WO2013000713A2 - Solar installation with a solar collector and a photovoltaic or thermoelectric converter - Google Patents

Solar installation with a solar collector and a photovoltaic or thermoelectric converter Download PDF

Info

Publication number
WO2013000713A2
WO2013000713A2 PCT/EP2012/061242 EP2012061242W WO2013000713A2 WO 2013000713 A2 WO2013000713 A2 WO 2013000713A2 EP 2012061242 W EP2012061242 W EP 2012061242W WO 2013000713 A2 WO2013000713 A2 WO 2013000713A2
Authority
WO
WIPO (PCT)
Prior art keywords
solar
solar system
converter
evaporator
evaporator part
Prior art date
Application number
PCT/EP2012/061242
Other languages
German (de)
French (fr)
Other versions
WO2013000713A3 (en
Inventor
Bernd Gromoll
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2013000713A2 publication Critical patent/WO2013000713A2/en
Publication of WO2013000713A3 publication Critical patent/WO2013000713A3/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/052Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells
    • H01L31/0521Cooling means directly associated or integrated with the PV cell, e.g. integrated Peltier elements for active cooling or heat sinks directly associated with the PV cells using a gaseous or a liquid coolant, e.g. air flow ventilation, water circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/90Solar heat collectors using working fluids using internal thermosiphonic circulation
    • F24S10/95Solar heat collectors using working fluids using internal thermosiphonic circulation having evaporator sections and condenser sections, e.g. heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/79Arrangements for concentrating solar-rays for solar heat collectors with reflectors with spaced and opposed interacting reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • F24S40/55Arrangements for cooling, e.g. by using external heat dissipating means or internal cooling circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Definitions

  • the invention relates to a solar system with a Clarkol ⁇ lecturer and a photovoltaic or thermoelectric converter, which is aligned with respect to the solar collector such that the solar radiation is concentrated on the converter.
  • a solar system of the type described is example ⁇ way according to WO 2011/028742 AI known.
  • a solar panel in the form of a parabolic trough is used, wherein a photo- voltaic converter (a solar cell, for example) may be angeord ⁇ net in the focal axis of the parabolic trough.
  • a solar system is also referred to as a so- ⁇ -called fotovoltaic concentrating system (CPV).
  • CPV fotovoltaic concentrating system
  • Such arrangements are used to increase the force acting on the wall 1er amount of solar radiation to obtain a given cost components as large as possible Ausbeu ⁇ te of electrical energy.
  • the object of the invention is to provide a solar system with a solar collector and a photovoltaic or thermoelectric converter (hereinafter referred to as converter), in which comparatively much solar radiation can be concentrated on the converter.
  • converter photovoltaic or thermoelectric converter
  • thermosyphon circuit for cooling the converter a thermosyphon circuit is provided with an evaporator part and a condenser part, wherein the evaporator part is thermally conductively connected to the transducer.
  • a thermally conductive connection is meant a connection between these components which dissipates the heat comparatively well. The connection itself should therefore take so good Minim ⁇ least the heat, as the material of the transducer or the material of the evaporator part forming thermosiphon circulation - depending on which conducts heat worse of the two structural units.
  • si ⁇ cher in this manner is advantageous si ⁇ cherines that no thermal insulation is effected by the connection between the thermal ⁇ siphon circuit and the converter, but that this compound is at least neutral effect in terms of heat transfer between the transducer and the thermosyphon circulation.
  • the compound Zvi ⁇ rule converter and the evaporator part of the thermosyphon circuit assembly can be realized technically, for example, a contact pressure.
  • the evaporator part is connected to the converter via a solder connection or an adhesive connection. In this way, advantageously, the heat transfer between the evaporator part and the converter can be optimized by the material connecting these units rests with the largest possible surface on the ⁇ adjacent parts.
  • a solder joint improves the heat transfer advantageous in that relatively good conductive metallic materials can be used for the Ver ⁇ binding between the units.
  • the transducer may be metallically coated on the side facing the evaporator part.
  • the thermal conductivity ⁇ ness of the connection between the evaporator portion and the converter is greater than 200 W / (m K). This is a value for the thermal conductivity which is typical for metallic materials.
  • copper has a thermal conductivity of 403 W / (m K) (ie watts per meter times Kelvin).
  • the heat transfer can be done advantageously with a low thermal resistance.
  • the evaporator part is protected by a sun visor from direct sunlight. This sun visor may advantageously have a surface reflecting at least parts of the sunray radiation.
  • the cooling power provided by the evaporator part is available alone or at least mainly for cooling the converter. If the sun visor itself reflects at least parts of the sunray , this has the additional advantage that the sun visor heats up less. As a result, it is possible to prevent a thermal shock from the sun visor
  • a particularly advantageous embodiment of the invention is obtained when the solar collector is designed as a parabolic trough and the evaporator part is tubular and extends from one end of the parabolic trough to the other end. Just as the transducer, which is arranged in the focal axis of the parabolic trough, the evaporator part then runs over the entire length of the parabolic trough and can ensure cooling of the transducer over its entire length.
  • thermosiphon circulation ensures the evaporator part must be on mountain directed and aligned parabolic troughs with their longitudinal axis at an angle to the horizontal. Only in this way can the evaporating working medium in the evaporator section of the thermosiphon circuit flow to the upper end of the evaporator section where it releases the heat in a condenser section again. This process is driven by gravity and is therefore dependent on the said orientation of the evaporator part.
  • the evaporator part in his Cross section is adapted to the contour of the transducer.
  • this may have a flattened portion, on which the preferably flat-shaped transducer elements can be ⁇ solidifies.
  • the already mentioned solder joint can advantageously be used with a uniformly thick joint gap. The available surface for a heat transfer is thus advantageously formed maximum.
  • the capacitor part of the thermosyphone circuit is protected by a cover from the solar radiation.
  • the working medium of the thermosyphon circulation should condense, i. H. Give off heat. Therefore, an additional introduction of heat in this area should be avoided.
  • the sun visor advantageously reduces the introduction of solar energy into the condenser part.
  • the capacity of the storage for the cooling medium is dimensioned so that the cooling requirement during the day can be satisfied by taking advantage of the cooling at night.
  • the fact is taken into account that solar systems are only during the day in operation when the sunlight is converted. At night there is no light for Availability checked ⁇ supply, so that the converter does not require refrigeration.
  • Au ⁇ ßerdem cools the vicinity of the solar system, so the thermosiphon circuit can deliver more heat to the environment than during the day. If sufficient cooling medium is kept in the thermosiphon circuit, it can be stored in a memory. During the day, this storage tank is warmed up by the fact that the cooling medium can deliver less heat to the environment and absorb more heat from the transducers. Therefore, the cooling medium will heat up throughout the day. At night, this heat can be given off again.
  • the cooling capacity of the thermosiphon circuit can be advantageously increased in this way.
  • thermosyphon circuit Another advantageous measure to increasemékapa ⁇ capacity of the thermosyphon circuit is that the con- can be connected downstream of an aftercooler. This allows a further cooling of the cooling medium after Verflüs ⁇ sist done in the condenser part, before this is supplied to the evaporator part again.
  • FIG. 1 shows a cross section through an exemplary embodiment of the solar installation according to the invention, in which a parabolic trough and the evaporator section of the thermosyphon circuit can be seen
  • Figure 2 shows the cross section through an evaporator part of
  • Thermosyphone circuit with soldered transducers according to another embodiment of the inventions ⁇ inventive solar system and
  • FIG. 3 is a side view, partially in section, of another embodiment of the solar system according to the invention.
  • a solar collector 11 for the solar system is shown in section.
  • the focal axis of the solar panel designed as a parabolic trough is perpendicular to the dargestell th plane.
  • transducer 12 are arranged ⁇ , which is indicated by means of exemplary drawn sun rays 13 that the solar collector 11 bundles the sunlight on the transducer.
  • the transducers are photovoltaic elements (solar cells). These heat up due to the irradiation of the sunlight and are represented by the evaporator part 14 of a thermosyphon circuit 15 (see FIG Also Figure 3) cooled.
  • the evaporator part 14 is further protected on the side facing away from the solar collector 11 side with a sun visor 16 from direct sunlight. Therefore, this is mainly heated by a heat transfer of the heat generated in the transducers 12, so that the provided in the thermosyphone circuit and not closer Darge ⁇ set working medium can evaporate.
  • the sun visor 16 is provided with a surface 19 which strongly reflects the sun rays 13 so that the sun visor itself warms up as little as possible and therefore can supply as little heat as possible to the evaporator part 14 by convection.
  • the evaporator part has flattened preparation ⁇ surface 20 in cross-section, so that the flat transducers may be introduced ⁇ ge 12 over its entire width with the evaporator portion in contact.
  • FIG. 2 shows a different profile of the evaporator part 14 as a section.
  • This is a circular We ⁇ sentlichen cross-section which, however, also has two flats 20 at which the converter 12 with a solder layer 21 as a thermally well conducting heat ⁇ transition layer having a thermal conductivity greater than 200 W / (m K) can be attached.
  • a soldering of the converter 12 is possible with the metallic evaporator part 14, the transducers 12 are provided at their part of the evaporator 14 supplied ⁇ facing side with a metallization 22nd
  • the metallization layer can be applied to the rear side of the transducers, for example by means of sputtering.
  • the evaporator part can be made for example of a copper tube.
  • Another possibility is to use an extruded aluminum profile. 3 shows the entire thermosyphon circuit is familiar to ⁇ he 15th In the evaporator part 14, the working medium evaporates and rises. Therefore, the solar collector 11 must also be directed with its focal axis upwards and not be mounted with waa ⁇ fair focal axis.
  • a supply line 25 and a discharge line 26 in the immediate vicinity of the evaporator part 14 must then be elastically formed at ⁇ example by hoses.
  • thermosyphon circuit 15 The evaporating in the evaporator part 14, working medium rises upwardly and passes through a capacitor portion 27 where the Ar ⁇ beitsmedium heat to cooling fins 28 and thereby condensed. It is then fed to a memory 29.
  • the cooling medium can be pumped during the night with a circulation pump 30 in the liquid state through the thermosyphon circuit and releases the heat stored during the day to the cooler night air.
  • an aftercooler 31 work with cooling fins 28, the capacitor part 27 and the evaporator section 14 each as a cooler, since these areas of the thermosiphon circuit are executed with good thermal conductivity and allow a heat ⁇ discharge of the working medium.
  • lying outside of the solar collector 11 of the thermosyphon circuit 15 is shaded with a cover 32.

Abstract

The invention relates to a solar installation with a solar collector (11) and a photovoltaic or thermoelectric converter (12). The converter is preferably arranged in the focal axis of the solar collector. The aim of the invention is to reliably dissipate the heat that is generated in the converter. According to the invention, this is achieved in that the evaporator section (14) of a thermosiphon circuit (not described in detail) is arranged such that a heat transfer is ensured from the converters (12) into the evaporator section (14). In this manner, the efficiency of the converter (12) can be improved and a thermal overload can be prevented.

Description

Beschreibung description
Solaranlage mit einem Sonnenkollektor und einem fotovoltai- schen oder thermoelektrischen Wandler Solar system with a solar collector and a photovoltaic or thermoelectric converter
Die Erfindung betrifft eine Solaranlage mit einem Sonnenkol¬ lektor und einen fotovoltaischen oder thermoelektrischen Wandler, der gegenüber dem Sonnenkollektor derart ausgerichtet ist, dass die Sonnenstrahlung auf den Wandler konzent- riert wird. The invention relates to a solar system with a Sonnenkol ¬ lecturer and a photovoltaic or thermoelectric converter, which is aligned with respect to the solar collector such that the solar radiation is concentrated on the converter.
Eine Solaranlage der eingangs angegebenen Art ist beispiels¬ weise gemäß der WO 2011/028742 AI bekannt. Bei dieser Solaranlage wird ein Sonnenkollektor in Form einer Parabolrinne verwendet, wobei in der Brennachse der Parabolrinne ein foto- voltaischer Wandler (beispielsweise eine Solarzelle) angeord¬ net sein kann. Eine solche Solaranlage wird auch als soge¬ nanntes concentrating fotovoltaic System (CPV) bezeichnet. Derartige Anordnungen werden verwendet, um die auf den Wand- 1er einwirkende Menge an Sonneneinstrahlung zu vergrößern, um bei gegebenem Komponentenaufwand eine möglichst große Ausbeu¬ te an elektrischer Energie zu erhalten. A solar system of the type described is example ¬ way according to WO 2011/028742 AI known. In this solar system a solar panel in the form of a parabolic trough is used, wherein a photo- voltaic converter (a solar cell, for example) may be angeord ¬ net in the focal axis of the parabolic trough. Such a solar system is also referred to as a so-¬-called fotovoltaic concentrating system (CPV). Such arrangements are used to increase the force acting on the wall 1er amount of solar radiation to obtain a given cost components as large as possible Ausbeu ¬ te of electrical energy.
Durch die Konzentration der Sonnenstrahlung gelangt jedoch auch ein größeres Maß an Wärmestrahlung zum Wandler. Dieser heizt sich dadurch auf, wobei die zulässigen Betriebstempera¬ turen bei der Auslegung des Sonnenkollektors dahingehend be¬ rücksichtigt werden müssen, dass die eingestrahlte Gesamtmen¬ ge für den Wandler nicht zu groß wird. Due to the concentration of solar radiation, however, also reaches a greater degree of heat radiation to the converter. This heats up thereby, wherein the permissible operating tempera tures ¬ need in the design of the solar collector to the effect ¬ be be taken into account that the irradiated Gesamtmen ¬ ge for the transducer is not too large.
Die Aufgabe der Erfindung liegt daher darin, eine Solaranlage mit einem Sonnenkollektor und einem fotovoltaischen oder thermoelektrischen Wandler (im Folgenden kurz als Wandler bezeichnet) anzugeben, bei dem vergleichsweise viel Sonnen- Strahlung auf den Wandler konzentriert werden kann. The object of the invention is to provide a solar system with a solar collector and a photovoltaic or thermoelectric converter (hereinafter referred to as converter), in which comparatively much solar radiation can be concentrated on the converter.
Diese Aufgabe wird mit der eingangs angegebenen Solaranlage erfindungsgemäß dadurch gelöst, dass zur Kühlung des Wandlers ein Thermosyphon-Kreislauf mit einem Verdampferteil und einem Kondensatorteil vorgesehen ist, wobei der Verdampferteil mit dem Wandler thermisch leitend verbunden ist. Unter einer thermisch leitenden Verbindung ist eine Verbindung zwischen diesen Bauteilen gemeint, die die Wärme vergleichsweise gut ableitet. Die Verbindung selbst soll die Wärme also mindes¬ tens so gut leiten, wie das Material des Wandlers oder das Material des den Verdampferteil bildenden Thermosyphon- Kreislaufes - je nachdem welches der beiden Baueinheiten die Wärme schlechter leitet. Auf diese Weise ist vorteilhaft si¬ chergestellt, dass durch die Verbindung zwischen dem Thermo¬ syphon-Kreislauf und dem Wandler keine thermische Isolation bewirkt wird, sondern dass sich diese Verbindung wenigstens neutral hinsichtlich des Wärmeübergangs zwischen dem Wandler und dem Thermosyphon-Kreislauf auswirkt. Die Verbindung zwi¬ schen Wandler und Verdampferteil des Thermosyphon-Kreislaufes kann beispielsweise über einen Anpressdruck montagetechnisch realisiert sein. Besonders vorteilhaft ist es aber, wenn der Verdampferteil über eine Lötverbindung oder eine Klebeverbin- dung mit dem Wandler verbunden ist. Hierdurch kann vorteilhaft der Wärmeübergang zwischen dem Verdampferteil und dem Wandler optimiert werden, indem das diese Baueinheiten verbindende Material mit einer größtmöglichen Fläche an den be¬ nachbarten Teilen anliegt. Insbesondere eine Lötverbindung verbessert den Wärmeübergang vorteilhaft dadurch, dass vergleichsweise gut leitende metallische Werkstoffe für die Ver¬ bindung zwischen den Baueinheiten verwendet werden kann. Um eine Lötverbindung herzustellen, kann der Wandler an der dem Verdampferteil zugewandten Seite metallisch beschichtet sein. This object is achieved with the above solar system according to the invention that for cooling the converter a thermosyphon circuit is provided with an evaporator part and a condenser part, wherein the evaporator part is thermally conductively connected to the transducer. By a thermally conductive connection is meant a connection between these components which dissipates the heat comparatively well. The connection itself should therefore take so good Minim ¬ least the heat, as the material of the transducer or the material of the evaporator part forming thermosiphon circulation - depending on which conducts heat worse of the two structural units. In this manner is advantageous si ¬ chergestellt that no thermal insulation is effected by the connection between the thermal ¬ siphon circuit and the converter, but that this compound is at least neutral effect in terms of heat transfer between the transducer and the thermosyphon circulation. The compound Zvi ¬ rule converter and the evaporator part of the thermosyphon circuit assembly can be realized technically, for example, a contact pressure. However, it is particularly advantageous if the evaporator part is connected to the converter via a solder connection or an adhesive connection. In this way, advantageously, the heat transfer between the evaporator part and the converter can be optimized by the material connecting these units rests with the largest possible surface on the ¬ adjacent parts. In particular, a solder joint improves the heat transfer advantageous in that relatively good conductive metallic materials can be used for the Ver ¬ binding between the units. In order to produce a solder joint, the transducer may be metallically coated on the side facing the evaporator part.
Weiterhin ist es vorteilhaft, wenn die thermische Leitfähig¬ keit der Verbindung zwischen dem Verdampferteil und dem Wandler größer als 200 W/ (m K) beträgt. Hierbei handelt es sich um einen Wert für die thermische Leitfähigkeit der für metal- lische Werkstoffe typisch ist. Kupfer weist beispielsweise eine thermische Leitfähigkeit von 403 W/ (m K) (d. h. Watt pro Meter mal Kelvin) auf. Der Wärmeübergang kann hierdurch vorteilhaft mit einem geringen thermischen Widerstand erfolgen. Gemäß einer anderen Ausgestaltung der Erfindung kann vorgesehen werden, dass der Verdampferteil durch eine Sonnenblende vor direkter Sonneneinstrahlung geschützt ist. Diese Sonnen- blende kann vorteilhaft eine zumindest Teile der Sonnenstrah¬ lung reflektierende Oberfläche aufweisen. Hierdurch wird vor¬ teilhaft sichergestellt, dass der Verdampferteil vor Sonnen¬ strahlung geschützt wird, da diese den Verdampferteil zusätz¬ lich und unnötig aufheizen würde. So steht die vom Verdamp- ferteil zur Verfügung gestellte Kühlleistung allein oder zumindest hauptsächlich zur Kühlung des Wandlers zur Verfügung. Wenn die Sonnenblende selbst zumindest Teile der Sonnenstrah¬ lung reflektiert, hat dies den zusätzlichen Vorteil, dass sich die Sonnenblende weniger aufheizt. Hierdurch kann ver- mieden werden, dass von der Sonnenblende eine thermischeFurthermore, it is advantageous if the thermal conductivity ¬ ness of the connection between the evaporator portion and the converter is greater than 200 W / (m K). This is a value for the thermal conductivity which is typical for metallic materials. For example, copper has a thermal conductivity of 403 W / (m K) (ie watts per meter times Kelvin). The heat transfer can be done advantageously with a low thermal resistance. According to another embodiment of the invention can be provided that the evaporator part is protected by a sun visor from direct sunlight. This sun visor may advantageously have a surface reflecting at least parts of the sunray radiation. This ensures ago ¬ geous that the evaporator portion is protected from sun ¬ radiation, as this would heat the evaporator part zusätz ¬ Lich and unnecessary. Thus, the cooling power provided by the evaporator part is available alone or at least mainly for cooling the converter. If the sun visor itself reflects at least parts of the sunray , this has the additional advantage that the sun visor heats up less. As a result, it is possible to prevent a thermal shock from the sun visor
Strahlung ausgeht, die auf der Seite des Verdampferteils auf selbigen einwirken könnte und diesen damit zusätzlich erwärmen würde . Eine besonders vorteilhafte Ausgestaltung der Erfindung wird erhalten, wenn der Sonnenkollektor als Parabolrinne ausgebildet ist und der Verdampferteil rohrförmig ist und vom einen Ende der Parabolrinne zum anderen Ende verläuft. Genauso wie der Wandler, der in der Brennachse der Parabolrinne angeord- net ist, verläuft der Verdampferteil dann über die gesamte Länge der Parabolrinne und kann eine Kühlung des Wandlers über die gesamte Länge gewährleisten. Damit bei dieser Bau¬ form die prinzipbedingte Funktion des Thermosyphon- Kreislaufes gewährleistet ist, muss der Verdampferteil berg- auf gerichtet und damit die Parabolrinne mit ihrer Längsachse schräg zur Waagerechten ausgerichtet sein. Nur so kann das verdampfende Arbeitsmedium im Verdampferteil des Thermo- syphon-Kreislaufes an das obere Ende des Verdampferteils strömen und dort die Wärme in einem Kondensatorteil wieder abgeben. Dieser Prozess wird durch die Schwerkraft getrieben und ist daher von der besagten Ausrichtung des Verdampferteils abhängig. Für eine Verbesserung des Wärmeübergangs ist es überdies vorteilhaft, wenn der Verdampferteil in seinem Querschnitt an die Kontur des Wandlers angepasst ist. Insbe¬ sondere kann dieser einen abgeflachten Bereich aufweisen, auf dem die vorzugsweise flach ausgebildeten Wandlerelemente be¬ festigt werden können. Hierbei kann bei gleichmäßig dickem Fügespalt vorteilhaft die bereits erwähnte Lötverbindung zum Einsatz kommen. Die zur Verfügung stehende Fläche für einen Wärmeübergang ist damit vorteilhaft maximal ausgebildet. Radiation goes out, which could act on the side of the evaporator part on selbigen and this would thus heat additionally. A particularly advantageous embodiment of the invention is obtained when the solar collector is designed as a parabolic trough and the evaporator part is tubular and extends from one end of the parabolic trough to the other end. Just as the transducer, which is arranged in the focal axis of the parabolic trough, the evaporator part then runs over the entire length of the parabolic trough and can ensure cooling of the transducer over its entire length. Thus, in this construction ¬ form the principle-related function of thermosiphon circulation ensures the evaporator part must be on mountain directed and aligned parabolic troughs with their longitudinal axis at an angle to the horizontal. Only in this way can the evaporating working medium in the evaporator section of the thermosiphon circuit flow to the upper end of the evaporator section where it releases the heat in a condenser section again. This process is driven by gravity and is therefore dependent on the said orientation of the evaporator part. For an improvement of the heat transfer, it is also advantageous if the evaporator part in his Cross section is adapted to the contour of the transducer. In particular ¬ sondere this may have a flattened portion, on which the preferably flat-shaped transducer elements can be ¬ solidifies. In this case, the already mentioned solder joint can advantageously be used with a uniformly thick joint gap. The available surface for a heat transfer is thus advantageously formed maximum.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Kondensatorteil des Thermosyphon-Kreislaufes durch eine Abdeckung vor der Sonnenstrahlung geschützt. In diesem Bereich soll das Arbeitsmedium des Thermosyphon- Kreislaufes kondensieren, d. h. Wärme abgeben. Deswegen ist eine zusätzliche Einbringung von Wärme in diesem Bereich zu vermeiden. Die Sonnenblende verringert das Einbringen von Sonnenenergie in den Kondensatorteil vorteilhaft. According to a further advantageous embodiment of the invention, the capacitor part of the thermosyphone circuit is protected by a cover from the solar radiation. In this area, the working medium of the thermosyphon circulation should condense, i. H. Give off heat. Therefore, an additional introduction of heat in this area should be avoided. The sun visor advantageously reduces the introduction of solar energy into the condenser part.
Außerdem ist es vorteilhaft, wenn die Kapazität des Speichers für das Kühlmedium so bemessen ist, dass der Kühlbedarf am Tage durch Ausnutzung der Abkühlung in der Nacht befriedigt werden kann. Hierbei wird dem Umstand Rechnung getragen, dass Solaranlagen nur tagsüber in Betrieb sind, wenn das Sonnenlicht umgewandelt wird. Nachts steht kein Licht zur Verfü¬ gung, so dass auch der Wandler nicht gekühlt werden muss. Au¬ ßerdem kühlt sich auch die Umgebung der Solaranlage ab, so dass der Thermosyphon-Kreislauf mehr Wärme an die Umgebung abgeben kann, als tagsüber. Wird genügend Kühlmedium im Thermosyphon-Kreislauf vorgehalten, kann dieses in einem Speicher gespeichert werden. Am Tag wird dieser Speicher dadurch erwärmt, dass das Kühlmedium weniger Wärme an die Umgebung abgeben kann und mehr Wärme aus den Wandlern aufnehmen muss. Daher wird sich das Kühlmedium insgesamt im Verlauf des Tages erwärmen. In der Nacht kann diese Wärme wieder abgegeben werden. Die Kühlkapazität des Thermosyphon-Kreislaufes lässt sich auf diese Weise vorteilhaft erhöhen. In addition, it is advantageous if the capacity of the storage for the cooling medium is dimensioned so that the cooling requirement during the day can be satisfied by taking advantage of the cooling at night. Here, the fact is taken into account that solar systems are only during the day in operation when the sunlight is converted. At night there is no light for Availability checked ¬ supply, so that the converter does not require refrigeration. Au ¬ ßerdem cools the vicinity of the solar system, so the thermosiphon circuit can deliver more heat to the environment than during the day. If sufficient cooling medium is kept in the thermosiphon circuit, it can be stored in a memory. During the day, this storage tank is warmed up by the fact that the cooling medium can deliver less heat to the environment and absorb more heat from the transducers. Therefore, the cooling medium will heat up throughout the day. At night, this heat can be given off again. The cooling capacity of the thermosiphon circuit can be advantageously increased in this way.
Eine andere vorteilhafte Maßnahme zur Erhöhung der Kühlkapa¬ zität des Thermosyphon-Kreislaufes liegt darin, dass dem Kon- densatorteil ein Nachkühler nachgeschaltet werden kann. Hierdurch kann eine weitere Kühlung des Kühlmediums nach Verflüs¬ sigung im Kondensatorteil erfolgen, bevor dieses dem Verdampferteil wieder zugeführt wird. Another advantageous measure to increase Kühlkapa ¬ capacity of the thermosyphon circuit is that the con- can be connected downstream of an aftercooler. This allows a further cooling of the cooling medium after Verflüs ¬ sigung done in the condenser part, before this is supplied to the evaporator part again.
Weitere Einzelheiten der Erfindung werden nachfolgend anhand der Zeichnung beschrieben. Gleiche oder sich entsprechende Zeichnungselemente sind jeweils mit den gleichen Bezugszei¬ chen versehen und werden nur insoweit mehrfach erläutert, wie sich Unterschiede zwischen den einzelnen Figuren ergeben. Es zeigen : einen Querschnitt durch ein Ausführungsbeispiel der erfindungsgemäßen Solaranlage, in dem eine Parabol- rinne und der Verdampferteil des Thermosyphon- Kreislaufes zu erkennen ist, Further details of the invention are described below with reference to the drawing. Identical or corresponding drawing elements are each provided with the same Bezugszei ¬ chen and are only explained several times as far as differences arise between the individual figures. 1 shows a cross section through an exemplary embodiment of the solar installation according to the invention, in which a parabolic trough and the evaporator section of the thermosyphon circuit can be seen,
Figur 2 den Querschnitt durch einen Verdampferteil des Figure 2 shows the cross section through an evaporator part of
Thermosyphon-Kreislaufes mit angelöteten Wandlern gemäß einem weiteren Ausführungsbeispiel der erfin¬ dungsgemäßen Solaranlage und Thermosyphone circuit with soldered transducers according to another embodiment of the inventions ¬ inventive solar system and
Figur 3 eine Seitenansicht, teilweise geschnitten, eines weiteren Ausführungsbeispiels der erfindungsgemäßen Solaranlage. Figure 3 is a side view, partially in section, of another embodiment of the solar system according to the invention.
Gemäß Figur 1 ist ein Sonnenkollektor 11 für die Solaranlage im Schnitt dargestellt. Die Brennachse des als Parabolrinne ausgeführten Sonnenkollektors liegt senkrecht zur dargestell ten Zeichenebene. In dieser Brennachse sind Wandler 12 ange¬ ordnet, wobei mittels exemplarisch eingezeichneter Sonnenstrahlen 13 angedeutet ist, dass der Sonnenkollektor 11 das Sonnenlicht auf die Wandler bündelt. According to Figure 1, a solar collector 11 for the solar system is shown in section. The focal axis of the solar panel designed as a parabolic trough is perpendicular to the dargestell th plane. In this focal axis transducer 12 are arranged ¬ , which is indicated by means of exemplary drawn sun rays 13 that the solar collector 11 bundles the sunlight on the transducer.
Bei den Wandlern handelt es sich um fotovoltaische Elemente (Solarzellen) . Diese erwärmen sich durch die Einstrahlung des Sonnenlichts und werden durch den im Schnitt dargestellten Verdampferteil 14 eines Thermosyphon-Kreislaufes 15 (siehe auch Figur 3) gekühlt. Der Verdampferteil 14 ist weiterhin auf der dem Sonnenkollektor 11 abgekehrten Seite mit einer Sonnenblende 16 vor direkter Sonneneinstrahlung geschützt. Daher wird dieser hauptsächlich durch einen Wärmeübergang der erzeugten Wärme in den Wandlern 12 erwärmt, so dass das in dem Thermosyphon-Kreislauf vorgesehene und nicht näher darge¬ stellte Arbeitsmedium verdampfen kann. The transducers are photovoltaic elements (solar cells). These heat up due to the irradiation of the sunlight and are represented by the evaporator part 14 of a thermosyphon circuit 15 (see FIG Also Figure 3) cooled. The evaporator part 14 is further protected on the side facing away from the solar collector 11 side with a sun visor 16 from direct sunlight. Therefore, this is mainly heated by a heat transfer of the heat generated in the transducers 12, so that the provided in the thermosyphone circuit and not closer Darge ¬ set working medium can evaporate.
Die Sonnenblende 16 ist mit einer die Sonnenstrahlen 13 stark reflektierenden Oberfläche 19 versehen, damit sich die Sonnenblende selbst möglichst wenig aufwärmt und daher auch durch Konvektion möglichst wenig Wärme an den Verdampferteil 14 abgeben kann. Der Verdampferteil weist abgeflachte Berei¬ che 20 im Querschnitt auf, damit die flachen Wandler 12 über ihre gesamte Breite mit dem Verdampferteil in Kontakt ge¬ bracht werden können. The sun visor 16 is provided with a surface 19 which strongly reflects the sun rays 13 so that the sun visor itself warms up as little as possible and therefore can supply as little heat as possible to the evaporator part 14 by convection. The evaporator part has flattened preparation ¬ surface 20 in cross-section, so that the flat transducers may be introduced ¬ ge 12 over its entire width with the evaporator portion in contact.
Angedeutet ist weiterhin eine Stütze 17 für den Verdampferteil 14 sowie die Sonnenblende 16 sowie eine schwenkbare Be- festigung 18, mit der der Kollektor nach dem Sonnenstand ausgerichtet werden kann (zur Positionierung des Kollektors 11 siehe auch Figur 3) . Also indicated is a support 17 for the evaporator part 14 as well as the sun visor 16 and a pivotable fastening 18 with which the collector can be aligned according to the position of the sun (for the positioning of the collector 11 see also FIG. 3).
In Figur 2 ist ein anderes Profil des Verdampferteils 14 als Schnitt dargestellt. Hierbei handelt es sich um einen im We¬ sentlichen kreisförmigen Querschnitt, der allerdings ebenfalls zwei Abflachungen 20 aufweist, an denen die Wandler 12 mit einer Lötschicht 21 als thermisch gut leitende Wärmeüber¬ gangsschicht mit einer Wärmeleitfähigkeit von mehr als 200 W/ (m K) befestigt werden können. Damit eine Verlötung der Wandler 12 mit dem metallischen Verdampferteil 14 möglich ist, sind die Wandler 12 an ihrer dem Verdampferteil 14 zuge¬ wandten Seite mit einer Metallisierungsschicht 22 versehen. Die Metallisierungsschicht kann beispielsweise mittels Auf- sputtern auf die Rückseite der Wandler aufgebracht werden.FIG. 2 shows a different profile of the evaporator part 14 as a section. This is a circular We ¬ sentlichen cross-section which, however, also has two flats 20 at which the converter 12 with a solder layer 21 as a thermally well conducting heat ¬ transition layer having a thermal conductivity greater than 200 W / (m K) can be attached. Thus, a soldering of the converter 12 is possible with the metallic evaporator part 14, the transducers 12 are provided at their part of the evaporator 14 supplied ¬ facing side with a metallization 22nd The metallization layer can be applied to the rear side of the transducers, for example by means of sputtering.
Als Metallisierungsschicht bietet sich beispielsweise Kupfer oder Silber an, wobei diese Metalle ebenfalls einen sehr ho¬ hen Wärmeleitkoeffizienten aufweisen. Der Verdampferteil kann beispielsweise aus einem Kupferrohr gefertigt werden. Eine andere Möglichkeit besteht darin, ein Strangpressprofil aus Aluminium zu verwenden. In Figur 3 ist der gesamte Thermosyphon-Kreislauf 15 zu er¬ kennen. Im Verdampferteil 14 verdampft das Arbeitsmedium und steigt nach oben. Deswegen muss der Sonnenkollektor 11 auch mit seiner Brennachse nach oben gerichtet und nicht mit waa¬ gerechter Brennachse montiert sein. Die Drehachse 23, die in Figur 1 dargestellt ist, ermöglicht daher eine Ausrichtung des Sonnenkollektors 11 in verschiedene Himmelsrichtungen. Soll der Sonnenkollektor zusätzlich nach der Höhe des Sonnenstandes ausgerichtet werden, so muss in der Befestigung 18 eine lineare Höhenverstellung 24 vorgesehen werden. Eine Zu- führleitung 25 und eine Abführleitung 26 in direkter Nachbarschaft des Verdampferteils 14 müssen dann elastisch bei¬ spielsweise durch Schläuche ausgebildet sein. For example, copper or silver is suitable as the metallization layer, these metals likewise having a very high heat conduction coefficient. The evaporator part can be made for example of a copper tube. Another possibility is to use an extruded aluminum profile. 3 shows the entire thermosyphon circuit is familiar to ¬ he 15th In the evaporator part 14, the working medium evaporates and rises. Therefore, the solar collector 11 must also be directed with its focal axis upwards and not be mounted with waa ¬ fair focal axis. The axis of rotation 23, which is shown in Figure 1, therefore, allows alignment of the solar collector 11 in different directions. If the solar collector is to be additionally aligned with the height of the sun, a linear height adjustment 24 must be provided in the attachment 18. A supply line 25 and a discharge line 26 in the immediate vicinity of the evaporator part 14 must then be elastically formed at ¬ example by hoses.
Das im Verdampferteil 14 verdampfende Arbeitsmedium steigt nach oben und passiert einen Kondensatorteil 27, wo das Ar¬ beitsmedium Wärme an Kühlrippen 28 abgibt und dadurch kondensiert. Es wird anschließend einem Speicher 29 zugeführt. Hier ist eine größere Menge Arbeitsmedium vorhanden, welche über Nacht abgekühlt werden kann und somit für den Tag zusätzliche Kühlleistung zur Verfügung stellt. Zu diesem Zweck kann das Kühlmedium während der Nacht mit einer Umwälzpumpe 30 im flüssigen Zustand durch den Thermosyphon-Kreislauf gepumpt werden und gibt die am Tag gespeicherte Wärme an die kühlere Nachtluft ab. Hierbei arbeiten ein Nachkühler 31 mit Kühlrip- pen 28, der Kondensatorteil 27 und auch der Verdampferteil 14 jeweils als Kühler, da diese Bereiche des Thermosyphon- Kreislaufes gut wärmeleitend ausgeführt sind und eine Wärme¬ abgabe des Arbeitsmediums erlauben. Um im Tagbetrieb eine möglichst geringe Aufheizung des Arbeitsmediums durch direkte Sonneneinstrahlung zu gewährleisten, ist der außerhalb des Sonnenkollektors 11 liegende Teil des Thermosyphon- Kreislaufes 15 mit einer Abdeckung 32 abgeschattet. The evaporating in the evaporator part 14, working medium rises upwardly and passes through a capacitor portion 27 where the Ar ¬ beitsmedium heat to cooling fins 28 and thereby condensed. It is then fed to a memory 29. Here is a larger amount of working fluid available, which can be cooled overnight, thus providing additional cooling capacity for the day. For this purpose, the cooling medium can be pumped during the night with a circulation pump 30 in the liquid state through the thermosyphon circuit and releases the heat stored during the day to the cooler night air. Here, an aftercooler 31 work with cooling fins 28, the capacitor part 27 and the evaporator section 14 each as a cooler, since these areas of the thermosiphon circuit are executed with good thermal conductivity and allow a heat ¬ discharge of the working medium. In order to ensure the lowest possible heating of the working medium by direct sunlight in the daytime operation, lying outside of the solar collector 11 of the thermosyphon circuit 15 is shaded with a cover 32.

Claims

Patentansprüche claims
1. Solaranlage mit einem Sonnenkollektor (11) und einem pho- tovoltaischen oder thermoelektrischen Wandler (12), der ge- genüber dem Sonnenkollektor (11) derart ausgerichtet ist, dass die Sonnenstrahlung auf den Wandler (12) konzentriert wird, 1. Solar system with a solar collector (11) and a photovoltaic or thermoelectric converter (12) which is aligned with respect to the solar collector (11) such that the solar radiation is concentrated on the transducer (12),
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass zur Kühlung des Wandlers (12) ein Thermosyphon-Kreislauf (15) mit einem Verdampferteil (14) und einem Kondensatorteil (27) vorgesehen ist, wobei der Verdampferteil (14) mit dem Wandler (12) thermisch leitend verbunden ist. in that a thermosyphone circuit (15) with an evaporator section (14) and a condenser section (27) is provided for cooling the converter (12), wherein the evaporator section (14) is thermally conductively connected to the converter (12).
2. Solaranlage nach Anspruch 1, 2. Solar system according to claim 1,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass der Verdampferteil (14) über eine Lötverbindung (21) oder eine Klebeverbindung mit dem Wandler (12) verbunden ist. in that the evaporator part (14) is connected to the converter (12) via a solder connection (21) or an adhesive connection.
3. Solaranlage nach einem der Ansprüche 1 oder 2, 3. Solar system according to one of claims 1 or 2,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die thermische Leitfähigkeit der Verbindung zwischen dem Verdampferteil (14) und dem Wandler (12) größer als 200 W/ (m K) ist. the thermal conductivity of the connection between the evaporator part (14) and the transducer (12) is greater than 200 W / (m K).
4. Solaranlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 4. Solar system according to one of the preceding claims, d a d e r c h e c e n e c e n e,
dass der Verdampferteil (14) durch eine Sonnenblende (16) vor direkter Sonneneinstrahlung geschützt ist. the evaporator part (14) is protected from direct sunlight by a sun visor (16).
5. Solaranlage nach Anspruch 4, 5. Solar system according to claim 4,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Sonnenblende (16) eine zumindest Teile der Sonnen¬ strahlung reflektierende Oberfläche (19) aufweist. that the sun visor (16) has an at least parts of the suns ¬ radiation-reflecting surface (19).
6. Solaranlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, dass der Sonnenkollektor (11) als Parabolrinne ausgebildet ist und der Verdampferteil (14) rohrförmig ist und vom einen Ende der Parabolrinne zum anderen Ende verläuft. 6. Solar system according to one of the preceding claims, characterized the solar collector (11) is designed as a parabolic trough and the evaporator part (14) is tubular and extends from one end of the parabolic trough to the other end.
7. Solaranlage nach Anspruch 6, 7. Solar system according to claim 6,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass der Verdampferteil (14) in seinem Querschnitt an die Kontur des Wandlers (12) angepasst ist, insbesondere einen abgeflachten Bereich (20) aufweist. the evaporator part (14) is adapted in its cross section to the contour of the transducer (12), in particular has a flattened region (20).
8. Solaranlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 8. Solar system according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass der Kondensatorteil (27) durch eine Abdeckung (32) vor der Sonnenstrahlung geschützt ist. the capacitor part (27) is protected from solar radiation by a cover (32).
9. Solaranlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 9. Solar system according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass dem Kondensatorteil (27) nachgeschaltet ein Speicher (29) für das flüssige Kühlmedium vorgesehen ist. that a memory (29) for the liquid cooling medium is provided downstream of the condenser part (27).
10. Solaranlage nach Anspruch 9, 10. Solar system according to claim 9,
d a d u r c h g e k e n n z e i c h n e t, characterized,
dass die Kapazität des Speichers (29) für das Kühlmedium so bemessen ist, dass der Kühlbedarf am Tage durch Ausnutzung der Abkühlung in der Nacht befriedigt werden kann. the capacity of the storage medium (29) for the cooling medium is dimensioned so that the cooling requirement during the day can be satisfied by utilizing the cooling at night.
11. Solaranlage nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t, 11. Solar system according to one of the preceding claims, d a d u c h e c e n e c e n e,
dass dem Kondensatorteil (27) ein Nachkühler (31) nachge- schaltet ist. that the aftercooler (31) is connected downstream of the condenser part (27).
PCT/EP2012/061242 2011-06-29 2012-06-14 Solar installation with a solar collector and a photovoltaic or thermoelectric converter WO2013000713A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011078300A DE102011078300A1 (en) 2011-06-29 2011-06-29 Solar system with a solar collector and a photovoltaic or thermoelectric converter
DE102011078300.8 2011-06-29

Publications (2)

Publication Number Publication Date
WO2013000713A2 true WO2013000713A2 (en) 2013-01-03
WO2013000713A3 WO2013000713A3 (en) 2013-05-30

Family

ID=46319730

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/061242 WO2013000713A2 (en) 2011-06-29 2012-06-14 Solar installation with a solar collector and a photovoltaic or thermoelectric converter

Country Status (2)

Country Link
DE (1) DE102011078300A1 (en)
WO (1) WO2013000713A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503108A (en) * 2013-06-10 2013-12-18 Gert Pille Cooling Photo-Voltaic Cells Using Thermosyphon Cooling Circuit
CN115183307A (en) * 2022-07-05 2022-10-14 重庆赛迪热工环保工程技术有限公司 Light-gathering solar cogeneration heat collection equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103644659B (en) * 2013-12-11 2015-08-05 李贻曦 Zoom-type solar heat electric energy accumulator
DE102014006985B4 (en) * 2014-05-08 2017-02-02 Friedrich Grimm Parabolic trough collector with a secondary concentrator and a receiver element
GB2614024B (en) * 2021-08-11 2024-04-03 Solar Polar Ltd Solar thermal collector

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028742A1 (en) 2009-09-02 2011-03-10 3M Innovative Properties Company Concentrating solar mirror panel assembly with corrugated stiffener

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3006738A1 (en) * 1980-02-22 1981-08-27 M.A.N. Maschinenfabrik Augsburg-Nürnberg AG, 8000 München Electrical power generation utilising solar energy - has concentrator system of mirrors and lenses with cooling medium fed through heat exchanger
NL1006838C2 (en) * 1997-08-25 1999-03-04 Univ Eindhoven Tech Panel-shaped hybrid photovoltaic / thermal device.
MX2010012356A (en) * 2008-05-12 2011-08-03 Univ Arizona State Photovoltaic generator with a spherical imaging lens for use with a paraboloidal solar reflector.
US20100031991A1 (en) * 2008-08-07 2010-02-11 Fujikura Ltd. Concentrating photovoltaic generation system
US20110226308A1 (en) * 2010-03-18 2011-09-22 Yi Pang Solar energy hybrid module
US20110290302A1 (en) * 2010-03-18 2011-12-01 Yi Pang Rugged concentrating hybrid solar energy module

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011028742A1 (en) 2009-09-02 2011-03-10 3M Innovative Properties Company Concentrating solar mirror panel assembly with corrugated stiffener

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503108A (en) * 2013-06-10 2013-12-18 Gert Pille Cooling Photo-Voltaic Cells Using Thermosyphon Cooling Circuit
CN115183307A (en) * 2022-07-05 2022-10-14 重庆赛迪热工环保工程技术有限公司 Light-gathering solar cogeneration heat collection equipment
CN115183307B (en) * 2022-07-05 2024-04-09 重庆赛迪热工环保工程技术有限公司 Concentrating solar cogeneration heat collection equipment

Also Published As

Publication number Publication date
DE102011078300A1 (en) 2013-01-03
WO2013000713A3 (en) 2013-05-30

Similar Documents

Publication Publication Date Title
EP2694885B1 (en) Device and method for converting solar radiation energy to electrical power and/or to heat
EP2248196B1 (en) Thermogenerator
WO2013000713A2 (en) Solar installation with a solar collector and a photovoltaic or thermoelectric converter
EP1916486A2 (en) Solar collector system
CH698966A2 (en) Use of solar energy.
DE10251446B4 (en) Cooling arrangement for light-bundling photovoltaic systems
AT503907A1 (en) SOLAR PANEL
DE202007000529U1 (en) Solar energy collection system uses photovoltaic cells to generate electricity and also provides heating of a fluid
WO2017178125A1 (en) Solar energy roof tile having a length-variable connecting element
WO2010028818A2 (en) Solar flat collector
DE102012101169A1 (en) Heat transfer arrangement for photovoltaic module of hybrid collector for simultaneously producing current and warm water from solar power, has heat transfer device contacting with photovoltaic module in heat transferring manner
CH711262A1 (en) Cooling element for upgrading a photovoltaic module and method for upgrading such a photovoltaic module.
EP2954264A1 (en) Receiver for solar plants and solar plant
DE102012017382A1 (en) Device for cooling photovoltaic systems installed on roof of e.g. single-family house, has distributed pipes which are placed with locking fins such that pipes are connected to one another to form closed cooling medium circuit
WO2010127661A2 (en) Solar system for generating electric and thermal energy
EP2904645A1 (en) Photovoltaic-thermal hybrid solar system
AT506108A1 (en) METHOD AND SYSTEM FOR HEATING, VENTILATING AND COOLING A BUILDING
DE102011115018A1 (en) Device for receiving and dissipating heat on buildings, particularly the heat from solar radiation, has facade elements formed completely or partially as solar panels, and liquid flows through tubes that are arranged in area of ambient heat
DE202007016964U1 (en) Air absorber solar collector combination for heat pumps
DE202010008521U1 (en) Solar hybrid collector for generating electrical and / or thermal energy
DE202019005055U1 (en) Hybrid solar collector for roof covering
CH703110B1 (en) Hybrid collector.
AT524677B1 (en) Support structure for a photovoltaic module
DE202007000300U1 (en) Solar energy collector has Fresnel lens concentrators and photovoltaic cells combined with thermal heating of a fluid
DE3302324A1 (en) Heat storage arrangement for buildings, in particular for storing solar energy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12728228

Country of ref document: EP

Kind code of ref document: A2

122 Ep: pct application non-entry in european phase

Ref document number: 12728228

Country of ref document: EP

Kind code of ref document: A2