WO2013000317A1 - 多载波信号的接收方法及装置 - Google Patents

多载波信号的接收方法及装置 Download PDF

Info

Publication number
WO2013000317A1
WO2013000317A1 PCT/CN2012/073920 CN2012073920W WO2013000317A1 WO 2013000317 A1 WO2013000317 A1 WO 2013000317A1 CN 2012073920 W CN2012073920 W CN 2012073920W WO 2013000317 A1 WO2013000317 A1 WO 2013000317A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
filter
signal
adc
ooooi
Prior art date
Application number
PCT/CN2012/073920
Other languages
English (en)
French (fr)
Inventor
邱宁
***
曾文琪
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2013000317A1 publication Critical patent/WO2013000317A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/068Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection by sampling faster than the nominal bit rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only

Definitions

  • the present invention relates to the field of communications, and in particular to a method and an apparatus for receiving a multi-carrier signal.
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • CDMA2000 are internationally powered.
  • the alliance was adopted as the third generation mobile communication standard.
  • the TD-SCDMA industry chain has gradually matured. Network equipment, mobile terminals and test instruments all have mature products and solutions.
  • the TD-SCDMA standard continues to evolve, launching the TD-HSDPA wireless broadband download service in 3GPP release 5, and launching the TD-HSUPA wireless broadband upload service in 3GPP release 7.
  • the TD-SCDMA system is based on Low Chip Rate (LCR), which means that the TD-SCDMA signal has a chip rate of 1.28 MHz and an occupied bandwidth of 1.6 MHz.
  • LCR Low Chip Rate
  • the TD-SCDMA system uses a lower chip rate to reduce the implementation complexity of the terminal chip, so that advanced signal processing technologies such as Joint Detection (JD) can be applied to achieve higher network capacity.
  • JD Joint Detection
  • Low chip rate technology has no problem in implementing voice telephony, video telephony and low-speed wireless Internet access, but it has a disadvantage compared with WCDMA and CDMA2000 in wireless broadband services, because WCDMA and CDMA2000 provide downlink up to 7.2 Mb with 5MHz bandwidth.
  • TD-SCDMA provides a peak download rate of up to 2.8 Mb/s with a 1.6MHz bandwidth. It can be seen that although the spectrum utilization is similar, the peak download rate that each user can enjoy is quite different.
  • the new TD-SCDMA standard introduces multi-carrier technology, that is, transmitting data in parallel using multiple carriers to increase the transmission rate.
  • the number of carriers is usually three, and each carrier transmits the same 1.6 MHz LCR signal as the single carrier, and the SP shares a total bandwidth of 4.8 MHz to provide a peak rate of up to 8.4 Mb/s.
  • Method 1 The receiving end includes a radio frequency device and an analog baseband that satisfy multi-carrier frequency and bandwidth.
  • 1 is a schematic diagram of a multi-carrier receiving apparatus using Method 1 according to the related art. As shown in FIG.
  • the apparatus includes an 8D chip rate (10.24 MHz) sampling analog-to-digital converter (Analog Digital Converter, referred to as For the ADC) unit, two spectrum shifting units (Frequency Transfer, which is responsible for moving the carrier with +/-1.6MHz center frequency to the baseband of -0.8 ⁇ 0.8MHz) and three digital low-pass baseband filtering of 1.6MHz bandwidth
  • the devices both baseband low-pass of -0.8 ⁇ 0.8MHz respectively output three baseband signals separated by three carriers of 8 chip rate or 4 times chip rate by three low-pass filters.
  • Method 2 The difference from Method 1 is: 1) The three filters and spectrum shifting exchange the position order on the signal processing flow; 2) The low-pass filter 1 is changed to the center frequency -1.6MHz passband range -2.4MHz ⁇ -0.8MHz bandpass filter 1; 3) Lowpass filter 3 is changed to bandpass filter 3 with center frequency +1.6MHZ passband range +0.8MHz ⁇ +2.4MHz.
  • FIG. 2 is a schematic diagram of a multi-carrier receiving apparatus using Method 2 according to the related art.
  • Method 3 It is an equivalent deformation of the method 2, and reference may be made to FIG. 3.
  • FIG. 3 It is an equivalent deformation of the method 2, and reference may be made to FIG. 3.
  • FIG. 3 is a schematic diagram of a multi-carrier receiving apparatus implemented by using the third method according to the related art, that is, a cascaded fast Fourier transform (Fast)
  • the Fourier Transformation (FFT) form replaces the functions of the three filters and the spectrum shifting module in Method Two, which is lower than the method two.
  • FFT Fourier Transformation
  • the implementation structure is complicated. It can be seen that in the related art, the multi-carrier receiving apparatus has the following problems:
  • Both are based on a higher ADC sampling rate (8 times the bit rate or even higher).
  • BP the carrier output sampling rate is a multiple of the chip rate instead of the signal bandwidth rate, which increases the implementation cost and the terminal power consumption.
  • the spectrum shifting module is introduced.
  • the module needs to complete the high-precision trigonometric function calculation by looking up the table or other methods, and the calculation amount is large and the memory is occupied.
  • a primary object of the present invention is to provide a receiving scheme for a multi-carrier signal to at least solve the problem of high complexity and large computational complexity of multi-carrier reception in the above related art.
  • a method of receiving a multicarrier signal is provided.
  • a method for receiving a multi-carrier signal includes the steps of: TD-SCDMA multi-carrier signal received by a receiving end after an analog baseband, passing through an ADC having a sampling rate of N times a baseband signal bandwidth, wherein N is A positive integer; a signal is used to perform carrier separation on the signal output from the ADC; and one carrier baseband signal as an output is extracted from the output of each N filter.
  • the sampling rate of the ADC is greater than the total bandwidth of the TD-SCDMA three carriers.
  • the rate of output data of the filter is N times the baseband signal bandwidth.
  • the output of each of the four filters is extracted when the sampling rate of the ADC is 6.4 MHz.
  • a receiving apparatus for a multi-carrier signal includes an analog-to-digital converter ADC unit and a filter unit, wherein the ADC unit is configured to pass the TD-SCDMA multi-carrier signal received by the receiving end after the analog baseband
  • An ADC having a baseband signal bandwidth of N times, where N is a positive integer; a filter unit configured to use a filter to perform carrier separation on a signal output from the ADC unit, and extract one from the output of each N filter Carrier baseband signal as output.
  • the sampling rate of the ADC in the ADC unit is greater than the total bandwidth of the TD-SCDMA three carriers.
  • the filter unit comprises three filters having a bandwidth of 1.6 MHz, which are a low-pass filter with a center frequency of 0, a band-pass filter with a center frequency of -1.6 MHz, and a center frequency of +1.6 MHz. Bandpass filter.
  • the sampling rate of the ADC in the ADC unit and the filter in the filter unit are both positive integer multiples of 6.4 MHz.
  • the filter in the filter unit is a 4x downsampled filter.
  • the receiving device of the multi-carrier signal described above is disposed in the mobile terminal.
  • an ADC with a sampling rate of N times the baseband signal bandwidth is used, and one carrier baseband signal is outputted from the output of each N carrier-separated filter to realize a TD-SCDMA signal.
  • the bandwidth rate is multi-carrier reception of the basic frequency output, which solves the problem of high complexity and large computational complexity of multi-carrier reception in the related art, reduces the operating frequency and implementation complexity of multi-carrier reception, and simplifies system processing. The process improves the adaptability of the system.
  • FIG. 1 is a schematic diagram of a multi-carrier receiving apparatus using method 1 according to the related art
  • FIG. 2 is a schematic diagram of a multi-carrier receiving apparatus using method 2 according to the related art
  • FIG. 3 is a schematic diagram of a multi-carrier receiving apparatus according to the related art.
  • FIG. 4 is a flowchart of a method for receiving a multi-carrier signal according to an embodiment of the present invention
  • FIG. 5 is a block diagram showing a structure of a multi-carrier signal receiving apparatus according to an embodiment of the present invention
  • 6 is a structural block diagram of a receiving apparatus for a multi-carrier signal according to a preferred embodiment of the present invention
  • FIG. 7 is a schematic structural diagram of an apparatus for implementing multi-carrier receiving according to a first embodiment of the present invention
  • FIG. 9 is a schematic diagram of a typical multi-carrier signal power spectral density of an ADC sampling output position according to Embodiment 3 of the present invention
  • FIG. 10 is a band-pass filter 1 according to Embodiment 3 of the present invention; Schematic diagram of signal power spectral density at an output position; FIG. 11 is a signal of a downsampled output position according to a third embodiment of the present invention; Schematic diagram of power spectral density; FIG. 12 is a diagram showing a comparison of a carrier 1 output signal and a carrier 1 original signal partial segment according to Embodiment 3 of the present invention.
  • FIG. 4 is a flowchart of a method for receiving a multi-carrier signal according to an embodiment of the present invention.
  • the method includes the following steps: Step S402, the TD-SCDMA multi-carrier signal received by the receiving end after the analog baseband is passed through an ADC with a sampling rate of N times the baseband signal bandwidth, where N is a positive integer; Step S404, using a filter to output the ADC The signal is subjected to carrier separation; in step S406, one carrier baseband signal as an output is extracted from the output of each N filters.
  • an ADC with a sampling rate of N times the baseband signal bandwidth is used, and one carrier baseband signal is outputted from the output of each N carrier-separated filter to realize a TD-SCDMA signal.
  • the bandwidth rate is multi-carrier reception of the basic frequency output, which solves the problem of high complexity and large computational complexity of multi-carrier reception in the related art, reduces the operating frequency and implementation complexity of multi-carrier reception, and simplifies system processing. The process improves the adaptability of the system.
  • the baseband signal bandwidth refers to the TD-SCDMA carrier spacing, which is specified as 1.6 MHz in the standard, and the sampling rate of the ADC may be a positive integer multiple of 1.6 MHz.
  • the sampling rate of the ADC is greater than the total bandwidth of the TD-SCDMA three carriers.
  • the sampling rate of the ADC can be 6.4 MHz.
  • the rate of output data of the filter is N times the baseband signal bandwidth.
  • the method is simple and practical, and has high operability.
  • the sampling rate of the ADC is 6.4 MHz
  • step S406 one carrier baseband signal as an output is extracted from the output of each of the four filters. The method is simple to implement and operability is strong.
  • an embodiment of the present invention further provides a receiving apparatus for a multi-carrier signal.
  • the apparatus includes an ADC unit 52 and a filter unit 54, wherein the ADC unit 52 is set to be after an analog baseband
  • the TD-SCDMA multi-carrier signal received by the receiving end passes through an ADC with a sampling rate of N times the baseband signal bandwidth, where N is a positive integer;
  • a filter unit 54 coupled to the ADC unit 52, is set to use a filter
  • the signal output from the ADC unit is subjected to carrier separation, and one carrier baseband signal as an output is extracted from the output of each N filter.
  • the ADC unit 52 adopts a baseband signal bandwidth with a sampling rate of N times.
  • the ADC, the filter unit 54 extracts one carrier baseband signal as an output from the output of each N carrier-separated filter, and realizes multi-carrier reception based on the TD-SCDMA signal bandwidth rate.
  • the implementation of multi-carrier reception in the related art has high complexity and large computational complexity, reduces the operating frequency and implementation complexity of multi-carrier reception, simplifies the system processing flow, and improves the adaptability of the system.
  • the sampling rate of the ADC in ADC unit 52 is greater than the total bandwidth of the TD-SCDMA triple carrier.
  • 6 is a structural block diagram of a receiving apparatus for a multi-carrier signal according to a preferred embodiment of the present invention. As shown in FIG.
  • the filter unit 54 includes three filters having a bandwidth of 1.6 MHz, each having a low center frequency of 0.
  • the sampling rate of the ADC in ADC unit 52 and the filter in filter unit 54 are both positive integer multiples of 6.4 MHz.
  • the filter in filter unit 54 is a 4x downsampled filter.
  • the receiving device of the multi-carrier signal described above is disposed in the mobile terminal.
  • the TD-SCDMA multi-carrier receiving technology based on the existing method has high implementation complexity, and the output sampling rate is a multiple of the chip rate.
