WO2012176975A2 - 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지 - Google Patents

전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지 Download PDF

Info

Publication number
WO2012176975A2
WO2012176975A2 PCT/KR2012/002965 KR2012002965W WO2012176975A2 WO 2012176975 A2 WO2012176975 A2 WO 2012176975A2 KR 2012002965 W KR2012002965 W KR 2012002965W WO 2012176975 A2 WO2012176975 A2 WO 2012176975A2
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
titanium oxide
active material
compound
electrode active
Prior art date
Application number
PCT/KR2012/002965
Other languages
English (en)
French (fr)
Other versions
WO2012176975A3 (ko
Inventor
김천중
최선주
김수찬
장동규
김건일
양우영
Original Assignee
삼성정밀화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성정밀화학 주식회사 filed Critical 삼성정밀화학 주식회사
Priority to US14/115,298 priority Critical patent/US20140091255A1/en
Priority to CN201280030562.XA priority patent/CN103636036A/zh
Priority to EP12803304.0A priority patent/EP2725641A4/en
Priority to JP2014516887A priority patent/JP2014523387A/ja
Publication of WO2012176975A2 publication Critical patent/WO2012176975A2/ko
Publication of WO2012176975A3 publication Critical patent/WO2012176975A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a method for producing an electrode active material for a lithium secondary battery exhibiting stable charge and discharge efficiency and life characteristics in a high speed charge and discharge reaction, and a lithium secondary battery comprising an electrode active material prepared therefrom. Specifically, the present invention provides a method of controlling the composition ratio and composition of elements on the surface of the electrode active material.
  • Materials currently used in the negative electrode active material of lithium secondary batteries include crystalline carbon such as natural graphite and artificial graphite, and amorphous carbon such as non-graphitizable carbon and digraphitizable carbon.
  • lithium titanium oxide has recently attracted attention in order to meet the demand for safety and high-speed charging and discharging.
  • This is an electrode active material having a stable structure of a spinel structure and having good cycle characteristics.
  • the lithium titanium oxide has excellent circulation, that is, many cycles of charging and discharging can occur without deterioration of the battery.
  • the present invention is to provide a method for providing an electrode active material for a lithium secondary battery that does not form precipitates on the surface of the electrode even after a fast charge-discharge reaction and a reaction for a long time when used as an electrode material of a lithium secondary battery.
  • the present invention is to manufacture a lithium secondary battery showing a high charge and discharge efficiency and life characteristics during high-speed charge and discharge reaction.
  • the present invention provides a method for producing lithium titanium oxide (LTO), characterized in that the composition ratio Ti / Li of the titanium element to the lithium element on the surface is controlled to be 0.8 or more.
  • LTO lithium titanium oxide
  • the composition of the lithium element on the surface of the lithium titanium oxide is controlled to less than 20%.
  • the lithium titanium oxide manufacturing method comprises the steps of mixing and reacting a lithium compound and a titanium compound; And heat treating the reaction mixture at a temperature in the range of 700 ° C. to 900 ° C. for 4 to 8 hours.
  • the mixing reaction of the lithium compound and the titanium compound consists of adding the lithium compound and the titanium compound to a solvent and stirring the slurry.
  • the mixing reaction of the lithium compound and the titanium compound consists of uniformly mixing the powdered lithium compound and the titanium compound.
  • the heat treatment is carried out in a normal atmospheric atmosphere of a closed container.
  • the present invention provides a lithium secondary battery comprising a lithium titanium oxide prepared from the method as an electrode active material.
  • an electrode active material for a lithium secondary battery that improves battery characteristics in a fast charge-discharge reaction.
  • the present invention provides a method for providing an electrode active material for improving battery characteristics in a high-speed charging and discharging reaction, particularly in an electrode active material for a lithium secondary battery.
  • the electrode active material for a lithium secondary battery which is suitable for applying the method of the present invention, is an active material having a relatively stable structure in which the active material structure is not destroyed or deteriorated in battery characteristics due to the normal charge / discharge reaction.
  • an electrode active material is lithium titanium oxide (LTO).
  • the present invention provides a method for providing a lithium titanium oxide having excellent charge and discharge efficiency and lifespan characteristics at a high speed charge and discharge reaction.
  • the present invention provides a method of manufacturing an electrode active material for improving battery characteristics during high-speed charging and discharging of a lithium secondary battery as a method of controlling the composition ratio and composition of the surface active material of the electrode active material.
  • the deterioration of the characteristics in the fast charge-discharge reaction of the battery is due to the battery swelling phenomenon due to the material precipitated on the surface of the electrode active material as the reaction proceeds.
  • the precipitation phenomenon on the electrode surface is expected to be related to the composition of the elements present on the surface of the active material.
  • lithium titanium oxide As the fast charge-discharge reaction proceeds, lithium elements present in excess on the surface of the lithium titanium oxide are precipitated as amorphous Li 2 CO 3 or Li 2 TiO 3, which is Li 2 CO 3 or Li 2 TiO 3. causess a swelling phenomenon of the battery and deteriorates battery characteristics. Therefore, controlling the amount of lithium element present on the surface of the lithium titanium oxide can be a means for preventing the deterioration of the battery.
  • the present invention it is intended to control the amount of lithium element present on the surface by controlling the composition ratio of Ti / Li and lithium element to lithium element on the surface of lithium titanium oxide.
  • the present invention is to improve the high-speed charge-discharge characteristics of a lithium secondary battery using the same as the electrode active material by preparing a lithium titanium oxide satisfying the above conditions in the production of lithium titanium oxide.
  • the present invention provides a method of adjusting the composition ratio Ti / Li of the titanium element to the lithium element on the surface of the lithium titanium oxide to 0.8 or more.
  • the term "surface" of the lithium titanium oxide used in the present invention is the range of the surface layer to be measured by x-ray photoelectron spectroscopy (XPS) used to measure the elemental composition of the compound surface in the present invention. That is, the present invention provides a method for producing lithium titanium oxide in which the composition ratio Ti / Li of titanium element to lithium element is controlled to 0.8 or more when the composition of the surface element of lithium titanium oxide is analyzed by XPS.
  • the lithium secondary battery including the lithium titanium oxide prepared as described above exhibits characteristics in which charge and discharge efficiency is improved and lifespan characteristics are improved, particularly at high speed.
  • the present invention is to provide a lithium secondary battery further improved high-speed charge-discharge characteristics by a method of controlling the composition of the lithium element on the surface of the lithium titanium oxide.
  • the present invention provides a method of controlling the composition of lithium element on the surface of lithium titanium oxide to be less than 20%.
  • Lithium titanium oxide whose elemental composition ratio and composition is controlled on the surface in the same manner as described above is derived from lithium elements present in excess on the surface, such as Li 2 CO 3 or Li 2 TiO 3 on the electrode surface during the fast charge and discharge reaction. Precipitation of foreign matter does not occur. In addition, deformation of the internal structure of the electrode active material does not occur even during a long charge / discharge operation. Therefore, the lithium secondary battery including the lithium titanium oxide prepared in the present invention as an electrode active material has high fast charge and discharge efficiency and excellent life characteristics.
  • the lithium compound may be selected from the group comprising Li 2 CO 3 , Li 2 C 2 O 4 , LiHCO 3 , LiO 2 , LiOOCCH 3, and combinations thereof as a lithium element feed source in lithium titanium oxide.
  • the titanium compound used as the source of the titanium element may be selected from the group comprising TiO 2 , TiH 2 , TiCl 4 , TiN, C 12 H 28 O 4 Ti, and combinations thereof.
  • the lithium compound and the titanium compound are not limited to the above exemplified examples, and any lithium compound or titanium compound may be used without limitation as long as it is a compound commonly used as a supply source of lithium element or titanium element in the production of lithium titanium oxide.
  • a method for mixing and reacting the lithium compound and the titanium compound a method of adding the lithium compound and the titanium compound into a solvent and stirring the slurry on the slurry, or a method of uniformly mixing the powdered lithium compound and the titanium compound may be used.
  • a method for mixing and reacting the lithium compound and the titanium compound a method of adding the lithium compound and the titanium compound into a solvent and stirring the slurry on the slurry, or a method of uniformly mixing the powdered lithium compound and the titanium compound may be used.
  • the reaction is performed by stirring or the like while the lithium compound and the titanium compound are mixed with the solvent in the slurry phase, thereby forming a reaction mixture on the slurry. do.
  • the grinding may be performed by a ball mill.
  • the solvent used for the mixing reaction on the slurry can be used without limitation as long as it can form a slurry of the lithium compound and the titanium compound.
  • a solvent selected from the group consisting of water, acetone, methanol, ethanol, isopropyl alcohol and combinations thereof can be used.
  • the ratio of the solids to the solvent is preferably used in a mass ratio of 10% to 40%.
  • the powdery reaction mixture is obtained by removing the solvent through spray drying, vacuum drying, air drying, or oven drying.
  • a powdery reaction mixture in a uniformly mixed state is obtained by sufficiently mixing the powder with a mixer or the like.
  • the reaction mixture of the lithium compound and the titanium compound obtained from the above process can be finally thermally obtained by heat treatment.
  • the heat treatment is performed by firing at 700 ° C. to 900 ° C. for 4 hours to 8 hours.
  • the firing temperature is less than 700 ° C.
  • the capacity of the electrode active material produced by dropping the crystallinity of the lithium titanium oxide powder is reduced, which is not preferable.
  • the firing temperature exceeds 900 ° C., an impurity peak is formed, which is not preferable because the charge / discharge capacity of the battery may be reduced or the growth of particles may occur.
  • the heat treatment time is less than the above range, the crystallinity of the lithium titanium oxide powder is inferior as in the case of low-temperature firing, and conversely, when the heat treatment time is extended, the structure of the lithium titanium oxide is deformed and the stability of the battery is inferior. Occurs.
  • the elements present on the surface of the lithium titanium oxide may be lost. At this time, the amount of loss increases in the order of light elements with small elements and heavy elements with large elements.
  • the elements present in the lithium titanium oxide may be exposed to the surface.
  • the temperature and time of the heat treatment process in controlling the composition ratio and content of the surface element.
  • the temperature and time of the heat treatment process should be adjusted differently depending on the type of lithium compound and titanium compound used as a raw material, their mixing reaction method and reaction conditions.
  • the atmosphere in which the heat treatment process is performed also affects.
  • the composition ratio (Ti / Li) and the composition of the lithium element on the surface of the lithium titanium oxide finally obtained by controlling the heat treatment process as described above is controlled to have a value in a limited range.
  • the atmosphere of the heat treatment process may be made in an atmosphere selected from the group consisting of nitrogen gas, argon gas, argon / hydrogen mixed gas and nitrogen / hydrogen mixed gas, or may be made in a general atmospheric atmosphere.
  • a weakly reducing atmosphere is formed by performing in a closed container as disclosed in Korean Patent Application No. 10-2010-0126260, and it is possible to produce dense particles by a press effect. Can be.
  • the lithium titanium oxide prepared such that the composition ratio Ti / Li of the titanium element to the lithium element on the surface has a value of 0.8 or more can be used for the production of a lithium secondary battery having improved battery characteristics in a fast charge / discharge reaction.
  • the lithium titanium oxide results in further improving battery characteristics when the composition of the lithium element on the surface is controlled to be less than 20%.
  • powdered lithium titanium oxide having a particle size of nano size is preferably prepared.
  • the lithium titanium oxide manufacturing method is only one embodiment of controlling the composition ratio and the composition of the surface element, and the present invention should not be considered to be limited thereto. That is, it is to be understood that all methods for producing lithium titanium oxide, in which the composition ratio of titanium element to lithium element on the surface of Ti / Li is 0.8 or more and the composition of lithium element is less than 20%, are included in the scope of the present invention. do.
  • the present invention provides a lithium secondary battery using the lithium titanium oxide powder prepared by the above method as an electrode active material.
  • an electrode current collector by applying pressure to the lithium titanium oxide powder so that the electrode plate density becomes 2 g / cc or more.
  • the electrode current collector is generally made to a thickness of 3 to 500 mu m.
  • the electrode current collector may optionally include a conductive material, a binder, a filler, and the like, in addition to the lithium titanium oxide manufactured in the present invention.
  • the lithium secondary battery including the electrode manufactured as described above may be used stably while maintaining high charge and discharge efficiency and lifespan characteristics even at high speed charge and discharge reactions.
  • a lithium titanium oxide powder was prepared in the same manner as in Example, except that the heat treatment time was 11 hours.
  • the device name, experimental conditions, and driving program of the XPS are shown in Table 1 below.
  • FIG. 1 shows the spectra of 1 s electrons and 2 p electrons of lithium and titanium elements in the lithium titanium oxide powder prepared in Example, and shows the data of calculating the composition of surface elements by obtaining the width of each peak in the spectrum. . From the above data, the surface elemental composition ratio Ti / Li of the lithium titanium oxide prepared in Examples is 0.84. In addition, the composition of the lithium element was found to be 19.47%. This is controlled within the scope of the present invention.
  • Figure 2 shows the XRD results of the lithium titanium oxide powder prepared in Example. From this, it can be seen that the crystalline Li 4 Ti 5 O 12 to form without a specific secondary phase.
  • FIG. 3 shows the spectra of 1 s electrons and 2 p electrons of lithium and titanium elements in the lithium titanium oxide powder prepared in Comparative Example, and shows the data of calculating the composition of the surface elements by obtaining the width of each peak in the spectrum. . From the above data, the surface elemental composition ratio Ti / Li of the lithium titanium oxide prepared in Examples is 0.75. In addition, the composition of the lithium element was found to be 21.34%. This is not controlled within the scope of the present invention.
  • Figure 4 shows the XRD results of the lithium titanium oxide powder prepared in the comparative example. From this, it can be seen that the lithium titanium oxide powder prepared in Comparative Example also forms crystalline Li 4 Ti 5 O 12 without a specific secondary phase.
  • a coin cell using lithium titanium oxide powders prepared in Examples and Comparative Examples was prepared as an electrode active material, and the change in characteristics of the battery in the fast charge / discharge reaction was observed.
  • the prepared electrode was used as the cathode, LiCoO 2 was used as the anode, the separator was a porous polyethylene membrane, and the electrolyte was an EC / DMC (1: 1) -based nonaqueous electrolyte in which 1 M LiPF 6 was dissolved.
  • the coin-type secondary battery was manufactured by setting the capacity ratio of the negative electrode active material to the positive electrode active material to 1.8.
  • the charge and discharge capacities were measured according to the increase of the C-rate, and the life characteristics and the charge / discharge efficiency were evaluated therefrom. That is, the capacity when charged for 12 minutes, 0.2C is the capacity when charged for 1 / 0.2 hours, or 5 hours).
  • the life characteristics represent the ratio of the discharge capacity at each C-rate to the discharge capacity at 0.02C.
  • the lifetime characteristic is the value obtained by dividing the discharge capacity measured at each C-rate by the discharge capacity at 0.02C.
  • the lifetime characteristic is the value obtained by dividing the discharge capacity measured at each C-rate by the discharge capacity at 0.02C.
  • the lithium titanium oxide in which the composition ratio Ti / Li of the surface element and the composition of the lithium element were controlled improves the characteristics of the fast charge / discharge battery in the lithium secondary battery using the electrode active material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명은 고속 충방전시에도 안정적인 충방전 효율 및 수명 특성을 나타내는 리튬이차전지를 제조하기 위해 전극 활물질을 제공하는 방법에 관한 것이다. 구체적으로 본 발명은 비교적 안정적인 구조의 전극 활물질로 알려져 있는 리튬 티탄산화물에서 표면 원소의 조성비(Ti/Li) 및 리튬 원소의 조성을 제어하는 방법을 제공한다. 본 발명에 의해 제조된 리튬 티탄산화물을 전극 활물질로 사용하는 리튬이차전지는 고속 충방전 반응에서도 충방전 효율 및 방전 용량을 유지함으로써 안정적으로 사용될 수 있는 장점을 갖는다.

