (CH 3) COO ( CH 2) 2 (CF 2) 6 F, CH 2 = CHCOOCH 2 (CF 2) 6 F, CH 2 = C (CH 3) COOCH 2 (CF 2) 6 F, CH 2 = CHCOOCH 2 (CF 2 ) 7 F, CH 2 = C (CH 3 ) COOCH 2 (CF 2 ) 7 F, CH 2 = CHCOOCH 2 CF 2 CF 2 H, CH 2 = CHCOOCH 2 (CF 2 CF 2) 2 H, CH 2 = CHCOOCH 2 (CF 2 CF 2) 4 H, CH 2 = C (CH 3) COOCH 2 (CF 2 CF 2) H, CH 2 = C (CH 3) COOCH 2 (CF 2 CF 2) 2 H, CH 2 = C (CH 3) COOCH 2 (CF 2 CF 2) 4 H, CH 2 = CHCOOCH 2 CF 2 OCF 2 CF 2 OCF 3, CH 2 = CHCOOCH 2 CF 2 O (CF 2 CF 2 O) 3 CF 3 , CH 2 = C (CH 3) COOCH 2 CF 2 OCF 2 CF 2 OCF 3, CH 2 = C (CH 3) COOCH 2 CF 2 O (CF 2 CF 2 O) 3 CF 3, CH 2 = CHCOOCH 2 CF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F, CH 2 = CHCOOCH 2 CF (CF 3) O CF 2 CF (CF 3) O ) 2 (CF 2) 3 F, CH 2 = C (CH 3) COOCH 2 CF (CF 3) OCF 2 CF (CF 3) O (CF 2) 3 F, CH 2 = C (CH 3) COOCH 2 CF (CF 3) O (CF 2 CF (CF 3) O) 2 (CF 2) 3 F, CH 2 = CFCOOCH 2 CH (OH) CH 2 (CF 2) 6 CF (CF 3) 2, CH 2 = CFCOOCH 2 CH (CH 2 OH) CH 2 (CF 2) 6 CF (CF 3) 2, CH 2 = CFCOOCH 2 CH (OH) CH 2 (CF 2) 10 F, CH 2 = CFCOOCH 2 CH (OH) CH 2 (CF 2) 10 F, CH 2 = CHCOOCH 2 CH 2 (CF 2 CF 2) 3 CH 2 CH 2 OCOCH = CH 2, CH 2 = C (CH 3 COOCH 2 CH 2 (CF 2 CF 2) 3 CH 2 CH 2 OCOC (CH 3) = CH 2, CH 2 = CHCOOCH 2 CyFCH 2 OCOCH = CH 2, CH 2 = C (CH 3) COOCH 2 CyFCH 2 OCOC ( CH 3) = fluoro CH 2, etc. (meth) acrylate (where, CYF perfluoro (1,4-cyclohexylene-xylene group),. ).
 フルオロジエンとしては、CF=CFCFCF=CF、CF=CFOCFCF=CF、CF=CFOCFCFCF=CF、CF=CFOCF(CF)CFCF=CF、CF=CFOCFCF(CF)CF=CF、CF=CFOCFOCF=CF、CF=CFOCFCF(CF)OCFCF=CF、CF=CFCFC(OH)(CF)CHCH=CH、CF=CFCFC(OH)(CF)CH=CH、CF=CFCFC(CF)(OCHOCH)CHCH=CH、CF=CFCHC(C(CFOH)(CF)CHCH=CH等のフルオロジエンが挙げられる。 The fluorodiene, CF 2 = CFCF 2 CF = CF 2, CF 2 = CFOCF 2 CF = CF 2, CF 2 = CFOCF 2 CF 2 CF = CF 2, CF 2 = CFOCF (CF 3) CF 2 CF = CF 2 , CF 2 = CFOCF 2 CF (CF 3 ) CF = CF 2 , CF 2 = CFOCF 2 OCF = CF 2 , CF 2 = CFOCF 2 CF (CF 3 ) OCF 2 CF = CF 2 , CF 2 = CFCF 2 C (OH) (CF 3) CH 2 CH = CH 2, CF 2 = CFCF 2 C (OH) (CF 3) CH = CH 2, CF 2 = CFCF 2 C (CF 3) (OCH 2 OCH 3) CH 2 Fluorodienes such as CH═CH 2 , CF 2 ═CFCH 2 C (C (CF 3 ) 2 OH) (CF 3 ) CH 2 CH═CH 2 and the like can be mentioned.
 なお、本発明で用いるフッ素含有(メタ)アクリレートは、下記化学式(1)で示されるフッ素含有ウレタン(メタ)アクリレートであると、樹脂中の平均フッ素元素濃度(Eb)を低くした状態で、効果的に樹脂モールドの微細凹凸構造表面(表層)部のフッ素元素濃度(Es)を高くでき、支持基材への接着性と離型性を一層効果的に発現できるため、より好ましい。このようなウレタン(メタ)アクリレートとしては、例えば、ダイキン工業社製の「オプツールDAC」を用いることができる。 In addition, when the fluorine-containing (meth) acrylate used in the present invention is a fluorine-containing urethane (meth) acrylate represented by the following chemical formula (1), it is effective in a state where the average fluorine element concentration (Eb) in the resin is lowered. In particular, the fluorine element concentration (Es) at the surface (surface layer) of the fine concavo-convex structure of the resin mold can be increased, and the adhesiveness to the support substrate and the releasability can be expressed more effectively, which is more preferable. As such urethane (meth) acrylate, for example, “OPTOOL DAC” manufactured by Daikin Industries, Ltd. can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 フッ素含有(メタ)アクリレートは、1種を単独で用いてもよく、2種以上を併用してもよい。また、耐摩耗性、耐傷付き、指紋付着防止、防汚性、レベリング性や撥水撥油性等の表面改質剤との併用もできる。例えば、ネオス社製「フタージェント」(例えば、Mシリーズ:フタージェント251、フタージェント215M、フタージェント250、FTX-245M、FTX-290M;Sシリーズ:FTX-207S、FTX-211S、FTX-220S、FTX-230S;Fシリーズ:FTX-209F、FTX-213F、フタージェント222F、FTX-233F、フタージェント245F;Gシリーズ:フタージェント208G、FTX-218G、FTX-230G、FTS-240G;オリゴマーシリーズ:フタージェント730FM、フタージェント730LM;フタージェントPシリーズ:フタージェント710FL、FTX-710HL、等)、DIC社製「メガファック」(例えば、F-114、F-410、F-493、F-494、F-443、F-444、F-445、F-470、F-471、F-474、F-475、F-477、F-479、F-480SF、F-482、F-483、F-489、F-172D、F-178K、F-178RM、MCF-350SF、等)、ダイキン社製「オプツールTM」(例えば、DSX、DAC、AES)、「エフトーンTM」(例えば、AT-100)、「ゼッフルTM」(例えば、GH-701)、「ユニダインTM」、「ダイフリーTM」、「オプトエースTM」、住友スリーエム社製「ノベックEGC-1720」、フロロテクノロジー社製「フロロサーフ」、等が挙げられる。 A fluorine-containing (meth) acrylate may be used individually by 1 type, and may use 2 or more types together. Further, it can be used in combination with surface modifiers such as abrasion resistance, scratch resistance, fingerprint adhesion prevention, antifouling property, leveling property and water / oil repellency. For example, “Factent” manufactured by Neos Co., Ltd. (for example, M series: tangent 251; ftagent 215M; ftagent 250, FTX-245M, FTX-290M; F series: FTX-209F, FTX-213F, aftergent 222F, FTX-233F, aftergent 245F; G series: aftergent 208G, FTX-218G, FTX-230G, FTS-240G; oligomer series: after Gent 730FM, tergent 730LM; tergent P series: tergent 710FL, FTX-710HL, etc.), DIC's “MegaFuck” (eg, F-114, F-410, F-4) 3, F-494, F-443, F-444, F-445, F-470, F-471, F-474, F-475, F-477, F-479, F-480SF, F-482, F-483, F-489, F-172D, F-178K, F-178RM, MCF-350SF, etc.) "Optool TM " (for example, DSX, DAC, AES), "F-Tone TM " (for example, manufactured by Daikin) AT-100), “Zeffle ” (for example, GH-701), “Unidyne ”, “Die Free ”, “Optoace ”, “Novec EGC-1720” manufactured by Sumitomo 3M, manufactured by Fluoro Technology, Inc. “Fluorosurf” and the like.
 フッ素含有(メタ)アクリレートは、分子量Mwが50~50000であることが好ましく、相溶性の観点から分子量Mwが50~5000であることが好ましく、分子量Mwが100~5000であることがより好ましい。相溶性の低い高分子量体を使用する際は希釈溶剤を使用しても良い。希釈溶剤としては、単一溶剤の沸点が40℃~180℃の溶剤が好ましく、60℃~180℃がより好ましく、60℃~140℃がさらに好ましい。希釈剤は2種類以上使用もよい。 The fluorine-containing (meth) acrylate preferably has a molecular weight Mw of 50 to 50000, preferably a molecular weight Mw of 50 to 5000, and more preferably a molecular weight Mw of 100 to 5000 from the viewpoint of compatibility. When using a high molecular weight material having low compatibility, a diluting solvent may be used. As the dilution solvent, a solvent having a boiling point of a single solvent of 40 ° C. to 180 ° C. is preferable, 60 ° C. to 180 ° C. is more preferable, and 60 ° C. to 140 ° C. is further preferable. Two or more kinds of diluents may be used.
 溶剤含量は、少なくとも硬化性樹脂組成物(1)中で分散する量であればよく、硬化性組成物(1)100重量部に対して0重量部超~50重量部が好ましい。乾燥後の残存溶剤量を限りなく除去することを配慮すると、0重量部超~10重量部がより好ましい。 The solvent content may be at least an amount that can be dispersed in the curable resin composition (1), and is preferably more than 0 to 50 parts by weight with respect to 100 parts by weight of the curable composition (1). Considering that the amount of residual solvent after drying is removed as much as possible, more than 0 to 10 parts by weight is more preferable.
 特に、レベリング性を向上させる為に溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、溶剤含量が0.1重量部以上40重量部以下であれば好ましい。溶剤含量が0.5重量部以上20重量部以下であれば、硬化性樹脂組成物(1)の硬化性を維持できるためより好ましく、1重量部以上15重量部以下であれば、さらに好ましい。硬化性樹脂組成物(1)の膜厚を薄くする為に溶剤を含有する場合は、(メタ)アクリレート100重量部に対して、溶剤含量が300重量部以上10000重量部以下であれば、塗工後の乾燥工程での溶液安定性を維持できるため好ましく、300重量部以上1000重量部以下であればより好ましい。 In particular, when a solvent is contained in order to improve leveling properties, the solvent content is preferably 0.1 to 40 parts by weight with respect to 100 parts by weight of (meth) acrylate. If the solvent content is 0.5 part by weight or more and 20 parts by weight or less, the curability of the curable resin composition (1) can be maintained, more preferably 1 part by weight or more and 15 parts by weight or less. When the solvent is contained in order to reduce the film thickness of the curable resin composition (1), if the solvent content is 300 parts by weight or more and 10,000 parts by weight or less with respect to 100 parts by weight of (meth) acrylate, Since the solution stability in the drying process after a process can be maintained, it is preferable and it is more preferable if it is 300 to 1000 weight part.
(C)光重合開始剤
 硬化性樹脂組成物(1)を構成する光重合開始剤は、光によりラジカル反応またはイオン反応を引き起こすものであり、ラジカル反応を引き起こす光重合開始剤が好ましい。光重合開始剤としては、下記の光重合開始剤が挙げられる。
(C) Photopolymerization initiator The photopolymerization initiator constituting the curable resin composition (1) causes a radical reaction or an ionic reaction by light, and a photopolymerization initiator that causes a radical reaction is preferable. Examples of the photopolymerization initiator include the following photopolymerization initiators.
 また、次の公知慣用の光重合開始剤を単独でまたは2種以上を組み合わせて用いることができる。アセトフェノン系の光重合開始剤:アセトフェノン、p-tert-ブチルトリクロロアセトフェノン、クロロアセトフェノン、2,2-ジエトキシアセトフェノン、ヒドロキシアセトフェノン、2,2-ジメトキシ-2’-フェニルアセトフェノン、2-アミノアセトフェノン、ジアルキルアミノアセトフェノン等。ベンゾイン系の光重合開始剤:ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニル-2-メチルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、ベンジルジメチルケタール等。ベンゾフェノン系の光重合開始剤:ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、メチル-o-ベンゾイルベンゾエート、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、ヒドロキシプロピルベンゾフェノン、アクリルベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、ペルフルオロベンゾフェノン等。チオキサントン系の光重合開始剤:チオキサントン、2-クロロチオキサントン、2-メチルチオキサントン、ジエチルチオキサントン、ジメチルチオキサントン等。アントラキノン系の光重合開始剤:2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン。ケタール系の光重合開始剤:アセトフェノンジメチルケタール、ベンジルジメチルケタール。その他の光重合開始剤:α-アシルオキシムエステル、ベンジル-(o-エトキシカルボニル)-α-モノオキシム、アシルホスフィンオキサイド、グリオキシエステル、3-ケトクマリン、2-エチルアンスラキノン、カンファーキノン、テトラメチルチウラムスルフィド、アゾビスイソブチロニトリル、ベンゾイルペルオキシド、ジアルキルペルオキシド、tert-ブチルペルオキシピバレート等。フッ素原子を有する光重合開始剤:ペルフルオロtert-ブチルペルオキシド、ペルフルオロベンゾイルペルオキシド等。 Further, the following known and commonly used photopolymerization initiators can be used alone or in combination of two or more. Acetophenone-based photopolymerization initiators: acetophenone, p-tert-butyltrichloroacetophenone, chloroacetophenone, 2,2-diethoxyacetophenone, hydroxyacetophenone, 2,2-dimethoxy-2′-phenylacetophenone, 2-aminoacetophenone, dialkyl Aminoacetophenone and the like. Benzoin-based photopolymerization initiators: benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenyl-2-methyl Propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, benzyldimethyl ketal and the like. Benzophenone-based photopolymerization initiators: benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, methyl-o-benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, hydroxypropylbenzophenone, acrylic benzophenone, 4,4'-bis (dimethylamino) ) Benzophenone, perfluorobenzophenone, etc. Thioxanthone photopolymerization initiators: thioxanthone, 2-chlorothioxanthone, 2-methylthioxanthone, diethylthioxanthone, dimethylthioxanthone, and the like. Anthraquinone photopolymerization initiators: 2-methylanthraquinone, 2-ethylanthraquinone, 2-tert-butylanthraquinone, 1-chloroanthraquinone, 2-amylanthraquinone. Ketal photopolymerization initiators: acetophenone dimethyl ketal and benzyl dimethyl ketal. Other photopolymerization initiators: α-acyl oxime ester, benzyl- (o-ethoxycarbonyl) -α-monooxime, acyl phosphine oxide, glyoxy ester, 3-ketocoumarin, 2-ethylanthraquinone, camphorquinone, tetramethylthiuram Sulfide, azobisisobutyronitrile, benzoyl peroxide, dialkyl peroxide, tert-butyl peroxypivalate, and the like. Photopolymerization initiator having a fluorine atom: perfluoro tert-butyl peroxide, perfluorobenzoyl peroxide or the like.
 硬化性樹脂組成物(1)は、光増感剤を含んでいてもよい。光増感剤の具体例としては、n-ブチルアミン、ジ-n-ブチルアミン、トリ-n-ブチルホスフィン、アリルチオ尿素、s-ベンジスイソチウロニウム-p-トルエンスルフィネート、トリエチルアミン、ジエチルアミノエチルメタクリレート、トリエチレンテトラミン、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、N,N-ジメチルアミノ安息香酸エチルエステル、N,N-ジメチルアミノ安息香酸イソアミルエステル、ペンチル-4-ジメチルアミノベンゾエート、トリエチルアミン、トリエタノールアミン等のアミン類のような公知慣用の光増感剤の1種または2種以上と組み合わせて用いることができる。 The curable resin composition (1) may contain a photosensitizer. Specific examples of the photosensitizer include n-butylamine, di-n-butylamine, tri-n-butylphosphine, allyl thiourea, s-benzisoisouronium-p-toluenesulfinate, triethylamine, diethylaminoethyl methacrylate. , Triethylenetetramine, 4,4′-bis (dialkylamino) benzophenone, N, N-dimethylaminobenzoic acid ethyl ester, N, N-dimethylaminobenzoic acid isoamyl ester, pentyl-4-dimethylaminobenzoate, triethylamine, tri It can be used in combination with one or more known and commonly used photosensitizers such as amines such as ethanolamine.
 市販されている開始剤の例としては、BASFジャパン(株)製の「Irgacure(登録商標)」(例えば、Irgacure651、184、500、2959、127、754、907、369、379、379EG、819、1800、784、OXE01、OXE02)や「Darocur(登録商標)」(例えば、Darocur1173、MBF、TPO、4265)等が挙げられる。 Examples of commercially available initiators include “Irgacure (registered trademark)” manufactured by BASF Japan Ltd. (for example, Irgacure 651, 184, 500, 2959, 127, 754, 907, 369, 379, 379EG, 819, 1800, 784, OXE01, OXE02), “Darocur (registered trademark)” (for example, Darocur 1173, MBF, TPO, 4265) and the like.
 光重合開始剤は、1種のみを単独で用いても、2種類以上を併用してもよい。2種類以上併用する場合には、フッ素含有(メタ)アクリレートの分散性、および硬化性樹脂組成物(1)の微細凹凸構造表面(表層)部および内部の硬化性の観点から選択するとよい。例えば、αヒドロキシケトン系光重合開始剤とαアミノケトン系光重合開始剤とを併用することが挙げられる。また、2種類併用する場合の組み合わせとしては、例えば、BASFジャパン(株)製の「Irgacure」同士、「Irgacure」と「Darocure」の組み合わせとして、Darocure1173とIrgacure819、Irgacure379とIrgacure127、Irgacure819とIrgacure127、Irgacure250とIrgacure127、Irgacure184とIrgacure369、Irgacure184とIrgacure379EG、Irgacure184とIrgacure907、Irgacure127とIrgacure379EG、Irgacure819とIrgacure184、DarocureTPOとIrgacure184等が挙げられる。 The photopolymerization initiator may be used alone or in combination of two or more. When two or more types are used in combination, the dispersibility of the fluorine-containing (meth) acrylate, and the fine concavo-convex structure surface (surface layer) portion of the curable resin composition (1) and the internal curability may be selected. For example, the combined use of an α-hydroxyketone photopolymerization initiator and an α-aminoketone photopolymerization initiator can be mentioned. Moreover, as a combination in the case of using two types together, for example, “Irgacure” manufactured by BASF Japan Co., Ltd., “Irgacure” and “Darocure” are combined as Darocure 1173 and Irgacure 819, Irgacure 379 and Irgacure 127 and Irgacure 819 Irgacure 819 And Irgacure 127, Irgacure 184 and Irgacure 369, Irgacure 184 and Irgacure 379EG, Irgacure 184 and Irgacure 907, Irgacure 127 and Irgacure 379EG, Irgacure 819 and Irgacure 819 That.
 硬化性樹脂組成物(2)は、上述した光重合性混合物から(B)フッ素含有(メタ)アクリレートを除いたものを使用することができる。樹脂モールドを構成する樹脂が硬化性樹脂組成物(2)の硬化物である場合、金属層と離型層の両方、またはいずれか一方を設けることが、転写材の転写精度の観点から好ましい。 The curable resin composition (2) can be obtained by removing (B) fluorine-containing (meth) acrylate from the above-described photopolymerizable mixture. In the case where the resin constituting the resin mold is a cured product of the curable resin composition (2), it is preferable from the viewpoint of transfer accuracy of the transfer material that either or both of the metal layer and the release layer are provided.
 硬化性樹脂組成物(3)は、上述した硬化性樹脂組成物(1)にシリコーンを添加するか、または、硬化性樹脂組成物(2)にシリコーンを添加したものを使用することができる。 As the curable resin composition (3), silicone can be added to the curable resin composition (1) described above, or the curable resin composition (2) added with silicone.
 シリコーンを含むことにより、シリコーン特有の離型性や滑り性により、転写材の転写精度が向上する。硬化性樹脂組成物(3)に使用されるシリコーンとしては、例えば、ジメチルクロロシランの重合体であるポリジメチルシロキサン(PDMS)に代表される、常温で流動性を示す線状低重合度のシリコーンオイルや、それらの変性シリコーンオイル、高重合度の線状PDMSまたはPDMSを中程度に架橋しゴム状弾性を示すようにしたシリコーンゴムや、それらの変性シリコーンゴム、また樹脂状のシリコーン、PDMSと4官能のシロキサンから構成される3次元網目構造を有す樹脂であるシリコーンレジン(またはDQレジン)等が挙げられる。架橋剤として有機分子を用いる場合や、4官能のシロキサン(Qユニット)を用いる場合もある。 By including silicone, the transfer accuracy of the transfer material is improved due to the releasability and slipperiness unique to silicone. As the silicone used in the curable resin composition (3), for example, a linear low-polymerization silicone oil that exhibits fluidity at room temperature, typified by polydimethylsiloxane (PDMS), which is a polymer of dimethylchlorosilane. Further, these modified silicone oils, silicone rubbers obtained by cross-linking linear PDMS or PDMS with a high degree of polymerization to show rubbery elasticity, modified silicone rubbers thereof, resinous silicones, PDMS and 4 Examples thereof include a silicone resin (or DQ resin) that is a resin having a three-dimensional network structure composed of functional siloxane. In some cases, an organic molecule is used as the cross-linking agent, or tetrafunctional siloxane (Q unit) is used.
 変性シリコーンオイル、変性シリコーンレジンは、ポリシロキサンの側鎖および/または末端を変性したものであり、反応性シリコーンと、非反応性シリコーンと、に分けられる。反応性シリコーンとしては、-OH基(水酸基)を含むシリコーン、アルコキシ基を含むシリコーン、トリアルコキシ基を含むシリコーン、エポキシ基を含むシリコーンが好ましい。非反応性シリコーンとしては、フェニル基を含むシリコーン、メチル基とフェニル基を双方含むシリコーン等が好ましい。1つのポリシロキサン分子に上記したような変性を2つ以上施したものを使用してもよい。 Modified silicone oils and modified silicone resins are modified polysiloxane side chains and / or terminals, and are classified into reactive silicones and non-reactive silicones. The reactive silicone is preferably a silicone containing an —OH group (hydroxyl group), a silicone containing an alkoxy group, a silicone containing a trialkoxy group, or a silicone containing an epoxy group. As the non-reactive silicone, a silicone containing a phenyl group, a silicone containing both a methyl group and a phenyl group, and the like are preferable. A single polysiloxane molecule having two or more modifications as described above may be used.
 変性シリコーンの市販品としては、具体的にはTSF4421(GE東芝シリコーン社製),XF42-334(GE東芝シリコーン社製),XF42-B3629(GE東芝シリコーン社製),XF42-A3161(GE東芝シリコーン社製),FZ-3720(東レ・ダウコーニング社製),BY 16-839(東レ・ダウコーニング社製),SF8411(東レ・ダウコーニング社製),FZ-3736(東レ・ダウコーニング社製),BY 16-876(東レ・ダウコーニング社製),SF8421(東レ・ダウコーニング社製),SF8416(東レ・ダウコーニング社製),SH203(東レ・ダウコーニング社製),SH230(東レ・ダウコーニング社製),SH510(東レ・ダウコーニング社製),SH550(東レ・ダウコーニング社製),SH710(東レ・ダウコーニング社製),SF8419(東レ・ダウコーニング社製),SF8422(東レ・ダウコーニング社製),BY16シリーズ(東レ・ダウコーニング社製),FZ3785(東レ・ダウコーニング社製),KF-410(信越化学工業社製),KF-412(信越化学工業社製),KF-413(信越化学工業社製),KF-414(信越化学工業社製),KF-415(信越化学工業社製),KF-351A(信越化学工業社製),KF-4003(信越化学工業社製),KF-4701(信越化学工業社製),KF-4917(信越化学工業社製),KF-7235B(信越化学工業社製),KR213(信越化学工業社製),KR500(信越化学工業社製),KF-9701(信越化学工業社製),X21-5841(信越化学工業社製),X-22-2000(信越化学工業社製),X-22-3710(信越化学工業社製),X-22-7322(信越化学工業社製),X-22-1877(信越化学工業社製),X-22-2516(信越化学工業社製),PAM-E(信越化学工業社製)等が挙げられる。 Specific examples of commercially available modified silicones include TSF4421 (manufactured by GE Toshiba Silicone), XF42-334 (manufactured by GE Toshiba Silicone), XF42-B3629 (manufactured by GE Toshiba Silicone), and XF42-A3161 (GE Toshiba Silicone). FZ-3720 (manufactured by Toray Dow Corning), BY 16-839 (manufactured by Toray Dow Corning), SF8411 (manufactured by Dow Corning Toray), FZ-3736 (manufactured by Dow Corning Toray) , BY 16-876 (Toray Dow Corning), SF8421 (Toray Dow Corning), SF8416 (Toray Dow Corning), SH203 (Toray Dow Corning), SH230 (Toray Dow Corning) SH510 (manufactured by Toray Dow Corning), SH550 Toray Dow Corning), SH710 (Toray Dow Corning), SF8419 (Toray Dow Corning), SF8422 (Toray Dow Corning), BY16 series (Toray Dow Corning), FZ3785 (Toray Dow Corning), KF-410 (Shin-Etsu Chemical Co., Ltd.), KF-412 (Shin-Etsu Chemical Co., Ltd.), KF-413 (Shin-Etsu Chemical Co., Ltd.), KF-414 (Shin-Etsu Chemical Co., Ltd.) KF-415 (made by Shin-Etsu Chemical Co., Ltd.), KF-351A (made by Shin-Etsu Chemical Co., Ltd.), KF-4003 (made by Shin-Etsu Chemical Co., Ltd.), KF-4701 (made by Shin-Etsu Chemical Co., Ltd.), KF-4917 (Shin-Etsu Chemical Co., Ltd.), KF-7235B (Shin-Etsu Chemical Co., Ltd.), KR213 (Shin-Etsu Chemical Co., Ltd.), KR500 (Shin-Etsu Chemical Co., Ltd.), KF-9 01 (manufactured by Shin-Etsu Chemical Co., Ltd.), X21-5841 (manufactured by Shin-Etsu Chemical Co., Ltd.), X-22-2000 (manufactured by Shin-Etsu Chemical Co., Ltd.), X-22-3710 (manufactured by Shin-Etsu Chemical Co., Ltd.), X-22- 7322 (made by Shin-Etsu Chemical Co., Ltd.), X-22-1877 (made by Shin-Etsu Chemical Co., Ltd.), X-22-2516 (made by Shin-Etsu Chemical Co., Ltd.), PAM-E (made by Shin-Etsu Chemical Co., Ltd.), and the like.
 反応性シリコーンとしては、アミノ変性、エポキシ変性、カルボキシル変性、カルビノール変性、メタクリル変性、ビニル変性、メルカプト変性、フェノール変性、片末端反応性、異種官能基変性等が挙げられる。 Examples of the reactive silicone include amino modification, epoxy modification, carboxyl modification, carbinol modification, methacryl modification, vinyl modification, mercapto modification, phenol modification, one-terminal reactivity, and heterofunctional modification.
 また、ビニル基、メタクリル基、アミノ基、エポキシ基または脂環式エポキシ基のいずれかを含有するシリコーン化合物を含有することにより、シリコーンを化学結合を介し樹脂モールド中に組み込むことができるため、転写精度が向上する。特に、ビニル基、メタクリル基、エポキシ基または脂環式エポキシ基のいずれかを含有するシリコーン化合物を含有することにより、上記効果をより一層発揮するため好ましい。樹脂モールドの樹脂層の硬化性という観点からは、ビニル基またはメタクリル基のいずれかを含有するシリコーン化合物を含有することが好ましい。また、支持基材への接着性という観点からは、エポキシ基または脂環式エポキシ基のいずれかを含有するシリコーン化合物を含有することが好ましい。ビニル基、メタクリル基、アミノ基、エポキシ基または脂環式エポキシ基のいずれかを含有するシリコーン化合物は、1種類のみを使用してもよく、複数を併用してもよい。 In addition, by including a silicone compound containing any of vinyl, methacrylic, amino, epoxy, or alicyclic epoxy groups, silicone can be incorporated into the resin mold via chemical bonding, so transfer Accuracy is improved. In particular, the inclusion of a silicone compound containing any one of a vinyl group, a methacryl group, an epoxy group, and an alicyclic epoxy group is preferable because the above effects can be further exhibited. From the viewpoint of curability of the resin layer of the resin mold, it is preferable to contain a silicone compound containing either a vinyl group or a methacryl group. Moreover, it is preferable to contain the silicone compound containing either an epoxy group or an alicyclic epoxy group from a viewpoint of the adhesiveness to a support base material. As for the silicone compound containing any one of vinyl group, methacryl group, amino group, epoxy group or alicyclic epoxy group, only one kind may be used or a plurality may be used in combination.
 光重合性基を持つシリコーンと、光重合性基を持たないシリコーンは、併用しても、単独で用いてもよい。 The silicone having a photopolymerizable group and the silicone having no photopolymerizable group may be used in combination or independently.
 ビニル基を含有するシリコーン化合物としては、例えば、KR-2020(信越シリコーン社製)、X-40-2667(信越シリコーン社製)、CY52-162(東レダウコーニング社製)、CY52-190(東レダウコーニング社製)、CY52-276(東レダウコーニング社製)、CY52-205(東レダウコーニング社製)、SE1885(東レダウコーニング社製)、SE1886(東レダウコーニング社製)、SR-7010(東レダウコーニング社製)、XE5844(GE東芝シリコーン社製)等が挙げられる。 Examples of silicone compounds containing vinyl groups include KR-2020 (manufactured by Shin-Etsu Silicone), X-40-2667 (manufactured by Shin-Etsu Silicone), CY52-162 (manufactured by Toray Dow Corning), and CY52-190 (Toray). Dow Corning), CY52-276 (Toray Dow Corning), CY52-205 (Toray Dow Corning), SE1885 (Toray Dow Corning), SE1886 (Toray Dow Corning), SR-7010 Toray Dow Corning), XE5844 (GE Toshiba Silicone) and the like.
 メタクリル基を含有するシリコーン化合物としては、例えば、X-22-164(信越シリコーン社製),X-22-164AS(信越シリコーン社製)、X-22-164A(信越シリコーン社製)、X-22-164B(信越シリコーン社製)、X-22-164C(信越シリコーン社製)、X-22-164E(信越シリコーン社製)等が挙げられる。 Examples of silicone compounds containing a methacryl group include X-22-164 (manufactured by Shin-Etsu Silicone), X-22-164AS (manufactured by Shin-Etsu Silicone), X-22-164A (manufactured by Shin-Etsu Silicone), X- 22-164B (manufactured by Shin-Etsu Silicone), X-22-164C (manufactured by Shin-Etsu Silicone), X-22-164E (manufactured by Shin-Etsu Silicone) and the like.
