WO2013001686A1 - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
WO2013001686A1
WO2013001686A1 PCT/JP2012/001687 JP2012001687W WO2013001686A1 WO 2013001686 A1 WO2013001686 A1 WO 2013001686A1 JP 2012001687 W JP2012001687 W JP 2012001687W WO 2013001686 A1 WO2013001686 A1 WO 2013001686A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
resin
emitting device
region
fluorescent member
Prior art date
Application number
PCT/JP2012/001687
Other languages
English (en)
French (fr)
Inventor
瀧川 信一
田中 毅
琢磨 片山
中西 秀行
真治 吉田
山中 一彦
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to CN201280031639.5A priority Critical patent/CN103650181A/zh
Publication of WO2013001686A1 publication Critical patent/WO2013001686A1/ja
Priority to US14/140,332 priority patent/US20140103384A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present invention relates to a light emitting device using a quantum dot phosphor in a phosphor layer.
  • High-intensity white LED (LED: Light Emitting Diode) is used as a light source (light emitting device) for illumination, liquid crystal display backlight, etc., and efforts are being made to improve the efficiency and color rendering of the light source. .
  • the white LED is realized by combining a semiconductor light emitting element that emits blue light and a green phosphor, a yellow phosphor, a red phosphor, and the like.
  • Types of phosphors include quantum dot phosphors composed of inorganic phosphors, organic phosphors, and semiconductors.
  • FIG. 9 is a cross-sectional view showing a conventional light emitting device disclosed in Patent Document 1.
  • the conventional light-emitting device has a semiconductor light-emitting element 1 that emits ultraviolet light, blue light, or green light disposed in a container 8 in which electrical terminals 2 and 3 are embedded.
  • the material 5 containing luminescent material particles (inorganic luminescent material pigment) 6 covers the inside of the container 8 so as to fill the semiconductor light emitting device 1.
  • a white LED is generally a combination of a blue LED light source and a green phosphor or a yellow phosphor, and a phosphor with excellent light emission characteristics and energy conversion efficiency is required to achieve high efficiency and high color rendering.
  • Common phosphors used in white LEDs are fine crystal particles using rare earth ions as an activator, and many are chemically stable. However, while the light absorption efficiency of these phosphors is proportional to the concentration of rare earth, if the concentration is too high, the light emission efficiency is reduced by concentration quenching, so that a high quantum efficiency of 80% or more can be realized. Have difficulty.
  • quantum dot phosphors fine particles with a diameter of several nanometers to several tens of nanometers. It is expected as a new phosphor material containing no rare earth.
  • the quantum dot phosphor can obtain a fluorescence spectrum in a desired wavelength band in the visible light region by controlling the particle diameter even with fine particles of the same material by the quantum size effect.
  • white LED which has high efficiency and high color rendering property can be provided.
  • the quantum dot phosphor has a small particle size, the proportion of atoms occupying the surface of the fine particles increases, so many of them have low chemical stability, especially in excitation fluorescence in a high temperature environment.
  • a major problem is that the photo-oxidation reaction on the phosphor surface proceeds, causing a rapid decrease in luminous efficiency.
  • an object of the present invention is to provide a light emitting device that can suppress photooxidation of a quantum dot phosphor and suppress a decrease in light emission efficiency.
  • a light-emitting device includes a semiconductor light-emitting element and a fluorescent member that fluoresces when receiving light from the semiconductor light-emitting element, and the fluorescent member has a particle diameter.
  • oxygen does not reach the quantum dot phosphor in the first region, the photooxidation reaction of the quantum dot phosphor can be suppressed, and the decrease in the light emission efficiency of the light emitting device can be suppressed.
  • the light-emitting device may be characterized in that the difference between the thermal expansion coefficient of the first region and the thermal expansion coefficient of the second region is 10% or less. According to this configuration, it is possible to suppress the occurrence of cracks due to strain, stress, etc. during temperature changes caused by the difference in thermal expansion coefficient between the first region and the second region.
  • the light emitting device may be characterized in that the second region is divided into a plurality of third regions that do not transmit oxygen.
  • the second region is first formed on the semiconductor light emitting element, and the first region is formed at the center thereof, Further, by forming the second B region on and around the first region, the second A region and the second B region are in direct contact with each other around the first region. As a result, a structure that covers the periphery of the first region with the second region can be easily formed.
  • the light-emitting device may be characterized in that the first region is constituted only by the semiconductor fine particles. According to this configuration, the resin used in the first region becomes unnecessary, and the cost can be reduced.
  • the light-emitting device further includes a container on which the semiconductor light-emitting element is mounted, and the second region includes the plurality of third regions sandwiching the first region. It may be characterized by being located on the surface of the light emitting element. According to this structure, the oxygen which passed the container can be blocked, and the freedom degree of selection of a container improves.
  • the light emitting device may be characterized in that the plurality of third regions are in contact with the first region and cover the entire periphery of the first region. According to this configuration, the number of manufacturing steps can be reduced, and the cost can be reduced.
  • a light-emitting device includes a semiconductor light-emitting element, a fluorescent member that receives and emits light from the semiconductor light-emitting element, and a metal layer in contact with the fluorescent member, and the fluorescent member has a particle diameter.
  • a method for manufacturing a light emitting device After forming a second fluorescent member on a container in which a semiconductor light emitting element is formed, an injection tube is inserted into the second fluorescent member, and a hole in the injection tube is formed.
  • the first fluorescent member receives light from the semiconductor light emitting element and fluoresces, and particles It may include a plurality of semiconductor fine particles having different excitation fluorescence spectra based on the diameter, and the second fluorescent member may not transmit oxygen. According to this structure, the structure which covers the circumference
  • the region containing the quantum dot phosphor is completely covered with the region made of an oxygen-resistant material that does not transmit oxygen, so that the photooxidation reaction on the surface of the quantum dot phosphor is suppressed.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to a first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 2C is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 2D is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 2A is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 2B is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to
  • FIG. 2E is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the first embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a light emitting device according to the second embodiment of the present invention.
  • FIG. 4A is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the second embodiment of the present invention.
  • FIG. 4B is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the second embodiment of the present invention.
  • FIG. 4C is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the second embodiment of the present invention.