  • the present embodiment provides a receiving method with low complexity and output at a signal bandwidth rate to overcome the above problems.
  • This embodiment adopts undersampling (that is, the sampling frequency is lower than the sampling frequency specified by the sampling theorem.
  • the sampling theorem also known as Nyquist theorem stipulates: When the sampling frequency 3 ⁇ 4 is greater than the highest frequency f ma!
  • the filter is used to suppress the non-local subcarriers, and the undersampling is used to fold the subcarriers into the baseband spectrum to achieve the purpose of spectrum shifting, and the carrier separation is completed.
  • the method realizes the function of the spectrum shifting module indirectly, and is a TD-SCDMA multi-carrier receiving method with low computational complexity and simple structure.
  • the present embodiment provides a minimum data rate (1.6 MHz) output that satisfies the sampling theorem to facilitate a digital baseband implementation of a complete TD-SCDMA bandwidth sampling rate receiver scheme to achieve good reception and more scene adaptability.
  • FIG. 7 is a schematic structural diagram of an apparatus for implementing multi-carrier reception according to Embodiment 1 of the present invention. As shown in FIG. 7, the sampling rate of the ADC is determined to be an integer multiple of the carrier spacing (not limited to an integer multiple of the chip rate), and exceeds The total bandwidth of the three carriers, the lowest complexity implementation device sampling rate is 6.4MHz.
  • the low-pass filter 2 is a low-pass filter with a bandwidth of 1.6 MHz (-0.8 to 0.8 MHz);
  • the band-pass filter 1 is a band-pass filter with a center frequency of -1.6 MHz passband range of -2.4 MHz to -0.8 MHz.
  • the bandpass filter 3 is a bandpass filter with a center frequency +1.6MHz passband range +0.8MHz ⁇ +2.4MHz.
  • Embodiment 2 In the first embodiment, since the 4 times downsampling module uses 1 out of every 4 filter outputs and discards the remaining 3 filter outputs, the filter can be combined with the 4 times downsampling module to obtain the implementation.
  • Example implementation device. 8 is a schematic structural diagram of an apparatus for implementing multi-carrier reception according to Embodiment 2 of the present invention. As shown in FIG. 8, a filter output calculation is performed every 4 input sampling points, and filter output values are not performed in the remaining 3 sampling points. The calculation is performed with the carrier interval rate as the sampling rate, and the output result and implementation function are exactly the same as those in the first embodiment.
  • Embodiment 3 provides an apparatus for implementing multi-carrier reception (for example, a composition similar to Embodiment 1 or 2), a sampling rate of the ADC, and a band pass filter 1, a low pass filter 2, and a band pass filter.
  • the sampling rate of the device 3 is determined to be 6.4 MHz.
  • the low pass filter 2 is designed as an 81-order root raised cosine filter; the band pass filter 1 is generated after the low pass filter 2 coefficients are rotated at a frequency of -1.6 MHz, and the band pass filter 3 is low pass filtered.
  • the coefficient of the 2 is generated by rotating the phase at a frequency of +1.6 MHz; wherein the coefficients of the three filters can be seen in Table 1.
  • FIG. 9 is a schematic diagram showing typical multi-carrier signal power spectral density of an ADC sampling output position according to Embodiment 3 of the present invention. As shown in FIG. 9, 6.4 MHz sampling can be performed.
  • the resolved signal bandwidth ranges from -3.2MHz to +3.2MHz, where the three carrier signals are at -1.6MHz, OMHz and +1.6MHz, respectively, at a center of 1.6MHz bandwidth, and the total bandwidth of the three carriers is -2.4. MHz ⁇ +2.4MHz.
  • the carrier 1 path of the multi-carrier receiving apparatus in the first embodiment is taken as an example to describe the processing procedure of the signal, and the other two carriers are similarly described.
  • FIG. 10 is a schematic diagram showing the signal power spectral density of the output position of the band pass filter 1 according to Embodiment 3 of the present invention. As shown in FIG. 10, after the band pass filter 1, the remaining two carriers are effectively suppressed, and only the remaining carrier is used. A valid signal for 1. That is, after the output signal of the band pass filter 1 is downsampled by 4 times, the spectrum shifting function is realized by spectral folding. 11 is a schematic diagram of signal power spectral density of a downsampled output position according to a third embodiment of the present invention, as shown in FIG.
  • the output here is already a separate carrier 1 signal.
  • 12 is a schematic diagram of a carrier 1 output signal and a carrier 1 original signal partial segment comparison according to Embodiment 3 of the present invention. As shown in FIG. 12, the carrier 1 output signal and the carrier 1 original signal are overlapped, and the receiving end is almost completely identical. The carrier information is recovered.
  • the carrier signals 1 to 3 and the carriers 1 to 3 original signal waveforms output by the device in this embodiment are compared by performance simulation, and the error vector magnitude (Error Vector Magnitude, referred to as EVM) is calculated, and the three-way index is 0.25% ( -52dB), 0.32% (-50dB) and 0.25% (-52dB), much higher than the quality requirements of the front-end signal for multi-carrier reception.
  • EVM Error Vector Magnitude
  • the present invention belongs to the field of multi-carrier reception in communication and information technology, and in particular, to a multi-carrier reception method and apparatus for a low complexity TD-SCDMA terminal user. It can not be directly applied to the receiver architecture based on the signal bandwidth rate.
  • the present invention reduces the operating frequency and implementation complexity by undersampling, and introduces filtering combined with spectral folding to indirectly realize the function of the spectrum shifting module.
  • Low computational complexity and simple structure of TD-SCDMA multi-carrier reception method It also provides a minimum data rate (1.6MHz) output that satisfies the sampling theorem. This facilitates the digital baseband implementation of a complete TD-SCDMA non-integer multiple sampling rate receiver scheme to achieve good reception and more scene adaptability.
  • a general-purpose computing device which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the invention is not limited to any particular combination of hardware and software.
  • the above description is only a preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and scope of the present invention are intended to be included within the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Circuits Of Receivers In General (AREA)

Abstract

本发明公开了一种多载波信号的接收方法及装置,该方法包括以下步骤:将经过模拟基带后的接收端接收到的TD-SCDMA多载波信号,通过采样率为N倍的基带信号带宽的ADC,其中,N为正整数;使用滤波器将ADC输出的信号进行载波分离;从每N个滤波器的输出中抽取1个作为输出的载波基带信号。通过本发明降低了多载波接收的工作频率和实现复杂度,化简了***处理流程,提高了***的适应能力。

Description

多载波信号的接收方法及装置 技术领域 本发明涉及通信领域, 具体而言, 涉及一种多载波信号的接收方法及装置。 背景技术 时分同步的码分多址 (Time Division-Synchronous Code Division Multiple Access, 简称为 TD-SCDMA) ***与宽带码分多址接入 (Wideband Code Division Multiple Access, 简称为 WCDMA)及 CDMA2000被国际电联采纳为第三代移动通信标准。 目 前, TD-SCDMA产业链已逐步走向成熟。 网络设备、手机终端及测试仪器等都有多家 厂商提供成熟的产品和解决方案。同时, TD-SCDMA标准继续演进,在 3 GPP release 5 中推出 TD-HSDPA无线宽带下载业务,在 3GPP release 7中推出 TD-HSUPA无线宽带 上传业务。
TD-SCDMA***基于低码片速率(Low Chip Rate,简称为 LCR), 即 TD-SCDMA 信号码片速率为 1.28MHz, 占用带宽为 1.6MHz。 TD-SCDMA***采用较低的码片速 率使终端芯片的实现复杂度降低, 从而可以应用诸如联合检测 (Joint Detection, 简称 为 JD)等先进的信号处理技术, 实现较高的网络容量。 低码片速率技术在实现语音电 话、 可视电话和低速无线上网时没有问题, 但在无线宽带业务上, 与 WCDMA和 CDMA2000相比有一点劣势, 因为 WCDMA和 CDMA2000用 5MHz带宽提供下行最 高 7.2 Mb/s的峰值下载速率, 而 TD-SCDMA用 1.6MHz带宽提供下行最高 2.8 Mb/s 的峰值下载速率。 可见, 虽然频谱利用率差不多, 但是, 每个用户能够享受的峰值下 载速率相差较大。 为了给用户提供和 WCDMA相同的无线宽带体验, TD-SCDMA新标准引入了多 载波技术, 即, 用多个载波并行传输数据来提高传输速率。 TD-SCDMA多载波***中 通常载波数为 3, 每个载波上传输与单载波相同的 1.6MHz LCR信号, SP, 总共用 4.8MHz带宽来提供高达 8.4 Mb/s的峰值速率。 然而, 多载波 TD-SCDMA技术在提高峰值速率的同时也对终端射频和基带芯片 提出了更高的要求。 基带芯片复杂度的增加会提高 TD-SCDMA多载波终端的成本和 功耗。 因此, 多载波终端基带芯片设计的关键之一是如何利用 TD-SCDMA多载波信 号特点, 设计出性能好、 复杂度低的方案。 在相关技术中, 对于只采用一套射频方案实现多载波的接收方法有: 方法一: 接收端包括满足多载波频点和带宽的射频器件和模拟基带。 图 1是根据 相关技术的采用方法一实现多载波的接收装置的示意图, 如图 1所示, 该装置包括一 个 8倍码片速率 (10.24MHz) 采样的模数转换器 (Analog Digital Converter, 简称为 ADC) 单元、 两个频谱搬移单元 (Frequency Transfer, 负责将以 +/-1.6MHz为中心频 率的载波分别搬移到 -0.8~0.8MHz的基带)和三个 1.6MHz带宽的数字低通基带滤波器 (均为 -0.8~0.8MHz的基带低通), 由三个低通滤波器分别输出 8倍码片速率或 4倍码 片速率三个载波各自分离的基带信号。 方法二: 与方法一的区别在于: 1 )三个滤波器和频谱搬移在信号处理流程上交换 了位置顺序; 2) 低通滤波器 1 变更为中心频率 -1.6MHz通带范围 -2.4MHz~-0.8MHz 的带通滤波器 1 ; 3 ) 低通滤波器 3 变更为中心频率 +1.6MHZ 通带范围 +0.8MHz~+2.4MHz的带通滤波器 3。 具体地, 如图 2所示, 图 2是根据相关技术的采 用方法二实现多载波的接收装置的示意图。 方法三: 是方法二的等效变形, 可参考图 3, 图 3是根据相关技术的采用方法三 实现多载波的接收装置的示意图, 即,通过滤波器组级联快速傅里叶变换(Fast Fourier Transformation 简称为 FFT) 的形式取代了方法二中的三个滤波器和频谱搬移模块的 功能, 较方法二运算量有所降低。 但是, 引入了 FFT变换, 实现结构较为复杂。 可见, 在相关技术中, 多载波的接收装置存在以下问题:
1 )均基于较高的 ADC采样速率(8倍码率速率甚至更高), BP , 载波输出采样率 均为码片速率的倍数而不是信号带宽速率, 增加了实现成本和终端电源功耗。
2)方法一和方法二中引入了频谱搬移模块, 该模块需要通过查表或其他方式完成 高精度三角函数计算, 运算量大且占用的存储器较多。
3 ) 方法三虽然运算量有所减少, 但涉及的滤波器组尤其是 FFT变换实现结构都 较为复杂。 发明内容 本发明的主要目的在于提供一种多载波信号的接收方案, 以至少解决上述相关技 术中的多载波接收的实现复杂度高及运算量大的问题。 为了实现上述目的,根据本发明的一个方面,提供了一种多载波信号的接收方法。 根据本发明的多载波信号的接收方法, 包括以下步骤: 将经过模拟基带后的接收 端接收到的 TD-SCDMA多载波信号, 通过采样率为 N倍的基带信号带宽的 ADC, 其 中, N为正整数; 使用滤波器将 ADC输出的信号进行载波分离; 从每 N个滤波器的 输出中抽取 1个作为输出的载波基带信号。 优选地, ADC的采样率大于 TD-SCDMA三载波的总带宽。 优选地, 滤波器的输出数据的速率为 N倍的基带信号带宽。 优选地, 在 ADC的采样率为 6.4MHz的情况下, 从每 4个的滤波器的输出中抽取