Description

전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지
본 발명은 고속 충방전 반응에서 안정적인 충방전 효율 및 수명 특성을 나타내는 리튬이차전지용 전극 활물질을 제조하는 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지에 관한 것이다. 구체적으로 본 발명은 전극 활물질 표면에서의 원소의 조성비 및 조성을 제어하는 방법을 제시한다.
전자, 통신, 컴퓨터 산업의 급속한 발전에 따라, 캠코더, 휴대폰, 노트북 PC 등과 같은 휴대용 전자통신 기기들이 눈부신 발전을 하고 있다. 이에 따라, 이들을 구동할 수 있는 동력원으로서 리튬이차전지의 수요가 나날이 증가하고 있다. 특히 친환경 동력원으로서 전기자동차, 무정전 전원장치, 전동공구 및 인공위성 등의 응용과 관련하여 국내는 물론 일본, 유럽 및 미국 등지에서 연구개발이 활발히 진행되고 있다.
현재 리튬이차전지의 음극 활물질에 사용되고 있는 재료는 천연흑연, 인조흑연과 같은 결정질계 탄소와 난흑연화성 탄소와 이흑연화성 탄소와 같은 비결정질계 탄소 등이 있다.
한편, 안전성 및 고속 충방전에 대한 요구를 충족시키기 위해 최근 리튬 티탄산화물이 주목받고 있다. 이는 스피넬 구조의 안정적인 구조를 가진 전극 활물질로서 사이클 특성이 양호한 전극재이다. 또한, 충전 및 방전 과정 동안 리튬 티탄산화물의 독특한 낮은 부피 변화로 인해, 리튬 티탄산화물은 탁월한 순환성을 가지며, 즉 전지의 악화 없이 충전 및 방전의 많은 순환이 일어날 수 있다.
그러나, 비교적 안정적인 구조의 리튬 티탄산화물을 전극재로 사용하는 리튬이차전지의 경우에도, 전지 특성이 저속 충방전시에서는 우수하나 고속 충방전 반응을 진행시킴에 따라 충방전 효율이 감소하거나 방전 용량이 감소되는 문제가 발생한다. 특히, 전극재 표면에서 활물질에 포함된 과량의 리튬 원소에 의한 비정질상의 Li2CO3 또는 Li2TiO3가 석출되는 현상이 발견된다. 이러한 Li2CO3 또는 Li2TiO3 는 전지의 고속 및 장기 충방전 반응시에 가스를 발생시켜 이로 인한 전지 부풀음 현상이 야기된다.
따라서, 리튬 티탄산화물을 전극재로 사용하는 리튬이차전지에서 고속 충방전 반응시에도 표면에 석출물이 형성되지 않고, 안정적인 충방전 효율을 나타내며, 아울러 수명 특성이 우수한 리튬이차전지를 제공하기 위한 전극 활물질 재료를 개발하기 위한 노력이 계속되고 있다.
본 발명은 리튬이차전지의 전극재로 사용될 때 고속 충방전 반응 및 장시간에 걸친 반응 후에도 전극 표면에 석출물이 형성되지 않는 리튬이차전지용 전극 활물질을 제공하는 방법을 제시하고자 한다.
또한, 본 발명은 고속 충방전 반응시 높은 충방전 효율 및 수명 특성을 나타내는 리튬이차전지를 제조하고자 한다.
본 발명은 표면에서의 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li가 0.8 이상으로 제어된 것을 특징으로 하는 리튬 티탄산화물(LTO)의 제조 방법을 제공한다.
바람직하게, 상기 방법에서는 리튬 티탄산화물 표면에서의 리튬 원소의 조성이 20% 미만으로 제어된다.
바람직하게, 상기 리튬 티탄산화물 제조방법은 리튬 화합물과 티탄 화합물을 혼합 반응시키는 단계; 및 상기 반응 혼합물을 700℃ 내지 900℃ 범위의 온도에서 4시간 내지 8시간 동안 열처리하는 단계를 포함한다.
바람직하게, 상기 리튬 화합물과 티탄 화합물의 혼합 반응은 리튬 화합물과 티탄 화합물을 용매에 투입하여 슬러리 상에서 교반하는 것으로 이루어진다.
바람직하게, 상기 리튬 화합물과 티탄 화합물의 혼합 반응은 분말상의 리튬 화합물과 티탄 화합물을 균일하게 혼합하는 것으로 이루어진다.
바람직하게, 상기 열처리는 닫힌 용기의 일반 대기 분위기에서 이루어진다.
또한, 본 발명은 상기 방법으로부터 제조된 리튬 티탄산화물을 전극 활물질로 포함하는 것을 특징으로 하는 리튬이차전지를 제공한다.
본 발명에 의하면, 고속 충방전 반응에서 전지 특성을 개선시키는 리튬이차전지용 전극 활물질을 제공할 수 있다.
따라서, 본 발명에 의하면 고속 충방전 반응시 충방전 효율이 높고, 수명 특성이 우수한 리튬이차전지를 제조할 수 있다.
도1은 실시예에서 제조된 리튬 티탄산화물의 XPS 스펙트럼이다.
도2는 실시예에서 제조된 리튬 티탄산화물의 XRD 스펙트럼이다.
도3은 비교예에서 제조된 리튬 티탄산화물의 XPS 스펙트럼이다.
도4는 비교예에서 제조된 리튬 티탄산화물의 XRD 스펙트럼이다.
본 발명은 리튬이차전지용 전극 활물질에서 특히 고속 충방전 반응에서의 전지 특성을 개선시키는 전극 활물질을 제공하는 방법을 제시한다.
본 발명의 방법을 적용하기에 바람직한 리튬이차전지용 전극 활물질은 통상의 충방전 반응에서는 활물질 구조가 파괴되거나 그로인해 전지 특성의 열화가 일어나지 않는 비교적 안정적인 구조의 활물질이다. 이러한 전극 활물질로서 대표적인 것이 리튬 티탄산화물(LTO)이다.
따라서, 본 발명은 고속 충방전 반응에서 충방전 효율 및 수명 특성이 우수한 리튬 티탄산화물을 제공하는 방법을 제시한다.
구체적으로, 본 발명은 전극 활물질 표면 원소의 조성비 및 조성을 제어하는 방법으로 리튬이차전지의 고속 충방전시 전지 특성을 개선시키는 전극 활물질을 제조하는 방법을 제시한다.
전지의 고속 충방전 반응에서 나타나는 특성의 열화는 반응이 진행됨에 따라 전극 활물질 표면에 석출되는 물질로 인해 전지 부풀음 현상이 일어나기 때문이다. 또한, 전극 표면에서의 석출 현상은 활물질 표면에 존재하는 원소의 조성과 관련이 있을 것으로 예상된다.
리튬 티탄산화물의 경우 고속 충방전 반응이 진행됨에 따라 리튬 티탄산화물 표면에 과량으로 존재하는 리튬 원소가 비정질상의 Li2CO3 또는 Li2TiO3로 석출되며, 이러한 Li2CO3 또는 Li2TiO3는 전지 부풀음 현상을 유발하여 전지 특성을 열화시키는 원인이 된다. 따라서, 리튬 티탄산화물의 표면에 존재하는 리튬 원소의 양을 제어하는 것은 전지의 열화를 막기 위한 수단이 될 수 있다.
본 발명에서는 리튬 티탄산화물 표면에서의 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li 및 리튬 원소의 조성을 제어하는 방법으로 표면에 존재하는 리튬 원소의 양을 조절하고자 한다.
본 발명에서는 리튬 티탄산화물 제조에 있어 상기 조건을 만족하는 리튬 티탄산화물을 제조함으로써 이를 전극 활물질로 사용하는 리튬이차전지에서의 고속 충방전 특성을 개선시키고자 하는 것이다.
바람직하게, 본 발명에서는 리튬 티탄산화물의 표면에서의 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li를 0.8 이상으로 조절하는 방법을 제시한다.
본 발명에서 사용하는 리튬 티탄산화물의 '표면'이란 용어는, 본 발명에서 화합물 표면의 원소 조성을 측정하기 위해 사용한 x-ray photoelectron spectroscopy(XPS)가 측정 대상으로 하는 표면층의 범위이다. 즉, 본 발명은 XPS로 리튬 티탄산화물의 표면 원소의 조성을 분석하였을 때, 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li가 0.8 이상으로 제어된 리튬 티탄산화물의 제조방법을 제공한다. 이렇게 제조된 리튬 티탄산화물을 포함하는 리튬이차전지는 특히 고속 충방전시 충방전 효율이 향상되며 수명 특성이 개선되는 특성을 나타낸다.
또한, 본 발명은 리튬 티탄산화물의 표면에서의 리튬 원소의 조성을 제어하는 방법으로 고속 충방전 특성이 더욱 개선된 리튬이차전지를 제공하고자 한다.
바람직하게, 본 발명에서는 리튬 티탄산화물 표면에서 리튬 원소의 조성이 20% 미만이 되도록 제어하는 방법을 제시한다.
상기와 같은 방법으로 표면에서의 원소 조성비 및 조성이 제어된 리튬 티탄산화물은 표면에 과량으로 존재하는 리튬 원소로부터 기인하는, 고속 충방전 반응시 전극 표면에서의 Li2CO3 또는 Li2TiO3 등의 이물질 석출 현상이 발생하지 않는다. 또한, 장시간의 충방전 운전시에도 전극 활물질 내부 구조의 변형이 일어나지 않는다. 따라서, 본 발명에서 제조된 리튬 티탄산화물을 전극 활물질로 포함하는 리튬이차전지는 고속 충방전 효율이 높고, 수명 특성이 우수하게 나타난다.
본 발명은 일 실시예로서 하기 과정을 통해 리튬 티탄산화물을 제조하는 방법을 제공한다:
리튬 화합물과 티탄 화합물을 혼합 반응시키는 단계; 및
상기 반응 혼합물을 700℃ 내지 900℃ 범위의 온도에서 4시간 내지 8시간 동안 열처리하는 단계.
리튬 화합물은 리튬 티탄산화물에서의 리튬 원소 공급 소스로서 Li2CO3, Li2C2O4, LiHCO3, LiO2, LiOOCCH3 및 이들의 조합을 포함하는 군에서 선택될 수 있다. 또한, 티탄 원소의 공급 소스로서 사용되는 티탄 화합물의 경우는 TiO2, TiH2, TiCl4, TiN, C12H28O4Ti 및 이들의 조합을 포함하는 군에서 선택될 수 있다. 그러나, 리튬 화합물 및 티탄 화합물은 상기 예시된 바에 한정되는 것이 아니라 리튬 티탄산화물 제조시 리튬 원소 또는 티탄 원소의 공급 소스로서 통상 사용되는 화합물이라면 제한없이 선택하여 사용할 수 있다.
다음으로, 리튬 화합물과 티탄 화합물을 혼합 반응시키기 위한 방법으로는 리튬 화합물과 티탄 화합물을 용매에 투입하여 슬러리 상에서 교반하여 반응시키는 방법 또는 분말상의 리튬 화합물과 티탄 화합물을 균일하게 혼합하는 방법 등이 사용될 수 있다.
리튬 화합물과 티탄 화합물을 용매에 투입하여 슬러리 상에서 교반하여 반응시키는 방법은 리튬 화합물과 티탄 화합물이 용매에 슬러리 상으로 혼합되어 있는 상태에서 교반 등을 통하여 반응을 일으킴으로써, 슬러리 상의 반응 혼합물이 형성되도록 한다. 이때 볼밀 등에 의해 분쇄하는 과정이 포함될 수 있다.
슬러리 상에서의 혼합 반응을 위해 용매로 사용되는 것은, 리튬 화합물과 티탄 화합물의 슬러리를 형성할 수 있는 것이면 제한없이 사용가능하다. 예로서, 물, 아세톤, 메탄올, 에탄올, 이소프로필알콜 및 이들의 조합으로 이루어진 군에서 선택된 용매를 사용할 수 있다.
또한, 용매 내에서 리튬 화합물과 티탄 화합물의 적절한 혼합 반응 및 분쇄를 위하여 용매 대비 고형분의 비율은 질량비로서 10% ~ 40%로 사용하는 것이 바람직하다.
용매 내에서 리튬 화합물과 티탄 화합물의 혼합 반응이 완료된 후에는 분무 건조, 진공 건조, 대기 건조 또는 오븐 건조 등을 통하여 용매를 제거함으로써 분말상의 반응 혼합물을 얻는다.
다음으로, 분말상의 리튬 화합물과 티탄 화합물을 균일하게 혼합하는 방법 에서는 믹서 등에 의해 분말을 충분히 혼합함으로써 균일하게 혼합된 분말 상태의 반응 혼합물을 얻는다.
상기와 같은 과정으로부터 얻어진 리튬 화합물과 티탄 화합물의 반응 혼합물은 열처리함으로써 최종적으로 리튬 티탄산화물을 얻을 수 있다. 상기 열처리 과정은 700℃ 내지 900℃에서 4시간 내지 8시간 동안 소성하는 것으로 수행한다. 여기서, 소성 온도가 700℃ 미만이면 리튬 티탄산화물 분말의 결정성이 떨어져 제조되는 전극 활물질의 용량이 감소되므로 바람직하지 않다. 반면, 소성 온도가 900℃를 초과하는 경우에는 불순물 피크(peak)가 형성되어 전지의 충방전 용량이 감소되거나, 입자의 성장이 일어날 수 있기 때문에 바람직하지 않다.
또한, 열처리 시간을 상기 범위보다 적게 하는 경우에는 저온 소성의 경우에서와 같이 리튬 티탄산화물 분말의 결정성이 떨어지고, 반대로 열처리 시간을 길게 하면 리튬 티탄산화물 내 구조의 변형이 일어나 전지의 안정성이 떨어지는 문제가 발생한다.
한편, 열처리 과정에서는 리튬 티탄산화물 표면에 존재하는 원소들이 유실되는 현상이 발생할 수 있다. 이때에는 원소량이 작은 가벼운 원소에서부터 원소량이 큰 무거운 원소의 순서로 유실량이 증가한다. 또한, 열처리 과정에서는 리튬 티탄산화물 내부에 존재하는 원소들이 표면으로 표출되어 나오기도 한다.
따라서, 표면 원소의 조성비 및 함량을 조절하는 데 있어 열처리 공정의 온도 및 시간을 조절하는 것은 매우 중요하다. 또한, 이러한 열처리 공정의 온도 및 시간은 원료 물질로 사용되는 리튬 화합물과 티탄 화합물의 종류, 이들의 혼합 반응 방법 및 반응 조건에 따라 다르게 조절되어야 한다. 나아가 열처리 공정이 수행되는 분위기도 영향을 미친다.
본 발명에서는 상기와 같은 열처리 공정을 조절함으로써 최종적으로 얻어지는 리튬 티탄산화물 표면에서의 원소의 조성비(Ti/Li) 및 리튬 원소의 조성이 한정된 범위의 값을 갖도록 제어한다.
열처리 공정의 분위기는 질소 가스, 아르곤 가스, 아르곤/수소 혼합 가스 및 질소/수소 혼합 가스로 이루어진 군에서 선택되는 분위기에서 이루어질 수도 있고, 일반 대기 분위기에서 이루어질 수도 있다. 일반 대기 분위기에서 열처리 공정이 수행되는 경우는, 대한민국 특허출원 제10-2010- 0126260호에 개시된 바와 같이 닫힌 용기 내에서 수행함으로써 약환원 분위기가 조성되고, 또한 가압 효과에 의해 치밀한 입자가 제조되게 할 수 있다.
표면에서의 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li가 0.8 이상의 값을 갖도록 제조된 리튬 티탄산화물은 고속 충방전 반응에서 전지 특성이 개선된 리튬이차전지의 제조에 이용될 수 있다. 또한, 상기 리튬 티탄산화물은 표면에서의 리튬 원소의 조성이 20% 미만이 되도록 제어된 것일 때 전지 특성을 더욱 향상시키는 결과를 가져온다.
또한, 본 발명에서는 바람직하게 나노 사이즈의 입자 크기를 갖는 분말상의 리튬 티탄산화물을 제조한다.
단, 상기 리튬 티탄산화물 제조방법은 표면 원소의 조성비 및 조성을 제어하는 것의 일 실시예일 뿐, 본 발명이 이에 한정되는 것으로 여겨져서는 안된다. 즉, 표면에서 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li가 0.8 이상이며 리튬 원소의 조성이 20% 미만이 되도록 조절된 리튬 티탄산화물을 제조하는 모든 방법이 본 발명의 범위에 포함되는 것으로 이해되어야 한다.
또한, 본 발명은 상기 방법으로 제조된 리튬 티탄산화물 분말을 전극 활물질 재료로 사용하는 리튬이차전지를 제공한다. 이때 리튬 티탄산화물 분말에 압력을 가하여 극판 밀도가 2g/cc 이상이 되도록 하여 전극 집전체를 제조하는 것이 바람직하다. 전극 집전체는 일반적으로 3 내지 500 ㎛의 두께로 만든다. 또한, 전극 집전체에는 본 발명에서 제조된 리튬 티탄산화물 이외에도, 선택적으로 도전재, 바인더, 충진제 등이 포함될 수 있다. 이렇게 제조된 전극을 포함하는 리튬이차전지는 고속 충방전 반응시에도 높은 충방전 효율 및 수명 특성을 유지하여 안정적으로 사용될 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 이에 한정되는 것은 아니다.
실시예
리튬 화합물로 Li2CO3 36.8g 과 티탄 화합물로 TiO2 100g을 물 300ml에 넣고 교반기에서 회전속도 1000rpm 로 6시간 교반했다. 이때 리튬 화합물 및 티탄 화합물로부터 공급되는 리튬 원소 및 티탄 원소의 몰비 [Li]:[Ti]는 4:5이며, 고형분의 비율은 30%였다. 교반한 슬러리를 0.65mm ZrO2 볼을 사용하여 8m/s 속도로 분쇄한 후, 분쇄한 슬러리를 120℃ 오븐에서 건조시켰다. 건조 분말 100g을 알루미나 재질의 용기에 안에 넣고 커버를 닫은 상태로 860℃에서 4시간 열처리함으로써 리튬 티탄산화물 분말을 제조했다.
비교예
열처리 시간을 11시간으로 하는 것을 제외하고 실시예에서와 동일한 방법으로 리튬 티탄산화물 분말을 제조했다.
LTO 분말의 XRD 및 XPS 분석
실시예 및 비교예에서 제조된 리튬 티탄산화물 분말에 대해 XRD 및 XPS 분석을 실시하였다.
XPS의 기기명, 실험 조건 및 구동 프로그램을 하기 표1에 나타냈다.
표 1
Model SIGMA PROBE (ThermoVG, U.K.)
 X-ray Source Monochromatic Al-Ka
Wide Scan Pass Energy 50 eV
Step Size 1.0 eV
Narrow Scan Pass Energy 20 eV
Step Size 50 eV
진공도 4 x 10-9 mB
보정 C 1s (284.5 eV)
구동 프로그램 Avantage (Thermo VG)
도1은 실시예에서 제조된 리튬 티탄산화물 분말에서 리튬 원소와 티탄 원소의 1s 전자 및 2p  전자의 스펙트럼을 보여주며, 스펙트럼에서 각 피크의 넓이를 구하여 표면 원소의 조성을 계산한 데이터를 함께 나타냈다. 상기 데이터로부터 실시예에서 제조된 리튬 티탄산화물의 표면 원소 조성비 Ti/Li 는 0.84이다. 또한, 리튬 원소의 조성은 19.47%로 나타났다. 이는 본 발명에서 제시하는 범위로 제어된 것이다.
도2는 실시예에서 제조된 리튬 티탄산화물 분말의 XRD 결과를 나타낸 것이다. 이로부터 특이한 2차상 없이 결정질 Li4Ti5O12를 이루고 있음을 알 수 있다.
도3은 비교예에서 제조된 리튬 티탄산화물 분말에서 리튬 원소와 티탄 원소의 1s 전자 및 2p  전자의 스펙트럼을 보여주며, 스펙트럼에서 각 피크의 넓이를 구하여 표면 원소의 조성을 계산한 데이터를 함께 나타냈다. 상기 데이터로부터 실시예에서 제조된 리튬 티탄산화물의 표면 원소 조성비 Ti/Li 는 0.75이다. 또한, 리튬 원소의 조성은 21.34%로 나타났다. 이는 본 발명에서 제시하는 범위 내로 제어되지 않은 것이다.
도4는 비교예에서 제조된 리튬 티탄산화물 분말의 XRD 결과를 나타낸 것이다. 이로부터 비교예에서 제조된 리튬 티탄산화물 분말의 경우에도 특이한 2차상 없이 결정질 Li4Ti5O12를 이루고 있음을 알 수 있다.
고속 충방전 반응에서의 전지 특성 평가
실시예 및 비교예에서 제조된 리튬 티탄산화물 분말을 전극 활물질로 사용하는 코인셀을 제조하여 고속 충방전 반응에서의 전지의 특성 변화를 관찰하였다.
리튬 티탄산화물 분말 92 중량부, 도전제(Super P carbon black) 2 중량부와 바인더(Polyvinylidene fluoride, PVdF) 6 중량부를 균일하게 혼합하고, 용매로 N-메틸피롤리돈(NMP)를 첨가하여 균일한 상태의 슬러리(slurry)를 제조하였다. 이를 집전체인 알루미늄 박의 한쪽 면에 도포하고 100℃의 진공 오븐에서 건조하여 용매를 제거함으로써 전극을 제조하였다.
코인셀 제조를 위해 상기 제조된 전극을 음극으로 사용하고, LiCoO2를 양극으로, 분리막은 다공성의 폴리에틸렌막, 전해질은 1M LiPF6가 용해된 EC/DMC(1:1)계 비수 전해액을 사용하였고, 양극활물질에 대한 음극활물질의 용량비를 1.8로 하여 코인형의 이차전지를 제조하였다.
제조된 전지에 대해 C-rate의 증가에 따른 충전 및 방전 용량을 측정하고, 이로부터 수명 특성 및 충방전 효율을 평가하였다(1C는 1시간 동안 충전했을 때의 용량으로, 5C는 1/5시간 즉 12분 동안 충전했을 때의 용량이고, 0.2C는 1/0.2시간 즉 5시간 동안 충전했을 때의 용량이다). 수명 특성은 0.02C일 때의 방전 용량에 대한 각 C-rate에서의 방전 용량의 비를 나타낸 것이다.
측정 결과를 하기 표2(실시예) 및 표3(비교예)에 나타냈다.
표 2
측정조건 충전용량(mAh/g) 방전용량(mAh/g) 수명특성(%)* 충방전효율(%)
0.02 C 174.17 170.30 100.00 97.78
0.2 C 171.04 169.86 99.74 99.31
0.5 C 170.41 169.15 99.32 99.26
1 C 170.26 168.20 98.77 98.79
2 C 169.94 167.41 98.31 98.51
5 C 169.74 166.74 97.91 98.23
10 C 169.60 164.81 96.78 97.17
* 수명특성은 각 C-rate에서 측정된 방전용량을 0.02C일 때의 방전용량으로 나눈 값임
표 3
측정조건 충전용량(mAh/g) 방전용량(mAh/g) 수명특성(%)* 충방전효율(%)
0.02 C 175.24 170.03 100.00 97.03
0.2 C 171.31 169.50 99.69 98.94
0.5 C 170.47 168.31 98.99 98.73
1 C 170.57 166.00 97.63 97.32
2 C 170.03 164.54 96.77 96.77
5 C 169.61 162.57 95.61 95.85
10 C 169.33 159.04 93.54 93.92
* 수명특성은 각 C-rate에서 측정된 방전용량을 0.02C일 때의 방전용량으로 나눈 값임
상기 표에서와 같이, 실시예에서 제조된 리튬 티탄산화물 분말의 경우에는, 고속 충방전 반응시에도 충방전 효율이 97% 이상으로 높게 유지되었으며, 방전 용량의 감소도 많이 일어나지 않았다.
반면, 비교예에서 제조된 리튬 티탄산화물 분말의 경우에는 고속 충방전 반응이 진행됨에 따라 충방전 효율이 급격히 떨어졌고, 방전 용량도 감소되어 감을 알 수 있다.
이로부터, 표면 원소의 조성비 Ti/Li 및 리튬 원소의 조성이 제어된 리튬 티탄산화물은 이를 전극 활물질로 사용하는 리튬이차전지에서 고속 충방전 전지 특성을 개선시킴을 확인하였다.