  • FIG. 4A is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the second embodiment of the present invention.
  • FIG. 4B is a cross-sectional view illustrating a manufacturing process of the light-emitting device according to the
  • FIG. 5 is a cross-sectional view showing a configuration of a light emitting device according to the third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a configuration of a light emitting device according to the fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view showing a configuration of a light emitting device according to the fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view showing a configuration of a light emitting device according to the sixth embodiment of the present invention.
  • FIG. 9 is a cross-sectional view illustrating a configuration of a conventional light emitting device.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a light emitting device according to a first embodiment of the present invention.
  • the light-emitting device includes a semiconductor light-emitting element 101 and a fluorescent member 130 that fluoresces upon receiving light from the semiconductor light-emitting element 101.
  • the fluorescent member 130 has a plurality of semiconductor fine particles (particles having different excitation fluorescence spectra based on particle diameters).
  • a resin 111 as a first region including a semiconductor fine particle having an excitation fluorescence spectrum corresponding to the diameter) and a resin 110 as a second region that does not transmit oxygen.
  • the entire periphery of the resin 111 is covered with the resin 110. It has been broken.
  • the difference between the thermal expansion coefficient of the resin 111 and the thermal expansion coefficient of the resin 110 is, for example, 10% or less.
  • the light emitting device further includes a container (package) 105 on which the semiconductor light emitting element 101 is mounted.
  • metal electrical terminals 102 and 103 are incorporated in a container 105 made of resin, and a semiconductor light emitting element 101 having an InGaN quantum well as an active layer is formed on the electrical terminal 102. .
  • the upper surface of the semiconductor light emitting element 101 is connected to the electrical terminal 103 by a gold wire 106.
  • the semiconductor light emitting element 101 emits blue light having a wavelength of 460 nm by applying a voltage between the electric terminal 102 and the electric terminal 103 and causing a current to flow.
  • an oxygen resistant resin 110 (fluorescent member 130) having no oxygen permeability is formed so as to cover the semiconductor light emitting element 101.
  • polyfuca vinyl was used as the oxygen-resistant resin 110 having no oxygen permeability.
  • a silicate resin containing a quantum dot phosphor is formed as the resin 111.
  • Quantum dot phosphors have a core-shell structure with InP as the core, and there are two types of diameters (about 4.3 nm and about 5.5 nm). This quantum dot phosphor emits green light having a central wavelength of 530 nm and red light having a central wavelength of 630 nm by photoexcitation.
  • the quantum dot phosphor is excited to emit green and red mixed light (mixed light) 122.
  • the light emitting device as a whole emits three primary colors of red, green, and blue, and white is obtained.
  • the feature of the resin 111 containing the quantum dot phosphor is that the entire periphery is surrounded by the oxygen-resistant resin 110 having no oxygen permeability. Thereby, resin 111 containing quantum dot fluorescent substance is intercepted from oxygen. As a result, the quantum dot phosphor does not change over time due to photooxidation, and a highly reliable light-emitting device can be obtained.
  • FIGS. 2A to 2E are cross-sectional views showing manufacturing steps of the light emitting device of this embodiment. Although not described, each step in FIGS. 2A to 2E is performed in a nitrogen atmosphere or in a vacuum in order to block oxygen.
  • the resin 110 as the second fluorescent member is formed on the container 105 in which the semiconductor light emitting element 101 is formed, and then the injection tube 202 is inserted into the resin 110 and the resin 110 is inserted into the resin 110 through the hole of the injection tube 202.
  • the step of pushing in the resin 111 as the first fluorescent member (FIGS. 2B and 2C), the injection tube 202 is pulled out after the resin 111 is pushed in, and the hole of the resin 110 formed by the injection of the injection tube (injector) 202 And the step of covering the entire periphery of the resin 111 with the resin 110 (FIG. 2D).
  • the resin 111 receives the light of the semiconductor light emitting element 101 and fluoresces, and the different excitation fluorescence based on the particle diameter
  • the resin 110 includes a plurality of semiconductor fine particles having a spectrum (semiconductor fine particles having an excitation fluorescence spectrum corresponding to the particle diameter) and does not transmit oxygen.
  • an oxygen-resistant resin 110 having no oxygen permeability is poured into the concave portion of the container 105 to which the semiconductor light emitting element 101 is attached using the injection tube 201 (FIG. 2A). Thereafter, after the pouring of the resin 110 is completed, the injection tube 201 is removed. At this stage, the resin 110 is not cured.
  • the tip of the injection tube 202 having the resin 111 therein is inserted into the resin 110 (FIG. 2B), and the resin 111 is slowly injected into the resin 110 (FIG. 2C). At this time, the periphery of the resin 111 is covered with the resin 110 due to the surface tension of the resin 110.
  • the injection tube 202 is slowly pulled out from the resin 110.
  • the resin 110 is automatically closed by the flow of the resin 110 (FIG. 2D).
  • the entire periphery of the resin 111 including the quantum dot phosphor is completely covered with the oxygen resistant resin 110 having no oxygen permeability, so that the light emission is highly reliable.
  • a device can be realized.
  • the difference in thermal expansion coefficient between the resin 111 and the resin 110 is 10% or less by adding an appropriate additive to the fluorescent member 130.
  • the inventors of the present application set the difference in coefficient of thermal expansion to 10% or less, so that even if the fluorescent member 130 receives a thermal shock or the like, cracks occur between the resin 110 and the resin 111 or between the resin 110 and the resin 111 itself due to expansion and contraction. It has been found that reliability can be improved without entering oxygen from the outside.
  • the simplest way to achieve this is to use the same polyfuca vinyl (PVF) for resin 111 and resin 110.
  • the coefficient of thermal expansion (linear expansion) of polyfuca vinyl is 7.1 to 7.8 ⁇ 10 ⁇ 5 / K.
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • ECTFE chlorotrifluoroethylene / ethylene copolymer
  • the resin 110 can be used.
  • ECTFE has a higher melting point than PVF (245 ° C. relative to 203 ° C.) and can further improve heat resistance.
  • FIG. 3 is a cross-sectional view illustrating a configuration of a light emitting device according to the second embodiment of the present invention. Below, only a different part from 1st Embodiment is demonstrated.
  • the basic configuration of this light emitting device is the same as that of the light emitting device of FIG. 1, except that the resin 111 containing the quantum dot phosphor is covered with two resins 301 and 302 having no oxygen permeability. Is different. That is, the resin 110 is divided into a plurality of resins 301 and 302 as third regions that do not transmit oxygen, and the resin 110 as the second region sandwiches the resin 111 as the first region. In this state, the resin 301 and 302 are located on the surface of the semiconductor light emitting element 101 and are in contact with the resin 111 and cover the entire periphery of the resin 111. Polyhucker vinyl can be used for the resins 301 and 302. With this structure, the resin 111 does not come into contact with oxygen, and a highly reliable light-emitting device can be obtained.
  • the operation principle of the light emitting device of the present embodiment is the same as that of the light emitting device of FIG. 1, and the blue light 121 emitted from the semiconductor light emitting element 101 is emitted to the outside, and at the same time, a part of the quantum dot fluorescence in the resin 111
  • the color is converted by the body, and the mixed light 122 of green and red is extracted outside.
  • light emission of the three primary colors of blue, green, and red results in white.
  • FIGS. 4A to 4C are cross-sectional views showing manufacturing steps of the light emitting device of this embodiment. Although not described, each step in FIGS. 4A to 4C is performed in a nitrogen atmosphere or in vacuum in order to block oxygen.
  • the oxygen-resistant resin 301 is poured into the recess of the container 105 to which the semiconductor light emitting element 101 is attached using the injection tube 401 containing the resin 301 (FIG. 4A).
  • the resin 111 is poured onto the resin 301 using the injection tube 202 containing the resin 111 (FIG. 4B). At this time, a part of the surface of the resin 301 is left exposed around the resin 111.
  • the oxygen resistant resin 302 is poured onto the exposed surface of the resin 111 and the surface of the resin 111 (FIG. 4C). At this time, the exposed portion of the resin 301 around the resin 111 is in contact with the resin 302.
  • the entire periphery of the resin 111 including the quantum dot phosphor is completely covered with the oxygen resistant resins 301 and 302 having no oxygen permeability. It can suppress that a body photo-oxidizes.
  • the thermal expansion coefficients of the resin 111 and the resins 301 and 302 may be combined, for example, the difference in thermal expansion coefficient may be 10% or less.
  • the difference in thermal expansion coefficient may be 10% or less.
  • FIG. 5 is a cross-sectional view showing a configuration of a light emitting device according to the third embodiment of the present invention. Below, only a different part from 2nd Embodiment is demonstrated.
  • This light emitting device is different from the light emitting device of the second embodiment in that a metal layer 501 is inserted at the interface between the container 105 and the fluorescent member 130.
  • the light emitting device includes a semiconductor light emitting element 101, a fluorescent member 130 that receives light from the semiconductor light emitting element 101 and fluoresces, and a metal layer 501 in contact with the fluorescent member 130.
  • the fluorescent member 130 has different excitations based on particle diameters. It is composed of a resin 111 as a first region including a plurality of semiconductor fine particles having a fluorescence spectrum (semiconductor fine particles having an excitation fluorescence spectrum corresponding to the particle diameter) and resins 301 and 302 as second regions that do not transmit oxygen. The entire periphery of the resin 111 is covered with the resins 301 and 302 and the metal layer 501.
  • 80 nm of aluminum is deposited as the metal layer 501.
  • oxygen can be prevented from entering from the surface of the container 105 with the metal layer 501 and the resins 301 and 302, and higher gas barrier properties can be realized.
  • FIG. 6 is a cross-sectional view showing a configuration of a light emitting device according to the fourth embodiment of the present invention. Below, only a different part from 1st Embodiment is demonstrated.
  • This light emitting device is different from the light emitting device of the first embodiment in that the quantum dot phosphor 601 contained in the resin 111 is used as it is instead of the resin 111 containing the quantum dot phosphor used in FIG. This is the point. That is, the first region is a point constituted only by the quantum dot phosphor 601 as a plurality of semiconductor fine particles.
  • TOPO trioctylphosphine oxide
  • TOPO is used at the time of preparing InP quantum dot phosphors and has a function not to aggregate the quantum dot phosphors as ligands.
  • a resin containing a quantum dot phosphor is unnecessary, which can contribute to cost reduction.
  • FIG. 7 is a cross-sectional view showing a configuration of a light emitting device according to the fifth embodiment of the present invention. Below, only a different part from 2nd Embodiment is demonstrated.
  • This light-emitting device is different from the light-emitting device of the second embodiment in that a 50 nm-thickness SiN film 701 is deposited in the recess of the container 105 in which the semiconductor light-emitting element 101 and the gold wire 106 are formed. . That is, the entire periphery of the resin 111 is covered with the resins 301 and 302 and the SiN film 701.
  • the SiN film 701 has extremely low oxygen permeability.
  • the SiN film 701 covers the semiconductor light emitting element 101.
  • a silicate resin is formed as the resin 111 containing the resins 301 and 302 and the quantum dot phosphor. Silicate can be used for the resin 301, and polyfuca vinyl can be used for the resin 302.
  • oxygen transmission from the container 105 can be blocked by the SiN film 701. Furthermore, since the resin 301 and the resin 111 (including the phosphor) can be formed of the same silicate, it is possible to suppress the occurrence of cracks at the interface between the resin 301 and the resin 111 due to heat from the semiconductor light emitting element 101. As a result, a highly reliable light emitting device can be realized.
  • the quantum dot phosphor a material emitting green light having a central wavelength of 530 nm and red light having a central wavelength of 630 nm is used as in the first embodiment.
  • FIG. 8 is a cross-sectional view showing a configuration of a light emitting device according to the sixth embodiment of the present invention. Only the parts different from the fifth embodiment will be described below.
  • This light emitting device is different from the light emitting device of the fifth embodiment in that the resin 301 is not formed between the SiN film 701 and the resin 111.
  • a SiN film 701 having a film thickness of 50 nm is formed by vapor deposition in the recess of the container 105 in which the semiconductor light emitting element 101 and the gold wire 106 are formed.
  • the SiN film 701 has extremely low oxygen permeability.
  • a silicate as a resin 111 containing a quantum dot phosphor and a resin 801 are formed on the SiN film 701.
  • the resin 801 is made of polyfuca vinyl.
  • oxygen transmission from the container 105 can be blocked by the SiN film 701. Furthermore, since the resin 111 is directly formed on the SiN film 701 without intervening between the SiN film 701 and the resin 111, heat generated in the resin 111 including the quantum dot phosphor (color conversion is performed in the phosphor). The heat generated by the Stokes loss during the process can be directly released to the container 105. As a result, the temperature rise of the phosphor could be suppressed. As a result, characteristic deterioration (decrease in quantum efficiency and increase in emission wavelength (color shift)) accompanying temperature rise can be suppressed. Needless to say, the resin containing the quantum dot phosphor is highly reliable because it is wrapped in a material that does not transmit oxygen. Therefore, an extremely reliable white LED can be realized.
  • the quantum dot phosphor a material emitting green light having a central wavelength of 530 nm and red light having a central wavelength of 630 nm is used as in the first embodiment.
  • polyfuca vinyl is used as the oxygen resistant resin, but polystyrene-polyisobutylene-polystyrene block copolymer (SIBS), ethylene-vinyl alcohol copolymer resin (EVOH), polyvinyl alcohol. Resin, polyvinylidene chloride resin (PVDC), amorphous (amorphous) nylon resin, or fluorine-based resin can be used.
  • SIBS polystyrene-polyisobutylene-polystyrene block copolymer
  • EVOH ethylene-vinyl alcohol copolymer resin
  • PVDC polyvinylidene chloride resin
  • amorphous (amorphous) nylon resin or fluorine-based resin
  • the light-emitting device according to the present invention can achieve high reliability, high efficiency, and high color rendering, it is widely useful as a white LED light source for display devices and lighting devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)

Abstract

 本発明は、量子ドット蛍光体の光酸化を抑制し、発光装置は、半導体発光素子(101)と、半導体発光素子(101)の光を受けて蛍光する蛍光部材(130)とを備えており、蛍光部材(130)は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含む樹脂(111)と、酸素を透過しない樹脂(110)とで構成されており、樹脂(111)の全周囲は樹脂(110)で覆われる。

Description

発光装置
 本発明は、蛍光体層に量子ドット蛍光体を用いた発光装置に関するものである。
 照明用、液晶ディスプレイバックライト用などの光源(発光装置)として高輝度白色LED(LED:Light Emitting Diode)が用いられており、光源の高効率化および高演色性化の取り組みが行われている。白色LEDは、青色光を放出する半導体発光素子と緑色蛍光体、黄色蛍光体、赤色蛍光体などを組み合わせることで実現している。蛍光体の種類は、無機蛍光体、有機蛍光体、半導体から構成される量子ドット蛍光体がある。無機蛍光体を用いた白色LEDの例として、特許文献1のようなものがある。
 図9は、特許文献1に開示された従来の発光装置を示す断面図である。
 図9に示すように、従来の発光装置は、紫外線、青色光あるいは緑色光を放出する半導体発光素子1が、電気端子2、3が埋め込まれた容器8内に配置されたものであり、さらに、半導体発光素子1を埋めるように発光物質粒子(無機の発光物質顔料)6を含有する材料5が容器8内を覆っている。
特表平11-500584号公報
 LED光源は小型で省電力なため、ディスプレイデバイスや照明装置のキーデバイスとして用いられており、高輝度白色LEDの高効率化および高演色性化の取り組みが行われている。白色LEDは、青色LED光源と緑色蛍光体や黄色蛍光体との組み合わせが一般的であり、高効率および高演色性の実現には発光特性やエネルギー変換効率の優れた蛍光体が求められている。白色LEDに用いられる一般的な蛍光体は、希土類イオンを付活剤とした結晶微粒子であり、化学的に安定なものが多い。しかし、これらの蛍光体の光吸収効率は希土類の濃度に比例している一方で、濃度が高すぎると濃度消光によって発光効率の低下が生じるため、80%以上の高い量子効率を実現するのが困難である。
 そこで、バンド端光吸収およびバンド端発光を直接利用することで高い量子効率を実現する半導体蛍光微粒子が多数提案されており、特に量子ドット蛍光体と呼ばれる直径が数nmから数十nmの微粒子が、希土類を含まない新しい蛍光体材料として期待されている。量子ドット蛍光体は、量子サイズ効果によって同一材料の微粒子でも粒子径を制御することで可視光線領域において所望の波長帯の蛍光スペクトルを得ることが出来る。また、バンド端による光吸収および蛍光であるため、90%程度の高い外部量子効率を示すことから、高効率かつ高演色性を有する白色LEDを提供することができる。
 しかし、量子ドット蛍光体は粒子径が小さいため、微粒子の表面を占める原子の割合が多くなることから、化学的安定性の低いものが多く、特に高温環境下での励起蛍光においては、量子ドット蛍光体表面の光酸化反応が進行し、急激な発光効率の低下を引き起こすことが大きな課題である。
 そこで本発明は、量子ドット蛍光体の光酸化を抑制し、発光効率の低下を抑えることができる発光装置を提供することを目的とする。
 従来の課題を解決するために、本発明の一態様に係る発光装置は、半導体発光素子と、前記半導体発光素子の光を受けて蛍光する蛍光部材とを備え、前記蛍光部材は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含む第1領域と、酸素を透過しない第2領域とで構成され、前記第1領域の全周囲は前記第2領域で覆われることを特徴とする。この構成によれば、第1領域内の量子ドット蛍光体に酸素が到達することがなく、量子ドット蛍光体の光酸化反応を抑制し、発光装置の発光効率の低下を抑えることができる。
 本発明の一態様に係る発光装置は、第1領域の熱膨張係数と、第2領域の熱膨張係数との差は、10%以下であることを特徴としてもよい。この構成によれば、第1領域と第2領域の熱膨張係数差を起因とした、温度変化時の歪、ストレスなどによるクラック発生を抑制することができる。
 本発明の一態様に係る発光装置は、前記第2領域は、酸素を透過しない複数の第3領域に分割されることを特徴としてもよい。この構成によれば、例えば、第2領域を第2A領域と第2B領域に分けられるとした場合、まず半導体発光素子上に第2A領域を形成し、その中央部に第1領域を形成し、更にその第1領域上およびその周辺に第2B領域を形成することにより、第1領域の全周辺では、第2A領域と第2B領域が直接接触する。この結果、第1領域の周囲を第2領域で覆う構造を容易に形成できる。
 本発明の一態様に係る発光装置は、前記第1領域は、前記半導体微粒子のみによって構成されることを特徴としてもよい。この構成によれば、第1領域に使用する樹脂が不要となり、コストダウンを図ることができる。
 本発明の一態様に係る発光装置は、さらに、前記半導体発光素子が実装された容器を備え、前記第2領域は、前記複数の第3領域が前記第1領域を挟み込んだ状態で、前記半導体発光素子の表面に位置することを特徴としてもよい。この構成によれば、容器を通過した酸素をブロックすることができ、容器の選択の自由度が向上する。
 本発明の一態様に係る発光装置は、前記複数の第3領域は、前記第1領域に接し、前記第1領域の全周囲を覆うことを特徴としてもよい。この構成によれば、製造工数が減り、コストダウンを実現することができる。
 本発明の一態様に係る発光装置は、半導体発光素子と、前記半導体発光素子の光を受けて蛍光する蛍光部材と、前記蛍光部材と接する金属層とを備え、前記蛍光部材は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含む第1領域と、酸素を透過しない第2領域とで構成され、前記第1領域の全周囲は、前記第2領域および前記金属層で覆われることを特徴とする。この構成によれば、金属は酸素透過性が低いので、金属により酸素をブロックすることができ、耐酸素性を向上させることができる。
 本発明の一態様に係る発光装置の製造方法は、半導体発光素子が形成された容器上に第2蛍光部材を形成した後、前記第2蛍光部材に注入管を挿入し、前記注入管の孔を通じて前記第2蛍光部材中に第1蛍光部材を押入れる工程と、前記第1蛍光部材を押し入れた後に注入管を引き抜き、前記注入管の注入により形成された前記第2蛍光部材の孔を前記第2蛍光部材で閉じることによって、前記第1蛍光部材の全周囲を前記第2蛍光部材で覆う工程とを含み、前記第1蛍光部材は、前記半導体発光素子の光を受けて蛍光し、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含み、前記第2蛍光部材は、酸素を透過しないことを特徴としてもよい。この構成によれば、第1蛍光部材の周囲を第2蛍光部材で覆う構造を容易に形成できる。
 本発明の発光装置によれば、量子ドット蛍光体を含む領域は、酸素を透過しない耐酸素性材料で構成された領域により完全に被覆されているので、量子ドット蛍光体表面の光酸化反応を抑制し、急激な発光効率の低下を抑えることができる。
図1は、本発明の第1の実施形態における発光装置の構成を示す断面図である。 図2Aは、本発明の第1の実施形態における発光装置の製造工程を示す断面図である。 図2Bは、本発明の第1の実施形態における発光装置の製造工程を示す断面図である。 図2Cは、本発明の第1の実施形態における発光装置の製造工程を示す断面図である。 図2Dは、本発明の第1の実施形態における発光装置の製造工程を示す断面図である。 図2Eは、本発明の第1の実施形態における発光装置の製造工程を示す断面図である。 図3は、本発明の第2の実施形態における発光装置の構成を示す断面図である。 図4Aは、本発明の第2の実施形態における発光装置の製造工程を示す断面図である。 図4Bは、本発明の第2の実施形態における発光装置の製造工程を示す断面図である。 図4Cは、本発明の第2の実施形態における発光装置の製造工程を示す断面図である。 図5は、本発明の第3の実施形態における発光装置の構成を示す断面図である。 図6は、本発明の第4の実施形態における発光装置の構成を示す断面図である。 図7は、本発明の第5の実施形態における発光装置の構成を示す断面図である。 図8は、本発明の第6の実施形態における発光装置の構成を示す断面図である。 図9は、従来における発光装置の構成を示す断面図である。