1个作为输出的载波基带信号。 为了实现上述目的, 根据本发明的另一方面, 还提供了一种多载波信号的接收装 置。 根据本发明的多载波信号的接收装置, 包括模数转换器 ADC单元和滤波器单元, 其中, ADC单元, 设置为将经过模拟基带后的接收端接收到的 TD-SCDMA多载波信 号, 通过采样率为 N倍的基带信号带宽的 ADC, 其中, N为正整数; 滤波器单元, 设 置为使用滤波器将 ADC单元输出的信号进行载波分离, 并从每 N个滤波器的输出中 抽取 1个作为输出的载波基带信号。 优选地, ADC单元中的 ADC的采样率大于 TD-SCDMA三载波的总带宽。 优选地,滤波器单元包括三个带宽为 1.6MHz的滤波器,分别为一个中心频率为 0 的低通滤波器、 一个中心频率为 -1.6MHz的带通滤波器, 一个中心频率为 +1.6MHZ的 带通滤波器。 优选地, ADC单元中的 ADC及滤波器单元中的滤波器的采样率均为 6.4MHz的 正整数倍。 优选地, 滤波器单元中的滤波器为 4倍降采样滤波器。 优选地, 上述多载波信号的接收装置设置在移动终端中。 通过本发明, 采用采样率为 N倍的基带信号带宽的 ADC, 并从每 N个进行载波 分离的滤波器的输出中抽取 1 个作为输出的载波基带信号的方式, 实现了以 TD-SCDMA信号带宽速率为基础频率输出的多载波接收,解决了相关技术中的多载波 接收的实现复杂度高及运算量大的问题,降低了多载波接收的工作频率和实现复杂度, 化简了***处理流程, 提高了***的适应能力。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部分, 本发 明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中: 图 1是根据相关技术的采用方法一实现多载波的接收装置的示意图; 图 2是根据相关技术的采用方法二实现多载波的接收装置的示意图; 图 3是根据相关技术的采用方法三实现多载波的接收装置的示意图; 图 4是根据本发明实施例的多载波信号的接收方法的流程图; 图 5是根据本发明实施例的多载波信号的接收装置的结构框图; 图 6是根据本发明优选实施例的多载波信号的接收装置的结构框图; 图 7是根据本发明实施例一的多载波接收的实现装置的结构示意图; 图 8是根据本发明实施例二的多载波接收的实现装置的结构示意图; 图 9是根据本发明实施例三的 ADC采样输出位置的典型多载波信号功率谱密度 的示意图; 图 10是根据本发明实施例三的带通滤波器 1输出位置的信号功率谱密度的示意 图; 图 11是根据本发明实施例三的降采样输出位置的信号功率谱密度的示意图; 图 12是根据本发明实施例三的载波 1输出信号和载波 1原始信号局部片段对比的 示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不冲突的 情况下, 本申请中的实施例及实施例中的特征可以相互组合。 根据本发明实施例, 提供了一种多载波信号的接收方法。 图 4是根据本发明实施 例的多载波信号的接收方法的流程图, 如图 4所示, 该方法包括以下步骤: 步骤 S402, 将经过模拟基带后的接收端接收到的 TD-SCDMA多载波信号, 通过 采样率为 N倍的基带信号带宽的 ADC, 其中, N为正整数; 步骤 S404, 使用滤波器将 ADC输出的信号进行载波分离; 步骤 S406, 从每 N个滤波器的输出中抽取 1个作为输出的载波基带信号。 通过上述步骤, 采用采样率为 N倍的基带信号带宽的 ADC, 并从每 N个进行载 波分离的滤波器的输出中抽取 1 个作为输出的载波基带信号的方式, 实现了以 TD-SCDMA信号带宽速率为基础频率输出的多载波接收,解决了相关技术中的多载波 接收的实现复杂度高及运算量大的问题,降低了多载波接收的工作频率和实现复杂度, 化简了***处理流程, 提高了***的适应能力。 需要说明的是, 在步骤 S402中, 基带信号带宽是指 TD-SCDMA载波间隔, 标准 中规定为 1.6MHz, ADC的采样率可以为 1.6MHz的正整数倍。 优选地, 在步骤 S402中, ADC的采样率大于 TD-SCDMA三载波的总带宽。 例 如, ADC的采样率可以为 6.4MHz。 该方法有利于提高***的准确性和有效性。 优选地, 在步骤 S404中, 滤波器的输出数据的速率为 N倍的基带信号带宽。 该 方法简单实用、 可操作性强。 优选地, 在 ADC的采样率为 6.4MHz的情况下, 在步骤 S406中, 从每 4个的所 述滤波器的输出中抽取 1个作为输出的载波基带信号。该方法实现简单、可操作性强。 对应于上述方法, 本发明实施例还提供了一种多载波信号的接收装置。 图 5是根 据本发明实施例的多载波信号的接收装置的结构框图, 如图 5所示, 该装置包括 ADC 单元 52和滤波器单元 54, 其中, ADC单元 52, 设置为将经过模拟基带后的接收端接 收到的 TD-SCDMA多载波信号, 通过采样率为 N倍的基带信号带宽的 ADC, 其中, N为正整数; 滤波器单元 54, 耦合至 ADC单元 52, 设置为使用滤波器将 ADC单元 输出的信号进行载波分离, 并从每 N个滤波器的输出中抽取 1个作为输出的载波基带 信号。 通过多载波信号的接收装置, ADC单元 52采用采样率为 N倍的基带信号带宽的
ADC, 滤波器单元 54从每 N个进行载波分离的滤波器的输出中抽取 1个作为输出的 载波基带信号的方式, 实现了以 TD-SCDMA信号带宽速率为基础频率输出的多载波 接收, 解决了相关技术中的多载波接收的实现复杂度高及运算量大的问题, 降低了多 载波接收的工作频率和实现复杂度, 化简了***处理流程, 提高了***的适应能力。 优选地, ADC单元 52中的 ADC的采样率大于 TD-SCDMA三载波的总带宽。 图 6是根据本发明优选实施例的多载波信号的接收装置的结构框图,如图 6所示, 滤波器单元 54包括三个带宽为 1.6MHz的滤波器,分别为一个中心频率为 0的低通滤 波器 542、一个中心频率为 -1.6MHz的带通滤波器 544, 一个中心频率为 +1.6MHz的带 通滤波器 546。 优选地, ADC单元 52中的 ADC及滤波器单元 54中的滤波器的采样率均为 6.4MHz 的正整数倍。 优选地, 滤波器单元 54中的滤波器为 4倍降采样滤波器。 优选地, 上述多载波信号的接收装置设置在移动终端中。 下面结合优选实施例和附图对上述实施例的实现过程进行详细说明。 实施例一 基于现有方法的 TD-SCDMA多载波接收技术均有较高的实现复杂度, 且输出采 样率均为码片速率的倍数。 为此, 本实施例提供了一种低复杂度且以信号带宽速率输 出的接收方法以克服上述问题。 本实施例通过欠采样 (即, 采样频率低于采样定理规 定的采样频率。 采样定理 (又称奈奎斯特定理) 规定: 当采样频率 ¾大于信号中最高 频率 fma! 2倍时, BP : fs>=2fmax,则采样之后的数字信号完整地保留了原始信号中的 信息, 一般取 2.56-4倍的信号最大频率) 降低了工作频率和实现复杂度, 引入滤波结 合频谱折叠 (即频谱混叠, 当对信号进行欠采样时, 超出 fs/2部分的频谱会折叠进入 采样后的频谱之内和该区域的正常频谱进行叠加, 导致该区域 (fs-fmax, fs/2) 内的频 谱产生失真。 本实施例采用滤波抑制非本支路子载波, 再利用欠采样将本支路子载波 折叠进基带谱的方式达到了频谱搬移的目的, 完成了载波分离工作) 的方法, 间接实 现了频谱搬移模块的功能, 是一种低运算量、 结构简捷的 TD-SCDMA多载波接收方 法。 并且, 本实施例提供了满足采样定理的最低数据速率(1.6MHz)输出利于数字基 带实现整套的 TD-SCDMA带宽采样率接收机方案, 以达到良好的接收效果和更多场 景适应性。 可见, 由于本实施例输出的采样率为满足采样定理的最低采样率, 且与信 号带宽相同与现有接收机采用码片速率整数倍采样的方式有较大差异, 后续的信道估 计和联合检测等接收机主要模块都需要进行结构性修改, 更低的信号采样速率引起整 体接收机的实现复杂度降低。 图 7是根据本发明实施例一的多载波接收的实现装置的结构示意图,如图 7所示, ADC 的采样率确定为载波间隔的整数倍 (不限于码片速率的整数倍), 且超过三载波 的总带宽, 最低复杂度的实现装置采样率为 6.4MHz。 在使用滤波器实现载波分离后, 各自重新以载波间隔(现有标准中确定 1.6MHz )为采样率再次采样, 由于滤波器输出 数据速率是载波间隔的整数倍(4倍), 此处再次采样可以通过每 4个滤波器输出中抽 取 1个的降采样方式实现。 其中, 低通滤波器 2为 1.6MHz带宽 (-0.8~0.8MHz) 的低 通滤波器; 带通滤波器 1为中心频率 -1.6MHz通带范围 -2.4MHz~-0.8MHz的带通滤波 器; 带通滤波器 3为中心频率 +1.6MHz通带范围 +0.8MHz~+2.4MHz的带通滤波器。 实施例二 在实施例一中, 由于 4倍降采样模块每 4个滤波器输出中才使用 1个而将其余 3 个滤波器输出丢弃, 可将滤波器与 4倍降采样模块合并得到本实施例的实现装置。 图 8是根据本发明实施例二的多载波接收的实现装置的结构示意图,如图 8所示, 每 4个输入采样点进行一次滤波器输出计算, 其余 3个采样点不进行滤波器输出值计 算, 以载波间隔速率作为采样率输出, 输出结果和实现功能与实施例一完全相同。 实施例三 本实施例提供了一种多载波接收的实现装置(例如,组成结构类似实施例一或二), 其 ADC 的采样率和带通滤波器 1、 低通滤波器 2、 带通滤波器 3 的采样率均确定为 6.4MHz。 例如, 低通滤波器 2设计为 81阶的根号升余弦滤波器; 带通滤波器 1为低 通滤波器 2系数以 -1.6MHz频率旋转相位后生成, 带通滤波器 3为低通滤波器 2系数 以 +1.6MHZ频率旋转相位后生成; 其中, 三个滤波器的系数可参见表 1。 表 1 滤波器系数表
系数索 带通滤波器 1 低通滤波器 2 带通滤波器 3
1 -0.0045 + O.OOOOi -0.0045 -0.0045 - O.OOOOi
2 0.0000 + 0.0005Ϊ -0.0005 0.0000 - 0.0005Ϊ
3 -0.0042 + O.OOOOi 0.0042 -0.0042 - O.OOOOi
4 0.0000 + 0.0070Ϊ 0.007 0.0000 - 0.0070Ϊ
5 0.0063 - O.OOOOi 0.0063 0.0063 + O.OOOOi
6 -0.0000 - 0.0020Ϊ 0.002 -0.0000 + 0.0020Ϊ
7 0.0035 - O.OOOOi -0.0035 0.0035 + O.OOOOi
8 -0.0000 - 0.0073Ϊ -0.0073 -0.0000 + 0.0073Ϊ
9 -0.0071 + O.OOOOi -0.0071 -0.0071 - O.OOOOi
10 0.0000 + 0.0027Ϊ -0.0027 0.0000 - 0.0027Ϊ
11 -0.0037 + O.OOOOi 0.0037 -0.0037 - O.OOOOi -0.0000 + 0.0082Ϊ 0.0082 -0.0000 - 0.0082Ϊ
0.0077 - O.OOOOi 0.0077 0.0077 + O.OOOOi
-0.0000 - 0.0017Ϊ 0.0017 -0.0000 + 0.0017Ϊ
0.0067 - O.OOOOi -0.0067 0.0067 + O.OOOOi
0.0000 - 0.0127Ϊ -0.0127 0.0000 + 0.0127Ϊ
-0.0114 + O.OOOOi -0.0114 -0.0114 - O.OOOOi
0.0000 + 0.0018Ϊ -0.0018 0.0000 - 0.0018Ϊ
-0.0124 + O.OOOOi 0.0124 -0.0124 - O.OOOOi
-0.0000 + 0.0236Ϊ 0.0236 -0.0000 - 0.0236Ϊ
0.0240 - O.OOOOi 0.024 0.0240 + O.OOOOi
-0.0000 - 0.0099Ϊ 0.0099 -0.0000 + 0.0099Ϊ
0.0150 + O.OOOOi -0.015 0.0150 - O.OOOOi
0.0000 - 0.0396Ϊ -0.0396 0.0000 + 0.0396Ϊ
-0.0499 + O.OOOOi -0.0499 -0.0499 - O.OOOOi
0.0000 + 0.0360Ϊ -0.036 0.0000 - 0.0360Ϊ
-0.0020 + O.OOOOi 0.002 -0.0020 - O.OOOOi
-0.0000 + 0.05 l li 0.05 11 -0.0000 - 0.05 l li
0.0886 - O.OOOOi 0.0886 0.0886 + O.OOOOi
-0.0000 - 0.0912Ϊ 0.0912 -0.0000 + 0.0912Ϊ
-0.0467 - O.OOOOi 0.0467 -0.0467 + O.OOOOi
0.0000 - 0.0374Ϊ -0.0374 0.0000 + 0.0374Ϊ
-0. 1317 + O.OOOOi -0. 1317 -0. 1317 - O.OOOOi
0.0000 + 0. 1922Ϊ -0. 1922 0.0000 - 0. 1922Ϊ
0. 1750 - O.OOOOi -0. 175 0. 1750 + O.OOOOi
0.0000 - 0.0541Ϊ -0.0541 0.0000 + 0.0541Ϊ
0. 1660 - O.OOOOi 0. 166 0. 1660 + O.OOOOi
-0.0000 - 0.4464Ϊ 0.4464 -0.0000 + 0.4464Ϊ
-0.7230 - O.OOOOi 0.723 -0.7230 + O.OOOOi
-0.0000 + 0.9257Ϊ 0.9257 -0.0000 - 0.9257Ϊ
1 1 1
0.0000 - 0.9257Ϊ 0.9257 0.0000 + 0.9257Ϊ
-0.7230 + O.OOOOi 0.723 -0.7230 - O.OOOOi
-0.0000 + 0.4464Ϊ 0.4464 -0.0000 - 0.4464Ϊ
0. 1660 + O.OOOOi 0. 166 0. 1660 - O.OOOOi
0.0000 + 0.0541Ϊ -0.0541 0.0000 - 0.0541Ϊ
0. 1750 + O.OOOOi -0. 175 0. 1750 - O.OOOOi
-0.0000 - 0. 1922Ϊ -0. 1922 -0.0000 + 0. 1922Ϊ
-0. 1317 - O.OOOOi -0. 1317 -0. 1317 + O.OOOOi
-0.0000 + 0.0374Ϊ -0.0374 -0.0000 - 0.0374Ϊ
-0.0467 + O.OOOOi 0.0467 -0.0467 - O.OOOOi 52 -0.0000 + 0.0912Ϊ 0.0912 -0.0000 - 0.0912Ϊ
53 0.0886 - O.OOOOi 0.0886 0.0886 + O.OOOOi
54 -0.0000 - 0.05 l li 0.0511 -0.0000 + 0.05 l li
55 -0.0020 - O.OOOOi 0.002 -0.0020 + O.OOOOi
56 -0.0000 - 0.0360Ϊ -0.036 -0.0000 + 0.0360Ϊ
57 -0.0499 - O.OOOOi -0.0499 -0.0499 + O.OOOOi
58 -0.0000 + 0.0396Ϊ -0.0396 -0.0000 - 0.0396Ϊ
59 0.0150 - O.OOOOi -0.015 0.0150 + O.OOOOi
60 -0.0000 + 0.0099Ϊ 0.0099 -0.0000 - 0.0099Ϊ
61 0.0240 + O.OOOOi 0.024 0.0240 - O.OOOOi
62 -0.0000 - 0.0236Ϊ 0.0236 -0.0000 + 0.0236Ϊ
63 -0.0124 - O.OOOOi 0.0124 -0.0124 + O.OOOOi
64 -0.0000 - 0.0018Ϊ -0.0018 -0.0000 + 0.0018Ϊ
65 -0.0114 - O.OOOOi -0.0114 -0.0114 + O.OOOOi
66 -0.0000 + 0.0127Ϊ -0.0127 -0.0000 - 0.0127Ϊ
67 0.0067 - O.OOOOi -0.0067 0.0067 + O.OOOOi
68 -0.0000 + 0.0017Ϊ 0.0017 -0.0000 - 0.0017Ϊ
69 0.0077 - O.OOOOi 0.0077 0.0077 + O.OOOOi
70 -0.0000 - 0.0082Ϊ 0.0082 -0.0000 + 0.0082Ϊ
71 -0.0037 - O.OOOOi 0.0037 -0.0037 + O.OOOOi
72 -0.0000 - 0.0027Ϊ -0.0027 -0.0000 + 0.0027Ϊ
73 -0.0071 - O.OOOOi -0.0071 -0.0071 + O.OOOOi
74 -0.0000 + 0.0073Ϊ -0.0073 -0.0000 - 0.0073Ϊ
75 0.0035 - O.OOOOi -0.0035 0.0035 + O.OOOOi
76 -0.0000 + 0.0020Ϊ 0.002 -0.0000 - 0.0020Ϊ
77 0.0063 + O.OOOOi 0.0063 0.0063 - O.OOOOi
78 0.0000 - 0.0070Ϊ 0.007 0.0000 + 0.0070Ϊ
79 -0.0042 - O.OOOOi 0.0042 -0.0042 + O.OOOOi
80 -0.0000 - 0.0005Ϊ -0.0005 -0.0000 + 0.0005Ϊ
81 -0.0045 - O.OOOOi -0.0045 -0.0045 + O.OOOOi 图 9是根据本发明实施例三的 ADC采样输出位置的典型多载波信号功率谱密度 的示意图, 如图 9所示, 6.4MHz采样可分辨的信号带宽范围是 -3.2MHz〜+3.2MHz, 其中, 三个载波信号分别处于 -1.6MHz、 OMHz和 +1.6MHz为中心各 1.6MHz为带宽的 位置, 三个载波合计的信号带宽 -2.4MHz〜+2.4MHz。 下面以实施例一中多载波接收装置的载波 1通路为例, 描述信号的处理过程, 其 他两个载波与此类似略去描述。 图 10是根据本发明实施例三的带通滤波器 1输出位置的信号功率谱密度的示意 图, 如图 10所示, 经过带通滤波器 1后其余两个载波已被有效抑制, 仅仅剩余载波 1 的有效信号。 即, 带通滤波器 1的输出信号通过 4倍降采样后, 以频谱折叠的方式实 现了频谱搬移的功能。 图 11是根据本发明实施例三的降采样输出位置的信号功率谱密度的示意图,如图
11所示, 此处输出已是独立的载波 1信号。 图 12是根据本发明实施例三的载波 1输出信号和载波 1原始信号局部片段对比的 示意图, 如图 12所示, 载波 1输出信号和载波 1原始信号重叠在一起, 接收端几乎完 全一致地恢复出了载波信息。 可见, 通过性能仿真将本实施例装置输出的载波 1〜3和载波 1〜3原始信号波形 进行对比, 计算误差向量幅度(Error Vector Magnitude, 简称为 EVM), 三路的指标分 别为 0.25% (-52dB)、 0.32% (-50dB) 和 0.25% (-52dB), 远高于多载波接收对前端 信号的质量要求。 综上所述, 本发明属于通信与信息技术中多载波接收领域, 特别涉及一种低复杂 度 TD-SCDMA终端用户的多载波接收方法和装置。 无法直接应用在以信号带宽速率 为基础频率的接收机架构中) 本发明通过欠采样降低了工作频率和实现复杂度, 引入 滤波结合频谱折叠的方法间接实现了频谱搬移模块的功能, 是一种低运算量、 结构简 捷的 TD-SCDMA 多载波接收方法。 并且提供了满足采样定理的最低数据速率 ( 1.6MHz) 输出利于数字基带实现整套的 TD-SCDMA非整数倍采样率接收机方案, 以达到良好的接收效果和更多场景适应性。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可以用通用 的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布在多个计算装置所 组成的网络上, 可选地, 它们可以用计算装置可执行的程序代码来实现, 从而可以将 它们存储在存储装置中由计算装置来执行,或者将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。 这样, 本发明不限 制于任何特定的硬件和软件结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领域的技 术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则之内, 所作的 任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之内。

Claims

权 利 要 求 书
1. 一种多载波信号的接收方法, 包括以下步骤:
将经过模拟基带后的接收端接收到的 TD-SCDMA多载波信号, 通过采样 率为 N倍的基带信号带宽的模数转换器 ADC, 其中, N为正整数;
使用滤波器将所述 ADC输出的信号进行载波分离;
从每 N个所述滤波器的输出中抽取 1个作为输出的载波基带信号。
2. 根据权利要求 1所述的方法, 其中, 所述 ADC的采样率大于 TD-SCDMA三载 波的总带宽。
3. 根据权利要求 1所述的方法, 其中, 所述滤波器的输出数据的速率为 N倍的所 述基带信号带宽。
4. 根据权利要求 1 至 3 中任一项所述的方法, 其中, 在所述 ADC 的采样率为 6.4MHz的情况下, 从每 4个的所述滤波器的输出中抽取 1个作为输出的载波 基带信号。
5. 一种多载波信号的接收装置, 包括模数转换器 ADC单元和滤波器单元, 其中, 所述 ADC单元, 设置为将经过模拟基带后的接收端接收到的 TD-SCDMA 多载波信号, 通过采样率为 N倍的基带信号带宽的 ADC, 其中, N为正整数; 所述滤波器单元, 设置为使用滤波器将所述 ADC单元输出的信号进行载 波分离, 并从每 N个所述滤波器的输出中抽取 1个作为输出的载波基带信号。
6. 根据权利要求 5所述的接收装置, 其中, 所述 ADC单元中的所述 ADC的采样 率大于 TD-SCDMA三载波的总带宽。
7. 根据权利要求 5 所述的接收装置, 其中, 所述滤波器单元包括三个带宽为 1 6MHz的滤波器, 分别为一个中心频率为 0的低通滤波器、 一个中心频率为 -1.6MHz的带通滤波器, 一个中心频率为 +1.6MHZ的带通滤波器。
8. 根据权利要求 5至 7中任一项所述的接收装置, 其中, 所述 ADC单元中的所 述 ADC及所述滤波器单元中的所述滤波器的采样率均为 6.4MHz的正整数倍。
9. 根据权利要求 8所述的接收装置, 其中, 所述滤波器单元中的所述滤波器为 4 倍降采样滤波器。
10. 根据权利要求 5所述的接收装置, 其中, 所述接收装置设置在移动终端中。
PCT/CN2012/073920 2011-06-27 2012-04-12 多载波信号的接收方法及装置 WO2013000317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110174876.4A CN102223223B (zh) 2011-06-27 2011-06-27 多载波信号的接收方法及装置
CN201110174876.4 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013000317A1 true WO2013000317A1 (zh) 2013-01-03

Family

ID=44779658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073920 WO2013000317A1 (zh) 2011-06-27 2012-04-12 多载波信号的接收方法及装置

Country Status (2)

Country Link
CN (1) CN102223223B (zh)
WO (1) WO2013000317A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102223223B (zh) * 2011-06-27 2018-02-02 深圳市中兴微电子技术有限公司 多载波信号的接收方法及装置
US8750174B2 (en) * 2012-03-30 2014-06-10 Broadcom Corporation Dual carrier separation
CN103236996B (zh) * 2013-02-25 2017-08-11 深圳创维数字技术有限公司 一种信号处理方法及相关装置
CN116938282A (zh) * 2022-04-02 2023-10-24 华为技术有限公司 一种信号传输方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960554A (zh) * 2006-11-17 2007-05-09 北京天碁科技有限公司 一种多载波联合检测接收的装置和方法
CN101370000A (zh) * 2008-10-17 2009-02-18 北京星河亮点通信软件有限责任公司 时分同步码分多址***的多载波实现方法和装置
CN101657974A (zh) * 2007-04-25 2010-02-24 马来西亚电信公司 用于软件无线电***的前端收发机
CN102223223A (zh) * 2011-06-27 2011-10-19 中兴通讯股份有限公司 多载波信号的接收方法及装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1468580A1 (en) * 2002-01-21 2004-10-20 Siemens Mobile Communications S.p.A. Method and mobile station to perform the initial cell search in time slotted systems
CN101814931B (zh) * 2009-02-19 2014-07-02 中兴通讯股份有限公司 Td-scdma***中多普勒频移估计和补偿的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1960554A (zh) * 2006-11-17 2007-05-09 北京天碁科技有限公司 一种多载波联合检测接收的装置和方法
CN101657974A (zh) * 2007-04-25 2010-02-24 马来西亚电信公司 用于软件无线电***的前端收发机
CN101370000A (zh) * 2008-10-17 2009-02-18 北京星河亮点通信软件有限责任公司 时分同步码分多址***的多载波实现方法和装置
CN102223223A (zh) * 2011-06-27 2011-10-19 中兴通讯股份有限公司 多载波信号的接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WANG LIANG: "A Fast Filtering Scheme of TD-SCDMA Multi-carrier Signal", COMMUNICATIONS TECHNOLOGY, vol. 42, no. 213, September 2009 (2009-09-01), pages 63 - 68 *

Also Published As

Publication number Publication date
CN102223223A (zh) 2011-10-19
CN102223223B (zh) 2018-02-02

Similar Documents

Publication Publication Date Title
US7756219B2 (en) Low-if multiple mode transmitter front end and corresponding method
US10128872B2 (en) Enabling radio frequency multiplexing in a wireless system
CN103259754B (zh) 一种用于电力线载波通信的数字前端***及其实现方法
TWI407716B (zh) 用於通信系統的物理層信號處理電路及其方法
CN102098025B (zh) 一种级联滤波器的设计方法及设计装置
WO2013000317A1 (zh) 多载波信号的接收方法及装置
WO2010088809A1 (zh) 一种多载波分离的方法及多载波分离装置
CN106936755B (zh) 一种信号处理方法及设备
EP3080910A1 (en) Tunable rf channel select filter
CN103595684A (zh) 一种不连续载波聚合LTE-Advanced信号分析方法及装置
CN102148790B (zh) 一种多载波级联滤波器的设计方法及设计装置
CN105721009A (zh) 可变带宽数字信道合成器、分解器、信道合成与分解器
WO2012126200A1 (zh) 接收信号的方法及***、收发信号的方法及***
CN115967404A (zh) 一种数字信道化方法及***
Leeser et al. An FPGA design technique to receive multiple wireless protocols with the same RF front end
WO2012013092A1 (zh) 一种用于lte基站侧的信号处理方法及装置
CN102685055B (zh) 一种多数据流插值与抽取复用装置及方法
CN103001908B (zh) 一种多载波的聚合、分离方法及设备
CN108199996B (zh) 基于fpga的独立边带调制信号解调方法
MXPA06003286A (es) Transceptor digital de frecuencia de radio con multiples modos de formacion de imagenes.
US11552771B2 (en) System and a method for management of communication subchannels in a wireless communication device
B Sadkhan et al. The WLAN/WCDMA Blind Multimode Wireless Receiving System
WO2022161224A1 (zh) 数据发送方法、数据接收方法及相关装置
Priyanto et al. Design & implementation of all digital IQ modulator and demodulator for high speed WLAN in FPGA
Xiao et al. Designing an Easy-to-Deploy Improved DVB-C Set-Top Boxes With a Backward Compatible Square-Root Nyquist Filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12805378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12805378

Country of ref document: EP

Kind code of ref document: A1