Claims (7)

  1. 표면에서의 리튬 원소에 대한 티탄 원소의 조성비 Ti/Li가 0.8 이상으로 제어된 것을 특징으로 하는 리튬 티탄산화물(LTO)의 제조 방법.
  2. 제1항에서,
    상기 리튬 티탄산화물은 표면에서의 리튬 원소의 조성이 20% 미만으로 제어된 것을 특징으로 하는 리튬 티탄산화물(LTO)의 제조방법.
  3. 제1항에서,
    리튬 화합물과 티탄 화합물을 혼합 반응시키는 단계; 및
    상기 반응 혼합물을 700℃ 내지 900℃ 범위의 온도에서 4시간 내지 8시간 동안 열처리하는 단계를 포함하는 것을 특징으로 하는 리튬 티탄산화물(LTO)의 제조방법.
  4. 제3항에서,
    상기 리튬 화합물과 티탄 화합물의 혼합 반응은 리튬 화합물과 티탄 화합물을 용매에 투입하여 슬러리 상에서 교반하는 것으로 이루어짐을 특징으로 하는 리튬 티탄산화물(LTO)의 제조방법.
  5. 제3항에서,
    상기 리튬 화합물과 티탄 화합물의 혼합 반응은 분말상의 리튬 화합물과 티탄 화합물을 균일하게 혼합하는 것으로 이루어짐을 특징으로 하는 리튬 티탄산화물(LTO)의 제조방법.
  6. 제3항에서,
    상기 열처리는 닫힌 용기의 일반 대기 분위기에서 이루어지는 것을 특징으로 하는 리튬 티탄산화물(LTO)의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 제조방법으로부터 제조된 리튬 티탄산화물을 전극 활물질로 포함하는 것을 특징으로 하는 리튬이차전지.
PCT/KR2012/002965 2011-06-21 2012-04-18 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지 WO2012176975A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/115,298 US20140091255A1 (en) 2011-06-21 2012-04-18 Method for preparing an electrode active material for improving the properties of a battery, and lithium secondary battery including the electrode active material prepared thereby
CN201280030562.XA CN103636036A (zh) 2011-06-21 2012-04-18 制备用于改善电池特性的电极活性物质的方法,及包括由其制备的电极活性物质的锂二次电池
EP12803304.0A EP2725641A4 (en) 2011-06-21 2012-04-18 METHOD FOR THE PRODUCTION OF AN ELECTRODE-ACTIVE MATERIAL FOR IMPROVING THE PROPERTIES OF A BATTERY AND LITHIUM CERTAIN BATTERY WITH THE ELECTRODE ACTIVE MATERIAL PRODUCED IN THIS METHOD
JP2014516887A JP2014523387A (ja) 2011-06-21 2012-04-18 電池特性を改善させる電極活物質の製造方法及びそれから製造された電極活物質を含むリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0060109 2011-06-21
KR1020110060109A KR20120140396A (ko) 2011-06-21 2011-06-21 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지

Publications (2)

Publication Number Publication Date
WO2012176975A2 true WO2012176975A2 (ko) 2012-12-27
WO2012176975A3 WO2012176975A3 (ko) 2013-02-14

Family

ID=47423037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002965 WO2012176975A2 (ko) 2011-06-21 2012-04-18 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지

Country Status (6)