 アミノ基を含有するシリコーン化合物としては、例えば、PAM-E(信越シリコーン社製)、KF-8010(信越シリコーン社製)、X-22-161A(信越シリコーン社製)、X-22-161B(信越シリコーン社製)、KF-8012(信越シリコーン社製)、KF-8008(信越シリコーン社製)、X-22-166B-3(信越シリコーン社製)、TSF4700(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4701(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4702(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4703(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4704(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4705(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4706(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4707(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4708(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、TSF4709(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)等が挙げられる。 Examples of the silicone compound containing an amino group include PAM-E (manufactured by Shin-Etsu Silicone), KF-8010 (manufactured by Shin-Etsu Silicone), X-22-161A (manufactured by Shin-Etsu Silicone), X-22-161B ( Shin-Etsu Silicone), KF-8012 (Shin-Etsu Silicone), KF-8008 (Shin-Etsu Silicone), X-22-166B-3 (Shin-Etsu Silicone), TSF4700 (Momentive Performance Materials Japan) ), TSF4701 (made by Momentive Performance Materials Japan), TSF4702 (made by Momentive Performance Materials Japan), TSF4703 (made by Momentive Performance Materials Japan), TSF4704 (momentive Formalance Materials Japan), TSF4705 (Momentive Performance Materials Japan), TSF4706 (Momentive Performance Materials Japan), TSF4707 (Momentive Performance Materials Japan) Product), TSF4708 (manufactured by Momentive Performance Materials Japan), TSF4709 (manufactured by Momentive Performance Materials Japan), and the like.
 エポキシ基を含有するシリコーン化合物としては、例えば、X-22-163(信越シリコーン社製)、KF-105(信越シリコーン社製)、X-22-163A(信越シリコーン社製)、X-22-163B(信越シリコーン社製)、X-22-163C(信越シリコーン社製)、TSF-4730(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)、YF3965(モメンティブ・パフォーマンス・マテリアルズ・ジャパン社製)等が挙げられる。 Examples of the silicone compound containing an epoxy group include X-22-163 (manufactured by Shin-Etsu Silicone), KF-105 (manufactured by Shin-Etsu Silicone), X-22-163A (manufactured by Shin-Etsu Silicone), X-22- 163B (manufactured by Shin-Etsu Silicone), X-22-163C (manufactured by Shin-Etsu Silicone), TSF-4730 (manufactured by Momentive Performance Materials Japan), YF3965 (manufactured by Momentive Performance Materials Japan), etc. Is mentioned.
 脂環式エポキシ基を含有するシリコーンとしては、例えば、X-22-169AS(信越シリコーン社製)、X-22-169B(信越シリコーン社製)等が挙げられる。 Examples of the silicone containing an alicyclic epoxy group include X-22-169AS (manufactured by Shin-Etsu Silicone), X-22-169B (manufactured by Shin-Etsu Silicone), and the like.
 硬化性樹脂組成物(4)は、上記硬化性樹脂組成物(1)~(3)に対し、以下で説明するゾルゲル材料を添加したものや、または、ゾルゲル材料のみで構成された組成物を採用することができる。硬化性樹脂組成物(1)~硬化性樹脂組成物(3)に対し、ゾルゲル材料を加えることで、ゾルゲル材料特有の収縮採用による上記モールドの複製効率が向上する効果や、ゾルゲル材料特有の無機として性質を発揮することが可能となり、微細凹凸構造の耐久性が向上し、転写用鋳型の繰り返し使用性が向上する。 The curable resin composition (4) is obtained by adding a sol-gel material described below to the curable resin compositions (1) to (3) or a composition composed only of the sol-gel material. Can be adopted. By adding a sol-gel material to the curable resin composition (1) to the curable resin composition (3), the effect of improving the replication efficiency of the mold by adopting the shrinkage specific to the sol-gel material, and the inorganic characteristic of the sol-gel material As a result, the durability of the fine concavo-convex structure is improved, and the repeated use of the transfer mold is improved.
 樹脂モールドを構成するゾルゲル材料としては、熱や触媒の作用により、加水分解・重縮合が進行し、硬化する化合物群である、金属アルコキシド、金属アルコラート、金属キレート化合物、ハロゲン化シラン、液状ガラス、スピンオングラスや、これらの反応物であれば、特に限定されない。これらを総称して金属アルコキシドと呼ぶ。 As the sol-gel material constituting the resin mold, a group of compounds that are cured by hydrolysis and polycondensation by the action of heat and catalyst, metal alkoxide, metal alcoholate, metal chelate compound, halogenated silane, liquid glass, It is not particularly limited as long as it is spin-on-glass or a reaction product thereof. These are collectively called metal alkoxides.
 金属アルコキシドとは、Si,Ti,Zr,Zn,Sn,B,In,Alに代表される金属種と、ヒドロキシ基、メトキシ基、エトキシ基、プロピル基、または、イソプロピル基等の官能基が結合した化合物群である。これらの官能基が、水、有機溶剤または加水分解触媒等により、加水分解・重縮合反応を進行させ、メタロキサン結合(-Me-O-Me-結合。ただし、Meは金属種)を生成する。例えば、金属種がSiであれば、-Si-O-Si-といったメタロキサン結合(シロキサン結合)を生成する。金属種(M1)と、金属種(Si)の金属アルコキシドを用いた場合、例えば、-M1-O-Si-といった結合を生成することもできる。 A metal alkoxide is a bond between a metal species represented by Si, Ti, Zr, Zn, Sn, B, In, and Al and a functional group such as a hydroxy group, a methoxy group, an ethoxy group, a propyl group, or an isopropyl group. This is a group of compounds. These functional groups cause hydrolysis / polycondensation reaction with water, an organic solvent, a hydrolysis catalyst, or the like to generate a metalloxane bond (—Me—O—Me— bond, where Me is a metal species). For example, if the metal species is Si, a metalloxane bond (siloxane bond) such as —Si—O—Si— is generated. When the metal species (M1) and the metal alkoxide of the metal species (Si) are used, for example, a bond such as -M1-O-Si- can be generated.
 例えば、金属種(Si)の金属アルコキシドとしては、例えば、ジメチルジエトキシシラン、ジフェニルジエトキシシラン、フェニルトリエトキシシラン、メチルトリエトキシシラン、ビニルトリエトキシシラン、p-スチリルトリエトキシシラン、メチルフェニルジエトキシシラン、テトラエトキシシラン、p-スチリルトリエトキシシラン、等と、これら化合物群のエトキシ基が、メトキシ基、プロピル基、またはイソプロピル基に置き換わった化合物等が挙げられる。また、ジフェニルシランジオールやジメチルシランジオールといった、ヒドロキシ基を有す化合物も選択できる。 For example, as the metal alkoxide of the metal species (Si), for example, dimethyldiethoxysilane, diphenyldiethoxysilane, phenyltriethoxysilane, methyltriethoxysilane, vinyltriethoxysilane, p-styryltriethoxysilane, methylphenyldioxysilane Examples thereof include ethoxysilane, tetraethoxysilane, p-styryltriethoxysilane, and the like, and compounds in which the ethoxy group of these compound groups is replaced with a methoxy group, a propyl group, or an isopropyl group. In addition, a compound having a hydroxy group such as diphenylsilanediol and dimethylsilanediol can be selected.
 また、上記官能基の1つ以上が、金属種から酸素原子を介さずに、直接フェニル基等に置換された形態をとってもよい。例えば、ジフェニルシランジオールやジメチルシランジオール等が挙げられる。これらの化合物群を用いることにより、縮合後の密度が向上し、樹脂モールドに対する転写材の浸透を抑制効果が向上し、転写材の転写精度が向上する。 In addition, one or more of the functional groups may be directly substituted with a phenyl group or the like without using an oxygen atom from a metal species. For example, diphenylsilanediol, dimethylsilanediol, etc. are mentioned. By using these compound groups, the density after condensation is improved, the effect of suppressing the penetration of the transfer material into the resin mold is improved, and the transfer accuracy of the transfer material is improved.
 ハロゲン化シランとは、上記金属アルコキシドの金属種がシリコンで、加水分解重縮合する官能基がハロゲン原子に置き換わった化合物群である。 Halogenated silane is a group of compounds in which the metal species of the metal alkoxide is silicon and the functional group undergoing hydrolytic polycondensation is replaced with a halogen atom.
 液状ガラスとしては、アポロリング社製のTGAシリーズ等が挙げられる。所望の物性に合わせ、その他ゾルゲル化合物を添加することもできる。 Examples of liquid glass include TGA series manufactured by Apollo Ring. Other sol-gel compounds can be added in accordance with the desired physical properties.
 また、金属アルコキシドとしてシルセスキオキサン化合物を用いることもできる。シルセスキオキサンとは、ケイ素原子1個に対し、1つの有機基と3つの酸素原子が結合した化合物ある。シルセスキオキサンとしては、組成式(RSiO3/2で表されるポリシロキサンであれば特に限定されるものではないが、かご型、はしご型、ランダム等のいずれの構造を有するポリシロキサンであってもよい。また、組成式(RSiO3/2において、Rは、置換または非置換のシロキシ基、その他任意の置換基でよい。nは、8~12であることが好ましく、硬化性樹脂組成物(4)の硬化性が良好になるため、8~10であることがより好ましく、nは8であることがさらに好ましい。n個のRは、それぞれ同一であっても異なっていてもよい。 A silsesquioxane compound can also be used as the metal alkoxide. Silsesquioxane is a compound in which one organic group and three oxygen atoms are bonded to one silicon atom. The silsesquioxane is not particularly limited as long as it is a polysiloxane represented by the composition formula (RSiO 3/2 ) n. However, the polysiloxane having any structure such as a cage type, a ladder type, or a random structure. It may be. In the composition formula (RSiO 3/2 ) n , R may be a substituted or unsubstituted siloxy group or any other substituent. n is preferably 8 to 12, more preferably 8 to 10 and further preferably n is 8, in order to improve the curability of the curable resin composition (4). The n Rs may be the same or different.
 シルセスキオキサン化合物としては、例えば、ポリ水素化シルセスキオキサン、ポリメチルシルセスキオキサン、ポリエチルシルセスキオキサン、ポリプロピルシルセスキオキサン、ポリイイソプロピルシルセスキオキサン、ポリブチルシルセスキオキサン、ポリ-sec-ブチルシルセスキオキサン、ポリ-tert-ブチルシルセスキオキサン、ポリフェニルシルセスキオキサン等が挙げられる。また、これらのシルセスキオキサンに対してn個のRのうち少なくとも1つを、次に例示する置換基で置換してもよい。置換基としては、トリフルオロメチル、2,2,2-トリフルオロエチル、3,3,3-トリフルオロプロピル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,2-トリフルオロ-1-トリフルオロメチルエチル、2,2,3,4,4,4-ヘキサフルオロブチル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、2,2,2-トリフルオロエチル、2,2,3,3-テトラフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、2,2,3,3,4,4,5,5-オクタフルオロペンチル、3,3,3-トリフルオロプロピル、ノナフルオロ-1,1,2,2-テトラヒドロヘキシル、トリデカフルオロ-1,1,2,2-テトラヒドロオクチル、ヘプタデカフルオロ-1,1,2,2-テトラヒドロデシル、パーフルオロ-1H,1H,2H,2H-ドデシル、パーフルオロ-1H,1H,2H,2H-テトラデシル、3,3,4,4,5,5,6,6,6-ノナフルオロヘキシル等、アルコキシシリル基等が挙げられる。また、市販のシルセスキオキサンを使用することができる。例えば、Hybrid Plastics社の種々のかご型シルセスキオキサン誘導体、アルドリッチ社のシルセスキオキサン誘導体等が挙げられる。 Examples of the silsesquioxane compound include polyhydrogen silsesquioxane, polymethyl silsesquioxane, polyethyl silsesquioxane, polypropyl silsesquioxane, polyisopropyl silsesquioxane, polybutyl silsesquioxane, and polybutyl silsesquioxane. Poly-sec-butylsilsesquioxane, poly-tert-butylsilsesquioxane, polyphenylsilsesquioxane, and the like. In addition, at least one of n Rs for these silsesquioxanes may be substituted with a substituent exemplified below. Examples of the substituent include trifluoromethyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3 -Pentafluoropropyl, 2,2,2-trifluoro-1-trifluoromethylethyl, 2,2,3,4,4,4-hexafluorobutyl, 2,2,3,3,4,4,5 , 5-octafluoropentyl, 2,2,2-trifluoroethyl, 2,2,3,3-tetrafluoropropyl, 2,2,3,3,3-pentafluoropropyl, 2,2,3,3 , 4,4,5,5-octafluoropentyl, 3,3,3-trifluoropropyl, nonafluoro-1,1,2,2-tetrahydrohexyl, tridecafluoro-1,1,2,2-tetrahydrooctyl , Heptade Fluoro-1,1,2,2-tetrahydrodecyl, perfluoro-1H, 1H, 2H, 2H-dodecyl, perfluoro-1H, 1H, 2H, 2H-tetradecyl, 3,3,4,4,5,5 , 6,6,6-nonafluorohexyl, alkoxysilyl groups and the like. Commercially available silsesquioxane can also be used. For example, various cage-type silsesquioxane derivatives from Hybrid Plastics, silsesquioxane derivatives from Aldrich, and the like can be mentioned.
 金属アルコキシドは、重合反応が部分的に反応し、未反応の官能基が残っているプレポリマ状態であってもよい。金属アルコキシドが部分的に縮合することで、金属種が酸素元素を介し連なったプレポリマを得ることができる。つまり、部分的に縮合することで、分子量の大きなプレポリマを作ることができる。金属アルコキシドを部分的に縮合することで、樹脂モールドにフレキシビリティが付与され、結果、樹脂モールドを金属アルコキシドを用いた転写により作製する場合の、微細凹凸構造の破壊やクラックを抑制できる。 The metal alkoxide may be in a prepolymer state in which the polymerization reaction partially reacts and an unreacted functional group remains. When the metal alkoxide is partially condensed, a prepolymer in which metal species are connected via an oxygen element can be obtained. That is, a prepolymer having a large molecular weight can be produced by partial condensation. By partially condensing the metal alkoxide, flexibility is imparted to the resin mold, and as a result, breakage and cracking of the fine concavo-convex structure when the resin mold is manufactured by transfer using the metal alkoxide can be suppressed.
 部分縮合度は、反応雰囲気や、金属アルコキシドの組み合わせ等により制御可能であり、どの程度の部分縮合度のプレポリマ状態で使用するかは、用途や使用方法により適宜選択できるため、特に限定はされない。例えば、部分縮合体を含む、硬化性樹脂組成物の粘度が50cP以上であると、転写精度および水蒸気への安定性がより向上するため好ましく、100cP以上であると、これらの効果をより発揮できるため、なお好ましい。特に、150cP以上であると好ましく、250cP以上であるとより好ましい。一方で、粘度の上限値は、転写形成できれば特に限定されないが、転写精度の観点から概ね5000cP以下が好ましく、4000cP以下であるとより好ましい。また、部分縮合を促進させたプレポリマは、脱水反応に基づく重縮合および/または脱アルコール反応に基づく重縮合により得ることができる。例えば、金属アルコキシド、水、溶剤(アルコール、ケトン、エーテル等)からなる溶液を20℃~150℃の範囲で加熱し、加水分解、重縮合を得ることで、プレポリマを得ることができる。重縮合度は、温度、反応時間、および圧力(減圧力)により制御可能であり、適宜選定できる。また、水の添加を行わず、環境雰囲気中の水分(湿度に基づく水蒸気)を利用し、徐々に加水分解・重縮合を行うことで、プレポリマの分子量分布を小さくすることも可能である。さらに、重縮合を促進させるために、エネルギー線を照射する方法も挙げられる。ここでエネルギー線の光源は、金属アルコキシドの種類により適宜選定できるため、特に限定されないが、UV-LED光源、メタルハライド光源、高圧水銀灯光源等を採用できる。特に、金属アルコキシドに光酸発生剤を添加しておき、該組成物にエネルギー線を照射することで、光酸発生剤より光酸が発生し、該光酸を触媒として、金属アルコキシドの重縮合を促進でき、プレポリマを得ることができる。また、プレポリマの縮合度および立体配置を制御する目的で、金属アルコキシドをキレート化した状態にて、上記操作を行いプレポリマを得ることもできる。なお、上記プレポリマとは、少なくとも4つ以上の金属元素が酸素原子を介し連なった状態と定義する。すなわち、-O-M1-O-M2-O-M3-O-M4-O-以上に金属元素が縮合した状態をプレポリマと定義する。ここで、M1、M2、M3、M4は金属元素であり、同一の金属元素であっても異なっていてもよい。例えば、チタンを金属種に有す金属アルコキシドを予備縮合し、-O-Ti-O-からなるメタロキサン結合を生成した場合、[-O-Ti-]の一般式において、n≧4の範囲でプレポリマとする。同様に、例えば、チタンを金属種に有す金属アルコキシドと、シリコンを金属種とする金属アルコキシドを予備縮合し、-O-Ti-O-Si-O-からなるメタロキサン結合を生成した場合、[-O-Ti-O-Si-]の一般式においてn≧2の範囲でプレポリマとする。但し、-O-Ti-O-Si-のように、異種金属元素が含まれる場合、-O-Ti-O-Si-のように、互いに交互に配列するとは限らない。その為、[-O-M-](但し、M=TiまたはSi)と、いう一般式において、n≧4の範囲でプレポリマとする。なお、元素Aおよび元素Bを使用し、―A-B-のように化学組成を表現しているが、これは、元素Aと元素Bとの結合を説明するための表現である。例えば、元素Aが結合手を3以上有す場合であっても、同表現を使用している。即ち、-A-B-と表記することで、元素Aと元素Bが化学結合することを少なくとも表現しており、元素Aが元素B以外と化学結合を形成することも含んでいる。 The degree of partial condensation can be controlled by the reaction atmosphere, the combination of metal alkoxides, and the like, and the degree of partial condensation used in the prepolymer state can be appropriately selected depending on the application and method of use, and is not particularly limited. For example, when the viscosity of the curable resin composition containing a partial condensate is 50 cP or more, transfer accuracy and stability to water vapor are further improved, and when it is 100 cP or more, these effects can be more exhibited. Therefore, it is still preferable. In particular, it is preferably 150 cP or more, and more preferably 250 cP or more. On the other hand, the upper limit value of the viscosity is not particularly limited as long as it can be transferred and formed, but is preferably 5000 cP or less and more preferably 4000 cP or less from the viewpoint of transfer accuracy. Moreover, the prepolymer which promoted partial condensation can be obtained by polycondensation based on a dehydration reaction and / or polycondensation based on a dealcoholization reaction. For example, a prepolymer can be obtained by heating a solution comprising a metal alkoxide, water, and a solvent (alcohol, ketone, ether, etc.) in the range of 20 ° C. to 150 ° C. to obtain hydrolysis and polycondensation. The degree of polycondensation can be controlled by temperature, reaction time, and pressure (decompression force), and can be selected as appropriate. Moreover, it is also possible to reduce the molecular weight distribution of the prepolymer by gradually performing hydrolysis and polycondensation using water (water vapor based on humidity) in the environmental atmosphere without adding water. Furthermore, in order to promote polycondensation, the method of irradiating energy rays is also mentioned. Here, the light source of the energy beam can be appropriately selected depending on the type of the metal alkoxide, and is not particularly limited. However, a UV-LED light source, a metal halide light source, a high-pressure mercury lamp light source, or the like can be employed. In particular, by adding a photoacid generator to the metal alkoxide and irradiating the composition with energy rays, photoacid is generated from the photoacid generator, and polycondensation of the metal alkoxide using the photoacid as a catalyst. And a prepolymer can be obtained. For the purpose of controlling the condensation degree and configuration of the prepolymer, the prepolymer can also be obtained by performing the above operation in the state of chelating the metal alkoxide. The prepolymer is defined as a state in which at least four or more metal elements are connected via oxygen atoms. That is, a state in which a metal element is condensed to -O-M1-O-M2-O-M3-O-M4-O- or more is defined as a prepolymer. Here, M1, M2, M3, and M4 are metal elements, and may be the same metal element or different. For example, when a metal alkoxide having titanium as a metal species is pre-condensed to form a metalloxane bond composed of —O—Ti—O—, the range of n ≧ 4 in the general formula of [—O—Ti—] n And prepolymer. Similarly, for example, when a metal alkoxide having titanium as a metal species and a metal alkoxide having silicon as a metal species are pre-condensed to generate a metalloxane bond composed of —O—Ti—O—Si—O—, [ the prepolymer in the range of n ≧ 2 in -O-Ti-O-Si-] n in the general formula. However, in the case where a dissimilar metal element is included, such as —O—Ti—O—Si—, the elements are not necessarily alternately arranged like —O—Ti—O—Si—. Therefore, in the general formula [-OM-] n (where M = Ti or Si), a prepolymer is used in the range of n ≧ 4. The element A and the element B are used, and the chemical composition is expressed as -AB-, but this is an expression for explaining the bond between the element A and the element B. For example, the same expression is used even when the element A has three or more bonds. In other words, the expression -A-B- represents at least the chemical bond between the element A and the element B, and includes that the element A forms a chemical bond with other than the element B.
 金属アルコキシドは、フッ素含有シランカップリング剤を含むことができる。フッ素含有シランカップリング剤を含むことで、金属アルコキシドの硬化物からなる樹脂モールドの微細凹凸構造表面のエネルギーを低下させることが可能となり、離型層の形成等を行わなくても、転写材の転写精度が向上する。これは、離型層をあらかじめモールド内部に組み込むことを意味する。 The metal alkoxide can contain a fluorine-containing silane coupling agent. By including a fluorine-containing silane coupling agent, it is possible to reduce the energy of the surface of the fine concavo-convex structure of the resin mold made of a cured product of the metal alkoxide. Transfer accuracy is improved. This means that the release layer is previously incorporated in the mold.
 フッ素含有シランカップリング剤としては、例えば、一般式FC-(CF-(CH-Si(O-R)(ただし、nは1~11の整数であり、mは1~4の整数であり、そしてRは炭素数1~3のアルキル基である。)で表される化合物であることができ、ポリフルオロアルキレン鎖および/またはペルフルオロ(ポリオキシアルキレン)鎖を含んでいてもよい。直鎖状ペルフルオロアルキレン基、または炭素原子-炭素原子間にエーテル性酸素原子が挿入され、かつ、トリフルオロメチル基を側鎖に有するペルフルオロオキシアルキレン基がさらに好ましい。また、トリフルオロメチル基を分子側鎖または分子構造末端に有する直鎖状のポリフルオロアルキレン鎖および/または直鎖状のペルフルオロ(ポリオキシアルキレン)鎖が特に好ましい。ポリフルオロアルキレン鎖は、炭素数2~炭素数24のポリフルオロアルキレン基が好ましい。ペルフルオロ(ポリオキシアルキレン)鎖は、(CFCFO)単位、(CFCF(CF)O)単位、(CFCFCFO)単位、および(CFO)単位からなる群から選ばれる少なくとも1種類以上のペルフルオロ(オキシアルキレン)単位から構成されることが好ましく、(CFCFO)単位、(CFCF(CF)O)単位、または(CFCFCFO)単位から構成されることがより好ましい。ペルフルオロ(ポリオキシアルキレン)鎖は、表面への偏析性が優れるという観点から、(CFCFO)単位から構成されることが特に好ましい。 As the fluorine-containing silane coupling agent, for example, a general formula F 3 C— (CF 2 ) n — (CH 2 ) m —Si (O—R) 3 (where n is an integer of 1 to 11, m Is an integer of 1 to 4 and R is an alkyl group having 1 to 3 carbon atoms.), A polyfluoroalkylene chain and / or a perfluoro (polyoxyalkylene) chain. May be included. A linear perfluoroalkylene group or a perfluorooxyalkylene group having an etheric oxygen atom inserted between carbon atoms and a trifluoromethyl group in the side chain is more preferred. Moreover, a linear polyfluoroalkylene chain having a trifluoromethyl group at the molecular side chain or molecular structure terminal and / or a linear perfluoro (polyoxyalkylene) chain is particularly preferred. The polyfluoroalkylene chain is preferably a polyfluoroalkylene group having 2 to 24 carbon atoms. The perfluoro (polyoxyalkylene) chain consists of (CF 2 CF 2 O) units, (CF 2 CF (CF 3 ) O) units, (CF 2 CF 2 CF 2 O) units, and (CF 2 O) units. It is preferably composed of at least one perfluoro (oxyalkylene) unit selected from the group, and is a (CF 2 CF 2 O) unit, (CF 2 CF (CF 3 ) O) unit, or (CF 2 CF 2 More preferably, it is composed of (CF 2 O) units. The perfluoro (polyoxyalkylene) chain is particularly preferably composed of (CF 2 CF 2 O) units from the viewpoint of excellent segregation on the surface.
 また、本発明においては、金属アルコキシドは、ポリシランを含むことができる。ポリシランは、シリコン元素が主鎖を構築し、主鎖が―Si-Si―の繰り返しから構成される化合物である。ポリシランに、エネルギー線(例えばUV)を照射することで、―Si-Si―結合が切断され、シロキサン結合が生成する。このため、ポリシランを含むことで、UV照射により、効果的にシロキサン結合を生成でき、金属アルコキシドを原料に、モールドを転写形成する際の転写精度が向上する。 In the present invention, the metal alkoxide can contain polysilane. Polysilane is a compound in which a silicon element constitutes a main chain, and the main chain is composed of repeating —Si—Si—. By irradiating polysilane with energy rays (for example, UV), a —Si—Si— bond is cut and a siloxane bond is generated. For this reason, by containing polysilane, a siloxane bond can be effectively generated by UV irradiation, and the transfer accuracy when a mold is transferred and formed using a metal alkoxide as a raw material is improved.
 また、樹脂モールドは、無機のセグメントと有機のセグメントを含むハイブリッドであってもよい。ハイブリッドであることにより、樹脂モールドを転写により作製する際の転写精度が向上し、かつ、微細凹凸構造の物理的耐久性も向上する。さらに、転写材の組成にもよるが、転写材の樹脂モールドの微細凹凸構造内部への浸透を抑制する効果が大きくなり、結果、転写精度を向上させることが可能となる。ハイブリッドとしては、例えば、無機前駆体と光重合(または熱重合)可能な樹脂や、有機ポリマーと無機セグメントが共有結合にて結合した分子、等が挙げられる。無機前駆体としてゾルゲル材料を使用する場合は、シランカップリング剤を含むゾルゲル材料の他に、光重合可能な樹脂を含むことを意味する。ハイブリッドの場合、例えば、金属アルコキシド、光重合性基を具備したシランカップリング材や、例えば、金属アルコキシド、光重合性基を具備したシランカップリング材、ラジカル重合系樹脂等を混合することができる。より転写精度を高めるために、これらにシリコーンを添加してもよい。シランカップリング剤を含む金属アルコキシドと、光重合性樹脂の混合比率は、転写精度の観点から、3:7~7:3の範囲が好ましい。 Further, the resin mold may be a hybrid including an inorganic segment and an organic segment. By being a hybrid, the transfer accuracy when the resin mold is produced by transfer is improved, and the physical durability of the fine concavo-convex structure is also improved. Furthermore, although depending on the composition of the transfer material, the effect of suppressing the penetration of the transfer material into the fine concavo-convex structure of the resin mold is increased, and as a result, the transfer accuracy can be improved. Examples of the hybrid include a resin that can be photopolymerized (or thermally polymerized) with an inorganic precursor, and a molecule in which an organic polymer and an inorganic segment are bonded by a covalent bond. When the sol-gel material is used as the inorganic precursor, it means that a photopolymerizable resin is included in addition to the sol-gel material containing the silane coupling agent. In the case of a hybrid, for example, a metal alkoxide, a silane coupling material having a photopolymerizable group, a metal alkoxide, a silane coupling material having a photopolymerizable group, a radical polymerization resin, or the like can be mixed. . In order to further improve the transfer accuracy, silicone may be added thereto. The mixing ratio of the metal alkoxide containing the silane coupling agent and the photopolymerizable resin is preferably in the range of 3: 7 to 7: 3 from the viewpoint of transfer accuracy.
 樹脂モールドを構成する熱可塑性樹脂としては、ポリプロピレン,ポリエチレン,ポリエチレンテレフタレート,ポリメチルペタクリレート,シクロオレフィンポリマー,シクロオレフィンコポリマー,透明フッ素樹脂,ポリエチレン,ポリプロピレン,ポリスチレン,アクリロニトリル/スチレン系重合体,アクリロニトリル/ブタジエン/スチレン系重合体,ポリ塩化ビニル,ポリ塩化ビニリデン,ポリ(メタ)アクリレート,ポリアリレート,ポリエチレンテレフタレート,ポリブチレンテレフタレート,ポリアミド,ポリイミド,ポリアセタール,ポリカーボネート,ポリフェニレンエーテル,ポリエーテルエーテルケトン,ポリサルホン,ポリエーテルサルホン,ポリフェニレンスルフィド,ポリフッ化ビニリデン,テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体,テトラフルオロエチレン/エチレン系共重合体,フッ化ビニリデン/テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体,テトラフルオロエチレン/プロピレン系共重合体,ポリフルオロ(メタ)アクリレート系重合体,主鎖に含フッ素脂肪族環構造を有する含フッ素重合体,ポリフッ化ビニル,ポリテトラフルオロエチレン,ポリクロロトリフルオロエチレン,クロロトリフルオロエチレン/エチレン系共重合体,クロロトリフルオロエチレン/炭化水素系アルケニルエーテル系共重合体,テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体,フッ化ビニリデン/ヘキサフルオロプロピレン系共重合体等が挙げられる。 The thermoplastic resin that composes the resin mold includes polypropylene, polyethylene, polyethylene terephthalate, polymethylpetacrylate, cycloolefin polymer, cycloolefin copolymer, transparent fluororesin, polyethylene, polypropylene, polystyrene, acrylonitrile / styrene polymer, acrylonitrile. / Butadiene / styrene polymer, polyvinyl chloride, polyvinylidene chloride, poly (meth) acrylate, polyarylate, polyethylene terephthalate, polybutylene terephthalate, polyamide, polyimide, polyacetal, polycarbonate, polyphenylene ether, polyether ether ketone, polysulfone, Polyethersulfone, polyphenylene sulfide, polyvinylidene fluoride, tetrafur Polyethylene / perfluoro (alkyl vinyl ether) copolymer, tetrafluoroethylene / ethylene copolymer, vinylidene fluoride / tetrafluoroethylene / hexafluoropropylene copolymer, tetrafluoroethylene / propylene copolymer, polyfluoro (Meth) acrylate polymer, fluorine-containing polymer having a fluorine-containing aliphatic ring structure in the main chain, polyvinyl fluoride, polytetrafluoroethylene, polychlorotrifluoroethylene, chlorotrifluoroethylene / ethylene copolymer, Examples thereof include a chlorotrifluoroethylene / hydrocarbon alkenyl ether copolymer, a tetrafluoroethylene / hexafluoropropylene copolymer, and a vinylidene fluoride / hexafluoropropylene copolymer.
 また、樹脂モールドを構成する熱硬化性樹脂としては、ポリイミド,エポキシ樹脂,ウレタン樹脂等が挙げられる。 Also, examples of the thermosetting resin constituting the resin mold include polyimide, epoxy resin, and urethane resin.
 樹脂モールドを構成する支持基材(フィルム)の材質に関しては特に制限はなく、ガラス、セラミック、金属等の無機材料、プラスチック等の有機材料を問わず使用できる。成形体の用途に応じて、板、シート、フィルム、薄膜、織物、不織布、その他任意の形状およびこれらを複合化したものを使用できるが、屈曲性を有し連続生産性に優れたシート、フィルム、薄膜、織物、不織布等を含むことが特に好ましい。屈曲性を有する材質としては、例えば、ポリメタクリル酸メチル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、シクロオレフィン樹脂(COP)、架橋ポリエチレン樹脂、ポリ塩化ビニル樹脂、ポリアクリレート樹脂、ポリフェニレンエーテル樹脂、変性ポリフェニレンエーテル樹脂、ポリエーテルイミド樹脂、ポリエーテルサルフォン樹脂、ポリサルフォン樹脂、ポリエーテルケトン樹脂等の非晶性熱可塑性樹脂や、ポリエチレンテレフタレート(PET)樹脂、ポリエチレンナフタレート樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレンテレフタレート樹脂、芳香族ポリエステル樹脂、ポリアセタール樹脂、ポリアミド樹脂等の結晶性熱可塑性樹脂や、アクリル系、エポキシ系、ウレタン系等の紫外線(UV)硬化性樹脂や熱硬化性樹脂が挙げられる。また、紫外線硬化性樹脂や熱硬化性樹脂と、ガラス等の無機基板、上記熱可塑性樹脂、トリアセテート樹脂とを組み合わせ、または単独で用いて支持基材を構成させることもできる。 There is no particular limitation on the material of the support substrate (film) constituting the resin mold, and any material such as inorganic materials such as glass, ceramic and metal, and organic materials such as plastic can be used. Depending on the application of the molded body, plates, sheets, films, thin films, woven fabrics, non-woven fabrics, and other arbitrary shapes and composites thereof can be used, but they are flexible and have excellent continuous productivity. It is particularly preferable to include a thin film, a woven fabric, a non-woven fabric and the like. Examples of the flexible material include polymethyl methacrylate resin, polycarbonate resin, polystyrene resin, cycloolefin resin (COP), cross-linked polyethylene resin, polyvinyl chloride resin, polyacrylate resin, polyphenylene ether resin, and modified polyphenylene ether resin. Amorphous thermoplastic resins such as polyetherimide resin, polyether sulfone resin, polysulfone resin, polyether ketone resin, polyethylene terephthalate (PET) resin, polyethylene naphthalate resin, polyethylene resin, polypropylene resin, polybutylene terephthalate Crystalline thermoplastic resins such as resins, aromatic polyester resins, polyacetal resins, polyamide resins, and ultraviolet (UV) curable resins such as acrylic, epoxy, and urethane resins And thermosetting resins. In addition, the supporting base material can be configured by combining an ultraviolet curable resin or a thermosetting resin with an inorganic substrate such as glass, the above thermoplastic resin, or a triacetate resin, or using them alone.
 以上、本実施の形態に係る転写用鋳型について説明した。続いて、本発明の転写用鋳型を使用して被処理体上に微細凹凸構造を転写する方法について説明する。転写用鋳型のパタン部の凹部内部に充填層を充填配置することで、充填層転写用鋳型を製造できる。図26に示すように、充填層転写用鋳型400は、転写用鋳型401を含む。転写用鋳型401は、支持基材402の上に設けられた樹脂層403の表面に微細凹凸構造を有する。樹脂層403に設けられた凹部403aには、充填層404が充填されている。 The transfer template according to the present embodiment has been described above. Next, a method for transferring a fine concavo-convex structure on a workpiece using the transfer mold of the present invention will be described. A filling layer transfer mold can be manufactured by filling and disposing the filling layer in the concave portion of the pattern portion of the transfer mold. As shown in FIG. 26, the packed bed transfer mold 400 includes a transfer mold 401. The transfer mold 401 has a fine concavo-convex structure on the surface of the resin layer 403 provided on the support substrate 402. A recessed layer 403 a provided in the resin layer 403 is filled with a filling layer 404.
 図26における「S」は、転写用鋳型401の微細凹凸構造の凸部頂部403bの平均位置を意味する。「B」は、転写用鋳型401の微細凹凸構造の凹部403aの底部の平均位置を意味する。「Scc」は、転写用鋳型401の微細凹凸構造の凹部403aの内部に配置された充填層404の露出する表面平均位置を意味する。位置Sと位置Bとの最短距離は転写用鋳型401の微細凹凸構造の平均深さ(高さ)hである。位置Sと位置Sccとの最短距離は、充填層404の充填度合を表現する指標でありlccと表記する。充填層転写用鋳型400は、転写用鋳型401の微細凹凸構造の凹部403aの内部に0<lcc<1.0hの範囲を満たすように充填層404が配置されている。特に、充填層転写用鋳型400を使用し、難加工基材の微細加工を行う際の加工精度の点から、lcc≦0.9hを満たすと好ましく、lcc≦0.7hがより好ましく、lcc≦0.6hであるともっとも好ましい。一方で、同様の効果から、下限値が0.02h≦lccを満たすと好ましく、0.05h≦lccを満たすとより好ましく、0.1h≦lccを満たすと最も好ましい。 In FIG. 26, “S” means the average position of the convex top 403b of the fine concavo-convex structure of the transfer mold 401. “B” means the average position of the bottom of the concave portion 403 a of the fine concavo-convex structure of the transfer mold 401. “Scc” means the average position of the exposed surface of the filling layer 404 disposed inside the concave portion 403a of the fine concavo-convex structure of the transfer mold 401. The shortest distance between the position S and the position B is the average depth (height) h of the fine concavo-convex structure of the transfer mold 401. The shortest distance between the position S and the position Scc is an index expressing the degree of filling of the filling layer 404 and is expressed as lcc. In the filling layer transfer mold 400, the filling layer 404 is disposed so as to satisfy the range of 0 <lcc <1.0 h inside the concave portion 403 a of the fine concavo-convex structure of the transfer mold 401. In particular, from the viewpoint of processing accuracy when performing microfabrication of a difficult-to-process substrate using the packed layer transfer mold 400, it is preferable to satisfy lcc ≦ 0.9h, more preferably lcc ≦ 0.7h, and lcc ≦ Most preferred is 0.6 h. On the other hand, from the same effect, the lower limit value is preferably 0.02h ≦ lcc, more preferably 0.05h ≦ lcc, and most preferably 0.1h ≦ lcc.
 充填層404の充填について説明する。転写用鋳型401に充填層材料を希釈した溶液を塗工し、余剰な溶剤を除去することで充填層転写用鋳型400を得ることができる。ここで、充填層材料を希釈する溶剤として水系溶剤(例えば、アルコール、ケトン、エーテル等)を選定すると、塗工精度が向上するため好ましい。塗工方法としては、ローラーコート法、バーコート法、ダイコート法、噴霧コート法、グラビアコート法、マイクログラビアコート法、インクジェット法、エアーナイフコート法、フローコート法、カーテンコート法、スピンコート法等等が適用できる。充填層材料を希釈する濃度は、単位体積当たりの充填層材料の固形分量が、単位面積下に存在する凹凸構造の体積より小さくなれば特に限定されない。 The filling of the filling layer 404 will be described. By applying a solution obtained by diluting the filling layer material to the transfer mold 401 and removing the excess solvent, the filling layer transfer mold 400 can be obtained. Here, it is preferable to select an aqueous solvent (for example, alcohol, ketone, ether, etc.) as a solvent for diluting the packed bed material because coating accuracy is improved. Coating methods include roller coating, bar coating, die coating, spray coating, gravure coating, micro gravure coating, ink jet method, air knife coating method, flow coating method, curtain coating method, spin coating method, etc. Etc. are applicable. The concentration for diluting the packed bed material is not particularly limited as long as the solid content of the packed bed material per unit volume is smaller than the volume of the concavo-convex structure existing under the unit area.
 パタン部、すなわち転写領域への塗工性および充填層の充填配置精度を向上させる観点から、転写用鋳型401のパタン部に対する水の接触角は90度以上であり、パタン部の開口率は45%以上、好ましくは50%以上、より好ましくは55%以上、最も好ましくは65%以上であると好ましい。さらに、充填層材料を希釈する溶剤は、水系溶剤であると前記効果をいっそう発揮するため好ましい。水系溶剤としては例えば、アルコール、エーテル、エステル、ケトン等が挙げられる。特に、アルコール、エーテル、ケトンであると好ましい。さらに、パタン部への、非パン部上にて弾かれた塗工液による侵入を阻害する観点から、バリア領域に対する水の接触角は90度以上であると好ましい。 From the viewpoint of improving the coatability of the pattern portion, that is, the transfer region and the filling arrangement accuracy of the packed layer, the contact angle of water with the pattern portion of the transfer mold 401 is 90 degrees or more, and the aperture ratio of the pattern portion is 45. % Or more, preferably 50% or more, more preferably 55% or more, and most preferably 65% or more. Furthermore, the solvent for diluting the packed bed material is preferably an aqueous solvent because the above effect can be further exhibited. Examples of the aqueous solvent include alcohol, ether, ester, and ketone. In particular, alcohol, ether, and ketone are preferable. Furthermore, the contact angle of water with respect to the barrier region is preferably 90 degrees or more from the viewpoint of hindering penetration of the pattern portion by the coating liquid repelled on the non-pan portion.
 さらに、充填層材料が、希釈塗工後の溶剤揮発過程において様態が変化する材料を含むと、材料自体の面積を小さくするというドライビングフォースも同時に働くと推定されるため、より効果的に充填層を充填配置可能となる。様態の変化とは、例えば、発熱反応や、粘度の大きくなる変化が挙げられる。例えば、金属アルコキシドに代表されるゾルゲル材料を含むと、溶剤揮発過程で、空気中の水蒸気と反応し、ゾルゲル材料が重縮合する。これにより、ゾルゲル材料のエネルギーが不安定化するため、溶剤乾燥に伴い低下する溶剤液面(溶剤と空気界面)から遠ざかろうとするドライビングフォースが働き、結果、ゾルゲル材料が良好にパタン部の凹部内部に充填配置される。 Furthermore, if the filling layer material includes a material whose state changes in the solvent volatilization process after the dilution coating, it is estimated that the driving force of reducing the area of the material itself also works at the same time. Can be filled and arranged. Examples of the change in form include an exothermic reaction and a change in which the viscosity increases. For example, when a sol-gel material typified by a metal alkoxide is included, it reacts with water vapor in the air during the solvent volatilization process, and the sol-gel material undergoes polycondensation. As a result, the energy of the sol-gel material becomes unstable, so that the driving force that moves away from the solvent liquid surface (solvent-air interface) that decreases as the solvent is dried works. As a result, the sol-gel material is satisfactorily inside the recess of the pattern part. Is placed in the filling.
 以上のような操作により充填層転写用鋳型400を製造することで、パタン部内におけるマクロな充填層の充填率の均等化を達成できる。例えば塗工不良(2)を例にとると、図27に示すように、バリア領域を設けない一般的な転写用鋳型501に対し、上記塗工を行い、充填層転写用鋳型500を製造した場合、パタン部505に充填塗工された充填層504は、非パタン部506上にてはじかれた塗工液の侵入により、充填率の大きな分布を有することとなる。 By producing the packed bed transfer mold 400 by the operation as described above, the filling rate of the macro packed bed in the pattern portion can be equalized. For example, in the case of coating failure (2) as an example, as shown in FIG. 27, the above-described coating was performed on a general transfer mold 501 without a barrier region, and a filling layer transfer mold 500 was manufactured. In this case, the filling layer 504 filled and applied to the pattern portion 505 has a large distribution of filling rate due to the penetration of the coating liquid repelled on the non-pattern portion 506.
 一方で、図28に示すように、本実施の形態に係る転写用鋳型401を用いた充填層転写用鋳型400では、パタン部405と非パタン部406との境界にバリア領域407を設けることにより、非パタン部406上にてはじかれた塗工液の侵入を効果的に阻害できるため、充填率の分布を小さくすることができる。つまり、地点A、B、Cのいずれにおいても充填率は略同一となる。このような、地点A,B,Cのいずれの箇所においても充填率がほぼ同一になるのは、バリア領域407を設ける為であり、バリア領域407を上記説明した条件範囲内にて設けることで、転写用鋳型401に対し塗工液を塗工する際に生じる振動や撓みの影響を極めて小さくすることが可能となる。充填層404の充填率分布が極めて小さい充填層転写用鋳型400を製造することが可能となるため、充填層転写用鋳型400を使用し難加工基材を微細加工する際の面内分布を小さくすることが可能となり、難加工基材に設けられる微細凹凸構造の効果を面内にて均質に発揮することが可能となる。 On the other hand, as shown in FIG. 28, in the packed layer transfer mold 400 using the transfer mold 401 according to the present embodiment, a barrier region 407 is provided at the boundary between the pattern part 405 and the non-pattern part 406. Since the penetration of the coating liquid repelled on the non-pattern part 406 can be effectively inhibited, the distribution of the filling rate can be reduced. That is, the filling rate is substantially the same at any of the points A, B, and C. The reason why the filling rate is almost the same at any of points A, B, and C is to provide the barrier region 407, and by providing the barrier region 407 within the above-described condition range. Thus, it is possible to extremely reduce the influence of vibration and deflection generated when the coating liquid is applied to the transfer mold 401. Since the filling layer transfer mold 400 having a very small filling rate distribution of the filling layer 404 can be manufactured, the in-plane distribution when the difficult-to-process substrate is finely processed using the filling layer transfer mold 400 is reduced. Thus, the effect of the fine concavo-convex structure provided on the difficult-to-process base material can be uniformly exhibited in the plane.
 次に、本発明の実施の形態に係る充填層転写用鋳型400を用いて無機基材に対して加工を施す方法について説明する。図29は、本実施の形態に係る充填層転写用鋳型を用いて無機基材の加工方法の各工程を示す工程図である。 Next, a method for processing an inorganic substrate using the packed layer transfer mold 400 according to the embodiment of the present invention will be described. FIG. 29 is a process diagram showing each process of the inorganic substrate processing method using the packed bed transfer mold according to the present embodiment.
 まず、図29Aに示すように、充填層転写用鋳型400に対し、有機層410を成膜し、有機層410を無機基材411に貼合する。なお、充填層転写用鋳型400を、無機基材411上に成膜された有機層410に貼合しても良い。続いて、図29Bに示すように、例えば、エネルギー線照射または加熱処理を施すことにより、充填層404と有機層410とを接着する。続いて、図29Cのように転写用鋳型401を剥離することで、無機基材411上に充填層404と有機層410を転写形成することができる。その後、図29Dに示すように、充填層403側からドライエッチングを行うことで、有機層410を容易に微細加工することができる。さらに、図29Eに示すように、得られた充填層404と有機層410から構成されるアスペクト比の高い微細マスクパタンをマスクとして機能させることで、無機基材411を図29Fに示すように容易に加工することができる。 First, as shown in FIG. 29A, an organic layer 410 is formed on the filling layer transfer mold 400, and the organic layer 410 is bonded to the inorganic base material 411. Note that the filling layer transfer mold 400 may be bonded to the organic layer 410 formed on the inorganic base material 411. Subsequently, as illustrated in FIG. 29B, the filling layer 404 and the organic layer 410 are bonded to each other by, for example, energy beam irradiation or heat treatment. Subsequently, the transfer layer 401 and the organic layer 410 can be transferred and formed on the inorganic substrate 411 by peeling the transfer template 401 as shown in FIG. 29C. Thereafter, as shown in FIG. 29D, the organic layer 410 can be easily finely processed by dry etching from the filling layer 403 side. Furthermore, as shown in FIG. 29E, the inorganic substrate 411 can be easily formed as shown in FIG. 29F by using the fine mask pattern having a high aspect ratio formed of the obtained filling layer 404 and organic layer 410 as a mask. Can be processed.
 このように無機基材411を加工できるため、サファイアといった難加工基材も容易に加工することができる。例えば、サファイア基材表面を上記手法により容易に加工することができる。加工されたサファイア表面に半導体発光素子を成膜することで、LEDを製造することができる。特に、転写用鋳型の微細凹凸構造のピッチが100nm~500nm、高さが50nm~500nmであると、LEDの内部量子効率を向上できる。さらに、配列として、ナノスケールで正規配列をなし、かつ、マイクロスケールの大きな周期性を有する、ピッチにマイクロスケールの周期を有する変調を加えたホール形状とすると、光取り出し効率も同時に向上させることが可能となり、高効率なLEDを製造することができる。 Since the inorganic base material 411 can be processed in this way, difficult-to-process base materials such as sapphire can be processed easily. For example, the surface of the sapphire substrate can be easily processed by the above method. An LED can be manufactured by forming a semiconductor light emitting element on the processed sapphire surface. In particular, when the pitch of the fine concavo-convex structure of the transfer template is 100 nm to 500 nm and the height is 50 nm to 500 nm, the internal quantum efficiency of the LED can be improved. Furthermore, if the hole shape is a regular arrangement on the nanoscale and has a large microscale periodicity, and a modulation having a microscale period added to the pitch, the light extraction efficiency can be improved at the same time. It becomes possible and a highly efficient LED can be manufactured.
 次に、本実施の形態に係る転写用鋳型を用いた被処理体への微細凹凸構造形成に適用した態様について説明する。 Next, a mode applied to the formation of a fine concavo-convex structure on an object to be processed using the transfer mold according to the present embodiment will be described.
 図30および図31は、本実施の形態に係る微細凹凸構造転写用鋳型を用いた被処理体への微細凹凸構造形成方法を説明するための工程図である。 30 and 31 are process diagrams for explaining a method for forming a fine concavo-convex structure on an object to be processed using the fine concavo-convex structure transfer mold according to the present embodiment.
 図30Aに示すように、転写用鋳型10は、その主面上に凹凸構造11が形成されている。凹凸構造11は、複数の凹部11aと凸部11bで構成されている。転写用鋳型10は、例えば、フィルム状またはシート状の樹脂モールドである。 As shown in FIG. 30A, the transfer mold 10 has a concavo-convex structure 11 formed on the main surface thereof. The concavo-convex structure 11 includes a plurality of concave portions 11a and convex portions 11b. The transfer mold 10 is, for example, a film-shaped or sheet-shaped resin mold.
 まず、図30Bに示すように、転写用鋳型10の凹凸構造11の凹部11aの内部に、後述の第1のマスク層をパターニングするための第2のマスク層12を充填する。第2のマスク層12は、例えば、ゾルゲル材料からなる。 First, as shown in FIG. 30B, a second mask layer 12 for patterning a first mask layer to be described later is filled into the recess 11a of the concavo-convex structure 11 of the transfer mold 10. The second mask layer 12 is made of, for example, a sol-gel material.
 次に、図30Cに示すように、第2のマスク層12を含む凹凸構造11の上に、第1のマスク層13を形成する。この第1のマスク層13は、後述する被処理体のパターニングに用いられる。第1のマスク層13は、例えば、光硬化性樹脂または熱硬化性樹脂からなる。 Next, as shown in FIG. 30C, a first mask layer 13 is formed on the concavo-convex structure 11 including the second mask layer 12. The first mask layer 13 is used for patterning an object to be processed which will be described later. The first mask layer 13 is made of, for example, a photocurable resin or a thermosetting resin.
 さらに、図30Cに示すように、第1のマスク層13の上側には、保護層14を設けることができる。保護層14は、第1のマスク層13を保護するものであり、必須ではない。 Furthermore, as shown in FIG. 30C, a protective layer 14 can be provided on the upper side of the first mask layer 13. The protective layer 14 protects the first mask layer 13 and is not essential.
 ここで、転写用鋳型10、第2のマスク層12および第1のマスク層13からなる積層体を、微細パタン形成用積層体15、または単に積層体15と呼ぶ。 Here, the laminate composed of the transfer mold 10, the second mask layer 12, and the first mask layer 13 is referred to as a fine pattern forming laminate 15 or simply a laminate 15.
 次に、図31Aに示すような被処理体20を用意する。被処理体20は、例えば、サファイア基板である。まず、図31Bに示すように、被処理体20の主面上に、保護層14を取り除いた後の積層体15を、第1のマスク層13の露出面を被処理体20の主面に対面させてラミネート(熱圧着)する。続いて、積層体15に対してエネルギー線を照射して第1のマスク層13を硬化させて、積層体15を被処理体20に接着する。 Next, an object 20 as shown in FIG. 31A is prepared. The workpiece 20 is, for example, a sapphire substrate. First, as shown in FIG. 31B, the laminated body 15 after removing the protective layer 14 on the main surface of the object 20 to be processed, and the exposed surface of the first mask layer 13 as the main surface of the object 20 to be processed. Laminate them face to face (thermocompression bonding). Subsequently, the stacked body 15 is irradiated with energy rays to cure the first mask layer 13, and the stacked body 15 is bonded to the object to be processed 20.
 次に、図31Cに示すように、転写用鋳型10を、第1のマスク層13および第2のマスク層12から剥離する。この結果、被処理体20、第1のマスク層13および第2のマスク層12からなる中間体21が得られる。 Next, as shown in FIG. 31C, the transfer mold 10 is peeled from the first mask layer 13 and the second mask layer 12. As a result, an intermediate body 21 including the object to be processed 20, the first mask layer 13, and the second mask layer 12 is obtained.
 次に、第2のマスク層12をマスクとして、第1のマスク層13を、例えばアッシングにより、図31Dに示すようにパターニングする。さらに、パターニングされた第1のマスク層13をマスクとして、被処理体20に、例えば、反応性イオンエッチングを施して、図31Eに示すように、被処理体20の主面に微細凹凸パタン22を形成する。最後に、被処理体20の主面に残った第1のマスク層13を除去して、図31Fに示すような微細凹凸パタン22を有する被処理体20を得る。 Next, using the second mask layer 12 as a mask, the first mask layer 13 is patterned by ashing, for example, as shown in FIG. 31D. Further, the processed object 20 is subjected to, for example, reactive ion etching using the patterned first mask layer 13 as a mask, and a fine uneven pattern 22 is formed on the main surface of the processed object 20 as shown in FIG. 31E. Form. Finally, the first mask layer 13 remaining on the main surface of the target object 20 is removed to obtain the target object 20 having the fine uneven pattern 22 as shown in FIG. 31F.
 この態様では、図30A~図30Cに示す転写用鋳型10から積層体15を得るところまでを一つのライン(以下、第1のラインという)で行う。それ以降の、図31A~図31Fまでを別のライン(以下、第2のラインという)で行う。より好ましい態様においては、第1のラインと、第2のラインとは、別の施設で行われる。このため、積層体15は、例えば、転写用鋳型10がフィルム状であり、可とう性を有する場合に、積層体15を巻物状(ロール状)にして保管または運搬される。また、積層体15は、転写用鋳型10がシート状である場合に、複数の積層体15を積み重ねて保管または運搬される。 In this embodiment, the process from obtaining the laminate 15 from the transfer mold 10 shown in FIGS. 30A to 30C is performed in one line (hereinafter referred to as the first line). Thereafter, FIGS. 31A to 31F are performed on another line (hereinafter referred to as a second line). In a more preferred embodiment, the first line and the second line are performed in separate facilities. For this reason, for example, when the transfer mold 10 is in the form of a film and has flexibility, the laminate 15 is stored or transported in the form of a roll (roll). The laminate 15 is stored or transported by stacking a plurality of laminates 15 when the transfer mold 10 is in the form of a sheet.
 さらに好ましい態様においては、第1のラインは、積層体15のサプライヤーのラインであり、第2のラインは、積層体15のユーザのラインである。このように、サプライヤーにおいて積層体15を予め量産し、ユーザに提供することで、次のような利点がある。 In a further preferred embodiment, the first line is a supplier line of the laminate 15 and the second line is a user line of the laminate 15. Thus, the following advantages can be obtained by mass-producing the laminate 15 in advance at the supplier and providing it to the user.
 (1)積層体15を構成する転写用鋳型10の微細凹凸構造の精度を反映させ、被処理体20に微細加工を行うことが出来る。即ち、微細凹凸構造の精度を積層体15にて担保することが可能となり、煩雑なプロセスや装置を使用することなく、被処理体20を面内において精度高く微細加工することが出来る。 (1) The processed object 20 can be finely processed by reflecting the accuracy of the fine uneven structure of the transfer mold 10 constituting the laminate 15. That is, it is possible to ensure the accuracy of the fine concavo-convex structure with the laminate 15, and the workpiece 20 can be finely processed with high accuracy in the plane without using a complicated process or apparatus.
 (2)加工された被処理体20を使用しデバイスを製造するのに最適な場所において積層体15を使用することが出来る。即ち、安定的な機能を有すデバイスを製造出来る。 (2) The laminated body 15 can be used at a place optimal for manufacturing a device using the processed object 20 to be processed. That is, a device having a stable function can be manufactured.
 上記説明したように、第1のラインを積層体15のサプライヤーのラインに、第2のラインを積層体15のユーザのラインにすることで、被処理体20の加工に最適な、そして、加工された被処理体20を使用しデバイスを製造するのに最適な環境にて積層体15を使用することが出来る。このため、被処理体20の加工およびデバイス組み立てのスループットを向上させることが出来る。更に、積層体15は転写用鋳型10と転写用鋳型10の微細凹凸構造上に設けられた機能層から構成される積層体である。即ち、被処理体20の加工精度を支配するマスク層の配置精度を、積層体15の転写用鋳型10の微細凹凸構造の精度にて担保することが可能となる。以上より、第1のラインを積層体15のサプライヤーのラインに、第2のラインを積層体15のユーザのラインにすることで、加工された被処理体20を使用しデバイスを製造するのに最適な環境にて、積層体15を使用し精度高く被処理体20を加工し使用することが出来る。 As described above, the first line is the supplier line of the laminate 15 and the second line is the user line of the laminate 15, which is optimal for the processing of the workpiece 20. The laminated body 15 can be used in an optimum environment for manufacturing a device using the processed object 20 thus prepared. For this reason, it is possible to improve the throughput of the processing object 20 and the device assembly. Further, the laminate 15 is a laminate composed of a transfer mold 10 and a functional layer provided on the fine concavo-convex structure of the transfer mold 10. That is, it is possible to ensure the placement accuracy of the mask layer that governs the processing accuracy of the workpiece 20 with the accuracy of the fine concavo-convex structure of the transfer mold 10 of the laminate 15. From the above, the first line is used as the supplier line of the laminate 15 and the second line is used as the user line of the laminate 15 to manufacture the device using the processed object 20. In the optimum environment, the object to be processed 20 can be processed and used with high accuracy using the laminate 15.
 以下、本発明の効果を明確にするために行った実施例について説明する。 Hereinafter, examples performed for clarifying the effects of the present invention will be described.
 実施例においては、以下の材料および測定方法を用いた。
・DACHP…フッ素含有ウレタン(メタ)アクリレート(OPTOOL DAC HP(ダイキン工業社製))
・M350…トリメチロールプロパントリアクリレート(東亞合成社製 M350)
・I.184…1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(BASF社製 Irgacure(登録商標) 184)
・I.369…2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製 Irgacure(登録商標) 369)
・TTB…チタニウム(IV)テトラブトキシドモノマー(Wako社製)
・DEDFS…ヂエトキシヂフェニルシラン(信越シリコーン社製 LS-5990)
・X21-5841…末端OH変性シリコーン(信越シリコーン社製)
・SH710…フェニル変性シリコーン(東レ・ダウコーニング社製)
・3APTMS…3アクリロキシプロピルトリメトキシシラン(KBM5103(信越シリコーン社製))
・M211B…ビスフェノールA EO変性ジアクリレート(アロニックスM211B(東亞合成社製))
・M101A…フェノールEO変性アクリレート(アロニックスM101A(東亞合成社製))
・OXT221…3-エチルー3{[(3-エチルオキセタンー3-イル)メトキシ]メチル}オキセタン(アロンオキセタンOXT-221(東亞合成社製))
・CEL2021P…3、4-エポキシシクロヘキセニルメチル-3、’4’-エポキシシクロヘキセンカルボキシレート
・DTS102…ジフェニル[4-(フェニルチオ)フェニル]スルフォニウムヘキサフルオロフォスフェート(光酸発生剤(みどり化学社製))
・DBA…9、10-ジブトキシアントラセン(Anthracure(登録商標) UVS-1331(Anthracure(登録商標)UVS-1331(川崎化成社製))
・PGME…プロピレングリコールモノメチルエーテル
・MEK…メチルエチルケトン
・MIBK…メチルイソブチルケトン
・Es/Eb…微細凹凸構造を表面に具備する樹脂モールドの、XPS法により測定される表面(表層)フッ素元素濃度(Es)と、平均フッ素元素濃度(Eb)の比率。
In the examples, the following materials and measuring methods were used.
・ DACHP: Fluorine-containing urethane (meth) acrylate (OPTOOL DAC HP (manufactured by Daikin Industries))
・ M350: Trimethylolpropane triacrylate (M350, manufactured by Toagosei Co., Ltd.)
・ I. 184 ... 1-hydroxy-cyclohexyl-phenyl-ketone (Irgacure (registered trademark) 184, manufactured by BASF)
・ I. 369... 2-Benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (Irgacure (registered trademark) 369, manufactured by BASF)
-TTB: Titanium (IV) tetrabutoxide monomer (Wako)
・ DEDFS ... diethoxydiphenylsilane (LS-5990, manufactured by Shin-Etsu Silicone)
-X21-5841 ... Terminal OH-modified silicone (manufactured by Shin-Etsu Silicone)
SH710: Phenyl-modified silicone (Toray Dow Corning)
・ 3APTMS ... 3acryloxypropyltrimethoxysilane (KBM5103 (manufactured by Shin-Etsu Silicone))
-M211B ... Bisphenol A EO-modified diacrylate (Aronix M211B (manufactured by Toagosei Co., Ltd.))
M101A: phenol EO modified acrylate (Aronix M101A (manufactured by Toagosei Co., Ltd.))
OX221: 3-ethyl-3 {[(3-ethyloxetane-3-yl) methoxy] methyl} oxetane (Aron oxetane OXT-221 (manufactured by Toagosei Co., Ltd.))
CEL2021P: 3,4-epoxycyclohexenylmethyl-3, '4'-epoxycyclohexenecarboxylate DTS102: diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate (photoacid generator (Midori Chemical Co., Ltd.) Made))
DBA: 9, 10-dibutoxyanthracene (Anthracure (registered trademark) UVS-1331 (Anthracure (registered trademark) UVS-1331 (manufactured by Kawasaki Kasei Co., Ltd.))
・ PGME: Propylene glycol monomethyl ether ・ MEK: Methyl ethyl ketone ・ MIBK: Methyl isobutyl ketone ・ Es / Eb: Surface (surface layer) fluorine element concentration (Es) measured by XPS method of resin mold having fine uneven structure on the surface And the ratio of the average fluorine element concentration (Eb).
 樹脂モールドの表面(表層)フッ素元素濃度はX線光電子分光法(X-ray Photoelectron Spectroscopy:XPS)にて測定した。XPSにおける、X線のサンプル表面への侵入長は数nmと非常に浅いため、XPSの測定値を本発明における樹脂モールド表面(表層)のフッ素元素濃度(Es)として採用した。樹脂モールドを約2mm四方の小片として切り出し、1mm×2mmのスロット型のマスクを被せて下記条件でXPS測定に供した。
 XPS測定条件
  使用機器 ;サーモフィッシャーESCALAB250
  励起源  ;mono.AlKα 15kV×10mA
  分析サイズ;約1mm(形状は楕円)
  取込領域
   Survey scan;0~1, 100eV
   Narrow scan;F 1s,C 1s,O 1s,N 1s
  Pass energy
   Survey scan; 100eV
   Narrow scan; 20eV
 一方、樹脂モールドを構成する樹脂中の平均フッ素元素濃度(Eb)は、物理的に剥離した切片を、フラスコ燃焼法にて分解し、続いてイオンクロマトグラフ分析にかけることで測定した。
The surface (surface layer) fluorine element concentration of the resin mold was measured by X-ray photoelectron spectroscopy (XPS). Since the penetration depth of X-rays into the sample surface in XPS is as shallow as several nm, the measured value of XPS was adopted as the fluorine element concentration (Es) on the resin mold surface (surface layer) in the present invention. The resin mold was cut out as a small piece of about 2 mm square and covered with a 1 mm × 2 mm slot type mask and subjected to XPS measurement under the following conditions.
XPS measurement conditions Equipment used: Thermo Fisher ESCALAB250
Excitation source; mono. AlKα 15kV × 10mA
Analysis size: approx. 1 mm (shape is oval)
Capture area Survey scan; 0 to 1, 100 eV
Narrow scan; F 1s, C 1s, O 1s, N 1s
Pass energy
Survey scan; 100 eV
Narrow scan; 20 eV
On the other hand, the average fluorine element concentration (Eb) in the resin constituting the resin mold was measured by decomposing a physically peeled section by a flask combustion method and subsequently subjecting it to ion chromatography analysis.
<転写用鋳型(IV)>
 ドット形状の構造を具備する樹脂モールドへの塗工性試験を、次のように行った。
<Transfer template (IV)>
A coating property test on a resin mold having a dot-shaped structure was performed as follows.
(a)円筒形状鋳型作製
 円筒形状鋳型の基材には石英ガラスを用い、半導体レーザーを用いた直接描画リソグラフィー法により、微細凹凸構造を石英ガラス表面に形成した。円筒形状鋳型としては、パタン部301(以下、図23参照)のみを持つ円筒形状鋳型Aと、パタン部301およびバリア領域302を持つ円筒形状鋳型Bを作製した。パタン部301が有する凹凸構造は、円筒形状鋳型A,Bともに、ピッチ460nm、高さ460nm、凸部頂部径50nmとした。円筒形状鋳型Bにおけるバリア領域302は、パタン部301の外側に5mm幅で形成した。
(A) Cylindrical mold preparation Quartz glass was used for the base material of the cylindrical mold, and a fine concavo-convex structure was formed on the quartz glass surface by a direct drawing lithography method using a semiconductor laser. As the cylindrical mold, a cylindrical mold A having only a pattern part 301 (refer to FIG. 23 below) and a cylindrical mold B having a pattern part 301 and a barrier region 302 were produced. The concavo-convex structure of the pattern portion 301 is such that both the cylindrical molds A and B have a pitch of 460 nm, a height of 460 nm, and a convex portion top diameter of 50 nm. The barrier region 302 in the cylindrical mold B was formed with a width of 5 mm outside the pattern portion 301.
 円筒形状鋳型A,Bに対し、デュラサーフHD-1101Z(ダイキン化学工業社製)を塗布し、60℃で1時間加熱後、室温で24時間静置、固定化した。その後、デュラサーフHD-ZV(ダイキン化学工業社製)で3回洗浄し、離型処理を実施した。 Durasurf HD-1101Z (manufactured by Daikin Chemical Industries) was applied to the cylindrical molds A and B, heated at 60 ° C. for 1 hour, and then allowed to stand at room temperature for 24 hours and fixed. Thereafter, it was washed 3 times with Durasurf HD-ZV (manufactured by Daikin Chemical Industries), and a mold release treatment was performed.
(b)リール状転写用鋳型(IV)作製
 DACHP,M350,I.184およびI.369を混合し、硬化性樹脂組成物を調液した。DACHPは、M350、100質量部に対し、10~20質量部添加した。円筒形状鋳型A,Bそれぞれから、以下の工程に則り、樹脂モールドCを作製した。なお、後述する樹脂モールドCから樹脂モールドDを作る工程では、樹脂モールドCを作製する際に使用した樹脂と同様の樹脂を使用して、樹脂モールドDを作製した。さらに、樹脂モールド表面(表層)フッ素元素濃度(Es)と、バルクフッ素元素濃度(Eb)との比率は、パタン部311の構造部分で、測定算出した。
(B) Preparation of reel-shaped transfer template (IV) DACHP, M350, I.R. 184 and I.I. 369 was mixed to prepare a curable resin composition. DACHP was added in an amount of 10 to 20 parts by mass with respect to 100 parts by mass of M350. A resin mold C was produced from each of the cylindrical molds A and B according to the following steps. In the step of making the resin mold D from the resin mold C to be described later, the resin mold D was produced using the same resin as that used for producing the resin mold C. Further, the ratio between the resin mold surface (surface layer) fluorine element concentration (Es) and the bulk fluorine element concentration (Eb) was measured and calculated in the structure portion of the pattern portion 311.
 PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように硬化性樹脂組成物を塗布した。次いで、円筒形状鋳型A,Bそれぞれに対し、硬化性樹脂組成物が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写されたリール状の樹脂モールドC(長さ200m、幅300mm)を得た。リール状樹脂モールドCのパタン部311における表面微細凹凸構造の形状は、走査型電子顕微鏡観察で確認した結果、ホール形状の構造は、ピッチ460nm、深さ460nm、開口幅230nmであった。 PET film: A curable resin composition was applied to an easily adhesive surface of A4100 (manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 μm) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 6 μm. Next, the PET film coated with the curable resin composition was pressed against each of the cylindrical molds A and B with a nip roll (0.1 MPa), and the temperature was 25 ° C., the humidity was 60%, and the bottom of the lamp center. Ultraviolet rays are irradiated using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd. so that the integrated exposure amount is 600 mJ / cm 2, and photocuring is continuously performed. A reel-shaped resin mold C (length: 200 m, width: 300 mm) was transferred. The shape of the surface fine uneven structure in the pattern portion 311 of the reel-shaped resin mold C was confirmed by observation with a scanning electron microscope. As a result, the hole-shaped structure had a pitch of 460 nm, a depth of 460 nm, and an opening width of 230 nm.
 PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、樹脂モールドCを作製した際に使用した樹脂と同様の硬化性樹脂組成物を塗布膜厚6μmになるように塗布した。次いで、円筒形状鋳型AまたはBから直接転写し得られた樹脂モールドCの微細凹凸構造面に対し、硬化性樹脂組成物が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写された、円筒形状鋳型AまたはBと同様の微細凹凸構造を具備するリール状の樹脂モールドD(長さ200m、幅300mm)を複数得た。リール状樹脂モールドDの表面微細凹凸構造の形状は、走査型電子顕微鏡観察で確認した結果、ドット形状の構造は、ピッチ460nm、高さ460nm、凸部頂部径50nmであった。得られたドット形状を具備する樹脂モールドDの、表面(表層)フッ素元素濃度(Es)と、平均フッ素元素濃度(Eb)の比率(Es/Eb)は、DACHPの仕込み量により40~80の値をとり、樹脂モールドDの転写領域311およびバリア領域312の水に対する接触角は、いずれも90度より大きいことが確認された。 PET film: A4100 (manufactured by Toyobo Co., Ltd .: 300 mm wide, 100 μm thick) curable resin similar to the resin used when the resin mold C was prepared by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) The composition was applied so as to have a coating film thickness of 6 μm. Next, the PET film coated with the curable resin composition is pressed against the fine concavo-convex structure surface of the resin mold C obtained by direct transfer from the cylindrical mold A or B with a nip roll (0.1 MPa), Irradiate ultraviolet rays using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd. so that the integrated exposure amount under the lamp center is 600 mJ / cm 2 at a temperature of 25 ° C. and a humidity of 60%. A plurality of reel-shaped resin molds D (200 m in length and 300 mm in width) having a fine concavo-convex structure similar to the cylindrical mold A or B, which is continuously photocured and has a fine concavo-convex structure transferred to the surface. Obtained. The shape of the surface fine concavo-convex structure of the reel-shaped resin mold D was confirmed by observation with a scanning electron microscope. As a result, the dot-shaped structure had a pitch of 460 nm, a height of 460 nm, and a convex top diameter of 50 nm. The ratio (Es / Eb) between the surface (surface layer) fluorine element concentration (Es) and the average fluorine element concentration (Eb) of the resin mold D having the obtained dot shape is 40 to 80 depending on the charged amount of DACHP. It was confirmed that the contact angles of the transfer region 311 and the barrier region 312 of the resin mold D with respect to water are both greater than 90 degrees.
 以下の樹脂モールドDを使用した検討においては、Es/Eb=74.1,55.4,49.0である撥水性の強い樹脂モールドを選定し、それら全てに対して、塗工性の検討を行った。 In the examination using the following resin mold D, a resin mold having strong water repellency of Es / Eb = 74.1, 55.4, 49.0 was selected, and coating properties were examined for all of them. Went.
(c)樹脂モールドD(リール状転写用鋳型(IV))への直接塗工
 樹脂モールドDの表面に形成された微細凹凸構造面に対し、以下材料E,F,Gを、それぞれ直接塗工し、塗工性を判断した。塗工性は、鋳型A由来の樹脂モールドDを使用した場合は、パタン部311部分と、非パタン部313の界面部分で判断した。鋳型B由来の樹脂モールドDを使用した場合は、パタン部311とバリア領域312の界面およびバリア領域312と非パタン部313の界面で判断した。それぞれの界面部分で、塗膜にむらや弾きが生じた場合には塗工不良と判断し、むらや弾き無く塗工されていた場合には塗工良好と判断した。
(C) Direct application to resin mold D (reel-shaped transfer mold (IV)) The following materials E, F, and G are directly applied to the fine concavo-convex structure surface formed on the surface of resin mold D. Then, the coatability was judged. When the resin mold D derived from the mold A was used, the coating property was determined by the interface portion between the pattern portion 311 and the non-pattern portion 313. When the resin mold D derived from the mold B was used, the determination was made at the interface between the pattern part 311 and the barrier region 312 and at the interface between the barrier region 312 and the non-pattern part 313. At each interface portion, when the coating film was uneven or flipped, it was judged that the coating was poor, and when it was coated without unevenness or flipping, it was judged that the coating was good.
 材料E…TTB;DEDFS;TEOS;X21-5841;SH710=65.25:21.75:4.35:4.35:4.35[g]で十分に混合した。続いて、3.25%の水を含むエタノール2.3mlを、攪拌下で、徐々に滴下した。その後、80度の環境で4時間熟成し、真空引きを行い、材料Eを得た。 Material E: TTB; DEDFS; TEOS; X21-5841; SH710 = 65.25: 21.75: 4.35: 4.35: 4.35 [g] and mixed well. Subsequently, 2.3 ml of ethanol containing 3.25% water was gradually added dropwise with stirring. Thereafter, aging was performed for 4 hours in an environment of 80 ° C., and evacuation was performed to obtain a material E.
 材料F…TTB;DEDRS;X21-5841;SH710;3APTMS;M211B;M101A;M350;I.184;I.369=33.0:11.0:4.4:4.4:17.6:8.8:8.8:8.8:2.4:0.9[g]で十分に混合し、材料Fを得た。 Material F ... TTB; DEDRS; X21-5841; SH710; 3APTMS; M211B; M101A; M350; 184; 369 = 33.0: 11.0: 4.4: 4.4: 17.6: 8.8: 8.8: 8.8: 2.4: 0.9 [g] Material F was obtained.
 材料G…TTB;DEDRS;X21-5841;SH710;3APTMS=46.9:15.6:6.3:6.3:25.0[g]で十分に混合し、続いて、3.25%の水を含むエタノール2.3mlを、攪拌下で徐々に滴下した。その後、80度の環境で2.5時間熟成し、真空引きを行った。この溶液に、M211B;M101A;M350;I.184;I.369=29.6:29.6:29.6:8.1:3.0[g]を混合した溶液42.2gを加え、十分に攪拌し、材料Gを得た。 Materials G ... TTB; DEDRS; X21-5841; SH710; 3APTMS = 46.9: 15.6: 6.3: 6.3: 25.0 [g] and mixed well, followed by 3.25% 2.3 ml of ethanol containing water was gradually added dropwise with stirring. Thereafter, aging was performed in an environment of 80 degrees for 2.5 hours, and evacuation was performed. To this solution, M211B; M101A; M350; 184; 369 = 29.6: 29.6: 29.6: 8.1: A mixture of 42.2 g mixed with 3.0 [g] was added, and the mixture was sufficiently stirred to obtain Material G.
 材料E,F,Gを、PGMEまたはMIBKで希釈した。希釈倍率は、1%~5%の範囲で行い、樹脂モールドDの微細凹凸構造内部のみが埋まる状態から、微細凹凸構造を完全に埋め、かつ、微細凹凸構造上に塗膜が形成される状態まで試みた。 Materials E, F, and G were diluted with PGME or MIBK. The dilution ratio is in the range of 1% to 5%, from the state in which only the fine uneven structure of the resin mold D is filled to the state in which the fine uneven structure is completely filled and the coating film is formed on the fine uneven structure Tried until.
 樹脂モールドDの微細凹凸構造面に対する材料E,F,Gの塗工は、上記(b)リール状転写用鋳型(IV)作製と同様の装置を使用した。マイクログラビアコーティングにて、樹脂モールドDの微細凹凸構造面に、希釈した材料を塗工し、80度の乾燥雰囲気を通過させた状態を確認した。 The coating of the materials E, F, and G on the fine concavo-convex structure surface of the resin mold D was performed using the same apparatus as that used in the production of the above (b) reel-shaped transfer mold (IV). The diluted material was applied to the fine concavo-convex structure surface of the resin mold D by microgravure coating, and the state of passing through an 80 degree dry atmosphere was confirmed.
(d)バリア領域の構造
 バリア領域における微細凹凸構造は、パタン部の平均ラフネスファクタRf1と、バリア領域の平均ラフネスファクタRf2とが連続化し、且つ、バリア領域の平均ラフネスファクタRf2が、非パタン部(Rf=1)へと連続的に変化することを設計指針として以下2種類を設計した。すなわち、平均ラフネスファクタRf2が、パタン部側からバリア領域側へと減少するようなバリア領域を設けた。
(D) Structure of barrier region In the fine uneven structure in the barrier region, the average roughness factor Rf1 of the pattern portion and the average roughness factor Rf2 of the barrier region are continuous, and the average roughness factor Rf2 of the barrier region is a non-pattern portion. The following two types were designed based on the design guideline of continuously changing to (Rf = 1). That is, a barrier region in which the average roughness factor Rf2 decreases from the pattern side to the barrier region side is provided.
(d-1)バリア領域(1)
 円筒形状鋳型の周方向のピッチ(周ピッチ)を変化させ、軸方向のピッチ(送りピッチ)は、周ピッチに従い、正規配列になるように設定した。パタン部とバリア領域との界面を点0としてとり、パタン部からバリア領域の方向への軸(距離)を設定した。図32は、この場合における周ピッチと距離(グラフ100)、および、ラフネスファクタRfと距離(グラフ101)との関係を示すグラフである。図32に示すグラフの横軸はパタン部とバリア領域との界面(点0)からの距離[mm]を示し、縦軸(左)は周ピッチ[nm]を示し、縦軸(右)はラフネスファクタRfの値を示す。図32において、送りピッチは、周ピッチ×(0.866)である。点0(距離0mm)におけるピッチは460nmであり、パタン部と連続である。点0からの距離が大きくなるほど、周ピッチは指数的に増加する。この周ピッチの変化に伴い、ラフネスファクタRf2は、フラットである1へと連続的に変化する。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと増加している。
(D-1) Barrier region (1)
The circumferential pitch (circumferential pitch) of the cylindrical mold was changed, and the axial pitch (feed pitch) was set to be a regular array according to the circumferential pitch. The interface between the pattern portion and the barrier region was taken as point 0, and the axis (distance) from the pattern portion to the barrier region was set. FIG. 32 is a graph showing the relationship between the circumferential pitch and distance (graph 100) and the roughness factor Rf and distance (graph 101) in this case. The horizontal axis of the graph shown in FIG. 32 shows the distance [mm] from the interface (point 0) between the pattern part and the barrier region, the vertical axis (left) shows the circumferential pitch [nm], and the vertical axis (right) shows The value of the roughness factor Rf is shown. In FIG. 32, the feed pitch is circumferential pitch × (0.866). The pitch at point 0 (distance 0 mm) is 460 nm and is continuous with the pattern portion. As the distance from point 0 increases, the circumferential pitch increases exponentially. With the change in the circumferential pitch, the roughness factor Rf2 continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio increases from the pattern portion side to the barrier region side.
(d-2)バリア領域(2)
 円筒形状鋳型の送りピッチのみを変化させ、周ピッチは460nmで一定とした。配列は正規配列とした。パタン部とバリア領域との界面を点0としてとり、パタン部からバリア領域の方向への軸(距離)を設定した。図33は、この場合における送りピッチと距離(グラフ102)、および、ラフネスファクタRfと距離(グラフ103)との関係を示すグラフである。図33に示すグラフの横軸はパタン部とバリア領域との界面(点0)からの距離[mm]を示し、縦軸(左)は送りピッチ[nm]を示し、縦軸(右)はラフネスファクタRfの値を示す。軸ピッチは、460nmで一定である。点0(距離0mm)における送りピッチは398nmであり、パタン部と連続である。点0からの距離が大きくなるほど、送りピッチは指数的に増加する。この送りピッチの変化に伴い、ラフネスファクタRfは、フラットである1へと連続的に変化する。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと増加している。
(D-2) Barrier region (2)
Only the feed pitch of the cylindrical mold was changed, and the circumferential pitch was constant at 460 nm. The sequence was a regular sequence. The interface between the pattern portion and the barrier region was taken as point 0, and the axis (distance) from the pattern portion to the barrier region was set. FIG. 33 is a graph showing the relationship between the feed pitch and distance (graph 102) and the roughness factor Rf and distance (graph 103) in this case. The horizontal axis of the graph shown in FIG. 33 indicates the distance [mm] from the interface (point 0) between the pattern portion and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown. The axial pitch is constant at 460 nm. The feed pitch at point 0 (distance 0 mm) is 398 nm and is continuous with the pattern portion. The feed pitch increases exponentially as the distance from point 0 increases. As the feed pitch changes, the roughness factor Rf continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio increases from the pattern portion side to the barrier region side.
(e)塗工結果
 バリア領域を持たない鋳型A由来の樹脂モールドDを用いた場合(比較例1)、材料E~Gおよびその濃度に関わらず、パタン部と非パタン部界面において、むらが観察された。むらは、溶剤の揮発乾燥と共に白いもやとなって観察された。これは、図1Bに示すように、パタン部111と非パタン部112との界面上において塗工液113の膜内部に強い応力が働き、塗工液113の膜の***が生じ、これにより塗工斑(膜厚斑)が生じたためである(塗工不良(1))。
(E) Coating result When the resin mold D derived from the mold A having no barrier region is used (Comparative Example 1), unevenness occurs at the interface between the pattern part and the non-pattern part regardless of the materials E to G and their concentrations. Observed. Unevenness was observed as white haze as the solvent evaporated. This is because, as shown in FIG. 1B, strong stress acts on the inside of the coating liquid 113 on the interface between the pattern part 111 and the non-patterned part 112, and the film of the coating liquid 113 is split, thereby causing coating. This is because work spots (film thickness spots) occurred (coating failure (1)).
 バリア領域を持つ鋳型B由来の樹脂モールドDを用いた場合(実施例1)、材料E~Gおよびその濃度に関わらず、パタン部とバリア領域との界面、および、バリア領域と非パタン部との界面において、むらは観察されず、良好な塗工が得られた。これは、図4Aに示すように、バリア領域111上において塗工液113の膜内部の応力が緩和され、塗工液113の膜の***が生じず、これにより塗工が良好に行われたためである。 When the resin mold D derived from the mold B having the barrier region is used (Example 1), regardless of the materials E to G and their concentrations, the interface between the pattern portion and the barrier region, and the barrier region and the non-pattern portion No unevenness was observed at the interface, and a good coating was obtained. This is because, as shown in FIG. 4A, the stress inside the film of the coating liquid 113 is relaxed on the barrier region 111, the film of the coating liquid 113 is not split, and the coating is performed well. It is.
(f)その他検討
 検討(a)~(e)において、樹脂モールドDのパタン部の構造がドット形状であり、ピッチ200nm、高さ400nm、凸部頂部径20nmの場合についても、同様の検討を行った。バリア領域は、パタン部のラフネスファクタRfが連続的に減少し、かつ、非パタン部(ラフネスファクタRf=1の部分)へと繋がるように上記周ピッチを制御し設計した。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと増加している。
(F) Other investigations In the examinations (a) to (e), the same examination is performed when the structure of the pattern part of the resin mold D is a dot shape, the pitch is 200 nm, the height is 400 nm, and the convex part top diameter is 20 nm. went. The barrier region was designed by controlling the circumferential pitch so that the roughness factor Rf of the pattern portion continuously decreased and connected to a non-pattern portion (roughness factor Rf = 1 portion). That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio increases from the pattern portion side to the barrier region side.
 本検討においても、バリア領域を持たない鋳型A由来の樹脂モールドD’を用いた場合(比較例2)、材料E~Gおよびその濃度に関わらず、パタン部と非パタン部との界面において、むらが観察された。むらは、白いもやとなって観察された。一方、バリア領域を持つ鋳型B由来の樹脂モールドDを用いた場合(実施例2)、材料E~Gおよびその濃度に関わらず、パタン部とバリア領域との界面、および、バリア領域と非パタン部との界面において、むらは観察されず、良好な塗工が得られた。 Also in this study, when the resin mold D ′ derived from the mold A having no barrier region was used (Comparative Example 2), regardless of the materials E to G and the concentration thereof, at the interface between the pattern portion and the non-pattern portion, Unevenness was observed. Irregularity was observed as white haze. On the other hand, when the resin mold D derived from the mold B having the barrier region is used (Example 2), regardless of the materials E to G and their concentrations, the interface between the pattern portion and the barrier region, and the barrier region and the non-pattern Unevenness was not observed at the interface with the part, and good coating was obtained.
 また、リール状樹脂モールドではなく、平板鋳型を使用し、同様の検討を行った。平板鋳型の基材には石英ガラスを用い、半導体レーザーを用いた直接描画リソグラフィー法により、微細凹凸構造を、平板石英表面に形成した。平板鋳型としては、パタン部のみを持つ平板鋳型A2と、パタン部とバリア領域を持つ平板鋳型B2を作製した。パタン部における微細凹凸構造は、平板鋳型A2,B2とも、ピッチ460nm、高さ460nm、凸部底部幅230nm、凸部頂部径40nmとした。また、平板鋳型B2におけるバリア領域は、パタン部の周囲5mmの幅を使用して作製した。 Also, a similar study was conducted using a flat plate mold instead of a reel-shaped resin mold. Quartz glass was used as the base material of the flat plate mold, and a fine concavo-convex structure was formed on the flat plate quartz surface by a direct drawing lithography method using a semiconductor laser. As the flat plate mold, a flat plate mold A2 having only a pattern portion and a flat plate mold B2 having a pattern portion and a barrier region were produced. The fine concavo-convex structure in the pattern part has a pitch of 460 nm, a height of 460 nm, a convex part bottom width of 230 nm, and a convex part top diameter of 40 nm in both the flat plate molds A2 and B2. Further, the barrier region in the flat plate mold B2 was prepared using a width of 5 mm around the pattern portion.
 本検討においても、バリア領域を持たない平板鋳型A2由来の、ドット形状を具備する樹脂モールドDを用いた場合(比較例3)、材料E~Gおよびその濃度に関わらず、パタン部と非パタン部との界面において、むらが観察された。むらは、白いもやとなって観察された。一方、バリア領域を持つ平板鋳型B2由来の樹脂モールドを用いた場合(実施例3)、材料E~Gおよびその濃度に関わらず、パタン部とバリア領域との界面、および、バリア領域と微細凹凸構造の無い部分との界面において、むらは観察されず、良好な塗工が得られた。 Also in this study, when using the resin mold D having a dot shape derived from the flat plate mold A2 having no barrier region (Comparative Example 3), the pattern portion and the non-pattern regardless of the materials E to G and the concentration thereof. Unevenness was observed at the interface with the part. Irregularity was observed as white haze. On the other hand, when a resin mold derived from the flat plate mold B2 having a barrier region is used (Example 3), regardless of the materials E to G and their concentrations, the interface between the pattern portion and the barrier region, and the barrier region and the fine unevenness Unevenness was not observed at the interface with the portion having no structure, and good coating was obtained.
(g)離型性確認
 実施例および比較例で得られた材料E~Gを塗工後の樹脂モールドを使用し、離型性を確認した。離型性確認試験は次のように行った。
(G) Confirmation of releasability Using a resin mold after coating materials E to G obtained in Examples and Comparative Examples, releasability was confirmed. The releasability confirmation test was performed as follows.
 まず、石英基板上に、材料Hをスピンコート法により500nm~1000nmの間で成膜した。
  材料H…
   A液=OXT221;CEL2021P;M211B;M101A=20g:80g:50g:50g
   B液=PGME;DTS102;DBA;I.184=300g:8g:1g:5g
   A液:B液=100g:157g
First, the material H was formed on the quartz substrate by spin coating to a thickness of 500 nm to 1000 nm.
Material H ...
Liquid A = OXT221; CEL2021P; M211B; M101A = 20 g: 80 g: 50 g: 50 g
Liquid B = PGME; DTS102; DBA; 184 = 300 g: 8 g: 1 g: 5 g
Liquid A: Liquid B = 100 g: 157 g
 次に、樹脂モールドの塗工面を、材料H膜に貼合し、0.05MPaで押圧した後に、UV照射を行った。最後に、樹脂モールドを剥離した。 Next, the coated surface of the resin mold was bonded to the material H film, pressed at 0.05 MPa, and then irradiated with UV. Finally, the resin mold was peeled off.
 離型性は、走査型電子顕微鏡および透過型電子顕微鏡にて確認した。結果は下記表2中に示す。離型性良好(表2中○印)とは、「微細凹凸構造を具備した材料E~Fのいずれか/材料H/石英」から成る構造が得られた場合とした。微細凹凸構造が破壊されていた場合、材料E~Fが転写されていない場合等は、全て離型性不良(表2中×印)とした。 The releasability was confirmed with a scanning electron microscope and a transmission electron microscope. The results are shown in Table 2 below. Good releasability (marked with a circle in Table 2) is a case where a structure composed of “any of materials E to F / material H / quartz having a fine concavo-convex structure” was obtained. When the fine concavo-convex structure was broken, or when the materials E to F were not transferred, all were regarded as having poor releasability (x mark in Table 2).
(比較例)
 また、比較例として、バリア領域を持たない鋳型Aの構造において、パタン部と非パタン部(ラフネスファクタRf=1の領域)との界面に、表面に微細凹凸構造を持たない傾斜構造を備える鋳型Hも作成した。鋳型I由来の樹脂モールドを用いた場合(比較例4)、材料E~Gおよびその濃度に関わらず、微細凹凸構造を持たない傾斜構造部分において、むらが観察された。むらは、白いもやとなって観察された。
(Comparative example)
As a comparative example, in the structure of the mold A that does not have a barrier region, a mold having an inclined structure that does not have a fine concavo-convex structure on the surface at the interface between the pattern portion and the non-pattern portion (region of roughness factor Rf = 1). H was also created. When the resin mold derived from the mold I was used (Comparative Example 4), unevenness was observed in the inclined structure portion having no fine uneven structure regardless of the materials E to G and their concentrations. Irregularity was observed as white haze.
 バリア領域を持つ鋳型B由来の樹脂モールドDに対し、以下の3つの表面処理を施した。 The following three surface treatments were applied to the resin mold D derived from the mold B having a barrier region.
 (比較例5)微細凹凸構造面に対し、オゾン処理を30分行った。 (Comparative Example 5) Ozone treatment was performed for 30 minutes on the fine concavo-convex structure surface.
 (比較例6)微細凹凸構造面に対し、酸素アッシングを1分行った。 (Comparative Example 6) Oxygen ashing was performed for 1 minute on the fine concavo-convex structure surface.
 (比較例7)微細凹凸構造面に対し、スパッタにより、SiO2を10nm成膜した。 (Comparative Example 7) A SiO2 film having a thickness of 10 nm was formed on the fine concavo-convex structure surface by sputtering.
 処理を行った鋳型B由来の樹脂モールドDに対し、同様の塗工性試験および離型性確認試験を行った。結果は、下記表2中に示す。 The same coating property test and releasability confirmation test were performed on the resin mold D derived from the treated mold B. The results are shown in Table 2 below.
 実施例および比較例の結果を表2に示す。 Table 2 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 以上から、バリア領域に微細凹凸構造を有さない場合(比較例1~4)は、いずれの場合も塗工性に不良があることがわかる。また、バリア領域に微細凹凸構造を有する場合(実施例1~3)は、パタン部における微細凹凸構造の形状や、鋳型の形状にかかわらず、塗工性および離型性が良好であることがわかる。一方、比較例5~7のように、表面処理により塗工性は改善できるが、離型性が悪化することがわかる。 From the above, it can be seen that in the case where the barrier region does not have a fine uneven structure (Comparative Examples 1 to 4), the coating property is poor in any case. In addition, when the barrier region has a fine concavo-convex structure (Examples 1 to 3), the coatability and releasability may be good regardless of the shape of the fine concavo-convex structure in the pattern part and the shape of the mold. Recognize. On the other hand, as in Comparative Examples 5 to 7, it can be seen that the surface treatment can improve the coatability, but the mold releasability deteriorates.
<転写用鋳型(I)>
 次に、ホール形状の構造を具備する樹脂モールドへの塗工性試験を次のように行った。
<Transfer template (I)>
Next, a coating property test on a resin mold having a hole-shaped structure was performed as follows.
(h)円筒形状鋳型作製
 円筒形状鋳型の基材には石英ガラスを用い、半導体レーザーを用いた直接描画リソグラフィー法により、微細凹凸構造を石英ガラス表面に形成した。円筒形状鋳型としては、パタン部301(以下、図23参照)のみを持つ円筒形状鋳型Iと、パタン部301およびバリア領域302を持つ円筒形状鋳型Jを作製した。パタン部301が有する微細凹凸構造は、円筒形状鋳型I,Jともに、ピッチ460nm、高さ460nm、開口幅430nmとした。円筒形状鋳型Jにおけるバリア領域302は、パタン部301の外側に5mm幅で形成した。
(H) Cylindrical mold preparation Quartz glass was used as the substrate of the cylindrical mold, and a fine concavo-convex structure was formed on the quartz glass surface by a direct drawing lithography method using a semiconductor laser. As the cylindrical mold, a cylindrical mold I having only a pattern part 301 (refer to FIG. 23 hereafter) and a cylindrical mold J having a pattern part 301 and a barrier region 302 were produced. The fine concavo-convex structure of the pattern portion 301 is set such that the cylindrical molds I and J have a pitch of 460 nm, a height of 460 nm, and an opening width of 430 nm. The barrier region 302 in the cylindrical mold J was formed with a width of 5 mm outside the pattern portion 301.
 円筒形状鋳型I,Jに対し、デュラサーフHD-1101Z(ダイキン化学工業社製)を塗布し、60℃で1時間加熱後、室温で24時間静置、固定化した。その後、デュラサーフHD-ZV(ダイキン化学工業社製)で3回洗浄し、離型処理を実施した。 Durasurf HD-1110Z (manufactured by Daikin Chemical Industries) was applied to the cylindrical molds I and J, heated at 60 ° C. for 1 hour, and then allowed to stand at room temperature for 24 hours and fixed. Thereafter, it was washed 3 times with Durasurf HD-ZV (manufactured by Daikin Chemical Industries), and a mold release treatment was performed.
(i)リール状転写用鋳型(I)作製
 DACHP,M350,I.184およびI.369を混合し、硬化性樹脂組成物を調液した。DACHPは、M350、100質量部に対し、10~20質量部添加した。円筒形状鋳型I,Jそれぞれから、以下の工程に則り、樹脂モールドKを作製した。なお、後述する樹脂モールドKから樹脂モールドLを作る工程では、樹脂モールドKを作製する際に使用した樹脂と同様の樹脂を使用して、樹脂モールドLを作製した。さらに、樹脂モールド表面(表層)フッ素元素濃度(Es)と、バルクフッ素元素濃度(Eb)との比率は、パタン部311の構造部分で、測定算出した。
(I) Preparation of reel-shaped transfer template (I) DACHP, M350, I. 184 and I.I. 369 was mixed to prepare a curable resin composition. DACHP was added in an amount of 10 to 20 parts by mass with respect to 100 parts by mass of M350. A resin mold K was produced from each of the cylindrical molds I and J according to the following steps. In the process of making the resin mold L from the resin mold K, which will be described later, the resin mold L was produced using the same resin as that used for producing the resin mold K. Further, the ratio between the resin mold surface (surface layer) fluorine element concentration (Es) and the bulk fluorine element concentration (Eb) was measured and calculated in the structure portion of the pattern portion 311.
 PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、塗布膜厚6μmになるように硬化性樹脂組成物を塗布した。次いで、円筒形状鋳型I,Jそれぞれに対し、硬化性樹脂組成物が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写されたリール状の樹脂モールドK(長さ200m、幅300mm)を得た。リール状樹脂モールドKのパタン部311における表面微細凹凸構造の形状は、走査型電子顕微鏡観察で確認した結果、ドット形状は、ピッチ460nm、高さ460nmであった。 PET film: A curable resin composition was applied to an easily adhesive surface of A4100 (manufactured by Toyobo Co., Ltd .: width 300 mm, thickness 100 μm) by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) so as to have a coating film thickness of 6 μm. Next, a PET film coated with the curable resin composition is pressed against each of the cylindrical molds I and J with a nip roll (0.1 MPa), and the temperature is 25 ° C., the humidity is 60%, and the center of the lamp is below. Ultraviolet rays are irradiated using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd. so that the integrated exposure amount is 600 mJ / cm 2, and photocuring is continuously performed. A reel-shaped resin mold K (length: 200 m, width: 300 mm) was transferred. As a result of confirming the shape of the surface fine concavo-convex structure in the pattern portion 311 of the reel-shaped resin mold K by observation with a scanning electron microscope, the dot shape had a pitch of 460 nm and a height of 460 nm.
 PETフィルム:A4100(東洋紡社製:幅300mm、厚さ100μm)の易接着面にマイクログラビアコーティング(廉井精機社製)により、樹脂モールドKを作製した際に使用した樹脂と同様の硬化性樹脂組成物を塗布膜厚6μmになるように塗布した。次いで、円筒形状鋳型IまたはJから直接転写し得られた樹脂モールドKの微細凹凸構造面に対し、硬化性樹脂組成物が塗布されたPETフィルムをニップロール(0.1MPa)で押し付け、大気下、温度25℃、湿度60%で、ランプ中心下での積算露光量が600mJ/cmとなるように、フュージョンUVシステムズ・ジャパン株式会社製UV露光装置(Hバルブ)を用いて紫外線を照射し、連続的に光硬化を実施し、表面に微細凹凸構造が転写された、円筒形状鋳型IまたはJと同様の微細凹凸構造を具備するリール状の樹脂モールドL(長さ200m、幅300mm)を複数得た。リール状樹脂モールドLの表面微細凹凸の形状は、走査型電子顕微鏡観察で確認した結果、ホール形状は、ピッチ460nm、高さ460nm、開口幅430nmであった。得られたホール形状を具備する樹脂モールドDの、表面(表層)フッ素元素濃度(Es)と、平均フッ素元素濃度(Eb)の比率(Es/Eb)は、DACHPの仕込み量により40~80の間であり、樹脂モールドLのパタン部311およびバリア領域312の水に対する接触角はいずれも90度より大きいことが確認された。 PET film: A4100 (manufactured by Toyobo Co., Ltd .: 300 mm wide, 100 μm thick) curable resin similar to the resin used when the resin mold K was produced by microgravure coating (manufactured by Yurai Seiki Co., Ltd.) The composition was applied so as to have a coating film thickness of 6 μm. Next, the PET film coated with the curable resin composition was pressed with a nip roll (0.1 MPa) against the fine concavo-convex structure surface of the resin mold K obtained by direct transfer from the cylindrical mold I or J. Irradiate ultraviolet rays using a UV exposure apparatus (H bulb) manufactured by Fusion UV Systems Japan Co., Ltd. so that the integrated exposure amount under the lamp center is 600 mJ / cm 2 at a temperature of 25 ° C. and a humidity of 60%. A plurality of reel-shaped resin molds L (length: 200 m, width: 300 mm) having a fine uneven structure similar to the cylindrical mold I or J, which is continuously photocured and has a fine uneven structure transferred to the surface. Obtained. As a result of confirming the surface irregularities of the reel-shaped resin mold L with a scanning electron microscope, the hole shape was a pitch of 460 nm, a height of 460 nm, and an opening width of 430 nm. The ratio (Es / Eb) between the surface (surface layer) fluorine element concentration (Es) and the average fluorine element concentration (Eb) of the obtained resin mold D having the hole shape is 40 to 80 depending on the charged amount of DACHP. It was confirmed that the contact angles of the pattern part 311 of the resin mold L and the barrier region 312 with respect to water are both greater than 90 degrees.
(j)樹脂モールドL(リール状転写用鋳型(I))への直接塗工(ホール形状)
 樹脂モールドLの表面に形成された微細凹凸構造面に対し、材料E,F,Gを、それぞれ直接塗工し、塗工性を判断した。塗工性は、鋳型I由来の樹脂モールドLを使用した場合は、パタン部311(以下、図24参照)の非パタン部313に近い領域(パタン部311のエッジ部)で判断し、鋳型J由来の樹脂モールドLを使用した場合は、パタン部311のバリア領域312に近い領域(パタン部311のエッジ部)、および、非パタン部313のバリア領域312に近い部分(非パタン部313のエッジ部)で判断した。パタン部311のエッジ部に塗工斑が生じた場合には塗工不良と判断し、むら無く塗工されていた場合には塗工良好と判断した。
(J) Direct application (hole shape) to resin mold L (reel-shaped transfer mold (I))
The materials E, F, and G were directly applied to the fine concavo-convex structure surface formed on the surface of the resin mold L, and the coatability was judged. When the resin mold L derived from the mold I is used, the coatability is determined by the area close to the non-pattern part 313 (the edge part of the pattern part 311) of the pattern part 311 (refer to FIG. 24 below). When the resin mold L derived from is used, a region close to the barrier region 312 of the pattern portion 311 (edge portion of the pattern portion 311) and a portion close to the barrier region 312 of the non-pattern portion 313 (edge of the non-pattern portion 313) Part). When coating spots were generated at the edge of the pattern portion 311, it was determined that the coating was poor, and when coating was performed evenly, it was determined that the coating was good.
 材料E,F,Gを、PGMEまたはMIBKで希釈した。希釈倍率は、1%~5%の範囲で行い、樹脂モールドLの微細凹凸構造内部のみが埋まる状態から、微細凹凸構造を完全に埋め、かつ、微細凹凸構造上に塗膜が形成される状態まで試みた。 Materials E, F, and G were diluted with PGME or MIBK. The dilution ratio is in the range of 1% to 5%, from the state in which only the fine uneven structure of the resin mold L is filled to the state in which the fine uneven structure is completely filled and the coating film is formed on the fine uneven structure Tried until.
 樹脂モールドLの微細凹凸構造面に対する材料E,F,Gの塗工は、上記(i)リール状転写用鋳型(I)作製と同様の装置を使用した。マイクログラビアコーティングにて、樹脂モールドLの微細凹凸構造面に、希釈した材料E,F,Gを塗工し、80度の乾燥雰囲気を通過させた状態を確認した。 The coating of the materials E, F, and G on the fine concavo-convex structure surface of the resin mold L was performed using the same apparatus as the above (i) production of the reel-shaped transfer mold (I). The diluted materials E, F, and G were applied to the fine concavo-convex structure surface of the resin mold L by microgravure coating, and the state of passing through a dry atmosphere of 80 degrees was confirmed.
(k)バリア領域の構造
 バリア領域として2種類設計し、それぞれ別個に円筒形状鋳型に具備させた。1つは、バリア領域における微細凹凸構造は、パタン部の平均ラフネスファクタRf1と、バリア領域の平均ラフネスファクタRf2とが連続化し、かつ、バリア領域の平均ラフネスファクタRf2が、非パタン部(Rf=1)へと連続的に変化することを設計指針とした(バリア領域A)。
(K) Structure of barrier region Two types of barrier regions were designed, and each was separately provided in a cylindrical mold. First, in the fine uneven structure in the barrier region, the average roughness factor Rf1 of the pattern portion and the average roughness factor Rf2 of the barrier region are continuous, and the average roughness factor Rf2 of the barrier region is a non-pattern portion (Rf = The design guideline was to change continuously to 1) (barrier region A).
 もう1つは、バリア領域における微細凹凸構造は、パタン部の平均ラフネスファクタRf1と、バリア領域の平均ラフネスファクタRf2とが非連続化し、かつ、バリア領域の平均ラフネスファクタRf2が、非パタン部(Rf=1)へと非連続的に変化することを設計指針とした(バリア領域B)。 The other is that, in the fine uneven structure in the barrier region, the average roughness factor Rf1 of the pattern portion and the average roughness factor Rf2 of the barrier region are discontinuous, and the average roughness factor Rf2 of the barrier region is non-patterned ( The design guideline was to discontinuously change to Rf = 1) (barrier region B).
 円筒形状鋳型の送りピッチのみを変化させ、周ピッチは460nmで一定とした。配列は正規配列とした。パタン部とバリア領域との界面を点0としてとり、パタン部からバリア領域の方向への軸(距離)を設定した。図34は、バリア領域Aに関する図であり、この場合における送りピッチと距離(グラフ104)、および、ラフネスファクタRfと距離(グラフ105)との関係を示すグラフである。図34に示すグラフの横軸はパタン部とバリア領域との界面(点0)からの距離[mm]を示し、縦軸(左)は送りピッチ[nm]を示し、縦軸(右)はラフネスファクタRfの値を示す。点0(距離0mm)における送りピッチは398nmであり、パタン部と連続である。点0からの距離が大きくなるほど、送りピッチは指数的に増加する。この送りピッチの変化に伴い、ラフネスファクタRfは、フラットである1へと連続的に変化する。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと減少している。 Only the feed pitch of the cylindrical mold was changed, and the peripheral pitch was constant at 460 nm. The sequence was a regular sequence. The interface between the pattern portion and the barrier region was taken as point 0, and the axis (distance) from the pattern portion to the barrier region was set. FIG. 34 is a diagram relating to the barrier region A, and is a graph showing the relationship between the feed pitch and distance (graph 104) and the roughness factor Rf and distance (graph 105) in this case. The horizontal axis of the graph shown in FIG. 34 indicates the distance [mm] from the interface (point 0) between the pattern part and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown. The feed pitch at point 0 (distance 0 mm) is 398 nm and is continuous with the pattern portion. The feed pitch increases exponentially as the distance from point 0 increases. As the feed pitch changes, the roughness factor Rf continuously changes to 1 which is flat. That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio decreases from the pattern portion side to the barrier region side.
 図35は、バリア領域Bに関する図であり、この場合における送りピッチと距離(グラフ106)、および、ラフネスファクタRfと距離(グラフ107)との関係を示すグラフである。図35に示すグラフの横軸はパタン部とバリア領域との界面(点0)からの距離[mm]を示し、縦軸(左)は送りピッチ[nm]を示し、縦軸(右)はラフネスファクタRfの値を示す。図35において、点0(距離0mm)の位置に、パタン部とバリア領域のRfおよび送りピッチの非連続性を示すために、参照点としてパタン部のRf(A)および送りピッチ(B)も記載した。バリア領域の、点0(距離0mm)における送りピッチは867nmであり、パタン部と非連続であり、バリア領域内部では送りピッチは変化していない。そのため、ラフネスファクタRfは、パタン部と非連続であり、バリア領域内で一定である。また、非パタン部(フラットであるため、Rf=1)へと非連続的に変化する。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと減少している。 FIG. 35 is a diagram relating to the barrier region B, and is a graph showing the relationship between the feed pitch and distance (graph 106) and the roughness factor Rf and distance (graph 107) in this case. The horizontal axis of the graph shown in FIG. 35 indicates the distance [mm] from the interface (point 0) between the pattern part and the barrier region, the vertical axis (left) indicates the feed pitch [nm], and the vertical axis (right) indicates The value of the roughness factor Rf is shown. In FIG. 35, Rf (A) and feed pitch (B) of the pattern part are also used as reference points in order to show discontinuity of Rf and feed pitch of the pattern part and the barrier region at the position of point 0 (distance 0 mm). Described. The feed pitch at the point 0 (distance 0 mm) in the barrier region is 867 nm, discontinuous with the pattern portion, and the feed pitch does not change inside the barrier region. Therefore, the roughness factor Rf is discontinuous with the pattern part and is constant in the barrier region. Moreover, it changes discontinuously to a non-pattern part (because it is flat, Rf = 1). That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio decreases from the pattern portion side to the barrier region side.
(l)塗工結果
 バリア領域を持たない鋳型I由来の樹脂モールドLを用いた場合(比較例8)、材料E~Gおよびその濃度に関わらず、非パタン部ではじかれた塗工液が、はじかれた塗工液の安定するまでの自己流動および樹脂モールドの振動に起因する流動により、パタン部へと侵入し、パタン部エッジ部に塗工斑が観察された。微細凹凸構造の体積よりも塗工固形分の体積が大きい場合は、パタン部と非パタン部との界面からパタン部方向に膜厚は減少すると共に、膜厚分布は良好になっていった。一方、微細凹凸構造の体積よりも塗工固形分の体積が小さい場合は、パタン部と非パタン部との界面から転写領域方向にむかって、図26に例示して説明した充填層404の充填率が、図27に例示するような分布を持つことが、透過型電子顕微鏡およびエネルギー分散型X線分光法観察により確認された。
(L) Coating result When the resin mold L derived from the mold I having no barrier region was used (Comparative Example 8), the coating liquid repelled in the non-patterned part was obtained regardless of the materials E to G and the concentration thereof. The repellent coating liquid self-flowed until stabilization and the flow caused by the vibration of the resin mold penetrated into the pattern part, and coating spots were observed at the pattern part edge part. When the volume of the coating solid content was larger than the volume of the fine uneven structure, the film thickness decreased from the interface between the pattern part and the non-pattern part in the pattern part direction, and the film thickness distribution became better. On the other hand, when the volume of the coating solid content is smaller than the volume of the fine concavo-convex structure, the filling of the filling layer 404 illustrated and described in FIG. 26 from the interface between the pattern portion and the non-pattern portion toward the transfer region. It was confirmed by observation with a transmission electron microscope and energy dispersive X-ray spectroscopy that the rate has a distribution as illustrated in FIG.
 バリア領域を持つ鋳型J由来の樹脂モールドLを用いた場合(実施例4)、材料E~Gおよびその濃度に関わらず、非パタン部ではじかれた塗工液は、はじかれた塗工液が安定するまでの自己流動および樹脂モールドの振動に起因する流動により樹脂モールドの非パタン部上を移動したが、バリア領域を乗り越えることができず、バリア領域の非パタン部側にバリア領域に平行に配列した。この為、パタン部エッジ部に塗工斑は観察されなかった。 When the resin mold L derived from the mold J having the barrier region is used (Example 4), the coating liquid repelled in the non-pattern part is repelled regardless of the materials E to G and the concentration thereof. It moved on the non-patterned part of the resin mold due to self-flow until it became stable and the flow caused by the vibration of the resin mold, but it could not get over the barrier area and was parallel to the barrier area on the non-patterned side of the barrier area. Arranged. For this reason, no coating spots were observed at the pattern edge portion.
(m)その他検討
 検討(h)~(l)において、樹脂モールドLのパタン部の構造がホール形状であり、ピッチ200nm、深さ200nm、開口幅180nmの場合についても、同様の検討を行った。バリア領域は、パタン部のラフネスファクタRfが連続的に減少し、かつ、非パタン部(ラフネスファクタRf=1の部分)へと繋がるように設計した。すなわち、ラフネスファクタRf2は、パタン部側からバリア領域側へと減少する。また、ピッチがパタン部側からバリア領域側へと大きくなることに伴い、開口率はパタン部側からバリア領域側へと減少している。
(M) Other examinations In the examinations (h) to (l), the same examination was carried out in the case where the structure of the pattern part of the resin mold L is a hole shape and the pitch is 200 nm, the depth is 200 nm, and the opening width is 180 nm. . The barrier region was designed so that the roughness factor Rf of the pattern portion continuously decreased and connected to the non-pattern portion (portion of roughness factor Rf = 1). That is, the roughness factor Rf2 decreases from the pattern portion side to the barrier region side. As the pitch increases from the pattern portion side to the barrier region side, the aperture ratio decreases from the pattern portion side to the barrier region side.
 本検討においても、バリア領域を持たない鋳型I由来の樹脂モールドL´を用いた場合(比較例9)、材料E~Gおよびその濃度に関わらず、非パタン部で弾かれた塗工液がパタン部へと侵入し、結果、パタン部のエッジ部に塗工斑が観察された。一方、バリア領域を持つ鋳型J由来の樹脂モールドL’を用いた場合(実施例5)、材料E~Gおよびその濃度に関わらず、非パタン部ではじかれた塗工液は、バリア領域を乗り越えることができず、結果、パタン部のエッジ部は、良好に塗工されていた。非パタン部上にてはじかれ、パタン部側へと向かい、バリア領域によりパタン部への侵入を阻止された塗工液は、バリア領域の非パタン部側に沿い配置されていた。バリア領域Aを有する場合も、バリア領域Bを有する場合も良好な塗工結果が得られたが、非パタン部上ではじかれた塗工液のバリア性(バリア領域でのはじかれ具合)は、バリア領域Bを有す場合がより強かった。 Also in this study, when the resin mold L ′ derived from the mold I having no barrier region was used (Comparative Example 9), the coating liquid repelled in the non-patterned portion was used regardless of the materials E to G and their concentrations. As a result, coating spots were observed on the edge portion of the pattern portion. On the other hand, when the resin mold L ′ derived from the mold J having the barrier region is used (Example 5), the coating liquid repelled in the non-patterned portion is not applied to the barrier region regardless of the materials E to G and the concentration thereof. As a result, the edge portion of the pattern portion was well coated. The coating liquid that was repelled on the non-pattern part, headed toward the pattern part side, and prevented from entering the pattern part by the barrier area was arranged along the non-pattern part side of the barrier area. Good coating results were obtained both with the barrier region A and with the barrier region B, but the barrier property of the coating liquid repelled on the non-patterned portion (the repelling condition in the barrier region) is The case where the barrier region B was provided was stronger.
 また、円筒形状鋳型ではなく、平板鋳型を使用し、同様の検討を行った。平板鋳型の基材には石英ガラスを用い、半導体レーザーを用いた直接描画リソグラフィー法により、微細凹凸構造を、平板石英表面に形成した。平板鋳型としては、パタン部のみを持つ平板鋳型I2と、パタン部とバリア領域を持つ平板鋳型J2を作製した。パタン部における微細凹凸構造は、平板鋳型I2,J2とも、ピッチ460nm、深さ460nm、開口幅430nmとした。また、平板鋳型J2におけるバリア領域は、パタン部の周囲5mmの幅を使用して作製した。 Also, a similar examination was performed using a flat plate mold instead of a cylindrical mold. Quartz glass was used as the base material of the flat plate mold, and a fine concavo-convex structure was formed on the flat plate quartz surface by a direct drawing lithography method using a semiconductor laser. As the flat plate mold, a flat plate mold I2 having only a pattern portion and a flat plate mold J2 having a pattern portion and a barrier region were produced. The fine concavo-convex structure in the pattern part was set to have a pitch of 460 nm, a depth of 460 nm, and an opening width of 430 nm for both of the flat plate molds I2 and J2. Moreover, the barrier region in the flat plate mold J2 was produced using a width of 5 mm around the pattern portion.
 本検討においても、バリア領域を持たない平板鋳型I2由来の、ホール形状を具備する樹脂モールドLを用いた場合(比較例10)、材料E~Gおよびその濃度に関わらず、非パタン部ではじかれた塗工液が、パタン部へと侵入し、結果、パタン部のエッジ部に塗工斑が観察された。一方、バリア領域を持つ平板鋳型J2由来の樹脂モールドを用いた場合(実施例6)、材料E~Gおよびその濃度に関わらず、非パタン部ではじかれた塗工液は、バリア領域を乗り越えることができず、結果、パタン部のエッジ部は良好に塗工されていた。非パタン部上にてはじかれ、パタン部側へと向かい、バリア領域によりパタン部への侵入を阻止された塗工液は、バリア領域の非パタン部側に沿い配置されていた。 Also in this study, when the resin mold L having a hole shape derived from the flat plate mold I2 having no barrier region (Comparative Example 10) is used, the non-pattern part is closed regardless of the materials E to G and their concentrations. The applied coating solution entered the pattern part, and as a result, coating spots were observed at the edge part of the pattern part. On the other hand, when a resin mold derived from the flat plate mold J2 having a barrier region is used (Example 6), the coating liquid repelled in the non-patterned portion overcomes the barrier region regardless of the materials E to G and their concentrations. As a result, the edge portion of the pattern portion was well coated. The coating liquid that was repelled on the non-pattern part, headed toward the pattern part side, and prevented from entering the pattern part by the barrier area was arranged along the non-pattern part side of the barrier area.
(n)離型性確認
 実施例および比較例で得られた材料E~Gを塗工後の樹脂モールドを使用し、離型性を確認した。離型性確認試験は次のように行った。
(N) Releasability confirmation Using the resin molds after coating the materials E to G obtained in Examples and Comparative Examples, the releasability was confirmed. The releasability confirmation test was performed as follows.
 まず、サファイア基板上に、光硬化性樹脂(MUR/丸善石油化学社製)をスピンコート法により750nmで成膜した。 First, a photocurable resin (MUR / manufactured by Maruzen Petrochemical Co., Ltd.) was formed on a sapphire substrate by spin coating at 750 nm.
 次に、樹脂モールドの塗工面を、材料H膜に貼合し、ラミネータを使用し0.01Mpaにて貼合した。その後、0.05MPaで押圧した後に、UV照射を行った。UV照射は積算光量が1200mJ/cmとなるまで行った。最後に、樹脂モールドを剥離した。 Next, the coating surface of the resin mold was bonded to the material H film, and was bonded at 0.01 MPa using a laminator. Then, after pressing at 0.05 MPa, UV irradiation was performed. The UV irradiation was performed until the integrated light amount reached 1200 mJ / cm 2 . Finally, the resin mold was peeled off.
 離型性は、走査型電子顕微鏡および透過型電子顕微鏡にて確認した。結果は下記表3中に示す。離型性良好(表3中○印)とは、「微細凹凸構造を具備した材料E~Fのいずれか/材料H/サファイア」から成る構造が得られた場合とした。微細凹凸構造が破壊されていた場合、材料E~Fが転写されていない場合等は、全て離型性不良(表3中×印)とした。 The releasability was confirmed with a scanning electron microscope and a transmission electron microscope. The results are shown in Table 3 below. Good releasability (marked with a circle in Table 3) means that a structure composed of “any of materials E to F / material H / sapphire having a fine relief structure” was obtained. When the fine concavo-convex structure was broken, or when the materials E to F were not transferred, all were regarded as having poor releasability (x mark in Table 3).
(比較例)
 また、比較例として、バリア領域を持たない鋳型Iの構造において、パタン部と非パタン部(ラフネスファクタRf=1の領域)との界面に、表面に微細凹凸構造を持たない傾斜構造を備える鋳型Mも作成した。鋳型M由来の樹脂モールドを用いた場合(比較例11)、材料E~Gおよびその濃度に関わらず、微細凹凸構造を持たない傾斜構造部分において、むらが観察された。むらは、白いもやとなって観察された。
(Comparative example)
Further, as a comparative example, in the structure of the mold I having no barrier region, a mold having an inclined structure having no fine uneven structure on the surface at the interface between the pattern part and the non-pattern part (roughness factor Rf = 1 area). M was also created. When a resin mold derived from the mold M was used (Comparative Example 11), unevenness was observed in the inclined structure portion having no fine uneven structure regardless of the materials E to G and their concentrations. Irregularity was observed as white haze.
 バリア領域を持つ鋳型J由来の樹脂モールドLに対し、以下の3つの表面処理を施した。 The following three surface treatments were applied to the resin mold L derived from the mold J having a barrier region.
 (比較例12)微細凹凸構造面に対し、オゾン処理を30分行った。 (Comparative Example 12) Ozone treatment was performed on the fine concavo-convex structure surface for 30 minutes.
 (比較例13)微細凹凸構造面に対し、酸素アッシングを1分行った。 (Comparative Example 13) Oxygen ashing was performed for 1 minute on the fine concavo-convex structure surface.
 (比較例14)微細凹凸構造面に対し、スパッタにより、SiO2を10nm成膜した。 (Comparative Example 14) A 10 nm thick SiO2 film was formed on the fine concavo-convex structure surface by sputtering.
 処理を行った鋳型J由来の樹脂モールドLに対し、同様の塗工性試験および離型性確認試験を行った。結果は、下記表3中に示す。 The same coating property test and releasability confirmation test were performed on the processed resin mold L derived from the mold J. The results are shown in Table 3 below.
 実施例および比較例の結果を表3に示す。 Table 3 shows the results of Examples and Comparative Examples.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 以上から、バリア領域に微細凹凸構造を有さない場合(比較例8~10)は、いずれの場合も塗工性に不良があることがわかる。また、バリア領域に微細凹凸構造を有する場合(実施例4~6)は、パタン部における微細凹凸構造の形状や、鋳型の形状にかかわらず、塗工性および離型性が良好であることがわかる。一方、比較例10~14のように、表面処理により、塗工性は改善できるが、離型性が悪化することがわかる。 From the above, it can be seen that when the barrier region does not have a fine uneven structure (Comparative Examples 8 to 10), in any case, the coating property is poor. In addition, when the barrier region has a fine concavo-convex structure (Examples 4 to 6), the coating property and the release property may be good regardless of the shape of the fine concavo-convex structure in the pattern part or the shape of the mold. Recognize. On the other hand, as in Comparative Examples 10 to 14, it can be seen that the surface treatment can improve the coatability but deteriorate the releasability.
<転写用鋳型(I)の作成>
 上記実施例に倣い、微細凹凸構造のピッチ、開口径およびEs/Eb値を変化させることで、転写領域(パタン部)への水の接触角、転写領域(パタン部)とバリア領域の開口率、転写領域(パタン部)とバリア領域のラフネスファクタを制御した、転写用鋳型(I)(リール状樹脂モールド)を作製した。なお、リール状樹脂モールドは、<転写用鋳型(I)>(i)リール状転写用鋳型(I)作製において、硬化性樹脂組成物を、DACHP:M350:I.184:I.369=17.5g:100g:5.5g:2.0gにしたこと、円筒形状鋳型から樹脂モールドを転写する際および樹脂モールドから樹脂モールドを転写する際の積算光量を1200mJ/cmにしたこと以外は、同様におこない作製した。
<Preparation of transfer template (I)>
By following the above embodiment, the contact angle of water to the transfer area (pattern part) and the aperture ratio of the transfer area (pattern part) and the barrier area by changing the pitch, opening diameter, and Es / Eb value of the fine concavo-convex structure. A transfer mold (I) (reel-shaped resin mold) in which the roughness factors of the transfer area (pattern part) and the barrier area were controlled was produced. It should be noted that the reel-shaped resin mold is <Transfer mold (I)> (i) In the production of the reel-shaped transfer mold (I), the curable resin composition is DACHP: M350: I. 184: I.D. 369 = 17.5 g: 100 g: 5.5 g: 2.0 g, and the integrated light quantity when transferring the resin mold from the cylindrical mold and from the resin mold to 1200 mJ / cm 2 Except for this, the same procedure was followed.
 作製した転写用鋳型(I)を表4に記載した。なお、バリア領域は、転写領域(パタン部)に対し、開口径を制御することで設計した。開口径は、円筒形状鋳型を作製する際の、露光エネルギー、回転速度およびドライエッチング時の圧力および時間を調整し、制御した。 The produced transfer template (I) is shown in Table 4. The barrier region was designed by controlling the opening diameter with respect to the transfer region (pattern part). The opening diameter was controlled by adjusting exposure energy, rotation speed, and pressure and time during dry etching when a cylindrical mold was produced.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表4に記載の転写用鋳型(I)No.1~7を作製し、上記材料Fを、PGMEにて3重量%に希釈し、転写用鋳型(I)上に、バーコータを使用し塗工を行った。塗工速度は、25mm/secとした。塗工後、80℃の乾燥炉に転写用鋳型(I)を5分間入れ、溶剤を除去し、乾燥した。 Transfer template (I) No. described in Table 4 1 to 7 were prepared, and the material F was diluted to 3% by weight with PGME and coated on the transfer mold (I) using a bar coater. The coating speed was 25 mm / sec. After coating, the transfer mold (I) was placed in a drying oven at 80 ° C. for 5 minutes to remove the solvent and dry.
 評価は、塗工性、離型性、および、充填層転写用鋳型作製(表4中「充填層」と記す)、とし、目視および走査型電子顕微鏡にて判断した。 Evaluation was as follows: coating property, releasability, and preparation of a filling layer transfer mold (referred to as “filling layer” in Table 4), and were judged visually and by a scanning electron microscope.
 表4より、No.1,2,4,5に示されるように、Rf1>Rf2、Ar1>Ar2、パタン部への接触角が85°以上、好ましくは92°以上、且つ開口率が55%以上を満たすことにより、塗工性および離型性を両立できることがわかる。塗工不良(2)の抑制は、バリア領域の非パタン部側において、バリア領域に沿って、塗工液の固形分が配置されていることから、容易に目視判断できた。なお、No.3における塗工性評価は、塗工不良(2)、即ち、非パン部上にてはじかれた液滴がパタン部へと侵入することに起因する塗工膜厚斑にて判断した結果である。No.3に記載の転写用鋳型の表面フッ素元素濃度を低下させ、塗工性を向上させた結果、No.3に記載のバリア領域を設けることで、塗工不良(1)、即ち、パタン部と非パタン部界面上における塗工液の***に起因した塗工不良を抑制できることが確認された。 From Table 4, No. As shown in 1, 2, 4, 5, when Rf1> Rf2, Ar1> Ar2, the contact angle to the pattern part is 85 ° or more, preferably 92 ° or more, and the aperture ratio is 55% or more, It can be seen that both coatability and releasability can be achieved. The suppression of the coating failure (2) can be easily visually determined because the solid content of the coating liquid is arranged along the barrier region on the non-pattern part side of the barrier region. In addition, No. The coating property evaluation in No. 3 is a result of judgment based on coating defect (2), that is, coating film thickness unevenness caused by intrusion of droplets repelled on the non-pan portion into the pattern portion. is there. No. As a result of reducing the surface fluorine element concentration of the transfer mold described in 3 and improving the coating property, No. 3 was obtained. It was confirmed that by providing the barrier region described in 3, the coating failure (1), that is, the coating failure due to the division of the coating liquid on the interface between the pattern part and the non-pattern part can be suppressed.
 本発明のバリア領域の効果をより明確に視認するために、表4のNo.1に示される充填層転写用鋳型に対し、さらに下記条件で塗工を施し、表面の状態を写真撮影して観察した。新たな塗工液としては、ベンジル系アクリルポリマーに、アクリレートモノマーと光重合開始剤が添加されたものを使用した。濃度をプロピレングリコールモノメチルエーテルおよびメチルエチルケトンにて12.6%にし、25mm/sec.のバーコティング法にて成膜した。成膜後、80度の乾燥炉内に5分間静置し、溶剤を乾燥させた。観察の結果、非パタン部上では、非パタン部上にてはじかれ、乾燥した塗工液に由来するドット(乾燥した半球状液滴)が認められた。一方で、バリア領域の非パタン部側には、複数のドットが認められたが、これらは、非パタン部上にてはじかれた塗工液滴が、パタン部へと侵入しようとしたが、バリア構造により阻止され、バリア領域の非パタン部側に並び乾燥した塗工液に由来する。以上の結果は、写真にて撮影できない表4の結果とも一致している。このように、バリア領域を設けることにより、非パタン部上にてはじかれた塗工液は、バリア領域による阻止によりパタン部へと侵入することができず、パタン部に対する塗工性が改善される。 In order to more clearly recognize the effect of the barrier region of the present invention, No. The filling layer transfer mold shown in FIG. 1 was further coated under the following conditions, and the surface state was photographed and observed. As a new coating solution, a benzylic acrylic polymer to which an acrylate monomer and a photopolymerization initiator were added was used. The concentration was adjusted to 12.6% with propylene glycol monomethyl ether and methyl ethyl ketone, and 25 mm / sec. The film was formed by the bar coating method. After film formation, the solvent was dried by leaving it in an oven at 80 degrees for 5 minutes. As a result of observation, dots (dried hemispherical droplets) repelled on the non-pattern part and derived from the dried coating liquid were observed on the non-pattern part. On the other hand, a plurality of dots were observed on the non-pattern part side of the barrier area, but these were the coating droplets repelled on the non-pattern part trying to enter the pattern part, It is blocked by the barrier structure, and is derived from the dried coating liquid arranged on the non-pattern part side of the barrier region. The above results are consistent with the results in Table 4 that cannot be taken with photographs. As described above, by providing the barrier region, the coating liquid repelled on the non-patterned portion cannot enter the pattern portion due to the blocking by the barrier region, and the coating property to the pattern portion is improved. The
 例えば、No.3のようにRf1<Rf2の場合、非パタン部上にてはじかれた塗工液は、バリア構造上を移動し、パタン部へと侵入した。この為、充填層転写用鋳型は作製できていたが、図27に例示したように、充填層転写用鋳型の充填層の充填率が、バリア領域とパタン部界面から、パタン部方向に徐々に減少していることが走査型電子顕微鏡観察より確認された。一方でNo.7のようにパタン部の開口率(Ar1)が23%と小さいことで、塗工液はパタン部上にてはじかれ液滴化し、塗工が出来なかった。そのため、充填層転写用鋳型は作製出来なかった。この為、離型性の評価はできなかった。また、No.6に示すように、パタン部の接触角が45°の場合、非パタン部上での塗工液のはじきがみられず塗工性は良好であった。しかしながら、充填層転写用鋳型において、微細凹凸構造の凸部および凹部全てを覆うように、転写材の被膜が形成されており、充填層転写用鋳型は作製出来なかった。さらに、転写試験において、離型不良を生じた。 For example, No. In the case of Rf1 <Rf2 as in FIG. 3, the coating liquid repelled on the non-pattern part moved on the barrier structure and entered the pattern part. For this reason, the filling layer transfer mold has been manufactured. However, as illustrated in FIG. 27, the filling rate of the filling layer of the filling layer transfer mold gradually increases from the interface between the barrier region and the pattern portion toward the pattern portion. The decrease was confirmed by observation with a scanning electron microscope. On the other hand, no. As shown in FIG. 7, when the pattern portion has an opening ratio (Ar1) as small as 23%, the coating solution was repelled on the pattern portion to form droplets, and coating could not be performed. Therefore, a packed bed transfer mold could not be produced. For this reason, the releasability could not be evaluated. No. As shown in FIG. 6, when the contact angle of the pattern part was 45 °, the coating liquid was not repelled on the non-pattern part and the coating property was good. However, in the filling layer transfer mold, a coating film of a transfer material is formed so as to cover all the convex and concave portions of the fine concavo-convex structure, and the filling layer transfer mold cannot be produced. Further, in the transfer test, a release failure occurred.
 <転写用鋳型(II)の作成>
 上記実施例に倣い、微細凹凸構造のピッチ、開口径、およびEs/Eb値を変化させることで、パタン部への水の接触角、パタン部とバリア領域の開口率、パタン部とバリア領域のラフネスファクタを制御した、転写用鋳型(II)(リール状樹脂モールド)を作製した。
<Preparation of transfer template (II)>
By following the above example, the pitch of the fine concavo-convex structure, the opening diameter, and the Es / Eb value are changed, so that the contact angle of water to the pattern portion, the opening ratio of the pattern portion and the barrier region, the pattern portion and the barrier region A transfer mold (II) (reel-shaped resin mold) having a controlled roughness factor was produced.
 作製した転写用鋳型(II)を表5に記載した。なお、バリア領域は、パタン部に対し、凸部径を制御することで設計した。凸部径は、円筒形状鋳型を作製する際の、露光エネルギーおよび回転速度、そしてドライエッチングの圧力および時間を調整し、制御した。 The produced transfer template (II) is shown in Table 5. The barrier region was designed by controlling the convex portion diameter with respect to the pattern portion. The convex part diameter was controlled by adjusting the exposure energy and rotational speed, and the pressure and time of dry etching when producing a cylindrical mold.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に記載の転写用鋳型(II)を作製し、上記材料Fを、PGMEにて3%に希釈し、転写用鋳型(II)上に、バーコータを使用し塗工を行った。 The transfer template (II) shown in Table 5 was prepared, the material F was diluted to 3% with PGME, and coating was performed on the transfer template (II) using a bar coater.
 塗工速度は、25mm/sec.とした。塗工後、80℃の乾燥炉に転写用鋳型(II)を5分間入れ、溶剤を除去し、乾燥した。 Coating speed is 25mm / sec. It was. After coating, the transfer mold (II) was placed in a drying oven at 80 ° C. for 5 minutes to remove the solvent and dry.
 評価は、塗工性、離型性、および、充填層転写用鋳型作製(表5中「充填層」と記す)、とし、目視および走査型電子顕微鏡にて判断した。 Evaluation was as follows: coating property, releasability, and preparation of a filling layer transfer mold (referred to as “filling layer” in Table 5), and were judged visually and by a scanning electron microscope.
 表5より、No.8,9,11,12に示されるように、Rf1<Rf2、Ar1>Ar2、パタン部への接触角が86°以上、好ましくは92°以上、且つ開口率が90%以上を満たすことにより、塗工性および離型性を両立できることがわかる。塗工不良(2)の抑制は、バリア領域の非パタン部側において、バリア領域に沿って、塗工液の固形分が配置されていることから、容易に目視判断できた。なお、No.10における塗工性評価は、塗工不良(2)、即ち、非パタン部上にてはじかれた液滴がパタン部へと侵入することに起因する塗工膜厚斑にて判断した結果である。No.10に記載の転写用鋳型の表面フッ素元素濃度を低下させ、塗工性を向上させた結果、No.10に記載のバリア領域を設けることで、塗工不良(1)、即ち、パタン部と非パタン部界面上における塗工液の***に起因した塗工不良を抑制できることが確認された。 From Table 5, No. As shown in 8, 9, 11, 12, when Rf1 <Rf2, Ar1> Ar2, the contact angle to the pattern portion is 86 ° or more, preferably 92 ° or more, and the aperture ratio is 90% or more, It can be seen that both coatability and releasability can be achieved. The suppression of the coating failure (2) can be easily visually determined because the solid content of the coating liquid is arranged along the barrier region on the non-pattern part side of the barrier region. In addition, No. The coating property evaluation in No. 10 is a result of judgment based on coating defect (2), that is, coating film thickness unevenness caused by intrusion of droplets repelled on the non-pattern part into the pattern part. is there. No. As a result of reducing the surface fluorine element concentration of the transfer mold described in 10 and improving the coatability, No. 10 was obtained. By providing the barrier region described in No. 10, it was confirmed that the coating failure (1), that is, the coating failure due to the division of the coating liquid on the interface between the pattern part and the non-pattern part can be suppressed.
 例えば、No.10のようにRf1>Rf2の場合、非パタン部上にてはじかれた塗工液は、バリア構造上を移動し、パタン部へと侵入した。この為、充填層転写用鋳型は作製できていたが、図27に例示したように、充填層転写用鋳型の充填層の充填率が、バリア領域とパタン部界面から、パタン部方向に徐々に減少していた。一方でNo.14のようにパタン部の開口率(Ar1)が31%と小さいことで、塗工液はパタン部上にてはじかれ液滴化し、塗工が出来なかった。その為、充填層転写用鋳型は作製出来なかった。この為、離型性の評価はできなかった。また、No.13に示すように、パタン部の接触角が40°の場合、非パタン部上での塗工液のはじきがみられず塗工性は良好であった。しかしながら、充填層転写用鋳型において、微細凹凸構造の凸部および凹部全てを覆うように、転写材の被膜が形成されており、充填層転写用鋳型は作製出来なかった。さらに、転写試験において、離型不良を生じた。 For example, No. When Rf1> Rf2 as in FIG. 10, the coating liquid repelled on the non-pattern part moved on the barrier structure and entered the pattern part. For this reason, the filling layer transfer mold has been manufactured. However, as illustrated in FIG. 27, the filling rate of the filling layer of the filling layer transfer mold gradually increases from the interface between the barrier region and the pattern portion toward the pattern portion. It was decreasing. On the other hand, no. As the aperture ratio (Ar1) of the pattern part was as small as 31% as shown in FIG. 14, the coating liquid was repelled on the pattern part to form droplets, and coating could not be performed. Therefore, a packed bed transfer mold could not be produced. For this reason, the releasability could not be evaluated. No. As shown in FIG. 13, when the contact angle of the pattern part was 40 °, the coating liquid was not repelled on the non-pattern part, and the coating property was good. However, in the filling layer transfer mold, a coating film of a transfer material is formed so as to cover all the convex and concave portions of the fine concavo-convex structure, and the filling layer transfer mold cannot be produced. Further, in the transfer test, a release failure occurred.
 以上、本発明の実施の形態について説明した。なお、本発明は上記実施の形態に限定されず、さまざまに変更して実施可能である。上記実施の形態において、添付図面に図示されている大きさや形状等については、これに限定されず、本発明の効果を発揮する範囲内で適宜変更が可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施可能である。 The embodiment of the present invention has been described above. In addition, this invention is not limited to the said embodiment, It can implement variously. In the above-described embodiment, the size, shape, and the like illustrated in the accompanying drawings are not limited to this, and can be appropriately changed within a range in which the effects of the present invention are exhibited. In addition, various modifications can be made without departing from the scope of the object of the present invention.
 以上説明したように、高離型性を具備しつつも、転写材の塗工性が良好な微細凹凸構造転写用鋳型を提供できるという効果を奏し、例えば、ナノ・マイクロメートルサイズ領域に制御対象を有する光学素子、バイオ材料の製造に有益である。 As described above, it has the effect of providing a mold for transferring a fine concavo-convex structure with good releasability and good transfer material coating properties. For example, it can be controlled in the nano / micrometer size region. This is useful for the production of optical elements and biomaterials.
 本出願は、2011年6月30日出願の特願2011-145795、および、2011年12月27日出願の特願2011-285596に基づく。これらの内容は全てここに含めておく。 This application is based on Japanese Patent Application No. 2011-145795 filed on June 30, 2011 and Japanese Patent Application No. 2011-285596 filed on December 27, 2011. All these contents are included here.

Claims (19)

  1.  基材と、
     前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、
     前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、
     前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、
     前記転写領域および前記バリア領域は複数の凹部を含み、且つ、
     前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立することを特徴とする、被処理体に前記微細凹凸構造を転写するための微細凹凸構造転写用鋳型。
    A substrate;
    A transfer region in which a fine concavo-convex structure to be transferred to a target object is formed on a part of one main surface of the substrate;
    A non-transfer area where the fine concavo-convex structure other than the transfer area in one main surface of the substrate is not formed;
    A barrier region provided so that at least a part thereof is adjacent to the transfer region between the transfer region and the non-transfer region;
    The transfer region and the barrier region include a plurality of recesses, and
    The relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio of the barrier region A fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to an object to be processed, wherein Ar1> Ar2 is established with Ar2.
  2.  基材と、
     前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、
     前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、
     前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、
     前記転写領域および前記バリア領域は複数の凸部を含み、且つ、
     前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1>Ar2の関係が成立することを特徴とする、被処理体に前記微細凹凸構造を転写するための微細凹凸構造転写用鋳型。
    A substrate;
    A transfer region in which a fine concavo-convex structure to be transferred to a target object is formed on a part of one main surface of the substrate;
    A non-transfer area where the fine concavo-convex structure other than the transfer area in one main surface of the substrate is not formed;
    A barrier region provided so that at least a part thereof is adjacent to the transfer region between the transfer region and the non-transfer region;
    The transfer region and the barrier region include a plurality of convex portions, and
    The relationship Rf1 <Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio of the barrier region A fine concavo-convex structure transfer mold for transferring the fine concavo-convex structure to an object to be processed, wherein Ar1> Ar2 is established with Ar2.
  3.  基材と、
     前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、
     前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、
     前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、
     前記転写領域および前記バリア領域は複数の凹部を含み、且つ、
     前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1<Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立することを特徴とする、被処理体に前記微細凹凸構造を転写するための微細凹凸構造転写用鋳型。
    A substrate;
    A transfer region in which a fine concavo-convex structure to be transferred to a target object is formed on a part of one main surface of the substrate;
    A non-transfer area where the fine concavo-convex structure other than the transfer area in one main surface of the substrate is not formed;
    A barrier region provided so that at least a part thereof is adjacent to the transfer region between the transfer region and the non-transfer region;
    The transfer region and the barrier region include a plurality of recesses, and
    The relationship Rf1 <Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio of the barrier region A mold for transferring a fine concavo-convex structure for transferring the fine concavo-convex structure to an object to be processed, wherein Ar1 <Ar2 is established with Ar2.
  4.  基材と、
     前記基材の一主面上の一部に被処理体に転写される微細凹凸構造が形成された転写領域と、
     前記基材の一主面内の前記転写領域以外の前記微細凹凸構造が形成されていない非転写領域と、
     前記転写領域と前記非転写領域との間に少なくともその一部が前記転写領域と隣接するように設けられたバリア領域と、を具備し、
     前記転写領域および前記バリア領域は複数の凸部を含み、且つ、
     前記転写領域の平均ラフネスファクタRf1と、前記バリア領域の平均ラフネスファクタRf2との間には、Rf1>Rf2の関係が成立すると共に、前記転写領域の平均開口率Ar1と前記バリア領域の平均開口率Ar2との間には、Ar1<Ar2の関係が成立することを特徴とする、被処理体に前記微細凹凸構造を転写するための微細凹凸構造転写用鋳型。
    A substrate;
    A transfer region in which a fine concavo-convex structure to be transferred to a target object is formed on a part of one main surface of the substrate;
    A non-transfer area where the fine concavo-convex structure other than the transfer area in one main surface of the substrate is not formed;
    A barrier region provided so that at least a part thereof is adjacent to the transfer region between the transfer region and the non-transfer region;
    The transfer region and the barrier region include a plurality of convex portions, and
    The relationship Rf1> Rf2 is established between the average roughness factor Rf1 of the transfer region and the average roughness factor Rf2 of the barrier region, and the average aperture ratio Ar1 of the transfer region and the average aperture ratio of the barrier region A mold for transferring a fine concavo-convex structure for transferring the fine concavo-convex structure to an object to be processed, wherein Ar1 <Ar2 is established with Ar2.
  5.  前記転写領域の平均開口率が、45%以上100%未満であることを特徴とする請求項1から請求項4のいずれかに記載の微細凹凸構造転写用鋳型。 5. The fine relief structure transfer mold according to claim 1, wherein an average aperture ratio of the transfer region is 45% or more and less than 100%.
  6.  前記転写領域に対する水の接触角が90度以上であることを特徴とする請求項5に記載の微細凹凸構造転写用鋳型。 6. The mold for transferring a fine concavo-convex structure according to claim 5, wherein a contact angle of water with respect to the transfer region is 90 degrees or more.
  7.  前記バリア領域に対する水の接触角が90度以上であることを特徴とする請求項6に記載の微細凹凸構造転写用鋳型。 The mold for transferring a fine concavo-convex structure according to claim 6, wherein a contact angle of water with respect to the barrier region is 90 degrees or more.
  8.  前記転写領域の複数の凸部または凹部は、平均ピッチP1が50nm以上1000nm以下であり、且つ、平均高さまたは深さが50nm以上1000nm以下であることを特徴とする請求項7に記載の微細凹凸構造転写用鋳型。 8. The fine structure according to claim 7, wherein the plurality of convex portions or concave portions of the transfer region has an average pitch P <b> 1 of 50 nm to 1000 nm and an average height or depth of 50 nm to 1000 nm. Mold for transferring concavo-convex structure.
  9.  前記転写領域の複数の凸部または凹部の平均ピッチP1は、前記バリア領域の複数の凸部または凹部の平均ピッチP2よりも小さいことを特徴とする請求項8に記載の微細凹凸構造転写用鋳型。 9. The mold for transferring a micro concavo-convex structure according to claim 8, wherein an average pitch P1 of the plurality of convex portions or concave portions of the transfer region is smaller than an average pitch P2 of the plurality of convex portions or concave portions of the barrier region. .
  10.  前記転写領域の複数の凸部または凹部の平均ピッチP1は、前記バリア領域の複数の凸部または凹部の平均ピッチP2よりも大きいことを特徴とする請求項8に記載の微細凹凸構造転写用鋳型。 9. The mold for transferring a fine concavo-convex structure according to claim 8, wherein an average pitch P1 of the plurality of convex portions or concave portions of the transfer region is larger than an average pitch P2 of the plurality of convex portions or concave portions of the barrier region. .
  11.  前記バリア領域のラフネスファクタは傾斜構造を有しており、前記転写領域に近づくほど大きくなることを特徴とする請求項9に記載の微細凹凸構造転写用鋳型。 10. The fine concavo-convex structure transfer mold according to claim 9, wherein the roughness factor of the barrier region has an inclined structure, and increases as the transfer region is approached.
  12.  前記バリア領域のラフネスファクタは傾斜構造を有しており、前記転写領域に近づくほど小さくなることを特徴とする請求項10に記載の微細凹凸構造転写用鋳型。 11. The fine concavo-convex structure transfer template according to claim 10, wherein the roughness factor of the barrier region has an inclined structure, and decreases as the transfer region is approached.
  13.  前記基材は、円筒状または円柱状であることを特徴とする請求項1から請求項12のいずれかに記載の微細凹凸構造転写用鋳型。 The mold for transferring a fine concavo-convex structure according to any one of claims 1 to 12, wherein the substrate is cylindrical or columnar.
  14.  前記基材は、平板状であることを特徴とする請求項1から請求項12のいずれかに記載の微細凹凸構造転写用鋳型。 The substrate for fine concavo-convex structure transfer according to any one of claims 1 to 12, wherein the substrate has a flat plate shape.
  15.  前記基材は、リール状であることを特徴とする請求項1から請求項12のいずれかに記載の微細凹凸構造転写用鋳型。 The substrate for fine concavo-convex structure transfer according to any one of claims 1 to 12, wherein the substrate has a reel shape.
  16.  前記微細凹凸構造転写用型は、親水性溶剤にて希釈した転写材を使用して前記被処理体へ微細凹凸構造の転写が行われることを特徴とする請求項13または請求項15に記載の微細凹凸構造転写用鋳型。 16. The fine concavo-convex structure transfer mold is configured to transfer a fine concavo-convex structure to the object to be processed using a transfer material diluted with a hydrophilic solvent. A mold for transferring fine relief structures.
  17.  前記転写領域の凹部内部に充填層が配置されていること特徴とする請求項14または請求項15に記載の微細凹凸構造転写用鋳型。 The mold for transferring a fine concavo-convex structure according to claim 14 or 15, wherein a filling layer is disposed inside the concave portion of the transfer region.
  18.  前記充填層は、親水性溶剤に希釈した充填材の塗工および余剰な溶剤の除去により配置されることを特徴とする請求項17に記載の微細凹凸構造転写用鋳型。 The fine concavo-convex structure transfer mold according to claim 17, wherein the filling layer is disposed by applying a filler diluted with a hydrophilic solvent and removing excess solvent.
  19. 前記転写領域は、前記バリア領域に囲まれた状態または挟まれた状態で配置されることを特徴とする請求項1から請求項18のいずれかに記載の微細凹凸構造転写用鋳型。 The mold for transferring a fine concavo-convex structure according to any one of claims 1 to 18, wherein the transfer region is arranged in a state surrounded or sandwiched by the barrier region.
PCT/JP2012/065454 2011-06-30 2012-06-18 Convexo-concave microstructure transcription template WO2013002048A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280030510.2A CN103650106B (en) 2011-06-30 2012-06-18 Convexo-concave microstructure transcription template
KR1020137027189A KR101556836B1 (en) 2011-06-30 2012-06-18 Convexo-concave microstructure transcription template

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-145795 2011-06-30
JP2011145795 2011-06-30
JP2011-285596 2011-12-27
JP2011285596 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013002048A1 true WO2013002048A1 (en) 2013-01-03

Family

ID=47423946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065454 WO2013002048A1 (en) 2011-06-30 2012-06-18 Convexo-concave microstructure transcription template

Country Status (5)

Country Link
JP (1) JPWO2013002048A1 (en)
KR (1) KR101556836B1 (en)
CN (1) CN103650106B (en)
TW (1) TW201313428A (en)
WO (1) WO2013002048A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254913A (en) * 2012-06-08 2013-12-19 Dainippon Printing Co Ltd Template for nanoimprint and pattern formation method using the same
JP2015013291A (en) * 2013-01-23 2015-01-22 デクセリアルズ株式会社 Method of manufacturing hydrophilic laminate, method of manufacturing article, and antifouling method
JP2018094823A (en) * 2016-12-14 2018-06-21 大日本印刷株式会社 Decorative film, transfer sheet, decorative molded article and method for manufacturing the same
JP2018144434A (en) * 2017-03-08 2018-09-20 大日本印刷株式会社 Decorative molded article, manufacturing method thereof and transfer sheet
EP3460828A4 (en) * 2016-05-18 2019-05-22 Soken Chemical & Engineering Co., Ltd. Photocurable resin composition, resin layer of same, and mold for imprint
JP2020189440A (en) * 2019-05-22 2020-11-26 デクセリアルズ株式会社 Mold and resin sheet
WO2023112782A1 (en) * 2021-12-15 2023-06-22 スタンレー電気株式会社 Light-transmissive resin member

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950343A4 (en) * 2019-03-29 2023-01-04 Dai Nippon Printing Co., Ltd. Transfer sheet and method for manufacturing decorative molding
US20220214339A1 (en) * 2019-05-15 2022-07-07 Denka Company Limited Membrane carrier and test kit
US11899357B2 (en) 2021-05-17 2024-02-13 Taiwan Semiconductor Manufacturing Co., Ltd. Lithography mask

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125799A (en) * 2005-11-04 2007-05-24 Konica Minolta Holdings Inc Fine structure transfer method, fine structure transfer device, optical element manufacturing method, and mold
JP2009070483A (en) * 2007-09-13 2009-04-02 Fujifilm Corp Imprint mold structure, imprinting method using the same, and magnetic recording medium
WO2010047769A1 (en) * 2008-10-21 2010-04-29 Molecular Imprints, Inc. Reduction of stress during template separation
JP2010225683A (en) * 2009-03-19 2010-10-07 Toshiba Corp Method for design of template pattern, method of manufacturing template, and method of manufacturing semiconductor device
JP2011116032A (en) * 2009-12-03 2011-06-16 Dainippon Printing Co Ltd Mold for imprinting and method for forming pattern using this mold
JP2011168812A (en) * 2010-02-16 2011-09-01 Hitachi Maxell Ltd Method of producing stamper, resist master, stamper and molded product

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604985B2 (en) * 2000-01-18 2004-12-22 株式会社石川製作所 Pattern transfer device
US9789634B2 (en) 2009-03-30 2017-10-17 Showa Denko K.K. Sheet press molding method and method of manufacturing fuel cell separator
JP5464980B2 (en) * 2009-11-18 2014-04-09 旭化成株式会社 Photosensitive resin laminate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007125799A (en) * 2005-11-04 2007-05-24 Konica Minolta Holdings Inc Fine structure transfer method, fine structure transfer device, optical element manufacturing method, and mold
JP2009070483A (en) * 2007-09-13 2009-04-02 Fujifilm Corp Imprint mold structure, imprinting method using the same, and magnetic recording medium
WO2010047769A1 (en) * 2008-10-21 2010-04-29 Molecular Imprints, Inc. Reduction of stress during template separation
JP2010225683A (en) * 2009-03-19 2010-10-07 Toshiba Corp Method for design of template pattern, method of manufacturing template, and method of manufacturing semiconductor device
JP2011116032A (en) * 2009-12-03 2011-06-16 Dainippon Printing Co Ltd Mold for imprinting and method for forming pattern using this mold
JP2011168812A (en) * 2010-02-16 2011-09-01 Hitachi Maxell Ltd Method of producing stamper, resist master, stamper and molded product

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013254913A (en) * 2012-06-08 2013-12-19 Dainippon Printing Co Ltd Template for nanoimprint and pattern formation method using the same
JP2015013291A (en) * 2013-01-23 2015-01-22 デクセリアルズ株式会社 Method of manufacturing hydrophilic laminate, method of manufacturing article, and antifouling method
EP3460828A4 (en) * 2016-05-18 2019-05-22 Soken Chemical & Engineering Co., Ltd. Photocurable resin composition, resin layer of same, and mold for imprint
JP2018094823A (en) * 2016-12-14 2018-06-21 大日本印刷株式会社 Decorative film, transfer sheet, decorative molded article and method for manufacturing the same
JP7000653B2 (en) 2016-12-14 2022-01-19 大日本印刷株式会社 Decorative film, transfer sheet, decorative molded product and its manufacturing method
JP2018144434A (en) * 2017-03-08 2018-09-20 大日本印刷株式会社 Decorative molded article, manufacturing method thereof and transfer sheet
JP2020189440A (en) * 2019-05-22 2020-11-26 デクセリアルズ株式会社 Mold and resin sheet
JP7287833B2 (en) 2019-05-22 2023-06-06 デクセリアルズ株式会社 Mold and resin sheet
WO2023112782A1 (en) * 2021-12-15 2023-06-22 スタンレー電気株式会社 Light-transmissive resin member

Also Published As

Publication number Publication date
KR101556836B1 (en) 2015-10-01
CN103650106A (en) 2014-03-19
JPWO2013002048A1 (en) 2015-02-23
CN103650106B (en) 2016-11-09
TW201313428A (en) 2013-04-01
KR20130133293A (en) 2013-12-06

Similar Documents

Publication Publication Date Title
WO2013002048A1 (en) Convexo-concave microstructure transcription template
US10766169B2 (en) Resin mold
JP5597263B2 (en) Fine structure laminate, method for producing fine structure laminate, and method for producing fine structure
US9263649B2 (en) Layered product for fine pattern formation and method of manufacturing layered product for fine pattern formation
WO2013099875A1 (en) Optical substrate and light-emitting device
JP6177168B2 (en) Etching work material and etching method using the same
JP5658001B2 (en) Resin mold
JP5839877B2 (en) Resin mold for spin coating
JP5813418B2 (en) Manufacturing method of fine pattern
JP5990411B2 (en) Manufacturing method of dust-proof film
JP5820639B2 (en) Laminate for forming fine mask and method for processing object
JP2012101483A (en) Resin mold manufacturing method
JP6132545B2 (en) Laminate for fine pattern formation
JP2018069712A (en) Sheet with fine uneven structure, inorganic material packed sheet, resist sheet with fine uneven structure, substrate with fine uneven structure, and manufacturing method of substrate with fine uneven structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522588

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137027189

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803634

Country of ref document: EP

Kind code of ref document: A1