 以下、本発明の実施の形態について、図面を用いて詳細に説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、特許請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。また、図面において、実質的に同一の構成、動作、および効果を表す要素については、同一の符号を付す。
 (第1の実施形態)
 図1は、本発明の第1の実施形態における発光装置の構成を示す断面図である。
 この発光装置は、半導体発光素子101と、半導体発光素子101の光を受けて蛍光する蛍光部材130とを備え、蛍光部材130は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子(粒子径に応じた励起蛍光スペクトルを有する半導体微粒子)を含む第1領域としての樹脂111と、酸素を透過しない第2領域としての樹脂110とで構成され、樹脂111の全周囲は、樹脂110で覆われている。樹脂111の熱膨張係数と、樹脂110の熱膨張係数との差は、例えば10%以下である。例えば発光装置は、さらに半導体発光素子101が実装された容器(パッケージ)105を備える。
 発光装置では、樹脂で形成された容器105に、金属の電気端子102、103が組み込まれており、電気端子102上には、InGaN量子井戸を活性層に有する半導体発光素子101が形成されている。半導体発光素子101の上面は金ワイヤー106により電気端子103に接続されている。電気端子102と電気端子103の間に電圧を印可し電流を流すことにより、半導体発光素子101は波長460nmの青色光を発する。
 半導体発光素子101が形成された容器105の凹部には、半導体発光素子101を被覆するように、酸素透過性の無い耐酸素性の樹脂110(蛍光部材130)が形成されている。今回、酸素透過性の無い耐酸素性の樹脂110としてポリフッカビニルを用いた。このポリフッカビニル中には、樹脂111として量子ドット蛍光体を含む例えばシリケート樹脂が形成されている。量子ドット蛍光体はInPをコアとしたコアシェル構造を有しており、その直径は二種類(約4.3nmと約5.5nm)である。この量子ドット蛍光体は光励起により、中心波長530nmの緑色光と中心波長630nmの赤色光を発する。
 半導体発光素子101が発した青色光121は樹脂111を通過するとき、量子ドット蛍光体を励起し緑色と赤色の混合光(混色光)122を発する。この結果、発光装置全体としては、赤、緑、青の三原色が発せられ、白色が得られる。
 ここで量子ドット蛍光体を含む樹脂111の特徴はその周囲がすべて、酸素透過性の無い耐酸素性の樹脂110によって囲まれていることである。これにより、量子ドット蛍光体を含む樹脂111は酸素から遮断される。その結果、量子ドット蛍光体が光酸化により経時変化を起こすことはなく、信頼性の高い発光装置が得られる。
 次に、本実施形態の発光装置の作製方法(製造方法)について述べる。図2A~図2Eは、本実施形態の発光装置の製造工程を示す断面図である。なお、記述していないが図2A~図2Eの各工程は酸素を遮断するため、窒素雰囲気中または真空中で行われる。
 この製造方法は、半導体発光素子101が形成された容器105上に第2蛍光部材としての樹脂110を形成した後、樹脂110に注入管202を挿入し、注入管202の孔を通じて樹脂110中に第1蛍光部材としての樹脂111を押入れる工程(図2B、図2C)と、樹脂111を押し入れた後に注入管202を引き抜き、注入管(注入器)202の注入により形成された樹脂110の孔を樹脂110で閉じることによって、樹脂111の全周囲を樹脂110で覆う工程(図2D)とを含み、樹脂111は、半導体発光素子101の光を受けて蛍光し、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子(粒子径に応じた励起蛍光スペクトルを有する半導体微粒子)を含み、樹脂110は、酸素を透過しない。
 すなわち、まず、半導体発光素子101が取り付けられた容器105の凹部に注入管201を用いて、酸素透過性の無い耐酸素性の樹脂110を流し込む(図2A)。その後、樹脂110の流し込みが終了した後、注入管201をのける。この段階では樹脂110の硬化は行わない。
 次に、樹脂111を内部に有する注入管202の先端を樹脂110に差込み(図2B)、ゆっくりと樹脂111を樹脂110の内部に注入する(図2C)。このさい、樹脂110の表面張力により樹脂111の周囲は、樹脂110によって覆われる。
 次に、樹脂111の必要量を注入した後、注入管202をゆっくりと樹脂110から引き抜く。この引き抜く際、樹脂110の流動により、注入管202による樹脂110の穴は自動的にふさがれる(図2D)。
 最後に、樹脂110、111の熱硬化を行い、図1の発光装置は完成する(図2E)。
 以上のように、本実施形態の発光装置によれば、量子ドット蛍光体を含む樹脂111の全周囲は、酸素透過性の無い耐酸素性の樹脂110によって完全に覆われるので、信頼性の高い発光装置を実現できる。
 なお、蛍光部材130に適度な添加剤を加えることにより、樹脂111と樹脂110の熱膨張係数の差を10%以下にすることが望ましい。本願発明者らは熱膨張係数の差を10%以下にすることにより、蛍光部材130が熱衝撃などを受けても、伸縮により、樹脂110と樹脂111の間や樹脂110、111自体に亀裂が入り、酸素が外部から入り込んでしまうこともなく、信頼性の向上を得ることができることを見出した。これを実現するもっとも簡単な方法は、樹脂111および樹脂110に同じポリフッカビニル(PVF)を用いることである。ポリフッカビニルの熱膨張係数(線膨張)は、7.1~7.8x10-5/Kである。例えば、ECTFE(クロロトリフルオエチレン・エチレン共重合)は比較的酸素透過性が低く、かつ、線膨張係数が8x10-5/KとPVFに近く、PVFとECTFEの異なる樹脂を、別々に樹脂111と樹脂110に用いることが可能である。ECTFEはPVFより融点が高く(203℃に対して245℃)、より耐熱性を向上できる。
 (第2の実施形態)
 図3は、本発明の第2の実施形態における発光装置の構成を示す断面図である。以下では、第1の実施形態と異なる部分についてのみ説明する。
 この発光装置の基本的な構成は図1の発光装置と同じであるが、量子ドット蛍光体を含む樹脂111が、酸素透過性のない二つの樹脂301、302によって周囲を覆われている点が異なっている。つまり、樹脂110が酸素を透過しない複数の第3領域としての複数の樹脂301、302に分割され、第2領域としての樹脂110は、樹脂301、302が第1領域としての樹脂111を挟み込んだ状態で、半導体発光素子101の表面に位置し、樹脂301、302は、樹脂111に接し、樹脂111の全周囲を覆っている点が異なっている。樹脂301、302にはポリフッカビニルを用いることができる。この構成にすることにより、樹脂111は酸素に接することなく、高い信頼性の発光装置を得ることができる。
 本実施形態の発光装置の動作原理は図1の発光装置と同じであり、半導体発光素子101から放射された青色光121が外部に放射されると同時に、一部が樹脂111内の量子ドット蛍光体によって色変換され、緑色と赤色の混合光122となって外部に取り出される。この結果、青、緑、赤の三原色の発光となり、白色となる。
 次に、本実施形態の発光装置の作製方法について述べる。図4A~図4Cは、本実施形態の発光装置の製造工程を示す断面図である。なお、記述していないが図4A~図4Cの各工程は酸素を遮断するため、窒素雰囲気中または真空中で行われる。
 まず、樹脂301を含む注入管401を用いて、半導体発光素子101が取り付けられた容器105の凹部に、耐酸素性の樹脂301を流し込む(図4A)。
 次に、樹脂111を含む注入管202を用いて、樹脂111を樹脂301の上に流し込む(図4B)。このとき、樹脂111の周囲には樹脂301の表面が一部露出したままにしておく。
 次に、樹脂302を含む注入管402を用いて、耐酸素性の樹脂302を樹脂111の露出した表面上と樹脂111の表面上とに流し込む(図4C)。このとき、樹脂111の周囲の樹脂301露出部は、樹脂302と接するようにする。
 最後に、樹脂111、301、302の熱硬化を行い、図3の発光装置は完成する。
 以上のように、本実施形態の発光装置によれば、量子ドット蛍光体を含む樹脂111の全周囲は、酸素透過性の無い耐酸素性の樹脂301、302によって完全に覆われるため、量子ドット蛍光体が光酸化することを抑制することができる。
 なお、蛍光部材130に適度な添加剤を加えることにより、樹脂111と樹脂301、302の熱膨張係数を合わせこみ、例えば熱膨張係数の差を10%以下としてもよい。これによって、蛍光部材130が熱衝撃などを受けても、伸縮により、樹脂301、302と樹脂111の間や樹脂111、301、302自体に亀裂が入り、酸素が外部から入り込んでしまうこともなく、信頼性の向上を得ることができる。
 (第3の実施形態)
 図5は、本発明の第3の実施形態における発光装置の構成を示す断面図である。以下では、第2の実施形態と異なる部分についてのみ説明する。
 この発光装置が第2の実施形態の発光装置と異なる点は、容器105と蛍光部材130の界面に金属層501が挿入されている点である。
 この発光装置は、半導体発光素子101と、半導体発光素子101の光を受けて蛍光する蛍光部材130と、蛍光部材130と接する金属層501とを備え、蛍光部材130は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子(粒子径に応じた励起蛍光スペクトルを有する半導体微粒子)を含む第1領域としての樹脂111と、酸素を透過しない第2領域としての樹脂301、302とで構成され、樹脂111の全周囲は、樹脂301、302および金属層501で覆われる。
 本実施形態では、金属層501としてアルミニウムが80nm蒸着される。
 以上のように、本実施形態の発光装置によれば、容器105の表面から酸素が入ることを金属層501および樹脂301、302で阻止することができ、より高いガスバリア性を実現できる。
 (第4の実施形態)
 図6は、本発明の第4の実施形態における発光装置の構成を示す断面図である。以下では、第1の実施形態と異なる部分についてのみ説明する。
 この発光装置が第1の実施形態の発光装置と異なる点は、図1で用いていた、量子ドット蛍光体を含む樹脂111の代わりに、樹脂111が含んでいた量子ドット蛍光体601がそのまま用いられている点である。つまり、第1領域は、複数の半導体微粒子としての量子ドット蛍光体601のみによって構成される点である。
 量子ドット蛍光体601であるInP量子ドット蛍光体の周囲には、TOPO(トリオクチルフォスフィンオキサイド)が形成されたまま、酸素を透過しない樹脂110内に溶け込んでいる。TOPOはInP量子ドット蛍光体作製時に用い、かつ、リガンドとして量子ドット蛍光体を凝集させない働きを有する。
 以上のように、本実施形態の発光装置によれば、量子ドット蛍光体を含有させる樹脂が不要になりコストダウンに貢献できる。
 (第5の実施形態)
 図7は、本発明の第5の実施形態における発光装置の構成を示す断面図である。以下では、第2の実施形態と異なる部分についてのみ説明する。
 この発光装置が第2の実施形態の発光装置と異なる点は、半導体発光素子101や金ワイヤー106が形成された容器105の凹部に膜厚50nmのSiN膜701が蒸着形成されている点である。つまり、樹脂111の全周囲を樹脂301、302およびSiN膜701で覆っている点である。
 SiN膜701は酸素透過性が極めて低い。SiN膜701は、半導体発光素子101を覆っている。SiN膜701上に、樹脂301、302、および量子ドット蛍光体を含む樹脂111としてのシリケート樹脂が形成されている。樹脂301にはシリケート、樹脂302にはポリフッカビニルを用いることができる。
 以上のように、本実施形態の発光装置によれば、容器105からの酸素透過をSiN膜701により阻止できる。更には、樹脂301と(蛍光体を含む)樹脂111を同じシリケートで構成できるので、半導体発光素子101からの熱によって、樹脂301と樹脂111の界面にクラックが入ることを抑制することができる。その結果、極めて信頼性の高い発光装置を実現できる。
 なお、量子ドット蛍光体としては、第1の実施形態と同様に中心波長530nmの緑色光と中心波長630nmの赤色光を発するものを用いている。
 (第6の実施形態)
 図8は、本発明の第6の実施形態における発光装置の構成を示す断面図である。以下では、第5の実施形態と異なる部分についてのみ説明する。
 この発光装置が第5の実施形態の発光装置と異なる点は、SiN膜701と樹脂111の間に樹脂301が形成されていない点である。
 この発光装置では、半導体発光素子101や金ワイヤー106が形成された容器105の凹部に膜厚50nmのSiN膜701が蒸着形成されている。SiN膜701は酸素透過性が極めて低い。SiN膜701上に、量子ドット蛍光体を含む樹脂111としてのシリケートと樹脂801が形成されている。樹脂801は、ポリフッカビニルからなる。
 以上のように、本実施形態の発光装置によれば、容器105からの酸素透過をSiN膜701により阻止できる。更には、SiN膜701と樹脂111の間に何も介することなくSiN膜701上に樹脂111を直接形成しているので量子ドット蛍光体を含む樹脂111で発生した熱(蛍光体において色変換を行うときのストークス損失で発生した熱)を容器105に直接逃がすことができる。このことにより、蛍光体の温度上昇を抑制することができた。この結果、温度上昇にともなう特性劣化(量子効率の低下や、発光波長の長波長化(色ずれ))を抑制できる。また量子ドット蛍光体を含む樹脂は酸素を透過しない材料で包まれているため、信頼性が高いことはいうまでもない。よって、極めて信頼性の高い白色LEDを実現できる。
 なお、量子ドット蛍光体としては、第1の実施形態と同様に中心波長530nmの緑色光と中心波長630nmの赤色光を発するものを用いている。
 以上、本発明の発光装置ついて、実施の形態に基づいて説明したが、本発明は、これらの実施の形態に限定されるものではない。本発明の要旨を逸脱しない範囲内で当業者が思いつく各種変形を施したものも本発明の範囲内に含まれる。また、発明の趣旨を逸脱しない範囲で、複数の実施の形態における各構成要素を任意に組み合わせてもよい。
 例えば、第1~6の実施形態において、耐酸素性樹脂としてポリフッカビニルを用いたが、ポリスチレン-ポリイソブチレン-ポリスチレンブロック共重合体(SIBS)、エチレン-ビニルアルコール共重合樹脂(EVOH)、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂(PVDC)、非晶性(アモルファス)ナイロン樹脂、またはフッ素系樹脂を用いることができる。
 本発明に係る発光装置は、高い信頼性、高効率および高演色性を実現することができるので、ディスプレイデバイスや照明装置等の白色LED光源等として広く有用である。
 1、101 半導体発光素子
 2、3、102、103 電気端子
 5 材料
 6 発光物質粒子
 8、105 容器
 106 金ワイヤー
 110、111、301、302、801 樹脂
 121 青色光
 122 混合光
 130 蛍光部材
 201、202、401、402 注入管
 501 金属層
 601 量子ドット蛍光体
 701 SiN膜

Claims (8)

  1.  半導体発光素子と、
     前記半導体発光素子の光を受けて蛍光する蛍光部材とを備え、
     前記蛍光部材は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含む第1領域と、酸素を透過しない第2領域とで構成され、
     前記第1領域の全周囲は、前記第2領域で覆われる
     発光装置。
  2.  前記第1領域の熱膨張係数と、前記第2領域の熱膨張係数との差は、10%以下である
     請求項1に記載の発光装置。
  3.  前記第2領域は、酸素を透過しない複数の第3領域に分割される
     請求項1に記載の発光装置。
  4.  前記第1領域は、前記複数の半導体微粒子のみによって構成される
     請求項1に記載の発光装置。
  5.  さらに、前記半導体発光素子が実装された容器を備え、
     前記第2領域は、前記複数の第3領域が前記第1領域を挟み込んだ状態で、前記半導体発光素子の表面に位置する
     請求項3に記載の発光装置。
  6.  前記複数の第3領域は、前記第1領域に接し、前記第1領域の全周囲を覆う
     請求項5に記載の発光装置。
  7.  半導体発光素子と、
     前記半導体発光素子の光を受けて蛍光する蛍光部材と、
     前記蛍光部材と接する金属層とを備え、
     前記蛍光部材は、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含む第1領域と、酸素を透過しない第2領域とで構成され、
     前記第1領域の全周囲は、前記第2領域および前記金属層で覆われる
     発光装置。
  8.  半導体発光素子が形成された容器上に第2蛍光部材を形成した後、前記第2蛍光部材に注入管を挿入し、前記注入管の孔を通じて前記第2蛍光部材中に第1蛍光部材を押入れる工程と、
     前記第1蛍光部材を押し入れた後に注入管を引き抜き、前記注入管の注入により形成された前記第2蛍光部材の孔を前記第2蛍光部材で閉じることによって、前記第1蛍光部材の全周囲を前記第2蛍光部材で覆う工程とを含み、
     前記第1蛍光部材は、前記半導体発光素子の光を受けて蛍光し、粒子径に基づく異なる励起蛍光スペクトルを有する複数の半導体微粒子を含み、
     前記第2蛍光部材は、酸素を透過しない
     発光装置の製造方法。
PCT/JP2012/001687 2011-06-29 2012-03-12 発光装置 WO2013001686A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280031639.5A CN103650181A (zh) 2011-06-29 2012-03-12 发光装置
US14/140,332 US20140103384A1 (en) 2011-06-29 2013-12-24 Light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-144987 2011-06-29
JP2011144987 2011-06-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/140,332 Continuation US20140103384A1 (en) 2011-06-29 2013-12-24 Light-emitting device

Publications (1)

Publication Number Publication Date
WO2013001686A1 true WO2013001686A1 (ja) 2013-01-03

Family

ID=47423621

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001687 WO2013001686A1 (ja) 2011-06-29 2012-03-12 発光装置

Country Status (4)

Country Link
US (1) US20140103384A1 (ja)
JP (1) JPWO2013001686A1 (ja)
CN (1) CN103650181A (ja)
WO (1) WO2013001686A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129067A1 (ja) * 2013-02-19 2014-08-28 Jsr株式会社 波長変換フィルム、波長変換基板、波長変換素子および表示素子
JP2017501578A (ja) * 2013-12-18 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Led蛍光体パッケージ用の反射性はんだマスク層
JP2018500755A (ja) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 放射放出オプトエレクトロニクス半導体部品およびその製造方法
KR20180131619A (ko) 2016-07-28 2018-12-10 후지필름 가부시키가이샤 백라이트용 필름
WO2019186728A1 (ja) * 2018-03-27 2019-10-03 日立化成株式会社 波長変換部材、バックライトユニット、及び画像表示装置
WO2019216333A1 (ja) * 2018-05-08 2019-11-14 Jnc株式会社 発光デバイス及び発光デバイスの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015190242A1 (ja) * 2014-06-09 2017-04-20 日本電気硝子株式会社 発光デバイス
CN105870302B (zh) * 2016-03-30 2019-01-29 深圳市聚飞光电股份有限公司 一种高色域白光量子点led的封装方法
US11269245B2 (en) * 2017-08-17 2022-03-08 Sony Corporation Light source unit and projection display including a phosphor wheel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327505A (ja) * 2003-04-21 2004-11-18 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2005243801A (ja) * 2004-02-25 2005-09-08 Toshiba Corp Led素子
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
JP2007329177A (ja) * 2006-06-06 2007-12-20 Harison Toshiba Lighting Corp 光素子および発光装置
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2010258469A (ja) * 2008-09-03 2010-11-11 Samsung Electro-Mechanics Co Ltd 量子点波長変換体、量子点波長変換体の製造方法及び量子点波長変換体を含む発光装置
JP2010283045A (ja) * 2009-06-03 2010-12-16 Konica Minolta Opto Inc 蛍光体分散部材およびその製造方法
JP2011114222A (ja) * 2009-11-27 2011-06-09 Sharp Corp 半導体発光装置、半導体発光装置アセンブリ、および半導体発光装置の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880887B2 (ja) * 2004-09-02 2012-02-22 株式会社東芝 半導体発光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004327505A (ja) * 2003-04-21 2004-11-18 Kyocera Corp 発光素子収納用パッケージおよび発光装置
JP2005243801A (ja) * 2004-02-25 2005-09-08 Toshiba Corp Led素子
JP2007273498A (ja) * 2006-03-30 2007-10-18 Kyocera Corp 波長変換器および発光装置
JP2007329177A (ja) * 2006-06-06 2007-12-20 Harison Toshiba Lighting Corp 光素子および発光装置
JP2009071005A (ja) * 2007-09-13 2009-04-02 Sony Corp 波長変換部材及びその製造方法、並びに、波長変換部材を用いた発光デバイス
JP2010258469A (ja) * 2008-09-03 2010-11-11 Samsung Electro-Mechanics Co Ltd 量子点波長変換体、量子点波長変換体の製造方法及び量子点波長変換体を含む発光装置
JP2010283045A (ja) * 2009-06-03 2010-12-16 Konica Minolta Opto Inc 蛍光体分散部材およびその製造方法
JP2011114222A (ja) * 2009-11-27 2011-06-09 Sharp Corp 半導体発光装置、半導体発光装置アセンブリ、および半導体発光装置の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014129067A1 (ja) * 2013-02-19 2014-08-28 Jsr株式会社 波長変換フィルム、波長変換基板、波長変換素子および表示素子
JPWO2014129067A1 (ja) * 2013-02-19 2017-02-02 Jsr株式会社 波長変換フィルム、波長変換基板、波長変換素子および表示素子
JP2017501578A (ja) * 2013-12-18 2017-01-12 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Led蛍光体パッケージ用の反射性はんだマスク層
US11189601B2 (en) 2013-12-18 2021-11-30 Lumileds Llc Reflective solder mask layer for LED phosphor package
JP2018500755A (ja) * 2014-12-03 2018-01-11 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH 放射放出オプトエレクトロニクス半導体部品およびその製造方法
KR20180131619A (ko) 2016-07-28 2018-12-10 후지필름 가부시키가이샤 백라이트용 필름
WO2019186728A1 (ja) * 2018-03-27 2019-10-03 日立化成株式会社 波長変換部材、バックライトユニット、及び画像表示装置
WO2019216333A1 (ja) * 2018-05-08 2019-11-14 Jnc株式会社 発光デバイス及び発光デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2013001686A1 (ja) 2015-02-23
US20140103384A1 (en) 2014-04-17
CN103650181A (zh) 2014-03-19

Similar Documents

Publication Publication Date Title
WO2013001686A1 (ja) 発光装置
JP5337106B2 (ja) 半導体発光装置
TWI508329B (zh) 半導體發光裝置及其製造方法
JP4101468B2 (ja) 発光装置の製造方法
JP5076121B2 (ja) 発光ダイオード装置及びその製作方法
WO2012029695A1 (ja) 発光装置とその製造方法
US7098482B2 (en) Monolithic white light emitting device
US20090242917A1 (en) Light-emitting device including light-emitting diode
US20120161185A1 (en) Light emitting diodes
JP2009510741A (ja) オプトエレクトロニクス構成素子を製造する方法及び電磁ビームを放出するオプトエレクトロニクス構成素子
US20100171134A1 (en) Optical converter and manufacturing method thereof and light emitting diode
TWI441351B (zh) 白色發光二極體晶片及其製造方法
JP6552516B2 (ja) 蛍光体高濃度充填ledパッケージ
JP2014203932A (ja) 発光装置
KR20180090002A (ko) 발광 다이오드 패키지
WO2018012585A1 (ja) 発光ダイオードおよび発光装置
TW201510178A (zh) 用於發光裝置之磷光體組件
TWI517432B (zh) 發光元件之製造方法
TW201543713A (zh) 用於發光二極體之顏色轉換基板及其製造方法
CN110402498B (zh) 具有改善的显色性的发光二极管照明装置及发光二极管灯丝
JP2002246651A (ja) 発光ダイオード及びその製造方法
KR20110102061A (ko) Led 소자 및 그 제조 방법
US20200194631A1 (en) Method for Producing a Light-Emitting Semiconductor Device and Light-Emitting Semiconductor Device
JP6743630B2 (ja) 発光装置およびその製造方法
KR101360073B1 (ko) 발광다이오드용 양자점 및 이를 이용한 백색 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522684

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803691

Country of ref document: EP

Kind code of ref document: A1