Country Link
US (1) US20140091255A1 (ko)
EP (1) EP2725641A4 (ko)
JP (1) JP2014523387A (ko)
KR (1) KR20120140396A (ko)
CN (1) CN103636036A (ko)
WO (1) WO2012176975A2 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201113168D0 (en) 2011-08-01 2011-09-14 Univ Birmingham Method for producing particulate clusters
US10128551B2 (en) * 2015-11-20 2018-11-13 Samsung Electronics Co., Ltd. Electrolyte for lithium air battery and lithium air battery including the same
DE102018203512A1 (de) 2018-03-08 2019-09-12 Volkswagen Aktiengesellschaft Lithium-Ionen-Zelle für einen Energiespeicher eines Kraftfahrzeugs, Verfahren zum Herstellen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126260A (ko) 2008-03-31 2010-12-01 도쿄엘렉트론가부시키가이샤 액체 원료 기화기 및 그것을 이용한 성막 장치

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3502118B2 (ja) * 1993-03-17 2004-03-02 松下電器産業株式会社 リチウム二次電池およびその負極の製造法
JP4642960B2 (ja) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 チタン酸リチウムの製造方法
JP4642959B2 (ja) * 2000-01-26 2011-03-02 東邦チタニウム株式会社 チタン酸リチウムの製造方法
JP4558229B2 (ja) * 2001-03-16 2010-10-06 チタン工業株式会社 チタン酸リチウム及びその製造方法、並びにその用途
EP1282180A1 (en) * 2001-07-31 2003-02-05 Xoliox SA Process for producing Li4Ti5O12 and electrode materials
US20070141470A1 (en) * 2005-12-16 2007-06-21 Kensuke Nakura Lithium ion secondary battery
JP2007227072A (ja) * 2006-02-22 2007-09-06 Sii Micro Parts Ltd 電気化学セル
CN101675547B (zh) * 2007-11-01 2013-05-08 Agc清美化学股份有限公司 锂离子二次电池用正极活性物质的制造方法
KR101128860B1 (ko) * 2009-08-11 2012-03-23 삼성정밀화학 주식회사 리튬티타네이트 나노입자의 제조방법
JP2011113795A (ja) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池活物質用チタン酸リチウムの製造方法
JP2011113796A (ja) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池用活物質およびこれを用いたリチウム二次電池
JP2011111361A (ja) * 2009-11-26 2011-06-09 Nippon Chem Ind Co Ltd リチウム二次電池活物質用チタン酸リチウムの製造方法
JP2012028026A (ja) * 2010-07-20 2012-02-09 Nippon Chem Ind Co Ltd リチウム二次電池用負極活物質及びその製造方法
CN101944590B (zh) * 2010-08-19 2013-03-27 东莞新能源科技有限公司 碳包覆钛酸锂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100126260A (ko) 2008-03-31 2010-12-01 도쿄엘렉트론가부시키가이샤 액체 원료 기화기 및 그것을 이용한 성막 장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2725641A4

Also Published As

Publication number Publication date
JP2014523387A (ja) 2014-09-11
WO2012176975A3 (ko) 2013-02-14
EP2725641A4 (en) 2015-11-18
US20140091255A1 (en) 2014-04-03
KR20120140396A (ko) 2012-12-31
EP2725641A2 (en) 2014-04-30
CN103636036A (zh) 2014-03-12

Similar Documents

Publication Publication Date Title
EP2899793B1 (en) Secondary battery comprising solid electrolyte layer
KR20200066048A (ko) 리튬 이차 전지용 양극 첨가제, 이의 제조방법, 이를 포함하는 리튬 이차 전지용 양극 및 이를 포함하는 리튬 이차 전지
WO2015005648A1 (ko) 리튬이차전지용 음극 활물질, 이를 포함하는 음극용 조성물 및 리튬이차전지
WO2013002457A1 (ko) 양극활물질, 상기 양극활물질을 포함하는 전극, 및 리튬 전기 화학 전지
KR20160045029A (ko) 리튬 이차 전지용 양극 활물질, 및 이를 포함하는 리튬 이차 전지
KR20190065839A (ko) 실리콘나이트라이드 음극재 및 이의 제조 방법
WO2011010789A2 (ko) 리튬 이차 전지용 음극 활물질, 그 제조 방법 및 그를 포함하는 리튬 이차 전지
KR20180077026A (ko) 이차전지용 양극 활물질, 그 제조방법 및 이를 포함하는 리튬 이차전지
KR20190078720A (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지
KR20140046496A (ko) 실리콘계 음극활물질 전극 및 그 제조방법 및 이를 구비한 리튬이차전지
WO2010143805A1 (ko) 리튬 이차 전지용 양극 활물질, 이의 제조 방법 및 이를 포함하는 리튬 이차 전지
KR101959761B1 (ko) 양극 활물질의 제조방법, 및 이에 의해 제조된 리튬 이차전지용 양극 활물질
KR20210070933A (ko) 리튬 이차전지용 양극 활물질, 상기 양극 활물질의 제조 방법
WO2015102201A1 (ko) 리튬 이차전지용 음극 활물질의 제조방법 및 리튬 이차전지
WO2012176975A2 (ko) 전지 특성을 개선시키는 전극 활물질 제조 방법 및 그로부터 제조된 전극 활물질을 포함하는 리튬이차전지
Yang et al. The study on synthesis and modification for iron phosphate
CN115528296B (zh) 一种二次电池
CN113517442B (zh) 负极材料、电化学装置和电子装置
WO2022131873A1 (ko) 리튬이온 이차전지용 금속계-탄소계 복합 음극재, 이의 제조방법 및 이를 포함하는 이차전지
WO2013002559A2 (ko) 양극활물질, 상기 양극활물질을 포함하는 리튬 이차 전지 및 상기 리튬 이차 전지를 전기화학적으로 활성화시키는 방법
WO2011090235A1 (ko) 리튬 이차전지용 양극 활물질, 그 제조방법 및 이를 이용한 리튬 이차전지
WO2013065918A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
KR102253763B1 (ko) 치밀한 구조를 가지는 이차전지 용 고체상 복합 전해질 막 제조방법
WO2018186538A1 (ko) 소성온도에 따른 개선된 비표면적 특성 및 전기화학적 특성을 갖는 양극 활물질 제조 방법
WO2023121060A1 (ko) 리튬 이차전지용 음극 활물질 전구체, 이를 포함하는 음극 활물질, 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803304

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012803304

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014516887

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14115298

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE