WO2013001685A1 - Composite phosphor and light-emitting device - Google Patents

Composite phosphor and light-emitting device Download PDF

Info

Publication number
WO2013001685A1
WO2013001685A1 PCT/JP2012/001674 JP2012001674W WO2013001685A1 WO 2013001685 A1 WO2013001685 A1 WO 2013001685A1 JP 2012001674 W JP2012001674 W JP 2012001674W WO 2013001685 A1 WO2013001685 A1 WO 2013001685A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
phosphor particles
composite
particles
light emitting
Prior art date
Application number
PCT/JP2012/001674
Other languages
French (fr)
Japanese (ja)
Inventor
山中 一彦
瀧川 信一
琢磨 片山
真治 吉田
中西 秀行
田中 毅
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2013001685A1 publication Critical patent/WO2013001685A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/7736Vanadates; Chromates; Molybdates; Tungstates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/0883Arsenides; Nitrides; Phosphides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/57Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing manganese or rhenium
    • C09K11/572Chalcogenides
    • C09K11/574Chalcogenides with zinc or cadmium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85909Post-treatment of the connector or wire bonding area
    • H01L2224/8592Applying permanent coating, e.g. protective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to a phosphor used in a light emitting device that emits white light in combination with a semiconductor light emitting element, and more particularly to a composite phosphor and a light emitting device for emitting light with high color rendering and color reproducibility. is there.
  • the light emitted from the light emitting device is pseudo white light which is a combination of blue light and yellow light, and has a problem of poor color rendering.
  • FIG. 10 is a diagram illustrating a configuration of a conventional light emitting device.
  • the first phosphor is an yttrium-aluminum-garnet-based phosphor particle
  • the second phosphor is a phosphor particle made of CaAlSiN 3 crystal to which europium (Eu) is added.
  • a light-emitting device 1001 shown in FIG. 10 is a shell-type white light-emitting diode lamp, and has two lead wires 1002 and 1003. Specifically, the light emitting device 1001 includes two lead wires 1002 and 1003, a blue semiconductor light emitting element 1004, a thin gold wire 1005, a first resin 1006, a phosphor mixture 1007, and a second resin 1008. It consists of and.
  • the lead wire 1002 has a recess, and the blue semiconductor light emitting element 1004 is placed in the recess.
  • the lower electrode and the bottom surface of the recess of the lead wire 1002 are electrically connected by a conductive paste, and the upper electrode and the lead wire 1003 are electrically connected by a gold wire 1005. Yes.
  • the phosphor mixture 1007 is a mixture of the first phosphor and the second phosphor, and is dispersed in the first resin 1006 and mounted in the vicinity of the blue semiconductor light emitting element 1004.
  • the first resin 1006 is transparent and covers the entire blue semiconductor light emitting element 1004.
  • the second resin 1008 is transparent and seals the lead resin 1006 including the lead wire 1003 and the tip of the lead wire 1002 including the recess, the blue semiconductor light emitting element 1004 and the phosphor mixture 1007.
  • the second resin 1008 is formed in a substantially cylindrical shape as a whole, and the tip portion thereof is a lens-shaped curved surface.
  • This second resin 1008 is commonly referred to as a shell type because of this shape.
  • the first phosphor and the second phosphor are mixed at a predetermined mixing ratio, and the mixed powder is mixed with the epoxy resin at a predetermined weight% concentration, and this is dispensed using a dispenser. By dropping an appropriate amount, the first resin 1006 containing the phosphor mixture 1007 dispersed therein is formed.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite phosphor and a light-emitting device in which distribution does not occur in the concentration of the plurality of phosphors in the phosphor-containing resin even if time elapses.
  • a composite phosphor according to an embodiment of the present invention is a composite phosphor composed of at least two kinds of phosphor particles having different particle diameters, and the first phosphor particles are And having a plurality of second phosphor particles in close contact with the surface, wherein the first phosphor particles are larger than the second phosphor particles.
  • the particle diameter of the first phosphor particles is 100 times or more than the particle diameter of the second phosphor particles.
  • the surface area of the first phosphor particles can be sufficiently increased with respect to the second phosphor particles having characteristics different from those of the first phosphor particles. Thereby, in this composite fluorescent substance, it becomes easy to adjust the quantity of the 2nd fluorescent substance particle with respect to the 1st fluorescent substance particle.
  • the particle diameter of the first phosphor particles is 1 ⁇ m to 100 ⁇ m.
  • the second phosphor particles are composed of quantum dot phosphors.
  • the phosphor particles are configured as nano-sized quantum dot phosphors, the phosphor particles can be made sufficiently small compared to the first phosphor particles. Thereby, a composite phosphor can be easily configured.
  • the center wavelength of the fluorescence spectrum of the first phosphor particles is shorter than the center wavelength of the fluorescence spectrum of the second phosphor particles.
  • the light absorbed by the first phosphor particles generates excitons inside the first phosphor particles, and in the recombination process, the light is non-radiatively recombined at the surface level. Luminous efficiency can be improved by recombining the light emission with the second phosphor particles.
  • the first phosphor particles are composed of a rare earth element activated phosphor.
  • the first phosphor particles are (Y, Gd) 3 Al 4 O 12 : Ce, Y 3 (Al, Ga) 4 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, Ca- ⁇ -sialon: Eu, (Ba, Sr) 2 SiO 4 : Eu, Ca 3 Sc 2 Si 3 O 12: Ce, CaSc 2 O 4 : Ce, ⁇ -sialon: Eu, (Sr, Ba) Si 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu, CaAlSiN 3 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Sr, Ca) S: Eu, Ba 3 Si 6 O 12 N 2: Eu, BaMgAl10O17: (Eu, Mn), SrAl 2 O 4: Eu, (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl
  • the first fluorescent particles can be easily configured.
  • the second phosphor particle is a quantum dot phosphor
  • the quantum dot phosphor is a non-doped quantum dot phosphor or a doped quantum dot phosphor. Consists of.
  • the second phosphor particles can be easily made smaller than the first phosphor particles.
  • the material constituting the non-doped quantum dots is a group III-V compound semiconductor InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, II- It may be configured to be selected from the group consisting of HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, which are group VI compound semiconductors, and mixed crystal thereof.
  • the second phosphor particles can be easily made smaller than the first phosphor particles.
  • the material constituting the doped quantum dot phosphor is composed of ZnS: Mn 2+ , CdS: Mn 2+, and YVO 4: Eu 3+ .
  • the second phosphor particles can be easily made smaller than the first phosphor particles.
  • a light emitting device includes at least the composite phosphor of any of the above aspects and a semiconductor light emitting element.
  • the present invention it is possible to realize a composite phosphor and a light emitting device in which distribution does not occur in the concentration of a plurality of phosphors in the phosphor-containing resin even if time passes.
  • the concentration ratio hardly changes with time even when time passes, and a light emitting device having high color rendering properties and color reproducibility can be stably provided.
  • FIG. 1 is a diagram showing the configuration of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 2 is a diagram showing a configuration of a light emitting device using the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 3A is a diagram showing a design example of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 3B is a diagram showing a design example of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 4A is a diagram showing an example of designing a spectrum of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined.
  • FIG. 4A is a diagram showing an example of designing a spectrum of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined.
  • FIG. 4B is a diagram showing an example of designing a spectrum of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined.
  • FIG. 4C is a diagram showing an example of designing chromaticity coordinates of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined.
  • FIG. 5A is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 5A is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 5B is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 5C is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 6A is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 6B is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 7A is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 7B is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 8 is a diagram showing a configuration of the composite phosphor according to Embodiment 2 of the present invention.
  • FIG. 9 is a diagram showing a configuration of a modification of the composite phosphor according to Embodiment 2 of the present invention.
  • FIG. 10 is a diagram illustrating a configuration of a conventional light emitting device.
  • FIG. 1 is a diagram showing a configuration of a composite phosphor according to Embodiment 1 of the present invention.
  • the composite phosphor 1 includes a first phosphor particle 2 and a second phosphor particle 3.
  • second phosphor particles 3 having a diameter of, for example, 1 nm to 100 nm are attached so as to cover with a predetermined density.
  • the first phosphor particles 2 are dispersed in a base material 2a composed of a material such as yttrium / aluminum / garnet (YAG) in a fluorescence generating portion 2b composed of an activator such as cerium (Ce). Ce-doped YAG phosphor (Ce-activated YAG phosphor).
  • the second phosphor particles 3 are, for example, non-doped quantum dot phosphors, particularly quantum dot phosphors having a core / shell structure.
  • the core material is a compound semiconductor such as InP
  • the shell material is a compound semiconductor such as ZnS.
  • the first phosphor particles 2 generate fluorescence due to the transition between excitation levels of electrons in the activator, and the second phosphor particles 3 are excited in the core material quantized by the size of 100 nm or less. Fluorescence is generated by recombination of the generated electron-hole pairs.
  • the composite phosphor of the present embodiment is configured by combining phosphors having different fluorescence generation principles in different sizes.
  • the material of the first phosphor particles As the material of the first phosphor particles 2, other rare earth element activation such as Eu activated ⁇ sialon crystal, Ce activated CaSc 2 O 4 and Eu activated strontium barium silicate ((Sr, Ba) 2 SiO 4 ) is used. A phosphor may be used. Further, as the material of the second phosphor particles 3, other compound semiconductor materials such as CdSe, CdS, ZnO, ZnSe, AlAs, AlP, AlN, GaAs, GaP, and GaN may be used.
  • the first phosphor particles 2 contain rare earth elements at a predetermined density, and these function as the fluorescence generating part 2b.
  • FIG. 2 is a diagram showing a configuration of a light emitting device using the composite phosphor according to Embodiment 1 of the present invention.
  • a light emitting device 50 shown in FIG. 2 includes a package 10, a semiconductor light emitting element 11, a resin 13, and a composite phosphor 1.
  • the package 10 is configured by, for example, ceramic having predetermined wiring or molding a resin on a metal frame.
  • the semiconductor light emitting element 11 is made of, for example, a nitride semiconductor (Al, In, Ga) N on a sapphire substrate (not shown), mounted on the package 10, and wired with a gold wiring or a bump electrode (not shown).
  • Resin 13 is made of, for example, a silicone resin or an epoxy resin, and the composite phosphor 1 is mixed therein.
  • the resin 13 is applied so as to cover the upper part of the semiconductor light emitting element 11.
  • FIG. 3A is a diagram showing an example of the design of the first phosphor particles 2 and the second phosphor particles 3 in the composite phosphor 1. More specifically, in FIG. 3A, 1) the density of the fluorescence generating portion per unit volume in the first phosphor particle 2 and 2) the second per unit area on the surface of the first phosphor particle 2 are shown. An example of values when the density of the phosphor particles 3 and 3) the light emitting portion of the first phosphor particles 2 and the light emission recombination rate ratio of the second phosphor particles 3 are used as parameters is shown. In the calculation using the above design example, the size of the second phosphor particles 3 is 1 nm to 100 nm, which is negligibly small compared to the size of the first phosphor particles 2. .
  • FIG. 3B is a diagram showing an example of the relationship between the diameter of the first phosphor particle 2 and the light emitting portion of the second phosphor particle 3 and the first phosphor particle 2 in the composite phosphor 1. More specifically, FIG. 3B shows the particle diameter of the first phosphor particles 2 in FIG. 3A and the amount of the second phosphor particles 3 in the composite phosphor 1 / the light emission of the first phosphor particles 2. An example of the relationship with the ratio of parts is shown.
  • the surface area / volume ratio of the phosphor particles decreases as the particle diameter of the first phosphor particles 2 increases, the amount of the second phosphor particles 3 / the first The ratio of the light emission part amount of the phosphor particles 2 becomes small. Further, the light emission part of the first phosphor particle 2 and the second phosphor particle 3 have different fluorescence lifetimes.
  • the combination in FIG. 3B for example, if there is a difference of 1000 times in the fluorescence lifetime between the light emitting part of the first phosphor particle 2 and the second phosphor particle 3 (for example, in the case of the combination 2 in FIG. 3A), the combination in FIG. 3B.
  • FIG. 3B As shown in FIG.
  • the ratio of the amount of the second phosphor particles 3 / the amount of the light emitting part of the first phosphor particles 2 is 1. / 10 times to 10 times can be adjusted.
  • FIGS. 4A to 4C are diagrams showing an example of designing a spectrum of a light emitting device in which a composite phosphor and a semiconductor light emitting element are combined.
  • FIG. 4A shows an example of a combination of ratios of the first phosphor particles 2 and the second phosphor particles 3 of the composite phosphor.
  • FIG. 4B shows a calculated spectrum of the light emitting device 50 based on the design of FIG. 4A.
  • FIG. 4C shows an example of chromaticity coordinates obtained from the spectrum of FIG. 4B.
  • FIG. 4A shows an example in which the first phosphor particles 2 are Ce-activated YAG phosphors, and the second phosphor particles 3 are non-doped quantum dot phosphors having an InP / ZnS core-shell structure. .
  • the second phosphor particles 3 are designed to have a peak wavelength of 600 nm and a half width of 50 nm.
  • the spectrum can be freely changed as shown in FIG. 4B. be able to.
  • the chromaticity coordinates calculated based on the spectrum of FIG. 4B are shown in FIG. 4C.
  • the chromaticity coordinates and the color temperature can be freely changed by changing the excitation light absorption amount ratio (total number of second phosphor particles 3 / total number of first phosphor particles 2). Can do.
  • the second phosphor particles 3 are, for example, quantum dot phosphors, and there are various methods for producing quantum dot phosphors, such as a sol-gel method (complex polymerization method), a reverse micelle method, and a colloid deposition method.
  • FIG. 5A is a diagram schematically showing a method for producing a quantum dot phosphor.
  • a container 60 that is a flask is held in a vacuum, and for example, trioctylphosphine oxide (TOPO) is placed in the container 60. Keep at 300 ° C with heater. Subsequently, a mixed solution of trisdimethylaminophosphine [P (NMe2) 3], indium chloride (InCl3), trioctylphosphine (TOP), and TOPO is injected. After that, the InP nanoparticles are formed by adjusting to a predetermined temperature and keeping it for a predetermined time.
  • TOPO trioctylphosphine oxide
  • the mixed solution is combined with a centrifuge and replaced with TOPO, thereby generating a colloidal solution in which InP nanoparticles are mixed with TOPO.
  • a mixed solution of zinc diethyldithiocarbamate ([(C2H5) 2NCS2] 2Zn) and TOP / TOPO into this solution, second phosphor particles that are InP / ZnS core-shell quantum dot phosphors A colloidal solution in which 3 is dispersed is produced.
  • the colloidal solution 61 in which the second phosphor particles 3 are dispersed in TOPO is produced by replacing the colloidal solution with TOPO again using a centrifuge.
  • the first phosphor particles 2 such as Ce-activated YAG phosphor particles having a hydrophobic group added to the surface are dropped into the colloid solution 61 and stirred.
  • a predetermined amount of the second phosphor particle 3 is adsorbed on the surface of the first phosphor particle 2, but the second phosphor particle 3 of a predetermined amount or more is the second phosphor particle 3. They are not attracted by the repulsive force 65 between them.
  • the composite phosphor 1 which is the first phosphor particle 2 having a predetermined amount of the second phosphor particles 3 attached to the surface and the unnecessary second phosphor particles 3.
  • a mixed liquid 62 is generated.
  • a solution having a high concentration of the composite phosphor 1 is extracted from the solution in which the composite phosphor 1 and the second phosphor particles 3 are mixed, and a solvent free of impurities is added thereto.
  • the second mixed solution 63 in which the high-purity composite phosphor 1 is dispersed in a solution of, for example, TOPO can be produced.
  • a composite phosphor-containing resin (resin 13) in which the composite phosphor 1 is contained in the resin. ) Can be manufactured.
  • 6A and 6B are diagrams for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
  • FIG. 6A schematically shows an example of a mounting method of the resin 66 in which the first phosphor particles 2 and the second phosphor particles 3 are simply mixed
  • FIG. 6B shows the present invention.
  • An example of a mounting method of the resin 13 mixed with the composite phosphor 1 is schematically shown.
  • the semiconductor light emitting element 11 which is a light emitting diode made of a nitride semiconductor having an InGaN light emitting layer, for example, has a concave portion of the package 10 in which a concave shape is formed on the uppermost surface.
  • a step of forming the light emitting device 50 by dropping the phosphor-containing resin onto the one mounted on the bottom surface is shown.
  • the phosphor-containing resin is placed in, for example, the syringe 20 and dropped from the upper part of the semiconductor light emitting element 11.
  • the syringe 20 contains a resin 66 (phosphor-containing resin) in which a plurality of phosphor particles are mixed in order to improve color rendering.
  • a resin 66 phosphor-containing resin
  • first phosphor particles 2 and second phosphor particles 3 having greatly different particle diameters are mixed.
  • the concentration ratio between the first phosphor particles 2 and the second phosphor particles 3 is shifted between the syringe upper portion 20a and the syringe lower portion 20b as time passes. This suggests that the variation cannot be reduced only by adjusting the amount of the phosphor-containing resin dropped into the package 10.
  • the concentration of the composite phosphor 1 is distributed over time.
  • the ratio between the first phosphor particles 2 and the second phosphor particles 3 constituting the composite phosphor 1 does not change. This suggests that variations in the chromaticity coordinates of the light emitting device 50 can be reduced by adjusting the amount of the phosphor-containing resin dropped.
  • FIG. 7A and 7B are diagrams for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. More specifically, FIG. 7A is an enlarged view of the first phosphor particles 2, and in the case where only the first phosphor particles 2 are included, excitation absorbed by the first phosphor particles 2 The process by which light is extracted as fluorescence is schematically shown. FIG. 7B is an enlarged view of the composite phosphor 1 and schematically shows a process in which excitation light absorbed by the composite phosphor 1 is extracted as fluorescence.
  • the non-radiative recombination via the surface defect 2c is more effective.
  • the emission recombination of the second phosphor particles 3 is prioritized and emitted as fluorescence 77. Thereby, the loss by the surface defect 2c can be reduced.
  • the semiconductor light emitting element 11 is a light emitting diode, but a light emitting element such as a semiconductor laser or super luminescent may be used.
  • the present invention is not limited thereto.
  • the second phosphor particle 3 is a non-doped quantum dot, and a part of the constituent material has been described.
  • the present invention is not limited to this.
  • group III-V compound semiconductors such as InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, and II-VI group compound semiconductors. It can be selected from the group consisting of HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, and mixed crystal crystals thereof.
  • the second phosphor particles 3 need not be non-doped quantum dot phosphors.
  • doped quantum dot phosphors such as ZnS: Mn 2+ , CdS: Mn 2+ and YVO 4: Eu 3+ may be used. it can.
  • the rare earth element serving as the light emitting portion is influenced by quantization due to the quantum dot structure, and can realize a fluorescence lifetime different from that of the light emitting portion of the rare earth activated phosphor, and thus the composite phosphor of the present invention can be realized.
  • both the first phosphor particles 2 and the second phosphor particles 3 can be composed of rare earth activated phosphors.
  • Ce 3+ that makes 4f-5d transition with a trivalent ion as an activator of one phosphor
  • Eu 2+ or Yb 2+ that makes a 4f-5d transition with a divalent ion as an activator of the other phosphor.
  • a combination of phosphors having different fluorescence lifetimes can be realized.
  • an activator of different phosphors it is possible to comprise any one of Eu 3+ , Pr 3+ , Nd 3+ and Sm 3+ that perform 4f-4f transition.
  • FIG. 8 is a diagram showing a configuration of the composite phosphor according to the second embodiment of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the composite phosphor 100 shown in FIG. 8 includes the first phosphor particles 2, the second phosphor particles 3, and the cover layer 9. More specifically, the composite phosphor 100 includes the base material 2a of the first phosphor particles 2 having a plurality of fluorescence generating portions 2b, and the surface of the composite phosphor 1 (base material 2a) Second phosphor particles 3 are arranged.
  • the cover layer 9 is made of a material having a high gas barrier property.
  • the cover layer 9 can be coated with the first phosphor particles 2 and the second phosphor particles 3 so that the quantum dot phosphors can be used even if, for example, the quantum dot phosphors are used for the second phosphor particles 3. There is an effect that there is little deterioration.
  • the cover layer 9 is coated on the surface of the first phosphor particles 2 having the second phosphor particles 3 by, for example, a sol-gel method. Specifically, a silicon alkoxide is first added to an organic solvent containing the composite phosphor 1, and then the silicon alkoxide is partially hydrolyzed to obtain a solution in which the surface of the composite phosphor 1 is coated with a hydrolyzate. Make it. Subsequently, the surface of the composite phosphor 1 is covered with silicon alkoxide by mixing with an aqueous solution containing partially hydrolyzed silicon alkoxide and the above solution.
  • a sol-gel method Specifically, a silicon alkoxide is first added to an organic solvent containing the composite phosphor 1, and then the silicon alkoxide is partially hydrolyzed to obtain a solution in which the surface of the composite phosphor 1 is coated with a hydrolyzate. Make it. Subsequently, the surface of the composite phosphor 1 is covered with silicon alkoxide by
  • the composite phosphor 100 produced in this way can be taken out by centrifugation and purification or dispersed in a resin.
  • FIG. 9 is a diagram showing a configuration of a modification of the composite phosphor according to Embodiment 2 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the composite phosphor 101 in this modification is different from the second embodiment in that the shape of the first phosphor particles 2 is indefinite.
  • the amount of the second phosphor particles 3 can be adjusted by using an effective surface. Further, the surface can be easily covered with a film having a high gas barrier property by a sol-gel method or the like.
  • the present invention it is possible to realize a composite phosphor and a light-emitting device in which distribution does not occur in the concentration of a plurality of phosphors in the phosphor-containing resin even if time passes.
  • the concentration ratio hardly changes with time even when time passes, and a light emitting device having high color rendering properties and color reproducibility can be stably provided.
  • the present invention can realize a phosphor having a stable color rendering property even in a resin, for example, not only home lighting equipment but also display lighting equipment for displaying foodstuffs, or a clear display image. It is useful as a backlight light source for large-screen LCD TVs that require high performance.

Abstract

This composite phosphor (1) is configured from two or more types of phosphor particles with at least different diameters, wherein multiple second phosphor particles (3) adhere on the surface of first phosphor particles (2), and the first phosphor particles (2) are larger than the second phosphor particles (3). By mixing these composite phosphors (1) in a resin (13), the ratio of the first phosphor particles (2) and the second phosphor particles (3) does not change even over time, thus effecting that the chromaticity coordinates of the light emitting device when mounted are not prone to shift.

Description

複合蛍光体および発光装置Composite phosphor and light emitting device
 本発明は、半導体発光素子と組み合わせて白色の光を出射する発光装置に用いられる蛍光体に関し、特に、演色性、色再現性の高い光を放射するための複合蛍光体および発光装置に関するものである。 The present invention relates to a phosphor used in a light emitting device that emits white light in combination with a semiconductor light emitting element, and more particularly to a composite phosphor and a light emitting device for emitting light with high color rendering and color reproducibility. is there.
 青色半導体発光素子と黄色蛍光を放射する黄色蛍光体とを組み合わせた白色発光ダイオードなどの発光装置がある。近年、急速に既存の白熱電球や蛍光灯からこの発光装置に置き換えられている。 There are light emitting devices such as white light emitting diodes that combine a blue semiconductor light emitting element and a yellow phosphor that emits yellow fluorescence. In recent years, the existing incandescent bulbs and fluorescent lamps have been rapidly replaced by this light emitting device.
 しかし、この発光装置から出射される光は、青色光と黄色光との組み合わせである擬似白色光であり、演色性が悪いという課題を有する。 However, the light emitted from the light emitting device is pseudo white light which is a combination of blue light and yellow light, and has a problem of poor color rendering.
 この課題を解決するため、青色光を発光する青色半導体発光素子と黄色光を発する第1の蛍光体の他に、赤色の光を発する第2の蛍光体を第1の蛍光体とを混ぜて青色半導体発光素子上に塗布する発光装置が提案されている(例えば、特許文献1)。 In order to solve this problem, in addition to a blue semiconductor light emitting element that emits blue light and a first phosphor that emits yellow light, a second phosphor that emits red light is mixed with the first phosphor. There has been proposed a light emitting device for coating on a blue semiconductor light emitting element (for example, Patent Document 1).
 以下、特許文献1(従来)の発光装置について説明する。図10は、従来技術の発光装置の構成を示す図である。 Hereinafter, the light emitting device of Patent Document 1 (conventional) will be described. FIG. 10 is a diagram illustrating a configuration of a conventional light emitting device.
 ここでは、第1の蛍光体は、イットリウム・アルミニウム・ガーネット系の蛍光体粒子であり、第2の蛍光体はユーロピウム(Eu)が添加されたCaAlSiN結晶からなる蛍光体粒子である。 Here, the first phosphor is an yttrium-aluminum-garnet-based phosphor particle, and the second phosphor is a phosphor particle made of CaAlSiN 3 crystal to which europium (Eu) is added.
 図10に示す発光装置1001は、砲弾型白色発光ダイオードランプであり、2本のリードワイヤ1002および1003を有している。具体的には、発光装置1001は、2本のリードワイヤ1002および1003と、青色半導体発光素子1004と、金細線1005と、第1の樹脂1006と、蛍光体混合物1007と、第2の樹脂1008とで構成されている。 A light-emitting device 1001 shown in FIG. 10 is a shell-type white light-emitting diode lamp, and has two lead wires 1002 and 1003. Specifically, the light emitting device 1001 includes two lead wires 1002 and 1003, a blue semiconductor light emitting element 1004, a thin gold wire 1005, a first resin 1006, a phosphor mixture 1007, and a second resin 1008. It consists of and.
 リードワイヤ1002は、凹部が形成されており、凹部に青色半導体発光素子1004が載置されている。 The lead wire 1002 has a recess, and the blue semiconductor light emitting element 1004 is placed in the recess.
 青色半導体発光素子1004は、その下部電極とリードワイヤ1002の凹部の底面とが導電性ペーストによって電気的に接続されており、上部電極とリードワイヤ1003とが金細線1005によって電気的に接続されている。 In the blue semiconductor light emitting device 1004, the lower electrode and the bottom surface of the recess of the lead wire 1002 are electrically connected by a conductive paste, and the upper electrode and the lead wire 1003 are electrically connected by a gold wire 1005. Yes.
 蛍光体混合物1007は第1の蛍光体と第2の蛍光体とを混合したものであり、第1の樹脂1006に分散されて、青色半導体発光素子1004近傍に実装されている。 The phosphor mixture 1007 is a mixture of the first phosphor and the second phosphor, and is dispersed in the first resin 1006 and mounted in the vicinity of the blue semiconductor light emitting element 1004.
 第1の樹脂1006は、透明であり、青色半導体発光素子1004の全体を被覆している。 The first resin 1006 is transparent and covers the entire blue semiconductor light emitting element 1004.
 第2の樹脂1008は、透明であり、リードワイヤ1003および凹部を含むリードワイヤ1002の先端部、青色半導体発光素子1004および蛍光体混合物1007を含む第1の樹脂1006を、封止している。言い換えると、第2の樹脂1008は、全体が略円柱形状で形成されており、その先端部がレンズ形状の曲面となっている。この第2の樹脂1008は、この形状から砲弾型と通称されている。 The second resin 1008 is transparent and seals the lead resin 1006 including the lead wire 1003 and the tip of the lead wire 1002 including the recess, the blue semiconductor light emitting element 1004 and the phosphor mixture 1007. In other words, the second resin 1008 is formed in a substantially cylindrical shape as a whole, and the tip portion thereof is a lens-shaped curved surface. This second resin 1008 is commonly referred to as a shell type because of this shape.
 上記従来例の場合では、第1の蛍光体と第2の蛍光体とを所定の混合割合で混ぜ、その混合粉末を所定の重量%の濃度でエポキシ樹脂に混ぜ、これを、ディスペンサを用いて適量滴下することで、蛍光体混合物1007が分散されて含まれる第1の樹脂1006を形成している。 In the case of the above conventional example, the first phosphor and the second phosphor are mixed at a predetermined mixing ratio, and the mixed powder is mixed with the epoxy resin at a predetermined weight% concentration, and this is dispensed using a dispenser. By dropping an appropriate amount, the first resin 1006 containing the phosphor mixture 1007 dispersed therein is formed.
特開2005-235934号公報JP 2005-235934 A
 しかしながら、上記従来例の場合のようにディスペンサを用いて複数の蛍光体粒子を樹脂に混合して半導体発光素子上に滴下したものを用いて実装する方法では、時間とともに蛍光体含有樹脂中の蛍光体の濃度に分布が生じるという課題が生じる。 However, as in the case of the above-described conventional example, in the method of mounting using a dispenser mixed with a plurality of phosphor particles and dropped on a semiconductor light emitting element, the fluorescence in the phosphor-containing resin with time There arises a problem that distribution occurs in the concentration of the body.
 具体的には、重量もしくは/および比重の異なる2種類以上の蛍光体粒子を混合した樹脂においては、時間とともに、比重の重い方の蛍光体粒子が沈下していくため、樹脂中の濃度比がディスペンサ内で変化してしまうという課題を生じる。 Specifically, in a resin in which two or more types of phosphor particles having different weights and / or specific gravities are mixed, the phosphor particles having a heavier specific gravity sink with time, so the concentration ratio in the resin The problem of changing within the dispenser arises.
 その結果、上記従来の発光装置を製造する際に、時間とともにその色度座標が変化してしまう。つまり、安定的に色度座標が同じ発光装置を提供するという目的を達成することができなくなる。 As a result, when the conventional light emitting device is manufactured, the chromaticity coordinates change with time. That is, the object of stably providing a light emitting device having the same chromaticity coordinates cannot be achieved.
 本発明は、上述の事情を鑑みてなされたもので、時間が経過しても蛍光体含有樹脂中の複数の蛍光体の濃度に分布が生じない複合蛍光体および発光装置を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a composite phosphor and a light-emitting device in which distribution does not occur in the concentration of the plurality of phosphors in the phosphor-containing resin even if time elapses. And
 上記目的を達成するために、本発明の一形態に係る複合蛍光体は、少なくとも粒径の異なる2種類以上の蛍光体粒子で構成される複合蛍光体であって、第1の蛍光体粒子は、表面に密着された複数の第2の蛍光体粒子を有し、前記第1の蛍光体粒子は、前記第2の蛍光体粒子よりも大きい。 In order to achieve the above object, a composite phosphor according to an embodiment of the present invention is a composite phosphor composed of at least two kinds of phosphor particles having different particle diameters, and the first phosphor particles are And having a plurality of second phosphor particles in close contact with the surface, wherein the first phosphor particles are larger than the second phosphor particles.
 この構成により、第1の蛍光体粒子に対する第2の蛍光体粒子の比率がほぼ等しい複合蛍光体を同時に大量に構成することができる。それにより、複合蛍光体を用いることで第1の蛍光体粒子からの蛍光と第2の蛍光体粒子からの蛍光がほぼ等しい蛍光体を作製することが可能となる。 With this configuration, a large number of composite phosphors having substantially the same ratio of the second phosphor particles to the first phosphor particles can be formed at the same time. Thereby, it becomes possible to produce a phosphor in which the fluorescence from the first phosphor particles and the fluorescence from the second phosphor particles are substantially equal by using the composite phosphor.
 また、本発明の一形態に係る複合蛍光体では、前記第1の蛍光体粒子の粒径は、前記第2の蛍光体粒子の粒径の100倍以上である。 Further, in the composite phosphor according to an aspect of the present invention, the particle diameter of the first phosphor particles is 100 times or more than the particle diameter of the second phosphor particles.
 この構成により、第1の蛍光体粒子と特性が異なる第2の蛍光体粒子に対して、第1の蛍光体粒子の表面積を十分大きくすることができる。それにより、本複合蛍光体において、第1の蛍光体粒子に対する第2の蛍光体粒子の量を調整することが容易となる。 With this configuration, the surface area of the first phosphor particles can be sufficiently increased with respect to the second phosphor particles having characteristics different from those of the first phosphor particles. Thereby, in this composite fluorescent substance, it becomes easy to adjust the quantity of the 2nd fluorescent substance particle with respect to the 1st fluorescent substance particle.
 また、本発明の一形態に係る複合蛍光体では、前記第1の蛍光体粒子の粒径は、1μm~100μmである。 In the composite phosphor according to one embodiment of the present invention, the particle diameter of the first phosphor particles is 1 μm to 100 μm.
 この構成により、第1の蛍光体粒子に含有される発光部の量と第1の蛍光粒子の表面積の比を調整することが容易となるとともに、第1の蛍光体粒子の表面積に対する体積比を大きくすることができる。それにより、第1の蛍光体粒子表面で欠陥を介した非発光再結合量を低減させることが可能となる。 With this configuration, it becomes easy to adjust the ratio of the amount of the light emitting portion contained in the first phosphor particles and the surface area of the first phosphor particles, and the volume ratio to the surface area of the first phosphor particles can be adjusted. Can be bigger. Thereby, it is possible to reduce the amount of non-radiative recombination via defects on the surface of the first phosphor particles.
 また、本発明の一形態に係る複合蛍光体では、前記第2の蛍光体粒子は、量子ドット蛍光体で構成される。 Further, in the composite phosphor according to one aspect of the present invention, the second phosphor particles are composed of quantum dot phosphors.
 この構成により、第2の蛍光体粒子をナノサイズの量子ドット蛍光体として構成するので、第1の蛍光体粒子と比較し、十分小さい蛍光体粒子とすることができる。それにより、容易に複合蛍光体を構成することが可能となる。 With this configuration, since the second phosphor particles are configured as nano-sized quantum dot phosphors, the phosphor particles can be made sufficiently small compared to the first phosphor particles. Thereby, a composite phosphor can be easily configured.
 また、本発明の一形態に係る複合蛍光体では、前記第1の蛍光体粒子の蛍光スペクトルの中心波長は、前記第2の蛍光体粒子の蛍光スペクトルの中心波長よりも短い。 In the composite phosphor according to one embodiment of the present invention, the center wavelength of the fluorescence spectrum of the first phosphor particles is shorter than the center wavelength of the fluorescence spectrum of the second phosphor particles.
 この構成により、第1の蛍光体粒子に吸収された光が、第1の蛍光体粒子内部で励起子を生成し、その再結合過程において、表面準位で非発光再結合される分の一部を第2の蛍光体粒子で発光再結合させることにより発光効率を向上させることができる。 With this configuration, the light absorbed by the first phosphor particles generates excitons inside the first phosphor particles, and in the recombination process, the light is non-radiatively recombined at the surface level. Luminous efficiency can be improved by recombining the light emission with the second phosphor particles.
 また、本発明の一形態に係る複合蛍光体では、前記第1の蛍光体粒子は、希土類元素賦活蛍光体で構成される。 Further, in the composite phosphor according to one embodiment of the present invention, the first phosphor particles are composed of a rare earth element activated phosphor.
 この構成により、第1の蛍光体粒子の大きさを容易に調整することができるとともに、第1の蛍光粒子内部の発光部である希土類元素の含有量を調整することができる。それにより、容易に発光部の量を調整することができる。 With this configuration, it is possible to easily adjust the size of the first phosphor particles, and it is possible to adjust the content of the rare earth element that is the light emitting portion inside the first phosphor particles. Thereby, the amount of the light emitting part can be easily adjusted.
 ここで、前記第1の蛍光体粒子は、(Y,Gd)Al12:Ce、Y3(Al,Ga)4O12:Ce、Tb3Al5O12:Ce、(Sr,Ca,Ba)SiO:Eu、Ca-α-サイアロン:Eu、(Ba,Sr)SiO:Eu、Ca3Sc2Si3O12:Ce,CaSc:Ce、β-サイアロン:Eu、(Sr,Ba)Si:Eu、BaSi12:Eu、CaAlSiN:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Eu、(Sr,Ca)S:Eu、BaSi12:Eu,BaMgAl10O17:(Eu,Mn)、SrAl:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu、および、(Ba、Sr)MgAl1017:Euのいずれかで構成されるとしてもよい。 Here, the first phosphor particles are (Y, Gd) 3 Al 4 O 12 : Ce, Y 3 (Al, Ga) 4 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, Ca-α-sialon: Eu, (Ba, Sr) 2 SiO 4 : Eu, Ca 3 Sc 2 Si 3 O 12: Ce, CaSc 2 O 4 : Ce, β-sialon: Eu, (Sr, Ba) Si 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu, CaAlSiN 3 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Sr, Ca) S: Eu, Ba 3 Si 6 O 12 N 2: Eu, BaMgAl10O17: (Eu, Mn), SrAl 2 O 4: Eu, (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 2: Eu, and (Ba, Sr) MgAl 10 O 17: may be composed of any of Eu.
 この構成により、前記第1の蛍光粒子を容易に構成することができる。 With this configuration, the first fluorescent particles can be easily configured.
 また、本発明の一形態に係る複合蛍光体では、前記第2の蛍光体粒子は、量子ドット蛍光体であり、前記量子ドット蛍光体は、ノンドープ型量子ドット蛍光体またはドープ型量子ドット蛍光体で構成される。 In the composite phosphor according to an aspect of the present invention, the second phosphor particle is a quantum dot phosphor, and the quantum dot phosphor is a non-doped quantum dot phosphor or a doped quantum dot phosphor. Consists of.
 この構造により、第2の蛍光体粒子を容易に第1の蛍光体粒子と比較し、小さくすることができる。 With this structure, the second phosphor particles can be easily made smaller than the first phosphor particles.
 ここで、前記ノンドープ型量子ドットを構成する材料は、III-V族化合物半導体であるInN、InP、InAs、InSb、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSbおよびBN、II-VI族化合物半導体であるHgS、HgSe、HgTe、CdS、CdSe、CdTe、ZnS、ZnSeおよびZnTe、並びにこれらの混晶結晶よりなる群から選択されて構成されるとしてもよい。 Here, the material constituting the non-doped quantum dots is a group III-V compound semiconductor InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, II- It may be configured to be selected from the group consisting of HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, which are group VI compound semiconductors, and mixed crystal thereof.
 この構成により、第2の蛍光体粒子を容易に第1の蛍光体粒子と比較し、小さくすることができる。 With this configuration, the second phosphor particles can be easily made smaller than the first phosphor particles.
 また、本発明の一形態に係る複合蛍光体では、前記ドープ型量子ドット蛍光体を構成する材料は、ZnS:Mn2+、CdS:Mn2+およびYVO4:Eu3+により構成される。 In the composite phosphor according to an aspect of the present invention, the material constituting the doped quantum dot phosphor is composed of ZnS: Mn 2+ , CdS: Mn 2+, and YVO 4: Eu 3+ .
 この構成により、第2の蛍光体粒子を容易に第1の蛍光体粒子と比較し、小さくすることができる。 With this configuration, the second phosphor particles can be easily made smaller than the first phosphor particles.
 また、上記目的を達成するために、本発明の一形態に係る発光装置は、上記形態のいずれかの複合蛍光体と半導体発光素子とを少なくとも有する。 In order to achieve the above object, a light emitting device according to an aspect of the present invention includes at least the composite phosphor of any of the above aspects and a semiconductor light emitting element.
 この構成により、第1の蛍光体粒子と第2の蛍光体粒子との比率がほぼ等しい複合蛍光体を用いて、蛍光体と半導体発光素子を組み合わせた発光装置を実現できる。それにより、大量に製造しても色度が安定している発光装置を実現することができる。 With this configuration, it is possible to realize a light emitting device in which a phosphor and a semiconductor light emitting element are combined using a composite phosphor in which the ratio of the first phosphor particles and the second phosphor particles is substantially equal. Thereby, a light emitting device having stable chromaticity even when manufactured in large quantities can be realized.
 本発明によれば、時間が経過しても蛍光体含有樹脂中の複数の蛍光体の濃度に分布が生じない複合蛍光体および発光装置を実現することができる。それにより、樹脂中において、時間が経過してもその濃度比が時間とともにほとんど変化せずに、高い演色性・色再現性の発光装置を安定的に提供することができる。 According to the present invention, it is possible to realize a composite phosphor and a light emitting device in which distribution does not occur in the concentration of a plurality of phosphors in the phosphor-containing resin even if time passes. As a result, in the resin, the concentration ratio hardly changes with time even when time passes, and a light emitting device having high color rendering properties and color reproducibility can be stably provided.
図1は、本発明の実施の形態1に係る複合蛍光体の構成を示す図である。FIG. 1 is a diagram showing the configuration of the composite phosphor according to Embodiment 1 of the present invention. 図2は、本発明の実施の形態1に係る複合蛍光体を用いた発光装置の構成を示す図である。FIG. 2 is a diagram showing a configuration of a light emitting device using the composite phosphor according to Embodiment 1 of the present invention. 図3Aは、本発明の実施の形態1に係る複合蛍光体の設計例を示す図である。FIG. 3A is a diagram showing a design example of the composite phosphor according to Embodiment 1 of the present invention. 図3Bは、本発明の実施の形態1に係る複合蛍光体の設計例を示す図である。FIG. 3B is a diagram showing a design example of the composite phosphor according to Embodiment 1 of the present invention. 図4Aは、本発明の実施の形態1に係る複合蛍光体と半導体発光素子を組み合わせた発光装置のスペクトルを設計した例を示す図である。FIG. 4A is a diagram showing an example of designing a spectrum of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined. 図4Bは、本発明の実施の形態1に係る複合蛍光体と半導体発光素子を組み合わせた発光装置のスペクトルを設計した例を示す図である。FIG. 4B is a diagram showing an example of designing a spectrum of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined. 図4Cは、本発明の実施の形態1に係る複合蛍光体と半導体発光素子を組み合わせた発光装置の色度座標を設計した例を示す図である。FIG. 4C is a diagram showing an example of designing chromaticity coordinates of a light emitting device in which the composite phosphor according to Embodiment 1 of the present invention and a semiconductor light emitting element are combined. 図5Aは、本発明の実施の形態1に係る複合蛍光体の製造方法を説明するための図である。FIG. 5A is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention. 図5Bは、本発明の実施の形態1に係る複合蛍光体の製造方法を説明するための図である。FIG. 5B is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention. 図5Cは、本発明の実施の形態1に係る複合蛍光体の製造方法を説明するための図である。FIG. 5C is a diagram for explaining the method for manufacturing the composite phosphor according to Embodiment 1 of the present invention. 図6Aは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。FIG. 6A is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. 図6Bは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。FIG. 6B is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. 図7Aは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。FIG. 7A is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. 図7Bは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。FIG. 7B is a diagram for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. 図8は、本発明の実施の形態2に係る複合蛍光体の構成を示す図である。FIG. 8 is a diagram showing a configuration of the composite phosphor according to Embodiment 2 of the present invention. 図9は、本発明の実施の形態2に係る複合蛍光体の変形例の構成を示す図である。FIG. 9 is a diagram showing a configuration of a modification of the composite phosphor according to Embodiment 2 of the present invention. 図10は、従来技術の発光装置の構成を示す図である。FIG. 10 is a diagram illustrating a configuration of a conventional light emitting device.
 以下に、本発明の各実施形態について図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 (実施の形態1)
 以下に、本発明の実施の形態1に係る複合蛍光体について、図を参照しながら説明する。
(Embodiment 1)
Hereinafter, the composite phosphor according to Embodiment 1 of the present invention will be described with reference to the drawings.
 図1は、本発明の実施の形態1に係る複合蛍光体の構成を示す図である。 FIG. 1 is a diagram showing a configuration of a composite phosphor according to Embodiment 1 of the present invention.
 図1に示す複合蛍光体1は、第1の蛍光体粒子2と第2の蛍光体粒子3とで構成されている。より具体的には、複合蛍光体1の中心部には、直径が例えば1μm~100μmの第1の蛍光体粒子2の母材2aが構成されており、その母材2aは、分散された複数の蛍光発生部2bを有する。複合蛍光体1(母材2a)の表面には、直径が例えば1nm~100nmの第2の蛍光体粒子3が所定の密度で覆うように付着している。 1 includes a first phosphor particle 2 and a second phosphor particle 3. The composite phosphor 1 shown in FIG. More specifically, a base material 2a of first phosphor particles 2 having a diameter of, for example, 1 μm to 100 μm is formed in the central portion of the composite phosphor 1, and the base material 2a includes a plurality of dispersed base materials 2a. The fluorescence generation part 2b. On the surface of the composite phosphor 1 (base material 2a), second phosphor particles 3 having a diameter of, for example, 1 nm to 100 nm are attached so as to cover with a predetermined density.
 ここで、第1の蛍光体粒子2は、例えばセリウム(Ce)などの賦活剤で構成された蛍光発生部2bがイットリウム・アルミニウム・ガーネット(YAG)などの材料で構成された母材2aに分散されているCeドープYAG蛍光体(Ce賦活YAG蛍光体)である。一方、第2の蛍光体粒子3は、例えばノンドープ型の量子ドット蛍光体、特にコア・シェル構造を有する量子ドット蛍光体である。このコア材料は、例えばInPなどの化合物半導体であり、シェル材料は例えばZnSなどの化合物半導体である。 Here, the first phosphor particles 2 are dispersed in a base material 2a composed of a material such as yttrium / aluminum / garnet (YAG) in a fluorescence generating portion 2b composed of an activator such as cerium (Ce). Ce-doped YAG phosphor (Ce-activated YAG phosphor). On the other hand, the second phosphor particles 3 are, for example, non-doped quantum dot phosphors, particularly quantum dot phosphors having a core / shell structure. The core material is a compound semiconductor such as InP, and the shell material is a compound semiconductor such as ZnS.
 第1の蛍光体粒子2は賦活剤における電子の励起準位間の遷移により蛍光が発生し、第2の蛍光体粒子3は大きさ100nm以下にすることで量子化されたコア材料において、励起された電子-正孔対が再結合するによって蛍光が発生する。 The first phosphor particles 2 generate fluorescence due to the transition between excitation levels of electrons in the activator, and the second phosphor particles 3 are excited in the core material quantized by the size of 100 nm or less. Fluorescence is generated by recombination of the generated electron-hole pairs.
 このように、本実施の形態の複合蛍光体は、蛍光発生原理が異なる蛍光体を異なる大きさで組み合わせて構成される。 Thus, the composite phosphor of the present embodiment is configured by combining phosphors having different fluorescence generation principles in different sizes.
 なお、第1の蛍光体粒子2の材料として、Eu賦活βサイアロン結晶、Ce賦活CaScやEu賦活ストロンチウム・バリウム・シリケート((Sr,Ba)SiO)等の他の希土類元素賦活蛍光体を用いるとしてもよい。また、第2の蛍光体粒子3の材料として、CdSe、CdS、ZnO、ZnSe、AlAs、AlP、AlN、GaAs、GaP、GaN等の他の化合物半導体材料を用いるとしてもよい。 As the material of the first phosphor particles 2, other rare earth element activation such as Eu activated β sialon crystal, Ce activated CaSc 2 O 4 and Eu activated strontium barium silicate ((Sr, Ba) 2 SiO 4 ) is used. A phosphor may be used. Further, as the material of the second phosphor particles 3, other compound semiconductor materials such as CdSe, CdS, ZnO, ZnSe, AlAs, AlP, AlN, GaAs, GaP, and GaN may be used.
 また、第1の蛍光体粒子2には、所定の密度で、希土類元素が含まれており、それらが蛍光発生部2bとして機能する。 Moreover, the first phosphor particles 2 contain rare earth elements at a predetermined density, and these function as the fluorescence generating part 2b.
 続いて図2を用いて、本実施の形態の複合蛍光体1を用いた発光装置50について説明する。 Subsequently, a light emitting device 50 using the composite phosphor 1 of the present embodiment will be described with reference to FIG.
 図2は、本発明の実施の形態1に係る複合蛍光体を用いた発光装置の構成を示す図である。図2に示す発光装置50は、パッケージ10と、半導体発光素子11と、樹脂13と、複合蛍光体1とで構成される。 FIG. 2 is a diagram showing a configuration of a light emitting device using the composite phosphor according to Embodiment 1 of the present invention. A light emitting device 50 shown in FIG. 2 includes a package 10, a semiconductor light emitting element 11, a resin 13, and a composite phosphor 1.
 パッケージ10は、例えばセラミックに所定の配線をしたものや、金属フレームに樹脂をモールドすることで構成される。 The package 10 is configured by, for example, ceramic having predetermined wiring or molding a resin on a metal frame.
 半導体発光素子11は、例えば図示しないサファイア基板上に窒化物半導体(Al、In、Ga)Nで構成され、パッケージ10上に実装され、図示しない金配線もしくはバンプ電極等で配線される。 The semiconductor light emitting element 11 is made of, for example, a nitride semiconductor (Al, In, Ga) N on a sapphire substrate (not shown), mounted on the package 10, and wired with a gold wiring or a bump electrode (not shown).
 樹脂13は、例えばシリコーン樹脂、エポキシ樹脂等からなり、複合蛍光体1が混合されている。樹脂13は、半導体発光素子11の上部を覆うように塗布さている。 Resin 13 is made of, for example, a silicone resin or an epoxy resin, and the composite phosphor 1 is mixed therein. The resin 13 is applied so as to cover the upper part of the semiconductor light emitting element 11.
 続いて図3Aおよび図3Bを用いて本実施の形態の複合蛍光体1の設計例について説明する。 Subsequently, a design example of the composite phosphor 1 of the present embodiment will be described with reference to FIGS. 3A and 3B.
 具体的には、図3Aは、複合蛍光体1における第1の蛍光体粒子2と第2の蛍光体粒子3の設計の一例を示す図である。より具体的には、図3Aには、1)第1の蛍光体粒子2における単位体積あたりの蛍光発生部の密度、2)第1の蛍光体粒子2の表面における単位面積あたりの第2の蛍光体粒子3の密度、3)第1の蛍光体粒子2の発光部と第2の蛍光体粒子3の発光再結合速度比とをパラメータとした場合の値の一例が示されている。なお、上記設計例を用いて計算する際には、第2の蛍光体粒子3の大きさは1nm~100nmであり、第1の蛍光体粒子2の大きさと比較し、無視できるほど小さいとする。 Specifically, FIG. 3A is a diagram showing an example of the design of the first phosphor particles 2 and the second phosphor particles 3 in the composite phosphor 1. More specifically, in FIG. 3A, 1) the density of the fluorescence generating portion per unit volume in the first phosphor particle 2 and 2) the second per unit area on the surface of the first phosphor particle 2 are shown. An example of values when the density of the phosphor particles 3 and 3) the light emitting portion of the first phosphor particles 2 and the light emission recombination rate ratio of the second phosphor particles 3 are used as parameters is shown. In the calculation using the above design example, the size of the second phosphor particles 3 is 1 nm to 100 nm, which is negligibly small compared to the size of the first phosphor particles 2. .
 本実施の形態の第1の蛍光体粒子2の蛍光寿命と第2の蛍光体粒子3の蛍光寿命は、上記に述べたように、異なる蛍光発生原理を用いることができる。そのため、例えば一方がマイクロ秒オーダー、もう一方がナノ秒オーダーと非常に大きな差を実現できる。 As described above, different fluorescence generation principles can be used for the fluorescence lifetime of the first phosphor particles 2 and the fluorescence lifetime of the second phosphor particles 3 of the present embodiment. Therefore, for example, a very large difference can be realized in which one is on the microsecond order and the other is on the nanosecond order.
 図3Bは、第1の蛍光体粒子2の直径と、複合蛍光体1における第2の蛍光体粒子3と第1の蛍光体粒子2の発光部の関係の一例を示す図である。より具体的には、図3Bには、図3Aにおける第1の蛍光体粒子2の粒径と、複合蛍光体1における第2の蛍光体粒子3の量/第1の蛍光体粒子2の発光部量の比との関係の一例が示されている。 FIG. 3B is a diagram showing an example of the relationship between the diameter of the first phosphor particle 2 and the light emitting portion of the second phosphor particle 3 and the first phosphor particle 2 in the composite phosphor 1. More specifically, FIG. 3B shows the particle diameter of the first phosphor particles 2 in FIG. 3A and the amount of the second phosphor particles 3 in the composite phosphor 1 / the light emission of the first phosphor particles 2. An example of the relationship with the ratio of parts is shown.
 図3Bに示されるように、第1の蛍光体粒子2の粒径が大きくなるにしたがい、蛍光体粒子の表面積/体積比が小さくなるため、第2の蛍光体粒子3の量/第1の蛍光体粒子2の発光部量の比が小さくなる。また、第1の蛍光体粒子2の発光部と第2の蛍光体粒子3においては、蛍光寿命が異なる。ここで、例えば、第1の蛍光体粒子2の発光部と第2の蛍光体粒子3の蛍光寿命に1000倍の差があるとすると(例えば図3Aの組み合せ2の場合)、図3Bの組み合わせ2に示されるように、第1の蛍光体粒子2の粒径が1μm~100μmの範囲において、第2の蛍光体粒子3の量/第1の蛍光体粒子2の発光部量の比を1/10倍~10倍程度まで調整することが可能である。 As shown in FIG. 3B, since the surface area / volume ratio of the phosphor particles decreases as the particle diameter of the first phosphor particles 2 increases, the amount of the second phosphor particles 3 / the first The ratio of the light emission part amount of the phosphor particles 2 becomes small. Further, the light emission part of the first phosphor particle 2 and the second phosphor particle 3 have different fluorescence lifetimes. Here, for example, if there is a difference of 1000 times in the fluorescence lifetime between the light emitting part of the first phosphor particle 2 and the second phosphor particle 3 (for example, in the case of the combination 2 in FIG. 3A), the combination in FIG. 3B. As shown in FIG. 2, when the particle diameter of the first phosphor particles 2 is in the range of 1 μm to 100 μm, the ratio of the amount of the second phosphor particles 3 / the amount of the light emitting part of the first phosphor particles 2 is 1. / 10 times to 10 times can be adjusted.
 図4A~図4Cは、複合蛍光体と半導体発光素子を組み合わせた発光装置のスペクトルを設計した例を示す図である。具体的には、図4Aは、複合蛍光体の第1の蛍光体粒子2と第2の蛍光体粒子3との比率の組み合わせの一例を示している。図4Bは、図4Aの設計に基づいて、計算した発光装置50のスペクトル例を示している。図4Cは、図4Bのスペクトルより得られる色度座標の例を示している。 4A to 4C are diagrams showing an example of designing a spectrum of a light emitting device in which a composite phosphor and a semiconductor light emitting element are combined. Specifically, FIG. 4A shows an example of a combination of ratios of the first phosphor particles 2 and the second phosphor particles 3 of the composite phosphor. FIG. 4B shows a calculated spectrum of the light emitting device 50 based on the design of FIG. 4A. FIG. 4C shows an example of chromaticity coordinates obtained from the spectrum of FIG. 4B.
 図4Aでは、第1の蛍光体粒子2はCe賦活YAG蛍光体、第2の蛍光体粒子3はInP/ZnSのコア・シェル構造のノンドープ型量子ドット蛍光体とした場合の例を示している。また第2の蛍光体粒子3は、ピーク波長600nm、半値幅50nmに設計されている。 FIG. 4A shows an example in which the first phosphor particles 2 are Ce-activated YAG phosphors, and the second phosphor particles 3 are non-doped quantum dot phosphors having an InP / ZnS core-shell structure. . The second phosphor particles 3 are designed to have a peak wavelength of 600 nm and a half width of 50 nm.
 図4Aに示すように励起光吸収量比(第2の蛍光体粒子3の総数/第1の蛍光体粒子2の総数)を変化させることで、図4Bに示すようにスペクトルを自由に変化させることができる。図4Bのスペクトルを元に計算した色度座標は図4Cに示されている。図4Cに示すように、励起光吸収量比(第2の蛍光体粒子3の総数/第1の蛍光体粒子2の総数)を変化させることで色度座標および色温度を自在に変化させることができる。 By changing the excitation light absorption ratio (total number of second phosphor particles 3 / total number of first phosphor particles 2) as shown in FIG. 4A, the spectrum can be freely changed as shown in FIG. 4B. be able to. The chromaticity coordinates calculated based on the spectrum of FIG. 4B are shown in FIG. 4C. As shown in FIG. 4C, the chromaticity coordinates and the color temperature can be freely changed by changing the excitation light absorption amount ratio (total number of second phosphor particles 3 / total number of first phosphor particles 2). Can do.
 続いて、本実施の形態の複合蛍光体1の製造方法について説明する。 Then, the manufacturing method of the composite fluorescent substance 1 of this Embodiment is demonstrated.
 図5A~図5Cは、本発明の実施の形態1に係る複合蛍光体の製造方法を示す図である。第2の蛍光体粒子3は、例えば量子ドット蛍光体であるが、量子ドット蛍光体の製造方法は、ゾル・ゲル法(錯体重合法)、逆ミセル法、コロイド析出法、等さまざまある。 5A to 5C are diagrams showing a method for manufacturing the composite phosphor according to Embodiment 1 of the present invention. The second phosphor particles 3 are, for example, quantum dot phosphors, and there are various methods for producing quantum dot phosphors, such as a sol-gel method (complex polymerization method), a reverse micelle method, and a colloid deposition method.
 本実施の形態では、ホットソープ法を用いたコア・シェル型量子ドット蛍光体の製造方法について説明する。 In the present embodiment, a method for manufacturing a core-shell type quantum dot phosphor using a hot soap method will be described.
 図5Aは、量子ドット蛍光体の製造方法を模式的に示した図であり、例えばフラスコである容器60を真空中に保持し、例えばトリオクチルホスフフィンオキサイド(TOPO)を、容器60を入れてヒーターにより300℃に保つ。続いて、トリスジメチルアミノホスフィン[P(NMe2)3]と塩化インジウム(InCl3)とトリオクチルホスフフィン(TOP)、TOPOとの混合溶液を注入する。その後、所定の温度に調整し、所定の時間保つことでInPのナノ粒子が形成される。続いて、上記混合溶液を遠心分離機と組み合わせ、TOPOで置換することによりInPナノ粒子がTOPOに混合されたコロイド溶液が生成される。続いてこの溶液にジエチルジチオカルバミン酸亜鉛([(C2H5)2NCS2]2Zn)とTOP/TOPOとの混合溶液を注入することによりInP/ZnSコア・シェル型量子ドット蛍光体である第2の蛍光体粒子3が分散されたコロイド溶液が生成される。続いて、再び、このコロイド溶液を、遠心分離機を用いてTOPOで置換することにより第2の蛍光体粒子3がTOPOに分散したコロイド溶液61が作製される。 FIG. 5A is a diagram schematically showing a method for producing a quantum dot phosphor. For example, a container 60 that is a flask is held in a vacuum, and for example, trioctylphosphine oxide (TOPO) is placed in the container 60. Keep at 300 ° C with heater. Subsequently, a mixed solution of trisdimethylaminophosphine [P (NMe2) 3], indium chloride (InCl3), trioctylphosphine (TOP), and TOPO is injected. After that, the InP nanoparticles are formed by adjusting to a predetermined temperature and keeping it for a predetermined time. Subsequently, the mixed solution is combined with a centrifuge and replaced with TOPO, thereby generating a colloidal solution in which InP nanoparticles are mixed with TOPO. Subsequently, by injecting a mixed solution of zinc diethyldithiocarbamate ([(C2H5) 2NCS2] 2Zn) and TOP / TOPO into this solution, second phosphor particles that are InP / ZnS core-shell quantum dot phosphors A colloidal solution in which 3 is dispersed is produced. Subsequently, the colloidal solution 61 in which the second phosphor particles 3 are dispersed in TOPO is produced by replacing the colloidal solution with TOPO again using a centrifuge.
 次に、このコロイド溶液61に、表面に疎水性の基を付加した例えばCe賦活YAG蛍光体粒子などの第1の蛍光体粒子2をコロイド溶液61中に滴下し、攪拌する。このとき、所定の量の第2の蛍光体粒子3が第1の蛍光体粒子2の表面に吸着されるが、所定量以上の第2の蛍光体粒子3は、第2の蛍光体粒子3同士の反発力65により吸着されない。この結果、図5Bに示すように、所定の量の第2の蛍光体粒子3が表面に付着した第1の蛍光体粒子2である複合蛍光体1と、不要な第2の蛍光体粒子3が混合した混合液62が生成される。 Next, the first phosphor particles 2 such as Ce-activated YAG phosphor particles having a hydrophobic group added to the surface are dropped into the colloid solution 61 and stirred. At this time, a predetermined amount of the second phosphor particle 3 is adsorbed on the surface of the first phosphor particle 2, but the second phosphor particle 3 of a predetermined amount or more is the second phosphor particle 3. They are not attracted by the repulsive force 65 between them. As a result, as shown in FIG. 5B, the composite phosphor 1 which is the first phosphor particle 2 having a predetermined amount of the second phosphor particles 3 attached to the surface and the unnecessary second phosphor particles 3. A mixed liquid 62 is generated.
 次に、このようにして形成された複合蛍光体1から不要な第2の蛍光体粒子3を除去するため、以下の作業を行う。まず、遠心分離機により、複合蛍光体1と第2の蛍光体粒子3が混合した溶液から複合蛍光体1の濃度が濃い溶液を抽出し、そこに不純物のない溶媒を追加する。この作業を複数回繰り返すことで、純度の高い複合蛍光体1が例えばTOPOである溶液中に分散された第二の混合液63を製造することができる。このようにして製造した第二の混合液63の溶媒を所定の樹脂に置換することで、図5Cに示すように、樹脂中に複合蛍光体1が含有された複合蛍光体含有樹脂(樹脂13)を製造することができる。 Next, in order to remove unnecessary second phosphor particles 3 from the composite phosphor 1 thus formed, the following operation is performed. First, a solution having a high concentration of the composite phosphor 1 is extracted from the solution in which the composite phosphor 1 and the second phosphor particles 3 are mixed, and a solvent free of impurities is added thereto. By repeating this operation a plurality of times, the second mixed solution 63 in which the high-purity composite phosphor 1 is dispersed in a solution of, for example, TOPO can be produced. By replacing the solvent of the second mixed solution 63 thus manufactured with a predetermined resin, as shown in FIG. 5C, a composite phosphor-containing resin (resin 13) in which the composite phosphor 1 is contained in the resin. ) Can be manufactured.
 次に、本実施の形態の効果について説明する。 Next, the effect of this embodiment will be described.
 図6Aおよび図6Bは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。 6A and 6B are diagrams for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention.
 具体的には、図6Aでは、第1の蛍光体粒子2と第2の蛍光体粒子3を単純に混合した樹脂66の実装方法の一例を模式的に示しており、図6Bでは、本発明の複合蛍光体1を混合した樹脂13の実装方法の一例を模式的に示している。 Specifically, FIG. 6A schematically shows an example of a mounting method of the resin 66 in which the first phosphor particles 2 and the second phosphor particles 3 are simply mixed, and FIG. 6B shows the present invention. An example of a mounting method of the resin 13 mixed with the composite phosphor 1 is schematically shown.
 より具体的には、図6Aおよび図6Bでは、例えばInGaN発光層を有する窒化物半導体で構成された発光ダイオードである半導体発光素子11が、最上面に凹型の形状が形成されたパッケージ10の凹部底面に実装されたものに、蛍光体含有樹脂を滴下して発光装置50を形成する工程を示す。 More specifically, in FIG. 6A and FIG. 6B, the semiconductor light emitting element 11 which is a light emitting diode made of a nitride semiconductor having an InGaN light emitting layer, for example, has a concave portion of the package 10 in which a concave shape is formed on the uppermost surface. A step of forming the light emitting device 50 by dropping the phosphor-containing resin onto the one mounted on the bottom surface is shown.
 蛍光体含有樹脂は、例えばシリンジ20に入れられて、半導体発光素子11の上部より滴下される。 The phosphor-containing resin is placed in, for example, the syringe 20 and dropped from the upper part of the semiconductor light emitting element 11.
 図6Aに示すように、シリンジ20内には、演色性を高めるために、複数の蛍光体粒子が混合された樹脂66(蛍光体含有樹脂)が入っている。この樹脂66(蛍光体含有樹脂)には、粒径の大きく異なる複数の蛍光体粒子(第1の蛍光体粒子2と第2の蛍光体粒子3)が混合されている。しかし、これら蛍光体粒子の比重は異なるので、時間の経過とともに、シリンジ上部20aとシリンジ下部20bでは、第1の蛍光体粒子2と第2の蛍光体粒子3との濃度比がずれてしまう。これはパッケージ10内に滴下する蛍光体含有樹脂の量を調整することだけでは、ばらつきを低減させることができないことを示唆する。 As shown in FIG. 6A, the syringe 20 contains a resin 66 (phosphor-containing resin) in which a plurality of phosphor particles are mixed in order to improve color rendering. In the resin 66 (phosphor-containing resin), a plurality of phosphor particles (first phosphor particles 2 and second phosphor particles 3) having greatly different particle diameters are mixed. However, since the specific gravity of these phosphor particles is different, the concentration ratio between the first phosphor particles 2 and the second phosphor particles 3 is shifted between the syringe upper portion 20a and the syringe lower portion 20b as time passes. This suggests that the variation cannot be reduced only by adjusting the amount of the phosphor-containing resin dropped into the package 10.
 一方、図6Bに示すように、本実施の形態の複合蛍光体1が含有された蛍光体含有樹脂(樹脂13)を用いると、時間の経過とともに、複合蛍光体1の濃度は分布が生じる。しかし、複合蛍光体1を構成する第1の蛍光体粒子2と第2の蛍光体粒子3との比率は変化することがない。これは、蛍光体含有樹脂の滴下量を調整することで、発光装置50の色度座標のばらつきを低減させることができることを示唆する。 On the other hand, as shown in FIG. 6B, when the phosphor-containing resin (resin 13) containing the composite phosphor 1 of the present embodiment is used, the concentration of the composite phosphor 1 is distributed over time. However, the ratio between the first phosphor particles 2 and the second phosphor particles 3 constituting the composite phosphor 1 does not change. This suggests that variations in the chromaticity coordinates of the light emitting device 50 can be reduced by adjusting the amount of the phosphor-containing resin dropped.
 次に、更なる効果について説明する。 Next, further effects will be described.
 図7Aおよび図7Bは、本発明の実施の形態1に係る複合蛍光体の効果を説明するための図である。より具体的には、図7Aは、第1の蛍光体粒子2の拡大図であり、第1の蛍光体粒子2のみで構成される場合において、第1の蛍光体粒子2によって吸収された励起光が蛍光として、取り出される過程を模式的に示している。図7Bは、複合蛍光体1の拡大図であり、複合蛍光体1によって吸収された励起光が蛍光として、取り出される過程を模式的に示している。 7A and 7B are diagrams for explaining the effect of the composite phosphor according to Embodiment 1 of the present invention. More specifically, FIG. 7A is an enlarged view of the first phosphor particles 2, and in the case where only the first phosphor particles 2 are included, excitation absorbed by the first phosphor particles 2 The process by which light is extracted as fluorescence is schematically shown. FIG. 7B is an enlarged view of the composite phosphor 1 and schematically shows a process in which excitation light absorbed by the composite phosphor 1 is extracted as fluorescence.
 図7Aに示すように、第1の蛍光体粒子2で吸収された励起光70は、大部分が蛍光発生部2bにおいて、準位間遷移により蛍光75となり出射される。しかし、一部のエネルギー73は表面欠陥2cにおいて非発光再結合となり、ロスとなる。 As shown in FIG. 7A, most of the excitation light 70 absorbed by the first phosphor particles 2 is emitted as fluorescence 75 due to transition between levels in the fluorescence generation section 2b. However, a part of the energy 73 becomes non-radiative recombination at the surface defect 2c and becomes a loss.
 一方、図7Bに示すように、本発明の複合蛍光体1では、表面欠陥2cに近接して、第2の蛍光体粒子3が存在するため、表面欠陥2cを介した非発光再結合よりも第2の蛍光体粒子3の発光再結合が優先され蛍光77として出射される。それにより、表面欠陥2cによるロスを低減させることができる。 On the other hand, as shown in FIG. 7B, in the composite phosphor 1 of the present invention, since the second phosphor particles 3 are present in the vicinity of the surface defect 2c, the non-radiative recombination via the surface defect 2c is more effective. The emission recombination of the second phosphor particles 3 is prioritized and emitted as fluorescence 77. Thereby, the loss by the surface defect 2c can be reduced.
 なお、上記において、半導体発光素子11を発光ダイオードとしたが半導体レーザやスーパールミネッセントのような発光素子でもよい。 In the above description, the semiconductor light emitting element 11 is a light emitting diode, but a light emitting element such as a semiconductor laser or super luminescent may be used.
 また、上記において、第1の蛍光体粒子2を希土類賦活蛍光体として一部の材料について説明したが、上記の限りではない。発光波長に合わせて、例えば、(Y,Gd)Al12:Ce、Y3(Al,Ga)4O12:Ce、Tb3Al5O12:Ce、(Sr,Ca,Ba)SiO:Eu、Ca-α-サイアロン:Eu、(Ba,Sr)SiO:Eu、Ca3Sc2Si3O12:Ce,CaSc:Ce、β-サイアロン:Eu、(Sr,Ba)Si:Eu、BaSi12:Eu、CaAlSiN:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Eu、(Sr,Ca)S:Eu、BaSi12:Eu,BaMgAl10O17:(Eu,Mn)、SrAl:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu、および、(Ba、Sr)MgAl1017:Euなどが選択できる。 In the above description, some materials have been described using the first phosphor particles 2 as rare earth activated phosphors, but the present invention is not limited thereto. According to the emission wavelength, for example, (Y, Gd) 3 Al 4 O 12 : Ce, Y3 (Al, Ga) 4 O 12 : Ce, Tb 3 Al 5 O 12 : Ce, (Sr, Ca, Ba) 2 SiO 4 : Eu, Ca— α-sialon: Eu, (Ba, Sr) 2 SiO 4 : Eu, Ca 3 Sc 2 Si 3 O 12: Ce, CaSc 2 O 4 : Ce, β-sialon: Eu, (Sr, Ba) Si 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2: Eu , CaAlSiN 3: Eu, (Ca, Sr) 2 Si 5 N 8: Eu, CaAlSiN 3: Eu, (Sr, Ca) S: Eu, Ba 3 Si 6 O 12 N 2: Eu, BaMgAl10O17: (Eu, Mn ), SrAl 2 O 4: Eu, (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 2: Eu, and ( a, Sr) MgAl 10 O 17 : Eu , and the like can be selected.
 また、上記において、第2の蛍光体粒子3をノンドープ型量子ドットとして、その構成材料の一部を説明したが、それに限られない。発光波長に合わせて、例えば、III-V族化合物半導体であるInN、InP、InAs、InSb、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSbおよびBN、II-VI族化合物半導体であるHgS、HgSe、HgTe、CdS、CdSe、CdTe、ZnS、ZnSeおよびZnTe、並びにこれらの混晶結晶よりなる群から選択することができる。 In the above description, the second phosphor particle 3 is a non-doped quantum dot, and a part of the constituent material has been described. However, the present invention is not limited to this. According to the emission wavelength, for example, group III-V compound semiconductors such as InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, and II-VI group compound semiconductors. It can be selected from the group consisting of HgS, HgSe, HgTe, CdS, CdSe, CdTe, ZnS, ZnSe and ZnTe, and mixed crystal crystals thereof.
 また、第2の蛍光体粒子3はノンドープ型量子ドット蛍光体である必要はなく、例えばZnS:Mn2+、CdS:Mn2+およびYVO4:Eu3+のようなドープ型量子ドット蛍光体を用いることもできる。この場合、発光部となる希土類元素は、量子ドット構造により量子化の影響を受けており、希土類賦活蛍光体の発光部と異なる蛍光寿命を実現できるため、本発明の複合蛍光体を実現できる。 The second phosphor particles 3 need not be non-doped quantum dot phosphors. For example, doped quantum dot phosphors such as ZnS: Mn 2+ , CdS: Mn 2+ and YVO 4: Eu 3+ may be used. it can. In this case, the rare earth element serving as the light emitting portion is influenced by quantization due to the quantum dot structure, and can realize a fluorescence lifetime different from that of the light emitting portion of the rare earth activated phosphor, and thus the composite phosphor of the present invention can be realized.
 また、賦活剤も上記例に限られない。賦活剤を選ぶことで、第1の蛍光体粒子2および第2の蛍光体粒子3を共に希土類賦活蛍光体で構成することも可能である。例えば、一方の蛍光体の賦活剤を3価イオンで4f-5d遷移するCe3+、もう一方の蛍光体の賦活剤を、2価イオンで4f-5d遷移するEu2+もしくはYb2+を用いることで異なる蛍光寿命をもつ蛍光体の組み合わせを実現できる。さらには、異なる蛍光体の賦活剤として、4f-4f遷移を行うEu3+、Pr3+、Nd3+,Sm3+のいずれか一つで構成することも可能である。 Moreover, an activator is not restricted to the said example. By selecting an activator, both the first phosphor particles 2 and the second phosphor particles 3 can be composed of rare earth activated phosphors. For example, by using Ce 3+ that makes 4f-5d transition with a trivalent ion as an activator of one phosphor and Eu 2+ or Yb 2+ that makes a 4f-5d transition with a divalent ion as an activator of the other phosphor. A combination of phosphors having different fluorescence lifetimes can be realized. Furthermore, as an activator of different phosphors, it is possible to comprise any one of Eu 3+ , Pr 3+ , Nd 3+ and Sm 3+ that perform 4f-4f transition.
 (実施の形態2)
 以下、実施の形態2の複合蛍光体について説明する。
(Embodiment 2)
Hereinafter, the composite phosphor of the second embodiment will be described.
 図8は、本発明の実施の形態2に係る複合蛍光体の構成を示す図である。図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。 FIG. 8 is a diagram showing a configuration of the composite phosphor according to the second embodiment of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本実施の形態において、図8に示す複合蛍光体100は、第1の蛍光体粒子2と第2の蛍光体粒子3とカバー層9とで構成されている。より具体的には、複合蛍光体100は、複数の蛍光発生部2bを有する第1の蛍光体粒子2の母材2aが構成されており、複合蛍光体1(母材2a)の表面に、第2の蛍光体粒子3が配置されている。そして、第1の蛍光体粒子2と第2の蛍光体粒子3とを覆うように、例えば膜厚が0.1μm~5μmのSiO2もしくはSiNであるカバー層9が形成されている。 In the present embodiment, the composite phosphor 100 shown in FIG. 8 includes the first phosphor particles 2, the second phosphor particles 3, and the cover layer 9. More specifically, the composite phosphor 100 includes the base material 2a of the first phosphor particles 2 having a plurality of fluorescence generating portions 2b, and the surface of the composite phosphor 1 (base material 2a) Second phosphor particles 3 are arranged. A cover layer 9 made of, for example, SiO 2 or SiN having a thickness of 0.1 μm to 5 μm is formed so as to cover the first phosphor particles 2 and the second phosphor particles 3.
 カバー層9は、ガスバリア性の高い材料からなる。そして、カバー層9は、第1の蛍光体粒子2と第2の蛍光体粒子3とコートすることにより例えば第2の蛍光体粒子3に量子ドット蛍光体を用いても、量子ドット蛍光体が劣化することが少ないという効果を奏する。 The cover layer 9 is made of a material having a high gas barrier property. The cover layer 9 can be coated with the first phosphor particles 2 and the second phosphor particles 3 so that the quantum dot phosphors can be used even if, for example, the quantum dot phosphors are used for the second phosphor particles 3. There is an effect that there is little deterioration.
 ここで、カバー層9は例えば、ゾル・ゲル法により、第2の蛍光体粒子3を有する第1の蛍光体粒子2の表面にコートされる。具体的には、まず複合蛍光体1を含む有機溶媒にケイ素アルコキシドを添加した後、ケイ素アルコキシドを部分的に加水分解させることで、複合蛍光体1の表面が加水分解物で被覆された溶液を作製する。続いて 部分的に加水分解したケイ素アルコキシドを含む水溶液と、上記の溶液と混合することで、複合蛍光体1の表面をケイ素アルコキシドで覆う。続いて、エタノールを加えたアルカリ性水溶液を加えることで、ケイ素アルコキシドを反応させてカバー層9であるシリカ(ガラス)層を堆積させる。このようにして作製した複合蛍光体100は、遠心分離と純化により取り出すことや樹脂中に分散させることが可能となる。 Here, the cover layer 9 is coated on the surface of the first phosphor particles 2 having the second phosphor particles 3 by, for example, a sol-gel method. Specifically, a silicon alkoxide is first added to an organic solvent containing the composite phosphor 1, and then the silicon alkoxide is partially hydrolyzed to obtain a solution in which the surface of the composite phosphor 1 is coated with a hydrolyzate. Make it. Subsequently, the surface of the composite phosphor 1 is covered with silicon alkoxide by mixing with an aqueous solution containing partially hydrolyzed silicon alkoxide and the above solution. Subsequently, by adding an alkaline aqueous solution to which ethanol is added, the silicon alkoxide is reacted to deposit a silica (glass) layer as the cover layer 9. The composite phosphor 100 produced in this way can be taken out by centrifugation and purification or dispersed in a resin.
 (変形例)
 図9は、本発明の実施の形態2に係る複合蛍光体の変形例の構成を示す図である。図1と同様の要素には同一の符号を付しており、詳細な説明は省略する。
(Modification)
FIG. 9 is a diagram showing a configuration of a modification of the composite phosphor according to Embodiment 2 of the present invention. Elements similar to those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 本変形における複合蛍光体101は、実施の形態2と比較して、第1の蛍光体粒子2の形状が不定形である点が異なる。しかし、この場合においても、実効的な表面を用いることで、第2の蛍光体粒子3の量を調整することができる。また、ゾル・ゲル法等により表面を容易にガスバリア性の高い膜で覆うことが可能である。 The composite phosphor 101 in this modification is different from the second embodiment in that the shape of the first phosphor particles 2 is indefinite. However, even in this case, the amount of the second phosphor particles 3 can be adjusted by using an effective surface. Further, the surface can be easily covered with a film having a high gas barrier property by a sol-gel method or the like.
 以上、本発明によれば、時間が経過しても蛍光体含有樹脂中の複数の蛍光体の濃度に分布が生じない複合蛍光体および発光装置を実現することができる。それにより、樹脂中において、時間が経過してもその濃度比が時間とともにほとんど変化せずに、高い演色性・色再現性の発光装置を安定的に提供することができる。 As described above, according to the present invention, it is possible to realize a composite phosphor and a light-emitting device in which distribution does not occur in the concentration of a plurality of phosphors in the phosphor-containing resin even if time passes. As a result, in the resin, the concentration ratio hardly changes with time even when time passes, and a light emitting device having high color rendering properties and color reproducibility can be stably provided.
 以上、本発明の複合蛍光体および発光装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の範囲内に含まれる。 As mentioned above, although the composite fluorescent substance and light-emitting device of this invention were demonstrated based on embodiment, this invention is not limited to this embodiment. Unless it deviates from the meaning of this invention, the form which carried out the various deformation | transformation which those skilled in the art will think to this embodiment, and the form constructed | assembled combining the component in different embodiment are also contained in the scope of the present invention. .
 本発明は、樹脂中においても安定的に演色性の良い蛍光体を実現することができるため、例えば、家庭用照明器具だけでなく、食料品を展示する展示用照明器具、又は表示映像の鮮明性が必要な大画面型液晶テレビのバックライト光源に有用である。 Since the present invention can realize a phosphor having a stable color rendering property even in a resin, for example, not only home lighting equipment but also display lighting equipment for displaying foodstuffs, or a clear display image. It is useful as a backlight light source for large-screen LCD TVs that require high performance.
 1、100、101  複合蛍光体
 2  第1の蛍光体粒子
 2a  母材
 2b  蛍光発生部
 2c  表面欠陥
 3  第2の蛍光体粒子
 9  カバー層
 10  パッケージ
 11  半導体発光素子
 13、66  樹脂
 20  シリンジ
 20a  シリンジ上部
 20b  シリンジ下部
 50、1001  発光装置
 60  容器
 61  コロイド溶液
 62  混合液
 63  第二の混合液
 65  反発力
 70  励起光
 73  エネルギー
 75、77  蛍光
 1002、1003  リードワイヤ
 1004  青色半導体発光素子
 1005  金細線
 1006  第1の樹脂
 1007  蛍光体混合物
 1008  第2の樹脂
DESCRIPTION OF SYMBOLS 1,100,101 Composite fluorescent substance 2 1st fluorescent substance particle 2a Base material 2b Fluorescence generating part 2c Surface defect 3 2nd fluorescent substance particle 9 Cover layer 10 Package 11 Semiconductor light emitting element 13, 66 Resin 20 Syringe 20a Upper part of syringe 20b Lower syringe part 50, 1001 Light emitting device 60 Container 61 Colloidal solution 62 Mixed liquid 63 Second mixed liquid 65 Repulsive force 70 Excitation light 73 Energy 75, 77 Fluorescence 1002, 1003 Lead wire 1004 Blue semiconductor light emitting element 1005 Gold wire 1006 1st Resin 1007 Phosphor mixture 1008 Second resin

Claims (11)

  1.  少なくとも粒径の異なる2種類以上の蛍光体粒子で構成される複合蛍光体であって、
     第1の蛍光体粒子は、表面に密着された複数の第2の蛍光体粒子を有し、
     前記第1の蛍光体粒子は、前記第2の蛍光体粒子よりも大きい
     複合蛍光体。
    A composite phosphor composed of at least two kinds of phosphor particles having different particle diameters,
    The first phosphor particles have a plurality of second phosphor particles adhered to the surface,
    The first phosphor particles are larger than the second phosphor particles.
  2.  前記第1の蛍光体粒子の粒径は、前記第2の蛍光体粒子の粒径の100倍以上である
     請求項1に記載の複合蛍光体。
    The composite phosphor according to claim 1, wherein the particle diameter of the first phosphor particles is 100 times or more than the particle diameter of the second phosphor particles.
  3.  前記第2の蛍光体粒子は、量子ドット蛍光体で構成される
     請求項1または2に記載の複合蛍光体。
    The composite phosphor according to claim 1, wherein the second phosphor particle is configured by a quantum dot phosphor.
  4.  前記第1の蛍光体粒子の粒径は、1μm~100μmである
     請求項1~3のいずれか1項に記載の複合蛍光体。
    The composite phosphor according to any one of claims 1 to 3, wherein the particle diameter of the first phosphor particles is 1 袖 m to 100 袖 m.
  5.  前記第1の蛍光体粒子の蛍光スペクトルの中心波長は、前記第2の蛍光体粒子の蛍光スペクトルの中心波長よりも短い
     請求項1~4のいずれか1項に記載の複合蛍光体。
    The composite phosphor according to any one of claims 1 to 4, wherein a center wavelength of a fluorescence spectrum of the first phosphor particles is shorter than a center wavelength of a fluorescence spectrum of the second phosphor particles.
  6.  前記第1の蛍光体粒子は、希土類元素賦活蛍光体で構成される
     請求項1~5のいずれか1項に記載の複合蛍光体。
    6. The composite phosphor according to claim 1, wherein the first phosphor particles are made of a rare earth element activated phosphor.
  7.  前記第1の蛍光体粒子は、
     (Y,Gd)Al12:Ce、Y3(Al,Ga)4O12:Ce、Tb3Al5O12:Ce、(Sr,Ca,Ba)SiO:Eu、Ca-α-サイアロン:Eu、(Ba,Sr)SiO:Eu、Ca3Sc2Si3O12:Ce,CaSc:Ce、β-サイアロン:Eu、(Sr,Ba)Si:Eu、BaSi12:Eu、CaAlSiN:Eu、(Ca,Sr)Si:Eu、CaAlSiN:Eu、(Sr,Ca)S:Eu、BaSi12:Eu,BaMgAl10O17:(Eu,Mn)、SrAl:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu、および、(Ba、Sr)MgAl1017:Euのうちのいずれかで構成される
     請求項1~6のいずれか1項に記載の複合蛍光体。
    The first phosphor particles are:
    (Y, Gd) 3 Al 4 O 12: Ce, Y3 (Al, Ga) 4O12: Ce, Tb3Al5O12: Ce, (Sr, Ca, Ba) 2 SiO 4: Eu, Ca-α- sialon: Eu, (Ba , Sr) 2 SiO 4 : Eu, Ca 3 Sc 2 Si 3 O 12 : Ce, CaSc 2 O 4 : Ce, β-sialon: Eu, (Sr, Ba) Si 2 O 2 N 2 : Eu, Ba 3 Si 6 O 12 N 2 : Eu CaAlSiN 3 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, CaAlSiN 3 : Eu, (Sr, Ca) S: Eu, Ba 3 Si 6 O 12 N 2 : Eu, BaMgAl 10 O 17: (Eu, Mn ), SrAl 2 O 4: Eu , (Sr, Ca, Ba, Mg) 10 (PO 4) 6 Cl 2: Eu, and, (Ba, Sr) MgAl 10 O 7: composite phosphor according to any one of constituted claims 1 to 6, in any of Eu.
  8.  前記第2の蛍光体粒子は、量子ドット蛍光体であり、
     前記量子ドット蛍光体は、ノンドープ型量子ドット蛍光体またはドープ型量子ドット蛍光体で構成される
     請求項7に記載の複合蛍光体。
    The second phosphor particles are quantum dot phosphors,
    The composite phosphor according to claim 7, wherein the quantum dot phosphor is composed of a non-doped quantum dot phosphor or a doped quantum dot phosphor.
  9.  前記ノンドープ型量子ドットを構成する材料は、
     III-V族化合物半導体であるInN、InP、InAs、InSb、GaN、GaP、GaAs、GaSb、AlN、AlP、AlAs、AlSbおよびBN、II-VI族化合物半導体であるHgS、HgSe、HgTe、CdS、CdSe、CdTe、ZnS、ZnSeおよびZnTe、並びにこれらの混晶結晶よりなる群から選択されて構成される
     請求項8に記載の複合蛍光体。
    The material constituting the non-doped quantum dots is
    Group III-V compound semiconductors InN, InP, InAs, InSb, GaN, GaP, GaAs, GaSb, AlN, AlP, AlAs, AlSb and BN, Group II-VI compound semiconductors HgS, HgSe, HgTe, CdS, The composite phosphor according to claim 8, wherein the composite phosphor is selected from the group consisting of CdSe, CdTe, ZnS, ZnSe, ZnTe, and mixed crystal thereof.
  10.  前記ドープ型量子ドット蛍光体を構成する材料は、ZnS:Mn2+、CdS:Mn2+およびYVO4:Eu3+により構成される
     請求項8に記載の複合蛍光体。
    The composite phosphor according to claim 8, wherein the material constituting the doped quantum dot phosphor is composed of ZnS: Mn 2+ , CdS: Mn 2+, and YVO 4: Eu 3+ .
  11.  請求項1~10のいずれか1項に記載の複合蛍光体と半導体発光装置とを少なくとも有する
     発光装置。
    A light emitting device comprising at least the composite phosphor according to any one of claims 1 to 10 and a semiconductor light emitting device.
PCT/JP2012/001674 2011-06-29 2012-03-09 Composite phosphor and light-emitting device WO2013001685A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011144994 2011-06-29
JP2011-144994 2011-06-29

Publications (1)

Publication Number Publication Date
WO2013001685A1 true WO2013001685A1 (en) 2013-01-03

Family

ID=47423620

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001674 WO2013001685A1 (en) 2011-06-29 2012-03-09 Composite phosphor and light-emitting device

Country Status (1)

Country Link
WO (1) WO2013001685A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627399A (en) * 2013-12-13 2014-03-12 中国科学院长春应用化学研究所 Semiconductor/fluorescent powder heterostructure and preparation method thereof
CN103642495A (en) * 2013-12-13 2014-03-19 中国科学院长春应用化学研究所 Luminescent material with core-shell structure and preparation method thereof
JP2017525832A (en) * 2014-06-05 2017-09-07 ジョインスター バイオメディカル テクノロジー カンパニー リミテッド Carrier particles and method for producing the same
CN107978014A (en) * 2017-12-21 2018-05-01 乐蜜有限公司 A kind of particle renders method, apparatus, electronic equipment and storage medium
WO2018163830A1 (en) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Light source device
WO2019058988A1 (en) * 2017-09-25 2019-03-28 日本電気硝子株式会社 Wavelength conversion member
JP2019143117A (en) * 2017-12-08 2019-08-29 奇美實業股▲ふん▼有限公司 Luminescent material, and light emitting device and display device using the same
CN110746957A (en) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 Long-afterglow composite material based on quantum dots and preparation method and application thereof
JP2020145240A (en) * 2019-03-04 2020-09-10 中原大學 Light-emitting diode package structure and method for manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067355A1 (en) * 1998-11-06 2004-04-08 Tapesh Yadav Nano-engineered phosphors and related nanotechnology
JP2006199963A (en) * 2005-01-20 2006-08-03 Samsung Electronics Co Ltd Quantum dot phosphor and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067355A1 (en) * 1998-11-06 2004-04-08 Tapesh Yadav Nano-engineered phosphors and related nanotechnology
JP2006199963A (en) * 2005-01-20 2006-08-03 Samsung Electronics Co Ltd Quantum dot phosphor and method for producing the same

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103627399A (en) * 2013-12-13 2014-03-12 中国科学院长春应用化学研究所 Semiconductor/fluorescent powder heterostructure and preparation method thereof
CN103642495A (en) * 2013-12-13 2014-03-19 中国科学院长春应用化学研究所 Luminescent material with core-shell structure and preparation method thereof
CN103642495B (en) * 2013-12-13 2015-05-20 中国科学院长春应用化学研究所 Luminescent material with core-shell structure and preparation method thereof
JP2017525832A (en) * 2014-06-05 2017-09-07 ジョインスター バイオメディカル テクノロジー カンパニー リミテッド Carrier particles and method for producing the same
KR20170117360A (en) * 2014-06-05 2017-10-23 조인스타 바이오메디컬 테크놀로지 컴퍼니 리미티드 Carrier particle and preparation method therefor
US10421903B2 (en) 2014-06-05 2019-09-24 Joinstar Biomedical Technology Co., Ltd. Carrier particle and preparation method thereof
KR101974571B1 (en) * 2014-06-05 2019-05-02 조인스타 바이오메디컬 테크놀로지 컴퍼니 리미티드 Carrier particle and preparation method therefor
WO2018163830A1 (en) * 2017-03-08 2018-09-13 パナソニックIpマネジメント株式会社 Light source device
JP2019059802A (en) * 2017-09-25 2019-04-18 日本電気硝子株式会社 Wavelength conversion member
WO2019058988A1 (en) * 2017-09-25 2019-03-28 日本電気硝子株式会社 Wavelength conversion member
JP2019143117A (en) * 2017-12-08 2019-08-29 奇美實業股▲ふん▼有限公司 Luminescent material, and light emitting device and display device using the same
CN107978014A (en) * 2017-12-21 2018-05-01 乐蜜有限公司 A kind of particle renders method, apparatus, electronic equipment and storage medium
CN107978014B (en) * 2017-12-21 2021-06-18 卓米私人有限公司 Particle rendering method and device, electronic equipment and storage medium
CN110746957A (en) * 2018-07-24 2020-02-04 Tcl集团股份有限公司 Long-afterglow composite material based on quantum dots and preparation method and application thereof
CN110746957B (en) * 2018-07-24 2021-02-05 Tcl科技集团股份有限公司 Long-afterglow composite material based on quantum dots and preparation method and application thereof
JP2020145240A (en) * 2019-03-04 2020-09-10 中原大學 Light-emitting diode package structure and method for manufacturing the same

Similar Documents

Publication Publication Date Title
WO2013001685A1 (en) Composite phosphor and light-emitting device
US20110182056A1 (en) Quantum Dot Wavelength Conversion for Optical Devices Using Nonpolar or Semipolar Gallium Containing Materials
JP5567149B2 (en) Reflective mode package for optical devices using gallium and nitrogen containing materials
EP1369935B1 (en) Light-emitting devices utilizing nanoparticles
US8956894B2 (en) White light devices using non-polar or semipolar gallium containing materials and phosphors
US7737621B2 (en) Light emitting device provided with a wavelength conversion unit incorporating plural kinds of phosphors
US9295132B2 (en) Light emitting device and method for manufacturing a light emitting device
JP5019161B2 (en) LED based on phosphor and phosphor belonging to the same
US20110317397A1 (en) Quantum dot wavelength conversion for hermetically sealed optical devices
US20110186887A1 (en) Reflection Mode Wavelength Conversion Material for Optical Devices Using Non-Polar or Semipolar Gallium Containing Materials
JP5326182B2 (en) Light emitting device, phosphor for light emitting element, and method for manufacturing the same
WO2016139954A1 (en) Light emitting device
JP2005264160A (en) Phosphor, method for producing the same and light emitting device
JP2013033916A (en) Light-emitting device and manufacturing method of the same
CN107408610B (en) Light emitting device
JP2011151419A (en) Light emitting device and fabricating method thereof
JP5157029B2 (en) Light emitting device using phosphor
JP2002050800A (en) Light-emitting device and forming method therefor
Winkler et al. LED components–principles of radiation generation and packaging
KR100684043B1 (en) White light emitting diode and method thereof
JPH11233831A (en) Light emitting diode and its forming method
KR100684044B1 (en) White light emitting diode and method thereof
TW202016190A (en) Inert filler to increase wavelength converting material volume and improve color over angle
KR20150137767A (en) Light emitting device package including oxinitride phosphore
KR20060063511A (en) White light emitted device using green-emitting and yellow emitting phosphor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP