WO2013001830A1 - Nucleoside antibiotic derivative - Google Patents

Nucleoside antibiotic derivative Download PDF

Info

Publication number
WO2013001830A1
WO2013001830A1 PCT/JP2012/004227 JP2012004227W WO2013001830A1 WO 2013001830 A1 WO2013001830 A1 WO 2013001830A1 JP 2012004227 W JP2012004227 W JP 2012004227W WO 2013001830 A1 WO2013001830 A1 WO 2013001830A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
alkyl
hydrogen atom
Prior art date
Application number
PCT/JP2012/004227
Other languages
French (fr)
Japanese (ja)
Inventor
聡 市川
松田 彰
岡本 和也
昌浩 阪上
Original Assignee
国立大学法人北海道大学
塩野義製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北海道大学, 塩野義製薬株式会社 filed Critical 国立大学法人北海道大学
Publication of WO2013001830A1 publication Critical patent/WO2013001830A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents

Definitions

  • the present invention relates to a substance having antibacterial activity.
  • Nucleosides are one of the most important biological substances. These are not only the components of DNA and RNA that control the storage and expression of genetic information, but also function as coenzymes and intracellular signaling substances, and are involved in intracellular metabolism and energy supply. Have a role to play. Nucleosides have long been recognized as a good lead for conducting drug discovery chemistry research, and various nucleoside compounds have been clinically used.
  • nucleoside natural products can be good leads for drug development.
  • nucleoside derivatives there are several problems to be overcome in the method for synthesizing nucleoside derivatives.
  • nucleobase which is a nitrogen-containing aromatic ring
  • the reagents that can be used are limited due to its high coordination ability, and aldehydes and ketone bodies that are used as raw materials for the carbon increase reaction to the sugar part
  • it is unstable under various reaction conditions.
  • the inventors have conducted synthetic studies on antibacterial nucleosides having a novel mechanism of action.
  • MraY intracellular membrane enzyme translocase I
  • MraY inhibitors that can be cell wall synthesis inhibitors have recently attracted attention as new targets for the development of antibacterial agents, and are expected to lead to the creation of drugs that are widely effective against bacteria including drug-resistant bacteria.
  • MraY inhibitors are resistant to drug-resistant bacteria such as MRSA and VRE. It is expected to lead to the creation of drugs that are broadly effective against bacteria containing them (see Non-Patent Document 1 and Non-Patent Document 2).
  • Patent Literatures 1 to 3 describe Pacidamycins (pacidamycins), and Patent Literatures 4 and 5 describe Mureidomycin C (mureidomycin C). Are all produced from fermentation.
  • the present invention relates to the following.
  • R 1 is a hydrogen atom or alkyl
  • R 2 is a hydrogen atom, alkyl, or a group shown below:
  • R a is hydroxy, alkyl, or halogen, and m is an integer of 0 to 3, provided that when there are a plurality of R a s , they may be the same or different.
  • R 3 is a hydrogen atom or alkyl;
  • R 4 is a hydrogen atom or alkyl, or R 3 and R 4 may together form a cyclopropane ring;
  • R 5 is a hydrogen atom or alkyl;
  • R 6 represents a hydrogen atom, alkyl, or a group shown below:
  • R b is hydroxy, alkyl, or halogen
  • n is an integer of 0 to 3, provided that when there are a plurality of R b s , they may be the same or different.
  • R 7 is a hydrogen atom, alkyl substituted with amino, or alkylcarbonyl substituted with amino) Or a pharmaceutically acceptable salt thereof, or the compound or a solvate of the salt.
  • R 6 is a hydrogen atom, methyl, or a group shown below:
  • R 7 is a hydrogen atom, or alkylcarbonyl substituted with amino, or a pharmaceutically acceptable salt thereof, or the compound Or a solvate of the salt.
  • R c is a hydrogen atom or alkyl
  • R 8 is a hydrogen atom, alkyl-substituted silyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic carbocyclic Group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic carbonyl Substituted or unsubstituted non-aromatic carbocyclic carbonyl, substituted or unsubstituted aromatic heterocyclic carbonyl, or substituted or unsubstituted non-aromatic heterocyclic carbonyl, L 1 is a single bond, alkylene, alkenylene, or alkynylene; R 9 is a hydrogen atom or
  • R 12 is a hydrogen atom, or substituted or unsubstituted alkyl
  • R 13 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted An unsubstituted non-aromatic carbocyclic group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted non-aromatic heterocyclic group)) Or a salt thereof.
  • R 9 is —OL 2 —R 11
  • L 2 is a single bond
  • R 11 is a hydrogen atom or silyl substituted with alkyl.
  • a pharmaceutical composition comprising the compound according to any one of (1) to (4) above or a pharmaceutically acceptable salt thereof.
  • a method for treating or preventing various diseases caused by pathogenic bacteria comprising administering the compound according to any one of (1) to (4) above or a pharmaceutically acceptable salt thereof.
  • the compound according to the present invention has MraY inhibitory activity and anti-gram-negative bacterial activity, and is useful as a therapeutic and / or prophylactic agent for various diseases caused by pathogenic bacteria.
  • the present invention relates to Pacidamycin derivatives and synthetic intermediates thereof. According to the present invention, the total synthesis of the natural product Pacidamycin D and its derivatives has been achieved.
  • Halogen includes fluorine atom, chlorine atom, bromine atom, and iodine atom. In particular, a fluorine atom and a chlorine atom are preferable.
  • Alkyl includes straight or branched hydrocarbon groups having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. To do. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl , Isooctyl, n-nonyl, n-decyl and the like.
  • alkyl examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and n-pentyl. Further preferred examples include methyl, ethyl, n-propyl, isopropyl and tert-butyl.
  • Alkenyl has 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and further preferably 2 to 4 carbon atoms, having one or more double bonds at any position. These linear or branched hydrocarbon groups are included.
  • alkenyl examples include vinyl, allyl, propenyl, isopropenyl, and butenyl.
  • Alkynyl has 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, having one or more triple bonds at any position. Includes straight chain or branched hydrocarbon groups. Examples include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like. These may further have a double bond at an arbitrary position.
  • alkynyl examples include ethynyl, propynyl, butynyl and pentynyl.
  • Alkylene is a straight or branched divalent hydrocarbon having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Includes groups. Examples include methylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, hexamethylene and the like.
  • alkenylene refers to a carbon number of 2 to 15, preferably 2 to 10, more preferably 2 to 6 and even more preferably 2 to 4 having one or more double bonds at an arbitrary position. And a linear or branched divalent hydrocarbon group.
  • vinylene, propenylene, butenylene, pentenylene and the like can be mentioned.
  • Alkynylene refers to carbon atoms of 2 to 15, preferably 2 to 10, more preferably 2 to 6, more preferably 2 to 4 carbon atoms having one or more triple bonds at any position.
  • a linear or branched divalent hydrocarbon group is included. These may further have a double bond at an arbitrary position. For example, ethynylene, propynylene, butynylene, pentynylene, hexynylene and the like can be mentioned.
  • “Aromatic carbocyclic group” means a monocyclic or bicyclic or more cyclic aromatic hydrocarbon group. For example, phenyl, naphthyl, anthryl, phenanthryl and the like can be mentioned.
  • a preferred embodiment of the “aromatic carbocyclic group” includes phenyl.
  • Non-aromatic carbocyclic group means a monocyclic or bicyclic or more cyclic saturated hydrocarbon group or cyclic non-aromatic unsaturated hydrocarbon group.
  • the non-aromatic carbocyclic group having 2 or more rings also includes those in which the ring in the above “aromatic carbocyclic group” is condensed with a monocyclic or 2 or more non-aromatic carbocyclic groups.
  • non-aromatic carbocyclic group includes a group that forms a bridge or a spiro ring as described below.
  • the monocyclic non-aromatic carbocyclic group preferably has 3 to 16 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 4 to 8 carbon atoms.
  • Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclohexadienyl, and the like.
  • non-aromatic carbocyclic group having two or more rings examples include indanyl, indenyl, acenaphthyl, tetrahydronaphthyl, fluorenyl and the like.
  • “Aromatic heterocyclic group” means a monocyclic or bicyclic or more aromatic cyclic group having one or more heteroatoms arbitrarily selected from O, S and N in the ring To do.
  • the aromatic heterocyclic group having two or more rings includes a monocyclic or two or more aromatic heterocyclic group condensed with a ring in the above “aromatic carbocyclic group”.
  • the monocyclic aromatic heterocyclic group is preferably 5 to 8 members, more preferably 5 or 6 members.
  • Examples include pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, and the like.
  • bicyclic aromatic heterocyclic group examples include indolyl, isoindolyl, indazolyl, indolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzimidazolyl, benzisoxazolyl, benzisoxazolyl, Oxazolyl, benzoxiazolyl, benzisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyr Dazinyl, oxazolopyridyl, thiazolopyridyl and the like can be mentioned.
  • aromatic heterocyclic group having 3 or more rings examples include carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, dibenzofuryl and the like.
  • Non-aromatic heterocyclic group means a monocyclic or bicyclic or more cyclic non-aromatic cyclic group having at least one hetero atom selected from O, S and N in the ring. Means group.
  • the non-aromatic heterocyclic group having 2 or more rings is a monocyclic or 2 or more non-aromatic heterocyclic group, the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group”, and Also included are those in which each ring in the “aromatic heterocyclic group” is condensed.
  • non-aromatic heterocyclic group includes a group that forms a bridge or a spiro ring as described below.
  • the monocyclic non-aromatic heterocyclic group is preferably 3 to 8 members, more preferably 5 or 6 members.
  • non-aromatic heterocyclic group having two or more rings examples include indolinyl, isoindolinyl, chromanyl, isochromanyl and the like.
  • Alkyloxy means a group in which the above “alkyl” is bonded to an oxygen atom. Examples thereof include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, isobutyloxy, sec-butyloxy, pentyloxy, isopentyloxy, hexyloxy and the like.
  • alkyloxy examples include methoxy, ethoxy, n-propyloxy, isopropyloxy, and tert-butyloxy.
  • Alkenyloxy means a group in which the above “alkenyl” is bonded to an oxygen atom. Examples thereof include vinyloxy, allyloxy, 1-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 2-hexenyloxy, 2-heptenyloxy, 2-octenyloxy and the like.
  • Alkynyloxy means a group in which the above “alkynyl” is bonded to an oxygen atom. Examples include ethynyloxy, 1-propynyloxy, 2-propynyloxy, 2-butynyloxy, 2-pentynyloxy, 2-hexynyloxy, 2-heptynyloxy, 2-octynyloxy and the like.
  • Haloalkyl means a group in which one or more of the above “halogens” are bonded to the above “alkyl”. For example, monofluoromethyl, monofluoroethyl, monofluoropropyl, 2,2,3,3,3-pentafluoropropyl, monochloromethyl, trifluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2, Examples include 2,2-trichloroethyl, 1,2-dibromoethyl, 1,1,1-trifluoropropan-2-yl and the like.
  • haloalkyl include trifluoromethyl and trichloromethyl.
  • Haloalkyloxy means a group in which the above “haloalkyl” is bonded to an oxygen atom. Examples thereof include monofluoromethoxy, monofluoroethoxy, trifluoromethoxy, trichloromethoxy, trifluoroethoxy, trichloroethoxy and the like.
  • haloalkyloxy examples include trifluoromethoxy and trichloromethoxy.
  • Alkyloxyalkyl means a group in which the above “alkyloxy” is bonded to the above “alkyl”. For example, methoxymethyl, methoxyethyl, ethoxymethyl and the like can be mentioned.
  • Alkyloxyalkyloxy means a group in which the “alkyloxy” is bonded to the “alkyloxy”. Examples thereof include methoxymethoxy, methoxyethoxy, ethoxymethoxy, ethoxyethoxy and the like.
  • Alkyloxyalkyloxyalkyl means a group in which the “alkyloxyalkyloxy” is bonded to the “alkyl”. Examples thereof include methoxymethoxymethyl, methoxyethoxymethyl, ethoxymethoxyethyl, ethoxyethoxymethyl and the like.
  • Alkylcarbonyl means a group in which the above “alkyl” is bonded to a carbonyl group. Examples thereof include methylcarbonyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, tert-butylcarbonyl, isobutylcarbonyl, sec-butylcarbonyl, pentylcarbonyl, isopentylcarbonyl, hexylcarbonyl and the like.
  • alkylcarbonyl examples include methylcarbonyl, ethylcarbonyl, and n-propylcarbonyl.
  • Alkenylcarbonyl means a group in which the above “alkenyl” is bonded to a carbonyl group.
  • alkenyl ethylenylcarbonyl, propenylcarbonyl and the like can be mentioned.
  • Alkynylcarbonyl means a group in which the above “alkynyl” is bonded to a carbonyl group. For example, ethynylcarbonyl, propynylcarbonyl and the like can be mentioned.
  • “Monoalkylamino” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group. For example, methylamino, ethylamino, isopropylamino and the like can be mentioned.
  • Preferred examples of “monoalkylamino” include methylamino and ethylamino.
  • Dialkylamino means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkyl groups may be the same or different. Examples include dimethylamino, diethylamino, N, N-diisopropylamino, N-methyl-N-ethylamino, N-isopropyl-N-ethylamino and the like.
  • dialkylamino examples include dimethylamino and diethylamino.
  • Alkylsulfonyl means a group in which the above “alkyl” is bonded to a sulfonyl group.
  • methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, tert-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl and the like can be mentioned.
  • alkylsulfonyl include methylsulfonyl and ethylsulfonyl.
  • Alkenylsulfonyl means a group in which the above “alkenyl” is bonded to a sulfonyl group.
  • alkenyl ethylenylsulfonyl, propenylsulfonyl and the like can be mentioned.
  • Alkynylsulfonyl means a group in which the above “alkynyl” is bonded to a sulfonyl group. For example, ethynylsulfonyl, propynylsulfonyl and the like can be mentioned.
  • “Monoalkylcarbonylamino” means a group in which the above “alkylcarbonyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group.
  • methylcarbonylamino, ethylcarbonylamino, propylcarbonylamino, isopropylcarbonylamino, tert-butylcarbonylamino, isobutylcarbonylamino, sec-butylcarbonylamino and the like can be mentioned.
  • Preferred embodiments of “monoalkylcarbonylamino” include methylcarbonylamino and ethylcarbonylamino.
  • Dialkylcarbonylamino means a group in which the above “alkylcarbonyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group.
  • Two alkylcarbonyl groups may be the same or different.
  • dimethylcarbonylamino, diethylcarbonylamino, N, N-diisopropylcarbonylamino and the like can be mentioned.
  • dialkylcarbonylamino examples include dimethylcarbonylamino and diethylcarbonylamino.
  • “Monoalkylsulfonylamino” means a group in which the above “alkylsulfonyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group.
  • methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, isopropylsulfonylamino, tert-butylsulfonylamino, isobutylsulfonylamino, sec-butylsulfonylamino and the like can be mentioned.
  • Preferred embodiments of “monoalkylsulfonylamino” include methylsulfonylamino and ethylsulfonylamino.
  • Dialkylsulfonylamino means a group in which the above “alkylsulfonyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group.
  • Two alkylsulfonyl groups may be the same or different.
  • dimethylsulfonylamino, diethylsulfonylamino, N, N-diisopropylsulfonylamino and the like can be mentioned.
  • dialkylcarbonylamino examples include dimethylsulfonylamino and diethylsulfonylamino.
  • Alkylimino means a group in which the above “alkyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • methylimino, ethylimino, n-propylimino, isopropylimino and the like can be mentioned.
  • Alkenylimino means a group in which the above “alkenyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. Examples thereof include ethylenylimino and propenylimino.
  • Alkynylimino means a group in which the above “alkynyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • alkynylimino ethynylimino, propynylimino and the like can be mentioned.
  • Alkylcarbonylimino means a group in which the above “alkylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • methylcarbonylimino, ethylcarbonylimino, n-propylcarbonylimino, isopropylcarbonylimino and the like can be mentioned.
  • Alkenylcarbonylimino means a group in which the above “alkenylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • alkenylcarbonylimino ethylenylcarbonylimino, propenylcarbonylimino and the like can be mentioned.
  • Alkynylcarbonylimino means a group in which the above “alkynylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • alkynylcarbonylimino ethynylcarbonylimino, propynylcarbonylimino and the like can be mentioned.
  • Alkyloxyimino means a group in which the above “alkyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. Examples thereof include methyloxyimino, ethyloxyimino, n-propyloxyimino, isopropyloxyimino and the like.
  • Alkenyloxyimino means a group in which the above “alkenyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • alkenyloxyimino ethylenyloxyimino, propenyloxyimino and the like can be mentioned.
  • Alkynyloxyimino means a group in which the above “alkynyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group.
  • alkynyloxyimino ethynyloxyimino, propynyloxyimino and the like can be mentioned.
  • Alkylcarbonyloxy means a group in which the above “alkylcarbonyl” is bonded to an oxygen atom. Examples thereof include methylcarbonyloxy, ethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, tert-butylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyloxy and the like.
  • alkylcarbonyloxy examples include methylcarbonyloxy and ethylcarbonyloxy.
  • Alkenylcarbonyloxy means a group in which the above “alkenylcarbonyl” is bonded to an oxygen atom.
  • alkenylcarbonyl ethylenylcarbonyloxy, propenylcarbonyloxy and the like can be mentioned.
  • Alkynylcarbonyloxy means a group in which the above “alkynylcarbonyl” is bonded to an oxygen atom.
  • alkynylcarbonyloxy ethynylcarbonyloxy, propynylcarbonyloxy and the like can be mentioned.
  • Alkyloxycarbonyl means a group in which the above “alkyloxy” is bonded to a carbonyl group. For example, methyloxycarbonyl, ethyloxycarbonyl, propyloxycarbonyl, isopropyloxycarbonyl, tert-butyloxycarbonyl, isobutyloxycarbonyl, sec-butyloxycarbonyl, pentyloxycarbonyl, isopentyloxycarbonyl, hexyloxycarbonyl, etc. It is done.
  • alkyloxycarbonyl examples include methyloxycarbonyl, ethyloxycarbonyl, and propyloxycarbonyl.
  • Alkenyloxycarbonyl means a group in which the above “alkenyloxy” is bonded to a carbonyl group. For example, ethylenyloxycarbonyl, propenyloxycarbonyl and the like can be mentioned.
  • Alkynyloxycarbonyl means a group in which the above “alkynyloxy” is bonded to a carbonyl group. For example, ethynyloxycarbonyl, propynyloxycarbonyl and the like can be mentioned.
  • Alkylsulfanyl means a group in which the above “alkyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • methylsulfanyl, ethylsulfanyl, n-propylsulfanyl, isopropylsulfanyl and the like can be mentioned.
  • Alkenylsulfanyl means a group in which the above “alkenyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • alkenyl ethylenylsulfanyl, propenylsulfanyl and the like can be mentioned.
  • Alkynylsulfanyl means a group in which the above “alkynyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • alkynylsulfanyl ethynylsulfanyl, propynylsulfanyl and the like can be mentioned.
  • Alkylsulfinyl means a group in which the above “alkyl” is bonded to a sulfinyl group. Examples thereof include methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, isopropylsulfinyl and the like.
  • Alkenylsulfinyl means a group in which the above “alkenyl” is bonded to a sulfinyl group.
  • alkenyl ethylenylsulfinyl, propenylsulfinyl and the like can be mentioned.
  • Alkynylsulfinyl means a group in which the above “alkynyl” is bonded to a sulfinyl group. For example, ethynylsulfinyl, propynylsulfinyl and the like can be mentioned.
  • “Monoalkylcarbamoyl” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the carbamoyl group. Examples thereof include methylcarbamoyl and ethylcarbamoyl.
  • Dialkylcarbamoyl means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the carbamoyl group.
  • Two alkyl groups may be the same or different. Examples thereof include dimethylcarbamoyl, diethylcarbamoyl and the like.
  • “Monoalkylsulfamoyl” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the sulfamoyl group. For example, methylsulfamoyl, dimethylsulfamoylmoyl, etc. are mentioned.
  • Dialkylsulfamoyl means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the sulfamoyl group.
  • Two alkyl groups may be the same or different. Examples thereof include dimethylcarbamoyl, diethylcarbamoyl and the like.
  • Trialkylsilyl means a group in which three of the above “alkyl” are bonded to a silicon atom.
  • the three alkyls may be the same or different.
  • trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl and the like can be mentioned.
  • “Aromatic carbocyclic alkyl” means an alkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyl, phenethyl, phenylpropynyl, benzhydryl, trityl, naphthylmethyl, groups shown below
  • aromatic carbocyclic alkyl examples include benzyl, phenethyl, and benzhydryl.
  • Non-aromatic carbocyclic alkyl means alkyl substituted with one or more of the above “non-aromatic carbocyclic groups”.
  • the “non-aromatic carbocyclic alkyl” also includes “non-aromatic carbocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, groups shown below
  • “Aromatic heterocyclic alkyl” means alkyl substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyl” also includes “aromatic heterocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. .
  • pyridylmethyl furanylmethyl, imidazolylmethyl, indolylmethyl, benzothiophenylmethyl, oxazolylmethyl, isoxazolylmethyl, thiazolylmethyl, isothiazolylmethyl, pyrazolylmethyl, isopyrazolylmethyl, pyrrolidinylmethyl, benz Oxazolylmethyl, group shown below
  • Non-aromatic heterocyclic alkyl means alkyl substituted with one or more of the above “non-aromatic heterocyclic groups”.
  • the alkyl portion is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”.
  • non-aromatic heterocyclic alkyl For example, tetrahydropyranylmethyl, morpholinylethyl, piperidinylmethyl, piperazinylmethyl, groups shown below
  • “Aromatic carbocyclic alkyloxy” means alkyloxy substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxy, phenethyloxy, phenylpropynyloxy, benzhydryloxy, trityloxy, naphthylmethyloxy, groups shown below
  • Non-aromatic carbocyclic alkyloxy means alkyloxy substituted with one or more of the above “non-aromatic carbocyclic groups”.
  • the “non-aromatic carbocyclic alkyloxy” also includes “non-aromatic carbocyclic alkyloxy” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyloxy, cyclobutylmethyloxy, cyclopentylmethyloxy, cyclohexylmethyloxy, groups shown below
  • “Aromatic heterocyclic alkyloxy” means alkyloxy substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyloxy” also includes “aromatic heterocyclic alkyloxy” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Include.
  • Non-aromatic heterocyclic alkyloxy means alkyloxy substituted with one or more of the above “non-aromatic heterocyclic groups”.
  • the alkyl moiety is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”. It also includes “non-aromatic heterocyclic alkyloxy”. For example, tetrahydropyranylmethyloxy, morpholinylethyloxy, piperidinylmethyloxy, piperazinylmethyloxy, groups shown below
  • “Aromatic carbocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxycarbonyl, phenethyloxycarbonyl, phenylpropynyloxycarbonyl, benzhydryloxycarbonyl, trityloxycarbonyl, naphthylmethyloxycarbonyl, groups shown below
  • Non-aromatic carbocyclic alkyloxycarbonyl means alkyloxycarbonyl substituted with one or more of the above “non-aromatic carbocyclic groups”.
  • the “non-aromatic carbocyclic alkyloxycarbonyl” also includes “non-aromatic carbocyclic alkyloxycarbonyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyloxycarbonyl, cyclobutylmethyloxycarbonyl, cyclopentylmethyloxycarbonyl, cyclohexylmethyloxycarbonyl, groups shown below
  • “Aromatic heterocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “aromatic heterocyclic groups”.
  • the “aromatic heterocyclic alkyloxycarbonyl” is an “aromatic heterocyclic alkyloxycarbonyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Is also included.
  • pyridylmethyloxycarbonyl furanylmethyloxycarbonyl, imidazolylmethyloxycarbonyl, indolylmethyloxycarbonyl, benzothiophenylmethyloxycarbonyl, oxazolylmethyloxycarbonyl, isoxazolylmethyloxycarbonyl, thiazolylmethyl Oxycarbonyl, isothiazolylmethyloxycarbonyl, pyrazolylmethyloxycarbonyl, isopyrazolylmethyloxycarbonyl, pyrrolidinylmethyloxycarbonyl, benzoxazolylmethyloxycarbonyl, groups shown below
  • Non-aromatic heterocyclic alkyloxycarbonyl means alkyloxycarbonyl substituted with one or more of the above “non-aromatic heterocyclic groups”.
  • the alkyl moiety is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”.
  • non-aromatic heterocyclic alkyloxycarbonyl For example, tetrahydropyranylmethyloxy, morpholinylethyloxy, piperidinylmethyloxy, piperazinylmethyloxy, groups shown below
  • “Aromatic carbocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxymethyl, phenethyloxymethyl, phenylpropynyloxymethyl, benzhydryloxymethyl, trityloxymethyl, naphthylmethyloxymethyl, groups shown below
  • Non-aromatic carbocyclic alkyloxyalkyl means alkyloxyalkyl substituted with one or more of the above “non-aromatic carbocyclic groups”.
  • non-aromatic carbocyclic alkyloxyalkyl means “non-aromatic carbocyclic alkyloxyalkyl” in which the alkyl moiety to which the non-aromatic carbocycle is bonded is substituted with the above “aromatic carbocyclic group”. Is also included. For example, cyclopropylmethyloxymethyl, cyclobutylmethyloxymethyl, cyclopentylmethyloxymethyl, cyclohexylmethyloxymethyl, groups shown below
  • “Aromatic heterocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “aromatic heterocyclic groups”.
  • the “aromatic heterocyclic alkyloxyalkyl” is obtained by replacing the alkyl moiety to which the aromatic heterocyclic ring is bonded with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Also included are “aromatic heterocyclic alkyloxyalkyl”.
  • pyridylmethyloxymethyl furanylmethyloxymethyl, imidazolylmethyloxymethyl, indolylmethyloxymethyl, benzothiophenylmethyloxymethyl, oxazolylmethyloxymethyl, isoxazolylmethyloxymethyl, thiazolylmethyl Oxymethyl, isothiazolylmethyloxymethyl, pyrazolylmethyloxymethyl, isopyrazolylmethyloxymethyl, pyrrolidinylmethyloxymethyl, benzoxazolylmethyloxymethyl, groups shown below
  • Non-aromatic heterocyclic alkyloxyalkyl means alkyloxyalkyl substituted with one or more of the above “non-aromatic heterocyclic groups”.
  • “non-aromatic heterocyclic alkyloxy” means that the alkyl moiety to which the non-aromatic heterocyclic ring is bonded is the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic”.
  • non-aromatic heterocyclic alkyloxyalkyl substituted with “aromatic heterocyclic group”. For example, tetrahydropyranylmethyloxymethyl, morpholinylethyloxymethyl, piperidinylmethyloxymethyl, piperazinylmethyloxymethyl, groups shown below
  • “Aromatic carbocyclic alkylamino” means a group in which the above “aromatic carbocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group. Examples include benzylamino, phenethylamino, phenylpropynylamino, benzhydrylamino, tritylamino, naphthylmethylamino, dibenzylamino and the like.
  • Non-aromatic carbocyclic alkylamino means a group in which the above “non-aromatic carbocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group.
  • cyclopropylmethylamino, cyclobutylmethylamino, cyclopentylmethylamino, cyclohexylmethylamino and the like can be mentioned.
  • “Aromatic heterocyclic alkylamino” means a group in which the above “aromatic heterocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group.
  • aromatic heterocyclic alkyl For example, pyridylmethylamino, furanylmethylamino, imidazolylmethylamino, indolylmethylamino, benzothiophenylmethylamino, oxazolylmethylamino, isoxazolylmethylamino, thiazolylmethylamino, isothiazolylmethylamino , Pyrazolylmethylamino, isopyrazolylmethylamino, pyrrolidinylmethylamino, benzoxazolylmethylamino and the like.
  • Non-aromatic heterocyclic alkylamino means a group in which the above “non-aromatic heterocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group.
  • tetrahydropyranylmethylamino, morpholinylethylamino, piperidinylmethylamino, piperazinylmethylamino and the like can be mentioned.
  • aromatic carbocyclic oxy also include The same as the above “aromatic carbocyclic group”.
  • “Aromatic carbocyclic oxy” means a group in which “aromatic carbocycle” is bonded to an oxygen atom.
  • aromatic carbocycle for example, phenyloxy, naphthyloxy and the like can be mentioned.
  • Aromatic carbocyclic carbonyl means a group in which “aromatic carbocycle” is bonded to a carbonyl group.
  • aromatic carbocycle for example, phenylcarbonyl, naphthylcarbonyl and the like can be mentioned.
  • “Aromatic carbocyclic oxycarbonyl” means a group in which the above “aromatic carbocyclic oxy” is bonded to a carbonyl group.
  • aromatic carbocyclic oxy for example, phenyloxycarbonyl, naphthyloxycarbonyl and the like can be mentioned.
  • “Aromatic carbocyclic sulfanyl” means a group in which an “aromatic carbocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. Examples thereof include phenylsulfanyl and naphthylsulfanyl.
  • “Aromatic carbocycle sulfonyl” means a group in which “aromatic carbocycle” is bonded to a sulfonyl group.
  • aromatic carbocycle for example, phenylsulfonyl, naphthylsulfonyl and the like can be mentioned.
  • Non-aromatic carbocyclic oxy “non-aromatic carbocyclic carbonyl”, “non-aromatic carbocyclic oxycarbonyl”, “non-aromatic carbocyclic sulfanyl”, and “non-aromatic carbocyclic sulfonyl”
  • the “aromatic carbocyclic” moiety is the same as the above “non-aromatic carbocyclic group”.
  • Non-aromatic carbocyclic oxy means a group in which “non-aromatic carbocycle” is bonded to an oxygen atom.
  • cyclopropyloxy, cyclohexyloxy, cyclohexenyloxy and the like can be mentioned.
  • Non-aromatic carbocyclic carbonyl means a group in which a “non-aromatic carbocycle” is bonded to a carbonyl group.
  • cyclopropylcarbonyl, cyclohexylcarbonyl, cyclohexenylcarbonyl and the like can be mentioned.
  • Non-aromatic carbocyclic oxycarbonyl means a group in which the above “non-aromatic carbocyclic oxy” is bonded to a carbonyl group.
  • cyclopropyloxycarbonyl, cyclohexyloxycarbonyl, cyclohexenyloxycarbonyl and the like can be mentioned.
  • Non-aromatic carbocyclic sulfanyl means a group in which a “non-aromatic carbocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. Examples include cyclopropylsulfanyl, cyclohexylsulfanyl, cyclohexenylsulfanyl and the like.
  • Non-aromatic carbocycle sulfonyl means a group in which “non-aromatic carbocycle” is bonded to a sulfonyl group.
  • cyclopropylsulfonyl, cyclohexylsulfonyl, cyclohexenylsulfonyl and the like can be mentioned.
  • aromatic heterocycle part of “aromatic heterocycle oxy”, “aromatic heterocycle carbonyl”, “aromatic heterocycle oxycarbonyl”, “aromatic heterocycle sulfanyl”, and “aromatic heterocycle sulfonyl” The same as the above “aromatic heterocyclic group”.
  • “Aromatic heterocycle oxy” means a group in which “aromatic heterocycle” is bonded to an oxygen atom.
  • aromatic heterocycle means a group in which “aromatic heterocycle” is bonded to an oxygen atom.
  • pyridyloxy, oxazolyloxy and the like can be mentioned.
  • “Aromatic heterocycle carbonyl” means a group in which “aromatic heterocycle” is bonded to a carbonyl group. For example, pyridylcarbonyl, oxazolylcarbonyl, etc. are mentioned.
  • “Aromatic heterocyclic oxycarbonyl” means a group in which the above “aromatic heterocyclic oxy” is bonded to a carbonyl group.
  • aromatic heterocyclic oxy means a group in which the above “aromatic heterocyclic oxy” is bonded to a carbonyl group.
  • pyridyloxycarbonyl, oxazolyloxycarbonyl and the like can be mentioned.
  • “Aromatic heterocycle sulfanyl” means a group in which “aromatic heterocycle” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • aromatic heterocycle means a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • pyridylsulfanyl, oxazolylsulfanyl and the like can be mentioned.
  • “Aromatic heterocycle sulfonyl” means a group in which “aromatic heterocycle” is bonded to a sulfonyl group.
  • aromatic heterocycle for example, pyridylsulfonyl, oxazolylsulfonyl and the like can be mentioned.
  • Non-aromatic heterocyclic oxy “non-aromatic heterocyclic carbonyl”, “non-aromatic heterocyclic oxycarbonyl”, “non-aromatic heterocyclic sulfanyl”, and “non-aromatic heterocyclic sulfonyl”
  • the “heterocyclic ring” moiety is the same as the above “non-aromatic heterocyclic group”.
  • Non-aromatic heterocyclic oxy means a group in which “non-aromatic heterocyclic” is bonded to an oxygen atom.
  • non-aromatic heterocyclic for example, piperidinyloxy, tetrahydrofuryloxy and the like can be mentioned.
  • Non-aromatic heterocyclic carbonyl means a group in which “non-aromatic heterocyclic” is bonded to a carbonyl group.
  • non-aromatic heterocyclic is bonded to a carbonyl group.
  • piperidinylcarbonyl, tetrahydrofurylcarbonyl and the like can be mentioned.
  • Non-aromatic heterocyclic oxycarbonyl means a group in which the above “non-aromatic heterocyclic oxy” is bonded to a carbonyl group.
  • piperidinyloxycarbonyl, tetrahydrofuryloxycarbonyl and the like can be mentioned.
  • Non-aromatic heterocyclic sulfanyl means a group in which a “non-aromatic heterocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • a “non-aromatic heterocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group.
  • piperidinylsulfanyl, tetrahydrofurylsulfanyl and the like can be mentioned.
  • Non-aromatic heterocyclic sulfonyl means a group in which “non-aromatic heterocyclic” is bonded to a sulfonyl group.
  • non-aromatic heterocyclic for example, piperidinylsulfonyl, tetrahydrofurylsulfonyl and the like can be mentioned.
  • substituents of “substituted or unsubstituted alkyl”, “substituted or unsubstituted alkyloxy”, “substituted or unsubstituted alkylcarbonyl”, and “substituted or unsubstituted alkyloxycarbonyl” include the following substituents: Is mentioned.
  • the carbon atom at any position may be bonded to one or more groups selected from the following substituents.
  • Substituents halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl, alkynyl Sulfonyl, monoalkyl
  • Substituents halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyl, alkenyl, alkynyl, haloalkyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkyloxyalkyl, alkylcarbonyl, alkenylcarbonyl, Alkynylcarbonyl, monoalkylamino, dialkylamin
  • substituted or unsubstituted non-aromatic carbocyclic group and “substituted or unsubstituted non-aromatic heterocyclic group” may be substituted with “oxo”. In this case, it means a group in which two hydrogen atoms on a carbon atom are substituted as follows.
  • non-aromatic carbocycle and the non-aromatic heterocyclic portion of the above-mentioned “substituted or unsubstituted non-aromatic carbocyclic carbonyl” and “substituted or unsubstituted non-aromatic heterocyclic carbonyl” It may be substituted with “oxo”.
  • Alkyl substituted with amino means a group in which one or more amino groups are replaced with a hydrogen atom bonded to a carbon atom of the above “alkyl”. Examples include aminomethyl, 1-aminoethyl, 2-aminomethyl, 1-aminopropyl, 2-aminopropyl, 1,2-diaminoethyl and the like.
  • alkyl substituted with amino includes 2-aminoethyl.
  • Alkylcarbonyl substituted with amino means a group in which one or more amino groups are replaced with a hydrogen atom bonded to a carbon atom of the above “alkylcarbonyl”. Examples include aminomethylcarbonyl, 1-aminoethylcarbonyl, 2-aminoethylcarbonyl, 1-aminopropylcarbonyl, 2-aminopropylcarbonyl, 1,2-diaminopropylcarbonyl, and the like.
  • alkylcarbonyl substituted with amino includes aminomethylcarbonyl.
  • ⁇ ⁇ ⁇ ⁇ yl substituted with alkyl ⁇ means a group in which one or more of the above ‘alkyl’ groups are replaced with a hydrogen atom bonded to a silicon atom of the silyl group. Examples thereof include methylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl and the like.
  • sil substituted with alkyl includes tert-butyldimethylsilyl.
  • amide protecting group means a group that can replace a hydrogen atom bonded to a nitrogen atom of an amide group and can be deprotected after a desired reaction.
  • Amide protecting groups include alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, benzyloxyalkyl and the like.
  • allyl methoxymethyl, benzyloxymethyl, tert-butyldimethylsiloxymethyl, pyrrolidinomethyl, methoxy, benzyloxy, methylthio, N-triphenylmethylthio, tert-butyldimethylsilyl, 4-methoxyphenyl 4- (methoxymethoxy) phenyl, benzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, di (4-methoxyphenyl) methyl, di (4-methoxyphenyl) phenylmethyl, N-tert-butoxycarbonyl, etc.
  • Protective Groups in Organic Synthesis T. W. By Greene, John Wiley & Sons Inc. The thing described in is mentioned.
  • the compounds of formula (I) or formula (II) are not limited to specific isomers, but all possible isomers (eg keto-enol isomers, imine-enamine isomers, diastereoisomers) Isomers, optical isomers, rotational isomers, etc.), racemates or mixtures thereof.
  • One or more hydrogen, carbon and / or other atoms of the compound of formula (I) or formula (II) may be replaced with hydrogen, carbon and / or isotopes of other atoms, respectively.
  • Examples of such isotopes are 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, 123 I and
  • hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, iodine and chlorine are included.
  • the compound represented by the formula (I) or the formula (II) includes a compound substituted with such an isotope.
  • the compound substituted with the isotope is also useful as a pharmaceutical, and includes all radiolabeled compounds of the compound represented by formula (I) or formula (II).
  • a “radiolabeling method” for producing the “radiolabeled product” is also encompassed in the present invention, and is useful as a metabolic pharmacokinetic study, a study in a binding assay, and / or a diagnostic tool.
  • the radiolabeled compound of the compound represented by formula (I) or formula (II) can be prepared by a method well known in the art.
  • a tritium-labeled compound represented by the formula (I) or the formula (II) can be converted into a tritium-containing compound represented by the formula (I) or the formula (II) by a catalytic dehalogenation reaction using tritium.
  • This method comprises a precursor and tritium in which a compound of formula (I) or formula (II) is appropriately halogen-substituted in the presence of a suitable catalyst such as Pd / C, in the presence or absence of a base. It includes reacting with a gas.
  • Suitable methods for preparing other tritium labeled compounds include the document Isotopes in the Physical and Biomedical Sciences, Vol. 1, Labeled Compounds (Part A), Chapter 6 (1987). 14 C-labeled compounds can be prepared by using raw materials having 14 C carbon.
  • Examples of the pharmaceutically acceptable salt of the compound represented by the formula (I) or the formula (II) or the salt of the compound represented by the formula (II) include, for example, a compound represented by the formula (I) or the formula (II) , Alkali metals (eg, lithium, sodium, potassium, etc.), alkaline earth metals (eg, calcium, barium, etc.), magnesium, transition metals (eg, zinc, iron, etc.), ammonia, organic bases (eg, trimethylamine, triethylamine) , Dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline, etc.) and salts with amino acids, or inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, hydrobromic acid) , Phosphoric acid, hydroiodic acid, etc.) and organic (For example, formic acid,
  • the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof or the salt of the compound represented by the formula (II) is a solvate (for example, hydrate etc.) and / or Alternatively, crystal polymorphs may be formed, and the present invention also includes such various solvates and crystal polymorphs.
  • the “solvate” may be coordinated with any number of solvent molecules (for example, water molecules) with respect to the compound represented by the formula (I) or the formula (II).
  • solvent molecules for example, water molecules
  • the compound represented by the formula (I) or the formula (II) or a pharmaceutically acceptable salt thereof or a salt of the compound represented by the formula (II) is left in the air, the water is absorbed, It may adhere or form a hydrate.
  • the compound represented by the formula (I) or the formula (II) or a pharmaceutically acceptable salt thereof or the salt of the compound represented by the formula (II) is recrystallized to form a crystalline
  • the compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof may form a prodrug, and the present invention includes such various prodrugs.
  • a prodrug is a derivative of a compound of the invention that has a group that can be chemically or metabolically degraded and is a compound that becomes a pharmaceutically active compound of the invention in vivo by solvolysis or under physiological conditions.
  • a prodrug is hydrolyzed by a compound that is enzymatically oxidized, reduced, hydrolyzed, etc. under physiological conditions in vivo to be converted into a compound represented by formula (I) or formula (II), gastric acid, etc.
  • the compound etc. which are converted into the compound shown by Formula (I) or Formula (II) are included.
  • the compound represented by formula (I) or formula (II) or a pharmaceutically acceptable salt thereof has a hydroxyl group
  • a compound having a hydroxyl group and a suitable acyl halide, a suitable acid anhydride, a suitable acid anhydride examples thereof include prodrugs such as acyloxy derivatives and sulfonyloxy derivatives produced by reacting sulfonyl chloride, a suitable sulfonyl anhydride and mixed anhydride, or reacting with a condensing agent.
  • the compound represented by the formula (I) or the formula (II) according to the present invention can be produced, for example, by the general synthesis method shown below. Extraction, purification, and the like may be performed in a normal organic chemistry experiment.
  • the synthesis of the compound of the present invention can be carried out in consideration of a technique known in the art.
  • the compound represented by the formula (I) or the formula (II) according to the present invention can be produced, for example, by a general synthesis method shown below.
  • Compound a3 can be obtained by reacting compound a1 with compound a2 in the presence of a condensing agent.
  • dicyclohexylcarbodiimide carbonyldiimidazole, dicyclohexylcarbodiimide-N-hydroxybenzotriazole, EDC, 4- (4,6-dimethoxy-1,3,5, -triazin-2-yl) -4- Examples thereof include methylmorpholinium chloride and HATU, and 1 to 5 molar equivalents can be used with respect to compound i1.
  • the reaction temperature is ⁇ 20 ° C. to 60 ° C., preferably 0 ° C. to 30 ° C.
  • the reaction time is 0.1 to 24 hours, preferably 1 to 12 hours.
  • reaction solvent examples include DMF, DMA, NMP, tetrahydrofuran, dioxane, dichloromethane, acetonitrile and the like, and these can be used alone or in combination.
  • First Step A halide can be obtained by reacting compound b1 with a halogenating agent.
  • halogenating agent examples include thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like, and 1 to 5 molar equivalents can be used with respect to compound j1.
  • a sulfonyl compound can be obtained by reacting compound b1 with a sulfonylating agent in the presence of a base such as triethylamine or pyridine.
  • sulfonylating agent examples include methanesulfonyl chloride, p-toluenesulfonyl chloride and the like, and 1 to 5 molar equivalents can be used with respect to compound b1.
  • the reaction temperature is ⁇ 80 ° C. to 50 ° C., preferably ⁇ 20 ° C. to 20 ° C.
  • the reaction time is 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • reaction solvent acetonitrile, tetrahydrofuran, toluene, dichloromethane or the like can be used.
  • Second Step Compound b3 can be obtained by reacting the obtained halide or sulfonyl compound with compound b2 in the presence of a base.
  • Examples of the base include DIEA, potassium carbonate, sodium hydrogen carbonate, sodium hydride, sodium hydroxide and the like.
  • the reaction temperature is 0 ° C. to 150 ° C., preferably 20 ° C. to 100 ° C.
  • the reaction time is 0.5 to 120 hours, preferably 1 to 72 hours.
  • reaction solvent examples include acetonitrile, tetrahydrofuran, toluene, dichloromethane and the like.
  • Compound c2 can be obtained by reacting compound c1 with an acid or a Lewis acid.
  • Examples of the acid include hydrochloric acid-ethyl acetate, hydrochloric acid-methanol, hydrochloric acid-dioxane, sulfuric acid, formic acid, trifluoroacetic acid and the like.
  • Examples of the Lewis acid include trimethylsilyl iodide, BBr 3 , AlCl 3 , BF 3. (Et 2 O) and the like, and 1 to 10 molar equivalents can be used with respect to the compound c1.
  • the reaction temperature is 0 ° C to 60 ° C, preferably 0 ° C to 20 ° C.
  • the reaction time is 0.5 to 12 hours, preferably 1 to 6 hours.
  • reaction solvent examples include methanol, ethanol, water, acetone, acetonitrile, DMF and the like, and these can be used alone or in combination.
  • First Step Compound (A1) can be debocated to obtain compound (A2) by the general synthesis method 0-C.
  • Hydrogen pressure is 1 to 50 atmospheres.
  • a hydrogen source cyclohexene, 1,4-cyclohexadiene, formic acid, ammonium formate, or the like can also be used.
  • the reaction temperature is 0 ° C. to 40 ° C., preferably 10 ° C. to 30 ° C.
  • the reaction time is 0.5 to 24 hours, preferably 1 to 12 hours.
  • reaction solvent examples include methanol, ethanol, water, tetrahydrofuran, ethyl acetate and the like, and these can be used alone or in combination.
  • Compound (A7) is obtained by reacting compound (A5) with compound (A6) having an appropriate leaving group X 1 by the method of second step of general synthesis method 0-B. Can do.
  • compound (A8) can be obtained by reacting compound (A7) with ammonium chloride in the presence of a condensing agent.
  • Pg 2 is an amide protecting group such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxymethyl group
  • Pg 3 and Pg 4 are trimethylsilyl (TMS) groups or t-butyldimethyl
  • TMS trimethylsilyl
  • X 2 and X 3 are halogens, and other symbols are as defined above.
  • Examples of the base include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, calcium carbonate, cesium carbonate, pyridine, triethylamine, diisopropylethylamine, DBU, DBN and the like, and 1 to 5 mol relative to the compound (B1) An equivalent amount can be used.
  • the reaction temperature is ⁇ 10 ° C. to 80 ° C., preferably 10 ° C. to 60 ° C.
  • the reaction time is 0.5 to 48 hours, preferably 1 to 24 hours.
  • reaction solvent examples include tetrahydrofuran, dioxane, acetonitrile, water, DMF, dichloromethane and the like, and these can be used alone or in combination.
  • Second step compound (B2) by reacting the acid, only Pg 4 group is a protecting group for the primary hydroxyl group selectively deprotected, to give compound (B3).
  • Examples of the acid include trifluoroacetic acid, formic acid, hydrochloric acid, sulfuric acid, acetic acid, oxalic acid, and the like, and can be used at 0.1 to 10 molar equivalents relative to the compound (B2).
  • the reaction temperature is 0 ° C. to 90 ° C., preferably 20 ° C. to 60 ° C.
  • the reaction time is 0.5 to 12 hours, preferably 1 to 6 hours.
  • reaction solvent examples include THF, methanol, ethanol, water, acetone, acetonitrile, DMF, dichloromethane and the like, and these can be used alone or in combination.
  • Third Step Compound (B4) can be obtained by reacting compound (B3) with (X 2 ) 2 (for example, iodine or the like) or C (X 2 ) 4 and phosphine in the presence of a base.
  • (X 2 ) 2 for example, iodine or the like
  • C (X 2 ) 4 phosphine
  • Examples of (X 2 ) 2 include iodine, bromine and the like, and 1 to 10 molar equivalents can be used with respect to compound (B3).
  • C (X 2 ) 4 includes carbon tetrabromide, carbon tetrachloride and the like, and can be used at 1 to 10 molar equivalents relative to compound (B3).
  • phosphine examples include triphenylphosphine and tributylphosphine, and 1 to 10 molar equivalents can be used with respect to compound (B3).
  • Examples of the base include pyridine, triethylamine, diisopropylethylamine, imidazole and the like, and 1 to 5 molar equivalents can be used with respect to compound (B3).
  • the reaction temperature is 0 ° C. to 60 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is 0.5 to 24 hours, preferably 0.5 to 16 hours.
  • reaction solvent examples include dioxane, dichloromethane, tetrahydrofuran, acetonitrile and the like, and they can be used alone or in combination.
  • the compound (B5) can be obtained by reacting the compound (B4) with a base.
  • Examples of the base include DBU, DBN, sodium ethoxide, sodium methoxide and the like, and 1 to 5 molar equivalents can be used with respect to the compound (B4).
  • the reaction temperature is 0 ° C. to 60 ° C., preferably 0 ° C. to 25 ° C.
  • the reaction time is 0.5 to 48 hours, preferably 0.5 to 24 hours.
  • reaction solvent examples include acetonitrile, tetrahydrofuran, DMF, dioxane and the like, and they can be used alone or in combination.
  • a vinyl halide compound (B6) can be obtained by reacting the compound (B5) with an oxidative halogenating agent.
  • oxidative halogenating agent examples include iodonium dicorydinium triflate (IDCT), iodonium dicorydinium perchlorate (IDCP) and the like, and 1 to 5 molar equivalents can be used with respect to compound (B5).
  • IDCT iodonium dicorydinium triflate
  • IDCP iodonium dicorydinium perchlorate
  • the reaction temperature is -78 ° C to 25 ° C, preferably -40 ° C to 25 ° C.
  • the reaction time is 0.5 hours to 5 hours, preferably 0.5 hours to 1 hour.
  • reaction solvent examples include acetonitrile, propionitrile, dichloromethane, THF, dioxane, diethyl ether, ethyl acetate and the like, and these can be used alone or in combination.
  • Pg 1 is a carboxy protecting group such as a methyl group, an ethyl group, or a tert-butyl (t-Bu) group
  • Pg 2 is a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxy group.
  • First Step Compound (C1) can be obtained by reacting compound (A8) with vinyl halide compound (B6) in the presence of a copper catalyst, a ligand and a base.
  • the copper catalyst examples include copper iodide, bromide cylinder, copper chloride, copper acetate and the like, and it can be used at 0.1 to 1 molar equivalent relative to the compound (B6).
  • Examples of the base include cesium carbonate, potassium carbonate, sodium carbonate, calcium carbonate and the like, and 1 to 10 molar equivalents can be used with respect to the compound (B6).
  • the ligands include (1R, 2R) -N, N'-dimethyl-1,2-diphenylethane-1,2-diamine, (1S, 2S) -N, N'-dimethyl-1,2-diphenyl
  • Examples include ethane-1,2-diamine, N, N′-dimethylethane-1,2-diamine, 1,10-phenanthroline, and the like, and 0.1 to 2 molar equivalents are used relative to compound (B6). Can do.
  • the reaction temperature is 20 ° C. to the reflux temperature of the solvent, and in some cases, the temperature under microwave irradiation.
  • the reaction time is 0.1 to 48 hours, preferably 0.5 to 12 hours.
  • reaction solvent examples include tetrahydrofuran, dioxane, toluene, DMF, dichloromethane, water and the like, and these can be used alone or in combination.
  • the compound (C2) can be obtained by reacting the compound (C1) with an acid or a Lewis acid and deprotecting by the general synthesis method 0-C.
  • Examples of the acid include hydrochloric acid-ethyl acetate, hydrochloric acid-methanol, hydrochloric acid-dioxane, sulfuric acid, formic acid, trifluoroacetic acid and the like.
  • Examples of the Lewis acid include BCl 3 , PhBCl 2 , trimethylsilyl iodide, BBr 3 , AlCl 3 , BF 3. (Et 2 O), FeCl 3 , TiCl 4 , Ti (OEt) 4, and the like (C1). 1 to 30 molar equivalents can be used.
  • the compound (C3) can be obtained by reacting the compound (C2) with a fluorine reagent to deprotect the hydroxy protecting group Pg 3 .
  • Fluorine reagents include hydrogen fluoride triethylamine, hydrogen fluoride pyridine, tetrabutylammonium fluoride, cesium fluoride, and the like, and can be used at 1 to 50 molar equivalents relative to compound (C2).
  • the reaction temperature is -78 ° C to 60 ° C, preferably -78 ° C to 30 ° C.
  • the reaction time is 0.5 to 120 hours, preferably 1 to 96 hours.
  • reaction solvent examples include acetonitrile, dichloromethane, tetrahydrofuran, nitromethane and the like, and they can be used alone or in combination.
  • Pg 1 is a carboxy protecting group such as a methyl group, an ethyl group, or a tert-butyl (t-Bu) group
  • Pg 2 is a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxy group.
  • First Step Compound (B7) can be obtained by cross-coupling using copper by adding formamide to compound (B6) in the presence of a copper catalyst, a ligand, and a base.
  • the copper catalyst examples include copper iodide, bromide cylinder, copper chloride, copper acetate and the like, and it can be used at 0.1 to 1 molar equivalent relative to the compound (B6).
  • Examples of the base include cesium carbonate, potassium carbonate, sodium carbonate, calcium carbonate and the like, and 1 to 10 molar equivalents can be used with respect to the compound (B6).
  • Examples of the ligand include N, N'-dimethylethane-1,2-diamine, (1R, 2R) -N, N'-dimethyl-1,2-diphenylethane-1,2-diamine, (1S, 2S ) -N, N′-dimethyl-1,2-diphenylethane-1,2-diamine, 1,10-phenanthroline, etc., and is used in an amount of 0.1 to 2 molar equivalents relative to compound (B6). be able to.
  • the reaction temperature is 20 ° C. to the reflux temperature of the solvent, and in some cases, the temperature under microwave irradiation.
  • the reaction time is 0.1 to 48 hours, preferably 0.5 to 12 hours.
  • reaction solvent examples include tetrahydrofuran, toluene, DMF, dioxane, dichloromethane, water and the like, and these can be used alone or in combination.
  • An isonitrile compound (B8) can be obtained by reacting compound (B7) with triphosgene in the presence of a base.
  • Examples of the base include triethylamine, diisopropylethylamine, potassium carbonate, sodium cesium carbonate, calcium carbonate and the like.
  • the reaction temperature is ⁇ 80 ° C. to 50 ° C., preferably ⁇ 78 ° C. to 0 ° C.
  • the reaction time is 0.1 to 24 hours, preferably 0.5 to 12 hours.
  • reaction solvent examples include toluene, chloroform, dichloromethane, tetrahydrofuran and the like.
  • Third Step A compound (D1) can be obtained by reacting the isonitrile compound (B8), the amine represented by H 2 N—Pg 4 and the aldehyde with the compound (A3 ′) (so-called Ugi reaction). it can.
  • the reaction temperature is 0 ° C. to 150 ° C., preferably 20 ° C. to 100 ° C.
  • the reaction time is 0.1 hour to 72 hours, preferably 0.5 hour to 48 hours.
  • reaction solvent examples include ethanol, methanol, toluene, chloroform, dichloromethane, tetrahydrofuran, dioxane and the like.
  • the compound (D2) can be obtained by debocating the compound (D1) by the general synthesis method 0-C.
  • compound (C1 ′) can be obtained by reacting compound (D2) with compound (A6 ′) in the presence of a condensing agent.
  • Sixth Step Compound (C2) can be obtained by deprotecting compound (C1 ′) by the method of the second step of general synthesis method 3.
  • Seventh Step Compound (C3) can be obtained by deprotecting compound (C2) by the method of third step of general synthesis method 3.
  • the compound of the present invention can be protected using a protecting group.
  • protecting groups include Protective Groups in Organic Synthesis, T., such as ethoxycarbonyl, t-butoxycarbonyl, acetyl, and benzyl. W. By Greene, John Wiley & Sons Inc. And the like. Methods for introducing and removing protecting groups are those commonly used in organic synthetic chemistry [for example, Protective Groups in Organic Synthesis, T. et al. W. By Greene, John Wiley & Sons Inc. Reference] etc., or can be obtained according to them.
  • the conversion of the functional group contained in each substituent can be performed by a known method other than the above production method [for example, Comprehensive Organic Transformations, R.C.
  • the intermediates and target compounds in each of the above production methods are isolated and purified by purification methods commonly used in synthetic organic chemistry such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, and various chromatography. can do.
  • the intermediate can be subjected to the next reaction without any particular purification.
  • R 1 is preferably a hydrogen atom or alkyl.
  • R 1 is more preferably a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, or isobutyl.
  • R 1 is more preferably a hydrogen atom or methyl.
  • R 2 is preferably a hydrogen atom, alkyl, or a group shown below:
  • R 2 is more preferably a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, isobutyl or a group shown below:
  • R 2 is more preferably a hydrogen atom or a group shown below:
  • R 2 is particularly preferably a group shown below:
  • R a is preferably hydroxy, alkyl, or halogen.
  • R a is more preferably a hydroxy, methyl, ethyl, chlorine atom, or fluorine atom.
  • R a is more preferably hydroxy.
  • n is preferably an integer of 0 to 3.
  • m is more preferably an integer of 0 to 2.
  • m is more preferably 0. However, When there are a plurality of R a s , they may be the same or different.
  • R 3 is preferably a hydrogen atom or alkyl.
  • R 3 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
  • R 4 is preferably a hydrogen atom or alkyl, or R 3 and R 4 may together form a cyclopropane ring.
  • R 4 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
  • R 5 is preferably a hydrogen atom or alkyl.
  • R 5 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
  • R 6 is preferably a hydrogen atom, alkyl, or a group shown below:
  • R 6 is more preferably a hydrogen atom, methyl, or a group shown below:
  • R 6 is more preferably represented by the formula:
  • R b is preferably hydroxy, alkyl, or halogen. R b is more preferably hydroxy.
  • n is preferably an integer of 0 to 3.
  • n is more preferably an integer of 0 or 1.
  • Rb when there are a plurality of Rb , they may be the same or different.
  • R 7 is preferably a hydrogen atom, alkyl substituted with amino, or alkylcarbonyl substituted with amino.
  • R 7 is more preferably a hydrogen atom or an alkylcarbonyl substituted with amino.
  • R 7 is more preferably a hydrogen atom, aminomethylcarbonyl, or aminoethylcarbonyl.
  • R 7 is particularly preferably a hydrogen atom or aminomethylcarbonyl.
  • R c is preferably a hydrogen atom or alkyl.
  • R c is more preferably a hydrogen atom, methyl, or ethyl.
  • R c is more preferably a hydrogen atom or methyl.
  • R c is particularly preferably a hydrogen atom.
  • R 8 is preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic Carbocyclic group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic A carbocyclic carbonyl, a substituted or unsubstituted non-aromatic carbocyclic carbonyl, a substituted or unsubstituted aromatic heterocyclic carbonyl, or a substituted or unsubstituted non-aromatic heterocyclic carbonyl.
  • R 8 is more preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted phenylcarbonyl, alkylcarbonyl, or alkyloxy.
  • R 8 is more preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, triethylsilyl, phenyl, p-methoxyphenyl, phenylcarbonyl, methylcarbonyl, tert-butylcarbonyl, methoxy, or ethoxy.
  • R 8 is particularly preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, or triethylsilyl.
  • L 1 is preferably a single bond, alkylene, alkenylene, or alkynylene.
  • L 1 is more preferably a single bond, methylene or ethylene.
  • L 1 is a single bond and R 8 is silyl substituted with a hydrogen atom or alkyl.
  • R 9 is preferably a hydrogen atom or a group represented by —OL 2 —R 11 .
  • R 9 is more preferably a hydrogen atom or —OH.
  • L 2 is preferably a single bond, alkylene, alkenylene, or alkynylene.
  • L 2 is more preferably a single bond, methylene, or ethylene.
  • L 2 is particularly preferably a single bond.
  • R 11 is preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic Carbocyclic group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic A carbocyclic carbonyl, a substituted or unsubstituted non-aromatic carbocyclic carbonyl, a substituted or unsubstituted aromatic heterocyclic carbonyl, or a substituted or unsubstituted non-aromatic heterocyclic carbonyl.
  • R 11 is more preferably a hydrogen atom, or silyl substituted with alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted phenylcarbonyl, alkylcarbonyl, or alkyloxy.
  • R 11 is more preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, triethylsilyl, phenyl, p-methoxyphenyl, phenylcarbonyl, methylcarbonyl, tert-butylcarbonyl, methoxy, or ethoxy.
  • R 11 is particularly preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, or triethylsilyl.
  • R 9 is —OL 2 —R 11 , L 2 is a single bond, and R 11 is a hydrogen atom or silyl substituted with alkyl.
  • R 10 is preferably a hydrogen atom or an amide protecting group.
  • R 10 is more preferably a hydrogen atom, alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, or benzyloxyalkyl.
  • R 10 is more preferably a hydrogen atom, methyloxymethyl, methyloxyethyloxymethyl, benzyl, or benzyloxymethyl.
  • R 10 is particularly preferably a hydrogen atom.
  • X is preferably halogen, —OS (O) 2 —R 14 , or isocyano.
  • X is more preferably a chlorine atom, a bromine atom, an iodine atom, or isocyano.
  • X is more preferably a bromine atom, an iodine atom, or isocyano.
  • R 14 is preferably alkyl, haloalkyl, or a substituted or unsubstituted aromatic carbocyclic group.
  • R 14 is more preferably methyl, trifluoromethyl, or p-methylphenyl.
  • R 12 is preferably a hydrogen atom or substituted or unsubstituted alkyl.
  • R 12 is more preferably methyl.
  • R 13 is preferably a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted nonaromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group.
  • R 13 is more preferably a hydrogen atom, a substituted or unsubstituted alkyl, or a substituted or unsubstituted aromatic carbocyclic group.
  • R 13 is more preferably a hydrogen atom, methyl, or phenyl.
  • Another feature of the compound according to the present invention is that by introducing an alkylcarbonyl group substituted by a hydrogen atom or amino in R 7 of formula (I), that is, by introducing an amino group at the terminal, It has MraY inhibitory activity and anti-gram-negative bacterial activity.
  • Another feature of the compound according to the present invention is that it has high MraY inhibitory activity and anti-gram-negative bacterial activity by introducing an m-hydroxybenzyl group in R 6 of formula (I).
  • Another feature of the compounds according to the present invention is that the 3′-position of the sugars of formula (I) and formula (II) (position corresponding to R 9 in formula (II)) is substituted with —OH. .
  • the 3 ′ position of the sugar of Pacidamycin D is unsubstituted.
  • the compound according to the present invention Since the compound according to the present invention has MraY inhibitory activity and anti-gram-negative bacterial activity, it is useful as a therapeutic and / or prophylactic agent for various diseases caused by pathogenic bacteria.
  • Oral administration may be carried out by preparing a commonly used dosage form such as tablets, granules, powders, capsules and the like according to conventional methods.
  • a commonly used dosage form such as tablets, granules, powders, capsules and the like according to conventional methods.
  • parenteral administration any commonly used dosage form such as an injection can be suitably administered. Since the compound according to the present invention has high oral absorbability, it can be suitably used as an oral preparation.
  • отное отное отное отное отное о ⁇ ное ком ⁇ онентs such as excipients, binders, disintegrants, lubricants and the like suitable for the dosage form can be mixed with the effective amount of the compound of the present invention as necessary to obtain a pharmaceutical composition.
  • the dosage of the pharmaceutical composition of the present invention is preferably set in consideration of the age, weight, type and degree of disease, route of administration, etc. of the patient. 100 mg / kg / day, preferably in the range of 0.1 to 10 mg / kg / day. In the case of parenteral administration, although it varies greatly depending on the administration route, it is usually 0.005 to 10 mg / kg / day, preferably 0.01 to 1 mg / kg / day. This may be administered once to several times a day.
  • the compound according to the present invention is a nucleic acid antibiotic.
  • the compounds of the present invention have a broad spectrum of antibacterial activity, and various diseases caused by pathogenic bacteria in various mammals including humans such as respiratory tract infections, urinary tract infections, respiratory infections, sepsis, nephritis, gallbladder It can be used for the prevention or treatment of inflammation, oral infection, endocarditis, pneumonia, osteomyelitis, otitis media, enteritis, empyema, wound infection, opportunistic infection and the like.
  • the compound of the present invention exhibits MraY inhibitory action and is therefore effective against various bacteria including Gram-positive bacteria and Gram-negative bacteria.
  • a compound having an inhibitory effect on MraY acts at a position upstream in the biosynthetic pathway relative to the target of ⁇ -lactam antibiotics, and therefore, bacteria having resistance to ⁇ -lactam antibiotics, such as ⁇ -lactam resistant Pseudomonas aeruginosa, are used. It is expected to be effective against bacteria.
  • the NMR analysis obtained in each example was performed at 300 MHz and measured using DMSO-d 6 and CDCl 3 .
  • the underline in the NMR data in the examples indicates that the peak is a part with an underline.
  • RT represents LC / MS: retention time in liquid chromatography / mass spectrometry and was measured under the following conditions.
  • Measurement conditions 1 Column: Gemini-NX (5 ⁇ m, id 4.6 ⁇ 50 mm) (Phenomenex) Flow rate: 3 mL / min UV detection wavelength: 254 nm
  • Measurement condition 2 Column: Gemini-NX (5 ⁇ m, id 4.6 ⁇ 50 mm) (Phenomenex) Flow rate: 3 mL / min UV detection wavelength: 254 nm
  • Measurement condition 3 Column: Shim-pack XR-ODS (2.2 ⁇ m, id 50 ⁇ 3.0 mm) (Shimadzu) Flow rate: 1.6 mL / min UV detection wavelength: 254 nm
  • reaction solution was partitioned between ethyl acetate and 0.2 mol / L hydrochloric acid, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (15 ⁇ 2.6 cm, chloroform / methanol 100/0 to 80/20) to obtain compound (7) (754.4 mg, 69%) as a brown solid substance.
  • reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with 0.2 mol / L hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (13 ⁇ 4.6 cm, chloroform / methanol 100/0 to 91/9) to obtain compound (8) (1.96 g, 82%) as a white solid substance.
  • reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (13 ⁇ 4.6 cm, hexane / ethyl acetate 90/10 to 83/17) to obtain compound (10) (1.80 g, 99%) as a colorless oily substance.
  • reaction mixture was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (17 ⁇ 4.8 cm, hexane / ethyl acetate 80/20 to 60/40) to obtain compound (11) (4.5 g, 83%) as a white solid substance.
  • reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (10 ⁇ 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain compound (13) (130 mg, 93%) as a colorless oily substance.
  • the reaction mixture was partitioned between ethyl acetate and 5% aqueous sodium thiosulfate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (7.5 ⁇ 2 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain Compound (14) (53 mg, 79%) as a pale yellow oily substance.
  • reaction mixture was diluted with ethyl acetate, insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (10 ⁇ 2.6 cm, chloroform / methanol 100/0 to 91/9) to obtain compound (15) (144.7 mg, 86%) as a white solid substance.
  • Example 1 Synthesis of Compound (3'-OH-pacidamycin D) (15) To a solution of 30 mg, 0.024 mmol) in dichloromethane (2 mL), 1 mol / L boron trichloride-dichloromethane solution (0.243 ml, 0.243 mmol) was added at ⁇ 78 ° C. in a nitrogen atmosphere, treated at the same temperature for 1 hour, and then treated at ⁇ 40 ° C. for 1 hour.
  • the reaction mixture was concentrated under reduced pressure, and the residue was purified by octadecyl silica column chromatography (30 ⁇ 1.1 cm, 0.1% aqueous trifluoroacetic acid / acetonitrile 100/0 to 60/40).
  • the compound (3′-OH-pacidamycin D, 5.1 mg, 25% over 2 steps) was obtained as a white foam.
  • reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (7.5 ⁇ 2 cm, hexane / ethyl acetate 50/50 to 20/80) to obtain compound (24) (10 mg, 79%) as a white foam.
  • reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (15 ⁇ 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain compound (26) (424.9 mg, 83%) as a colorless oily substance.
  • reaction mixture was partitioned between ethyl acetate and 5% aqueous sodium thiosulfate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (7.5 ⁇ 2 cm, hexane / ethyl acetate 85/15) to obtain compound (30) (35 mg, 53%) as a pale yellow oily substance.
  • reaction mixture was diluted with ethyl acetate, insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure.
  • the residue was purified by silica gel column chromatography (7.5 ⁇ 2 cm, chloroform / methanol 100/0 to 95/5) to obtain compound (31) (42.4 mg, 69%) as a pale yellow solid substance.
  • Example 3 It was synthesized by the route using Ugi reaction.
  • the target product was obtained as a mixture of two diastereomers (1: 1) and separated and purified by preparative TLC, but the compound having a higher Rf value was used.
  • the absolute configuration of the asymmetric carbon indicated by an asterisk has not been determined.
  • Example 4 It was synthesized by the route using Ugi reaction.
  • the target product was obtained as a mixture of two diastereomers (1: 1) and separated and purified by preparative TLC, but the compound having a smaller Rf value was used.
  • the absolute configuration of the asymmetric carbon indicated by an asterisk has not been determined.
  • Test Example 1 In vitro measurement of antibacterial activity (Test method) The minimum growth inhibitory concentration (MIC: ⁇ g / ml) was determined by a micro liquid dilution method based on CLSI.
  • the bacterial species used are as follows. (1) P. aeruginosa ATCC 27853 (2) P. aeruginosa PAO1 (3) P. aeruginosa YY165 ( ⁇ mexB) (4) P. aeruginosa ATCC 25619 (5) P. aeruginosa SR 27156 Brain Heart Infusion Agar was used for pre-culture of the bacteria used for MIC measurement, and Mueller Hinton Broth was used for the MIC measurement medium. The amount of inoculum for MIC measurement was 5 ⁇ 10 5 CFU / ml, and was determined after culturing at 35 ° C. for 20 hours.
  • Test Example 2 MraY Inhibitory Activity Test Compound concentrations of various concentrations dissolved in 100% DMSO were added to a 384-well microplate at 0.5 ⁇ L / well (final compound concentration 25 ⁇ g / mL to 0.05 ng / mL, final DMSO concentration 2%).
  • a Staphylococcus aureus-derived MalaY enzyme solution diluted with assay buffer (50 mM Tris-HCl (pH 7.6), 50 mM KCl, 25 mM MgCl2, 0.2% Triton-X, 8% glycerol)
  • assay buffer 50 mM Tris-HCl (pH 7.6), 50 mM KCl, 25 mM MgCl2, 0.2% Triton-X, 8% glycerol
  • the substrate mixed solution was added at 20 ⁇ L / well (undecaprenyl phosphate final concentration 100 ⁇ M, dansyl-UDP-MurNAc-pentapeptide final concentration 20 ⁇ M).
  • the mixture was reacted at room temperature for 3 to 4 hours, and the fluorescence signal intensity was measured using a plate reader under conditions of an excitation wavelength of 355 nm and a fluorescence wavelength of 535 nm.
  • the inhibitory activity was calculated at the concentration of the compound exhibiting 50% inhibitory activity, assuming that the fluorescent signal value in the presence of the enzyme was 0% and the fluorescent signal value in the absence of the enzyme was 100% inhibitory activity.
  • Formulation Example 1 Tablet 15 mg of the present compound Lactose 15mg Calcium stearate 3mg Ingredients other than calcium stearate are uniformly mixed, crushed and granulated, and dried to obtain granules of an appropriate size. Next, calcium stearate is added and compressed to form tablets.
  • Formulation Example 2 Capsule Compound of the present invention 10 mg Magnesium stearate 10mg Lactose 80mg Are mixed uniformly to make a powder as a fine powder or powder. It is filled into a capsule container to form a capsule.
  • Formulation Example 3 Granules Compound of the present invention 30 g Lactose 265g Magnesium stearate 5g After mixing well, compression molding, pulverizing, sizing, and sieving to make granules of appropriate size.
  • the compound according to the present invention can be a pharmaceutical product such as an antibacterial agent.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The present invention addresses the problem of providing a new compound having antibacterial activity. Disclosed is a compound expressing antibacterial activity, more preferably an antibacterial nucleoside compound expressing antibacterial activity by inhibiting the activity of MraY, particularly a new derivative of Pacidamycin that is an MraY inhibitor. This new derivative of Pacidamycin or a pharmaceutically acceptable salt therof solve the abovementioned problem. By means of the method of the present invention, total synthesis of natural Pacidamycin D and its derivative is achieved.

Description

核酸抗生物質誘導体Nucleic acid antibiotic derivatives
 本発明は、抗菌活性を有する物質に関する。 The present invention relates to a substance having antibacterial activity.
 ヌクレオシドは最も重要な生体物質の1つである。これらは遺伝情報の保存・発現をつかさどるDNA・RNAの構成成分であるばかりでなく、補酵素や細胞内情報伝達物質等として機能したり、細胞内代謝やエネルギー供与にも関与し、多彩かつ重要な役割を担っている。古くからヌクレオシドは創薬化学研究を行う上でよいリードとして認識されており、様々なヌクレオシド系化合物が臨床使用されている。 Nucleosides are one of the most important biological substances. These are not only the components of DNA and RNA that control the storage and expression of genetic information, but also function as coenzymes and intracellular signaling substances, and are involved in intracellular metabolism and energy supply. Have a role to play. Nucleosides have long been recognized as a good lead for conducting drug discovery chemistry research, and various nucleoside compounds have been clinically used.
 一方、天然には、ヌクレオシドを構造中に含む化合物が存在する。これは、実に多種多様な生物活性、特に抗がん、抗ウイルス、抗菌、抗真菌活性等の有用な活性を有するものがある。したがって、ヌクレオシド系天然物も創薬開発のよいリードとなりうる。 On the other hand, naturally, there are compounds containing nucleosides in the structure. Some of these have useful activities such as anti-cancer, anti-viral, anti-bacterial and anti-fungal activities. Therefore, nucleoside natural products can be good leads for drug development.
 これらの創薬リードとしての潜在的な価値を創薬研究における成果体として具現化するためには、物理的・化学的安定性や活性の向上、構造の単純化、新たな機能の付加等の改変が必要とされ、それには有機合成化学を基盤とした化学修飾が用いられる。 In order to realize the potential value as a drug discovery lead as a product in drug discovery research, improvement of physical and chemical stability and activity, simplification of structure, addition of new functions, etc. Modifications are required, and chemical modifications based on synthetic organic chemistry are used.
 しかし、ヌクレオシド誘導体を合成する方法には、いくつかの克服すべき問題が存在する。例えば、含窒素芳香環である核酸塩基が基質に含まれているため、その高い配位能から使用できる試薬が限定され、また糖部へ増炭反応を行う際の原料となるアルデヒド、ケトン体が、各種反応条件において不安定であることが挙げられる。これらの問題を克服するために、発明者らは新規作用機序を有する抗菌ヌクレオシドの合成研究を行ってきた。 However, there are several problems to be overcome in the method for synthesizing nucleoside derivatives. For example, since nucleobase, which is a nitrogen-containing aromatic ring, is contained in the substrate, the reagents that can be used are limited due to its high coordination ability, and aldehydes and ketone bodies that are used as raw materials for the carbon increase reaction to the sugar part However, it is unstable under various reaction conditions. In order to overcome these problems, the inventors have conducted synthetic studies on antibacterial nucleosides having a novel mechanism of action.
 ペプチドグリカンは細胞壁の主要構成成分であり、その生合成経路において、MraY(細胞内膜酵素トランスロカーゼ I)が必須な酵素として作用している。よって、細胞壁合成阻害剤となりうるMraY阻害剤は、近年抗菌剤開発の新たな標的として注目されており、薬剤耐性菌を含む細菌に対して広く有効な薬剤の創製に繋がることが期待されている。現在臨床で広く利用されているグリコペプチド系(バンコマイシン、テイコプラニン)やβ-ラクタム系抗生物質の標的よりも生合成経路において上流に位置するため、MraY阻害剤は、MRSAやVREといった薬剤耐性菌を含む細菌に対して広く有効な薬剤の創製につながることが期待される(非特許文献1、非特許文献2を参照のこと)。 Peptidoglycan is a main component of the cell wall, and MraY (intracellular membrane enzyme translocase I) acts as an essential enzyme in the biosynthetic pathway. Accordingly, MraY inhibitors that can be cell wall synthesis inhibitors have recently attracted attention as new targets for the development of antibacterial agents, and are expected to lead to the creation of drugs that are widely effective against bacteria including drug-resistant bacteria. . Because it is located upstream in the biosynthetic pathway from targets of glycopeptides (vancomycin, teicoplanin) and β-lactam antibiotics that are currently widely used in clinical practice, MraY inhibitors are resistant to drug-resistant bacteria such as MRSA and VRE. It is expected to lead to the creation of drugs that are broadly effective against bacteria containing them (see Non-Patent Document 1 and Non-Patent Document 2).
 これまでに新規作用機序を有し、抗菌作用を有するヌクレオシド系化合物の単離や誘導体の合成研究が行なわれてきた。 So far, isolation of nucleoside compounds having a novel mechanism of action and antibacterial activity and synthetic studies on derivatives have been conducted.
 抗菌作用を有するヌクレオシド系化合物の例として、特許文献1~3には、Pacidamycin(パシダマイシン)類が、特許文献4および5には、Mureidomycin C(ムレイドマイシン C)が記載されているが、これらはすべて発酵法由来で製造されている。 As examples of nucleoside compounds having an antibacterial action, Patent Literatures 1 to 3 describe Pacidamycins (pacidamycins), and Patent Literatures 4 and 5 describe Mureidomycin C (mureidomycin C). Are all produced from fermentation.
中国特許第101153052号明細書Chinese Patent No. 101153052 米国特許第6228842号明細書US Pat. No. 6,228,842 国際公開第2000/044335号International Publication No. 2000/044335 特開平01-230568号公報Japanese Patent Laid-Open No. 01-230568 特開昭63-211295号公報JP 63-2111295 A
 本発明は、以下に関する。 The present invention relates to the following.
 (1)式(I): (1) Formula (I):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、
は、水素原子、またはアルキルであり、
は、水素原子、アルキル、または以下に示される基:
(Where
R 1 is a hydrogen atom or alkyl;
R 2 is a hydrogen atom, alkyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、Rは、ヒドロキシ、アルキル、またはハロゲンであり、および
mは、0~3の整数であり、ただし
が複数個ある場合は、同一または異なっていてもよい)であり、
は、水素原子、またはアルキルであり、
は、水素原子、もしくはアルキルであり、またはRおよびRは、一緒になってシクロプロパン環を形成していてもよく、
は、水素原子、またはアルキルであり、
は、水素原子、アルキル、または以下に示される基:
Wherein R a is hydroxy, alkyl, or halogen, and m is an integer of 0 to 3, provided that when there are a plurality of R a s , they may be the same or different.
R 3 is a hydrogen atom or alkyl;
R 4 is a hydrogen atom or alkyl, or R 3 and R 4 may together form a cyclopropane ring;
R 5 is a hydrogen atom or alkyl;
R 6 represents a hydrogen atom, alkyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、ヒドロキシ、アルキル、またはハロゲンであり、および
nは、0~3の整数であり、ただし
が複数個ある場合は、同一または異なっていてもよい)であり、ならびに
は、水素原子、アミノで置換されているアルキル、またはアミノで置換されているアルキルカルボニルである)
で示される化合物、またはその製薬上許容される塩、あるいは該化合物もしくは該塩の溶媒和物。
Wherein R b is hydroxy, alkyl, or halogen, and n is an integer of 0 to 3, provided that when there are a plurality of R b s , they may be the same or different. And R 7 is a hydrogen atom, alkyl substituted with amino, or alkylcarbonyl substituted with amino)
Or a pharmaceutically acceptable salt thereof, or the compound or a solvate of the salt.
 (2)Rが、ヒドロキシである、上記(1)記載の化合物、またはその製薬上許容される塩、あるいは該化合物もしくは該塩の溶媒和物。 (2) The compound according to the above (1), wherein R b is hydroxy, or a pharmaceutically acceptable salt thereof, or the compound or a solvate of the salt.
 (3)Rが、水素原子、メチル、または以下に示される基: (3) R 6 is a hydrogen atom, methyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
である、上記(1)または(2)記載の化合物、またはその製薬上許容される塩、あるいは該化合物もしくは該塩の溶媒和物。 The compound according to (1) or (2), or a pharmaceutically acceptable salt thereof, or a solvate of the compound or the salt.
 (4)Rが、水素原子、またはアミノで置換されているアルキルカルボニルである、上記(1)~(3)のいずれかに記載の化合物、またはその製薬上許容される塩、あるいは該化合物もしくは該塩の溶媒和物。 (4) The compound according to any one of (1) to (3) above, wherein R 7 is a hydrogen atom, or alkylcarbonyl substituted with amino, or a pharmaceutically acceptable salt thereof, or the compound Or a solvate of the salt.
 (5)式(II): (5) Formula (II):
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、水素原子、またはアルキルであり、 (Wherein R c is a hydrogen atom or alkyl,
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
が、以下に示される基: Is the group shown below:
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
であり、
は、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルであり、
は、単結合、アルキレン、アルケニレン、またはアルキニレンであり、
は、水素原子、または-O-L-R11で示される基であり、
は、単結合、アルキレン、アルケニレン、またはアルキニレンであり、
11は、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルであり、
10は、水素原子、またはアミド保護基であり、ならびに
Xは、ハロゲン、-OS(O)-R14、またはイソシアノであり、
14は、アルキル、ハロアルキル、または置換もしくは非置換の芳香族炭素環式基であり、または
式:
And
R 8 is a hydrogen atom, alkyl-substituted silyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic carbocyclic Group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic carbonyl Substituted or unsubstituted non-aromatic carbocyclic carbonyl, substituted or unsubstituted aromatic heterocyclic carbonyl, or substituted or unsubstituted non-aromatic heterocyclic carbonyl,
L 1 is a single bond, alkylene, alkenylene, or alkynylene;
R 9 is a hydrogen atom or a group represented by —OL 2 —R 11 ,
L 2 is a single bond, alkylene, alkenylene, or alkynylene;
R 11 is a hydrogen atom, alkyl-substituted silyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic carbocyclic Group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic carbonyl Substituted or unsubstituted non-aromatic carbocyclic carbonyl, substituted or unsubstituted aromatic heterocyclic carbonyl, or substituted or unsubstituted non-aromatic heterocyclic carbonyl,
R 10 is a hydrogen atom or an amide protecting group, and X is halogen, —OS (O) 2 —R 14 , or isocyano,
R 14 is alkyl, haloalkyl, or a substituted or unsubstituted aromatic carbocyclic group, or the formula:
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
が、以下に示される基: Is the group shown below:
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
(式中、R12は、水素原子、または置換もしくは非置換のアルキルであり、および
13は、水素原子、置換もしくは非置換のアルキル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、または置換もしくは非置換の非芳香族複素環式基である)である)
で示される化合物、またはその塩。
Wherein R 12 is a hydrogen atom, or substituted or unsubstituted alkyl, and R 13 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted An unsubstituted non-aromatic carbocyclic group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted non-aromatic heterocyclic group))
Or a salt thereof.
 (6)式: (6) Formula:
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
が、以下に示される基: Is the group shown below:
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
である、上記(5)記載の化合物、またはその塩。 The compound according to the above (5), or a salt thereof.
 (7)Lが、単結合であり、および
が、水素原子、またはアルキルで置換されているシリルである、上記(5)または6記載の化合物、またはその塩。
(7) The compound according to the above (5) or 6, or a salt thereof, wherein L 1 is a single bond, and R 8 is silyl substituted with a hydrogen atom or alkyl.
 (8)Rが、水素原子である、上記(5)~(7)のいずれかに記載の化合物、またはその塩。 (8) The compound or salt thereof according to any one of (5) to (7) above, wherein R 9 is a hydrogen atom.
 (9)Rが、-O-L-R11であり、
が、単結合であり、および
11が、水素原子、またはアルキルで置換されているシリルである、上記(5)~(8)のいずれかに記載の化合物、またはその塩。
(9) R 9 is —OL 2 —R 11
The compound or a salt thereof according to any one of the above (5) to (8), wherein L 2 is a single bond, and R 11 is a hydrogen atom or silyl substituted with alkyl.
 (10)R10が、水素原子、アルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシアルキル、ベンジル、ベンジルオキシ、またはベンジルオキシアルキルである、上記(5)~(9)のいずれかに記載の化合物、またはその塩。 (10) The compound according to any one of (5) to (9) above, wherein R 10 is a hydrogen atom, alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, or benzyloxyalkyl. Or its salt.
 (11)Xが、塩素原子、臭素原子、またはヨウ素原子である、上記(5)~(10)のいずれかに記載の化合物、またはその塩。 (11) The compound or salt thereof according to any one of (5) to (10) above, wherein X is a chlorine atom, a bromine atom, or an iodine atom.
 (12)上記(1)~(4)のいずれかに記載の化合物、またはその製薬上許容される塩を含有する医薬組成物。 (12) A pharmaceutical composition comprising the compound according to any one of (1) to (4) above or a pharmaceutically acceptable salt thereof.
 (13)MraY阻害作用を有する上記(12)に記載の医薬組成物。 (13) The pharmaceutical composition according to the above (12), which has MraY inhibitory action.
 (14)抗菌活性を有する上記(12)または(13)に記載の医薬組成物。 (14) The pharmaceutical composition according to the above (12) or (13) having antibacterial activity.
 (15)病原性細菌により生ずる種々の疾病の治療または予防剤を製造するための、上記(1)~(4)のいずれかに記載の化合物、またはその製薬上許容される塩の使用。 (15) Use of the compound according to any one of (1) to (4) above or a pharmaceutically acceptable salt thereof for the manufacture of a therapeutic or prophylactic agent for various diseases caused by pathogenic bacteria.
 (16)病原性細菌により生ずる種々の疾病を治療または予防するための、上記(1)~(4)のいずれかに記載の化合物、またはその製薬上許容される塩。 (16) The compound according to any one of (1) to (4) or a pharmaceutically acceptable salt thereof for treating or preventing various diseases caused by pathogenic bacteria.
 (17)上記(1)~(4)のいずれかに記載の化合物、またはその製薬上許容される塩を投与することを特徴とする、病原性細菌により生ずる種々の疾病の治療または予防方法。 (17) A method for treating or preventing various diseases caused by pathogenic bacteria, comprising administering the compound according to any one of (1) to (4) above or a pharmaceutically acceptable salt thereof.
 (18)上記(12)~(14)のいずれかに記載の医薬組成物であって、以下に記載される病原性細菌により生ずる種々の疾病を処置する、医薬組成物:気道感染症、***症、呼吸器感染症、敗血症、腎炎、胆嚢炎、口腔内感染症、心内膜炎、肺炎、骨髄膜炎、中耳炎、腸炎、蓄膿、創傷感染、または日和見感染等。 (18) The pharmaceutical composition according to any one of (12) to (14) above, which treats various diseases caused by pathogenic bacteria described below: respiratory tract infection, urine Tract infection, respiratory infection, sepsis, nephritis, cholecystitis, oral infection, endocarditis, pneumonia, osteomyelitis, otitis media, enteritis, empyema, wound infection, opportunistic infection, etc.
 (19)上記(1)~(4)のいずれかに記載の化合物、その製薬上許容される塩、またはそれらの溶媒和物を含有する核酸系抗生物質。 (19) A nucleic acid antibiotic containing the compound according to any one of (1) to (4) above, a pharmaceutically acceptable salt thereof, or a solvate thereof.
 (20)上記(5)~(10)のいずれかに記載の化合物を使用して、上記(1)~(4)のいずれかに記載の化合物を合成する方法。 (20) A method of synthesizing the compound described in any of (1) to (4) above using the compound described in any of (5) to (10) above.
 (21)上記(1)~(4)のいずれかに記載の化合物を合成するための、上記(5)~(10)のいずれかに記載の化合物の使用。 (21) Use of the compound according to any one of (5) to (10) above for synthesizing the compound according to any one of (1) to (4) above.
 本発明に係る化合物は、MraY阻害活性および抗グラム陰性菌活性を有し、病原性細菌により生ずる種々の疾病の治療剤および/または予防剤として有用である。本発明は、Pacidamycin誘導体およびその合成中間体に関する。本発明により、天然物Pacidamycin Dおよびその誘導体の全合成が達成された。 The compound according to the present invention has MraY inhibitory activity and anti-gram-negative bacterial activity, and is useful as a therapeutic and / or prophylactic agent for various diseases caused by pathogenic bacteria. The present invention relates to Pacidamycin derivatives and synthetic intermediates thereof. According to the present invention, the total synthesis of the natural product Pacidamycin D and its derivatives has been achieved.
 以下に本明細書において用いられる各用語の意味を説明する。各用語は特に断りのない限り、単独で用いられる場合も、または他の用語と組み合わせて用いられる場合も、同一の意味で用いられる。 The meaning of each term used in this specification is explained below. Unless otherwise specified, each term is used in the same meaning when used alone or in combination with other terms.
 「ハロゲン」とは、フッ素原子、塩素原子、臭素原子、およびヨウ素原子を包含する。特にフッ素原子、および塩素原子が好ましい。 “Halogen” includes fluorine atom, chlorine atom, bromine atom, and iodine atom. In particular, a fluorine atom and a chlorine atom are preferable.
 「アルキル」とは、炭素数1~15、好ましくは炭素数1~10、より好ましくは炭素数1~6、さらに好ましくは炭素数1~4の直鎖または分枝状の炭化水素基を包含する。例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、ネオペンチル、n-ヘキシル、イソヘキシル、n-へプチル、イソヘプチル、n-オクチル、イソオクチル、n-ノニル、n-デシル等が挙げられる。 “Alkyl” includes straight or branched hydrocarbon groups having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. To do. For example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, isohexyl, n-heptyl, isoheptyl, n-octyl , Isooctyl, n-nonyl, n-decyl and the like.
 「アルキル」の好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチルが挙げられる。さらに好ましい態様として、メチル、エチル、n-プロピル、イソプロピル、tert-ブチルが挙げられる。 Preferred examples of “alkyl” include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, and n-pentyl. Further preferred examples include methyl, ethyl, n-propyl, isopropyl and tert-butyl.
 「アルケニル」とは、任意の位置に1以上の二重結合を有する、炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の炭化水素基を包含する。例えば、ビニル、アリル、プロペニル、イソプロペニル、ブテニル、イソブテニル、プレニル、ブタジエニル、ペンテニル、イソペンテニル、ペンタジエニル、ヘキセニル、イソヘキセニル、ヘキサジエニル、ヘプテニル、オクテニル、ノネニル、デセニル、ウンデセニル、ドデセニル、トリデセニル、テトラデセニル、ペンタデセニル等が挙げられる。 “Alkenyl” has 2 to 15 carbon atoms, preferably 2 to 10 carbon atoms, more preferably 2 to 6 carbon atoms, and further preferably 2 to 4 carbon atoms, having one or more double bonds at any position. These linear or branched hydrocarbon groups are included. For example, vinyl, allyl, propenyl, isopropenyl, butenyl, isobutenyl, prenyl, butadienyl, pentenyl, isopentenyl, pentadienyl, hexenyl, isohexenyl, hexadienyl, heptenyl, octenyl, nonenyl, decenyl, undecenyl, dodecenyl, tridecenyl, decenyl, tridecenyl, decenyl Etc.
 「アルケニル」の好ましい態様として、ビニル、アリル、プロペニル、イソプロペニル、ブテニルが挙げられる。 Preferred examples of “alkenyl” include vinyl, allyl, propenyl, isopropenyl, and butenyl.
 「アルキニル」とは、任意の位置に1以上の三重結合を有する、炭素数2~10、好ましくは炭素数2~8、さらに好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の炭化水素基を包含する。例えば、エチニル、プロピニル、ブチニル、ペンチニル、ヘキシニル、ヘプチニル、オクチニル、ノニニル、デシニル等を包含する。これらはさらに任意の位置に二重結合を有していてもよい。 “Alkynyl” has 2 to 10 carbon atoms, preferably 2 to 8 carbon atoms, more preferably 2 to 6 carbon atoms, more preferably 2 to 4 carbon atoms, having one or more triple bonds at any position. Includes straight chain or branched hydrocarbon groups. Examples include ethynyl, propynyl, butynyl, pentynyl, hexynyl, heptynyl, octynyl, nonynyl, decynyl and the like. These may further have a double bond at an arbitrary position.
 「アルキニル」の好ましい態様として、エチニル、プロピニル、ブチニル、ペンチニルが挙げられる。 Preferred examples of “alkynyl” include ethynyl, propynyl, butynyl and pentynyl.
 「アルキレン」とは、炭素数1~15、好ましくは炭素数1~10、より好ましくは炭素数1~6、さらに好ましくは炭素数1~4の直鎖または分枝状の2価の炭化水素基を包含する。例えば、メチレン、エチレン、トリメチレン、プロピレン、テトラメチレン、ペンタメチレン、ヘキサメチレン等が挙げられる。 “Alkylene” is a straight or branched divalent hydrocarbon having 1 to 15 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and still more preferably 1 to 4 carbon atoms. Includes groups. Examples include methylene, ethylene, trimethylene, propylene, tetramethylene, pentamethylene, hexamethylene and the like.
 「アルケニレン」とは、任意の位置に1以上の二重結合を有する、炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の2価の炭化水素基を包含する。例えば、ビニレン、プロペニレン、ブテニレン、ペンテニレン等が挙げられる。 The term “alkenylene” refers to a carbon number of 2 to 15, preferably 2 to 10, more preferably 2 to 6 and even more preferably 2 to 4 having one or more double bonds at an arbitrary position. And a linear or branched divalent hydrocarbon group. For example, vinylene, propenylene, butenylene, pentenylene and the like can be mentioned.
 「アルキニレン」とは、任意の位置に1以上の三重結合を有する、炭素数2~15、好ましくは炭素数2~10、より好ましくは炭素数2~6、さらに好ましくは炭素数2~4の直鎖または分枝状の2価の炭化水素基を包含する。これらはさらに任意の位置に二重結合を有していてもよい。例えば、エチニレン、プロピニレン、ブチニレン、ペンチニレン、ヘキシニレン等が挙げられる。 “Alkynylene” refers to carbon atoms of 2 to 15, preferably 2 to 10, more preferably 2 to 6, more preferably 2 to 4 carbon atoms having one or more triple bonds at any position. A linear or branched divalent hydrocarbon group is included. These may further have a double bond at an arbitrary position. For example, ethynylene, propynylene, butynylene, pentynylene, hexynylene and the like can be mentioned.
 「芳香族炭素環式基」とは、単環または2環以上の、環状芳香族炭化水素基を意味する。例えば、フェニル、ナフチル、アントリル、フェナントリル等が挙げられる。 “Aromatic carbocyclic group” means a monocyclic or bicyclic or more cyclic aromatic hydrocarbon group. For example, phenyl, naphthyl, anthryl, phenanthryl and the like can be mentioned.
 「芳香族炭素環式基」の好ましい態様として、フェニルが挙げられる。 A preferred embodiment of the “aromatic carbocyclic group” includes phenyl.
 「非芳香族炭素環式基」とは、単環または2環以上の、環状飽和炭化水素基または環状非芳香族不飽和炭化水素基を意味する。2環以上の非芳香族炭素環式基は、単環または2環以上の非芳香族炭素環式基に、上記「芳香族炭素環式基」における環が縮合したものも包含する。 “Non-aromatic carbocyclic group” means a monocyclic or bicyclic or more cyclic saturated hydrocarbon group or cyclic non-aromatic unsaturated hydrocarbon group. The non-aromatic carbocyclic group having 2 or more rings also includes those in which the ring in the above “aromatic carbocyclic group” is condensed with a monocyclic or 2 or more non-aromatic carbocyclic groups.
 さらに、「非芳香族炭素環式基」は、以下のように架橋している基、またはスピロ環を形成する基も包含する。 Furthermore, the “non-aromatic carbocyclic group” includes a group that forms a bridge or a spiro ring as described below.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 単環の非芳香族炭素環式基としては、炭素数3~16が好ましく、より好ましくは炭素数3~12、さらに好ましくは炭素数4~8である。例えば、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、シクロプロペニル、シクロブテニル、シクロペンテニル、シクロヘキセニル、シクロヘプテニル、シクロヘキサジエニル等が挙げられる。 The monocyclic non-aromatic carbocyclic group preferably has 3 to 16 carbon atoms, more preferably 3 to 12 carbon atoms, and still more preferably 4 to 8 carbon atoms. Examples include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cyclopropenyl, cyclobutenyl, cyclopentenyl, cyclohexenyl, cycloheptenyl, cyclohexadienyl, and the like.
 2環以上の非芳香族炭素環式基としては、例えば、インダニル、インデニル、アセナフチル、テトラヒドロナフチル、フルオレニル等が挙げられる。 Examples of the non-aromatic carbocyclic group having two or more rings include indanyl, indenyl, acenaphthyl, tetrahydronaphthyl, fluorenyl and the like.
 「芳香族複素環式基」とは、O、SおよびNから任意に選択される同一または異なるヘテロ原子を環内に1以上有する、単環または2環以上の、芳香族環式基を意味する。 “Aromatic heterocyclic group” means a monocyclic or bicyclic or more aromatic cyclic group having one or more heteroatoms arbitrarily selected from O, S and N in the ring To do.
 2環以上の芳香族複素環式基は、単環または2環以上の芳香族複素環式基に、上記「芳香族炭素環式基」における環が縮合したものも包含する。 The aromatic heterocyclic group having two or more rings includes a monocyclic or two or more aromatic heterocyclic group condensed with a ring in the above “aromatic carbocyclic group”.
 単環の芳香族複素環式基としては、5~8員が好ましく、より好ましくは5員または6員である。例えば、ピロリル、イミダゾリル、ピラゾリル、ピリジル、ピリダジニル、ピリミジニル、ピラジニル、トリアゾリル、トリアジニル、テトラゾリル、フリル、チエニル、イソオキサゾリル、オキサゾリル、オキサジアゾリル、イソチアゾリル、チアゾリル、チアジアゾリル等が挙げられる。 The monocyclic aromatic heterocyclic group is preferably 5 to 8 members, more preferably 5 or 6 members. Examples include pyrrolyl, imidazolyl, pyrazolyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazolyl, triazinyl, tetrazolyl, furyl, thienyl, isoxazolyl, oxazolyl, oxadiazolyl, isothiazolyl, thiazolyl, thiadiazolyl, and the like.
 2環の芳香族複素環式基としては、例えば、インドリル、イソインドリル、インダゾリル、インドリジニル、キノリニル、イソキノリニル、シンノリニル、フタラジニル、キナゾリニル、ナフチリジニル、キノキサリニル、プリニル、プテリジニル、ベンズイミダゾリル、ベンズイソオキサゾリル、ベンズオキサゾリル、ベンズオキサジアゾリル、ベンズイソチアゾリル、ベンゾチアゾリル、ベンゾチアジアゾリル、ベンゾフリル、イソベンゾフリル、ベンゾチエニル、ベンゾトリアゾリル、イミダゾピリジル、トリアゾロピリジル、イミダゾチアゾリル、ピラジノピリダジニル、オキサゾロピリジル、チアゾロピリジル等が挙げられる。 Examples of the bicyclic aromatic heterocyclic group include indolyl, isoindolyl, indazolyl, indolizinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, naphthyridinyl, quinoxalinyl, purinyl, pteridinyl, benzimidazolyl, benzisoxazolyl, benzisoxazolyl, Oxazolyl, benzoxiazolyl, benzisothiazolyl, benzothiazolyl, benzothiadiazolyl, benzofuryl, isobenzofuryl, benzothienyl, benzotriazolyl, imidazopyridyl, triazolopyridyl, imidazothiazolyl, pyrazinopyr Dazinyl, oxazolopyridyl, thiazolopyridyl and the like can be mentioned.
 3環以上の芳香族複素環式基としては、例えば、カルバゾリル、アクリジニル、キサンテニル、フェノチアジニル、フェノキサチイニル、フェノキサジニル、ジベンゾフリル等が挙げられる。 Examples of the aromatic heterocyclic group having 3 or more rings include carbazolyl, acridinyl, xanthenyl, phenothiazinyl, phenoxathinyl, phenoxazinyl, dibenzofuryl and the like.
 「非芳香族複素環式基」とは、O、SおよびNから任意に選択される同一または異なるヘテロ原子を環内に1以上有する、単環または2環以上の、環状非芳香族環式基を意味する。 “Non-aromatic heterocyclic group” means a monocyclic or bicyclic or more cyclic non-aromatic cyclic group having at least one hetero atom selected from O, S and N in the ring. Means group.
 2環以上の非芳香族複素環式基は、単環または2環以上の非芳香族複素環式基に、上記「芳香族炭素環式基」、「非芳香族炭素環式基」、および/または「芳香族複素環式基」におけるそれぞれの環が縮合したものも包含する。 The non-aromatic heterocyclic group having 2 or more rings is a monocyclic or 2 or more non-aromatic heterocyclic group, the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group”, and Also included are those in which each ring in the “aromatic heterocyclic group” is condensed.
 さらに、「非芳香族複素環式基」は、以下のように架橋している基、またはスピロ環を形成する基も包含する。 Furthermore, the “non-aromatic heterocyclic group” includes a group that forms a bridge or a spiro ring as described below.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 単環の非芳香族複素環式基としては、3~8員が好ましく、より好ましくは5員または6員である。例えば、ジオキサニル、チイラニル、オキシラニル、オキセタニル、オキサチオラニル、アゼチジニル、チアニル、チアゾリジニル、ピロリジニル、ピロリニル、イミダゾリジニル、イミダゾリニル、ピラゾリジニル、ピラゾリニル、ピペリジル、ピペラジニル、モルホリニル、モルホリノ、チオモルホリニル、チオモルホリノ、ジヒドロピリジル、テトラヒドロピリジル、テトラヒドロフリル、テトラヒドロピラニル、ジヒドロチアゾリル、テトラヒドロチアゾリル、テトラヒドロイソチアゾリル、ジヒドロオキサジニル、ヘキサヒドロアゼピニル、テトラヒドロジアゼピニル、テトラヒドロピリダジニル、ヘキサヒドロピリミジニル、ジオキソラニル、ジオキサジニル、アジリジニル、ジオキソリニル、オキセパニル、チオラニル、チイニル、チアジニル等が挙げられる。 The monocyclic non-aromatic heterocyclic group is preferably 3 to 8 members, more preferably 5 or 6 members. For example, dioxanyl, thiranyl, oxiranyl, oxetanyl, oxathiolanyl, azetidinyl, thianyl, thiazolidinyl, pyrrolidinyl, pyrrolinyl, imidazolidinyl, imidazolinyl, pyrazolidinyl, pyrazolinyl, piperidyl, piperazinyl, morpholinyl, morpholino, thiomorpholinyl, morpholino, thiomorpholinyl, morpholino, thiomorpholinyl Furyl, tetrahydropyranyl, dihydrothiazolyl, tetrahydrothiazolyl, tetrahydroisothiazolyl, dihydrooxazinyl, hexahydroazepinyl, tetrahydrodiazepinyl, tetrahydropyridazinyl, hexahydropyrimidinyl, dioxolanyl, dioxazinyl Aziridinyl, dioxolinyl, oxepanyl, thiolanyl, thii Le, triazinyl, and the like.
 2環以上の非芳香族複素環式基としては、例えば、インドリニル、イソインドリニル、クロマニル、イソクロマニル等が挙げられる。 Examples of the non-aromatic heterocyclic group having two or more rings include indolinyl, isoindolinyl, chromanyl, isochromanyl and the like.
 「アルキルオキシ」とは、上記「アルキル」が酸素原子に結合した基を意味する。例えば、メトキシ、エトキシ、n-プロピルオキシ、イソプロピルオキシ、n-ブチルオキシ、tert-ブチルオキシ、イソブチルオキシ、sec-ブチルオキシ、ペンチルオキシ、イソペンチルオキシ、へキシルオキシ等が挙げられる。 “Alkyloxy” means a group in which the above “alkyl” is bonded to an oxygen atom. Examples thereof include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, isobutyloxy, sec-butyloxy, pentyloxy, isopentyloxy, hexyloxy and the like.
 「アルキルオキシ」の好ましい態様として、メトキシ、エトキシ、n-プロピルオキシ、イソプロピルオキシ、tert-ブチルオキシが挙げられる。 Preferred embodiments of “alkyloxy” include methoxy, ethoxy, n-propyloxy, isopropyloxy, and tert-butyloxy.
 「アルケニルオキシ」とは、上記「アルケニル」が酸素原子に結合した基を意味する。例えば、ビニルオキシ、アリルオキシ、1-プロペニルオキシ、2-ブテニルオキシ、2-ペンテニルオキシ、2-ヘキセニルオキシ、2-ヘプテニルオキシ、2-オクテニルオキシ等が挙げられる。 “Alkenyloxy” means a group in which the above “alkenyl” is bonded to an oxygen atom. Examples thereof include vinyloxy, allyloxy, 1-propenyloxy, 2-butenyloxy, 2-pentenyloxy, 2-hexenyloxy, 2-heptenyloxy, 2-octenyloxy and the like.
 「アルキニルオキシ」とは、上記「アルキニル」が酸素原子に結合した基を意味する。例えば、エチニルオキシ、1-プロピニルオキシ、2-プロピニルオキシ、2-ブチニルオキシ、2-ペンチニルオキシ、2-ヘキシニルオキシ、2-ヘプチニルオキシ、2-オクチニルオキシ等が挙げられる。 “Alkynyloxy” means a group in which the above “alkynyl” is bonded to an oxygen atom. Examples include ethynyloxy, 1-propynyloxy, 2-propynyloxy, 2-butynyloxy, 2-pentynyloxy, 2-hexynyloxy, 2-heptynyloxy, 2-octynyloxy and the like.
 「ハロアルキル」とは、1以上の上記「ハロゲン」が上記「アルキル」に結合した基を意味する。例えば、モノフルオロメチル、モノフルオロエチル、モノフルオロプロピル、2,2,3,3,3-ペンタフルオロプロピル、モノクロロメチル、トリフルオロメチル、トリクロロメチル、2,2,2-トリフルオロエチル、2,2,2-トリクロロエチル、1,2-ジブロモエチル、1,1,1-トリフルオロプロパン-2-イル等が挙げられる。 “Haloalkyl” means a group in which one or more of the above “halogens” are bonded to the above “alkyl”. For example, monofluoromethyl, monofluoroethyl, monofluoropropyl, 2,2,3,3,3-pentafluoropropyl, monochloromethyl, trifluoromethyl, trichloromethyl, 2,2,2-trifluoroethyl, 2, Examples include 2,2-trichloroethyl, 1,2-dibromoethyl, 1,1,1-trifluoropropan-2-yl and the like.
 「ハロアルキル」の好ましい態様として、トリフルオロメチル、トリクロロメチルが挙げられる。 Preferred embodiments of “haloalkyl” include trifluoromethyl and trichloromethyl.
 「ハロアルキルオキシ」とは、上記「ハロアルキル」が酸素原子に結合した基を意味する。例えば、モノフルオロメトキシ、モノフルオロエトキシ、トリフルオロメトキシ、トリクロロメトキシ、トリフルオロエトキシ、トリクロロエトキシ等が挙げられる。 “Haloalkyloxy” means a group in which the above “haloalkyl” is bonded to an oxygen atom. Examples thereof include monofluoromethoxy, monofluoroethoxy, trifluoromethoxy, trichloromethoxy, trifluoroethoxy, trichloroethoxy and the like.
 「ハロアルキルオキシ」の好ましい態様として、トリフルオロメトキシ、トリクロロメトキシが挙げられる。 Preferred embodiments of “haloalkyloxy” include trifluoromethoxy and trichloromethoxy.
 「アルキルオキシアルキル」とは、上記「アルキルオキシ」が上記「アルキル」に結合した基を意味する。例えば、メトキシメチル、メトキシエチル、エトキシメチル等が挙げられる。 “Alkyloxyalkyl” means a group in which the above “alkyloxy” is bonded to the above “alkyl”. For example, methoxymethyl, methoxyethyl, ethoxymethyl and the like can be mentioned.
 「アルキルオキシアルキルオキシ」とは、上記「アルキルオキシ」が上記「アルキルオキシ」に結合した基を意味する。例えば、メトキシメトキシ、メトキシエトキシ、エトキシメトキシ、エトキシエトキシ等が挙げられる。 “Alkyloxyalkyloxy” means a group in which the “alkyloxy” is bonded to the “alkyloxy”. Examples thereof include methoxymethoxy, methoxyethoxy, ethoxymethoxy, ethoxyethoxy and the like.
 「アルキルオキシアルキルオキシアルキル」とは、上記「アルキルオキシアルキルオキシ」が上記「アルキル」に結合した基を意味する。例えば、メトキシメトキシメチル、メトキシエトキシメチル、エトキシメトキシエチル、エトキシエトキシメチル等が挙げられる。 “Alkyloxyalkyloxyalkyl” means a group in which the “alkyloxyalkyloxy” is bonded to the “alkyl”. Examples thereof include methoxymethoxymethyl, methoxyethoxymethyl, ethoxymethoxyethyl, ethoxyethoxymethyl and the like.
 「アルキルカルボニル」とは、上記「アルキル」がカルボニル基に結合した基を意味する。例えば、メチルカルボニル、エチルカルボニル、プロピルカルボニル、イソプロピルカルボニル、tert-ブチルカルボニル、イソブチルカルボニル、sec-ブチルカルボニル、ペンチルカルボニル、イソペンチルカルボニル、へキシルカルボニル等が挙げられる。 “Alkylcarbonyl” means a group in which the above “alkyl” is bonded to a carbonyl group. Examples thereof include methylcarbonyl, ethylcarbonyl, propylcarbonyl, isopropylcarbonyl, tert-butylcarbonyl, isobutylcarbonyl, sec-butylcarbonyl, pentylcarbonyl, isopentylcarbonyl, hexylcarbonyl and the like.
 「アルキルカルボニル」の好ましい態様として、メチルカルボニル、エチルカルボニル、n-プロピルカルボニルが挙げられる。 Preferred examples of “alkylcarbonyl” include methylcarbonyl, ethylcarbonyl, and n-propylcarbonyl.
 「アルケニルカルボニル」とは、上記「アルケニル」がカルボニル基に結合した基を意味する。例えば、エチレニルカルボニル、プロペニルカルボニル等が挙げられる。 “Alkenylcarbonyl” means a group in which the above “alkenyl” is bonded to a carbonyl group. For example, ethylenylcarbonyl, propenylcarbonyl and the like can be mentioned.
 「アルキニルカルボニル」とは、上記「アルキニル」がカルボニル基に結合した基を意味する。例えば、エチニルカルボニル、プロピニルカルボニル等が挙げられる。 “Alkynylcarbonyl” means a group in which the above “alkynyl” is bonded to a carbonyl group. For example, ethynylcarbonyl, propynylcarbonyl and the like can be mentioned.
 「モノアルキルアミノ」とは、上記「アルキル」がアミノ基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルアミノ、エチルアミノ、イソプロピルアミノ等が挙げられる。 “Monoalkylamino” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group. For example, methylamino, ethylamino, isopropylamino and the like can be mentioned.
 「モノアルキルアミノ」の好ましい態様として、メチルアミノ、エチルアミノが挙げられる。 Preferred examples of “monoalkylamino” include methylamino and ethylamino.
 「ジアルキルアミノ」とは、上記「アルキル」がアミノ基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキル基は、同一でも異なっていてもよい。例えば、ジメチルアミノ、ジエチルアミノ、N,N-ジイソプロピルアミノ、N-メチル-N-エチルアミノ、N-イソプロピル-N-エチルアミノ等が挙げられる。 “Dialkylamino” means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkyl groups may be the same or different. Examples include dimethylamino, diethylamino, N, N-diisopropylamino, N-methyl-N-ethylamino, N-isopropyl-N-ethylamino and the like.
 「ジアルキルアミノ」の好ましい態様として、ジメチルアミノ、ジエチルアミノが挙げられる。 Preferred examples of “dialkylamino” include dimethylamino and diethylamino.
 「アルキルスルホニル」とは、上記「アルキル」がスルホニル基に結合した基を意味する。例えば、メチルスルホニル、エチルスルホニル、プロピルスルホニル、イソプロピルスルホニル、tert-ブチルスルホニル、イソブチルスルホニル、sec-ブチルスルホニル等が挙げられる。 “Alkylsulfonyl” means a group in which the above “alkyl” is bonded to a sulfonyl group. For example, methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, tert-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl and the like can be mentioned.
 「アルキルスルホニル」の好ましい態様として、メチルスルホニル、エチルスルホニルが挙げられる。 Preferred examples of “alkylsulfonyl” include methylsulfonyl and ethylsulfonyl.
 「アルケニルスルホニル」とは、上記「アルケニル」がスルホニル基に結合した基を意味する。例えば、エチレニルスルホニル、プロペニルスルホニル等が挙げられる。 “Alkenylsulfonyl” means a group in which the above “alkenyl” is bonded to a sulfonyl group. For example, ethylenylsulfonyl, propenylsulfonyl and the like can be mentioned.
 「アルキニルスルホニル」とは、上記「アルキニル」がスルホニル基に結合した基を意味する。例えば、エチニルスルホニル、プロピニルスルホニル等が挙げられる。 “Alkynylsulfonyl” means a group in which the above “alkynyl” is bonded to a sulfonyl group. For example, ethynylsulfonyl, propynylsulfonyl and the like can be mentioned.
 「モノアルキルカルボニルアミノ」とは、上記「アルキルカルボニル」がアミノ基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルカルボニルアミノ、エチルカルボニルアミノ、プロピルカルボニルアミノ、イソプロピルカルボニルアミノ、tert-ブチルカルボニルアミノ、イソブチルカルボニルアミノ、sec-ブチルカルボニルアミノ等が挙げられる。 “Monoalkylcarbonylamino” means a group in which the above “alkylcarbonyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group. For example, methylcarbonylamino, ethylcarbonylamino, propylcarbonylamino, isopropylcarbonylamino, tert-butylcarbonylamino, isobutylcarbonylamino, sec-butylcarbonylamino and the like can be mentioned.
 「モノアルキルカルボニルアミノ」の好ましい態様としては、メチルカルボニルアミノ、エチルカルボニルアミノが挙げられる。 Preferred embodiments of “monoalkylcarbonylamino” include methylcarbonylamino and ethylcarbonylamino.
 「ジアルキルカルボニルアミノ」とは、上記「アルキルカルボニル」がアミノ基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキルカルボニル基は、同一でも異なっていてもよい。例えば、ジメチルカルボニルアミノ、ジエチルカルボニルアミノ、N,N-ジイソプロピルカルボニルアミノ等が挙げられる。 “Dialkylcarbonylamino” means a group in which the above “alkylcarbonyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkylcarbonyl groups may be the same or different. For example, dimethylcarbonylamino, diethylcarbonylamino, N, N-diisopropylcarbonylamino and the like can be mentioned.
 「ジアルキルカルボニルアミノ」の好ましい態様として、ジメチルカルボニルアミノ、ジエチルカルボニルアミノが挙げられる。 Preferred examples of “dialkylcarbonylamino” include dimethylcarbonylamino and diethylcarbonylamino.
 「モノアルキルスルホニルアミノ」とは、上記「アルキルスルホニル」がアミノ基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルスルホニルアミノ、エチルスルホニルアミノ、プロピルスルホニルアミノ、イソプロピルスルホニルアミノ、tert-ブチルスルホニルアミノ、イソブチルスルホニルアミノ、sec-ブチルスルホニルアミノ等が挙げられる。 “Monoalkylsulfonylamino” means a group in which the above “alkylsulfonyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the amino group. For example, methylsulfonylamino, ethylsulfonylamino, propylsulfonylamino, isopropylsulfonylamino, tert-butylsulfonylamino, isobutylsulfonylamino, sec-butylsulfonylamino and the like can be mentioned.
 「モノアルキルスルホニルアミノ」の好ましい態様としては、メチルスルホニルアミノ、エチルスルホニルアミノが挙げられる。 Preferred embodiments of “monoalkylsulfonylamino” include methylsulfonylamino and ethylsulfonylamino.
 「ジアルキルスルホニルアミノ」とは、上記「アルキルスルホニル」がアミノ基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキルスルホニル基は、同一でも異なっていてもよい。例えば、ジメチルスルホニルアミノ、ジエチルスルホニルアミノ、N,N-ジイソプロピルスルホニルアミノ等が挙げられる。 “Dialkylsulfonylamino” means a group in which the above “alkylsulfonyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the amino group. Two alkylsulfonyl groups may be the same or different. For example, dimethylsulfonylamino, diethylsulfonylamino, N, N-diisopropylsulfonylamino and the like can be mentioned.
 「ジアルキルカルボニルアミノ」の好ましい態様として、ジメチルスルホニルアミノ、ジエチルスルホニルアミノが挙げられる。 Preferred examples of “dialkylcarbonylamino” include dimethylsulfonylamino and diethylsulfonylamino.
 「アルキルイミノ」とは、上記「アルキル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、メチルイミノ、エチルイミノ、n-プロピルイミノ、イソプロピルイミノ等が挙げられる。 “Alkylimino” means a group in which the above “alkyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, methylimino, ethylimino, n-propylimino, isopropylimino and the like can be mentioned.
 「アルケニルイミノ」とは、上記「アルケニル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチレニルイミノ、プロペニルイミノ等が挙げられる。 “Alkenylimino” means a group in which the above “alkenyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. Examples thereof include ethylenylimino and propenylimino.
 「アルキニルイミノ」とは、上記「アルキニル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチニルイミノ、プロピニルイミノ等が挙げられる。 “Alkynylimino” means a group in which the above “alkynyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, ethynylimino, propynylimino and the like can be mentioned.
 「アルキルカルボニルイミノ」とは、上記「アルキルカルボニル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、メチルカルボニルイミノ、エチルカルボニルイミノ、n-プロピルカルボニルイミノ、イソプロピルカルボニルイミノ等が挙げられる。 “Alkylcarbonylimino” means a group in which the above “alkylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, methylcarbonylimino, ethylcarbonylimino, n-propylcarbonylimino, isopropylcarbonylimino and the like can be mentioned.
 「アルケニルカルボニルイミノ」とは、上記「アルケニルカルボニル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチレニルカルボニルイミノ、プロペニルカルボニルイミノ等が挙げられる。 “Alkenylcarbonylimino” means a group in which the above “alkenylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, ethylenylcarbonylimino, propenylcarbonylimino and the like can be mentioned.
 「アルキニルカルボニルイミノ」とは、上記「アルキニルカルボニル」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチニルカルボニルイミノ、プロピニルカルボニルイミノ等が挙げられる。 “Alkynylcarbonylimino” means a group in which the above “alkynylcarbonyl” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, ethynylcarbonylimino, propynylcarbonylimino and the like can be mentioned.
 「アルキルオキシイミノ」とは、上記「アルキルオキシ」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、メチルオキシイミノ、エチルオキシイミノ、n-プロピルオキシイミノ、イソプロピルオキシイミノ等が挙げられる。 “Alkyloxyimino” means a group in which the above “alkyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. Examples thereof include methyloxyimino, ethyloxyimino, n-propyloxyimino, isopropyloxyimino and the like.
 「アルケニルオキシイミノ」とは、上記「アルケニルオキシ」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチレニルオキシイミノ、プロペニルオキシイミノ等が挙げられる。 “Alkenyloxyimino” means a group in which the above “alkenyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, ethylenyloxyimino, propenyloxyimino and the like can be mentioned.
 「アルキニルオキシイミノ」とは、上記「アルキニルオキシ」がイミノ基の窒素原子と結合している水素原子と置き換わった基を意味する。例えば、エチニルオキシイミノ、プロピニルオキシイミノ等が挙げられる。 “Alkynyloxyimino” means a group in which the above “alkynyloxy” is replaced with a hydrogen atom bonded to the nitrogen atom of the imino group. For example, ethynyloxyimino, propynyloxyimino and the like can be mentioned.
 「アルキルカルボニルオキシ」とは、上記「アルキルカルボニル」が酸素原子に結合した基を意味する。例えば、メチルカルボニルオキシ、エチルカルボニルオキシ、プロピルカルボニルオキシ、イソプロピルカルボニルオキシ、tert-ブチルカルボニルオキシ、イソブチルカルボニルオキシ、sec-ブチルカルボニルオキシ等が挙げられる。 “Alkylcarbonyloxy” means a group in which the above “alkylcarbonyl” is bonded to an oxygen atom. Examples thereof include methylcarbonyloxy, ethylcarbonyloxy, propylcarbonyloxy, isopropylcarbonyloxy, tert-butylcarbonyloxy, isobutylcarbonyloxy, sec-butylcarbonyloxy and the like.
 「アルキルカルボニルオキシ」の好ましい態様としては、メチルカルボニルオキシ、エチルカルボニルオキシが挙げられる。 Preferred embodiments of “alkylcarbonyloxy” include methylcarbonyloxy and ethylcarbonyloxy.
 「アルケニルカルボニルオキシ」とは、上記「アルケニルカルボニル」が酸素原子に結合した基を意味する。例えば、エチレニルカルボニルオキシ、プロペニルカルボニルオキシ等が挙げられる。 “Alkenylcarbonyloxy” means a group in which the above “alkenylcarbonyl” is bonded to an oxygen atom. For example, ethylenylcarbonyloxy, propenylcarbonyloxy and the like can be mentioned.
 「アルキニルカルボニルオキシ」とは、上記「アルキニルカルボニル」が酸素原子に結合した基を意味する。例えば、エチニルカルボニルオキシ、プロピニルカルボニルオキシ等が挙げられる。 “Alkynylcarbonyloxy” means a group in which the above “alkynylcarbonyl” is bonded to an oxygen atom. For example, ethynylcarbonyloxy, propynylcarbonyloxy and the like can be mentioned.
 「アルキルオキシカルボニル」とは、上記「アルキルオキシ」がカルボニル基に結合した基を意味する。例えば、メチルオキシカルボニル、エチルオキシカルボニル、プロピルオキシカルボニル、イソプロピルオキシカルボニル、tert-ブチルオキシカルボニル、イソブチルオキシカルボニル、sec-ブチルオキシカルボニル、ペンチルオキシカルボニル、イソペンチルオキシカルボニル、へキシルオキシカルボニル等が挙げられる。 “Alkyloxycarbonyl” means a group in which the above “alkyloxy” is bonded to a carbonyl group. For example, methyloxycarbonyl, ethyloxycarbonyl, propyloxycarbonyl, isopropyloxycarbonyl, tert-butyloxycarbonyl, isobutyloxycarbonyl, sec-butyloxycarbonyl, pentyloxycarbonyl, isopentyloxycarbonyl, hexyloxycarbonyl, etc. It is done.
 「アルキルオキシカルボニル」の好ましい態様としては、メチルオキシカルボニル、エチルオキシカルボニル、プロピルオキシカルボニルが挙げられる。 Preferred examples of “alkyloxycarbonyl” include methyloxycarbonyl, ethyloxycarbonyl, and propyloxycarbonyl.
 「アルケニルオキシカルボニル」とは、上記「アルケニルオキシ」がカルボニル基に結合した基を意味する。例えば、エチレニルオキシカルボニル、プロペニルオキシカルボニル等が挙げられる。 “Alkenyloxycarbonyl” means a group in which the above “alkenyloxy” is bonded to a carbonyl group. For example, ethylenyloxycarbonyl, propenyloxycarbonyl and the like can be mentioned.
 「アルキニルオキシカルボニル」とは、上記「アルキニルオキシ」がカルボニル基に結合した基を意味する。例えば、エチニルオキシカルボニル、プロピニルオキシカルボニル等が挙げられる。 “Alkynyloxycarbonyl” means a group in which the above “alkynyloxy” is bonded to a carbonyl group. For example, ethynyloxycarbonyl, propynyloxycarbonyl and the like can be mentioned.
 「アルキルスルファニル」とは、上記「アルキル」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、メチルスルファニル、エチルスルファニル、n-プロピルスルファニル、イソプロピルスルファニル等が挙げられる。 “Alkylsulfanyl” means a group in which the above “alkyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. For example, methylsulfanyl, ethylsulfanyl, n-propylsulfanyl, isopropylsulfanyl and the like can be mentioned.
 「アルケニルスルファニル」とは、上記「アルケニル」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、エチレニルスルファニル、プロペニルスルファニル等が挙げられる。 “Alkenylsulfanyl” means a group in which the above “alkenyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. For example, ethylenylsulfanyl, propenylsulfanyl and the like can be mentioned.
 「アルキニルスルファニル」とは、上記「アルキニル」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、エチニルスルファニル、プロピニルスルファニル等が挙げられる。 “Alkynylsulfanyl” means a group in which the above “alkynyl” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. For example, ethynylsulfanyl, propynylsulfanyl and the like can be mentioned.
 「アルキルスルフィニル」とは、上記「アルキル」がスルフィニル基に結合した基を意味する。例えば、メチルスルフィニル、エチルスルフィニル、n-プロピルスルフィニル、イソプロピルスルフィニル等が挙げられる。 “Alkylsulfinyl” means a group in which the above “alkyl” is bonded to a sulfinyl group. Examples thereof include methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, isopropylsulfinyl and the like.
 「アルケニルスルフィニル」とは、上記「アルケニル」がスルフィニル基に結合した基を意味する。例えば、エチレニルスルフィニル、プロペニルスルフィニル等が挙げられる。 “Alkenylsulfinyl” means a group in which the above “alkenyl” is bonded to a sulfinyl group. For example, ethylenylsulfinyl, propenylsulfinyl and the like can be mentioned.
 「アルキニルスルフィニル」とは、上記「アルキニル」がスルフィニル基に結合した基を意味する。例えば、エチニルスルフィニル、プロピニルスルフィニル等が挙げられる。 “Alkynylsulfinyl” means a group in which the above “alkynyl” is bonded to a sulfinyl group. For example, ethynylsulfinyl, propynylsulfinyl and the like can be mentioned.
 「モノアルキルカルバモイル」とは、上記「アルキル」がカルバモイル基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルカルバモイル、エチルカルバモイル等が挙げられる。 “Monoalkylcarbamoyl” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the carbamoyl group. Examples thereof include methylcarbamoyl and ethylcarbamoyl.
 「ジアルキルカルバモイル」とは、上記「アルキル」がカルバモイル基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキル基は、同一でも異なっていてもよい。例えば、ジメチルカルバモイル、ジエチルカルバモイル等が挙げられる。 “Dialkylcarbamoyl” means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the carbamoyl group. Two alkyl groups may be the same or different. Examples thereof include dimethylcarbamoyl, diethylcarbamoyl and the like.
 「モノアルキルスルファモイル」とは、上記「アルキル」がスルファモイル基の窒素原子と結合している水素原子1個と置き換わった基を意味する。例えば、メチルスルファモイル、ジメチルスルファモイルモイル等が挙げられる。 “Monoalkylsulfamoyl” means a group in which the above “alkyl” is replaced with one hydrogen atom bonded to the nitrogen atom of the sulfamoyl group. For example, methylsulfamoyl, dimethylsulfamoylmoyl, etc. are mentioned.
 「ジアルキルスルファモイル」とは、上記「アルキル」がスルファモイル基の窒素原子と結合している水素原子2個と置き換わった基を意味する。2個のアルキル基は、同一でも異なっていてもよい。例えば、ジメチルカルバモイル、ジエチルカルバモイル等が挙げられる。 “Dialkylsulfamoyl” means a group in which the above “alkyl” is replaced with two hydrogen atoms bonded to the nitrogen atom of the sulfamoyl group. Two alkyl groups may be the same or different. Examples thereof include dimethylcarbamoyl, diethylcarbamoyl and the like.
 「トリアルキルシリル」とは、上記「アルキル」3個がケイ素原子に結合している基を意味する。3個のアルキルは同一でも異なっていてもよい。例えば、トリメチルシリル、トリエチルシリル、tert-ブチルジメチルシリル等が挙げられる。 “Trialkylsilyl” means a group in which three of the above “alkyl” are bonded to a silicon atom. The three alkyls may be the same or different. For example, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl and the like can be mentioned.
 「芳香族炭素環アルキル」、「非芳香族炭素環アルキル」、「芳香族複素環アルキル」、および「非芳香族複素環アルキル」、「芳香族炭素環アルキルオキシ」、「非芳香族炭素環アルキルオキシ」、「芳香族複素環アルキルオキシ」、および「非芳香族複素環アルキルオキシ」、「芳香族炭素環アルキルオキシカルボニル」、「非芳香族炭素環アルキルオキシカルボニル」、「芳香族複素環アルキルオキシカルボニル」、および「非芳香族複素環アルキルオキシカルボニル」、「芳香族炭素環アルキルオキシアルキル」、「非芳香族炭素環アルキルオキシアルキル」、「芳香族複素環アルキルオキシアルキル」、および「非芳香族複素環アルキルオキシアルキル」、ならびに「芳香族炭素環アルキルアミノ」、「非芳香族炭素環アルキルアミノ」、「芳香族複素環アルキルアミノ」、および「非芳香族複素環アルキルアミノ」のアルキル部分も、上記「アルキル」と同様である。 “Aromatic carbocyclic alkyl”, “non-aromatic carbocyclic alkyl”, “aromatic heterocyclic alkyl”, and “non-aromatic heterocyclic alkyl”, “aromatic carbocyclic alkyloxy”, “non-aromatic carbocycle” "Alkyloxy", "aromatic heterocyclic alkyloxy", and "non-aromatic heterocyclic alkyloxy", "aromatic carbocyclic alkyloxycarbonyl", "non-aromatic carbocyclic alkyloxycarbonyl", "aromatic heterocyclic" "Alkyloxycarbonyl", and "non-aromatic heterocyclic alkyloxycarbonyl", "aromatic carbocyclic alkyloxyalkyl", "non-aromatic carbocyclic alkyloxyalkyl", "aromatic heterocyclic alkyloxyalkyl", and " Non-aromatic heterocyclic alkyloxyalkyl ", as well as" aromatic carbocyclic alkylamino "," non-aromatic carbocyclic alkyl " Mino "the alkyl portion of the" aromatic heterocyclic alkylamino ", and" non-aromatic heterocycle-alkyl amino "is also the same as the above" alkyl ".
 「芳香族炭素環アルキル」とは、1以上の上記「芳香族炭素環式基」で置換されているアルキルを意味する。例えば、ベンジル、フェネチル、フェニルプロピニル、ベンズヒドリル、トリチル、ナフチルメチル、以下に示される基 “Aromatic carbocyclic alkyl” means an alkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyl, phenethyl, phenylpropynyl, benzhydryl, trityl, naphthylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
等が挙げられる。 Etc.
 「芳香族炭素環アルキル」の好ましい態様としては、ベンジル、フェネチル、ベンズヒドリルが挙げられる。 Preferred examples of the “aromatic carbocyclic alkyl” include benzyl, phenethyl, and benzhydryl.
 「非芳香族炭素環アルキル」とは、1以上の上記「非芳香族炭素環式基」で置換されているアルキルを意味する。また、「非芳香族炭素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」で置換されている「非芳香族炭素環アルキル」も包含する。例えば、シクロプロピルメチル、シクロブチルメチル、シクロペンチルメチル、シクロへキシルメチル、以下に示される基 “Non-aromatic carbocyclic alkyl” means alkyl substituted with one or more of the above “non-aromatic carbocyclic groups”. The “non-aromatic carbocyclic alkyl” also includes “non-aromatic carbocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyl, cyclobutylmethyl, cyclopentylmethyl, cyclohexylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
等が挙げられる。 Etc.
 「芳香族複素環アルキル」とは、1以上の上記「芳香族複素環式基」で置換されているアルキルを意味する。また、「芳香族複素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」および/または「非芳香族炭素環式基」で置換されている「芳香族複素環アルキル」も包含する。例えば、ピリジルメチル、フラニルメチル、イミダゾリルメチル、インドリルメチル、ベンゾチオフェニルメチル、オキサゾリルメチル、イソキサゾリルメチル、チアゾリルメチル、イソチアゾリルメチル、ピラゾリルメチル、イソピラゾリルメチル、ピロリジニルメチル、ベンズオキサゾリルメチル、以下に示される基 “Aromatic heterocyclic alkyl” means alkyl substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyl” also includes “aromatic heterocyclic alkyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. . For example, pyridylmethyl, furanylmethyl, imidazolylmethyl, indolylmethyl, benzothiophenylmethyl, oxazolylmethyl, isoxazolylmethyl, thiazolylmethyl, isothiazolylmethyl, pyrazolylmethyl, isopyrazolylmethyl, pyrrolidinylmethyl, benz Oxazolylmethyl, group shown below
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
等が挙げられる。 Etc.
 「非芳香族複素環アルキル」とは、1以上の上記「非芳香族複素環式基」で置換されているアルキルを意味する。また、「非芳香族複素環アルキル」は、アルキル部分が上記「芳香族炭素環式基」、「非芳香族炭素環式基」および/または「芳香族複素環式基」で置換されている「非芳香族複素環アルキル」も包含する。例えば、テトラヒドロピラニルメチル、モルホリニルエチル、ピペリジニルメチル、ピペラジニルメチル、以下に示される基 “Non-aromatic heterocyclic alkyl” means alkyl substituted with one or more of the above “non-aromatic heterocyclic groups”. In the “non-aromatic heterocyclic alkyl”, the alkyl portion is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”. Also included are “non-aromatic heterocyclic alkyl”. For example, tetrahydropyranylmethyl, morpholinylethyl, piperidinylmethyl, piperazinylmethyl, groups shown below
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
等が挙げられる。 Etc.
 「芳香族炭素環アルキルオキシ」とは、1以上の上記「芳香族炭素環式基」で置換されているアルキルオキシを意味する。例えば、ベンジルオキシ、フェネチルオキシ、フェニルプロピニルオキシ、ベンズヒドリルオキシ、トリチルオキシ、ナフチルメチルオキシ、以下に示される基 “Aromatic carbocyclic alkyloxy” means alkyloxy substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxy, phenethyloxy, phenylpropynyloxy, benzhydryloxy, trityloxy, naphthylmethyloxy, groups shown below
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
等が挙げられる。 Etc.
 「非芳香族炭素環アルキルオキシ」とは、1以上の上記「非芳香族炭素環式基」で置換されているアルキルオキシを意味する。また、「非芳香族炭素環アルキルオキシ」は、アルキル部分が上記「芳香族炭素環式基」で置換されている「非芳香族炭素環アルキルオキシ」も包含する。例えば、シクロプロピルメチルオキシ、シクロブチルメチルオキシ、シクロペンチルメチルオキシ、シクロへキシルメチルオキシ、以下に示される基 “Non-aromatic carbocyclic alkyloxy” means alkyloxy substituted with one or more of the above “non-aromatic carbocyclic groups”. The “non-aromatic carbocyclic alkyloxy” also includes “non-aromatic carbocyclic alkyloxy” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyloxy, cyclobutylmethyloxy, cyclopentylmethyloxy, cyclohexylmethyloxy, groups shown below
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
等が挙げられる。 Etc.
 「芳香族複素環アルキルオキシ」とは、1以上の上記「芳香族複素環式基」で置換されているアルキルオキシを意味する。また、「芳香族複素環アルキルオキシ」は、アルキル部分が上記「芳香族炭素環式基」および/または「非芳香族炭素環式基」で置換されている「芳香族複素環アルキルオキシ」も包含する。例えば、ピリジルメチルオキシ、フラニルメチルオキシ、イミダゾリルメチルオキシ、インドリルメチルオキシ、ベンゾチオフェニルメチルオキシ、オキサゾリルメチルオキシ、イソキサゾリルメチルオキシ、チアゾリルメチルオキシ、イソチアゾリルメチルオキシ、ピラゾリルメチルオキシ、イソピラゾリルメチルオキシ、ピロリジニルメチルオキシ、ベンズオキサゾリルメチルオキシ、以下に示される基 “Aromatic heterocyclic alkyloxy” means alkyloxy substituted with one or more of the above “aromatic heterocyclic groups”. “Aromatic heterocyclic alkyloxy” also includes “aromatic heterocyclic alkyloxy” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Include. For example, pyridylmethyloxy, furanylmethyloxy, imidazolylmethyloxy, indolylmethyloxy, benzothiophenylmethyloxy, oxazolylmethyloxy, isoxazolylmethyloxy, thiazolylmethyloxy, isothiazolylmethyloxy , Pyrazolylmethyloxy, isopyrazolylmethyloxy, pyrrolidinylmethyloxy, benzoxazolylmethyloxy, groups shown below
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
等が挙げられる。 Etc.
 「非芳香族複素環アルキルオキシ」とは、1以上の上記「非芳香族複素環式基」で置換されているアルキルオキシを意味する。また、「非芳香族複素環アルキルオキシ」は、アルキル部分が上記「芳香族炭素環式基」、「非芳香族炭素環式基」および/または「芳香族複素環式基」で置換されている「非芳香族複素環アルキルオキシ」も包含する。例えば、テトラヒドロピラニルメチルオキシ、モルホリニルエチルオキシ、ピペリジニルメチルオキシ、ピペラジニルメチルオキシ、以下に示される基 “Non-aromatic heterocyclic alkyloxy” means alkyloxy substituted with one or more of the above “non-aromatic heterocyclic groups”. In the “non-aromatic heterocyclic alkyloxy”, the alkyl moiety is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”. It also includes “non-aromatic heterocyclic alkyloxy”. For example, tetrahydropyranylmethyloxy, morpholinylethyloxy, piperidinylmethyloxy, piperazinylmethyloxy, groups shown below
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
等が挙げられる。 Etc.
 「芳香族炭素環アルキルオキシカルボニル」とは、1以上の上記「芳香族炭素環式基」で置換されているアルキルオキシカルボニルを意味する。例えば、ベンジルオキシカルボニル、フェネチルオキシカルボニル、フェニルプロピニルオキシカルボニル、ベンズヒドリルオキシカルボニル、トリチルオキシカルボニル、ナフチルメチルオキシカルボニル、以下に示される基 “Aromatic carbocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxycarbonyl, phenethyloxycarbonyl, phenylpropynyloxycarbonyl, benzhydryloxycarbonyl, trityloxycarbonyl, naphthylmethyloxycarbonyl, groups shown below
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
等が挙げられる。 Etc.
 「非芳香族炭素環アルキルオキシカルボニル」とは、1以上の上記「非芳香族炭素環式基」で置換されているアルキルオキシカルボニルを意味する。また、「非芳香族炭素環アルキルオキシカルボニル」は、アルキル部分が上記「芳香族炭素環式基」で置換されている「非芳香族炭素環アルキルオキシカルボニル」も包含する。例えば、シクロプロピルメチルオキシカルボニル、シクロブチルメチルオキシカルボニル、シクロペンチルメチルオキシカルボニル、シクロへキシルメチルオキシカルボニル、以下に示される基 “Non-aromatic carbocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “non-aromatic carbocyclic groups”. The “non-aromatic carbocyclic alkyloxycarbonyl” also includes “non-aromatic carbocyclic alkyloxycarbonyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group”. For example, cyclopropylmethyloxycarbonyl, cyclobutylmethyloxycarbonyl, cyclopentylmethyloxycarbonyl, cyclohexylmethyloxycarbonyl, groups shown below
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
等が挙げられる。 Etc.
 「芳香族複素環アルキルオキシカルボニル」とは、1以上の上記「芳香族複素環式基」で置換されているアルキルオキシカルボニルを意味する。また、「芳香族複素環アルキルオキシカルボニル」は、アルキル部分が上記「芳香族炭素環式基」および/または「非芳香族炭素環式基」で置換されている「芳香族複素環アルキルオキシカルボニル」も包含する。例えば、ピリジルメチルオキシカルボニル、フラニルメチルオキシカルボニル、イミダゾリルメチルオキシカルボニル、インドリルメチルオキシカルボニル、ベンゾチオフェニルメチルオキシカルボニル、オキサゾリルメチルオキシカルボニル、イソキサゾリルメチルオキシカルボニル、チアゾリルメチルオキシカルボニル、イソチアゾリルメチルオキシカルボニル、ピラゾリルメチルオキシカルボニル、イソピラゾリルメチルオキシカルボニル、ピロリジニルメチルオキシカルボニル、ベンズオキサゾリルメチルオキシカルボニル、以下に示される基 “Aromatic heterocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “aromatic heterocyclic groups”. The “aromatic heterocyclic alkyloxycarbonyl” is an “aromatic heterocyclic alkyloxycarbonyl” in which the alkyl moiety is substituted with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Is also included. For example, pyridylmethyloxycarbonyl, furanylmethyloxycarbonyl, imidazolylmethyloxycarbonyl, indolylmethyloxycarbonyl, benzothiophenylmethyloxycarbonyl, oxazolylmethyloxycarbonyl, isoxazolylmethyloxycarbonyl, thiazolylmethyl Oxycarbonyl, isothiazolylmethyloxycarbonyl, pyrazolylmethyloxycarbonyl, isopyrazolylmethyloxycarbonyl, pyrrolidinylmethyloxycarbonyl, benzoxazolylmethyloxycarbonyl, groups shown below
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
等が挙げられる。 Etc.
 「非芳香族複素環アルキルオキシカルボニル」とは、1以上の上記「非芳香族複素環式基」で置換されているアルキルオキシカルボニルを意味する。また、「非芳香族複素環アルキルオキシカルボニル」は、アルキル部分が上記「芳香族炭素環式基」、「非芳香族炭素環式基」および/または「芳香族複素環式基」で置換されている「非芳香族複素環アルキルオキシカルボニル」も包含する。例えば、テトラヒドロピラニルメチルオキシ、モルホリニルエチルオキシ、ピペリジニルメチルオキシ、ピペラジニルメチルオキシ、以下に示される基 “Non-aromatic heterocyclic alkyloxycarbonyl” means alkyloxycarbonyl substituted with one or more of the above “non-aromatic heterocyclic groups”. In the “non-aromatic heterocyclic alkyloxycarbonyl”, the alkyl moiety is substituted with the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic heterocyclic group”. And “non-aromatic heterocyclic alkyloxycarbonyl”. For example, tetrahydropyranylmethyloxy, morpholinylethyloxy, piperidinylmethyloxy, piperazinylmethyloxy, groups shown below
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
等が挙げられる。 Etc.
 「芳香族炭素環アルキルオキシアルキル」とは、1以上の上記「芳香族炭素環式基」で置換されているアルキルオキシアルキルを意味する。例えば、ベンジルオキシメチル、フェネチルオキシメチル、フェニルプロピニルオキシメチル、ベンズヒドリルオキシメチル、トリチルオキシメチル、ナフチルメチルオキシメチル、以下に示される基 “Aromatic carbocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “aromatic carbocyclic groups”. For example, benzyloxymethyl, phenethyloxymethyl, phenylpropynyloxymethyl, benzhydryloxymethyl, trityloxymethyl, naphthylmethyloxymethyl, groups shown below
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
等が挙げられる。 Etc.
 「非芳香族炭素環アルキルオキシアルキル」とは、1以上の上記「非芳香族炭素環式基」で置換されているアルキルオキシアルキルを意味する。また、「非芳香族炭素環アルキルオキシアルキル」は、非芳香族炭素環が結合しているアルキル部分が上記「芳香族炭素環式基」で置換されている「非芳香族炭素環アルキルオキシアルキル」も包含する。例えば、シクロプロピルメチルオキシメチル、シクロブチルメチルオキシメチル、シクロペンチルメチルオキシメチル、シクロへキシルメチルオキシメチル、以下に示される基 “Non-aromatic carbocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “non-aromatic carbocyclic groups”. In addition, “non-aromatic carbocyclic alkyloxyalkyl” means “non-aromatic carbocyclic alkyloxyalkyl” in which the alkyl moiety to which the non-aromatic carbocycle is bonded is substituted with the above “aromatic carbocyclic group”. Is also included. For example, cyclopropylmethyloxymethyl, cyclobutylmethyloxymethyl, cyclopentylmethyloxymethyl, cyclohexylmethyloxymethyl, groups shown below
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
等が挙げられる。 Etc.
 「芳香族複素環アルキルオキシアルキル」とは、1以上の上記「芳香族複素環式基」で置換されているアルキルオキシアルキルを意味する。また、「芳香族複素環アルキルオキシアルキル」は、芳香族複素環が結合しているアルキル部分が上記「芳香族炭素環式基」および/または「非芳香族炭素環式基」で置換されている「芳香族複素環アルキルオキシアルキル」も包含する。例えば、ピリジルメチルオキシメチル、フラニルメチルオキシメチル、イミダゾリルメチルオキシメチル、インドリルメチルオキシメチル、ベンゾチオフェニルメチルオキシメチル、オキサゾリルメチルオキシメチル、イソキサゾリルメチルオキシメチル、チアゾリルメチルオキシメチル、イソチアゾリルメチルオキシメチル、ピラゾリルメチルオキシメチル、イソピラゾリルメチルオキシメチル、ピロリジニルメチルオキシメチル、ベンズオキサゾリルメチルオキシメチル、以下に示される基 “Aromatic heterocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “aromatic heterocyclic groups”. In addition, the “aromatic heterocyclic alkyloxyalkyl” is obtained by replacing the alkyl moiety to which the aromatic heterocyclic ring is bonded with the above “aromatic carbocyclic group” and / or “non-aromatic carbocyclic group”. Also included are “aromatic heterocyclic alkyloxyalkyl”. For example, pyridylmethyloxymethyl, furanylmethyloxymethyl, imidazolylmethyloxymethyl, indolylmethyloxymethyl, benzothiophenylmethyloxymethyl, oxazolylmethyloxymethyl, isoxazolylmethyloxymethyl, thiazolylmethyl Oxymethyl, isothiazolylmethyloxymethyl, pyrazolylmethyloxymethyl, isopyrazolylmethyloxymethyl, pyrrolidinylmethyloxymethyl, benzoxazolylmethyloxymethyl, groups shown below
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
等が挙げられる。 Etc.
 「非芳香族複素環アルキルオキシアルキル」とは、1以上の上記「非芳香族複素環式基」で置換されているアルキルオキシアルキルを意味する。また、「非芳香族複素環アルキルオキシ」は、非芳香族複素環が結合しているアルキル部分が上記「芳香族炭素環式基」、「非芳香族炭素環式基」および/または「芳香族複素環式基」で置換されている「非芳香族複素環アルキルオキシアルキル」も包含する。例えば、テトラヒドロピラニルメチルオキシメチル、モルホリニルエチルオキシメチル、ピペリジニルメチルオキシメチル、ピペラジニルメチルオキシメチル、以下に示される基 “Non-aromatic heterocyclic alkyloxyalkyl” means alkyloxyalkyl substituted with one or more of the above “non-aromatic heterocyclic groups”. In addition, “non-aromatic heterocyclic alkyloxy” means that the alkyl moiety to which the non-aromatic heterocyclic ring is bonded is the above “aromatic carbocyclic group”, “non-aromatic carbocyclic group” and / or “aromatic”. Also included are “non-aromatic heterocyclic alkyloxyalkyl” substituted with “aromatic heterocyclic group”. For example, tetrahydropyranylmethyloxymethyl, morpholinylethyloxymethyl, piperidinylmethyloxymethyl, piperazinylmethyloxymethyl, groups shown below
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
等が挙げられる。 Etc.
 「芳香族炭素環アルキルアミノ」とは、上記「芳香族炭素環アルキル」がアミノ基の窒素原子と結合している水素原子1個または2個と置き換わった基を意味する。例えば、ベンジルアミノ、フェネチルアミノ、フェニルプロピニルアミノ、ベンズヒドリルアミノ、トリチルアミノ、ナフチルメチルアミノ、ジベンジルアミノ等が挙げられる。 “Aromatic carbocyclic alkylamino” means a group in which the above “aromatic carbocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group. Examples include benzylamino, phenethylamino, phenylpropynylamino, benzhydrylamino, tritylamino, naphthylmethylamino, dibenzylamino and the like.
 「非芳香族炭素環アルキルアミノ」とは、上記「非芳香族炭素環アルキル」がアミノ基の窒素原子と結合している水素原子1個または2個と置き換わった基を意味する。例えば、シクロプロピルメチルアミノ、シクロブチルメチルアミノ、シクロペンチルメチルアミノ、シクロへキシルメチルアミノ等が挙げられる。 “Non-aromatic carbocyclic alkylamino” means a group in which the above “non-aromatic carbocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group. For example, cyclopropylmethylamino, cyclobutylmethylamino, cyclopentylmethylamino, cyclohexylmethylamino and the like can be mentioned.
 「芳香族複素環アルキルアミノ」とは、上記「芳香族複素環アルキル」がアミノ基の窒素原子と結合している水素原子1個または2個と置き換わった基を意味する。例えば、ピリジルメチルアミノ、フラニルメチルアミノ、イミダゾリルメチルアミノ、インドリルメチルアミノ、ベンゾチオフェニルメチルアミノ、オキサゾリルメチルアミノ、イソキサゾリルメチルアミノ、チアゾリルメチルアミノ、イソチアゾリルメチルアミノ、ピラゾリルメチルアミノ、イソピラゾリルメチルアミノ、ピロリジニルメチルアミノ、ベンズオキサゾリルメチルアミノ等が挙げられる。 “Aromatic heterocyclic alkylamino” means a group in which the above “aromatic heterocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group. For example, pyridylmethylamino, furanylmethylamino, imidazolylmethylamino, indolylmethylamino, benzothiophenylmethylamino, oxazolylmethylamino, isoxazolylmethylamino, thiazolylmethylamino, isothiazolylmethylamino , Pyrazolylmethylamino, isopyrazolylmethylamino, pyrrolidinylmethylamino, benzoxazolylmethylamino and the like.
 「非芳香族複素環アルキルアミノ」とは、上記「非芳香族複素環アルキル」がアミノ基の窒素原子と結合している水素原子1個または2個と置き換わった基を意味する。例えば、テトラヒドロピラニルメチルアミノ、モルホリニルエチルアミノ、ピペリジニルメチルアミノ、ピペラジニルメチルアミノ等が挙げられる。 “Non-aromatic heterocyclic alkylamino” means a group in which the above “non-aromatic heterocyclic alkyl” is replaced with one or two hydrogen atoms bonded to the nitrogen atom of the amino group. For example, tetrahydropyranylmethylamino, morpholinylethylamino, piperidinylmethylamino, piperazinylmethylamino and the like can be mentioned.
 「芳香族炭素環オキシ」、「芳香族炭素環カルボニル」、「芳香族炭素環オキシカルボニル」、「芳香族炭素環スルファニル」、および「芳香族炭素環スルホニル」の「芳香族炭素環」部分も、上記「芳香族炭素環式基」と同様である。 The “aromatic carbocyclic oxy”, “aromatic carbocyclic carbonyl”, “aromatic carbocyclic oxycarbonyl”, “aromatic carbocyclic sulfanyl”, and “aromatic carbocyclic sulfonyl” moieties also include The same as the above “aromatic carbocyclic group”.
 「芳香族炭素環オキシ」とは、「芳香族炭素環」が酸素原子に結合した基を意味する。例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。 “Aromatic carbocyclic oxy” means a group in which “aromatic carbocycle” is bonded to an oxygen atom. For example, phenyloxy, naphthyloxy and the like can be mentioned.
 「芳香族炭素環カルボニル」とは、「芳香族炭素環」がカルボニル基に結合した基を意味する。例えば、フェニルカルボニル、ナフチルカルボニル等が挙げられる。 “Aromatic carbocyclic carbonyl” means a group in which “aromatic carbocycle” is bonded to a carbonyl group. For example, phenylcarbonyl, naphthylcarbonyl and the like can be mentioned.
 「芳香族炭素環オキシカルボニル」とは、上記「芳香族炭素環オキシ」がカルボニル基に結合した基を意味する。例えば、フェニルオキシカルボニル、ナフチルオキシカルボニル等が挙げられる。 “Aromatic carbocyclic oxycarbonyl” means a group in which the above “aromatic carbocyclic oxy” is bonded to a carbonyl group. For example, phenyloxycarbonyl, naphthyloxycarbonyl and the like can be mentioned.
 「芳香族炭素環スルファニル」とは、「芳香族炭素環」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、フェニルスルファニル、ナフチルスルファニル等が挙げられる。 “Aromatic carbocyclic sulfanyl” means a group in which an “aromatic carbocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. Examples thereof include phenylsulfanyl and naphthylsulfanyl.
 「芳香族炭素環スルホニル」とは、「芳香族炭素環」がスルホニル基に結合した基を意味する。例えば、フェニルスルホニル、ナフチルスルホニル等が挙げられる。 “Aromatic carbocycle sulfonyl” means a group in which “aromatic carbocycle” is bonded to a sulfonyl group. For example, phenylsulfonyl, naphthylsulfonyl and the like can be mentioned.
 「非芳香族炭素環オキシ」、「非芳香族炭素環カルボニル」、「非芳香族炭素環オキシカルボニル」、「非芳香族炭素環スルファニル」、および「非芳香族炭素環スルホニル」の「非芳香族炭素環」部分も、上記「非芳香族炭素環式基」と同様である。 “Non-aromatic carbocyclic oxy”, “non-aromatic carbocyclic carbonyl”, “non-aromatic carbocyclic oxycarbonyl”, “non-aromatic carbocyclic sulfanyl”, and “non-aromatic carbocyclic sulfonyl” The “aromatic carbocyclic” moiety is the same as the above “non-aromatic carbocyclic group”.
 「非芳香族炭素環オキシ」とは、「非芳香族炭素環」が酸素原子に結合した基を意味する。例えば、シクロプロピルオキシ、シクロヘキシルオキシ、シクロへキセニルオキシ等が挙げられる。 “Non-aromatic carbocyclic oxy” means a group in which “non-aromatic carbocycle” is bonded to an oxygen atom. For example, cyclopropyloxy, cyclohexyloxy, cyclohexenyloxy and the like can be mentioned.
 「非芳香族炭素環カルボニル」とは、「非芳香族炭素環」がカルボニル基に結合した基を意味する。例えば、シクロプロピルカルボニル、シクロヘキシルカルボニル、シクロへキセニルカルボニル等が挙げられる。 “Non-aromatic carbocyclic carbonyl” means a group in which a “non-aromatic carbocycle” is bonded to a carbonyl group. For example, cyclopropylcarbonyl, cyclohexylcarbonyl, cyclohexenylcarbonyl and the like can be mentioned.
 「非芳香族炭素環オキシカルボニル」とは、上記「非芳香族炭素環オキシ」がカルボニル基に結合した基を意味する。例えば、シクロプロピルオキシカルボニル、シクロヘキシルオキシカルボニル、シクロへキセニルオキシカルボニル等が挙げられる。 “Non-aromatic carbocyclic oxycarbonyl” means a group in which the above “non-aromatic carbocyclic oxy” is bonded to a carbonyl group. For example, cyclopropyloxycarbonyl, cyclohexyloxycarbonyl, cyclohexenyloxycarbonyl and the like can be mentioned.
 「非芳香族炭素環スルファニル」とは、「非芳香族炭素環」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、シクロプロピルスルファニル、シクロヘキシルスルファニル、シクロヘキセニルスルファニル等が挙げられる。 “Non-aromatic carbocyclic sulfanyl” means a group in which a “non-aromatic carbocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. Examples include cyclopropylsulfanyl, cyclohexylsulfanyl, cyclohexenylsulfanyl and the like.
 「非芳香族炭素環スルホニル」とは、「非芳香族炭素環」がスルホニル基に結合した基を意味する。例えば、シクロプロピルスルホニル、シクロヘキシルスルホニル、シクロヘキセニルスルホニル等が挙げられる。 “Non-aromatic carbocycle sulfonyl” means a group in which “non-aromatic carbocycle” is bonded to a sulfonyl group. For example, cyclopropylsulfonyl, cyclohexylsulfonyl, cyclohexenylsulfonyl and the like can be mentioned.
 「芳香族複素環オキシ」、「芳香族複素環カルボニル」、「芳香族複素環オキシカルボニル」、「芳香族複素環スルファニル」、および「芳香族複素環スルホニル」の「芳香族複素環」部分も、上記「芳香族複素環式基」と同様である。 The “aromatic heterocycle” part of “aromatic heterocycle oxy”, “aromatic heterocycle carbonyl”, “aromatic heterocycle oxycarbonyl”, “aromatic heterocycle sulfanyl”, and “aromatic heterocycle sulfonyl” The same as the above “aromatic heterocyclic group”.
 「芳香族複素環オキシ」とは、「芳香族複素環」が酸素原子に結合した基を意味する。例えば、ピリジルオキシ、オキサゾリルオキシ等が挙げられる。 “Aromatic heterocycle oxy” means a group in which “aromatic heterocycle” is bonded to an oxygen atom. For example, pyridyloxy, oxazolyloxy and the like can be mentioned.
 「芳香族複素環カルボニル」とは、「芳香族複素環」がカルボニル基に結合した基を意味する。例えば、ピリジルカルボニル、オキサゾリルカルボニル等が挙げられる。 “Aromatic heterocycle carbonyl” means a group in which “aromatic heterocycle” is bonded to a carbonyl group. For example, pyridylcarbonyl, oxazolylcarbonyl, etc. are mentioned.
 「芳香族複素環オキシカルボニル」とは、上記「芳香族複素環オキシ」がカルボニル基に結合した基を意味する。例えば、ピリジルオキシカルボニル、オキサゾリルオキシカルボニル等が挙げられる。 “Aromatic heterocyclic oxycarbonyl” means a group in which the above “aromatic heterocyclic oxy” is bonded to a carbonyl group. For example, pyridyloxycarbonyl, oxazolyloxycarbonyl and the like can be mentioned.
 「芳香族複素環スルファニル」とは、「芳香族複素環」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、ピリジルスルファニル、オキサゾリルスルファニル等が挙げられる。 “Aromatic heterocycle sulfanyl” means a group in which “aromatic heterocycle” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. For example, pyridylsulfanyl, oxazolylsulfanyl and the like can be mentioned.
 「芳香族複素環スルホニル」とは、「芳香族複素環」がスルホニル基に結合した基を意味する。例えば、ピリジルスルホニル、オキサゾリルスルホニル等が挙げられる。 “Aromatic heterocycle sulfonyl” means a group in which “aromatic heterocycle” is bonded to a sulfonyl group. For example, pyridylsulfonyl, oxazolylsulfonyl and the like can be mentioned.
 「非芳香族複素環オキシ」、「非芳香族複素環カルボニル」、「非芳香族複素環オキシカルボニル」、「非芳香族複素環スルファニル」、および「非芳香族複素環スルホニル」の「非芳香族複素環」部分も、上記「非芳香族複素環式基」と同様である。 “Non-aromatic heterocyclic oxy”, “non-aromatic heterocyclic carbonyl”, “non-aromatic heterocyclic oxycarbonyl”, “non-aromatic heterocyclic sulfanyl”, and “non-aromatic heterocyclic sulfonyl” The “heterocyclic ring” moiety is the same as the above “non-aromatic heterocyclic group”.
 「非芳香族複素環オキシ」とは、「非芳香族複素環」が酸素原子に結合した基を意味する。例えば、ピペリジニルオキシ、テトラヒドロフリルオキシ等が挙げられる。 “Non-aromatic heterocyclic oxy” means a group in which “non-aromatic heterocyclic” is bonded to an oxygen atom. For example, piperidinyloxy, tetrahydrofuryloxy and the like can be mentioned.
 「非芳香族複素環カルボニル」とは、「非芳香族複素環」がカルボニル基に結合した基を意味する。例えば、ピペリジニルカルボニル、テトラヒドロフリルカルボニル等が挙げられる。 “Non-aromatic heterocyclic carbonyl” means a group in which “non-aromatic heterocyclic” is bonded to a carbonyl group. For example, piperidinylcarbonyl, tetrahydrofurylcarbonyl and the like can be mentioned.
 「非芳香族複素環オキシカルボニル」とは、上記「非芳香族複素環オキシ」がカルボニル基に結合した基を意味する。例えば、ピペリジニルオキシカルボニル、テトラヒドロフリルオキシカルボニル等が挙げられる。 “Non-aromatic heterocyclic oxycarbonyl” means a group in which the above “non-aromatic heterocyclic oxy” is bonded to a carbonyl group. For example, piperidinyloxycarbonyl, tetrahydrofuryloxycarbonyl and the like can be mentioned.
 「非芳香族複素環スルファニル」とは、「非芳香族複素環」がスルファニル基の硫黄原子と結合している水素原子と置き換わった基を意味する。例えば、ピペリジニルスルファニル、テトラヒドロフリルスルファニル等が挙げられる。 “Non-aromatic heterocyclic sulfanyl” means a group in which a “non-aromatic heterocyclic ring” is replaced with a hydrogen atom bonded to a sulfur atom of a sulfanyl group. For example, piperidinylsulfanyl, tetrahydrofurylsulfanyl and the like can be mentioned.
 「非芳香族複素環スルホニル」とは、「非芳香族複素環」がスルホニル基に結合した基を意味する。例えば、ピペリジニルスルホニル、テトラヒドロフリルスルホニル等が挙げられる。 “Non-aromatic heterocyclic sulfonyl” means a group in which “non-aromatic heterocyclic” is bonded to a sulfonyl group. For example, piperidinylsulfonyl, tetrahydrofurylsulfonyl and the like can be mentioned.
 「置換もしくは非置換のアルキル」、「置換もしくは非置換のアルキルオキシ」、「置換もしくは非置換のアルキルカルボニル」、および「置換もしくは非置換のアルキルオキシカルボニル」の置換基としては、次の置換基が挙げられる。任意の位置の炭素原子が次の置換基から選択される1以上の基と結合していてもよい。 The substituents of “substituted or unsubstituted alkyl”, “substituted or unsubstituted alkyloxy”, “substituted or unsubstituted alkylcarbonyl”, and “substituted or unsubstituted alkyloxycarbonyl” include the following substituents: Is mentioned. The carbon atom at any position may be bonded to one or more groups selected from the following substituents.
 置換基:ハロゲン、ヒドロキシ、カルボキシ、アミノ、イミノ、ヒドロキシアミノ、ヒドロキシイミノ、ホルミル、ホルミルオキシ、カルバモイル、スルファモイル、スルファニル、スルフィノ、スルホ、チオホルミル、チオカルボキシ、ジチオカルボキシ、チオカルバモイル、シアノ、ニトロ、ニトロソ、アジド、ヒドラジノ、ウレイド、アミジノ、グアニジノ、トリアルキルシリル、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、ハロアルキルオキシ、アルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、モノアルキルアミノ、ジアルキルアミノ、アルキルスルホニル、アルケニルスルホニル、アルキニルスルホニル、モノアルキルカルボニルアミノ、ジアルキルカルボニルアミノ、モノアルキルスルホニルアミノ、ジアルキルスルホニルアミノ、アルキルイミノ、アルケニルイミノ、アルキニルイミノ、アルキルカルボニルイミノ、アルケニルカルボニルイミノ、アルキニルカルボニルイミノ、アルキルオキシイミノ、アルケニルオキシイミノ、アルキニルオキシイミノ、アルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アルキルオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アルキルスルファニル、アルケニルスルファニル、アルキニルスルファニル、アルキルスルフィニル、アルケニルスルフィニル、アルキニルスルフィニル、モノアルキルカルバモイル、ジアルキルカルバモイル、モノアルキルスルファモイル、ジアルキルスルファモイル、芳香族炭素環式基、非芳香族炭素環式基、芳香族複素環式基、非芳香族複素環式基、芳香族炭素環オキシ、非芳香族炭素環オキシ、芳香族複素環オキシ、非芳香族複素環オキシ、芳香族炭素環カルボニル、非芳香族炭素環カルボニル、芳香族複素環カルボニル、非芳香族複素環カルボニル、芳香族炭素環オキシカルボニル、非芳香族炭素環オキシカルボニル、芳香族複素環オキシカルボニル、非芳香族複素環オキシカルボニル、芳香族炭素環アルキルオキシ、非芳香族炭素環アルキルオキシ、芳香族複素環アルキルオキシ、非芳香族複素環アルキルオキシ、芳香族炭素環アルキルオキシカルボニル、非芳香族炭素環アルキルオキシカルボニル、芳香族複素環アルキルオキシカルボニル、非芳香族複素環アルキルオキシカルボニル、芳香族炭素環アルキルアミノ、非芳香族炭素環アルキルアミノ、芳香族複素環アルキルアミノ、非芳香族複素環アルキルアミノ、芳香族炭素環スルファニル、非芳香族炭素環スルファニル、芳香族複素環スルファニル、非芳香族複素環スルファニル、非芳香族炭素環スルホニル、芳香族炭素環スルホニル、芳香族複素環スルホニル、および非芳香族複素環スルホニル。 Substituents: halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkylcarbonyl, alkenylcarbonyl, alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl, alkynyl Sulfonyl, monoalkylcarbonylamino, dialkylcarbonylamino, monoalkylsulfonyl Amino, dialkylsulfonylamino, alkylimino, alkenylimino, alkynylimino, alkylcarbonylimino, alkenylcarbonylimino, alkynylcarbonylimino, alkyloxyimino, alkenyloxyimino, alkynyloxyimino, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy Alkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, alkylsulfanyl, alkenylsulfanyl, alkynylsulfanyl, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, monoalkylcarbamoyl, dialkylcarbamoyl, monoalkylsulfamoyl, dialkylsulfamoyl, aromatic Group carbocyclic group Non-aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocyclic oxy, non-aromatic carbocyclic oxy, aromatic heterocyclic oxy, non-aromatic heterocyclic oxy, aromatic Aromatic carbocyclic carbonyl, Non-aromatic carbocyclic carbonyl, Aromatic heterocyclic carbonyl, Non-aromatic heterocyclic carbonyl, Aromatic carbocyclic oxycarbonyl, Non-aromatic carbocyclic oxycarbonyl, Aromatic heterocyclic oxycarbonyl, Non-aromatic Heterocyclic oxycarbonyl, aromatic carbocyclic alkyloxy, non-aromatic carbocyclic alkyloxy, aromatic heterocyclic alkyloxy, non-aromatic heterocyclic alkyloxy, aromatic carbocyclic alkyloxycarbonyl, non-aromatic carbocyclic alkyloxy Carbonyl, aromatic heterocyclic alkyloxycarbonyl, non-aromatic heterocyclic alkyloxycarbonyl, aromatic carbocyclic alkylamino, Non-aromatic carbocyclic alkylamino, aromatic heterocyclic alkylamino, non-aromatic heterocyclic alkylamino, aromatic carbocyclic sulfanyl, non-aromatic carbocyclic sulfanyl, aromatic heterocyclic sulfanyl, non-aromatic heterocyclic sulfanyl, non Aromatic carbocyclic sulfonyl, aromatic carbocyclic sulfonyl, aromatic heterocyclic sulfonyl, and non-aromatic heterocyclic sulfonyl.
 「置換もしくは非置換の芳香族炭素環式基」、「置換もしくは非置換の非芳香族炭素環式基」、「置換もしくは非置換の芳香族複素環式基」、および「置換もしくは非置換の非芳香族複素環式基」、ならびに「置換もしくは非置換の芳香族炭素環カルボニル」、「置換もしくは非置換の非芳香族炭素環カルボニル」、「置換もしくは非置換の芳香族複素環カルボニル」、および「置換もしくは非置換の非芳香族複素環カルボニル」、の「芳香族炭素環」、「非芳香族炭素環」、「芳香族複素環」、および「非芳香族複素環」の環上の置換基としては、次の置換基が挙げられる。環上の任意の位置の原子が次の置換基から選択される1以上の基と結合していてもよい。 “Substituted or unsubstituted aromatic carbocyclic group”, “substituted or unsubstituted nonaromatic carbocyclic group”, “substituted or unsubstituted aromatic heterocyclic group”, and “substituted or unsubstituted aromatic carbocyclic group” "Non-aromatic heterocyclic group", as well as "substituted or unsubstituted aromatic carbocyclic carbonyl", "substituted or unsubstituted non-aromatic carbocyclic carbonyl", "substituted or unsubstituted aromatic heterocyclic carbonyl", And on the ring of “aromatic carbocycle”, “non-aromatic carbocycle”, “aromatic heterocycle”, and “non-aromatic heterocycle” of “substituted or unsubstituted non-aromatic heterocycle carbonyl” Examples of the substituent include the following substituents. An atom at any position on the ring may be bonded to one or more groups selected from the following substituents.
 置換基:ハロゲン、ヒドロキシ、カルボキシ、アミノ、イミノ、ヒドロキシアミノ、ヒドロキシイミノ、ホルミル、ホルミルオキシ、カルバモイル、スルファモイル、スルファニル、スルフィノ、スルホ、チオホルミル、チオカルボキシ、ジチオカルボキシ、チオカルバモイル、シアノ、ニトロ、ニトロソ、アジド、ヒドラジノ、ウレイド、アミジノ、グアニジノ、トリアルキルシリル、アルキル、アルケニル、アルキニル、ハロアルキル、アルキルオキシ、アルケニルオキシ、アルキニルオキシ、ハロアルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシ、アルキルカルボニル、アルケニルカルボニル、アルキニルカルボニル、モノアルキルアミノ、ジアルキルアミノ、アルキルスルホニル、アルケニルスルホニル、アルキニルスルホニル、モノアルキルカルボニルアミノ、ジアルキルカルボニルアミノ、モノアルキルスルホニルアミノ、ジアルキルスルホニルアミノ、アルキルイミノ、アルケニルイミノ、アルキニルイミノ、アルキルカルボニルイミノ、アルケニルカルボニルイミノ、アルキニルカルボニルイミノ、アルキルオキシイミノ、アルケニルオキシイミノ、アルキニルオキシイミノ、アルキルカルボニルオキシ、アルケニルカルボニルオキシ、アルキニルカルボニルオキシ、アルキルオキシカルボニル、アルケニルオキシカルボニル、アルキニルオキシカルボニル、アルキルスルファニル、アルケニルスルファニル、アルキニルスルファニル、アルキルスルフィニル、アルケニルスルフィニル、アルキニルスルフィニル、モノアルキルカルバモイル、ジアルキルカルバモイル、モノアルキルスルファモイル、ジアルキルスルファモイル、芳香族炭素環式基、非芳香族炭素環式基、芳香族複素環式基、非芳香族複素環式基、芳香族炭素環オキシ、非芳香族炭素環オキシ、芳香族複素環オキシ、非芳香族複素環オキシ、芳香族炭素環カルボニル、非芳香族炭素環カルボニル、芳香族複素環カルボニル、非芳香族複素環カルボニル、芳香族炭素環オキシカルボニル、非芳香族炭素環オキシカルボニル、芳香族複素環オキシカルボニル、非芳香族複素環オキシカルボニル、芳香族炭素環アルキル、非芳香族炭素環アルキル、芳香族複素環アルキル、非芳香族複素環アルキル、芳香族炭素環アルキルオキシ、非芳香族炭素環アルキルオキシ、芳香族複素環アルキルオキシ、非芳香族複素環アルキルオキシ、芳香族炭素環アルキルオキシカルボニル、非芳香族炭素環アルキルオキシカルボニル、芳香族複素環アルキルオキシカルボニル、非芳香族複素環アルキルオキシカルボニル、芳香族炭素環アルキルオキシアルキル、非芳香族炭素環アルキルオキシアルキル、芳香族複素環アルキルオキシアルキル、非芳香族複素環アルキルオキシアルキル、芳香族炭素環アルキルアミノ、非芳香族炭素環アルキルアミノ、芳香族複素環アルキルアミノ、非芳香族複素環アルキルアミノ、芳香族炭素環スルファニル、非芳香族炭素環スルファニル、芳香族複素環スルファニル、非芳香族複素環スルファニル、非芳香族炭素環スルホニル、芳香族炭素環スルホニル、芳香族複素環スルホニル、および非芳香族複素環スルホニル。 Substituents: halogen, hydroxy, carboxy, amino, imino, hydroxyamino, hydroxyimino, formyl, formyloxy, carbamoyl, sulfamoyl, sulfanyl, sulfino, sulfo, thioformyl, thiocarboxy, dithiocarboxy, thiocarbamoyl, cyano, nitro, nitroso , Azide, hydrazino, ureido, amidino, guanidino, trialkylsilyl, alkyl, alkenyl, alkynyl, haloalkyl, alkyloxy, alkenyloxy, alkynyloxy, haloalkyloxy, alkyloxyalkyl, alkyloxyalkyloxy, alkylcarbonyl, alkenylcarbonyl, Alkynylcarbonyl, monoalkylamino, dialkylamino, alkylsulfonyl, alkenylsulfonyl Alkynylsulfonyl, monoalkylcarbonylamino, dialkylcarbonylamino, monoalkylsulfonylamino, dialkylsulfonylamino, alkylimino, alkenylimino, alkynylimino, alkylcarbonylimino, alkenylcarbonylimino, alkynylcarbonylimino, alkyloxyimino, alkenyloxyimino, Alkynyloxyimino, alkylcarbonyloxy, alkenylcarbonyloxy, alkynylcarbonyloxy, alkyloxycarbonyl, alkenyloxycarbonyl, alkynyloxycarbonyl, alkylsulfanyl, alkenylsulfanyl, alkynylsulfanyl, alkylsulfinyl, alkenylsulfinyl, alkynylsulfinyl, monoalkylcarba Yl, dialkylcarbamoyl, monoalkylsulfamoyl, dialkylsulfamoyl, aromatic carbocyclic group, non-aromatic carbocyclic group, aromatic heterocyclic group, non-aromatic heterocyclic group, aromatic carbocycle Oxy, non-aromatic carbocyclic oxy, aromatic heterocyclic oxy, non-aromatic heterocyclic oxy, aromatic carbocyclic carbonyl, non-aromatic carbocyclic carbonyl, aromatic heterocyclic carbonyl, non-aromatic heterocyclic carbonyl, aromatic Carbocyclic oxycarbonyl, non-aromatic carbocyclic oxycarbonyl, aromatic heterocyclic oxycarbonyl, non-aromatic heterocyclic oxycarbonyl, aromatic carbocyclic alkyl, non-aromatic carbocyclic alkyl, aromatic heterocyclic alkyl, non-aromatic Heterocyclic alkyl, aromatic carbocyclic alkyloxy, non-aromatic carbocyclic alkyloxy, aromatic heterocyclic alkyloxy, non-aromatic heterocyclic alkyl Ruoxy, aromatic carbocyclic alkyloxycarbonyl, non-aromatic carbocyclic alkyloxycarbonyl, aromatic heterocyclic alkyloxycarbonyl, non-aromatic heterocyclic alkyloxycarbonyl, aromatic carbocyclic alkyloxyalkyl, non-aromatic carbocyclic alkyl Oxyalkyl, aromatic heterocyclic alkyloxyalkyl, non-aromatic heterocyclic alkyloxyalkyl, aromatic carbocyclic alkylamino, non-aromatic carbocyclic alkylamino, aromatic heterocyclic alkylamino, non-aromatic heterocyclic alkylamino, Aromatic carbocyclic sulfanyl, non-aromatic carbocyclic sulfanyl, aromatic heterocyclic sulfanyl, non-aromatic heterocyclic sulfanyl, non-aromatic carbocyclic sulfonyl, aromatic carbocyclic sulfonyl, aromatic heterocyclic sulfonyl, and non-aromatic hetero Ring sulfonyl.
 また、「置換もしくは非置換の非芳香族炭素環式基」および「置換もしくは非置換の非芳香族複素環式基」は「オキソ」で置換されていてもよい。この場合、以下のように炭素原子上の2個の水素原子が置換されている基を意味する。 Also, the “substituted or unsubstituted non-aromatic carbocyclic group” and “substituted or unsubstituted non-aromatic heterocyclic group” may be substituted with “oxo”. In this case, it means a group in which two hydrogen atoms on a carbon atom are substituted as follows.
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記、「置換もしくは非置換の非芳香族炭素環カルボニル」、および「置換もしくは非置換の非芳香族複素環カルボニル」の非芳香族炭素環、および非芳香族複素環部分も上記と同様に「オキソ」で置換されていてもよい。 In the same manner as described above, the non-aromatic carbocycle and the non-aromatic heterocyclic portion of the above-mentioned “substituted or unsubstituted non-aromatic carbocyclic carbonyl” and “substituted or unsubstituted non-aromatic heterocyclic carbonyl” It may be substituted with “oxo”.
 「アミノで置換されているアルキル」とは、1以上のアミノ基が、上記「アルキル」の炭素原子に結合している水素原子と置き換わった基を意味する。例えば、アミノメチル、1-アミノエチル、2-アミノメチル、1-アミノプロピル、2-アミノプロピル、1,2-ジアミノエチル等が挙げられる。 “Alkyl substituted with amino” means a group in which one or more amino groups are replaced with a hydrogen atom bonded to a carbon atom of the above “alkyl”. Examples include aminomethyl, 1-aminoethyl, 2-aminomethyl, 1-aminopropyl, 2-aminopropyl, 1,2-diaminoethyl and the like.
 「アミノで置換されているアルキル」の好ましい態様としては、2-アミノエチルが挙げられる。 A preferred embodiment of “alkyl substituted with amino” includes 2-aminoethyl.
 「アミノで置換されているアルキルカルボニル」とは、1以上のアミノ基が、上記「アルキルカルボニル」の炭素原子に結合している水素原子と置き換わった基を意味する。例えば、アミノメチルカルボニル、1-アミノエチルカルボニル、2-アミノエチルカルボニル、1-アミノプロピルカルボニル、2-アミノプロピルカルボニル、1,2-ジアミノプロピルカルボニル等が挙げられる。 “Alkylcarbonyl substituted with amino” means a group in which one or more amino groups are replaced with a hydrogen atom bonded to a carbon atom of the above “alkylcarbonyl”. Examples include aminomethylcarbonyl, 1-aminoethylcarbonyl, 2-aminoethylcarbonyl, 1-aminopropylcarbonyl, 2-aminopropylcarbonyl, 1,2-diaminopropylcarbonyl, and the like.
 「アミノで置換されているアルキルカルボニル」の好ましい態様としては、アミノメチルカルボニルが挙げられる。 A preferred embodiment of “alkylcarbonyl substituted with amino” includes aminomethylcarbonyl.
 「アルキルで置換されているシリル」とは、1以上の上記「アルキル」基が、シリル基のケイ素原子に結合している水素原子と置き換わった基を意味する。例えば、メチルシリル、ジメチルシリル、トリメチルシリル、トリエチルシリル、tert-ブチルジメチルシリル等が挙げられる。 鈥 シ リ ル yl substituted with alkyl 鈥 means a group in which one or more of the above ‘alkyl’ groups are replaced with a hydrogen atom bonded to a silicon atom of the silyl group. Examples thereof include methylsilyl, dimethylsilyl, trimethylsilyl, triethylsilyl, tert-butyldimethylsilyl and the like.
 「アルキルで置換されているシリル」の好ましい態様としては、tert-ブチルジメチルシリルが挙げられる。 A preferable embodiment of “silyl substituted with alkyl” includes tert-butyldimethylsilyl.
 「アミド保護基」とは、アミド基の窒素原子に結合している水素原子を置き換え、所望の反応後、脱保護されることが可能な基を意味する。アミド保護基としては、アルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシアルキル、ベンジル、ベンジルオキシ、ベンジルオキシアルキル等が挙げられる。さらに具体的には、アリル、メトキシメチル、ベンジルオキシメチル、tert-ブチルジメチルシリオキシメチル、ピロリジノメチル、メトキシ、ベンジルオキシ、メチルチオ、N-トリフェニルメチルチオ、tert-ブチルジメチルシリル、4-メトキシフェニル、4-(メトキシメトキシ)フェニル、ベンジル、4-メトキシベンジル、2,4-ジメトキシベンジル、ジ(4-メトキシフェニル)メチル、ジ(4-メトキシフェニル)フェニルメチル、N-tert-ブトキシカルボニル等、Protective Groups in Organic Synthesis、T.W.Greene著、John Wiley & Sons Inc.に記載されるものが挙げられる。 The “amide protecting group” means a group that can replace a hydrogen atom bonded to a nitrogen atom of an amide group and can be deprotected after a desired reaction. Amide protecting groups include alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, benzyloxyalkyl and the like. More specifically, allyl, methoxymethyl, benzyloxymethyl, tert-butyldimethylsiloxymethyl, pyrrolidinomethyl, methoxy, benzyloxy, methylthio, N-triphenylmethylthio, tert-butyldimethylsilyl, 4-methoxyphenyl 4- (methoxymethoxy) phenyl, benzyl, 4-methoxybenzyl, 2,4-dimethoxybenzyl, di (4-methoxyphenyl) methyl, di (4-methoxyphenyl) phenylmethyl, N-tert-butoxycarbonyl, etc. Protective Groups in Organic Synthesis, T. W. By Greene, John Wiley & Sons Inc. The thing described in is mentioned.
 式(I)または式(II)で示される化合物は、特定の異性体に限定するものではなく、全ての可能な異性体(例えば、ケト-エノール異性体、イミン-エナミン異性体、ジアステレオ異性体、光学異性体、回転異性体等)、ラセミ体またはそれらの混合物を含む。 The compounds of formula (I) or formula (II) are not limited to specific isomers, but all possible isomers (eg keto-enol isomers, imine-enamine isomers, diastereoisomers) Isomers, optical isomers, rotational isomers, etc.), racemates or mixtures thereof.
 式(I)または式(II)で示される化合物の一つ以上の水素、炭素および/または他の原子は、それぞれ水素、炭素および/または他の原子の同位体で置換され得る。そのような同位体の例としては、それぞれH、H、11C、13C、14C、15N、18O、17O、31P、32P、35S、18F、123Iおよび36Clのように、水素、炭素、窒素、酸素、リン、硫黄、フッ素、ヨウ素および塩素が包含される。式(I)または式(II)で示される化合物は、そのような同位体で置換された化合物も包含する。該同位体で置換された化合物は、医薬品としても有用であり、式(I)または式(II)で示される化合物のすべての放射性標識体を包含する。また該「放射性標識体」を製造するための「放射性標識化方法」も本発明に包含され、代謝薬物動態研究、結合アッセイにおける研究および/または診断のツールとして有用である。 One or more hydrogen, carbon and / or other atoms of the compound of formula (I) or formula (II) may be replaced with hydrogen, carbon and / or isotopes of other atoms, respectively. Examples of such isotopes are 2 H, 3 H, 11 C, 13 C, 14 C, 15 N, 18 O, 17 O, 31 P, 32 P, 35 S, 18 F, 123 I and Like 36 Cl, hydrogen, carbon, nitrogen, oxygen, phosphorus, sulfur, fluorine, iodine and chlorine are included. The compound represented by the formula (I) or the formula (II) includes a compound substituted with such an isotope. The compound substituted with the isotope is also useful as a pharmaceutical, and includes all radiolabeled compounds of the compound represented by formula (I) or formula (II). A “radiolabeling method” for producing the “radiolabeled product” is also encompassed in the present invention, and is useful as a metabolic pharmacokinetic study, a study in a binding assay, and / or a diagnostic tool.
 式(I)または式(II)で示される化合物の放射性標識体は、当該技術分野で周知の方法で調製できる。例えば、式(I)または式(II)で示されるトリチウム標識化合物は、例えば、トリチウムを用いた触媒的脱ハロゲン化反応によって、式(I)または式(II)で示される特定の化合物にトリチウムを導入することで調製できる。この方法は、適切な触媒、例えばPd/Cの存在下、塩基の存在下または非存在下で、式(I)または式(II)で示される化合物が適切にハロゲン置換された前駆体とトリチウムガスとを反応させることを包含する。他のトリチウム標識化合物を調製するための適切な方法としては、文書Isotopes in the Physical and Biomedical Sciences,Vol.1,Labeled Compounds (Part A),Chapter 6 (1987年)を参照にできる。14C-標識化合物は、14C炭素を有する原料を用いることによって調製できる。 The radiolabeled compound of the compound represented by formula (I) or formula (II) can be prepared by a method well known in the art. For example, a tritium-labeled compound represented by the formula (I) or the formula (II) can be converted into a tritium-containing compound represented by the formula (I) or the formula (II) by a catalytic dehalogenation reaction using tritium. Can be prepared by introducing. This method comprises a precursor and tritium in which a compound of formula (I) or formula (II) is appropriately halogen-substituted in the presence of a suitable catalyst such as Pd / C, in the presence or absence of a base. It includes reacting with a gas. Suitable methods for preparing other tritium labeled compounds include the document Isotopes in the Physical and Biomedical Sciences, Vol. 1, Labeled Compounds (Part A), Chapter 6 (1987). 14 C-labeled compounds can be prepared by using raw materials having 14 C carbon.
 式(I)または式(II)で示される化合物の製薬上許容される塩あるいは式(II)で示される化合物の塩としては、例えば、式(I)または式(II)で示される化合物と、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム、バリウム等)、マグネシウム、遷移金属(例えば、亜鉛、鉄等)、アンモニア、有機塩基(例えば、トリメチルアミン、トリエチルアミン、ジシクロヘキシルアミン、エタノールアミン、ジエタノールアミン、トリエタノールアミン、メグルミン、ジエタノールアミン、エチレンジアミン、ピリジン、ピコリン、キノリン等)およびアミノ酸との塩、または無機酸(例えば、塩酸、硫酸、硝酸、炭酸、臭化水素酸、リン酸、ヨウ化水素酸等)、および有機酸(例えば、ギ酸、酢酸、プロピオン酸、トリフルオロ酢酸、クエン酸、乳酸、酒石酸、シュウ酸、マレイン酸、フマル酸、マンデル酸、グルタル酸、リンゴ酸、安息香酸、フタル酸、アスコルビン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、メタンスルホン酸、エタンスルホン酸等)との塩が挙げられる。特に塩酸、硫酸、リン酸、酒石酸、メタンスルホン酸との塩等が挙げられる。これらの塩は、通常行われる方法によって形成させることができる。 Examples of the pharmaceutically acceptable salt of the compound represented by the formula (I) or the formula (II) or the salt of the compound represented by the formula (II) include, for example, a compound represented by the formula (I) or the formula (II) , Alkali metals (eg, lithium, sodium, potassium, etc.), alkaline earth metals (eg, calcium, barium, etc.), magnesium, transition metals (eg, zinc, iron, etc.), ammonia, organic bases (eg, trimethylamine, triethylamine) , Dicyclohexylamine, ethanolamine, diethanolamine, triethanolamine, meglumine, diethanolamine, ethylenediamine, pyridine, picoline, quinoline, etc.) and salts with amino acids, or inorganic acids (eg hydrochloric acid, sulfuric acid, nitric acid, carbonic acid, hydrobromic acid) , Phosphoric acid, hydroiodic acid, etc.) and organic (For example, formic acid, acetic acid, propionic acid, trifluoroacetic acid, citric acid, lactic acid, tartaric acid, oxalic acid, maleic acid, fumaric acid, mandelic acid, glutaric acid, malic acid, benzoic acid, phthalic acid, ascorbic acid, benzenesulfone Acid, p-toluenesulfonic acid, methanesulfonic acid, ethanesulfonic acid and the like). Particularly, salts with hydrochloric acid, sulfuric acid, phosphoric acid, tartaric acid, methanesulfonic acid and the like can be mentioned. These salts can be formed by a commonly performed method.
 本発明の式(I)もしくは式(II)で示される化合物またはその製薬上許容される塩あるいは式(II)で示される化合物の塩は、溶媒和物(例えば、水和物等)および/または結晶多形を形成する場合があり、本発明はそのような各種の溶媒和物および結晶多形も包含する。「溶媒和物」は、式(I)または式(II)で示される化合物に対し、任意の数の溶媒分子(例えば、水分子等)と配位していてもよい。式(I)もしくは式(II)で示される化合物またはその製薬上許容される塩あるいは式(II)で示される化合物の塩を、大気中に放置することにより、水分を吸収し、吸着水が付着する場合や、水和物を形成する場合がある。また、式(I)もしくは式(II)で示される化合物またはその製薬上許容される塩あるいは式(II)で示される化合物の塩を、再結晶することでそれらの結晶多形を形成する場合がある。 The compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof or the salt of the compound represented by the formula (II) is a solvate (for example, hydrate etc.) and / or Alternatively, crystal polymorphs may be formed, and the present invention also includes such various solvates and crystal polymorphs. The “solvate” may be coordinated with any number of solvent molecules (for example, water molecules) with respect to the compound represented by the formula (I) or the formula (II). When the compound represented by the formula (I) or the formula (II) or a pharmaceutically acceptable salt thereof or a salt of the compound represented by the formula (II) is left in the air, the water is absorbed, It may adhere or form a hydrate. In addition, when the compound represented by the formula (I) or the formula (II) or a pharmaceutically acceptable salt thereof or the salt of the compound represented by the formula (II) is recrystallized to form a crystalline polymorph thereof. There is.
 本発明の式(I)もしくは式(II)で示される化合物またはその製薬上許容される塩は、プロドラッグを形成する場合があり、本発明はそのような各種のプロドラッグも包含する。プロドラッグは、化学的または代謝的に分解できる基を有する本発明化合物の誘導体であり、加溶媒分解によりまたは生理学的条件下でインビボにおいて薬学的に活性な本発明化合物となる化合物である。プロドラッグは、生体内における生理条件下で酵素的に酸化、還元、加水分解等を受けて式(I)または式(II)で示される化合物に変換される化合物、胃酸等により加水分解されて式(I)または式(II)で示される化合物に変換される化合物等を包含する。適当なプロドラッグ誘導体を選択する方法および製造する方法は、例えばDesign of Prodrugs, Elsevier, Amsterdam 1985に記載されている。プロドラッグは、それ自身が活性を有する場合がある。 The compound represented by the formula (I) or the formula (II) of the present invention or a pharmaceutically acceptable salt thereof may form a prodrug, and the present invention includes such various prodrugs. A prodrug is a derivative of a compound of the invention that has a group that can be chemically or metabolically degraded and is a compound that becomes a pharmaceutically active compound of the invention in vivo by solvolysis or under physiological conditions. A prodrug is hydrolyzed by a compound that is enzymatically oxidized, reduced, hydrolyzed, etc. under physiological conditions in vivo to be converted into a compound represented by formula (I) or formula (II), gastric acid, etc. The compound etc. which are converted into the compound shown by Formula (I) or Formula (II) are included. Methods for selecting and producing suitable prodrug derivatives are described, for example, in Design of Prodrugs, Elsevier, Amsterdam 1985. Prodrugs may themselves have activity.
 式(I)もしくは式(II)で示される化合物またはその製薬上許容される塩がヒドロキシル基を有する場合は、例えば、ヒドロキシル基を有する化合物と適当なアシルハライド、適当な酸無水物、適当なスルホニルクロライド、適当なスルホニルアンハイドライドおよびミックスドアンハイドライドとを反応させることによりあるいは縮合剤を用いて反応させることにより製造されるアシルオキシ誘導体やスルホニルオキシ誘導体のようなプロドラッグが例示される。例えば、CHCOO-、CCOO-、tert-BuCOO-、C1531COO-、PhCOO-、(m-NaOOCPh)COO-、NaOOCCHCHCOO-、CHCH(NH)COO-、CHN(CHCOO-、CHSO-、CHCHSO-、CFSO-、CHFSO-、CFCHSO-、p-CH-O-PhSO-、PhSO-、p-CHPhSO-が挙げられる。 When the compound represented by formula (I) or formula (II) or a pharmaceutically acceptable salt thereof has a hydroxyl group, for example, a compound having a hydroxyl group and a suitable acyl halide, a suitable acid anhydride, a suitable acid anhydride, Examples thereof include prodrugs such as acyloxy derivatives and sulfonyloxy derivatives produced by reacting sulfonyl chloride, a suitable sulfonyl anhydride and mixed anhydride, or reacting with a condensing agent. For example, CH 3 COO—, C 2 H 5 COO—, tert-BuCOO—, C 15 H 31 COO—, PhCOO—, (m-NaOOCPh) COO—, NaOOCCH 2 CH 2 COO—, CH 3 CH (NH 2 ) COO—, CH 2 N (CH 3 ) 2 COO—, CH 3 SO 3 —, CH 3 CH 2 SO 3 —, CF 3 SO 3 —, CH 2 FSO 3 —, CF 3 CH 2 SO 3 —, p -CH 3 -O-PhSO 3 -, PhSO 3 -, p-CH 3 PhSO 3 - and the like.
 (本発明の化合物の製造法)
 本発明に係る式(I)または式(II)で示される化合物は、例えば、下記に示す一般的合成法によって製造することができる。また、抽出、精製等は、通常の有機化学の実験で行う処理を行えばよい。
(Method for producing the compound of the present invention)
The compound represented by the formula (I) or the formula (II) according to the present invention can be produced, for example, by the general synthesis method shown below. Extraction, purification, and the like may be performed in a normal organic chemistry experiment.
 本発明の化合物の合成は、当該分野において公知の手法を参酌しながら実施することができる。 The synthesis of the compound of the present invention can be carried out in consideration of a technique known in the art.
 本発明に係る式(I)または式(II)で示される化合物は、例えば、下記に示す一般的合成法によって製造することができる。 The compound represented by the formula (I) or the formula (II) according to the present invention can be produced, for example, by a general synthesis method shown below.
 一般的合成法0-A:縮合反応(縮合剤によるアミド化) General synthesis method 0-A: Condensation reaction (amidation with condensing agent)
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 化合物a1に、縮合剤の存在下、化合物a2を反応させることにより、化合物a3を得ることができる。 Compound a3 can be obtained by reacting compound a1 with compound a2 in the presence of a condensing agent.
 縮合剤としては、ジシクロへキシルカルボジイミド、カルボニルジイミダゾール、ジシクロヘキシルカルボジイミド-N-ヒドロキシベンゾトリアゾール、EDC、4-(4,6-ジメトキシ-1,3,5,-トリアジン-2-イル)-4-メチルモルホリニウムクロリド、HATU等が挙げられ、化合物i1に対して1~5モル当量用いることができる。 As the condensing agent, dicyclohexylcarbodiimide, carbonyldiimidazole, dicyclohexylcarbodiimide-N-hydroxybenzotriazole, EDC, 4- (4,6-dimethoxy-1,3,5, -triazin-2-yl) -4- Examples thereof include methylmorpholinium chloride and HATU, and 1 to 5 molar equivalents can be used with respect to compound i1.
 反応温度は、-20℃~60℃、好ましくは0℃~30℃である。 The reaction temperature is −20 ° C. to 60 ° C., preferably 0 ° C. to 30 ° C.
 反応時間は、0.1時間~24時間、好ましくは1時間~12時間である。 The reaction time is 0.1 to 24 hours, preferably 1 to 12 hours.
 反応溶媒としては、DMF、DMA、NMP、テトラヒドロフラン、ジオキサン、ジクロロメタン、アセトニトリル等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include DMF, DMA, NMP, tetrahydrofuran, dioxane, dichloromethane, acetonitrile and the like, and these can be used alone or in combination.
 一般的合成法0-B:縮合反応(ハロゲン化剤もしくはスルホニル化剤によるアミド化) General synthesis method 0-B: Condensation reaction (amidation with halogenating agent or sulfonylating agent)
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 第一工程
 化合物b1に、ハロゲン化剤を反応させることにより、ハロゲン化物を得ることができる。
First Step A halide can be obtained by reacting compound b1 with a halogenating agent.
 ハロゲン化剤としては、塩化チオニル、オキシ塩化リン、四臭化炭素-トリフェニルホスフィン等が挙げられ、化合物j1に対して1~5モル当量用いることができる。 Examples of the halogenating agent include thionyl chloride, phosphorus oxychloride, carbon tetrabromide-triphenylphosphine, and the like, and 1 to 5 molar equivalents can be used with respect to compound j1.
 または、化合物b1に、トリエチルアミン、ピリジン等の塩基の存在下、スルホニル化剤を反応させることにより、スルホニル化合物を得ることができる。 Alternatively, a sulfonyl compound can be obtained by reacting compound b1 with a sulfonylating agent in the presence of a base such as triethylamine or pyridine.
 スルホニル化剤としては、メタンスルホニルクロリド、p-トルエンスルホニルクロリド等が挙げられ、化合物b1に対して1~5モル当量用いることができる。 Examples of the sulfonylating agent include methanesulfonyl chloride, p-toluenesulfonyl chloride and the like, and 1 to 5 molar equivalents can be used with respect to compound b1.
 反応温度は、-80℃~50℃、好ましくは-20℃~20℃である。 The reaction temperature is −80 ° C. to 50 ° C., preferably −20 ° C. to 20 ° C.
 反応時間は、0.1時間~24時間、好ましくは0.5時間~12時間である。 The reaction time is 0.1 to 24 hours, preferably 0.5 to 12 hours.
 反応溶媒としては、アセトニトリル、テトラヒドロフラン、トルエン、ジクロロメタン等が用いることができる。 As the reaction solvent, acetonitrile, tetrahydrofuran, toluene, dichloromethane or the like can be used.
 第二工程
 得られたハロゲン化物、またはスルホニル化合物に、塩基の存在下、化合物b2を反応させることにより、化合物b3を得ることができる。
Second Step Compound b3 can be obtained by reacting the obtained halide or sulfonyl compound with compound b2 in the presence of a base.
 塩基としては、DIEA、炭酸カリウム、炭酸水素ナトリウム、水素化ナトリウム、水酸化ナトリウム等が挙げられる。 Examples of the base include DIEA, potassium carbonate, sodium hydrogen carbonate, sodium hydride, sodium hydroxide and the like.
 反応温度は、0℃~150℃、好ましくは20℃~100℃である。 The reaction temperature is 0 ° C. to 150 ° C., preferably 20 ° C. to 100 ° C.
 反応時間は、0.5時間~120時間、好ましくは1時間~72時間である。 The reaction time is 0.5 to 120 hours, preferably 1 to 72 hours.
 反応溶媒としては、アセトニトリル、テトラヒドロフラン、トルエン、ジクロロメタン等が挙げられる。 Examples of the reaction solvent include acetonitrile, tetrahydrofuran, toluene, dichloromethane and the like.
 一般的合成法0-C:脱保護反応(脱Boc化) General synthesis method 0-C: Deprotection reaction (de-Boc)
Figure JPOXMLDOC01-appb-C000033
Figure JPOXMLDOC01-appb-C000033
 化合物c1に、酸またはルイス酸を反応させることにより、化合物c2を得ることができる。 Compound c2 can be obtained by reacting compound c1 with an acid or a Lewis acid.
 酸としては、塩酸-酢酸エチル、塩酸-メタノール、塩酸-ジオキサン、硫酸、ギ酸、トリフルオロ酢酸等が挙げられる。ルイス酸としては、ヨウ化トリメチルシリル、BBr、AlCl、BF・(EtO)等が挙げられ、化合物c1に対して1~10モル当量用いることができる。 Examples of the acid include hydrochloric acid-ethyl acetate, hydrochloric acid-methanol, hydrochloric acid-dioxane, sulfuric acid, formic acid, trifluoroacetic acid and the like. Examples of the Lewis acid include trimethylsilyl iodide, BBr 3 , AlCl 3 , BF 3. (Et 2 O) and the like, and 1 to 10 molar equivalents can be used with respect to the compound c1.
 反応温度は、0℃~60℃、好ましくは0℃~20℃である。 The reaction temperature is 0 ° C to 60 ° C, preferably 0 ° C to 20 ° C.
 反応時間は、0.5時間~12時間、好ましくは1時間~6時間である。 The reaction time is 0.5 to 12 hours, preferably 1 to 6 hours.
 反応溶媒としては、メタノール、エタノール、水、アセトン、アセトニトリル、DMF等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include methanol, ethanol, water, acetone, acetonitrile, DMF and the like, and these can be used alone or in combination.
 一般的合成法1:化合物(A8)の合成 General synthesis method 1: Synthesis of compound (A8)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
(式中、Pgは、メチル基、エチル基、またはtert-ブチル(t-Bu)基等のカルボキシ保護基であり、Xは、適切な脱離基(例えば、ハロゲン、OPfp等)であり、その他の各記号は前記と同義)
 第一工程
 一般的合成法0-Cの方法によって、化合物(A1)を、脱Boc化し、化合物(A2)を得ることができる。
Wherein Pg 1 is a carboxy protecting group such as a methyl group, an ethyl group, or a tert-butyl (t-Bu) group, and X 1 is a suitable leaving group (eg, halogen, OPfp, etc.) Yes, and other symbols are as defined above)
First Step Compound (A1) can be debocated to obtain compound (A2) by the general synthesis method 0-C.
 第二工程
 一般的合成法0-Bの第二工程の方法によって、適切な脱離基Xを有する化合物(A3)に、化合物(A2)を反応させることにより、化合物(A4)を得ることができる。
Second Step By reacting compound (A2) with compound (A3) having an appropriate leaving group X 1 by the method of second step of general synthesis method 0-B, compound (A4) is obtained. Can do.
 第三工程
 化合物(A4)に、Pd-炭素を加え、水素ガスを反応させることにより、脱BnO化し、化合物(A5)を得ることができる。
Third Step Pd-carbon is added to the compound (A4) and reacted with hydrogen gas to remove BnO to obtain the compound (A5).
 水素気圧は、1~50気圧が挙げられる。なお、水素源として、シクロへキセン、1,4-シクロヘキサジエン、ギ酸、ギ酸アンモニウム等も用いることができる。 Hydrogen pressure is 1 to 50 atmospheres. As a hydrogen source, cyclohexene, 1,4-cyclohexadiene, formic acid, ammonium formate, or the like can also be used.
 反応温度は、0℃~40℃、好ましくは10℃~30℃である。 The reaction temperature is 0 ° C. to 40 ° C., preferably 10 ° C. to 30 ° C.
 反応時間は、0.5時間~24時間、好ましくは1時間~12時間である。 The reaction time is 0.5 to 24 hours, preferably 1 to 12 hours.
 反応溶媒としては、メタノール、エタノール、水、テトラヒドロフラン、酢酸エチル等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include methanol, ethanol, water, tetrahydrofuran, ethyl acetate and the like, and these can be used alone or in combination.
 第四工程
 一般的合成法0-Bの第二工程の方法によって、適切な脱離基Xを有する化合物(A6)に、化合物(A5)を反応させることにより、化合物(A7)を得ることができる。
Fourth step: Compound (A7) is obtained by reacting compound (A5) with compound (A6) having an appropriate leaving group X 1 by the method of second step of general synthesis method 0-B. Can do.
 第五工程
 一般的合成法0-Aの方法によって、化合物(A7)に、縮合剤の存在下、塩化アンモニウムを反応させることにより、化合物(A8)を得ることができる。
Fifth Step By the method of general synthesis method 0-A, compound (A8) can be obtained by reacting compound (A7) with ammonium chloride in the presence of a condensing agent.
 一般的合成法2:化合物(B6)の合成 General synthesis method 2: Synthesis of compound (B6)
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000035
(式中、Pgは、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、またはベンジルオキシメチル基等のアミド保護基であり、PgおよびPgは、トリメチルシリル(TMS)基、またはt-ブチルジメチルシリル(TBS)基等のヒドロキシ保護基であり、XおよびXは、ハロゲンであり、その他の各記号は前記と同義)
 第一工程
 化合物(B1)に、塩基の存在下または非存在下、Pg-X(式中、Xは、適切な脱離基(例えば、ハロゲン)である)を反応させることにより、Pg基で保護された化合物(B2)を得ることができる。
(Wherein Pg 2 is an amide protecting group such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxymethyl group, and Pg 3 and Pg 4 are trimethylsilyl (TMS) groups or t-butyldimethyl A hydroxy protecting group such as a silyl (TBS) group, X 2 and X 3 are halogens, and other symbols are as defined above.
First Step By reacting compound (B1) with Pg 2 -X 4 (wherein X 4 is a suitable leaving group (eg, halogen)) in the presence or absence of a base, A compound (B2) protected with a Pg 2 group can be obtained.
 塩基としては、水酸化ナトリウム、炭酸ナトリウム、炭酸水素ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸セシウム、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン、DBU、DBN等が挙げられ、化合物(B1)に対して1~5モル当量用いることができる。 Examples of the base include sodium hydroxide, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, calcium carbonate, cesium carbonate, pyridine, triethylamine, diisopropylethylamine, DBU, DBN and the like, and 1 to 5 mol relative to the compound (B1) An equivalent amount can be used.
 反応温度は、-10℃~80℃、好ましくは10℃~60℃である。 The reaction temperature is −10 ° C. to 80 ° C., preferably 10 ° C. to 60 ° C.
 反応時間は、0.5時間~48時間、好ましくは1~24時間である。 The reaction time is 0.5 to 48 hours, preferably 1 to 24 hours.
 反応溶媒としては、テトラヒドロフラン、ジオキサン、アセトニトリル、水、DMF、ジクロロメタン等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include tetrahydrofuran, dioxane, acetonitrile, water, DMF, dichloromethane and the like, and these can be used alone or in combination.
 第二工程
 化合物(B2)に、酸を反応させることにより、第一級ヒドロキシル基の保護基であるPg基のみを選択的に脱保護し、化合物(B3)を得ることができる。
Second step compound (B2), by reacting the acid, only Pg 4 group is a protecting group for the primary hydroxyl group selectively deprotected, to give compound (B3).
 酸としては、トリフルオロ酢酸、ギ酸、塩酸、硫酸、酢酸、シュウ酸等が挙げられ、化合物(B2)に対して0.1~10モル当量用いることができる。 Examples of the acid include trifluoroacetic acid, formic acid, hydrochloric acid, sulfuric acid, acetic acid, oxalic acid, and the like, and can be used at 0.1 to 10 molar equivalents relative to the compound (B2).
 反応温度は、0℃~90℃、好ましくは20℃~60℃である。 The reaction temperature is 0 ° C. to 90 ° C., preferably 20 ° C. to 60 ° C.
 反応時間は、0.5時間~12時間、好ましくは1時間~6時間である。 The reaction time is 0.5 to 12 hours, preferably 1 to 6 hours.
 反応溶媒としては、THF、メタノール、エタノール、水、アセトン、アセトニトリル、DMF、ジクロロメタン等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include THF, methanol, ethanol, water, acetone, acetonitrile, DMF, dichloromethane and the like, and these can be used alone or in combination.
 第三工程
 化合物(B3)に、(X(例えば、ヨウ素等)あるいはC(Xおよびホスフィンを塩基の存在下、反応させることにより、化合物(B4)を得ることができる。
Third Step Compound (B4) can be obtained by reacting compound (B3) with (X 2 ) 2 (for example, iodine or the like) or C (X 2 ) 4 and phosphine in the presence of a base.
 (Xとしては、ヨウ素、臭素等が挙げられ、化合物(B3)に対して1~10モル当量用いることができる。 Examples of (X 2 ) 2 include iodine, bromine and the like, and 1 to 10 molar equivalents can be used with respect to compound (B3).
 C(Xとしては、四臭化炭素、四塩化炭素等が挙げられ、化合物(B3)に対して1~10モル当量用いることができる。 C (X 2 ) 4 includes carbon tetrabromide, carbon tetrachloride and the like, and can be used at 1 to 10 molar equivalents relative to compound (B3).
 ホスフィンとしては、トリフェニルホスフィン、トリブチルホスフィン等が挙げられ、化合物(B3)に対して1~10モル当量用いることができる。 Examples of phosphine include triphenylphosphine and tributylphosphine, and 1 to 10 molar equivalents can be used with respect to compound (B3).
 塩基としては、ピリジン、トリエチルアミン、ジイソプロピルエチルアミン、イミダゾール等が挙げられ、化合物(B3)に対して1~5モル当量用いることができる。 Examples of the base include pyridine, triethylamine, diisopropylethylamine, imidazole and the like, and 1 to 5 molar equivalents can be used with respect to compound (B3).
 反応温度は、0℃~60℃、好ましくは0℃~25℃である。 The reaction temperature is 0 ° C. to 60 ° C., preferably 0 ° C. to 25 ° C.
 反応時間は、0.5時間~24時間、好ましくは0.5~16時間である。 The reaction time is 0.5 to 24 hours, preferably 0.5 to 16 hours.
 反応溶媒としては、ジオキサン、ジクロロメタン、テトラヒドロフラン、アセトニトリル等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include dioxane, dichloromethane, tetrahydrofuran, acetonitrile and the like, and they can be used alone or in combination.
 第四工程
 化合物(B4)に、塩基を反応させることにより、化合物(B5)を得ることができる。
Fourth Step The compound (B5) can be obtained by reacting the compound (B4) with a base.
 塩基としては、DBU、DBN、ナトリウムエトキシド、ナトリウムメトキシド等が挙げられ、化合物(B4)に対して1~5モル当量用いることができる。 Examples of the base include DBU, DBN, sodium ethoxide, sodium methoxide and the like, and 1 to 5 molar equivalents can be used with respect to the compound (B4).
 反応温度は、0℃~60℃、好ましくは0℃~25℃である。 The reaction temperature is 0 ° C. to 60 ° C., preferably 0 ° C. to 25 ° C.
 反応時間は、0.5時間~48時間、好ましくは0.5~24時間である。 The reaction time is 0.5 to 48 hours, preferably 0.5 to 24 hours.
 反応溶媒としては、アセトニトリル、テトラヒドロフラン、DMF、ジオキサン等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include acetonitrile, tetrahydrofuran, DMF, dioxane and the like, and they can be used alone or in combination.
 第五工程
 化合物(B5)に、酸化的ハロゲン化剤を反応させることにより、ビニルハライド化合物(B6)を得ることができる。
Fifth Step A vinyl halide compound (B6) can be obtained by reacting the compound (B5) with an oxidative halogenating agent.
 酸化的ハロゲン化剤としては、ヨードニウムジコリジニウムトリフラート(IDCT)、ヨードニウムジコリジニウムパークロレート(IDCP)等が挙げられ、化合物(B5)に対して1~5モル当量用いることができる。 Examples of the oxidative halogenating agent include iodonium dicorydinium triflate (IDCT), iodonium dicorydinium perchlorate (IDCP) and the like, and 1 to 5 molar equivalents can be used with respect to compound (B5).
 反応温度は、-78℃~25℃、好ましくは-40℃~25℃である。 The reaction temperature is -78 ° C to 25 ° C, preferably -40 ° C to 25 ° C.
 反応時間は、0.5時間~5時間、好ましくは0.5時間~1時間である。 The reaction time is 0.5 hours to 5 hours, preferably 0.5 hours to 1 hour.
 反応溶媒としては、アセトニトリル、プロピオニトリル、ジクロロメタン、THF、ジオキサン、ジエチルエーテル、酢酸エチル等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include acetonitrile, propionitrile, dichloromethane, THF, dioxane, diethyl ether, ethyl acetate and the like, and these can be used alone or in combination.
 一般的合成法3:クロスカップリング反応による化合物(C2)の合成 General synthesis method 3: Synthesis of compound (C2) by cross-coupling reaction
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000036
(式中、Pgは、メチル基、エチル基、またはtert-ブチル(t-Bu)基等のカルボキシ保護基であり、Pgは、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、またはベンジルオキシメチル基等のアミド保護基であり、Pgは、トリメチルシリル(TMS)基、またはt-ブチルジメチルシリル(TBS)基等のヒドロキシ保護基であり、Xはハロゲンであり、その他の各記号は前記と同義)
 第一工程
 化合物(A8)に、銅触媒、配位子および塩基の存在下、ビニルハライド化合物(B6)を反応させることにより、化合物(C1)を得ることができる。
(Wherein Pg 1 is a carboxy protecting group such as a methyl group, an ethyl group, or a tert-butyl (t-Bu) group, and Pg 2 is a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxy group. An amide protecting group such as a methyl group, Pg 3 is a hydroxy protecting group such as a trimethylsilyl (TMS) group or a t-butyldimethylsilyl (TBS) group, X 3 is a halogen, and the other symbols are Same meaning as above)
First Step Compound (C1) can be obtained by reacting compound (A8) with vinyl halide compound (B6) in the presence of a copper catalyst, a ligand and a base.
 銅触媒としては、ヨウ化銅、臭化胴、塩化銅、酢酸銅等が挙げられ、化合物(B6)に対して、0.1~1モル当量用いることができる。 Examples of the copper catalyst include copper iodide, bromide cylinder, copper chloride, copper acetate and the like, and it can be used at 0.1 to 1 molar equivalent relative to the compound (B6).
 塩基としては、炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム等が挙げられ、化合物(B6)に対して、1~10モル当量用いることができる。 Examples of the base include cesium carbonate, potassium carbonate, sodium carbonate, calcium carbonate and the like, and 1 to 10 molar equivalents can be used with respect to the compound (B6).
 配位子としては、(1R,2R)-N,N’-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン、(1S,2S)-N,N’-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン、N,N’-ジメチルエタン-1,2-ジアミン、1,10-フェナンスロリン等が挙げられ、化合物(B6)に対して0.1~2モル当量用いることができる。 The ligands include (1R, 2R) -N, N'-dimethyl-1,2-diphenylethane-1,2-diamine, (1S, 2S) -N, N'-dimethyl-1,2-diphenyl Examples include ethane-1,2-diamine, N, N′-dimethylethane-1,2-diamine, 1,10-phenanthroline, and the like, and 0.1 to 2 molar equivalents are used relative to compound (B6). Can do.
 反応温度は、20℃~溶媒の還流温度、場合によってはマイクロウェーブ照射下の温度で行う。 The reaction temperature is 20 ° C. to the reflux temperature of the solvent, and in some cases, the temperature under microwave irradiation.
 反応時間は、0.1~48時間、好ましくは0.5時間~12時間である。 The reaction time is 0.1 to 48 hours, preferably 0.5 to 12 hours.
 反応溶媒としては、テトラヒドロフラン、ジオキサン、トルエン、DMF、ジクロロメタン、水等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include tetrahydrofuran, dioxane, toluene, DMF, dichloromethane, water and the like, and these can be used alone or in combination.
 第二工程
 一般的合成法0-Cの方法によって、化合物(C1)に、酸またはルイス酸を反応させ、脱保護することにより、化合物(C2)を得ることができる。
Second Step The compound (C2) can be obtained by reacting the compound (C1) with an acid or a Lewis acid and deprotecting by the general synthesis method 0-C.
 酸としては、塩酸-酢酸エチル、塩酸-メタノール、塩酸-ジオキサン、硫酸、ギ酸、トリフルオロ酢酸等が挙げられる。ルイス酸としては、BCl、PhBCl、ヨウ化トリメチルシリル、BBr、AlCl、BF・(EtO)、FeCl、TiCl、Ti(OEt)等が挙げられ、化合物(C1)に対して1~30モル当量用いることができる。 Examples of the acid include hydrochloric acid-ethyl acetate, hydrochloric acid-methanol, hydrochloric acid-dioxane, sulfuric acid, formic acid, trifluoroacetic acid and the like. Examples of the Lewis acid include BCl 3 , PhBCl 2 , trimethylsilyl iodide, BBr 3 , AlCl 3 , BF 3. (Et 2 O), FeCl 3 , TiCl 4 , Ti (OEt) 4, and the like (C1). 1 to 30 molar equivalents can be used.
 第三工程
 化合物(C2)に、フッ素試薬を反応させ、ヒドロキシ保護基Pgを脱保護することにより、化合物(C3)を得ることができる。
Third Step The compound (C3) can be obtained by reacting the compound (C2) with a fluorine reagent to deprotect the hydroxy protecting group Pg 3 .
 フッ素試薬としては、フッ化水素トリエチルアミン、フッ化水素ピリジン、テトラブチルアンモニウムフルオリド、フッ化セシウム等が挙げられ、化合物(C2)に対して1~50モル当量用いることができる。 Fluorine reagents include hydrogen fluoride triethylamine, hydrogen fluoride pyridine, tetrabutylammonium fluoride, cesium fluoride, and the like, and can be used at 1 to 50 molar equivalents relative to compound (C2).
 反応温度は、-78℃~60℃、好ましくは-78℃~30℃である。 The reaction temperature is -78 ° C to 60 ° C, preferably -78 ° C to 30 ° C.
 反応時間は、0.5時間~120時間、好ましくは1時間~96時間である。 The reaction time is 0.5 to 120 hours, preferably 1 to 96 hours.
 反応溶媒としては、アセトニトリル、ジクロロメタン、テトラヒドロフラン、ニトロメタン等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include acetonitrile, dichloromethane, tetrahydrofuran, nitromethane and the like, and they can be used alone or in combination.
 一般的合成法4:Ugi反応による化合物(C2)の合成 General synthesis method 4: Synthesis of compound (C2) by Ugi reaction
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000038
(式中、Pgは、メチル基、エチル基、またはtert-ブチル(t-Bu)基等のカルボキシ保護基であり、Pgは、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、またはベンジルオキシメチル基等のアミド保護基であり、Pgは、トリメチルシリル(TMS)基、またはt-ブチルジメチルシリル(TBS)基等のヒドロキシ保護基であり、Pgは、2,4-ジメトキシベンジル基、tert-ブトキシカルボニル基、ベンジルオキシカルボニル基、またはベンジルオキシメチル基等のアミン保護基であり、Xはハロゲンであり、その他の各記号は前記と同義)
 第一工程
 化合物(B6)に、銅触媒、配位子、および塩基の存在下、ホルムアミドを加えることにより、銅を用いたクロスカップリングにより、化合物(B7)を得ることができる。
(Wherein Pg 1 is a carboxy protecting group such as a methyl group, an ethyl group, or a tert-butyl (t-Bu) group, and Pg 2 is a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxy group. An amide protecting group such as a methyl group, Pg 3 is a hydroxy protecting group such as a trimethylsilyl (TMS) group or a t-butyldimethylsilyl (TBS) group, and Pg 4 is a 2,4-dimethoxybenzyl group; an amine protecting group such as a tert-butoxycarbonyl group, a benzyloxycarbonyl group, or a benzyloxymethyl group, X 3 is a halogen, and other symbols are as defined above)
First Step Compound (B7) can be obtained by cross-coupling using copper by adding formamide to compound (B6) in the presence of a copper catalyst, a ligand, and a base.
 銅触媒としては、ヨウ化銅、臭化胴、塩化銅、酢酸銅等が挙げられ、化合物(B6)に対して、0.1~1モル当量用いることができる。 Examples of the copper catalyst include copper iodide, bromide cylinder, copper chloride, copper acetate and the like, and it can be used at 0.1 to 1 molar equivalent relative to the compound (B6).
 塩基としては、炭酸セシウム、炭酸カリウム、炭酸ナトリウム、炭酸カルシウム等が挙げられ、化合物(B6)に対して、1~10モル当量用いることができる。 Examples of the base include cesium carbonate, potassium carbonate, sodium carbonate, calcium carbonate and the like, and 1 to 10 molar equivalents can be used with respect to the compound (B6).
 配位子としては、N,N’-ジメチルエタン-1,2-ジアミン、(1R,2R)-N,N’-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン、(1S,2S)-N,N’-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン、1,10-フェナンスロリン等が挙げられ、化合物(B6)に対して、0.1~2モル当量用いることができる。 Examples of the ligand include N, N'-dimethylethane-1,2-diamine, (1R, 2R) -N, N'-dimethyl-1,2-diphenylethane-1,2-diamine, (1S, 2S ) -N, N′-dimethyl-1,2-diphenylethane-1,2-diamine, 1,10-phenanthroline, etc., and is used in an amount of 0.1 to 2 molar equivalents relative to compound (B6). be able to.
 反応温度は、20℃~溶媒の還流温度、場合によってはマイクロウェーブ照射下の温度で行う。 The reaction temperature is 20 ° C. to the reflux temperature of the solvent, and in some cases, the temperature under microwave irradiation.
 反応時間は、0.1~48時間、好ましくは0.5時間~12時間である。 The reaction time is 0.1 to 48 hours, preferably 0.5 to 12 hours.
 反応溶媒としては、テトラヒドロフラン、トルエン、DMF、ジオキサン、ジクロロメタン、水等が挙げられ、単独または混合して用いることができる。 Examples of the reaction solvent include tetrahydrofuran, toluene, DMF, dioxane, dichloromethane, water and the like, and these can be used alone or in combination.
 第二工程
 化合物(B7)に、塩基存在下で、トリホスゲンを反応させることにより、イソニトリル化合物(B8)を得ることができる。
Second Step An isonitrile compound (B8) can be obtained by reacting compound (B7) with triphosgene in the presence of a base.
 塩基としては、トリエチルアミン、ジイソプロピルエチルアミン、炭酸カリウム、炭酸ナトリウム炭酸セシウム、炭酸カルシウム等が挙げられる。 Examples of the base include triethylamine, diisopropylethylamine, potassium carbonate, sodium cesium carbonate, calcium carbonate and the like.
 反応温度は、-80℃~50℃、好ましくは-78℃~0℃である。 The reaction temperature is −80 ° C. to 50 ° C., preferably −78 ° C. to 0 ° C.
 反応時間は、0.1時間~24時間、好ましくは0.5時間~12時間である。 The reaction time is 0.1 to 24 hours, preferably 0.5 to 12 hours.
 反応溶媒としては、トルエン、クロロホルム、ジクロロメタン、テトラヒドロフラン等が挙げられる。 Examples of the reaction solvent include toluene, chloroform, dichloromethane, tetrahydrofuran and the like.
 第三工程
 イソニトリル化合物(B8)、HN-Pgで示されるアミン、および上記アルデヒドを、化合物(A3’)と反応させること(いわゆる、Ugi反応)により、化合物(D1)を得ることができる。
Third Step A compound (D1) can be obtained by reacting the isonitrile compound (B8), the amine represented by H 2 N—Pg 4 and the aldehyde with the compound (A3 ′) (so-called Ugi reaction). it can.
 反応温度は、0℃~150℃、好ましくは20℃~100℃である。 The reaction temperature is 0 ° C. to 150 ° C., preferably 20 ° C. to 100 ° C.
 反応時間は、0.1時間~72時間、好ましくは0.5時間~48時間である。 The reaction time is 0.1 hour to 72 hours, preferably 0.5 hour to 48 hours.
 反応溶媒としては、エタノール、メタノール、トルエン、クロロホルム、ジクロロメタン、テトラヒドロフラン、ジオキサン等が挙げられる。 Examples of the reaction solvent include ethanol, methanol, toluene, chloroform, dichloromethane, tetrahydrofuran, dioxane and the like.
 第四工程
 一般的合成法0-Cの方法によって、化合物(D1)を、脱Boc化し、化合物(D2)を得ることができる。
Fourth Step The compound (D2) can be obtained by debocating the compound (D1) by the general synthesis method 0-C.
 第五工程
 一般的合成法0-Aの方法によって、化合物(D2)に、縮合剤の存在下、化合物(A6’)を反応させることにより、化合物(C1’)を得ることができる。
Fifth Step According to the general synthesis method 0-A, compound (C1 ′) can be obtained by reacting compound (D2) with compound (A6 ′) in the presence of a condensing agent.
 第六工程
 一般的合成法3の第二工程の方法によって、化合物(C1’)を脱保護することにより、化合物(C2)を得ることができる。
Sixth Step Compound (C2) can be obtained by deprotecting compound (C1 ′) by the method of the second step of general synthesis method 3.
 第七工程
 一般的合成法3の第三工程の方法によって、化合物(C2)を脱保護することにより、化合物(C3)を得ることができる。
Seventh Step Compound (C3) can be obtained by deprotecting compound (C2) by the method of third step of general synthesis method 3.
 本発明の化合物は、保護基を用いて保護することができる。このような保護基としては、例えばエトキシカルボニル、t-ブトキシカルボニル、アセチル、ベンジル等の、Protective Groups in Organic Synthesis、T.W.Greene著、John Wiley & Sons Inc.等に記載されている保護基をあげることができる。保護基の導入および脱離方法は、有機合成化学で常用される方法[例えば、Protective Groups in Organic Synthesis、T.W.Greene著、John Wiley & Sons Inc.参照]等に記載の方法あるいはそれらに準じて得ることができる。また、各置換基に含まれる官能基の変換は、上記製造法以外にも公知の方法[例えば、Comprehensive Organic Transformations、R.C.Larock著(1989年)等]によっても行うことができ、本発明の化合物の中には、これを合成中間体としてさらに新規な誘導体へ導くことができるものもある。上記各製造法における中間体および目的化合物は、有機合成化学で常用される精製法、例えば中和、濾過、抽出、洗浄、乾燥、濃縮、再結晶、各種クロマトグラフィー等に付して単離精製することができる。また、中間体においては、特に精製することなく次の反応に供することも可能である。 The compound of the present invention can be protected using a protecting group. Examples of such protecting groups include Protective Groups in Organic Synthesis, T., such as ethoxycarbonyl, t-butoxycarbonyl, acetyl, and benzyl. W. By Greene, John Wiley & Sons Inc. And the like. Methods for introducing and removing protecting groups are those commonly used in organic synthetic chemistry [for example, Protective Groups in Organic Synthesis, T. et al. W. By Greene, John Wiley & Sons Inc. Reference] etc., or can be obtained according to them. Moreover, the conversion of the functional group contained in each substituent can be performed by a known method other than the above production method [for example, Comprehensive Organic Transformations, R.C. C. Larock (1989), etc.], and some of the compounds of the present invention can be further converted into new derivatives as synthetic intermediates. The intermediates and target compounds in each of the above production methods are isolated and purified by purification methods commonly used in synthetic organic chemistry such as neutralization, filtration, extraction, washing, drying, concentration, recrystallization, and various chromatography. can do. In addition, the intermediate can be subjected to the next reaction without any particular purification.
 (好ましい実施形態)
 本発明の好ましい実施形態を、以下に例示する。各記号は上記記載と同義である。
(Preferred embodiment)
Preferred embodiments of the present invention are illustrated below. Each symbol has the same meaning as described above.
 式(I): Formula (I):
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
で示される化合物における、R、R、R、R、R、R、R、R、R、m、およびnの好ましい態様を以下に示す。 Preferred embodiments of R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R a , R b , m, and n in the compound represented by
 Rは、好ましくは、水素原子、またはアルキルである。 R 1 is preferably a hydrogen atom or alkyl.
 Rは、より好ましくは、水素原子、メチル、エチル、n-プロピル、イソプロピル、またはイソブチルである。 R 1 is more preferably a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, or isobutyl.
 Rは、さらに好ましくは、水素原子、またはメチルである。 R 1 is more preferably a hydrogen atom or methyl.
 Rは、好ましくは、水素原子、アルキル、または以下に示される基: R 2 is preferably a hydrogen atom, alkyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
である。 It is.
 Rは、より好ましくは、水素原子、メチル、エチル、n-プロピル、イソプロピル、イソブチルまたは以下に示される基: R 2 is more preferably a hydrogen atom, methyl, ethyl, n-propyl, isopropyl, isobutyl or a group shown below:
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000041
である。 It is.
 Rは、さらに好ましくは、水素原子、または以下に示される基: R 2 is more preferably a hydrogen atom or a group shown below:
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000042
である。 It is.
 Rは、特に好ましくは、以下に示される基: R 2 is particularly preferably a group shown below:
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
である。 It is.
 以下に示される基: The groups shown below:
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
の式中、
は、好ましくは、ヒドロキシ、アルキル、またはハロゲンである。
は、より好ましくは、ヒドロキシ、メチル、エチル、塩素原子、またはフッ素原子である。
は、さらに好ましくは、ヒドロキシである。
In the formula
R a is preferably hydroxy, alkyl, or halogen.
R a is more preferably a hydroxy, methyl, ethyl, chlorine atom, or fluorine atom.
R a is more preferably hydroxy.
 式中、
mは、好ましくは、0~3の整数である。
mは、より好ましくは、0~2の整数である。
mは、さらに好ましくは、0である。
ただし、
が複数個ある場合は、同一または異なっていてもよい。
Where
m is preferably an integer of 0 to 3.
m is more preferably an integer of 0 to 2.
m is more preferably 0.
However,
When there are a plurality of R a s , they may be the same or different.
 Rは、好ましくは、水素原子、またはアルキルである。 R 3 is preferably a hydrogen atom or alkyl.
 Rは、より好ましくは、水素原子、メチル、エチル、またはイソプロピルである。 R 3 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
 Rは、好ましくは、水素原子、もしくはアルキルであり、またはRおよびRは、一緒になってシクロプロパン環を形成していてもよい。 R 4 is preferably a hydrogen atom or alkyl, or R 3 and R 4 may together form a cyclopropane ring.
 Rは、より好ましくは、水素原子、メチル、エチル、またはイソプロピルである。 R 4 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
 Rは、好ましくは、水素原子、またはアルキルである。 R 5 is preferably a hydrogen atom or alkyl.
 Rは、より好ましくは、水素原子、メチル、エチル、またはイソプロピルである。 R 5 is more preferably a hydrogen atom, methyl, ethyl, or isopropyl.
 Rは、好ましくは、水素原子、アルキル、または以下に示される基: R 6 is preferably a hydrogen atom, alkyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000045
である。 It is.
 Rは、より好ましくは、水素原子、メチル、または以下に示される基: R 6 is more preferably a hydrogen atom, methyl, or a group shown below:
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
である。 It is.
 Rは、さらに好ましくは、以下に示される式: R 6 is more preferably represented by the formula:
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
である。 It is.
 以下に示される基: The groups shown below:
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
の式中、
は、好ましくは、ヒドロキシ、アルキル、またはハロゲンである。
は、より好ましくは、ヒドロキシである。
In the formula
R b is preferably hydroxy, alkyl, or halogen.
R b is more preferably hydroxy.
 式中、
nは、好ましくは、0~3の整数である。
nは、より好ましくは、0または1の整数である。
ただし、Rが複数個ある場合は、同一または異なっていてもよい。
Where
n is preferably an integer of 0 to 3.
n is more preferably an integer of 0 or 1.
However, when there are a plurality of Rb , they may be the same or different.
 Rは、好ましくは、水素原子、アミノで置換されているアルキル、またはアミノで置換されているアルキルカルボニルである。 R 7 is preferably a hydrogen atom, alkyl substituted with amino, or alkylcarbonyl substituted with amino.
 Rは、より好ましくは、水素原子、またはアミノで置換されているアルキルカルボニルである。 R 7 is more preferably a hydrogen atom or an alkylcarbonyl substituted with amino.
 Rは、さらに好ましくは、水素原子、アミノメチルカルボニル、またはアミノエチルカルボニルである。 R 7 is more preferably a hydrogen atom, aminomethylcarbonyl, or aminoethylcarbonyl.
 Rは、特に好ましくは、水素原子、またはアミノメチルカルボニルである。 R 7 is particularly preferably a hydrogen atom or aminomethylcarbonyl.
 本発明の好ましい実施形態を、さらに以下に例示する。各記号は上記記載と同義である。 Preferred embodiments of the present invention are further exemplified below. Each symbol has the same meaning as described above.
 式(II): Formula (II):
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
で示される化合物における、R、R、R10、R、X、およびLの好ましい態様を以下に示す。 The preferable aspect of R < 8 >, R < 9 >, R < 10 > , R <c> , X, and L < 1 > in the compound shown by is shown below.
 Rは、好ましくは、水素原子、またはアルキルである。 R c is preferably a hydrogen atom or alkyl.
 Rは、より好ましくは、水素原子、メチル、またはエチルである。 R c is more preferably a hydrogen atom, methyl, or ethyl.
 Rは、さらに好ましくは、水素原子、またはメチルである。 R c is more preferably a hydrogen atom or methyl.
 Rは、特に好ましくは、水素原子である。 R c is particularly preferably a hydrogen atom.
 式: Formula:
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
は好ましくは、以下に示される基: Is preferably a group shown below:
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
である。 It is.
 式: Formula:
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
は、より好ましくは、以下に示される基: Is more preferably the group shown below:
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
である。 It is.
 Rは、好ましくは、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルである。 R 8 is preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic Carbocyclic group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic A carbocyclic carbonyl, a substituted or unsubstituted non-aromatic carbocyclic carbonyl, a substituted or unsubstituted aromatic heterocyclic carbonyl, or a substituted or unsubstituted non-aromatic heterocyclic carbonyl.
 Rは、より好ましくは、水素原子、アルキルで置換されているシリル、置換もしくは非置換のフェニル、置換もしくは非置換のフェニルカルボニル、アルキルカルボニル、またはアルキルオキシである。 R 8 is more preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted phenylcarbonyl, alkylcarbonyl, or alkyloxy.
 Rは、さらに好ましくは、水素原子、tert-ブチルジメチルシリル、トリイソプロピルシリル、トリエチルシリル、フェニル、p-メトキシフェニル、フェニルカルボニル、メチルカルボニル、tert-ブチルカルボニル、メトキシ、またはエトキシである。 R 8 is more preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, triethylsilyl, phenyl, p-methoxyphenyl, phenylcarbonyl, methylcarbonyl, tert-butylcarbonyl, methoxy, or ethoxy.
 Rは、特に好ましくは、水素原子、tert-ブチルジメチルシリル、トリイソプロピルシリル、またはトリエチルシリル、である。 R 8 is particularly preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, or triethylsilyl.
 Lは、好ましくは、単結合、アルキレン、アルケニレン、またはアルキニレンである。 L 1 is preferably a single bond, alkylene, alkenylene, or alkynylene.
 Lは、より好ましくは、単結合、メチレン、またはエチレンである。 L 1 is more preferably a single bond, methylene or ethylene.
 特に好ましくは、Lが、単結合であり、および、Rが、水素原子、またはアルキルで置換されているシリルである。 Particularly preferably, L 1 is a single bond and R 8 is silyl substituted with a hydrogen atom or alkyl.
 Rは、好ましくは、水素原子、または-O-L-R11で示される基である。 R 9 is preferably a hydrogen atom or a group represented by —OL 2 —R 11 .
 Rは、より好ましくは、水素原子、または-OHである。 R 9 is more preferably a hydrogen atom or —OH.
 Lは、好ましくは、単結合、アルキレン、アルケニレン、またはアルキニレンである。 L 2 is preferably a single bond, alkylene, alkenylene, or alkynylene.
 Lは、より好ましくは、単結合、メチレン、またはエチレンである。 L 2 is more preferably a single bond, methylene, or ethylene.
 Lは、特に好ましくは、単結合である。 L 2 is particularly preferably a single bond.
 R11は、好ましくは、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルである。 R 11 is preferably a hydrogen atom, silyl substituted with alkyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic Carbocyclic group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic A carbocyclic carbonyl, a substituted or unsubstituted non-aromatic carbocyclic carbonyl, a substituted or unsubstituted aromatic heterocyclic carbonyl, or a substituted or unsubstituted non-aromatic heterocyclic carbonyl.
 R11は、より好ましくは、水素原子、またはアルキルで置換されているシリル、置換もしくは非置換のフェニル、置換もしくは非置換のフェニルカルボニル、アルキルカルボニル、またはアルキルオキシである。 R 11 is more preferably a hydrogen atom, or silyl substituted with alkyl, substituted or unsubstituted phenyl, substituted or unsubstituted phenylcarbonyl, alkylcarbonyl, or alkyloxy.
 R11は、さらに好ましくは、水素原子、tert-ブチルジメチルシリル、トリイソプロピルシリル、トリエチルシリル、フェニル、p-メトキシフェニル、フェニルカルボニル、メチルカルボニル、tert-ブチルカルボニル、メトキシ、またはエトキシである。 R 11 is more preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, triethylsilyl, phenyl, p-methoxyphenyl, phenylcarbonyl, methylcarbonyl, tert-butylcarbonyl, methoxy, or ethoxy.
 R11は、特に好ましくは、水素原子、tert-ブチルジメチルシリル、トリイソプロピルシリル、またはトリエチルシリルである。 R 11 is particularly preferably a hydrogen atom, tert-butyldimethylsilyl, triisopropylsilyl, or triethylsilyl.
 好ましくは、Rが、-O-L-R11であり、Lが、単結合であり、およびR11が、水素原子、またはアルキルで置換されているシリルである。 Preferably, R 9 is —OL 2 —R 11 , L 2 is a single bond, and R 11 is a hydrogen atom or silyl substituted with alkyl.
 R10は、好ましくは、水素原子、またはアミド保護基である。 R 10 is preferably a hydrogen atom or an amide protecting group.
 R10は、より好ましくは、水素原子、アルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシアルキル、ベンジル、ベンジルオキシ、またはベンジルオキシアルキルである。 R 10 is more preferably a hydrogen atom, alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, or benzyloxyalkyl.
 R10は、さらに好ましくは、水素原子、メチルオキシメチル、メチルオキシエチルオキシメチル、ベンジル、またはベンジルオキシメチルである。 R 10 is more preferably a hydrogen atom, methyloxymethyl, methyloxyethyloxymethyl, benzyl, or benzyloxymethyl.
 R10は、特に好ましくは、水素原子である。 R 10 is particularly preferably a hydrogen atom.
 Xは、好ましくは、ハロゲン、-OS(O)-R14、またはイソシアノである。 X is preferably halogen, —OS (O) 2 —R 14 , or isocyano.
 Xは、より好ましくは、塩素原子、臭素原子、ヨウ素原子、またはイソシアノである。 X is more preferably a chlorine atom, a bromine atom, an iodine atom, or isocyano.
 Xは、さらに好ましくは、臭素原子、ヨウ素原子、またはイソシアノである。 X is more preferably a bromine atom, an iodine atom, or isocyano.
 R14は、好ましくは、アルキル、ハロアルキル、または置換もしくは非置換の芳香族炭素環式基である。 R 14 is preferably alkyl, haloalkyl, or a substituted or unsubstituted aromatic carbocyclic group.
 R14は、より好ましくは、メチル、トリフルオロメチル、またはp-メチルフェニルである。 R 14 is more preferably methyl, trifluoromethyl, or p-methylphenyl.
 式: Formula:
Figure JPOXMLDOC01-appb-C000054
Figure JPOXMLDOC01-appb-C000054
が、以下に示される基: Is the group shown below:
Figure JPOXMLDOC01-appb-C000055
Figure JPOXMLDOC01-appb-C000055
である。 It is.
 上記式中、
12は、好ましくは、水素原子、または置換もしくは非置換のアルキルである。
12は、より好ましくは、メチルである。
In the above formula,
R 12 is preferably a hydrogen atom or substituted or unsubstituted alkyl.
R 12 is more preferably methyl.
 式中、
13は、好ましくは、水素原子、置換もしくは非置換のアルキル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、または置換もしくは非置換の非芳香族複素環式基である。
13は、より好ましくは、水素原子、置換もしくは非置換のアルキル、または置換もしくは非置換の芳香族炭素環式基である。
13は、さらに好ましくは、水素原子、メチル、またはフェニルである。
Where
R 13 is preferably a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted nonaromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group. A cyclic group, or a substituted or unsubstituted non-aromatic heterocyclic group.
R 13 is more preferably a hydrogen atom, a substituted or unsubstituted alkyl, or a substituted or unsubstituted aromatic carbocyclic group.
R 13 is more preferably a hydrogen atom, methyl, or phenyl.
 本発明に係る化合物の別の特徴は、式(I)のRにおいて、水素原子、またはアミノで置換されているアルキルカルボニル基を導入すること、すなわち末端にアミノ基を導入することにより、高いMraY阻害活性および抗グラム陰性菌活性を有する点である。 Another feature of the compound according to the present invention is that by introducing an alkylcarbonyl group substituted by a hydrogen atom or amino in R 7 of formula (I), that is, by introducing an amino group at the terminal, It has MraY inhibitory activity and anti-gram-negative bacterial activity.
 本発明に係る化合物のその他の特徴は、式(I)のRにおいて、m-ヒドロキシベンジル基を導入することにより、高いMraY阻害活性および抗グラム陰性菌活性を有する点である。 Another feature of the compound according to the present invention is that it has high MraY inhibitory activity and anti-gram-negative bacterial activity by introducing an m-hydroxybenzyl group in R 6 of formula (I).
 本発明に係る化合物のその他の特徴は、式(I)および式(II)の糖の3’位(式(II)のRに相当する位置)が-OHで置換されている点である。他方、Pacidamycin Dの糖の3’位は非置換である。 Another feature of the compounds according to the present invention is that the 3′-position of the sugars of formula (I) and formula (II) (position corresponding to R 9 in formula (II)) is substituted with —OH. . On the other hand, the 3 ′ position of the sugar of Pacidamycin D is unsubstituted.
 (発明の効果)
 本発明に係る化合物は、MraY阻害活性および抗グラム陰性菌活性を有するため、病原性細菌により生ずる種々の疾病の治療剤および/または予防剤として有用である。
(The invention's effect)
Since the compound according to the present invention has MraY inhibitory activity and anti-gram-negative bacterial activity, it is useful as a therapeutic and / or prophylactic agent for various diseases caused by pathogenic bacteria.
 本発明の医薬組成物を投与する場合、経口的、非経口的のいずれの方法でも投与することができる。経口投与は常法に従って錠剤、顆粒剤、散剤、カプセル剤等の通常用いられる剤型に調製して投与すればよい。非経口投与は、注射剤等の通常用いられるいずれの剤型でも好適に投与することができる。本発明に係る化合物は経口吸収性が高いため、経口剤として好適に使用できる。 When administering the pharmaceutical composition of the present invention, it can be administered either orally or parenterally. Oral administration may be carried out by preparing a commonly used dosage form such as tablets, granules, powders, capsules and the like according to conventional methods. For parenteral administration, any commonly used dosage form such as an injection can be suitably administered. Since the compound according to the present invention has high oral absorbability, it can be suitably used as an oral preparation.
 本発明化合物の有効量にその剤型に適した賦形剤、結合剤、崩壊剤、滑沢剤等の各種医薬用添加剤を必要に応じて混合し、医薬組成物とすることができる。 Various pharmaceutical additives such as excipients, binders, disintegrants, lubricants and the like suitable for the dosage form can be mixed with the effective amount of the compound of the present invention as necessary to obtain a pharmaceutical composition.
 本発明の医薬組成物の投与量は、患者の年齢、体重、疾病の種類や程度、投与経路等を考慮した上で設定することが望ましいが、成人に経口投与する場合、通常0.05~100mg/kg/日であり、好ましくは0.1~10mg/kg/日の範囲内である。非経口投与の場合には投与経路により大きく異なるが、通常0.005~10mg/kg/日であり、好ましくは0.01~1mg/kg/日の範囲内である。これを1日1回~数回に分けて投与すれば良い。 The dosage of the pharmaceutical composition of the present invention is preferably set in consideration of the age, weight, type and degree of disease, route of administration, etc. of the patient. 100 mg / kg / day, preferably in the range of 0.1 to 10 mg / kg / day. In the case of parenteral administration, although it varies greatly depending on the administration route, it is usually 0.005 to 10 mg / kg / day, preferably 0.01 to 1 mg / kg / day. This may be administered once to several times a day.
 本発明に係る化合物は、核酸系抗生物質である。本発明の化合物はスペクトルの広い抗菌活性を有し、人を含む各種哺乳動物における病原性細菌により生ずる種々の疾病、例えば気道感染症、***症、呼吸器感染症、敗血症、腎炎、胆嚢炎、口腔内感染症、心内膜炎、肺炎、骨髄膜炎、中耳炎、腸炎、蓄膿、創傷感染、日和見感染等の予防又は治療のために使用され得る。 The compound according to the present invention is a nucleic acid antibiotic. The compounds of the present invention have a broad spectrum of antibacterial activity, and various diseases caused by pathogenic bacteria in various mammals including humans such as respiratory tract infections, urinary tract infections, respiratory infections, sepsis, nephritis, gallbladder It can be used for the prevention or treatment of inflammation, oral infection, endocarditis, pneumonia, osteomyelitis, otitis media, enteritis, empyema, wound infection, opportunistic infection and the like.
 本発明化合物は、MraY阻害作用を示すため、グラム陽性菌、およびグラム陰性菌を含む種々の菌に有効である。MraYの阻害作用を有する化合物は、β-ラクタム系抗生物質の標的よりも生合成経路において上流の位置で作用するため、β-ラクタム系抗生物質に耐性を有する菌、例えばβ-ラクタム耐性緑膿菌に対しても有効性が期待される。 The compound of the present invention exhibits MraY inhibitory action and is therefore effective against various bacteria including Gram-positive bacteria and Gram-negative bacteria. A compound having an inhibitory effect on MraY acts at a position upstream in the biosynthetic pathway relative to the target of β-lactam antibiotics, and therefore, bacteria having resistance to β-lactam antibiotics, such as β-lactam resistant Pseudomonas aeruginosa, are used. It is expected to be effective against bacteria.
 以下に本発明の実施例および参考例、ならびに試験例を挙げて本発明をさらに詳しく説明するが、本発明はこれらにより限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, Reference Examples, and Test Examples of the present invention, but the present invention is not limited thereto.
 また、本明細書中で用いる略語は以下の意味を表す。
Ac:アセチル
Bn:ベンジル
Boc:tert-ブトキシカルボニル
Bu:ブチル
DBU:1,8-ジアザビシクロ[5.4.0]-7-ウンデセン
DBN:1,5-ジアザビシクロ[4.3.0]ノナン-5-エン
DIEA:N,N-ジイソプロピルエチルアミン
DMA:N,N-ジメチルアセトアミド
DMF:N,N-ジメチルホルムアミド
DMSO:ジメチルスルホキシド
DPPF:1,1’-ビス(ジフェニルホスフィノ)フェロセン
EDC:1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド
Et:エチル
HATU:O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート
Me:メチル
NMP:N-メチルピロリドン
n-Bu:n-ブチル
ODS:オクタデシルシリル
Ph:フェニル
TBS:tert-ブチルジメチルシリル
t-Bu:tert-ブチル
TFA:トリフルオロ酢酸
Tr:トリチル
BOM:ベンジルオキシメチル
eq.:当量
rt:室温
NMM:N-メチルモルホリン
IDCT:ヨードニウムジコリジニウムトリフラート
Pfp:ペンタフルオロフェニル
DMB:2,4-ジメトキシベンジル
DMEDA:N,N’-ジメチルエタン-1,2-ジアミン
IDCP:ヨードニウムジコリジニウムパークロレート
Moreover, the abbreviation used in this specification represents the following meaning.
Ac: acetyl Bn: benzyl Boc: tert-butoxycarbonyl Bu: butyl DBU: 1,8-diazabicyclo [5.4.0] -7-undecene DBN: 1,5-diazabicyclo [4.3.0] nonane-5 -ENDIEA: N, N-diisopropylethylamine DMA: N, N-dimethylacetamide DMF: N, N-dimethylformamide DMSO: dimethyl sulfoxide DPPF: 1,1'-bis (diphenylphosphino) ferrocene EDC: 1-ethyl- 3- (3-dimethylaminopropyl) carbodiimide Et: ethyl HATU: O- (7-azabenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate Me: methyl NMP: N -Methylpyrrolidone n-Bu: n-butyl ODS: Octadecylsilyl Ph: phenyl TBS: tert-butyldimethylsilyl t-Bu: tert-butyl TFA: trifluoroacetic acid Tr: trityl BOM: benzyloxymethyl eq. : Equivalent rt: room temperature NMM: N-methylmorpholine IDCT: iodonium dicorydinium triflate Pfp: pentafluorophenyl DMB: 2,4-dimethoxybenzyl DMEDA: N, N′-dimethylethane-1,2-diamine IDCP: iodonium dico Lizinium perchlorate
 各実施例で得られたNMR分析は300MHzで行い、DMSO-d、CDClを用いて測定した。実施例におけるNMRデータ中の下線は、そのピークが下線のある部分のピークであることを示す。 The NMR analysis obtained in each example was performed at 300 MHz and measured using DMSO-d 6 and CDCl 3 . The underline in the NMR data in the examples indicates that the peak is a part with an underline.
 表中にRTとあるのは、LC/MS:液体クロマトグラフィー/質量分析でのリテンションタイムを表し以下の条件で測定した。 In the table, RT represents LC / MS: retention time in liquid chromatography / mass spectrometry and was measured under the following conditions.
 測定条件1:カラム:Gemini-NX(5μm、i.d.4.6x50mm)(Phenomenex)
流速:3mL/分
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有メタノール溶液
グラジエント:3.5分間で5%-100%溶媒[B]のリニアグラジエントを行い、0.5分間、100%溶媒[B]を維持した。
Measurement conditions 1: Column: Gemini-NX (5 μm, id 4.6 × 50 mm) (Phenomenex)
Flow rate: 3 mL / min UV detection wavelength: 254 nm
Mobile phase: [A] is a 0.1% formic acid-containing aqueous solution, [B] is a 0.1% formic acid-containing methanol solution gradient: A linear gradient of 5% -100% solvent [B] is performed for 3.5 minutes. Maintained 100% solvent [B] for 5 minutes.
 測定条件2:カラム:Gemini-NX(5μm、i.d.4.6x50mm)(Phenomenex)
流速:3mL/分
UV検出波長:254nm
移動相:[A]は10mmol/L炭酸アンモニウム含有水溶液、[B]はアセトニトリル
グラジエント:3.5分間で5%-100%溶媒[B]のリニアグラジエントを行い、0.5分間、100%溶媒[B]を維持した。
Measurement condition 2: Column: Gemini-NX (5 μm, id 4.6 × 50 mm) (Phenomenex)
Flow rate: 3 mL / min UV detection wavelength: 254 nm
Mobile phase: [A] is an aqueous solution containing 10 mmol / L ammonium carbonate, [B] is an acetonitrile gradient: linear gradient of 5% -100% solvent [B] in 3.5 minutes, 0.5 minutes, 100% solvent [B] was maintained.
 測定条件3:カラム:Shim-pack XR-ODS(2.2μm、i.d.50x3.0mm)(Shimadzu)
流速:1.6mL/分
UV検出波長:254nm
移動相:[A]は0.1%ギ酸含有水溶液、[B]は0.1%ギ酸含有アセトニトリル溶液
グラジエント:3分間で10%-100%溶媒[B]のリニアグラジエントを行い、1分間、100%溶媒[B]を維持した。
Measurement condition 3: Column: Shim-pack XR-ODS (2.2 μm, id 50 × 3.0 mm) (Shimadzu)
Flow rate: 1.6 mL / min UV detection wavelength: 254 nm
Mobile phase: [A] is a 0.1% formic acid-containing aqueous solution, [B] is a 0.1% formic acid-containing acetonitrile solution Gradient: A linear gradient of 10% -100% solvent [B] is performed in 3 minutes, 1 minute, 100% solvent [B] was maintained.
 A.3’-OH-Pacidamycin Dの合成-スキーム1および2 A. Synthesis of 3'-OH-Pacidamycin D-Schemes 1 and 2
Figure JPOXMLDOC01-appb-C000056
Figure JPOXMLDOC01-appb-C000056
 スキーム1
 (1S,2S)-2-(ベンジルオキシ(メチル)アンモニオ)-1-カルボキシプロパン-1-アミニウム 2,2,2-トリフルオロアセテート (2)
化合物(1) (562.4 mg, 1.662 mmol) をトリフルオロ酢酸―ジクロロメタン溶液(6 mL- 6mL)で、0度で3時間処理した。反応混合物を減圧下で濃縮し、化合物(2)(775 mg, 定量的収率)を無色油状物質として得た。
1H-NMR (CDCl3 600 MHz) δ: 7.39-7.17 (m, 5H), 4.67 (d, 1H, J = 10.8 Hz), 4.62 (d, 1H, J = 10.8 Hz), 4.29 (d, 1H, J = 3.4 Hz), 3.40-3.31 (m, 1H), 2.71 (s, 3H), 1.13 (d, 3H, J = 6.8 Hz).
Scheme 1
(1S, 2S) -2- (Benzyloxy (methyl) ammonio) -1-carboxypropane-1-aminium 2,2,2-trifluoroacetate (2)
Compound (1) (562.4 mg, 1.662 mmol) was treated with a trifluoroacetic acid-dichloromethane solution (6 mL-6 mL) at 0 ° C. for 3 hours. The reaction mixture was concentrated under reduced pressure to obtain compound (2) (775 mg, quantitative yield) as a colorless oil.
1 H-NMR (CDCl 3 600 MHz) δ: 7.39-7.17 (m, 5H), 4.67 (d, 1H, J = 10.8 Hz), 4.62 (d, 1H, J = 10.8 Hz), 4.29 (d, 1H , J = 3.4 Hz), 3.40-3.31 (m, 1H), 2.71 (s, 3H), 1.13 (d, 3H, J = 6.8 Hz).
 (4S,5S,8S,12S)-12-((1H-インドル-3-イル)メチル)-3,4,8,15,15-ペンタメチル-7,10,13-トリオキソ-1-フェニル-2,14-ジオキサ-3,6,9,11-テトラアザヘキサデカン-5-カルボン酸 (4)
 (2) (775 mg, 1.662 mmol)のN,N-ジメチルホルムアミド (10 mL)溶液に(3) (900 mg, 1.662 mmol) と ジイソプロピルエチルアミン (0.639 ml, 3.66 mmol)を加え、室温で15時間処理した。反応液を酢酸エチルと0.2mol/L塩酸で分配し、有機相を水と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮し、化合物(4)(990 mg, 定量的収率)を無色油状物質として得た。
ESIMS-LR m/z 596 [(M+H)+].
(4S, 5S, 8S, 12S) -12-((1H-Indol-3-yl) methyl) -3,4,8,15,15-pentamethyl-7,10,13-trioxo-1-phenyl-2 , 14-Dioxa-3,6,9,11-tetraazahexadecane-5-carboxylic acid (4)
(2) To a solution of (775 mg, 1.662 mmol) in N, N-dimethylformamide (10 mL), add (3) (900 mg, 1.662 mmol) and diisopropylethylamine (0.639 ml, 3.66 mmol), and then at room temperature for 15 hours. Processed. The reaction mixture was partitioned between ethyl acetate and 0.2 mol / L hydrochloric acid, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give compound (4) (990 mg, Quantitative yield) was obtained as a colorless oil.
ESIMS-LR m / z 596 [(M + H) + ].
 (3S,4S,7S,11S)-11-((1H-インドル-3-イル)メチル)-3,7,14,14-テトラメチル-6,9,12-トリオキソ-13-オキサ-2,5,8,10-テトラアザペンタデカン-4-カルボン酸(5)
 化合物(4) (990 mg, 1.662 mmol)のメタノール (15 mL)溶液に、パラジウム-炭素(354mg)、を加え、水素ガス雰囲気下、室温で8時間激しく撹拌した。不溶物をセライトでろ別し、ろ液を減圧下で濃縮した。得られた結晶をジイソプロピルエーテルで洗浄し、化合物(5)(814 mg, 1.662 mmol, 定量的収率)を白色固形物質として得た。
 [α]23 D +22.0 (c 0.46, CHCl3); 1H-NMR (MeOD, 400 MHz) δ: 7.56 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz), 7.12 (s, 1H), 7.09 (dd, 1H, J = 7.6, 8.1 Hz), 7.02 (t, 1H, J = 7.6 Hz), 4.60 (d, 1H, J = 3.5 Hz), 4.48 (dd, 1H, J = 6.0, 7.6 Hz), 4.17 (q, 1H, J = 7.1 Hz), 3.65 (dq, 1H, J = 6.6, 3.5 Hz), 3.19 (dd, 1H, J = 14.7, 6.0 Hz), 3.11 (dd, 1H, J = 14.7, 7.6 Hz), 2.62 (s, 3H), 1.34 (d, 3H, J = 7.1 Hz), 1.33 (s, 9H), 1.22 (d, 3H, J = 6.6 Hz); 13C-NMR (MeOD, 100 MHz) δ: 177.4, 173.8, 173.4, 160.0, 138.0, 128.8, 124.7, 122.4, 119.8, 119.4, 112.3, 110.6, 82.7, 59.6, 55.9, 51.2, 31.8, 29.2, 28.2, 17.9, 12.3 (C21); ESIMS-LR m/z 490 [(M+H)+]; ESIMS-HR C24H36N5O6 の計算値490.2660, 実測値 490.2660.
(3S, 4S, 7S, 11S) -11-((1H-Indol-3-yl) methyl) -3,7,14,14-tetramethyl-6,9,12-trioxo-13-oxa-2, 5,8,10-Tetraazapentadecane-4-carboxylic acid (5)
Palladium-carbon (354 mg) was added to a solution of compound (4) (990 mg, 1.662 mmol) in methanol (15 mL), and the mixture was vigorously stirred at room temperature for 8 hours in a hydrogen gas atmosphere. The insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure. The obtained crystals were washed with diisopropyl ether to obtain compound (5) (814 mg, 1.662 mmol, quantitative yield) as a white solid substance.
[α] 23 D +22.0 (c 0.46, CHCl 3 ); 1 H-NMR (MeOD, 400 MHz) δ: 7.56 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz) , 7.12 (s, 1H), 7.09 (dd, 1H, J = 7.6, 8.1 Hz), 7.02 (t, 1H, J = 7.6 Hz), 4.60 (d, 1H, J = 3.5 Hz), 4.48 (dd, 1H, J = 6.0, 7.6 Hz), 4.17 (q, 1H, J = 7.1 Hz), 3.65 (dq, 1H, J = 6.6, 3.5 Hz), 3.19 (dd, 1H, J = 14.7, 6.0 Hz), 3.11 (dd, 1H, J = 14.7, 7.6 Hz), 2.62 (s, 3H), 1.34 (d, 3H, J = 7.1 Hz), 1.33 (s, 9H), 1.22 (d, 3H, J = 6.6 Hz ); 13 C-NMR (MeOD, 100 MHz) δ: 177.4, 173.8, 173.4, 160.0, 138.0, 128.8, 124.7, 122.4, 119.8, 119.4, 112.3, 110.6, 82.7, 59.6, 55.9, 51.2, 31.8, 29.2, 28.2, 17.9, 12.3 (C21); ESIMS-LR m / z 490 [(M + H) + ]; ESIMS-HR C 24 H 36 N 5 O 6 calculated 490.2660, measured 490.2660.
 (6S,9S,10S,13S,17S)-17-((1H-インドル-3-イル)メチル)-2,2,6,8,9,13,20,20-オクタメチル-4,7,12,15,18-ペンタオキソ-3,19-ジオキサ-5,8,11,14,16-ペンタアザヘニコサン-10-カルボン酸 (7)
 (5) (814 mg, 1.662 mmol)のN,N-ジメチルホルムアミド (2 mL)溶液に(6) (649 mg, 1.828 mmol) と ジイソプロピルエチルアミン (0.319 ml, 1.828 mmol)を加え、室温で24時間処理した。反応液を酢酸エチルと0.2mol/L塩酸で分配し、有機相を水と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15×2.6 cm, クロロホルム/メタノール 100/0 から 80/20)で精製し、化合物(7) (754.4mg, 69%)を茶褐色固形物質として得た。
 [α]23 D +3.0 (c 1.01, CHCl3); 1H-NMR (CD3OD, 400 MHz) δ: 7.56 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz), 7.11 (s, 1H), 7.09 (dd, 1H, J = 8.1, 7.6 Hz), 7.01 (t, 1H, J = 7.6 Hz), 5.03-4.92 (m, 1H), 4.68 (d, 1H, J = 7.1 Hz), 4.57-4.48 (m, 1H), 4.36 (q, 1H, J = 6.8 Hz), 4.26 (q, 1H, J = 6.9 Hz), 3.19 (dd, 1H, J = 14.7, 6.1 Hz), 3.10 (dd, 1H, J = 14.7, 7.1 Hz), 2.83 (s, 3H), 1.43 (s, 9H), 1.34 (s, 9H), 1.33 (d, 3H, J = 7.1 Hz), 1.28 (d, 3H, J = 6.8 Hz), 1.15 (d, 3H, J = 6.9 Hz); 13C-NMR (CD3OD, 100 MHz) δ: 176.1, 175.6, 173.9, 172.9, 159.5, 157.5, 138.0, 128.8, 124.5, 122.4, 119.8, 119.5, 112.3, 110.8, 82.7, 80.6, 55.7, 55.4, 51.5, 50.5, 48.1, 30.3, 29.3, 28.7, 28.2, 18.3, 17.6, 13.5 (C28); ESIMS-LR m/z 661 [(M+H)+]; ESIMS-HR C32H49N6O9 の計算値661.3556, 実測値661.3553.
(6S, 9S, 10S, 13S, 17S) -17-((1H-Indol-3-yl) methyl) -2,2,6,8,9,13,20,20-octamethyl-4,7,12 , 15,18-Pentaoxo-3,19-dioxa-5,8,11,14,16-pentaazahenicosan-10-carboxylic acid (7)
(5) To a solution of (814 mg, 1.662 mmol) in N, N-dimethylformamide (2 mL), add (6) (649 mg, 1.828 mmol) and diisopropylethylamine (0.319 ml, 1.828 mmol), and then at room temperature for 24 hours. Processed. The reaction solution was partitioned between ethyl acetate and 0.2 mol / L hydrochloric acid, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15 × 2.6 cm, chloroform / methanol 100/0 to 80/20) to obtain compound (7) (754.4 mg, 69%) as a brown solid substance.
[α] 23 D +3.0 (c 1.01, CHCl 3 ); 1 H-NMR (CD 3 OD, 400 MHz) δ: 7.56 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz), 7.11 (s, 1H), 7.09 (dd, 1H, J = 8.1, 7.6 Hz), 7.01 (t, 1H, J = 7.6 Hz), 5.03-4.92 (m, 1H), 4.68 (d, 1H , J = 7.1 Hz), 4.57-4.48 (m, 1H), 4.36 (q, 1H, J = 6.8 Hz), 4.26 (q, 1H, J = 6.9 Hz), 3.19 (dd, 1H, J = 14.7, 6.1 Hz), 3.10 (dd, 1H, J = 14.7, 7.1 Hz), 2.83 (s, 3H), 1.43 (s, 9H), 1.34 (s, 9H), 1.33 (d, 3H, J = 7.1 Hz) , 1.28 (d, 3H, J = 6.8 Hz), 1.15 (d, 3H, J = 6.9 Hz); 13 C-NMR (CD 3 OD, 100 MHz) δ: 176.1, 175.6, 173.9, 172.9, 159.5, 157.5 , 138.0, 128.8, 124.5, 122.4, 119.8, 119.5, 112.3, 110.8, 82.7, 80.6, 55.7, 55.4, 51.5, 50.5, 48.1, 30.3, 29.3, 28.7, 28.2, 18.3, 17.6, 13.5 (C28); ESIMS- LR m / z 661 [(M + H) + ]; ESIMS-HR C 32 H 49 N 6 O 9 calculated 661.3556, measured 661.3553.
 (6S,9S,10S,13S,17S)-17-((1H-インドル-3-イル)メチル)-2,2,6,8,9,13,20,20-オクタメチル-4,7,12,15,18-ペンタオキソ-3,19-ジオキサ-5,8,11,14,16-ペンタアザヘニコサン-10-カルボキサミド (8)
 (7)(2.4 g, 3.63 mmol)、塩化アンモニウム(1.943 g, 36.3 mmol)およびO-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(1.795 g, 4.72 mmol) が混合したN,N-ジメチルホルムアミド (30 mL)溶液に、N-メチルモルホリン(5.03 ml, 45.8 mmol)を加え、0度で45分間撹拌した。反応液を酢酸エチルと水で分配し、有機相を0.2mol/L塩酸と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(13×4.6 cm, クロロホルム/メタノール 100/0 から 91/9)で精製し、化合物(8) (1.96g, 82%)を白色固形物質として得た。
[α]23 D +19.1 (c 1.01, CHCl3); 1H-NMR (CD3OD, 400 MHz) δ: 7.57 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz), 7.11 (s, 1H), 7.09 (dd, 1H, J = 8.1, 7.6 Hz), 7.02 (t, 1H, J = 7.6 Hz), 4.80-4.68 (m, 1H), 4.56-4.47 (m, 1H), 4.36 (q, 1H, J = 7.1 Hz), 4.21 (q, 1H, J = 7.1 Hz), 3.20 (dd, 1H, J = 14.7, 5.6 Hz), 3.11 (dd, 1H, J = 14.7, 7.6 Hz), 2.82 (s, 3H), 1.43 (s, 9H), 1.35 (s, 9H), 1.35-1.22 (m, 6H), 1.21-1.10 (m, 3H); 13C-NMR (CD3OD, 100 MHz) δ: 176.0, 175.8, 174.0, 173.9, 159.7, 157.5, 138.0, 128.8, 124.5, 122.5, 119.8, 119.5, 112.3, 110.8, 82.7, 80.6, 56.5, 55.7, 52.8, 50.9, 48.2, 31.0, 29.2, 28.7, 28.2, 18.1, 17.7, 13.5 (C28); ESIMS-LR m/z 660 [(M+H)+]; ESIMS-HR C32H50N7O8 の計算値 660.3715, 実測値 660.3709.
(6S, 9S, 10S, 13S, 17S) -17-((1H-Indol-3-yl) methyl) -2,2,6,8,9,13,20,20-octamethyl-4,7,12 , 15,18-Pentaoxo-3,19-dioxa-5,8,11,14,16-pentaazahenicosan-10-carboxamide (8)
(7) (2.4 g, 3.63 mmol), ammonium chloride (1.943 g, 36.3 mmol) and O- (7-azabenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate To a solution of N, N-dimethylformamide (30 mL) mixed with (1.795 g, 4.72 mmol), N-methylmorpholine (5.03 ml, 45.8 mmol) was added and stirred at 0 degree for 45 minutes. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with 0.2 mol / L hydrochloric acid and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (13 × 4.6 cm, chloroform / methanol 100/0 to 91/9) to obtain compound (8) (1.96 g, 82%) as a white solid substance.
[α] 23 D +19.1 (c 1.01, CHCl 3 ); 1 H-NMR (CD 3 OD, 400 MHz) δ: 7.57 (d, 1H, J = 7.6 Hz), 7.34 (d, 1H, J = 8.1 Hz), 7.11 (s, 1H), 7.09 (dd, 1H, J = 8.1, 7.6 Hz), 7.02 (t, 1H, J = 7.6 Hz), 4.80-4.68 (m, 1H), 4.56-4.47 (m , 1H), 4.36 (q, 1H, J = 7.1 Hz), 4.21 (q, 1H, J = 7.1 Hz), 3.20 (dd, 1H, J = 14.7, 5.6 Hz), 3.11 (dd, 1H, J = 14.7, 7.6 Hz), 2.82 (s, 3H), 1.43 (s, 9H), 1.35 (s, 9H), 1.35-1.22 (m, 6H), 1.21-1.10 (m, 3H); 13 C-NMR ( (CD 3 OD, 100 MHz) δ: 176.0, 175.8, 174.0, 173.9, 159.7, 157.5, 138.0, 128.8, 124.5, 122.5, 119.8, 119.5, 112.3, 110.8, 82.7, 80.6, 56.5, 55.7, 52.8, 50.9, 48.2 , 31.0, 29.2, 28.7, 28.2, 18.1, 17.7, 13.5 (C28); ESIMS-LR m / z 660 [(M + H) + ]; ESIMS-HR C 32 H 50 N 7 O 8 calculated 660.3715, Actual value 660.3709.
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000057
Figure JPOXMLDOC01-appb-C000058
Figure JPOXMLDOC01-appb-C000058
 スキーム2
 3-(ベンジルオキシメチル)-1-((2R,3R,4R,5R)-3,4-ビス(tert-ブチルジメチルシリルオキシ)-5-((tert-ブチルジメチルシリルオキシ)メチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (10) 
 (9) (1.51 g, 2.57 mmol)のN,N-ジメチルホルムアミド (20 mL)溶液にベンジルクロロメチルエーテル (0.640 g, 4.09 mmol) と ジイソプロピルエチルアミン (1.190 ml, 6.81 mmol)を加え、室温で15時間処理した。反応液を酢酸エチルと水で分配し、有機相を水と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(13×4.6 cm, ヘキサン/酢酸エチル 90/10 から 83/17)で精製し、化合物(10) (1.80g, 99%)を無色油状物質として得た。
[α]23 D +4.5 (c 1.00, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.99 (d, 1H, J = 8.2 Hz), 7.41-7.23 (m, 5H), 5.89 (d, 1H, J = 3.2 Hz), 5.71 (d, 1H, J = 8.2 Hz), 5.50 (d, 1H, J = 9.8 Hz), 5.47 (d, 1H, J = 9.8 Hz), 4.70 (s, 2H), 4.10-4.03 (m, 3H), 3.99 (d, 1H, J = 11.7 Hz), 3.76 (d, 1H, J = 11.7 Hz), 0.95 (s, 9H), 0.91 (s, 9H), 0.88 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 163.0, 151.2, 139.1, 138.1, 128.4, 127.8, 127.8, 101.6, 89.6, 84.5, 76.3, 72.2, 70.9, 70.3, 61.9, 26.2, 26.0, 25.9, 18.6, 18.2, 18.1, -4.0, -4.3, -4.7, -4.7, -5.2, -5.4 (C27).
FABMS-LR m/z 707 [(M+H)+]; FABMS-HR C35H63N2O7Si3 の計算値 707.3943, 実測値 707.3951.
Scheme 2
3- (Benzyloxymethyl) -1-((2R, 3R, 4R, 5R) -3,4-bis (tert-butyldimethylsilyloxy) -5-((tert-butyldimethylsilyloxy) methyl) tetrahydrofuran- 2-yl) pyrimidine-2,4 (1H, 3H) -dione (10)
(9) Benzylchloromethyl ether (0.640 g, 4.09 mmol) and diisopropylethylamine (1.190 ml, 6.81 mmol) were added to a solution of N, N-dimethylformamide (20 mL) in (1.51 g, 2.57 mmol), and the mixture was stirred at room temperature for 15 Time processed. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (13 × 4.6 cm, hexane / ethyl acetate 90/10 to 83/17) to obtain compound (10) (1.80 g, 99%) as a colorless oily substance.
[α] 23 D +4.5 (c 1.00, CHCl 3 ); 1 H-NMR (CDCl 3, 500 MHz) δ: 7.99 (d, 1H, J = 8.2 Hz), 7.41-7.23 (m, 5H), 5.89 (d, 1H, J = 3.2 Hz), 5.71 (d, 1H, J = 8.2 Hz), 5.50 (d, 1H, J = 9.8 Hz), 5.47 (d, 1H, J = 9.8 Hz), 4.70 (s , 2H), 4.10-4.03 (m, 3H), 3.99 (d, 1H, J = 11.7 Hz), 3.76 (d, 1H, J = 11.7 Hz), 0.95 (s, 9H), 0.91 (s, 9H) , 0.88 (s, 9H), 0.13 (s, 3H), 0.12 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H), 0.08 (s, 3H), 0.07 (s, 3H); 13 C-NMR (CDCl 3, 125 MHz) δ: 163.0, 151.2, 139.1, 138.1, 128.4, 127.8, 127.8, 101.6, 89.6, 84.5, 76.3, 72.2, 70.9, 70.3, 61.9, 26.2, 26.0, 25.9, 18.6 , 18.2, 18.1, -4.0, -4.3, -4.7, -4.7, -5.2, -5.4 (C27).
FABMS-LR m / z 707 [(M + H) + ]; FABMS-HR C 35 H 63 N 2 O 7 Si 3 calculated 707.3943, measured 707.3951.
 3-(ベンジルオキシメチル)-1-((2R,3R,4R,5R)-3,4-ビス(tert-ブチルジメチルシリルオキシ)-5-(ヒドロキシメチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (11)
 (10) (6.48 g, 9.17 mmol)のテトラヒドロフラン (100 mL)溶液にトリフルオロ酢酸 (25 mL) と 水 (25 mL)を加え、0度で7時間処理した。反応液を酢酸エチルと飽和炭酸水素ナトリウム水溶液で分配し、有機相を飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(17×4.8 cm, ヘキサン/酢酸エチル 80/20 から 60/40)で精製し、化合物(11) (4.5g, 83%)を白色固形物質として得た。
[α]23 D -5.7 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.63 (d, 1H, J = 8.1 Hz), 7.38-7.25 (m, 5H), 5.75 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 5.4 Hz), 5.49 (d, 1H, J = 9.8 Hz), 5.46 (d, 1H, J = 9.8 Hz), 4.69 (s, 2H), 4.53-4.51 (m, 1H), 4.17 (t, 1H, J = 4.2 Hz), 4.09-4.08 (m, 1H), 3.95 (dt, 1H, J = 12.2, 2.4 Hz), 3.73 (ddd, 1H, J = 12.2, 7.0, 2.1 Hz), 3.07 (dd, 1H, J = 7.0, 2.4 Hz), 0.91 (s, 9H), 0.87 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 162.8, 151.2, 141.6, 137.9, 128.4, 127.9, 127.8, 101.8, 94.3, 86.1, 73.8, 72.3, 71.7, 70.3, 61.7, 26.0, 25.9, 18.2, 18.1, -4.3, -4.5, -4.7, -4.7 (C23); FABMS-LR m/z 593 [(M+H)+]; FABMS-HR calcd for C29H49N2O7Si2 の計算値593.3079, 実測値 593.3088.
3- (Benzyloxymethyl) -1-((2R, 3R, 4R, 5R) -3,4-bis (tert-butyldimethylsilyloxy) -5- (hydroxymethyl) tetrahydrofuran-2-yl) pyrimidine-2 , 4 (1H, 3H) -Dione (11)
To a solution of (10) (6.48 g, 9.17 mmol) in tetrahydrofuran (100 mL) was added trifluoroacetic acid (25 mL) and water (25 mL), and the mixture was treated at 0 degree for 7 hours. The reaction mixture was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (17 × 4.8 cm, hexane / ethyl acetate 80/20 to 60/40) to obtain compound (11) (4.5 g, 83%) as a white solid substance.
[α] 23 D -5.7 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3, 500 MHz) δ: 7.63 (d, 1H, J = 8.1 Hz), 7.38-7.25 (m, 5H), 5.75 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 5.4 Hz), 5.49 (d, 1H, J = 9.8 Hz), 5.46 (d, 1H, J = 9.8 Hz), 4.69 (s , 2H), 4.53-4.51 (m, 1H), 4.17 (t, 1H, J = 4.2 Hz), 4.09-4.08 (m, 1H), 3.95 (dt, 1H, J = 12.2, 2.4 Hz), 3.73 ( ddd, 1H, J = 12.2, 7.0, 2.1 Hz), 3.07 (dd, 1H, J = 7.0, 2.4 Hz), 0.91 (s, 9H), 0.87 (s, 9H), 0.10 (s, 3H), 0.09 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); 13 C-NMR (CDCl 3, 125 MHz) δ: 162.8, 151.2, 141.6, 137.9, 128.4, 127.9, 127.8, 101.8, 94.3 , 86.1, 73.8, 72.3, 71.7, 70.3, 61.7, 26.0, 25.9, 18.2, 18.1, -4.3, -4.5, -4.7, -4.7 (C23); FABMS-LR m / z 593 [(M + H) + ]; FABMS-HR calcd for C 29 H 49 N 2 O 7 Si 2 calculated 593.3079, measured 593.3088.
 3-(ベンジルオキシメチル)-1-((2R,3R,4R,5S)-3,4-ビス(tert-ブチルジメチルシリルオキシ)-5-(ヨードメチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (12) 
 (11) (148 mg, 0.25 mmol)の1,4-ジオキサン (3 mL)溶液にピリジン (0.040 ml, 0.500 mmol) とトリフェニルホスフィン(98 mg, 0.375 mmol)および ヨウ素 (95 mg, 0.375 mmol)を加え、室温で16時間処理した。反応液にメタノールおよび5%チオ硫酸ナトリウム水溶液加えた後、酢酸エチルで抽出し、有機相を飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, ヘキサン/酢酸エチル 90/10 から 80/20)で精製し、化合物(12) (173 mg, 99%)を無色油状物質として得た。
[α]23 D +1.6, [α]23 365 +49.3 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.52 (d, 1H, J = 8.2 Hz), 7.40-7.24 (m, 5H), 5.79 (d, 1H, J = 8.2 Hz), 5.70 (d, 1H, J = 4.8 Hz), 5.49 (d, 1H, J = 9.8 Hz), 5.46 (d, 1H, J = 9.8 Hz), 4.69 (s, 2H), 4.42 (t, 1H, J = 4.8 Hz), 4.00 (q, 1H, J = 4.8 Hz), 3.96-3.92 (m, 1H), 3.52 (dd, 1H, J = 11.1, 5.5 Hz), 3.35 (dd, 1H, J = 11.1, 4.8 Hz), 0.92 (s, 9H), 0.87 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H), 0.07 (s, 3H), 0.05 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 162.7, 150.9, 140.2, 138.0, 128.4, 127.8, 127.8, 102.1, 92.2, 83.0, 75.0, 74.1, 72.2, 70.3, 26.0, 25.9, 18.1, 18.1, 6.4, -4.0, -4.1, -4.5, -4.6 (C23); FABMS-LR m/z 703 [(M+H)+]; FABMS-HR C29H48IN2O6Si2 の計算値703.2096, 実測値 703.2103.
3- (Benzyloxymethyl) -1-((2R, 3R, 4R, 5S) -3,4-bis (tert-butyldimethylsilyloxy) -5- (iodomethyl) tetrahydrofuran-2-yl) pyrimidine-2, 4 (1H, 3H) -Dione (12)
(11) Pyridine (0.040 ml, 0.500 mmol), triphenylphosphine (98 mg, 0.375 mmol) and iodine (95 mg, 0.375 mmol) in a solution of 1,148 (148 mg, 0.25 mmol) in 1,4-dioxane (3 mL) And treated at room temperature for 16 hours. Methanol and 5% aqueous sodium thiosulfate solution were added to the reaction solution, followed by extraction with ethyl acetate. The organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to give compound (12) (173 mg, 99%) as a colorless oil.
[α] 23 D +1.6, [α] 23 365 +49.3 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3, 500 MHz) δ: 7.52 (d, 1H, J = 8.2 Hz), 7.40- 7.24 (m, 5H), 5.79 (d, 1H, J = 8.2 Hz), 5.70 (d, 1H, J = 4.8 Hz), 5.49 (d, 1H, J = 9.8 Hz), 5.46 (d, 1H, J = 9.8 Hz), 4.69 (s, 2H), 4.42 (t, 1H, J = 4.8 Hz), 4.00 (q, 1H, J = 4.8 Hz), 3.96-3.92 (m, 1H), 3.52 (dd, 1H , J = 11.1, 5.5 Hz), 3.35 (dd, 1H, J = 11.1, 4.8 Hz), 0.92 (s, 9H), 0.87 (s, 9H), 0.15 (s, 3H), 0.12 (s, 3H) , 0.07 (s, 3H), 0.05 (s, 3H); 13 C-NMR (CDCl 3, 125 MHz) δ: 162.7, 150.9, 140.2, 138.0, 128.4, 127.8, 127.8, 102.1, 92.2, 83.0, 75.0, 74.1, 72.2, 70.3, 26.0, 25.9, 18.1, 18.1, 6.4, -4.0, -4.1, -4.5, -4.6 (C23); FABMS-LR m / z 703 [(M + H) + ]; FABMS-HR C 29 H 48 IN 2 O 6 Si 2 calculated 703.02096, measured 703.2103.
 3-(ベンジルオキシメチル)-1-((2R,3R,4S)-3,4-ビス(tert-ブチルジメチルシリルオキシ)-5-メチレンテトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (13) 
 (12) (170 mg, 0.242 mmol)のアセトニトリル (2 mL)溶液にDBU(0.055 ml, 0.363 mmol)を0度にて加え、室温で20時間処理した。反応液を酢酸エチルと水で分配し、有機相を水と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, ヘキサン/酢酸エチル 90/10 から 80/20)で精製し、化合物(13) (130mg, 93%)を無色油状物質として得た。
[α]23 D +4.0 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500MHz) δ: 7.39-7.24 (m, 5H), 7.13 (d, 1H, J = 8.2 Hz), 6.10 (d, 1H, J = 5.1 Hz), 5.81 (d, 1H, J = 8.2 Hz), 5.50 (d, 1H, J = 9.5 Hz), 5.47 (d, 1H, J = 9.5 Hz), 4.69 (s, 2H), 4.54 (d, 1H, J = 2.3 Hz), 4.34 (d, 1H, J = 4.2 Hz), 4.26 (d, 1H, J = 2.3 Hz), 4.19 (dd, 1H, J = 5.1, 4.2 Hz), 0.93 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 162.3, 160.5, 150.8, 137.9, 137.8, 128.3, 127.6, 127.6, 102.7, 90.4, 86.9, 75.1, 72.1, 71.8, 70.3, 25.7, 25.6, 18.2, 17.9, -4.5, -4.5, -4.7, -4.9 (C23); FABMS-LR m/z 575 [(M+H)+]; FABMS-HR C29H47N2O6Si2 の計算値575.2973, 実測値 575.2980.
3- (Benzyloxymethyl) -1-((2R, 3R, 4S) -3,4-bis (tert-butyldimethylsilyloxy) -5-methylenetetrahydrofuran-2-yl) pyrimidine-2,4 (1H, 3H) -Dione (13)
(12) DBU (0.055 ml, 0.363 mmol) was added to a solution of (170 mg, 0.242 mmol) in acetonitrile (2 mL) at 0 degree and treated at room temperature for 20 hours. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain compound (13) (130 mg, 93%) as a colorless oily substance.
[α] 23 D +4.0 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3, 500 MHz) δ: 7.39-7.24 (m, 5H), 7.13 (d, 1H, J = 8.2 Hz), 6.10 ( d, 1H, J = 5.1 Hz), 5.81 (d, 1H, J = 8.2 Hz), 5.50 (d, 1H, J = 9.5 Hz), 5.47 (d, 1H, J = 9.5 Hz), 4.69 (s, 2H), 4.54 (d, 1H, J = 2.3 Hz), 4.34 (d, 1H, J = 4.2 Hz), 4.26 (d, 1H, J = 2.3 Hz), 4.19 (dd, 1H, J = 5.1, 4.2 Hz), 0.93 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H), 0.05 (s, 3H), 0.03 (s, 3H); 13 C-NMR ( (CDCl 3, 125 MHz) δ: 162.3, 160.5, 150.8, 137.9, 137.8, 128.3, 127.6, 127.6, 102.7, 90.4, 86.9, 75.1, 72.1, 71.8, 70.3, 25.7, 25.6, 18.2, 17.9, -4.5,- 4.5, -4.7, -4.9 (C23); FABMS-LR m / z 575 [(M + H) + ]; FABMS-HR C 29 H 47 N 2 O 6 Si 2 calculated 575.2973, measured 575.2980.
 3-(ベンジルオキシメチル)-1-((2R,3R,4S,Z)-3,4-ビス(tert-ブチルジメチルシリルオキシ)-5-(ヨードメチレン)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (14) 
 (13) (55 mg, 0.096 mmol)のジクロロメタン (1 mL)溶液にヨードニウムジコリジニウムトリフラート(49.6 mg, 0.096 mmol)を加え、室温で30分間処理した。反応液を酢酸エチルと5%チオ硫酸ナトリウム水溶液で分配し、有機相を飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(7.5×2 cm, ヘキサン/酢酸エチル 90/10 から 80/20)で精製し、化合物(14) (53 mg, 79%)を淡黄色油状物質として得た。
[α]23 D +10.5 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.44-7.20 (m, 5H), 7.09 (d, 1H, J = 8.1 Hz), 6.28 (d, 1H, J = 6.1 Hz), 5.85 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 9.8 Hz), 5.48 (d, 1H, J = 9.8 Hz), 5.22 (s, 1H), 4.69 (s, 2H), 4.45 (d, 1H, J = 4.2 Hz), 4.26 (dd, 1H, J = 6.1, 4.2 Hz), 0.92 (s, 9H), 0.84 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.03 (s, 3H), -0.01 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 162.3, 160.6, 150.9, 138.1, 137.9, 128.5, 127.8, 127.8, 103.3, 90.7, 76.0, 72.4, 72.3, 70.5, 48.7, 25.8, 25.7, 18.3, 18.1, -4.4, -4.4, -4.5, -4.9 (C23); FABMS-LR m/z 701 [(M+H)+]; FABMS-HR C29H46IN2O6Si2 の計算値701.1939, 実測値 701.1952.
3- (Benzyloxymethyl) -1-((2R, 3R, 4S, Z) -3,4-bis (tert-butyldimethylsilyloxy) -5- (iodomethylene) tetrahydrofuran-2-yl) pyrimidine-2 , 4 (1H, 3H) -Dione (14)
(13) To a solution of (55 mg, 0.096 mmol) in dichloromethane (1 mL) was added iodonium dicorydinium triflate (49.6 mg, 0.096 mmol) and treated at room temperature for 30 minutes. The reaction mixture was partitioned between ethyl acetate and 5% aqueous sodium thiosulfate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7.5 × 2 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain Compound (14) (53 mg, 79%) as a pale yellow oily substance.
[α] 23 D +10.5 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3 ,   500 MHz) δ: 7.44-7.20 (m, 5H), 7.09 (d, 1H, J = 8.1 Hz), 6.28 (d, 1H, J = 6.1 Hz), 5.85 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 9.8 Hz), 5.48 (d, 1H, J = 9.8 Hz), 5.22 (s, 1H), 4.69 (s, 2H), 4.45 (d, 1H, J = 4.2 Hz), 4.26 (dd, 1H, J = 6.1, 4.2 Hz), 0.92 (s, 9H), 0.84 (s, 9H), 0.12 (s, 3H), 0.11 (s, 3H), 0.03 (s, 3H),- 0.01 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ: 162.3, 160.6, 150.9, 138.1, 137.9, 128.5, 127.8, 127.8, 103.3, 90.7, 76.0, 72.4, 72.3, 70.5, 48.7, 25.8, 25.7, 18.3, 18.1, -4.4, -4.4, -4.5, -4.9 (C23); FABMS-LR m / z 701 [(M + H) + ]; FABMS-HR C 29 H 46 IN 2 O 6 Calculated value of Si 2 701.1939, measured value 701.1952.
 化合物 (15)
 乾燥した試験管に、窒素雰囲気下、(14) (96 mg, 0.137 mmol), (8) (136 mg, 0.205 mmol), ヨウ化銅(20.87 mg, 0.110 mmol), および炭酸セシウム(67.0 mg, 0.205 mmol)を加える。(1R, 2R)-N,N’-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン (52.7 mg, 0.219 mmol)のテトラヒドロフラン(1 ml)溶液を加え、試験管内を窒素置換した後、70度にて10時間処理した。反応液を酢酸エチルで希釈した後、不溶物をセライトでろ別し、ろ液を減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, クロロホルム/メタノール 100/0 から 91/9)で精製し、化合物(15) (144.7 mg, 86%)を白色固形物質として得た。
[α]23 D -9.8 (c 0.52, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 8.23 (d, 1H, J = 8.6 Hz), 7.89 (br s, 1H), 7.46 (d, 1H, J = 7.6 Hz), 7.35-7.29 (m, 6H), 7.11-7.06 (m, 2H), 7.00 (t, 1H, J = 7.6 Hz), 6.96 (s, 1H), 6.19 (d, 1H, J = 9.5 Hz), 6.12 (d, 1H, J = 6.6 Hz), 5.77 (d, 1H, J = 8.3 Hz), 5.47 (d, 1H, J = 9.5 Hz), 5.41 (d, 1H, J = 9.5 Hz), 4.76-4.68 (m, 1H), 4.67 (d, 1H, J = 6.6 Hz), 4.66 (s, 2H), 4.54-4.38 (m, 3H), 4.37 (d, 1H, J = 4.2 Hz), 4.31-4.23 (m, 1H), 3.13-2.96 (m, 2H), 2.58 (s, 3H), 1.49-1.12 (m, 27H), 0.88 (s, 9H), 0.82 (s, 9H), 0.08 (s, 3H), 0.05 (s, 3H), 0.01 (s, 3H), -0.07 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 175.4, 174.7, 172.7, 166.3, 162.3, 157.4, 155.4, 150.7, 142.6, 139.1, 137.7, 135.8, 128.4, 127.8, 127.8, 127.6, 124.2, 121.7, 118.9, 118.6, 111.6, 109.1, 102.7, 100.4, 91.3, 82.3, 79.7, 72.1, 71.2, 70.3, 58.0, 53.7, 50.9, 49.3, 47.0, 30.1, 28.5, 28.0, 28.0, 25.8, 25.7, 18.7, 18.2, 18.0, 14.0, -4.2, -4.4, -4.5, -5.1 (C51); ESIMS-LR m/z 1232 [(M+H)+]; ESIMS-HR C61H94N9O14Si2 の実測値 1232.6453, 計算値 1232.6464.
Compound (15)
In a dry test tube, under a nitrogen atmosphere, (14) (96 mg, 0.137 mmol), (8) (136 mg, 0.205 mmol), copper iodide (20.87 mg, 0.110 mmol), and cesium carbonate (67.0 mg, 0.205 mmol) is added. (1R, 2R) -N, N'-dimethyl-1,2-diphenylethane-1,2-diamine (52.7 mg, 0.219 mmol) in tetrahydrofuran (1 ml) was added, and the inside of the test tube was purged with nitrogen. Treated at 70 degrees for 10 hours. The reaction mixture was diluted with ethyl acetate, insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, chloroform / methanol 100/0 to 91/9) to obtain compound (15) (144.7 mg, 86%) as a white solid substance.
[α] 23 D -9.8 (c 0.52, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.23 (d, 1H, J = 8.6 Hz), 7.89 (br s, 1H), 7.46 ( d, 1H, J = 7.6 Hz), 7.35-7.29 (m, 6H), 7.11-7.06 (m, 2H), 7.00 (t, 1H, J = 7.6 Hz), 6.96 (s, 1H), 6.19 (d , 1H, J = 9.5 Hz), 6.12 (d, 1H, J = 6.6 Hz), 5.77 (d, 1H, J = 8.3 Hz), 5.47 (d, 1H, J = 9.5 Hz), 5.41 (d, 1H , J = 9.5 Hz), 4.76-4.68 (m, 1H), 4.67 (d, 1H, J = 6.6 Hz), 4.66 (s, 2H), 4.54-4.38 (m, 3H), 4.37 (d, 1H, J = 4.2 Hz), 4.31-4.23 (m, 1H), 3.13-2.96 (m, 2H), 2.58 (s, 3H), 1.49-1.12 (m, 27H), 0.88 (s, 9H), 0.82 (s , 9H), 0.08 (s, 3H), 0.05 (s, 3H), 0.01 (s, 3H), -0.07 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ: 175.4, 174.7, 172.7, 166.3, 162.3, 157.4, 155.4, 150.7, 142.6, 139.1, 137.7, 135.8, 128.4, 127.8, 127.8, 127.6, 124.2, 121.7, 118.9, 118.6, 111.6, 109.1, 102.7, 100.4, 91.3, 82.3, 79.7, 72.1, 71.2, 70.3, 58.0, 53.7, 50.9, 49.3, 47.0, 30.1, 28.5, 28.0, 28.0, 25.8, 25.7, 18.7, 18.2, 18.0, 14.0, -4.2, -4.4, -4.5, -5.1 (C51) ; ESIMS-LR m / z 1232 [(M + H) + ]; ESIMS-HR C 61 H 94 N 9 O 14 Si 2 measured 1232.6453, calculated 1232.6464.
 実施例1 (3’-OH-pacidamycin D)の化合物の合成
 (15) (30 mg, 0.024 mmol)のジクロロメタン (2 mL)溶液に1mol/L三塩化ホウ素-ジクロロメタン溶液(0.243 ml, 0.243 mmol)を窒素雰囲気下-78度にて加え、同温で1時間処理した後、-40度にて1時間処理した。反応液にメタノールと飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムで抽出し、有機相を無水硫酸ナトリウムで乾燥し、エタン-1,2-ジチオール(10.21 μl, 0.122 mmol)を加えた後、減圧下で濃縮した。残渣のジクロロメタン (2 mL) - アセトニトリル(2 mL)溶液に三フッ化水素トリエチルアミン(0.119 ml, 0.730 mmol)を加え、室温で4日間処理した。反応混合物を減圧下で濃縮し、残渣をオクタデシルシリカカラムクロマトグラフィー(30×1.1 cm, 0.1%トリフルオロ酢酸 水/アセトニトリル 100/0 から 60/40)で精製し、凍結乾燥後、実施例1の化合物(3’-OH-pacidamycin D, 5.1 mg, 2工程で25%)を白色泡状物質として得た。
[α]23 D -13.6, [α]23 365 -34.5 (c 0.11, H2O); 1H-NMR (D2O) δ: 7.69 (d, 1H, J = 7.8 Hz), 7.54 (dd, 1H, J = 3.4, 8.1 Hz), 7.52 (d, 1H, J = 8.1 Hz), 7.28 (s, 1H), 7.26 (dd, 1H, J = 7.8, 8.1 Hz), 7.18 (t, 1H, J = 7.8 Hz), 6.19 (s, 1H), 6.15 (d, 0H, J = 5.4 Hz), 6.11 (d, 1H, J = 5.4 Hz), 5.93 (d, 0H, J = 8.1 Hz), 5.88 (d, 1H, J = 8.1 Hz), 4.89 (dq, 1H, J = 5.9, 7.6 Hz), 4.74 (d, 1H, J = 5.9 Hz), 4.59-4.50 (m, 3H), 4.29 (q, 1H, J = 6.9 Hz), 4.13 (q, 1H, J = 7.2 Hz), 3.33 (dd, 1H, J = 14.7, 4.9 Hz), 3.23 (ddd, 1H, J = 14.7, 7.5, 3.4 Hz), 2.87 (d, 3H, J = 2.7 Hz), 1.33 (d, 2H, J = 7.2 Hz), 1.25 (d, 3H, J = 7.6 Hz), 1.17 (d, 3H, J = 6.9 Hz).
 13C-NMR (D2O, 100 MHz) δ: 183.2, 179.3, 173.6, 170.8, 168.8, 161.5, 154.3, 147.1, 144.7, 139.0, 130.1, 127.1, 124.6, 122.0, 121.7, 114.6, 113.3, 105.7, 102.1, 93.7, 75.3, 71.3, 59.5, 58.3, 53.5, 52.7, 50.2, 32.3, 31.1, 19.6, 18.2, 15.6. ESIMS-LR m/z 728 [(M+H)+]; ESIMS-HR C64H92N9O14Si2 の計算値 728.2998, 実測値 728.2996.
Example 1 Synthesis of Compound (3'-OH-pacidamycin D) (15) To a solution of 30 mg, 0.024 mmol) in dichloromethane (2 mL), 1 mol / L boron trichloride-dichloromethane solution (0.243 ml, 0.243 mmol) Was added at −78 ° C. in a nitrogen atmosphere, treated at the same temperature for 1 hour, and then treated at −40 ° C. for 1 hour. Methanol and saturated aqueous sodium hydrogen carbonate solution were added to the reaction solution, followed by extraction with chloroform, the organic phase was dried over anhydrous sodium sulfate, ethane-1,2-dithiol (10.21 μl, 0.122 mmol) was added, and the pressure was reduced. Concentrated under. To a solution of the residue in dichloromethane (2 mL) -acetonitrile (2 mL) was added triethylamine hydrogen trifluoride (0.119 ml, 0.730 mmol) and treated at room temperature for 4 days. The reaction mixture was concentrated under reduced pressure, and the residue was purified by octadecyl silica column chromatography (30 × 1.1 cm, 0.1% aqueous trifluoroacetic acid / acetonitrile 100/0 to 60/40). The compound (3′-OH-pacidamycin D, 5.1 mg, 25% over 2 steps) was obtained as a white foam.
[α] 23 D -13.6, [α] 23 365 -34.5 (c 0.11, H 2 O); 1 H-NMR (D 2 O) δ: 7.69 (d, 1H, J = 7.8 Hz), 7.54 (dd , 1H, J = 3.4, 8.1 Hz), 7.52 (d, 1H, J = 8.1 Hz), 7.28 (s, 1H), 7.26 (dd, 1H, J = 7.8, 8.1 Hz), 7.18 (t, 1H, J = 7.8 Hz), 6.19 (s, 1H), 6.15 (d, 0H, J = 5.4 Hz), 6.11 (d, 1H, J = 5.4 Hz), 5.93 (d, 0H, J = 8.1 Hz), 5.88 (d, 1H, J = 8.1 Hz), 4.89 (dq, 1H, J = 5.9, 7.6 Hz), 4.74 (d, 1H, J = 5.9 Hz), 4.59-4.50 (m, 3H), 4.29 (q, 1H, J = 6.9 Hz), 4.13 (q, 1H, J = 7.2 Hz), 3.33 (dd, 1H, J = 14.7, 4.9 Hz), 3.23 (ddd, 1H, J = 14.7, 7.5, 3.4 Hz), 2.87 (d, 3H, J = 2.7 Hz), 1.33 (d, 2H, J = 7.2 Hz), 1.25 (d, 3H, J = 7.6 Hz), 1.17 (d, 3H, J = 6.9 Hz).
13 C-NMR (D 2 O, 100 MHz) δ: 183.2, 179.3, 173.6, 170.8, 168.8, 161.5, 154.3, 147.1, 144.7, 139.0, 130.1, 127.1, 124.6, 122.0, 121.7, 114.6, 113.3, 105.7, 102.1, 93.7, 75.3, 71.3, 59.5, 58.3, 53.5, 52.7, 50.2, 32.3, 31.1, 19.6, 18.2, 15.6. ESIMS-LR m / z 728 [(M + H) + ]; ESIMS-HR C 64 H 92 N 9 O 14 Si 2 calculated 728.2998, measured 728.2996.
 B.Ugi反応を利用した3’-OH-Pacidamycin D の合成-スキーム3 B. Synthesis of 3'-OH-Pacidamycin D using Ugi reaction-Scheme 3
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000059
Figure JPOXMLDOC01-appb-C000060
Figure JPOXMLDOC01-appb-C000060
 スキーム3
 N-((Z)-((3S,4R,5R)-5-(3-(ベンジルオキシメチル)-2,4-ジオキソ-3,4-ジヒドロピリミジン-1(2H)-イル)-3,4-ビス(tert-スチルジメチルシリルオキシ)ジヒドロフラン-2(3H)-イリデン)メチル)ホルムアミド (16) 
 乾燥した試験管に、窒素雰囲気下、(14) (636.3 mg, 0.908 mmol), ヨウ化銅(51.9 mg, 0.272 mmol), および炭酸セシウム(444 mg, 1.362 mmol)を加える。N,N’-ジメチルエタン-1,2-ジアミン (48.0 mg, 0.545 mmol)とホルムアミド (0.072 ml, 1.816 mmol)のテトラヒドロフラン(9 ml)溶液を加え、試験管内を窒素置換した後、70度にて7時間処理した。反応液を酢酸エチルで希釈した後、不溶物をセライトでろ別し、ろ液を減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15×2.6 cm, ヘキサン/酢酸エチル 50/50 から 20/80)で精製し、化合物(16) (519 mg, 93%)を白色固形物質として得た。
[α]23 D -35.3 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 8.14-8.14 (m, 1H), 7.39-7.23 (m, 5H), 7.06 (d, 1H, J = 8.1 Hz), 6.41 (d, 1H, J = 10.8 Hz), 6.22 (d, 1H, J = 7.0 Hz), 5.83 (d, 1H, J = 8.1 Hz), 5.50 (d, 1H, J = 9.5 Hz), 5.44 (d, 1H, J = 9.5 Hz), 4.68 (s, 2H), 4.41 (d, 1H, J = 4.2 Hz), 4.25 (dd, 1H, J = 7.0, 4.2 Hz), 0.91 (s, 9H), 0.83 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H), 0.03 (s, 3H), -0.05 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 162.2, 157.6, 151.1, 142.2, 138.5, 137.8 , 128.5, 127.9, 127.8, 103.3, 99.3, 90.4, 75.2, 72.3, 71.1, 70.5, 25.8, 25.7, 18.3, 18.0, -4.1, -4.4, -4.4, -5.0 (C24); FABMS-LR m/z 618 [(M+H)+]; FABMS-HR C30H48N3O7Si2 の計算値618.3031, 実測値 618.3035.
Scheme 3
N-((Z)-((3S, 4R, 5R) -5- (3- (benzyloxymethyl) -2,4-dioxo-3,4-dihydropyrimidin-1 (2H) -yl) -3, 4-Bis (tert-stildimethylsilyloxy) dihydrofuran-2 (3H) -ylidene) methyl) formamide (16)
To a dried tube, add (14) (636.3 mg, 0.908 mmol), copper iodide (51.9 mg, 0.272 mmol), and cesium carbonate (444 mg, 1.362 mmol) under a nitrogen atmosphere. N, N'-dimethylethane-1,2-diamine (48.0 mg, 0.545 mmol) and formamide (0.072 ml, 1.816 mmol) in tetrahydrofuran (9 ml) were added, and the inside of the test tube was purged with nitrogen. For 7 hours. The reaction mixture was diluted with ethyl acetate, insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15 × 2.6 cm, hexane / ethyl acetate 50/50 to 20/80) to obtain Compound (16) (519 mg, 93%) as a white solid substance.
[α] 23 D -35.3 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 8.14-8.14 (m, 1H), 7.39-7.23 (m, 5H), 7.06 (d, 1H, J = 8.1 Hz), 6.41 (d, 1H, J = 10.8 Hz), 6.22 (d, 1H, J = 7.0 Hz), 5.83 (d, 1H, J = 8.1 Hz), 5.50 (d, 1H, J = 9.5 Hz), 5.44 (d, 1H, J = 9.5 Hz), 4.68 (s, 2H), 4.41 (d, 1H, J = 4.2 Hz), 4.25 (dd, 1H, J = 7.0, 4.2 Hz) , 0.91 (s, 9H), 0.83 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H), 0.03 (s, 3H), -0.05 (s, 3H); 13 C-NMR (CDCl (3 , 125 MHz) δ: 162.2, 157.6, 151.1, 142.2, 138.5, 137.8, 128.5, 127.9, 127.8, 103.3, 99.3, 90.4, 75.2, 72.3, 71.1, 70.5, 25.8, 25.7, 18.3, 18.0, -4.1, -4.4, -4.4, -5.0 (C24); FABMS-LR m / z 618 [(M + H) + ]; FABMS-HR C 30 H 48 N 3 O 7 Si 2 calculated 618.3031, measured value 618.3035.
 3-(ベンジルオキシメチル)-1-((2R,3R,4S,Z)-3,4-ビス(tert-ジブチルジメチルシリルオキシ)-5-(イソシアノメチレン)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (17) 
 塩化メチレン(20mL)中の化合物(16)(250 mg, 0.405 mmol)およびトリエチルアミン(1.683 ml, 12.14 mmol)の混合物を、トリホスゲン(600 mg, 2.023 mmol)によって、-78℃で1時間処理した。この混合物を酢酸エチルと飽和炭酸水素ナトリウム水溶液で分配した後、有機層を飽和食塩水にて洗浄、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, ヘキサン/酢酸エチル 85/15 から 70/30)で精製し、化合物(17)(214 mg, 88%)を白色泡状物質として得た。
[α]23 D +17.0 (c 0.32, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.41-7.25 (m, 5H), 7.06 (d, 1H, J = 8.1 Hz), 6.11 (d, 1H, J = 5.2 Hz), 5.85 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 9.8 Hz), 5.47 (d, 1H, J = 9.8 Hz), 5.22 (d, 1H, J = 1.0 Hz), 4.70 (s, 2H), 4.46 (d, 1H, J = 4.3 Hz), 4.38 (dd, 1H, J = 5.2, 4.3 Hz), 0.92 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 168.3, 162.0, 159.8, 150.6, 138.2, 137.7, 128.4, 127.8, 127.6, 103.3, 93.0, 89.2, 74.0, 72.3, 70.8, 70.4, 25.7, 25.6, 18.1, 17.9, -4.4, -4.6, -4.6, -4.9 (C24); ESIMS-LR m/z 600 [(M+H)+]; ESIMS-HR C30H46N3O6Si2 の計算値 600.2920, 実測値 600.2916.
3- (Benzyloxymethyl) -1-((2R, 3R, 4S, Z) -3,4-bis (tert-dibutyldimethylsilyloxy) -5- (isocyanomethylene) tetrahydrofuran-2-yl) pyrimidine- 2,4 (1H, 3H) -Dione (17)
A mixture of compound (16) (250 mg, 0.405 mmol) and triethylamine (1.683 ml, 12.14 mmol) in methylene chloride (20 mL) was treated with triphosgene (600 mg, 2.023 mmol) at −78 ° C. for 1 hour. The mixture was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate, and the organic layer was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, hexane / ethyl acetate 85/15 to 70/30) to obtain compound (17) (214 mg, 88%) as a white foam.
[α] 23 D +17.0 (c 0.32, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 7.41-7.25 (m, 5H), 7.06 (d, 1H, J = 8.1 Hz), 6.11 (d, 1H, J = 5.2 Hz), 5.85 (d, 1H, J = 8.1 Hz), 5.51 (d, 1H, J = 9.8 Hz), 5.47 (d, 1H, J = 9.8 Hz), 5.22 (d , 1H, J = 1.0 Hz), 4.70 (s, 2H), 4.46 (d, 1H, J = 4.3 Hz), 4.38 (dd, 1H, J = 5.2, 4.3 Hz), 0.92 (s, 9H), 0.86 (s, 9H), 0.12 (s, 3H), 0.12 (s, 3H), 0.06 (s, 3H), 0.03 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ: 168.3, 162.0 , 159.8, 150.6, 138.2, 137.7, 128.4, 127.8, 127.6, 103.3, 93.0, 89.2, 74.0, 72.3, 70.8, 70.4, 25.7, 25.6, 18.1, 17.9, -4.4, -4.6, -4.6, -4.9 (C24 ); ESIMS-LR m / z 600 [(M + H) + ]; ESIMS-HR C 30 H 46 N 3 O 6 Si 2 calculated 600.2920, measured 600.2916.
 化合物(20, 21)
 カルボン酸化合物(19)(456 mg, 1.215 mmol)、アルデヒド化合物 (18) (350 mg, 1.869 mmol) および2,4-ジメトキシベンジルアミン(0.183 ml, 1.215 mmol) が混合したエタノール (1 mL)溶液を室温にて20分撹拌した。この混合物に、イソニトリル化合物(17)(561 mg, 0.935 mmol)のエタノール (1 mL)溶液を加え、48時間撹拌した。反応液を減圧下で濃縮した後、残渣をシリカゲルカラムクロマトグラフィー(30×3.7 cm, ヘキサン/酢酸エチル 50/50)で精製し、化合物(20)(400 mg, 33%)および (21) (369 mg, 30%) を白色泡状物質として得た。
(20)のデータ
[α]23 D -6.3 (c 1.01, CHCl3); ESIMS-LR m/z 1311 [(M+H)+]; ESIMS-HR C67H99N8O15Si2 の計算値 1311.6763, 実測値 1311.6760.
(21)のデータ
[α]23 D -34.4 (c 1.01, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 9.60 (br s, 1H), 9.02 (s, 1H), 7.70 (s, 1H), 7.58 (d, 1H, J = 7.8 Hz), 7.42-7.24 (m, 9H), 7.22 (d, 1H, J = 8.1 Hz), 7.12 (t, 1H, J = 7.3 Hz), 7.06 (dd, 1H, J = 7.3, 7.8 Hz), 7.02 (s, 1H), 6.45 (d, 1H, J = 9.4 Hz), 6.41 (d, 1H, J = 2.4 Hz), 6.25 (d, 1H, J = 10.5 Hz), 5.78 (d, 1H, J = 8.1 Hz), 5.48 (d, 1H, J = 9.6 Hz), 5.43 (d, 1H, J = 9.6 Hz), 5.11 (d, 1H, J = 8.4 Hz), 5.05 (d, 1H, J = 8.4 Hz), 5.00-4.91 (m, 1H), 4.71-4.62 (m, 1H), 4.67 (s, 2H), 4.57-4.44 (m, 2H), 4.34-4.27 (m, 1H), 4.02-3.90 (m, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.68-3.55 (m, 1H), 3.24 (dd, 1H, J = 15.0, 4.3 Hz), 3.03 (dd, 1H, J = 15.0, 7.3 Hz), 2.51 (s, 3H), 1.42 (s, 9H), 1.39 (s, 9H), 1.38 (d, 3H, J = 5.1 Hz), 1.16 (d, 3H, J = 6.1 Hz), 0.90 (s, 9H), 0.82 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H), 0.00 (s, 3H), -0.07 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 177.1, 171.9, 167.3, 162.6, 161.4, 158.9, 156.9, 155.6, 151.0, 140.5, 138.3, 137.8, 136.1, 131.7, 128.3, 127.8, 127.6, 123.2, 121.2, 119.1, 118.9, 115.6, 110.8, 109.9, 104.1, 102.8, 101.5, 101.4, 98.6, 88.0, 81.3, 79.3, 77.5, 71.9, 71.6, 70.4, 68.6, 55.4, 55.2, 54.1, 51.1, 48.4, 47.2, 28.6, 28.4, 28.0, 25.8, 25.6, 25.5, 18.2, 18.0, 17.9, 14.3, -4.3, -4.5, -4.8, -5.2 (C57); ESIMS-LR m/z 1311 [(M+H)+]; ESIMS-HR C67H99N8O15Si2 の計算値 1311.6763, 実測値 1311.6759.
Compound (20, 21)
Ethanol (1 mL) solution mixed with carboxylic acid compound (19) (456 mg, 1.215 mmol), aldehyde compound (18) (350 mg, 1.869 mmol) and 2,4-dimethoxybenzylamine (0.183 ml, 1.215 mmol) Was stirred at room temperature for 20 minutes. To this mixture was added a solution of isonitrile compound (17) (561 mg, 0.935 mmol) in ethanol (1 mL), and the mixture was stirred for 48 hours. The reaction mixture was concentrated under reduced pressure, and the residue was purified by silica gel column chromatography (30 × 3.7 cm, hexane / ethyl acetate 50/50) to give compounds (20) (400 mg, 33%) and (21) ( 369 mg, 30%) was obtained as a white foam.
Data of (20)
[α] 23 D -6.3 (c 1.01, CHCl 3 ); ESIMS-LR m / z 1311 [(M + H) + ]; ESIMS-HR C 67 H 99 N 8 O 15 Si 2 calculated 1311.6763, measured Value 1311.6760.
Data of (21)
[α] 23 D -34.4 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 9.60 (br s, 1H), 9.02 (s, 1H), 7.70 (s, 1H), 7.58 (d, 1H, J = 7.8 Hz), 7.42-7.24 (m, 9H), 7.22 (d, 1H, J = 8.1 Hz), 7.12 (t, 1H, J = 7.3 Hz), 7.06 (dd, 1H , J = 7.3, 7.8 Hz), 7.02 (s, 1H), 6.45 (d, 1H, J = 9.4 Hz), 6.41 (d, 1H, J = 2.4 Hz), 6.25 (d, 1H, J = 10.5 Hz) ), 5.78 (d, 1H, J = 8.1 Hz), 5.48 (d, 1H, J = 9.6 Hz), 5.43 (d, 1H, J = 9.6 Hz), 5.11 (d, 1H, J = 8.4 Hz), 5.05 (d, 1H, J = 8.4 Hz), 5.00-4.91 (m, 1H), 4.71-4.62 (m, 1H), 4.67 (s, 2H), 4.57-4.44 (m, 2H), 4.34-4.27 ( m, 1H), 4.02-3.90 (m, 1H), 3.79 (s, 3H), 3.74 (s, 3H), 3.68-3.55 (m, 1H), 3.24 (dd, 1H, J = 15.0, 4.3 Hz) , 3.03 (dd, 1H, J = 15.0, 7.3 Hz), 2.51 (s, 3H), 1.42 (s, 9H), 1.39 (s, 9H), 1.38 (d, 3H, J = 5.1 Hz), 1.16 ( d, 3H, J = 6.1 Hz), 0.90 (s, 9H), 0.82 (s, 9H), 0.10 (s, 3H), 0.07 (s, 3H), 0.00 (s, 3H), -0.07 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ: 177.1, 171.9, 167.3, 162.6, 161.4, 158.9, 156.9, 155.6, 151.0, 140.5, 138.3, 137.8, 136.1, 131.7, 128.3, 127.8, 127.6, 123.2, 121.2, 119.1, 118.9, 115.6, 110.8, 109.9, 104.1, 102.8, 101.5, 101.4, 98.6, 88.0, 81.3, 79.3, 77.5, 71.9, 71.6, 70.4, 68.6, 55.4, 55.2, 54.1, 51.1, 48.4, 47.2, 28.6, 28.4, 28.0, 25.8, 25.6, 25.5, 18.2, 18.0, 17.9, 14.3, -4.3, -4.5, -4.8, -5.2 (C57); ESIMS-LR m / z 1311 [( M + H) + ]; ESIMS-HR C 67 H 99 N 8 O 15 Si 2 calculated 1311.6763, measured 1311.6759.
 化合物 (22)
 (20) (364.7 mg, 0.278 mmol)のジクロロメタン (6 mL)溶液にトリフルオロ酢酸 (0.75 ml, 9.73 mmol)を0度で加え、同温で3時間処理した。反応液を酢酸エチルと飽和炭酸水素ナトリウム水溶液で分配し、有機相を飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, クロロホルム/メタノール 100/0 から 95/5)で精製し、化合物(22) (175 mg, 52%)を白色泡状物質として得た。
[α]23 D -27.5 (c 0.83, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.42 (d, 1H, J = 7.8 Hz), 7.38-7.21 (m, 10H), 7.13 (d, 1H, J = 8.1 Hz), 6.99 (t, 1H, J = 7.3 Hz), 6.92 (dd, 1H, J = 7.3, 7.8 Hz), 6.36 (d, 1H, J = 2.4 Hz), 6.35 (d, 1H, J = 8.6 Hz), 5.79 (d, 1H, J = 8.1 Hz), 5.48 (d, 1H, J = 9.5 Hz), 5.45 (d, 1H, J = 9.5 Hz), 5.23-5.02 (m, 1H), 4.67-4.53 (m, 2H), 4.65 (s, 2H), 4.50-4.44 (m, 1H), 4.32-4.22 (m, 1H), 4.20 (dd, 1H, J = 7.1, 3.9 Hz), 3.78-3.75 (m, 1H), 3.76 (s, 3H), 3.70 (s, 3H), 3.14 (dd, 1H, J = 14.8, 7.1 Hz), 3.05-2.90 (m, 1H), 2.11-1.93 (m, 3H), 1.48 (d, 3H, J = 6.8 Hz), 1.42-1.36 (m, 3H), 1.40 (s, 9H), 0.90 (s, 9H), 0.83 (s, 9H), 0.11 (s, 3H), 0.09 (s, 3H), 0.03 (s, 3H), -0.07 (s, 3H); 13C-NMR (CDCl3, 125 MHz) δ: 175.8, 172.8, 167.5, 162.2, 160.9, 158.4, 157.8, 151.0, 141.1, 138.0, 137.6, 135.5, 132.0, 128.3, 127.7, 127.7, 127.7, 127.6, 124.6, 120.9, 118.3, 118.3, 116.0, 111.1, 103.7, 102.8, 101.9, 98.3, 89.1, 81.0, 76.0, 72.0, 71.2, 70.3, 63.3, 55.3, 55.0, 54.9, 54.2, 47.1, 46.7, 32.9, 28.1, 27.1, 25.8, 25.6, 19.3, 18.1, 17.9, 15.6, -4.1, -4.5, -4.5, -5.2 (C54); ESIMS-LR m/z 1211 [(M+H)+]; ESIMS-HR C62H91N8O13Si2 の計算値 1211.6239, 実測値 1211.6235.
Compound (22)
To a solution of (20) (364.7 mg, 0.278 mmol) in dichloromethane (6 mL) was added trifluoroacetic acid (0.75 ml, 9.73 mmol) at 0 degrees, and the mixture was treated at the same temperature for 3 hours. The reaction mixture was partitioned between ethyl acetate and saturated aqueous sodium hydrogen carbonate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, chloroform / methanol 100/0 to 95/5) to obtain compound (22) (175 mg, 52%) as a white foam.
[α] 23 D -27.5 (c 0.83, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 7.42 (d, 1H, J = 7.8 Hz), 7.38-7.21 (m, 10H), 7.13 (d, 1H, J = 8.1 Hz), 6.99 (t, 1H, J = 7.3 Hz), 6.92 (dd, 1H, J = 7.3, 7.8 Hz), 6.36 (d, 1H, J = 2.4 Hz), 6.35 (d, 1H, J = 8.6 Hz), 5.79 (d, 1H, J = 8.1 Hz), 5.48 (d, 1H, J = 9.5 Hz), 5.45 (d, 1H, J = 9.5 Hz), 5.23-5.02 (m, 1H), 4.67-4.53 (m, 2H), 4.65 (s, 2H), 4.50-4.44 (m, 1H), 4.32-4.22 (m, 1H), 4.20 (dd, 1H, J = 7.1, 3.9 Hz), 3.78-3.75 (m, 1H), 3.76 (s, 3H), 3.70 (s, 3H), 3.14 (dd, 1H, J = 14.8, 7.1 Hz), 3.05-2.90 (m, 1H), 2.11-1.93 (m, 3H), 1.48 (d, 3H, J = 6.8 Hz), 1.42-1.36 (m, 3H), 1.40 (s, 9H), 0.90 (s, 9H), 0.83 (s, 9H) , 0.11 (s, 3H), 0.09 (s, 3H), 0.03 (s, 3H), -0.07 (s, 3H); 13 C-NMR (CDCl 3 , 125 MHz) δ: 175.8, 172.8, 167.5, 162.2 , 160.9, 158.4, 157.8, 151.0, 141.1, 138.0, 137.6, 135.5, 132.0, 128.3, 127.7, 127.7, 127.7, 127.6, 124.6, 120.9, 118.3, 118.3, 116.0, 111.1, 103.7, 102.8, 101.9, 98.3, 89.1 , 81.0, 76.0, 72.0, 71.2, 70.3, 63.3, 55.3, 55.0, 54.9, 54. 2, 47.1, 46.7, 32.9, 28.1, 27.1, 25.8, 25.6, 19.3, 18.1, 17.9, 15.6, -4.1, -4.5, -4.5, -5.2 (C54); ESIMS-LR m / z 1211 ((M + H) + ]; ESIMS-HR C 62 H 91 N 8 O 13 Si 2 calculated 1211.6239, measured 1211.6235.
 全て保護された 3’-OH Pacidamycon D (24)
 (22)(11.1 mg, 9.16 μmol)、(23) (1.907 mg, 10.08 μmol)およびO-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート (5.23 mg, 0.014 mmol)が混合したジクロロメタン (1 mL)溶液に、N-メチルモルホリン(3.02 μl, 0.027 mmol)を加え、室温で2時間撹拌した。反応液を酢酸エチルと水で分配し、有機相を飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(7.5×2 cm, ヘキサン/酢酸エチル 50/50 から 20/80)で精製し、化合物(24) (10 mg, 79%)を白色泡状物質として得た。
1H-NMR (CDCl3, 500 MHz) δ: 8.64 (s, 1H), 7.60 (d, 1H, J = 7.3 Hz), 7.42-7.23 (m, 9H), 7.11 (t, 1H, J = 7.3 Hz), 7.08 (t, 1H, J = 7.3 Hz), 7.00 (s, 1H), 6.94 (d, 1H, J = 8.3 Hz), 6.40 (d, 1H, J = 6.8 Hz), 6.29 (s, 1H), 6.02 (d, 1H, J = 7.6 Hz), 5.76 (d, 1H, J = 8.3 Hz), 5.60 (d, 1H, J = 9.6 Hz), 5.56 (d, 1H, J = 9.6 Hz), 5.49 (d, 1H, J = 7.8 Hz), 5.38 (d, 1H, J = 7.8 Hz), 5.29-5.27 (m, 1H), 4.83-4.71 (m, 2H), 4.78 (d, 1H, J = 12.2 Hz), 4.74 (d, 1H, J = 12.2 Hz), 4.46-4.41 (m, 2H), 4.33-4.18 (m, 2H), 3.77-3.70 (m, 1H), 3.72 (s, 3H), 3.62 (s, 3H), 3.26 (dd, 1H, J = 14.9, 4.4 Hz), 3.02 (dd, 1H, J = 14.9, 8.2 Hz), 2.92 (s, 3H), 1.48-1.38 (m, 3H), 1.43 (s, 9H), 1.40 (s, 9H), 1.30-1.17 (m, 6H), 0.86 (s, 9H), 0.81 (s, 9H), 0.05 (s, 2H), 0.02 (s, 2H), 0.01 (s, 2H), -0.08 (s, 2H); 13C-NMR (MeOD, 100 MHz) δ: 175.2, 173.8, 173.3, 167.5, 164.8, 164.5, 161.0, 158.9, 157.3, 152.9, 141.3, 139.1, 137.9, 129.9, 129.3, 129.2, 128.9, 128.8, 128.7, 126.3, 124.4, 122.4, 119.8, 119.6, 112.3, 110.8, 105.1, 103.7, 101.5, 99.0, 91.5, 82.7, 80.6, 73.1, 73.0, 72.3, 71.6, 61.6, 56.2, 56.0, 55.8, 55.5, 47.5, 46.4, 45.8, 38.9, 28.8, 28.7, 28.1, 26.4, 26.2, 20.9, 19.0, 18.7, 18.1, 14.4, -3.7, -4.2, -4.3, -4.8 (C60); ESIMS-LR m/z 1383 [(M+H)+]; ESIMS-HR C70H104N9O16Si2 の計算値 1382.7134, 実測値 1382.7139.
All protected 3'-OH Pacidamycon D (24)
(22) (11.1 mg, 9.16 μmol), (23) (1.907 mg, 10.08 μmol) and O- (7-azabenzotriazol-1-yl) -1,1,3,3-tetramethyluronium hexafluoro N-methylmorpholine (3.02 μl, 0.027 mmol) was added to a dichloromethane (1 mL) solution mixed with phosphate (5.23 mg, 0.014 mmol), and the mixture was stirred at room temperature for 2 hours. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7.5 × 2 cm, hexane / ethyl acetate 50/50 to 20/80) to obtain compound (24) (10 mg, 79%) as a white foam.
1 H-NMR (CDCl 3 , 500 MHz) δ: 8.64 (s, 1H), 7.60 (d, 1H, J = 7.3 Hz), 7.42-7.23 (m, 9H), 7.11 (t, 1H, J = 7.3 Hz), 7.08 (t, 1H, J = 7.3 Hz), 7.00 (s, 1H), 6.94 (d, 1H, J = 8.3 Hz), 6.40 (d, 1H, J = 6.8 Hz), 6.29 (s, 1H), 6.02 (d, 1H, J = 7.6 Hz), 5.76 (d, 1H, J = 8.3 Hz), 5.60 (d, 1H, J = 9.6 Hz), 5.56 (d, 1H, J = 9.6 Hz) , 5.49 (d, 1H, J = 7.8 Hz), 5.38 (d, 1H, J = 7.8 Hz), 5.29-5.27 (m, 1H), 4.83-4.71 (m, 2H), 4.78 (d, 1H, J = 12.2 Hz), 4.74 (d, 1H, J = 12.2 Hz), 4.46-4.41 (m, 2H), 4.33-4.18 (m, 2H), 3.77-3.70 (m, 1H), 3.72 (s, 3H) , 3.62 (s, 3H), 3.26 (dd, 1H, J = 14.9, 4.4 Hz), 3.02 (dd, 1H, J = 14.9, 8.2 Hz), 2.92 (s, 3H), 1.48-1.38 (m, 3H ), 1.43 (s, 9H), 1.40 (s, 9H), 1.30-1.17 (m, 6H), 0.86 (s, 9H), 0.81 (s, 9H), 0.05 (s, 2H), 0.02 (s, 2H), 0.01 (s, 2H), -0.08 (s, 2H); 13 C-NMR (MeOD, 100 MHz) δ: 175.2, 173.8, 173.3, 167.5, 164.8, 164.5, 161.0, 158.9, 157.3, 152.9, 141.3, 139.1, 137.9, 129.9, 129.3, 129.2, 128.9, 128.8, 128.7, 126.3, 124.4, 122.4, 119.8, 119.6, 112.3, 110.8, 105 .1, 103.7, 101.5, 99.0, 91.5, 82.7, 80.6, 73.1, 73.0, 72.3, 71.6, 61.6, 56.2, 56.0, 55.8, 55.5, 47.5, 46.4, 45.8, 38.9, 28.8, 28.7, 28.1, 26.4, 26.2 , 20.9, 19.0, 18.7, 18.1, 14.4, -3.7, -4.2, -4.3, -4.8 (C60); ESIMS-LR m / z 1383 [(M + H) + ]; ESIMS-HR C 70 H 104 N 9 O 16 Si 2 calculated 1382.7134, measured 1382.7139.
 C.実施例1 (3’-OH-pacidamycin D)への誘導-スキーム4
 (24) (26 mg, 0.019 mmol)のジクロロメタン (2 mL)溶液に1mol/L 三塩化ホウ素ジクロロメタン溶液(0.376 ml, 0.376 mmol)を窒素雰囲気下-78度にて加え、同温で1.5時間間処理した後、0度にて1時間処理した。反応液にメタノールと飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムで抽出し、有機相を無水硫酸ナトリウムで乾燥し、エタン-1,2-ジチオール(7.89 μl, 0.094 mmol)を加えた後、減圧下で濃縮した。
C. Induction to Example 1 (3'-OH-pacidamycin D)-Scheme 4
(24) To a solution of (26 mg, 0.019 mmol) in dichloromethane (2 mL) was added 1 mol / L boron trichloride dichloromethane solution (0.376 ml, 0.376 mmol) at -78 ° C under nitrogen atmosphere and the same temperature for 1.5 hours. After the treatment, it was treated at 0 degree for 1 hour. Methanol and saturated aqueous sodium hydrogen carbonate solution were added to the reaction solution, followed by extraction with chloroform. The organic phase was dried over anhydrous sodium sulfate, ethane-1,2-dithiol (7.89 μl, 0.094 mmol) was added, and the pressure was reduced. Concentrated under.
 残渣のジクロロメタン (2 mL) - アセトニトリル(2 mL)溶液に三フッ化水素トリエチルアミン(0.092 ml, 0.564 mmol)を加え、室温で4日間処理した。反応混合物を減圧下で濃縮し、残渣をオクタデシルシリカカラムクロマトグラフィー(30×1.1 cm, 0.1%トリフルオロ酢酸 水/アセトニトリル 100/0 から 60/40)で精製し、凍結乾燥後、実施例1の化合物(3’-OH-pacidamycin D, 3.5 mg, 2工程で22%)を白色泡状物質として得た。 Residue in dichloromethane (2 mL)-acetonitrile (2 mL) was added triethylamine hydrogen trifluoride (0.092 ml, 0.564 mmol) and treated at room temperature for 4 days. The reaction mixture was concentrated under reduced pressure, and the residue was purified by octadecyl silica column chromatography (30 × 1.1 cm, 0.1% trifluoroacetic acid water / acetonitrile 100/0 to 60/40), lyophilized, and then subjected to Example 1 The compound (3′-OH-pacidamycin D, 3.5 mg, 22% over 2 steps) was obtained as a white foam.
 Pacidamycin D の合成 Synthesis of Pacidamycin D
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000061
Figure JPOXMLDOC01-appb-C000062
Figure JPOXMLDOC01-appb-C000062
 スキーム4
 3-(ベンジルオキシメチル)-1-((2R,3R,5S)-3-(tert-ブチルジメチルシリルオキシ)-5-(トリチルオキシメチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (26) 
 (25) (427 mg, 0.730 mmol)のN,N-ジメチルホルムアミド (5 mL)溶液にベンジルクロロメチルエーテル (172 mg, 1.095 mmol) と DBU (0.275 ml, 1.825 mmol)を加え、室温で16時間処理した。反応液を酢酸エチルと水で分配し、有機相を水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15×2.6 cm, ヘキサン/酢酸エチル 90/10 から 80/20)で精製し、化合物(26)(424.9 mg, 83%)を無色油状物質として得た。
[α]23 D +2.0, [α]23 365 +41.7 (c 1.00, CHCl3); 1H-NMR (CDCl3, 300 MHz) δ: 8.02 (d, 1H, J = 8.2 Hz), 7.42-7.25 (m, 20H), 5.72 (s, 1H), 5.50 (d, 1H, J = 9.7 Hz), 5.46 (d, 1H, J = 9.7 Hz), 5.27 (d, 1H, J = 8.2 Hz), 4.71 (s, 2H), 4.60-4.50 (m, 1H), 4.38-4.32 (m, 1H), 3.63 (dd, 1H, J = 11.1, 1.9 Hz), 3.39 (dd, 1H, J = 11.1, 3.2 Hz), 2.18-2.05 (m, 1H), 1.77 (dd, 1H, J = 13.1, 4.7 Hz), 0.89 (s, 9H), 0.20 (s, 3H), 0.13 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 163.1, 150.9, 143.4, 139.0, 138.3, 128.8, 128.4, 128.2, 127.8, 127.7, 127.5, 101.0, 93.4, 87.5, 80.7, 77.4, 72.2, 70.2, 63.3, 33.9, 25.8, 18.0, -4.5, -5.0 (C24); ESIMS-LR m/z 705 [(M+H)+]; ESIMS-HR C42H49N2O6Siの計算値 705.3354, 実測値 705.3348.
Scheme 4
3- (Benzyloxymethyl) -1-((2R, 3R, 5S) -3- (tert-butyldimethylsilyloxy) -5- (trityloxymethyl) tetrahydrofuran-2-yl) pyrimidine-2,4 (1H , 3H) -Dione (26)
(25) To a solution of (427 mg, 0.730 mmol) in N, N-dimethylformamide (5 mL), add benzyl chloromethyl ether (172 mg, 1.095 mmol) and DBU (0.275 ml, 1.825 mmol), and then at room temperature for 16 hours. Processed. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15 × 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain compound (26) (424.9 mg, 83%) as a colorless oily substance.
[α] 23 D +2.0, [α] 23 365 +41.7 (c 1.00, CHCl 3 ); 1 H-NMR (CDCl 3 , 300 MHz) δ: 8.02 (d, 1H, J = 8.2 Hz), 7.42- 7.25 (m, 20H), 5.72 (s, 1H), 5.50 (d, 1H, J = 9.7 Hz), 5.46 (d, 1H, J = 9.7 Hz), 5.27 (d, 1H, J = 8.2 Hz), 4.71 (s, 2H), 4.60-4.50 (m, 1H), 4.38-4.32 (m, 1H), 3.63 (dd, 1H, J = 11.1, 1.9 Hz), 3.39 (dd, 1H, J = 11.1, 3.2 Hz), 2.18-2.05 (m, 1H), 1.77 (dd, 1H, J = 13.1, 4.7 Hz), 0.89 (s, 9H), 0.20 (s, 3H), 0.13 (s, 3H); 13 C- NMR (CDCl 3 , 100 MHz) δ: 163.1, 150.9, 143.4, 139.0, 138.3, 128.8, 128.4, 128.2, 127.8, 127.7, 127.5, 101.0, 93.4, 87.5, 80.7, 77.4, 72.2, 70.2, 63.3, 33.9, 25.8, 18.0, -4.5, -5.0 (C24); ESIMS-LR m / z 705 [(M + H) + ]; ESIMS-HR C 42 H 49 N 2 O 6 Si calculated 705.3354, measured 705.3348.
 3-(ベンジルオキシメチル)-1-((2R,3R,5S)-3-(tert-ブチルジメチルシリルオキシ)-5-(ヒドロキシメチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (27)  (26) (422 mg, 0.599 mmol)の酢酸 (3 mL) - 水 (0.333 ml)溶液を60度で3時間処理した後、反応液を減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(10×2.6 cm, ヘキサン/酢酸エチル 70/30 から 40/60)で精製し、化合物(27)(236.2 mg, 85%)を無色油状物質として得た。
[α]23 D +4.7 (c 1.00, CHCl3); 1H-NMR (CDCl3, 300 MHz) δ: 7.91 (d, 1H, J = 8.2 Hz), 7.39-7.24 (m, 5H), 5.69 (d, 1H, J = 8.2 Hz), 5.63 (d, 1H, J = 1.2 Hz), 5.48 (s, 2H), 4.70 (s, 2H), 4.57-4.45 (m, 1H), 4.43-4.37 (m, 1H), 4.10 (ddd, 1H, J = 11.8, 3.7, 2.3 Hz), 3.74 (dt, 1H, J = 11.8, 3.5 Hz), 2.53 (dd, 1H, J = 3.5, 3.7 Hz), 2.03 (dq, 1H, J = 13.0, 5.0 Hz), 1.78 (ddd, 1H, J = 13.0, 5.5, 2.0 Hz), 0.90 (s, 9H), 0.16 (s, 3H), 0.11 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 163.2, 151.0, 139.7, 138.1, 128.4, 127.8, 101.0, 94.5, 81.4, 76.8, 72.3, 70.2, 62.7, 33.5, 25.8, 18.0, -4.5, -5.0 (C19); ESIMS-LR m/z 463 [(M+H)+]; ESIMS-HR C23H35N2O6Siの計算値 463.2259, 実測値 463.2261.
3- (Benzyloxymethyl) -1-((2R, 3R, 5S) -3- (tert-butyldimethylsilyloxy) -5- (hydroxymethyl) tetrahydrofuran-2-yl) pyrimidine-2,4 (1H, A solution of 3H) -dione (27) (26) (422 mg, 0.599 mmol) in acetic acid (3 mL) -water (0.333 ml) was treated at 60 degrees for 3 hours, and then the reaction mixture was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (10 × 2.6 cm, hexane / ethyl acetate 70/30 to 40/60) to obtain compound (27) (236.2 mg, 85%) as a colorless oily substance.
[α] 23 D +4.7 (c 1.00, CHCl 3 ); 1 H-NMR (CDCl 3 , 300 MHz) δ: 7.91 (d, 1H, J = 8.2 Hz), 7.39-7.24 (m, 5H), 5.69 (d, 1H, J = 8.2 Hz), 5.63 (d, 1H, J = 1.2 Hz), 5.48 (s, 2H), 4.70 (s, 2H), 4.57-4.45 (m, 1H), 4.43-4.37 ( m, 1H), 4.10 (ddd, 1H, J = 11.8, 3.7, 2.3 Hz), 3.74 (dt, 1H, J = 11.8, 3.5 Hz), 2.53 (dd, 1H, J = 3.5, 3.7 Hz), 2.03 (dq, 1H, J = 13.0, 5.0 Hz), 1.78 (ddd, 1H, J = 13.0, 5.5, 2.0 Hz), 0.90 (s, 9H), 0.16 (s, 3H), 0.11 (s, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ: 163.2, 151.0, 139.7, 138.1, 128.4, 127.8, 101.0, 94.5, 81.4, 76.8, 72.3, 70.2, 62.7, 33.5, 25.8, 18.0, -4.5, -5.0 (C19); ESIMS-LR m / z 463 [(M + H) + ]; ESIMS-HR calculated for C 23 H 35 N 2 O 6 Si 463.2259, measured 463.2261.
 3-(ベンジルオキシメチル)-1-((2R,3R,5S)-3-(tert-ブチルジメチルシリルオキシ)-5-(ヨードメチル)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (28)
 (27) (563.6 mg, 1.218 mmol)のテトラヒドロフラン (12 mL)溶液に1H-イミダゾール (398 mg, 5.85 mmol) とトリフェニルホスフィン(1534 mg, 5.85 mmol)を加える。ヨウ素 (1361 mg, 5.36 mmol)のテトラヒドロフラン (12 mL)溶液を0度にて滴下した。反応液を室温で3時間処理した。反応液にメタノールおよび5%チオ硫酸ナトリウム水溶液加えた後、酢酸エチルで抽出し、有機相を飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15×2.6 cm, ヘキサン/酢酸エチル 90/10 から 70/30)で精製し、化合物(28) (689.5 mg, 99%)を無色油状物質として得た。
[α]23 D +13.4 (c 1.01, CHCl3); 1H-NMR (CDCl3, 300 MHz) δ: 7.52 (d, 1H, J = 8.2 Hz), 7.39-7.24 (m, 5H), 5.75 (d, 1H, J = 8.2 Hz), 5.73 (d, 1H, J = 1.5 Hz), 5.48 (s, 2H), 4.70 (s, 2H), 4.43-4.33 (m, 2H), 3.46 (dd, 1H, J = 10.7, 5.5 Hz), 3.41 (dd, 1H, J = 10.7, 5.2 Hz), 2.07 (ddd, 1H, J = 13.1, 5.2, 1.9 Hz), 1.79-1.66 (m, 1H), 0.90 (s, 9H), 0.15 (s, 3H), 0.10 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 162.8, 150.8, 138.6, 138.1, 128.4, 127.8, 101.6, 94.5, 79.3, 76.9, 72.3, 70.3, 40.0, 25.8, 18.0, 7.6, -4.6, -5.0 (C19); ESIMS-LR m/z 573 [(M+H)+]; ESIMS-HR C23H34IN2O5Siの計算値 573.1276, 実測値 573.1278.
3- (Benzyloxymethyl) -1-((2R, 3R, 5S) -3- (tert-butyldimethylsilyloxy) -5- (iodomethyl) tetrahydrofuran-2-yl) pyrimidine-2,4 (1H, 3H ) -Dione (28)
(27) To a solution of (563.6 mg, 1.218 mmol) in tetrahydrofuran (12 mL) is added 1H-imidazole (398 mg, 5.85 mmol) and triphenylphosphine (1534 mg, 5.85 mmol). A solution of iodine (1361 mg, 5.36 mmol) in tetrahydrofuran (12 mL) was added dropwise at 0 degrees. The reaction was treated at room temperature for 3 hours. Methanol and 5% aqueous sodium thiosulfate solution were added to the reaction solution, followed by extraction with ethyl acetate. The organic phase was washed with saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15 × 2.6 cm, hexane / ethyl acetate 90/10 to 70/30) to obtain compound (28) (689.5 mg, 99%) as a colorless oily substance.
[α] 23 D +13.4 (c 1.01, CHCl 3 ); 1 H-NMR (CDCl 3 , 300 MHz) δ: 7.52 (d, 1H, J = 8.2 Hz), 7.39-7.24 (m, 5H), 5.75 (d, 1H, J = 8.2 Hz), 5.73 (d, 1H, J = 1.5 Hz), 5.48 (s, 2H), 4.70 (s, 2H), 4.43-4.33 (m, 2H), 3.46 (dd, 1H, J = 10.7, 5.5 Hz), 3.41 (dd, 1H, J = 10.7, 5.2 Hz), 2.07 (ddd, 1H, J = 13.1, 5.2, 1.9 Hz), 1.79-1.66 (m, 1H), 0.90 (s, 9H), 0.15 (s, 3H), 0.10 (s, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ: 162.8, 150.8, 138.6, 138.1, 128.4, 127.8, 101.6, 94.5, 79.3 , 76.9, 72.3, 70.3, 40.0, 25.8, 18.0, 7.6, -4.6, -5.0 (C19); ESIMS-LR m / z 573 [(M + H) + ]; ESIMS-HR C 23 H 34 IN 2 O 5 Calculated value of Si 573.1276, measured value 573.1278.
 3-(ベンジルオキシメチル)-1-((2R,3R)-3-(tert-ブチルジメチルシリルオキシ)-5-メチレンテトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (29) 
 (28) (1.78 g, 3.11 mmol)のアセトニトリル (40 mL)溶液にDBU (0.703 ml, 4.66 mmol)を0度にて加え、室温で24時間処理した。反応液を酢酸エチルと水で分配し、有機相を水と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(15×2.6 cm, ヘキサン/酢酸エチル 90/10 から 80/20)で精製し、化合物(29)(1.28 g, 93%)を無色油状物質として得た。
[α]23 D +55.0 (c 1.02, CHCl3); 1H-NMR (CDCl3, 500 MHz) δ: 7.38-7.25 (m, 5H), 7.10 (d, 1H, J = 8.2 Hz), 5.89 (d, 1H, J = 1.5 Hz), 5.73 (d, 1H, J = 8.2 Hz), 5.49 (s, 2H), 4.71 (s, 2H), 4.61-4.58 (m, 1H), 4.37-4.34 (m, 1H), 4.17-4.14 (m, 1H), 2.61 (ddt, 1H, J = 16.4, 5.4, 2.2 Hz), 2.55-2.49 (m, 1H), 0.89 (s, 9H), 0.16 (s, 3H), 0.12 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 162.6, 159.9, 150.7, 138.1, 137.3, 128.4, 127.8, 127.7, 102.1, 94.2, 85.3, 74.6, 72.4, 70.3, 35.8, 25.8, 18.0, -4.5, -4.9 (C19); ESIMS-LR m/z 445 [(M+H)+]; ESIMS-HR C23H33N2O5Siの計算値 445.2153, 実測値 445.2154.
3- (Benzyloxymethyl) -1-((2R, 3R) -3- (tert-butyldimethylsilyloxy) -5-methylenetetrahydrofuran-2-yl) pyrimidine-2,4 (1H, 3H) -dione ( 29)
(28) DBU (0.703 ml, 4.66 mmol) was added to a solution of (1.78 g, 3.11 mmol) in acetonitrile (40 mL) at 0 degree and treated at room temperature for 24 hours. The reaction solution was partitioned between ethyl acetate and water, and the organic phase was washed with water and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (15 × 2.6 cm, hexane / ethyl acetate 90/10 to 80/20) to obtain compound (29) (1.28 g, 93%) as a colorless oily substance.
[α] 23 D +55.0 (c 1.02, CHCl 3 ); 1 H-NMR (CDCl 3 , 500 MHz) δ: 7.38-7.25 (m, 5H), 7.10 (d, 1H, J = 8.2 Hz), 5.89 (d, 1H, J = 1.5 Hz), 5.73 (d, 1H, J = 8.2 Hz), 5.49 (s, 2H), 4.71 (s, 2H), 4.61-4.58 (m, 1H), 4.37-4.34 ( m, 1H), 4.17-4.14 (m, 1H), 2.61 (ddt, 1H, J = 16.4, 5.4, 2.2 Hz), 2.55-2.49 (m, 1H), 0.89 (s, 9H), 0.16 (s, 3H), 0.12 (s, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ: 162.6, 159.9, 150.7, 138.1, 137.3, 128.4, 127.8, 127.7, 102.1, 94.2, 85.3, 74.6, 72.4, 70.3 , 35.8, 25.8, 18.0, -4.5, -4.9 (C19); ESIMS-LR m / z 445 [(M + H) + ]; ESIMS-HR C 23 H 33 N 2 O 5 Si calculated 445.2153, measured Value 445.2154.
 3-(ベンジルオキシメチル)-1-((2R,3R,Z)-3-(tert-ブチルジメチルシリルオキシ)-5-(ヨードメチレン)テトラヒドロフラン-2-イル)ピリミジン-2,4(1H,3H)-ジオン (30) 
 (29) (51 mg, 0.115 mmol)のアセトニトリル (1 mL)溶液にヨードニウムジコリジニウムトリフラート(59.5 mg, 0.115 mmol)を-20度にて加え、同温で30分間処理した。反応液を酢酸エチルと5%チオ硫酸ナトリウム水溶液で分配し、有機相を飽和炭酸水素ナトリウム水溶液と飽和食塩水にて洗浄した後、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(7.5×2 cm, ヘキサン/酢酸エチル 85/15)で精製し、化合物(30) (35 mg, 53%)を淡黄色油状物質として得た。
[α]23 D +118.8 (c 0.32, CHCl3); 1H-NMR (CDCl3, 400 MHz) δ: 7.39-7.26 (m, 5H), 7.00 (d, 1H, J = 8.1 Hz), 6.01 (d, 1H, J = 2.0 Hz), 5.78 (d, 1H, J = 8.1 Hz), 5.49 (s, 2H), 4.97 (dd, 1H, J = 1.6, 1.2 Hz), 4.71 (s, 2H), 4.52 (ddd, 1H, J = 5.7, 2.7, 2.0 Hz), 2.76 (ddd, 1H, J = 16.3, 5.7, 1.6 Hz), 2.63 (ddd, 1H, J = 16.3, 2.7, 1.2 Hz), 0.88 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 162.3, 159.4, 150.5, 137.9, 137.2, 128.3, 127.7, 127.6, 102.5, 94.6, 75.4, 72.3, 70.3, 43.5, 37.3, 25.6, 17.9, -4.7, -5.1 (C19); ESIMS-LR m/z 571 [(M+H)+]; ESIMS-HR C23H32IN2O5Siの計算値 571.1120, 実測値 571.1122.
3- (Benzyloxymethyl) -1-((2R, 3R, Z) -3- (tert-butyldimethylsilyloxy) -5- (iodomethylene) tetrahydrofuran-2-yl) pyrimidine-2,4 (1H, 3H) -Dione (30)
(29) To a solution of (51 mg, 0.115 mmol) in acetonitrile (1 mL) was added iodonium dicorydinium triflate (59.5 mg, 0.115 mmol) at -20 degrees and treated at the same temperature for 30 minutes. The reaction mixture was partitioned between ethyl acetate and 5% aqueous sodium thiosulfate solution, and the organic phase was washed with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7.5 × 2 cm, hexane / ethyl acetate 85/15) to obtain compound (30) (35 mg, 53%) as a pale yellow oily substance.
[α] 23 D +118.8 (c 0.32, CHCl 3 ); 1 H-NMR (CDCl 3 , 400 MHz) δ: 7.39-7.26 (m, 5H), 7.00 (d, 1H, J = 8.1 Hz), 6.01 (d, 1H, J = 2.0 Hz), 5.78 (d, 1H, J = 8.1 Hz), 5.49 (s, 2H), 4.97 (dd, 1H, J = 1.6, 1.2 Hz), 4.71 (s, 2H) , 4.52 (ddd, 1H, J = 5.7, 2.7, 2.0 Hz), 2.76 (ddd, 1H, J = 16.3, 5.7, 1.6 Hz), 2.63 (ddd, 1H, J = 16.3, 2.7, 1.2 Hz), 0.88 (s, 9H), 0.13 (s, 3H), 0.10 (s, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ: 162.3, 159.4, 150.5, 137.9, 137.2, 128.3, 127.7, 127.6, 102.5 , 94.6, 75.4, 72.3, 70.3, 43.5, 37.3, 25.6, 17.9, -4.7, -5.1 (C19); ESIMS-LR m / z 571 [(M + H) + ]; ESIMS-HR C 23 H 32 IN 2 O 5 Si calculated 571.1120, measured 571.1122.
 全て保護されたPacidamycin D (31)
 乾燥した試験管に、窒素雰囲気下、(30) (32 mg, 0.056 mmol), (8) (55.5 mg, 0.084 mmol), ヨウ化銅(8.55 mg, 0.045 mmol), (1R,2R)-N1,N2-ジメチル-1,2-ジフェニルエタン-1,2-ジアミン (21.57 mg, 0.090 mmol) および炭酸セシウム(27.4 mg, 0.084 mmol)を加えた。テトラヒドロフラン(1 ml)を加え、試験管内を窒素置換した後、70度にて8時間処理した。反応液を酢酸エチルで希釈した後、不溶物をセライトでろ別し、ろ液を減圧下で濃縮した。残渣をシリカゲルカラムクロマトグラフィー(7.5×2 cm, クロロホルム/メタノール 100/0 から 95/5)で精製し、化合物(31) (42.4 mg, 69%)を淡黄色固形物質として得た。
[α]23 D +23.6 (c 0.96, CHCl3); 1H-NMR (CDCl3, 400 MHz) δ: 7.49 (d, 1H, J = 7.6 Hz), 7.40-7.22 (m, 6H), 7.15-7.04 (m, 2H), 7.04-6.96 (m, 2H), 5.98 (d, 1H, J = 9.1 Hz), 5.86 (s, 1H), 5.70 (d, 1H, J = 8.1 Hz), 5.44 (s, 2H), 4.83-4.71 (m, 2H), 4.69 (s, 2H), 4.60-4.45 (m, 2H), 4.44-4.26 (m, 2H), 3.23-3.00 (m, 2H), 2.78-2.66 (m, 1H), 2.60 (s, 3H), 2.55-2.38 (m, 1H), 1.43 (s, 9H), 1.36 (s, 9H), 1.36-1.30 (m, 3H), 1.30-1.12 (m, 6H), 0.87 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H); 13C-NMR (CDCl3, 100 MHz) δ: 175.0, 174.4, 172.6, 171.2, 166.0, 162.4, 157.4, 155.3, 150.5, 141.7, 137.9, 137.9, 135.9, 128.3, 127.7, 127.6, 123.8, 121.7, 119.0, 118.6, 111.4, 109.3, 102.2, 97.9, 95.0, 82.2, 79.7, 74.3, 72.2, 70.2, 57.4, 53.7, 51.4, 49.6, 46.9, 34.5, 30.1, 29.7, 28.4, 28.0, 25.6, 18.5, 17.9, 14.1, 13.8, -4.7, -5.0 (C47); ESIMS-LR m/z 1102.6 [(M+H)+]; ESIMS-HR C55H80N9O13Siの計算値 1102.5639, 実測値 1102.5633.
All protected Pacidamycin D (31)
(30) (32 mg, 0.056 mmol), (8) (55.5 mg, 0.084 mmol), copper iodide (8.55 mg, 0.045 mmol), (1R, 2R) -N 1 , N 2 -Dimethyl-1,2-diphenylethane-1,2-diamine (21.57 mg, 0.090 mmol) and cesium carbonate (27.4 mg, 0.084 mmol) were added. Tetrahydrofuran (1 ml) was added and the inside of the test tube was purged with nitrogen, followed by treatment at 70 ° C. for 8 hours. The reaction mixture was diluted with ethyl acetate, insoluble material was filtered off through celite, and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (7.5 × 2 cm, chloroform / methanol 100/0 to 95/5) to obtain compound (31) (42.4 mg, 69%) as a pale yellow solid substance.
[α] 23 D +23.6 (c 0.96, CHCl 3 ); 1 H-NMR (CDCl 3 , 400 MHz) δ: 7.49 (d, 1H, J = 7.6 Hz), 7.40-7.22 (m, 6H), 7.15 -7.04 (m, 2H), 7.04-6.96 (m, 2H), 5.98 (d, 1H, J = 9.1 Hz), 5.86 (s, 1H), 5.70 (d, 1H, J = 8.1 Hz), 5.44 ( s, 2H), 4.83-4.71 (m, 2H), 4.69 (s, 2H), 4.60-4.45 (m, 2H), 4.44-4.26 (m, 2H), 3.23-3.00 (m, 2H), 2.78- 2.66 (m, 1H), 2.60 (s, 3H), 2.55-2.38 (m, 1H), 1.43 (s, 9H), 1.36 (s, 9H), 1.36-1.30 (m, 3H), 1.30-1.12 ( m, 6H), 0.87 (s, 9H), 0.11 (s, 3H), 0.08 (s, 3H); 13 C-NMR (CDCl 3 , 100 MHz) δ: 175.0, 174.4, 172.6, 171.2, 166.0, 162.4 , 157.4, 155.3, 150.5, 141.7, 137.9, 137.9, 135.9, 128.3, 127.7, 127.6, 123.8, 121.7, 119.0, 118.6, 111.4, 109.3, 102.2, 97.9, 95.0, 82.2, 79.7, 74.3, 72.2, 70.2, 57.4 , 53.7, 51.4, 49.6, 46.9, 34.5, 30.1, 29.7, 28.4, 28.0, 25.6, 18.5, 17.9, 14.1, 13.8, -4.7, -5.0 (C47); ESIMS-LR m / z 1102.6 [(M + H ) + ]; ESIMS-HR C 55 H 80 N 9 O 13 Si calculated 1102.5639, measured 1102.5633.
 Pacidamycin D (32) の合成
 (32) (28 mg, 0.025 mmol)のジクロロメタン (2 mL)溶液に1mol/L 三塩化ホウ素ジクロロメタン溶液(0.254 ml, 0.254 mmol)を窒素雰囲気下-78度にて加え、同温で1.5時間間処理した。反応液にメタノールと飽和炭酸水素ナトリウム水溶液を加えた後、クロロホルムで抽出し、有機相を無水硫酸ナトリウムで乾燥し、エタン-1,2-ジチオール(10.65 μl, 0.127 mmol)を加えた後、減圧下で濃縮した。残渣のジクロロメタン (2 mL) - アセトニトリル(2 mL)溶液に五フッ化水素トリエチルアミン(0.153 ml, 0.762 mmol)を加え、室温で1日間処理した。反応混合物を減圧下で濃縮し、残渣をオクタデシルシリカカラムクロマトグラフィー(30×1.1 cm, 0.1%トリフルオロ酢酸 水/アセトニトリル 100/0 から 60/40)で精製し、凍結乾燥後、(33) のPacidamycin Dのトリフルオロ酢酸塩 (6.2 mg, 30%)を白色泡状物質として得た。これを逆相クロマトグラフィー(30×1.1 cm, 水/アセトニトリル 100/0 から 50/50)で脱塩し、凍結乾燥後、(32)(Pacidamycin D)(4.3 mg, 71 %)を白色泡状物質として得た。
 [α]23 D +15.4 (c 0.13, H2O); 1H-NMR (D2O, 400 MHz) δ: 7.70 (d, 1H, J = 8.1 Hz), 7.49 (d, 1H, J = 8.1 Hz), 7.37 (d, 1H, J = 8.1 Hz), 7.24 (dd, 1H, J = 7.2, 8.1 Hz), 7.22 (s, 1H), 7.16 (dd, 1H, J = 7.2, 8.1 Hz), 6.04 (d, 1H, J = 1.6 Hz), 5.92 (d, 1H, J = 1.6 Hz), 5.82 (d, 1H, J = 8.1 Hz), 4.88 (dt, 1H, J = 15.4, 7.1 Hz), 4.64-4.62 (m, 1H), 4.59-4.54 (m, 1H), 4.35 (dd, 1H, J = 7.4, 4.8 Hz), 4.26 (q, 1H, J = 6.8 Hz), 4.10 (q, 1H, J = 6.6 Hz), 3.27 (dd, 1H, J = 14.6, 4.8 Hz), 3.09 (dd, 1H, J = 14.6, 7.4 Hz), 2.97 (ddd, 1H, J = 17.1, 6.2, 1.6 Hz), 2.86 (s, 2H), 2.65 (dd, 1H, J = 17.1, 2.5 Hz), 1.44 (d, 1H, J = 7.1 Hz), 1.32 (d, 3H, J = 6.8 Hz), 1.20 (d, 3H, J = 6.6 Hz), 1.17 (d, 3H, J = 7.1 Hz); 13C-NMR (D2O, 100 MHz) δ: 188.3, 182.2, 179.2, 173.7, 170.2, 168.8, 161.4, 153.9, 148.0, 147.3, 143.9, 138.9, 130.2, 127.0, 124.5, 122.0, 121.6, 114.5, 113.4, 105.1, 99.4, 96.8, 75.3, 59.1, 58.3, 53.6, 52.8, 50.2, 36.0, 33.8, 32.4, 31.1, 19.6, 18.2, 16.8, 15.6; ESIMS-LR m/z 712 [(M+H)+]; ESIMS-HR C32H42N9O10の計算値 712.3049, 実測値 712.3044.
Synthesis of Pacidamycin D (32) To a solution of (32) (28 mg, 0.025 mmol) in dichloromethane (2 mL), add 1 mol / L boron trichloride dichloromethane solution (0.254 ml, 0.254 mmol) at -78 degrees under nitrogen atmosphere. And treated at the same temperature for 1.5 hours. Methanol and saturated aqueous sodium hydrogen carbonate solution were added to the reaction solution, extracted with chloroform, the organic phase was dried over anhydrous sodium sulfate, ethane-1,2-dithiol (10.65 μl, 0.127 mmol) was added, Concentrated under. To a solution of the residue in dichloromethane (2 mL) -acetonitrile (2 mL) was added triethylamine hydrogen fluoride (0.153 ml, 0.762 mmol) and treated at room temperature for 1 day. The reaction mixture was concentrated under reduced pressure, and the residue was purified by octadecyl silica column chromatography (30 × 1.1 cm, 0.1% aqueous trifluoroacetic acid / acetonitrile 100/0 to 60/40) .After lyophilization, (33) Pacidamycin D trifluoroacetate (6.2 mg, 30%) was obtained as a white foam. This was desalted by reverse-phase chromatography (30 × 1.1 cm, water / acetonitrile 100/0 to 50/50), freeze-dried, and (32) (Pacidamycin D) (4.3 mg, 71%) was in the form of a white foam Obtained as material.
[α] 23 D +15.4 (c 0.13, H 2 O); 1 H-NMR (D 2 O, 400 MHz) δ: 7.70 (d, 1H, J = 8.1 Hz), 7.49 (d, 1H, J = 8.1 Hz), 7.37 (d, 1H, J = 8.1 Hz), 7.24 (dd, 1H, J = 7.2, 8.1 Hz), 7.22 (s, 1H), 7.16 (dd, 1H, J = 7.2, 8.1 Hz) , 6.04 (d, 1H, J = 1.6 Hz), 5.92 (d, 1H, J = 1.6 Hz), 5.82 (d, 1H, J = 8.1 Hz), 4.88 (dt, 1H, J = 15.4, 7.1 Hz) , 4.64-4.62 (m, 1H), 4.59-4.54 (m, 1H), 4.35 (dd, 1H, J = 7.4, 4.8 Hz), 4.26 (q, 1H, J = 6.8 Hz), 4.10 (q, 1H , J = 6.6 Hz), 3.27 (dd, 1H, J = 14.6, 4.8 Hz), 3.09 (dd, 1H, J = 14.6, 7.4 Hz), 2.97 (ddd, 1H, J = 17.1, 6.2, 1.6 Hz) , 2.86 (s, 2H), 2.65 (dd, 1H, J = 17.1, 2.5 Hz), 1.44 (d, 1H, J = 7.1 Hz), 1.32 (d, 3H, J = 6.8 Hz), 1.20 (d, 3H, J = 6.6 Hz), 1.17 (d, 3H, J = 7.1 Hz); 13 C-NMR (D 2 O, 100 MHz) δ: 188.3, 182.2, 179.2, 173.7, 170.2, 168.8, 161.4, 153.9, 148.0, 147.3, 143.9, 138.9, 130.2, 127.0, 124.5, 122.0, 121.6, 114.5, 113.4, 105.1, 99.4, 96.8, 75.3, 59.1, 58.3, 53.6, 52.8, 50.2, 36.0, 33.8, 32.4, 31.1, 19.6, 18.2, 16.8, 15.6; ESIMS-LR m / z 712 [(M + H) + ] ; Calculated value of ESIMS-HR C 32 H 42 N 9 O 10 712.3049, measured value 712.3044.
 以下、実施例2~11については、実施例1と同様な方法で合成した。 Hereinafter, Examples 2 to 11 were synthesized in the same manner as in Example 1.
 実施例2 Example 2
Figure JPOXMLDOC01-appb-C000063
Figure JPOXMLDOC01-appb-C000063
1H NMR (D2O, 500 MHz); δ: 7.63 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.38 (d, 1H, J = 7.8 Hz), 7.24-7.20 (m, 1H), 7.23 (s, 1H), 7.15 (dd, 1H, J = 7.4, 7.8 Hz), 6.20 (d, 1H, J = 0.8 Hz), 6.12 (d, 1H, J = 5.4 Hz), 5.73 (d, 1H, J = 8.1 Hz), 4.85-4.72 (m, 1H), 4.68 (d, 1H, J = 4.9 Hz), 4.55-4.46 (m, 1H), 4.40-4.31 (m, 3H), 4.11 (q, 1H, J = 7.1 Hz), 3.34 (dd, 1H, J = 15.0, 4.9 Hz), 3.24-3.15 (m, 2H), 2.88 (s, 3H), 1.43 (d, 3H, J = 7.0 Hz), 1.28 (d, 3H, J = 7.1 Hz), 1.09 (d, 3H, J = 6.7 Hz); ESIMS-LR m/z 728.15 (M+H)+. 1 H NMR (D 2 O, 500 MHz); δ: 7.63 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.38 (d, 1H, J = 7.8 Hz), 7.24-7.20 (m, 1H), 7.23 (s, 1H), 7.15 (dd, 1H, J = 7.4, 7.8 Hz), 6.20 (d, 1H, J = 0.8 Hz), 6.12 (d, 1H, J = 5.4 Hz), 5.73 (d, 1H, J = 8.1 Hz), 4.85-4.72 (m, 1H), 4.68 (d, 1H, J = 4.9 Hz), 4.55-4.46 (m, 1H), 4.40-4.31 ( m, 3H), 4.11 (q, 1H, J = 7.1 Hz), 3.34 (dd, 1H, J = 15.0, 4.9 Hz), 3.24-3.15 (m, 2H), 2.88 (s, 3H), 1.43 (d , 3H, J = 7.0 Hz), 1.28 (d, 3H, J = 7.1 Hz), 1.09 (d, 3H, J = 6.7 Hz); ESIMS-LR m / z 728.15 (M + H) + .
 実施例3
 Ugi 反応を利用したルートにて合成した。Ugi反応では目的物が2種のジアステレオマー混合物(1:1) として得られ、分取TLCで分離精製したが、Rf値が大きい化合物の方を用いて導いた。星印で示した不斉炭素の絶対配置は確定していない。
Example 3
It was synthesized by the route using Ugi reaction. In the Ugi reaction, the target product was obtained as a mixture of two diastereomers (1: 1) and separated and purified by preparative TLC, but the compound having a higher Rf value was used. The absolute configuration of the asymmetric carbon indicated by an asterisk has not been determined.
Figure JPOXMLDOC01-appb-C000064
Figure JPOXMLDOC01-appb-C000064
1H NMR (CD3OD, 500 MHz) δ: 87:13 の回転異性体 として観測 (ウラシル5位のプロトンの積分値で回転異性体比を算出) (存在比率が多い回転異性体) δ: 7.59 (d, 1H, J = 8.1 Hz, H-4 of indole), 7.53 (d, 1H, J = 8.1 Hz, H-5 of indole), 7.33 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.14 (s, 1H, H-2 of indole), 7.08 (ddd, 1H, J = 8.1, 7.3, 1.2 Hz, H-6 of indole), 7.02 (ddd, 1H, J = 8.1, 7.3, 1.0 Hz, H-5 of indole), 6.25 (s, 1H, H-5 of sugar), 6.19 (d, 1H, J = 6.1 Hz,  H-1 of sugar), 5.72 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.60-4.55 (m, 3H), 4.40-4.33 (m, 2H), 4.16 (q, 1H, J = 7.1 Hz), 4.12 (q, 2H, J = 7.1 Hz), 2.78 (br s, 3H, -NCH 3), 1.36 (d, 3H, J = 7.1 Hz, -CH-CH 3), 1.27 (d, 3H, J = 7.6 Hz, -CH-CH 3), 1.13 (d, 3H, J = 7.1 Hz, -CH-CH 3). (存在比率が少ない回転異性体) : 7.57 (d, 1H, J = 7.8 Hz), 7.44 (d, 1H, J = 8.1 Hz), 7.33 (d, 1H, J = 8.1 Hz), 5.66 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.27 (m, 1H), 2.87 (s, 3H, -NCH 3), 1.53 (d, 3H, J = 7.3 Hz), 1.32 (d, 3H, J = 7.3 Hz), 1.13 (d, 3H, J = 7.3 Hz); ESIMS-LR m/z 728.15 (M+H)+. 1 H NMR (CD 3 OD, 500 MHz) δ: Observed as a rotamer of 87:13 (Calculation of rotamer ratio based on the integral value of proton at uracil 5-position) (Rotary isomer with high abundance) δ: 7.59 (d, 1H, J = 8.1 Hz, H-4 of indole), 7.53 (d, 1H, J = 8.1 Hz, H-5 of indole), 7.33 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.14 (s, 1H, H-2 of indole), 7.08 (ddd, 1H, J = 8.1, 7.3, 1.2 Hz, H-6 of indole), 7.02 (ddd, 1H, J = 8.1, 7.3 , 1.0 Hz, H-5 of indole), 6.25 (s, 1H, H-5 of sugar), 6.19 (d, 1H, J = 6.1 Hz, H-1 of sugar), 5.72 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.60-4.55 (m, 3H), 4.40-4.33 (m, 2H), 4.16 (q, 1H, J = 7.1 Hz), 4.12 (q, 2H, J = 7.1 Hz ), 2.78 (br s, 3H, -NC H 3 ), 1.36 (d, 3H, J = 7.1 Hz, -CH-C H 3 ), 1.27 (d, 3H, J = 7.6 Hz, -CH-C H 3 ), 1.13 (d, 3H, J = 7.1 Hz, -CH-C H 3 ). (Rotational isomer with low abundance): 7.57 (d, 1H, J = 7.8 Hz), 7.44 (d, 1H, J = 8.1 Hz), 7.33 (d, 1H, J = 8.1 Hz), 5.66 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.27 (m, 1H), 2.87 (s, 3H,- NC H 3 ), 1.53 (d , 3H, J = 7.3 Hz), 1.32 (d, 3H, J = 7.3 Hz), 1.13 (d, 3H, J = 7.3 Hz); ESIMS-LR m / z 728.15 (M + H) + .
 実施例4
 Ugi 反応を利用したルートにて合成した。Ugi反応では目的物が2種のジアステレオマー混合物(1:1) として得られ、分取TLCで分離精製したが、Rf値が小さい化合物の方を用いて導いた。星印で示した不斉炭素の絶対配置は確定していない。
Example 4
It was synthesized by the route using Ugi reaction. In the Ugi reaction, the target product was obtained as a mixture of two diastereomers (1: 1) and separated and purified by preparative TLC, but the compound having a smaller Rf value was used. The absolute configuration of the asymmetric carbon indicated by an asterisk has not been determined.
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-C000065
1H NMR (CD3OD, 500 MHz): 56:44 の回転異性体として観測 (ウラシル5位のプロトンの積分値で回転異性体比を算出) (存在比率が多い回転異性体) δ: 7.60 (d, 1H, J = 8.1 Hz), 7.56 (d, 1H, J = 7.6 Hz), 7.33 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.13 (s, 1H, H-2 of indole), 7.01 (dd, 1H, J = 7.5, 7.5 Hz), 6.22 (s, 1H, H-5 of sugar), 6.15 (d, 1H, J = 5.9 Hz, H-1 of sugar), 5.73 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.70 (d, 1H, J = 9.8 Hz), 4.18-4.08 (m, 2H), 2.84 (s, 3H, -NCH 3), 1.32 (d, 3H, J = 6.6 Hz), 1.23 (d, 3H, J = 6.8 Hz), 1.23 (d, 3H, J = 6.6 Hz). (存在比率が少ない回転異性体): δ: 7.31 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.11 (s, 1H, H-2 of indole), 7.08 (dd, 1H, J = 7.6, 7.6 Hz), 7.07 (dd, 1H, J = 7.6, 7.6 Hz), 6.20 (s, 1H, H-5 of sugar), 6.15 (d, 1H, J = 6.1 Hz, H-1 of sugar), 5.77 (d, 1H, J = 8.1 Hz), 2.80 (s, 3H, -NCH 3), 1.40 (d, 3H, J = 7.1 Hz), 1.32 (d, 3H, J = 7.1 Hz), 1.18 (d, 3H, J = 7.1 Hz). ESIMS-LR m/z 728.15 (M+H)+. 1 H NMR (CD 3 OD, 500 MHz): Observed as a rotamer of 56:44 (rotary isomer ratio is calculated by the integral value of proton at uracil 5-position) (rotary isomer with a high abundance ratio) δ: 7.60 (d, 1H, J = 8.1 Hz), 7.56 (d, 1H, J = 7.6 Hz), 7.33 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.13 (s, 1H, H-2 of indole), 7.01 (dd, 1H, J = 7.5, 7.5 Hz), 6.22 (s, 1H, H-5 of sugar), 6.15 (d, 1H, J = 5.9 Hz, H-1 of sugar), 5.73 (d, 1H, J = 8.1 Hz, H-5 of urasil), 4.70 (d, 1H, J = 9.8 Hz), 4.18-4.08 (m, 2H), 2.84 (s, 3H, -NC H 3 ), 1.32 (d, 3H, J = 6.6 Hz), 1.23 (d, 3H, J = 6.8 Hz), 1.23 (d, 3H, J = 6.6 Hz). (Rotation isomer with low abundance): δ: 7.31 ( d, 1H, J = 8.1 Hz, H-6 of urasil), 7.11 (s, 1H, H-2 of indole), 7.08 (dd, 1H, J = 7.6, 7.6 Hz), 7.07 (dd, 1H, J = 7.6, 7.6 Hz), 6.20 (s, 1H, H-5 of sugar), 6.15 (d, 1H, J = 6.1 Hz, H-1 of sugar), 5.77 (d, 1H, J = 8.1 Hz), 2.80 (s, 3H, -NC H 3 ), 1.40 (d, 3H, J = 7.1 Hz), 1.32 (d, 3H, J = 7.1 Hz), 1.18 (d, 3H, J = 7.1 Hz). ESIMS- LR m / z 728.15 (M + H ) + .
 実施例5 Example 5
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000066
1H NMR (CD3OD, 500 MHz) : 57:43の回転異性体として観測 (ウラシル5位のプロトンの積分値で回転異性体比を算出) (存在比率が多い回転異性体) δ : 7.57 (d, 1H, J = 8.1 Hz), 7.54 (d, 1H, J = 7.8 Hz), 7.19 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.09 (s, 1H, H-2 of indole), 7.07 (dd, 1H, J = 7.8, 7.8 Hz), 7.00 (dd, 1H, J = 7.8, 7.8 Hz), 6.73 (d, 1H, J = 8.1 Hz), 6.70 (s, 1H), 6.66 (dd, 1H, J = 8.1, 8.1 Hz), 6.25 (s, 1H, H-5 of sugar), 6.18 (d, 1H, J = 6.8 Hz, H-1 of sugar), 5.66 (d, 1H, J = 8.1 Hz, H-5 of urasil), 5.01 (dd, 1H, J = 10.7, 3.9 Hz), 4.70 (d, 1H, J = 7.5 Hz), 4.57 (d, 1H, J = 8.8 Hz), 4.51 (d, 1H, J = 5.2 Hz), 4.22-4.16 (m, 2H), 3.66 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.55 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.03 (s, 3H, -NCH 3), 2.99 (dd, 1H, J = 14.6, 4.2 Hz), 2.64 (dd, 1H, J = 14.6, 10.0 Hz), 1.25 (d, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 7.1 Hz). (存在比率が少ない回転異性体): δ: 7.59 (d, 1H, J = 8.1 Hz), 7.33 (d, 1H, J = 7.1 Hz), 7.31 (d, 1H, J = 8.1 Hz), 7.11 (dd, 1H, J = 7.8, 7.8 Hz), 7.10 (s, 1H, H-2 of indole), 6.61-6.60 (m, 1H), 6.14 (s, 1H, H-5 of sugar), 6.14 (d, 1H, J = 5.8 Hz,  H-1 of sugar), 5.77 (d, 1H, J = 8.1 Hz, H-5 of urasil), 5.22 (dd, 1H, J = 7.5, 7.5 Hz), 4.61 (d, 1H, J = 7.8 Hz), 4.43 (t, 1H, J = 5.1 Hz, α-H of m-Tyr), 3.72 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.67 (d, 1H, J = 15.9 Hz, α-H of Gly), 2.65 (s, 3H, -NCH 3), 1.21 (d, 3H, J = 7.1 Hz), 0.71 (d, 3H, J = 7.1 Hz); ESIMS-LR m/z 877.35 [(M+H)+]. 1 H NMR (CD 3 OD, 500 MHz): Observed as a 57:43 rotamer (calculated rotamer ratio based on the integral value of proton at the 5th position of uracil) (rotomer with a high abundance) δ: 7.57 (d, 1H, J = 8.1 Hz), 7.54 (d, 1H, J = 7.8 Hz), 7.19 (d, 1H, J = 8.1 Hz, H-6 of urasil), 7.09 (s, 1H, H-2 of indole), 7.07 (dd, 1H, J = 7.8, 7.8 Hz), 7.00 (dd, 1H, J = 7.8, 7.8 Hz), 6.73 (d, 1H, J = 8.1 Hz), 6.70 (s, 1H) , 6.66 (dd, 1H, J = 8.1, 8.1 Hz), 6.25 (s, 1H, H-5 of sugar), 6.18 (d, 1H, J = 6.8 Hz, H-1 of sugar), 5.66 (d, 1H, J = 8.1 Hz, H-5 of urasil), 5.01 (dd, 1H, J = 10.7, 3.9 Hz), 4.70 (d, 1H, J = 7.5 Hz), 4.57 (d, 1H, J = 8.8 Hz ), 4.51 (d, 1H, J = 5.2 Hz), 4.22-4.16 (m, 2H), 3.66 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.55 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.03 (s, 3H, -NC H 3 ), 2.99 (dd, 1H, J = 14.6, 4.2 Hz), 2.64 (dd, 1H, J = 14.6, 10.0 Hz), 1.25 (d, 3H, J = 7.1 Hz), 1.16 (d, 3H, J = 7.1 Hz). (Rotation isomer with low abundance): δ: 7.59 (d, 1H, J = 8.1 Hz), 7.33 (d , 1H, J = 7.1 Hz), 7.31 (d, 1H, J = 8.1 Hz), 7.11 (dd, 1H, J = 7.8, 7.8 Hz), 7.10 (s, 1H, H-2 of indole), 6.61-6.60 (m , 1H), 6.14 (s, 1H, H-5 of sugar), 6.14 (d, 1H, J = 5.8 Hz, H-1 of sugar), 5.77 (d, 1H, J = 8.1 Hz, H-5 of urasil), 5.22 (dd, 1H, J = 7.5, 7.5 Hz), 4.61 (d, 1H, J = 7.8 Hz), 4.43 (t, 1H, J = 5.1 Hz, α-H of m-Tyr), 3.72 (d, 1H, J = 15.9 Hz, α-H of Gly), 3.67 (d, 1H, J = 15.9 Hz, α-H of Gly), 2.65 (s, 3H, -NC H 3 ), 1.21 (d , 3H, J = 7.1 Hz), 0.71 (d, 3H, J = 7.1 Hz); ESIMS-LR m / z 877.35 [(M + H) + ].
 実施例6 Example 6
Figure JPOXMLDOC01-appb-C000067
Figure JPOXMLDOC01-appb-C000067
1H-NMR (D2O, 500 MHz) δ: 7.61 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.3 Hz), 7.37 (d, 1H, J = 8.3 Hz), 7.28-7.20 (m, 3H), 7.14 (t, 1H, J = 7.1 Hz), 6.87-6.83 (m, 2H), 6.76 (s, 1H), 6.12-6.08 (m, 1H), 5.71 (d, 1H, J = 8.1 Hz), 5.02 (t, 1H, J = 7.7 Hz), 4.70-4.50 (m, 6H), 4.37 (t, 1H, J = 5.1 Hz), 4.10 (q, 1H, J = 7.2 Hz), 3.85-3.70 (m, 2H), 3.37-3.28 (m, 1H), 3.24-3.13 (m, 1H), 2.95 (d, 2H, J = 7.6 Hz), 2.70 (s, 3H), 1.27 (d, 3H, J = 7.3 Hz), 0.86 (d, 3H, J = 6.6 Hz); ESIMS-LR m/z 877.40 [(M+H)+]. 1 H-NMR (D 2 O, 500 MHz) δ: 7.61 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.3 Hz), 7.37 (d, 1H, J = 8.3 Hz), 7.28-7.20 (m, 3H), 7.14 (t, 1H, J = 7.1 Hz), 6.87-6.83 (m, 2H), 6.76 (s, 1H), 6.12-6.08 (m, 1H), 5.71 (d, 1H, J = 8.1 Hz), 5.02 (t, 1H, J = 7.7 Hz), 4.70-4.50 (m, 6H), 4.37 (t, 1H, J = 5.1 Hz), 4.10 (q, 1H, J = 7.2 Hz), 3.85-3.70 (m, 2H), 3.37-3.28 (m, 1H), 3.24-3.13 (m, 1H), 2.95 (d, 2H, J = 7.6 Hz), 2.70 (s, 3H), 1.27 (d, 3H, J = 7.3 Hz), 0.86 (d, 3H, J = 6.6 Hz); ESIMS-LR m / z 877.40 [(M + H) + ].
 実施例7 Example 7
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000068
1H-NMR (D2O, 500 MHz) δ: 7.64 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.35 (d, 1H, J = 8.3 Hz), 7.28 (t, 1H, J = 7.8 Hz), 7.23-7.14 (m, 5H), 6.87 (d, 1H, J = 8.1 Hz), 6.84 (d, 1H, J = 8.1 Hz), 6.79 (s, 1H), 6.15 (d, 1H, J = 0.7 Hz), 5.92 (d, 1H, J = 5.9 Hz), 5.73 (d, 1H, J = 8.1 Hz), 4.98 (dd, 2H, J = 10.0, 4.6 Hz), 4.52 (t, 2H, J = 6.2 Hz), 4.37-4.32 (m, 1H), 4.19-4.03 (m, 2H), 3.95-3.59 (m, 0H), 3.42-3.25 (m, 0H), 3.25-3.12 (m, 0H), 3.09-2.91 (m, 0H), 3.04 (s, 2H), 1.30-1.27 (m, 3H), 1.03 (d, 3H, J = 6.6 Hz).; ESIMS-LR m/z 877.40 [(M+H)+]. 1 H-NMR (D 2 O, 500 MHz) δ: 7.64 (d, 1H, J = 7.8 Hz), 7.46 (d, 1H, J = 8.1 Hz), 7.35 (d, 1H, J = 8.3 Hz), 7.28 (t, 1H, J = 7.8 Hz), 7.23-7.14 (m, 5H), 6.87 (d, 1H, J = 8.1 Hz), 6.84 (d, 1H, J = 8.1 Hz), 6.79 (s, 1H ), 6.15 (d, 1H, J = 0.7 Hz), 5.92 (d, 1H, J = 5.9 Hz), 5.73 (d, 1H, J = 8.1 Hz), 4.98 (dd, 2H, J = 10.0, 4.6 Hz) ), 4.52 (t, 2H, J = 6.2 Hz), 4.37-4.32 (m, 1H), 4.19-4.03 (m, 2H), 3.95-3.59 (m, 0H), 3.42-3.25 (m, 0H), 3.25-3.12 (m, 0H), 3.09-2.91 (m, 0H), 3.04 (s, 2H), 1.30-1.27 (m, 3H), 1.03 (d, 3H, J = 6.6 Hz) .; ESIMS-LR m / z 877.40 [(M + H) + ].
 実施例8 Example 8
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000069
1H NMR (CD3OD, 500 MHz): 60:40の回転異性体として観測 (ウラシル5位のプロトンで比較) (存在比率が多い回転異性体) δ: 7.34-7.30 (m, 2H), 7.14-7.03 (m, 4H), 7.01-6.97 (m, 2H), 6.71 (d, 1H, J = 8.2 Hz), 6.70 (d, 1H, J = 8.2 Hz), 6.24 (s, 1H, H-5 of sugar), 6.18-6.14 (m, 1H), 5.65 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.94 (dd, 1H, J = 9.7, 4.4 Hz), 4.68 (d, 1H, J = 7.3 Hz), 4.26 (dd, 1H, J = 5.6, 5.6 Hz), 3.71 (d, 1H, J = 16.1 Hz, α-H of Gly), 3.67 (d, 1H, J = 16.1 Hz, α-H of Gly), 2.98 (s, 3H, -NCH 3), 1.23 (d, 3H, J = 7.3 Hz), 1.21 (d, 3H, J = 7.3 Hz). (存在比率が少ない回転異性体) δ: 7.27 (d, 1H, J = 8.2 Hz), 6.14 (s, 1H), 5.77 (d, 1H, J = 8.2 Hz), 5.18 (dd, 1H, J = 7.3, 7.3 Hz), 4.43 (dd, 1H, J = 5.6, 5.6 Hz), 3.65 (d, 1H, J = 16.1 Hz), 3.54 (d, 1H, J = 16.1 Hz), 2.64 (s, 3H), 1.14 (d, 3H, J = 7.3 Hz), 0.69 (d, 3H, J = 7.3 Hz); ESIMS-LR m/z 877.40 [(M+H)+]. 1 H NMR (CD 3 OD, 500 MHz): Observed as a 60:40 rotamer (compared with uracil 5-position proton) (rotational isomer with a high abundance) δ: 7.34-7.30 (m, 2H), 7.14-7.03 (m, 4H), 7.01-6.97 (m, 2H), 6.71 (d, 1H, J = 8.2 Hz), 6.70 (d, 1H, J = 8.2 Hz), 6.24 (s, 1H, H- 5 of sugar), 6.18-6.14 (m, 1H), 5.65 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.94 (dd, 1H, J = 9.7, 4.4 Hz), 4.68 (d, 1H, J = 7.3 Hz), 4.26 (dd, 1H, J = 5.6, 5.6 Hz), 3.71 (d, 1H, J = 16.1 Hz, α-H of Gly), 3.67 (d, 1H, J = 16.1 Hz , α-H of Gly), 2.98 (s, 3H, -NC H 3 ), 1.23 (d, 3H, J = 7.3 Hz), 1.21 (d, 3H, J = 7.3 Hz). Isomer) δ: 7.27 (d, 1H, J = 8.2 Hz), 6.14 (s, 1H), 5.77 (d, 1H, J = 8.2 Hz), 5.18 (dd, 1H, J = 7.3, 7.3 Hz), 4.43 (dd, 1H, J = 5.6, 5.6 Hz), 3.65 (d, 1H, J = 16.1 Hz), 3.54 (d, 1H, J = 16.1 Hz), 2.64 (s, 3H), 1.14 (d, 3H , J = 7.3 Hz), 0.69 (d, 3H, J = 7.3 Hz); ESIMS-LR m / z 877.40 [(M + H) + ].
 実施例9 Example 9
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000070
1H NMR (D2O, 500 MHz) : 65:35の回転異性体として観測 (ウラシル5位のプロトンの積分値で回転異性体比を算出) (存在比率が多い回転異性体) δ: 7.53 (d, 1H, J = 8.2 Hz), 7.42 (d, 1H, J = 8.2 Hz), 7.34 (d, 1H, J = 8.2 Hz), 7.10 (s, 1H), 7.09 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 7.01 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 6.03 (d, 1H, J = 0.9 Hz, H-5 of sugar), 5.93 (d, 1H, J = 5.5 Hz, H-1 of sugar), 5.70 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.43 (d, 1H, J = 8.2 Hz), 4.38 (dd, 1H, J = 5.2, 5.2 Hz), 4.29 (m, 1H), 3.75 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.66 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.14 (dd, 1H, J = 14.7, 5.2 Hz), 3.04 (dd, 1H, J = 14.7, 7.3 Hz), 2.63 (s, 3H, -NCH 3), 1.07 (d, 3H, J = 7.0 Hz, -CH-CH 3), 1.02 (d, 3H, J = 7.0 Hz, -CH-CH 3). (存在比率が少ない回転異性体) δ: 7.54 (d, 1H, J = 7.6 Hz), 7.40 (d, 1H, J = 8.2 Hz), 7.34 (d, 1H, J = 8.2 Hz), 7.10 (s, 1H), 7.09 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 7.01 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 6.02 (d, 1H, J = 0.9 Hz, H-5 of sugar), 5.99 (d, 1H, J = 5.5 Hz, H-1 of sugar), 5.76 (d, 1H, J = 8.2 Hz), 4.35 (dd, 1H, J = 5.2, 5.2 Hz), 4.32-4.27 (m, 1H), 3.75 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.66 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.14 (dd, 1H, J = 14.7, 5.2 Hz), 3.03 (dd, 1H, J = 14.7, 7.3 Hz), 2.68 (s, 3H, -NCH 3), 1.04 (d, 3H, J = 7.0 Hz, -CH-CH 3).; ESIMS-LR m/z 714.30 [(M+H)+]. 1 H NMR (D 2 O, 500 MHz): Observed as a 65:35 rotamer (rotary isomer ratio is calculated by the integral value of proton at the 5-position of uracil) (rotary isomer with a high abundance ratio) δ: 7.53 (d, 1H, J = 8.2 Hz), 7.42 (d, 1H, J = 8.2 Hz), 7.34 (d, 1H, J = 8.2 Hz), 7.10 (s, 1H), 7.09 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 7.01 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 6.03 (d, 1H, J = 0.9 Hz, H-5 of sugar), 5.93 (d, 1H, J = 5.5 Hz, H-1 of sugar), 5.70 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.43 (d, 1H, J = 8.2 Hz), 4.38 (dd, 1H, J = 5.2, 5.2 Hz), 4.29 (m, 1H), 3.75 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.66 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.14 (dd , 1H, J = 14.7, 5.2 Hz), 3.04 (dd, 1H, J = 14.7, 7.3 Hz), 2.63 (s, 3H, -NC H 3 ), 1.07 (d, 3H, J = 7.0 Hz, -CH -C H 3 ), 1.02 (d, 3H, J = 7.0 Hz, -CH-C H 3 ). (Rotational isomer with low abundance) δ: 7.54 (d, 1H, J = 7.6 Hz), 7.40 ( d, 1H, J = 8.2 Hz), 7.34 (d, 1H, J = 8.2 Hz), 7.10 (s, 1H), 7.09 (ddd, 1H, J = 8.2, 7.0, 0.9 Hz), 7.01 (ddd, 1H , J = 8.2, 7.0, 0 .9 Hz), 6.02 (d, 1H, J = 0.9 Hz, H-5 of sugar), 5.99 (d, 1H, J = 5.5 Hz, H-1 of sugar), 5.76 (d, 1H, J = 8.2 Hz), 4.35 (dd, 1H, J = 5.2, 5.2 Hz), 4.32-4.27 (m, 1H), 3.75 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.66 (d, 1H, J = 16.5 Hz, α-H of Gly), 3.14 (dd, 1H, J = 14.7, 5.2 Hz), 3.03 (dd, 1H, J = 14.7, 7.3 Hz), 2.68 (s, 3H, -NC H 3 ), 1.04 (d, 3H, J = 7.0 Hz, -CH-C H 3 ) .; ESIMS-LR m / z 714.30 [(M + H) + ].
 実施例10 Example 10
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000071
1H NMR (CD3OD, 500 MHz) 70:30の回転異性体として観測 (ウラシル5位のプロトンの積分値で回転異性体比を算出) (存在比率が多い回転異性体) δ: 7.62-7.59 (m, 2H), 7.32 (d, 1H, J = 8.2 Hz), 7.14 (s, 1H), 7.12-7.04 (m, 3H), 7.00 (dd, 1H, J = 7.6, 7.6 Hz), 6.67 (dd, 1H, J = 7.6, 7.6 Hz), 6.63 (s, 1H), 6.21 (d, 1H, J = 6.4 Hz, H-1 of sugar), 6.18 (s, 1H, H-5 of sugar), 5.73 (d, 1H, J = 8.2 Hz,  H-5 of urasil), 4.57 (d, 1H, J = 5.0 Hz), 4.40 (dd, 1H, J = 5.3, 5.3 Hz), 3.65 (s, 2H), 2.58 (s, 3H), 1.01 (d, 3H, J = 7.0 Hz). (存在比率が少ない回転異性体) δ: 6.67 (s, 1H), 6.24 (d, 1H, J = 6.4 Hz, H-1 of sugar), 6.20 (s, 1H, H-5 of sugar), 5.80 (d, 1H, J = 8.2 Hz,  H-5 of urasil), 4.51 (d, 1H, J = 5.0 Hz), 2.79 (s, 3H), 1.25 (d, 3H, J = 7.0 Hz), 0.89 (d, 3H, J = 7.3 Hz); ESIMS-LR m/z 877.35 [(M+H)+]. 1 H NMR (CD 3 OD, 500 MHz) Observed as a rotamer at 70:30 (rotary isomer ratio is calculated by the integral value of proton at uracil 5-position) (rotary isomer with high abundance ratio) δ: 7.62- 7.59 (m, 2H), 7.32 (d, 1H, J = 8.2 Hz), 7.14 (s, 1H), 7.12-7.04 (m, 3H), 7.00 (dd, 1H, J = 7.6, 7.6 Hz), 6.67 (dd, 1H, J = 7.6, 7.6 Hz), 6.63 (s, 1H), 6.21 (d, 1H, J = 6.4 Hz, H-1 of sugar), 6.18 (s, 1H, H-5 of sugar) , 5.73 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.57 (d, 1H, J = 5.0 Hz), 4.40 (dd, 1H, J = 5.3, 5.3 Hz), 3.65 (s, 2H ), 2.58 (s, 3H), 1.01 (d, 3H, J = 7.0 Hz). (Rotational isomers with low abundance) δ: 6.67 (s, 1H), 6.24 (d, 1H, J = 6.4 Hz, H-1 of sugar), 6.20 (s, 1H, H-5 of sugar), 5.80 (d, 1H, J = 8.2 Hz, H-5 of urasil), 4.51 (d, 1H, J = 5.0 Hz), 2.79 (s, 3H), 1.25 (d, 3H, J = 7.0 Hz), 0.89 (d, 3H, J = 7.3 Hz); ESIMS-LR m / z 877.35 [(M + H) + ].
 実施例11 Example 11
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000072
1H NMR (CD3OD, 500 MHz) δ: 7.66-7.56 (m, 2H), 7.44-7.18 (m, 5H), 7.13 (d, 1H, J = 6.1 Hz), 7.09 (dd, 2H, J = 7.9, 7.9 Hz), 7.01 (d, 1H, J = 7.3 Hz), 6.17 (s, 1H, H-5 of sugar), 5.66 (d, 1H, J = 8.2 Hz, H-5 of urasil), 3.01 (s, 3H, -NCH 3), 0.67 (d, 1H, J = 7.0 Hz, -CH-CH 3) ; ESIMS-LR m/z 859.25 [(M-H)-]. 1 H NMR (CD 3 OD, 500 MHz) δ: 7.66-7.56 (m, 2H), 7.44-7.18 (m, 5H), 7.13 (d, 1H, J = 6.1 Hz), 7.09 (dd, 2H, J = 7.9, 7.9 Hz), 7.01 (d, 1H, J = 7.3 Hz), 6.17 (s, 1H, H-5 of sugar), 5.66 (d, 1H, J = 8.2 Hz, H-5 of urasil), 3.01 (s, 3H, -NC H 3 ), 0.67 (d, 1H, J = 7.0 Hz, -CH-C H 3 ); ESIMS-LR m / z 859.25 [(MH) - ].
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 以下に、本発明化合物の生物試験例を記載する。
Figure JPOXMLDOC01-appb-T000006
Hereinafter, biological test examples of the compound of the present invention will be described.
 試験例1:抗菌活性のインビトロ測定
 (試験方法)
 CLSIに準拠した微量液体希釈法により最小発育阻止濃度(MIC:μg/ml)を求めた。用いた菌種は以下の通りである。
(1)P. aeruginosa ATCC 27853
(2)P. aeruginosa PAO1
(3)P. aeruginosa YY165(ΔmexB)
(4)P. aeruginosa ATCC 25619
(5)P. aeruginosa SR 27156
 MIC測定のために用いた菌の前培養にはブレインハートインフュージョン寒天(Brain Heart Infusion Agar)を用い、MIC測定用培地にはミューラーヒントンブロス(Mueller Hinton Broth)を用いた。MIC測定のための接種菌量は5×105 CFU/mlとし、35℃、20時間培養後に判定した。
Test Example 1: In vitro measurement of antibacterial activity (Test method)
The minimum growth inhibitory concentration (MIC: μg / ml) was determined by a micro liquid dilution method based on CLSI. The bacterial species used are as follows.
(1) P. aeruginosa ATCC 27853
(2) P. aeruginosa PAO1
(3) P. aeruginosa YY165 (ΔmexB)
(4) P. aeruginosa ATCC 25619
(5) P. aeruginosa SR 27156
Brain Heart Infusion Agar was used for pre-culture of the bacteria used for MIC measurement, and Mueller Hinton Broth was used for the MIC measurement medium. The amount of inoculum for MIC measurement was 5 × 10 5 CFU / ml, and was determined after culturing at 35 ° C. for 20 hours.
 試験例2:MraY阻害活性試験
 384ウェルマイクロプレートに、100% DMSOに溶解した様々な濃度の化合物を0.5μL/ウェル(化合物終濃度25μg/mL~0.05ng/mL、DMSO終濃度2%)で添加した後、アッセイバッファー(50mM Tris-HCl(pH 7.6), 50mM KCl, 25mM MgCl2, 0.2% Triton-X, 8% グリセロール)にて希釈調製した黄色ブドウ球菌由来MraY酵素溶液を5μL/well(終濃度2.2μg/mL)、基質混合溶液を20μL/ウェル(ウンデカプレニルリン酸 終濃度100μM、ダンシル-UDP-MurNAc-ペンタペプチド(dansyl-UDP-MurNAc-pentapeptide)終濃度20μM)で添加した。攪拌後、室温にて3~4時間反応させ、プレートリーダーを用いて、励起波長355nm、蛍光波長535nmの条件で蛍光シグナル強度を測定した。阻害活性は、酵素存在下での蛍光シグナル値を0%、酵素非存在下での蛍光シグナル値を100%阻害活性として、50%阻害活性を示す化合物濃度で算出した。
Test Example 2: MraY Inhibitory Activity Test Compound concentrations of various concentrations dissolved in 100% DMSO were added to a 384-well microplate at 0.5 μL / well (final compound concentration 25 μg / mL to 0.05 ng / mL, final DMSO concentration 2%). After the addition, 5 μL / well of a Staphylococcus aureus-derived MalaY enzyme solution diluted with assay buffer (50 mM Tris-HCl (pH 7.6), 50 mM KCl, 25 mM MgCl2, 0.2% Triton-X, 8% glycerol) The substrate mixed solution was added at 20 μL / well (undecaprenyl phosphate final concentration 100 μM, dansyl-UDP-MurNAc-pentapeptide final concentration 20 μM). After stirring, the mixture was reacted at room temperature for 3 to 4 hours, and the fluorescence signal intensity was measured using a plate reader under conditions of an excitation wavelength of 355 nm and a fluorescence wavelength of 535 nm. The inhibitory activity was calculated at the concentration of the compound exhibiting 50% inhibitory activity, assuming that the fluorescent signal value in the presence of the enzyme was 0% and the fluorescent signal value in the absence of the enzyme was 100% inhibitory activity.
 試験例1および試験例2の結果を以下に示す。 Results of Test Example 1 and Test Example 2 are shown below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 製剤例
 以下に示す製剤例は例示にすぎないものであり、発明の範囲を何ら限定することを意図するものではない。
Formulation Examples Formulation examples shown below are merely illustrative and are not intended to limit the scope of the invention.
 製剤例1 錠剤
  本発明化合物         15mg
  乳糖             15mg
  ステアリン酸カルシウム     3mg
 ステアリン酸カルシウム以外の成分を均一に混合し、破砕造粒して乾燥し、適当な大きさの顆粒剤とする。次にステアリン酸カルシウムを添加して圧縮成形して錠剤とする。
Formulation Example 1 Tablet 15 mg of the present compound
Lactose 15mg
Calcium stearate 3mg
Ingredients other than calcium stearate are uniformly mixed, crushed and granulated, and dried to obtain granules of an appropriate size. Next, calcium stearate is added and compressed to form tablets.
 製剤例2 カプセル剤
  本発明化合物         10mg
  ステアリン酸マグネシウム   10mg
  乳糖             80mg
を均一に混合して粉末または細粒状として散剤をつくる。それをカプセル容器に充填してカプセル剤とする。
Formulation Example 2 Capsule Compound of the present invention 10 mg
Magnesium stearate 10mg
Lactose 80mg
Are mixed uniformly to make a powder as a fine powder or powder. It is filled into a capsule container to form a capsule.
 製剤例3 顆粒剤
  本発明化合物           30g
  乳糖              265g
  ステアリン酸マグネシウム      5g
 よく混合し、圧縮成型した後、粉砕、整粒し、篩別して適当な大きさの顆粒剤とする。
Formulation Example 3 Granules Compound of the present invention 30 g
Lactose 265g
Magnesium stearate 5g
After mixing well, compression molding, pulverizing, sizing, and sieving to make granules of appropriate size.
 本出願は、2011年6月30日に出願された日本国特許出願特願2011-146098号に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。 This application claims priority to Japanese Patent Application No. 2011-146098 filed on June 30, 2011, the entire contents of which are specifically described in this specification. It should be understood that this should be incorporated as part of the specification as if it were.
 本発明に係る化合物は、抗菌剤等の医薬品になりうる。 The compound according to the present invention can be a pharmaceutical product such as an antibacterial agent.

Claims (11)

  1. 式(I):
    Figure JPOXMLDOC01-appb-C000073

    (式中、
    は、水素原子、またはアルキルであり、
    は、水素原子、アルキル、または以下に示される基:
    Figure JPOXMLDOC01-appb-C000074

    (式中、Rは、ヒドロキシ、アルキル、またはハロゲンであり、および
    mは、0~3の整数であり、ただし
    が複数個ある場合は、同一または異なっていてもよい)であり、
    は、水素原子、またはアルキルであり、
    は、水素原子、もしくはアルキルであり、またはRおよびRは、一緒になってシクロプロパン環を形成していてもよく、
    は、水素原子、またはアルキルであり、
    は、水素原子、アルキル、または以下に示される基:
    Figure JPOXMLDOC01-appb-C000075

    (式中、Rは、ヒドロキシ、アルキル、またはハロゲンであり、および
    nは、0~3の整数であり、ただし
    が複数個ある場合は、同一または異なっていてもよい)であり、ならびに
    は、水素原子、アミノで置換されているアルキル、またはアミノで置換されているアルキルカルボニルである)
    で示される化合物、またはその製薬上許容される塩。
    Formula (I):
    Figure JPOXMLDOC01-appb-C000073

    (Where
    R 1 is a hydrogen atom or alkyl;
    R 2 is a hydrogen atom, alkyl, or a group shown below:
    Figure JPOXMLDOC01-appb-C000074

    Wherein R a is hydroxy, alkyl, or halogen, and m is an integer of 0 to 3, provided that when there are a plurality of R a s , they may be the same or different.
    R 3 is a hydrogen atom or alkyl;
    R 4 is a hydrogen atom or alkyl, or R 3 and R 4 may together form a cyclopropane ring;
    R 5 is a hydrogen atom or alkyl;
    R 6 represents a hydrogen atom, alkyl, or a group shown below:
    Figure JPOXMLDOC01-appb-C000075

    Wherein R b is hydroxy, alkyl, or halogen, and n is an integer of 0 to 3, provided that when there are a plurality of R b s , they may be the same or different. And R 7 is a hydrogen atom, alkyl substituted with amino, or alkylcarbonyl substituted with amino)
    Or a pharmaceutically acceptable salt thereof.
  2. が、ヒドロキシである、請求項1記載の化合物、またはその製薬上許容される塩。 The compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein R b is hydroxy.
  3. が、水素原子、メチル、または以下に示される基:
    Figure JPOXMLDOC01-appb-C000076

    である、請求項1記載の化合物、またはその製薬上許容される塩。
    R 6 is a hydrogen atom, methyl, or a group shown below:
    Figure JPOXMLDOC01-appb-C000076

    The compound according to claim 1, or a pharmaceutically acceptable salt thereof.
  4. が、水素原子、またはアミノで置換されているアルキルカルボニルである、請求項1~3のいずれかに記載の化合物、またはその製薬上許容される塩。 The compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein R 7 is a hydrogen atom or alkylcarbonyl substituted with amino.
  5. 式(II):
    Figure JPOXMLDOC01-appb-C000077

    (式中、Rは、水素原子、またはアルキルであり、
    式:
    Figure JPOXMLDOC01-appb-C000078

    が、以下に示される基:
    Figure JPOXMLDOC01-appb-C000079

    であり、
    は、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルであり、
    は、単結合、アルキレン、アルケニレン、またはアルキニレンであり、
    は、水素原子、または-O-L-R11で示される基であり、
    は、単結合、アルキレン、アルケニレン、またはアルキニレンであり、
    11は、水素原子、アルキルで置換されているシリル、置換もしくは非置換のアルキルオキシ、置換もしくは非置換のアルキルカルボニル、置換もしくは非置換のアルキルオキシカルボニル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、置換もしくは非置換の非芳香族複素環式基、置換もしくは非置換の芳香族炭素環カルボニル、置換もしくは非置換の非芳香族炭素環カルボニル、置換もしくは非置換の芳香族複素環カルボニル、または置換もしくは非置換の非芳香族複素環カルボニルであり、
    10は、水素原子、またはアミド保護基であり、ならびに
    Xは、ハロゲン、-OS(O)-R14、またはイソシアノであり、
    14は、アルキル、ハロアルキル、または置換もしくは非置換の芳香族炭素環式基であり、または
    式:
    Figure JPOXMLDOC01-appb-C000080

    が、以下に示される基:
    Figure JPOXMLDOC01-appb-C000081

    (式中、R12は、水素原子、または置換もしくは非置換のアルキルであり、および
    13は、水素原子、置換もしくは非置換のアルキル、置換もしくは非置換の芳香族炭素環式基、置換もしくは非置換の非芳香族炭素環式基、置換もしくは非置換の芳香族複素環式基、または置換もしくは非置換の非芳香族複素環式基である)である)
    で示される化合物、またはその塩。
    Formula (II):
    Figure JPOXMLDOC01-appb-C000077

    (Wherein R c is a hydrogen atom or alkyl,
    formula:
    Figure JPOXMLDOC01-appb-C000078

    Is the group shown below:
    Figure JPOXMLDOC01-appb-C000079

    And
    R 8 is a hydrogen atom, alkyl-substituted silyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic carbocyclic Group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic carbonyl Substituted or unsubstituted non-aromatic carbocyclic carbonyl, substituted or unsubstituted aromatic heterocyclic carbonyl, or substituted or unsubstituted non-aromatic heterocyclic carbonyl,
    L 1 is a single bond, alkylene, alkenylene, or alkynylene;
    R 9 is a hydrogen atom or a group represented by —OL 2 —R 11 ,
    L 2 is a single bond, alkylene, alkenylene, or alkynylene;
    R 11 is a hydrogen atom, alkyl-substituted silyl, substituted or unsubstituted alkyloxy, substituted or unsubstituted alkylcarbonyl, substituted or unsubstituted alkyloxycarbonyl, substituted or unsubstituted aromatic carbocyclic Group, substituted or unsubstituted non-aromatic carbocyclic group, substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted non-aromatic heterocyclic group, substituted or unsubstituted aromatic carbocyclic carbonyl Substituted or unsubstituted non-aromatic carbocyclic carbonyl, substituted or unsubstituted aromatic heterocyclic carbonyl, or substituted or unsubstituted non-aromatic heterocyclic carbonyl,
    R 10 is a hydrogen atom or an amide protecting group, and X is halogen, —OS (O) 2 —R 14 , or isocyano,
    R 14 is alkyl, haloalkyl, or a substituted or unsubstituted aromatic carbocyclic group, or the formula:
    Figure JPOXMLDOC01-appb-C000080

    Is the group shown below:
    Figure JPOXMLDOC01-appb-C000081

    Wherein R 12 is a hydrogen atom, or substituted or unsubstituted alkyl, and R 13 is a hydrogen atom, substituted or unsubstituted alkyl, substituted or unsubstituted aromatic carbocyclic group, substituted or unsubstituted An unsubstituted non-aromatic carbocyclic group, a substituted or unsubstituted aromatic heterocyclic group, or a substituted or unsubstituted non-aromatic heterocyclic group))
    Or a salt thereof.
  6. 式:
    Figure JPOXMLDOC01-appb-C000082

    が、以下に示される基:
    Figure JPOXMLDOC01-appb-C000083
    である、請求項5記載の化合物、またはその塩。
    formula:
    Figure JPOXMLDOC01-appb-C000082

    Is the group shown below:
    Figure JPOXMLDOC01-appb-C000083
    The compound according to claim 5, or a salt thereof.
  7. が、単結合であり、および
    が、水素原子、またはアルキルで置換されているシリルである、請求項5または6記載の化合物、またはその塩。
    The compound according to claim 5 or 6, or a salt thereof, wherein L 1 is a single bond, and R 8 is a hydrogen atom or silyl substituted with alkyl.
  8. が、水素原子である、請求項5~7のいずれかに記載の化合物、またはその塩。 The compound or a salt thereof according to any one of claims 5 to 7, wherein R 9 is a hydrogen atom.
  9. が、-O-L-R11であり、
    が、単結合であり、および
    11が、水素原子、またはアルキルで置換されているシリルである、請求項5~7のいずれかに記載の化合物、またはその塩。
    R 9 is —O—L 2 —R 11 ,
    The compound or a salt thereof according to any one of claims 5 to 7, wherein L 2 is a single bond, and R 11 is a hydrogen atom or silyl substituted with alkyl.
  10. 10が、水素原子、アルキルオキシ、アルキルオキシアルキル、アルキルオキシアルキルオキシアルキル、ベンジル、ベンジルオキシ、またはベンジルオキシアルキルである、請求項5~9のいずれかに記載の化合物、またはその塩。 The compound or salt thereof according to any one of claims 5 to 9, wherein R 10 is a hydrogen atom, alkyloxy, alkyloxyalkyl, alkyloxyalkyloxyalkyl, benzyl, benzyloxy, or benzyloxyalkyl.
  11. Xが、塩素原子、臭素原子、またはヨウ素原子である、請求項5~10のいずれかに記載の化合物、またはその塩。 The compound or a salt thereof according to any one of claims 5 to 10, wherein X is a chlorine atom, a bromine atom or an iodine atom.
PCT/JP2012/004227 2011-06-30 2012-06-29 Nucleoside antibiotic derivative WO2013001830A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-146098 2011-06-30
JP2011146098A JP2014177404A (en) 2011-06-30 2011-06-30 Nucleic acid antibiotic derivative

Publications (1)

Publication Number Publication Date
WO2013001830A1 true WO2013001830A1 (en) 2013-01-03

Family

ID=47423747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/004227 WO2013001830A1 (en) 2011-06-30 2012-06-29 Nucleoside antibiotic derivative

Country Status (2)

Country Link
JP (1) JP2014177404A (en)
WO (1) WO2013001830A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211295A (en) * 1986-05-20 1988-09-02 Sankyo Co Ltd Antibiotic mureidomycin a and c
JPH01230568A (en) * 1987-11-20 1989-09-14 Sankyo Co Ltd Mureidomycin derivative
WO2000044335A2 (en) * 1999-01-28 2000-08-03 Microcide Pharmaceuticals, Inc. Uridyl peptide antibiotic (upa) derivatives, their synthesis and use

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63211295A (en) * 1986-05-20 1988-09-02 Sankyo Co Ltd Antibiotic mureidomycin a and c
JPH01230568A (en) * 1987-11-20 1989-09-14 Sankyo Co Ltd Mureidomycin derivative
WO2000044335A2 (en) * 1999-01-28 2000-08-03 Microcide Pharmaceuticals, Inc. Uridyl peptide antibiotic (upa) derivatives, their synthesis and use

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHIHIRO INAGAKI ET AL.: "Ugi Hanno o Mochiita 4'-(R)-dihydropacidamycin D no Shusokuteki Zen Gosei Kenkyu", ABSTRACTS OF ANNUAL MEETING OF PHARMACEUTICAL SOCIETY OF JAPAN, vol. 131ST, no. 2, 5 March 2011 (2011-03-05), pages 120 *
OKAMOTO KAZUYA. ET AL.: "Synthesis of pacidamyc in analogues via an Ugi-multicomponent reaction", BIOORGANIC AND MEDICINAL CHEMISTRY LETTERS, vol. 22, 2012, pages 4810 - 4815 *
SATOSHI ICHIKAWA ET AL.: "Development of Antibacterial Agents Active against Drug- resistant Bacterial Pathogens Based on Total Synthesis of Nucleoside Natural Products", JOURNAL OF SYNTHETIC ORGANIC CHEMISTRY, JAPAN, vol. 69, no. 9, 1 September 2011 (2011-09-01), pages 1020 - 1033 *
TETSUYA TANINO ET AL.: "Comprehensive Synthetic Study of Muraymycins toward the Development of Novel Antibacterial Agents", JOURNAL OF THE PHARMACEUTICAL SOCIETY OF JAPAN, vol. 131, no. 3, 1 March 2011 (2011-03-01), pages 335 - 346 *

Also Published As

Publication number Publication date
JP2014177404A (en) 2014-09-25

Similar Documents

Publication Publication Date Title
US9758513B2 (en) Dihydrooxazine or oxazepine derivatives having BACE1 inhibitory activity
JP6618120B2 (en) Heterocyclic and carbocyclic derivatives having TrkA inhibitory activity
JP6281952B2 (en) HIV replication inhibitor
TWI518085B (en) Prodrug of substituted polycyclic carbamoyl pyridone derivative
JP6643773B2 (en) New alkylene derivative
WO2013062028A1 (en) Hiv replication inhibitor
JP6099051B2 (en) Heterocyclic derivatives having PGD2 receptor antagonist activity
WO2013002357A1 (en) Hiv replication inhibitor
JP6579549B2 (en) Tricyclic heterocyclic derivatives having HIV replication inhibitory action
WO2013157622A1 (en) Hiv replication inhibitor
WO2016159082A1 (en) 9-membered fused ring derivative
WO2013035827A1 (en) Novel olefin derivative
WO2018079759A1 (en) Fused heterocycle having trka inhibitory activity and fused carbocycle derivative
WO2015147247A1 (en) Tricyclic derivative having hiv replication inhibitory activity
WO2017204316A1 (en) 5-oxo-1,2,4-triazine derivative, and pharmaceutical composition thereof
WO2016098793A1 (en) Thiazole derivative having cyclic guanidyl group
WO2013001830A1 (en) Nucleoside antibiotic derivative
KR20180022917A (en) A tricyclic compound having sulfinyl or sulfonyl
JP2014101276A (en) Muraymycin derivative
JP6692113B2 (en) Pharmaceutical composition containing 6-membered heterocyclic derivative
WO2013161928A1 (en) Oxazolotriazole derivative and drug composition containing same
JP2019189573A (en) Pharmaceutical composition for treating or preventing pain, containing condensed heterocycle and condensed carbocycle derivative
JPS62215583A (en) Pyrazolidinone derivative and production thereof
JP2005232000A (en) Pyridonecarboxylic acid derivative or its salt
WO1987000527A1 (en) Antibacterial compounds, their use, and process for their preparation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804031

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP